

FEN BİLİMLERİ ENSTİTÜSÜ

YEŞİL OPALİN GEMOLOJİK ÖZELLİKLERİ

GEMOLOGICAL CHARACTERISTICS OF GREEN OPAL

Ferhan ŞAHİN

Danışman Doç. Dr. H.Haluk SELİM

YÜKSEK LİSANS TEZİ MÜCEVHERAT MÜHENDİSLİĞİ ANABİLİM DALI İSTANBUL - 2017

KABUL VE ONAY SAYFASI

Ferhan ŞAHİN tarafından hazırlanan "YEŞİL OPALİN GEMOLOJİK ÖZELLİKLERİ " adlı tez çalışması 10/10/ 2017 tarihinde aşağıdaki jüri üyeleri önünde başarı ile savunularak, İstanbul Ticaret Üniversitesi Fen Bilimleri Enstitüsü Mücevherat Mühendisliği Anabilim Dalı'nda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Doç. Dr. H. Haluk SELİM İstanbul Ticaret Üniversitesi Danışman Doç. Dr. Mustafa KUMRAL İstanbul Teknik Üniversitesi 🔇 Jüri Üyesi Jüri Üyesi Yrd. Doç. Dr. Aykut GÜÇTEKİN Kocaeli Üniversitesi

Onay Tarihi : 18.12.2017

Dog Dr. Necip ŞİMŞEK 2 Com Enstitü Müdürü

AKADEMİK VE ETİK KURALLARA UYGUNLUK BEYANI

İstanbul Ticaret Üniversitesi, Fen Bilimleri Enstitüsü, tez yazım kurallarına uygun olarak hazırladığım bu tez çalışmasında,

- ٠ tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,
- görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlak kurallarına uygun ٠ olarak sunduğumu,
- ٠ başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atifta bulunduğumu,
- atıfta bulunduğum eserlerin tümünü kaynak olarak gösterdiğimi, ٠
- ٠ kullanılan verilerde herhangi bir tahrifat yapmadığımı,
- ٠ ve bu tezin herhangi bir bölümünü bu üniversitede veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı

beyan ederim.

Tarih (0.19.2017

İmza

Tez Yazarının Adı Soyadı Ferhan ŞAHİN

	•
ICIND	EVILED
IUIND	CNILCK
,	

Sayfa

ÖZET iii ABSTRACT vi
ABSTRACT vi
TEŞEKKÜRvii
SEKILLER ix
TABLOLAR x
ÇİZELGELER xi
ŚİMGELER VE KISALTMALAR xii
1. GİRİŞ
2. LİTERATÜR ÖZETİ
3. STRATİGRAFİ
3.1. Purultepe Kireçtaşı Üyesi (Kbp) 11
3.2. Gezenek Melanjı (Kg) 12
3.3. Gedikler Ultramafiti (Kge)
3.4. Zümrüt Formasyonu (Trz) 14
3.5. Örükyayla Melanjı (Kö)
3.6. Bahçekişla Formasyonu (Teba)
3.7. Oltu Formasyonu (Too)
3.8. Pasalı Formasyonu (Top)
3.9. Penek Formasyonu (Tmp)
3.10. Alüvyon (Oal)
4. ARASTIRMA BULGULARI VE TARTISMA
4.1. Opal Tanımı
4.2. Yesil Opalin Gemolojik ve Mineralojik Özellikleri
4.3. Numunelerin XRF Analiz Sonuclari
4.4. Yesil Opal ve Yan Kayacları ICP-MS Analiz Sonucları
4.5. Senkava Yesil Opalin XRD (X Isınları Difraksiyonu) Analizleri
4.5.1 X-Ray Diffraction (XRD) Analiz Raporu
4.6. Petrografik Analizler
4.6.1. Örnek No: OF-1A Makro İnceleme
4.6.2. Mikro İnceleme
4.6.3. Örnek No: OF-1B Makro İnceleme
4.6.4. Mikro inceleme
4.6.5. Örnek No: OF-1C Makro İnceleme
4.6.6. Mikro inceleme
4.6.7. Örnek No: OF-2A Makro İnceleme
4.6.8. Mikro inceleme
4.6.9. Örnek No: OF-2B Makro İnceleme
4.6.10. Mikro inceleme
4.6.11. Örnek No: T3-A Makro İnceleme
4.6.12. Mikro inceleme
4.6.13. Örnek No: T3-B Makro İnceleme
4.6.14 Mikro inceleme
4.6.15. Örnek No: T3-C Makro İnceleme
4.6.16. Mikro inceleme
4.6.17. Örnek No: T3-D Makro İnceleme 70

4.6.18. Mikro inceleme	71
4.6.19. Örnek No: T4-A Makro İnceleme	71
4.6.20. Mikro inceleme	72
4.6.21. Örnek No: T4-B1 Makro İnceleme	72
4.6.22.Mikro inceleme	73
4.6.23. Örnek No: T4-B2 Makro İnceleme	73
4.6.24. Mikro inceleme	74
4.6.25. Örnek No: T4-C Makro İnceleme	74
4.6.26. Mikro inceleme	75
4.6.27. Örnek No: T4-D Makro İnceleme	75
4.6.28.Mikro inceleme	76
4.6.29. Örnek No:T4-E Makro İnceleme	76
4.6.30. Mikro inceleme	77
4.6.31. Örnek Y1 Makro İnceleme	77
4.6.32. Mikro inceleme	78
4.7. Y1 Nolu Numunenin Raman Spektrumları	78
4.8. F-TIR Spektrumları	79
5. DEĞERLİ VE YARI DEĞERLİ TAŞLARINI İŞLEME TEKNİKLERİ	81
5.1. Şenkaya Yeşil Opalinin İşleme Tasarımı	81
5.2. Yeşil Opali Faset İşleme Aşamaları	81
5.3. Yeşil Opali Carving (oyma) İşleme Aşamaları	86
5.4. Faset Kesim Yapılan Yeşil Opalin Mücevhere Dönüştürülmesi	90
6. SONUÇ VE ÖNERİLER	97
KAYNAKLAR	101
ÖZGEÇMİŞ	104

ÖZET

Yüksek Lisans Tezi

YEŞİL OPALİN GEMOLOJİK ÖZELLİKLERİ

Ferhan ŞAHİN

İstanbul Ticaret Üniversitesi Fen Bilimleri Enstitüsü Mücevherat Mühendisliği Anabilim Dalı

Danışman: H. Haluk SELİM

2017, 104 sayfa

Bu çalışmada; İnceleme alanı, Türkiye'nin doğusunda bulunan Doğu Anadolu Bölgesi'nde Kırdağ'daki, Şenkaya (Erzurum) ilçesinin batı-kuzeybatısında yer alır. Türkiye'de ve Dünya'da gerçekten nadir rastlanan yeşil opal, koyu ve açık tonlarda elma veya fıstık yeşili renginde bir mineraloiddir. Yeşil opal, bazaltların altında, ofiyolitlerin üzerinde oluşmuştur. Opal, genellikle amorf bir yapıda olsa da, silisin kristal olmayan bir formudur. Yeşil opalin üzerinde doğal olarak bazı şekil ve desenler vardır. Bu desenlere halk tarafından "manzara" adı verilmiştir. Şenkaya (Erzurum) yeşil opali, aynı zamanda "Şenkaya Zümrütü" olarak bilinen ve mücevherat sektöründe kullanılan bir mücevher taşıdır. Çalışma alanımız olan Erzurum Şenkaya bölgesinde çıkan bu yarı değerlikli yeşil opalin, daha önceki yapılan araştırmalarda, mineralojik ve petrografik özellikleri belirlenmiş olup, bu çalışmada yapılan F-TIR ve Raman ölçümleri neticesinde çıkan sonuçları da ortaya konmuştur. Bu bağlamda Erzurum Zümrüt Köyü, Kırdağ ve Şenkaya Turnalı bölgesinde saha çalışmaları yapılmış ve amaca uygun temsili örnekler alınmıştır.

Bu tez çalışmasının diğer bölümünde; Şenkaya yeşil opallerinin işlemeciliği anlatılmıştır. Genellikle uygulanan kabaşon kesim dışında, bu tez kapsamında, faset kesim ve oyma (carving) tekniği uygulanmıştır.

Şenkaya yeşil opalinin incelenmesine yönelik, tez süresince uygulanan tüm çalışmalar ve araştırmalar sonucunda, yeşil opallerin Türkiye'de bulunan süs taşları arasında renk ve desen anlamında önemli bir yere sahip olduğu vurgulanmıştır. Yeşil opallerin kuyumculuk sektöründe, özellikle mücevher taşı olarak kullanım alanlarının geliştirilmesi hedeflenmiştir.

Anahtar Kelimeler: Mücevher taşı, ofiyolitik melanj Şenkaya zümrütü, yeşil opal.

ABSTRACT

M.Sc. Thesis

GEMOLOGICAL CHARACTERISTICS OF GREEN OPAL

Ferhan ŞAHİN

İstanbul Commerce University Graduate School of Applied and Natural Sciences Department of /Jewellery Engineering

Supervisor: Assoc. Prof. Dr.H.Haluk SELİM

2017, 104 pages

In this study, the area of investigation is in the west- southwest of Şenkaya (Erzurum) of Kırdağ in the East Anatolia of Turkey. The green opal is a rare mineraloid in Turkey and the world whose color ranges from dark and light shades of a green apple and the shades of a pistachio. The green opal is formed under the basalts, on the ophiolites. Although having an amorph structure, opal is a none crystal form of silica. Green opal naturally has some shapes and patterns on it. These patterns are called as "scenery" among people. Şenkaya (Erzurum) Green Opal is also known as "Şenkaya Emerald" and it is used as gemstone in jewelry. The mineralogical and petrographical properties of the Green Opal, named as Şenkaya Emerald that is found in Erzurum Şenkaya Region, our field of study, are determined in the former researches and the results after the F-TIR and Raman measurements have been put forward. In this sense; preliminary fieldwork has been carried out in Erzurum Zümrüt Village, Kırdağ and Şenkaya Turnalı Region and representative samples have been taken.

For this reason, Green Opals have been carefully engraved throughout the design studies. Apart from the cabochon cut which is widely used, for within the scope of this thesis facet cut and carving techniques have been processed.

As a result of all the studies and researches carried out all through this thesis, it is pointed out that Green Opals are important among the ornamental stones of Turkey in terms of color and pattern. Enhancing the areas of usage of Green Opals, especially as gemstones in jewelry, is aimed.

Key Words: Gemstone, ophiolitic mélange Şenkaya Emerald, Green Opal.

TEŞEKKÜR

Bu araştırma için beni yönlendiren, karşılaştığım zorlukları bilgi ve tecrübesi ile aşmamda yardımcı olan değerli Danışman Hocam Doç. Dr. H. Haluk SELİM'e teşekkürlerimi sunarım. Laboratuvar araştırmalarımda yardımcı olan değerli hocam Doç. Dr. Mustafa KUMRAL 'a ve Yrd. Doç. Dr. Şenel ÖZDAMAR'a teşekkür ederim.

Araştırmanın yürütülmesinde manevi yardımlarını gördüğüm Jeoloji Yüksek Mühendisi K. Ömer TAŞ, Dr. Gülsu ŞİMŞEK, İstanbul Teknik Üniversitesi İTÜ-JAL Laboratuar personeline teşekkür ederim.

Tezimin gerçekleşmesinde 116Y164 numaralı proje ile maddi destek sağlayan TÜBİTAK'a teşekkür ederim.

Tezimin imalat aşamasındaki desteklerinde dolayı değerli eşim Halil ŞAHİN'in HS Handmade Mücevherat İşletmeciliği şirketine teşekkür ederim.

Tezimin her aşamasında beni yalnız bırakmayan annem Güler KIZILER'e ve eşim Halil ŞAHİN'e sonsuz sevgi ve saygılarımı sunarım.

Ferhan ŞAHİN İSTANBUL, 2017

ŞEKİLLER

	Sayfa
Şekil 4.1. Yeşil opalin bulunduğu lokasyon	21
Şekil 4.2. İnceleme alanının jeoloji haritası	22
Şekil 4.3. İnceleme alanindaki ofiyolit istif içerisinde alınan örneklerin	
lokasyon haritası	23
Şekil 4.4. Zümrüt Köyü'nün kuzeydoğu bakışlı genel görünümü	25
Şekil 4.5. Zümrüt Köyü'nde örnek alınan bölgenin genel görünüşü	25
Sekil 4.6. Ofiyolit-serpantin birimlerin alt kesimleri	26
Sekil 4.7. Ofivolit-serpantin birimlerin alt kesimleri	26
Śekil 4.8. Numune el örneği	26
Sekil 4.9. Kırdağ Bölgesi–serpantin olusumları-ofiyolit birimin en üst	
seviveleri	27
Sekil 4.10. Kırdağ Bölgesi-serpantin oluşumları-ofiyolit birimin en üşt	
seviveleri	28
Sekil 4.11. Turnalı Köyü'ne doğudan batıya bakıs	28
Sekil 4.12. Turnalı Köyü'nde vesil opalin arazide görünüsü	29
Sekil 4.13. Turnalı Köyü'nde vesil opalin arazide görünüsü	29
Sekil 4 14 Turnalı Köyü'nde vesil opalin arazide makro görünüsü	29
Sekil 4 15 Yesil onal el numunesi	30
Sekil 4 16 Turnalı Köyü güneybatı Dorukluk meykij	30
Sekil 4 17 Turnalı Köyü güneybatı Dorukluk meykii	31
Sekil 4 18 Turnalı Köyü güneybatı Dorukluk Meykii	31
Sekil 4 19 OF1A nolu örneğin cift nikol mikroskon görünümü	63
Sekil 4 20 OF1B nolu örneğin çift nikol mikroskon görünümü	64
Sekil 4 21 OF1C nolu örneğin cift nikol mikroskop görünümü	65
Sekil 4 22. OF2A nolu örneğin çift nikol mikroskon görünümü	66
Sekil 4 23 OF2B nolu örneğin çift nikol mikroskon görünümü	67
Sekil 4 24 T3A nolu örneğin çift nikol mikroskon görünümü	68
Sekil 4 25 T3B nolu örneğin çift nikol mikroskon görünümü	69
Sekil 4 26 T3C nolu örneğin çift nikol mikroskop görünümü	70
Sekil 4 27 T3D nolu örneğin çift nikol mikroskon görünümü	70
Sekil 4 28 T4-A nolu örneğin çift nikol mikroskop görünümü	72
Sekil 4 20. TAB1 nolu örneğin çift nikol mikroskop görünümü	72
Sekil 4 30 T4B2 nolu örneğin çift nikol mikroskop görünümü	74
Sekil 4.31 TAC nolu örneğin çift nikol mikroskon görünümü	75
Solvil 4.32 TAD poly örneğin çift nikol mikroskop görünümü	75
Solvil 4.32. T4D holu örneğin çift nikol mikroskop görünümü	70
Sekil 4.35. 14F fibiu offiegili çilt filkol mikroskop görünümü	70
Selvil 4.25 İnaa dilim alma	/0 01
Selvil 4.35. Ince unini dina	01 01
Sekil 4.30. Aşinun ma makinesi ile pre-torm işlemi	01
Şekil 4.37. Aşındırma makinesi ile pre-form işlemi	82
	82
Şekil 4.39. Faset Kesim diyagrami	<u>გ</u>
Şekil 4.40. Laşın kemer kısmının kesilme aşaması	84
Şekil 4.41. Taşın taç kısmının kesim aşaması	84
Şekil 4.42. 600 nolu lapta kesim aşaması	85

Şekil 4.43. Bakır lap üzerinde parlatma aşaması	85
Şekil 4.44. Kesim ve parlatma işlemi tamamlanmış yeşil opal	86
Şekil 4.45. Kesim ve parlatma işlemi tamamlanmış yeşil opal	86
Şekil 4.46. Aşındırarak pre-form işlemi	87
Şekil 4.47. Aşındırarak pre-form işlemi	87
Şekil 4.48. Carving (oyma) işlemi	88
Şekil 4.49. Tasarım Aşaması	89
Şekil 4.50. Üretim Aşamaları	89
Şekil 4.51. Üretim Aşamaları	89
Şekil 4.52. Gerdanlığa Dönüşen Yeşil Opal	90

TABLOLAR

	Sayfa
Tablo 4.1. Yeşil Opalin Gemolojik ve Mineralojik Özellikleri	20
Tablo 4.2. Analizleri Yapılan Numune Kodları	24
Tablo 4.3. Turnalı Köyü Üst Seviye Numunelerinin Kimyasal İçeriği	32
Tablo 4.4. Turnalı Köyü Üst Seviye Numunelerinin Kimyasal İçeriği	32
Tablo 4.5. Turnalı Köyü Alt Seviye Numunelerinin Kimyasal İçeriği	33
Tablo 4.6. Turnalı Köyü Alt Seviye ve Şenkaya Yeşil Opalinin Kimyasal	
İçerikleri	33
Tablo 4.7. Zümrüt Köyü Numunelerinin Kimyasal İçeriği	34
Tablo 4.8. Kırdağ Numunelerinin Kimyasal İçeriği	34
Tablo 4.9. Şenkaya Yeşil Opal Numunelerin Kimyasal İçeriği	35
Tablo 4.10 X Işınları Oluşum Şartları	37
Tablo 4.11. Numune Adı: T4-A	37
Tablo 4.12. Numune Adı: T4-B	38
Tablo 4.13. Numune Adı: T4-C	40
Tablo 4.14. Numune Adı: T4-D	42
Tablo 4.15. Numune Adı: T4-E	43
Tablo 4.16. Numune Adı: T4-F	44
Tablo 4.17. Numune Adı: T3-A	46
Tablo 4.18. Numune Adı: T3-B	47
Tablo 4.19. Numune Adı: T3-C	49
Tablo 4.20. Numune Adı: T3-D	50
Tablo 4.21. Numune Adı: Y1	52
Tablo 4.22. Numune Adı: OF1-A	53
Tablo 4.23. Numune Adı: OF1-B	55
Tablo 4.24. Numune Adı: OF1-C	56
Tablo 4.25. Numune Adı: OF2-A	58
Tablo 4.26. Numune Adı: OF2-B1	59
Tablo 4.27. Numune Adı: OF2-B2	60

ÇİZELGELER

Sayfa

Çizelge 4.1. T4-A numunesinin Grafiği	37
Çizelge 4.2. T4-A Numunesinin Pik ve Patern Listesi	38
Çizelge 4.3. T4-B Numunesinin Grafiği	39
Çizelge 4.4. T4-B Numunesinin Pik ve Patern Listesi	40
Çizelge 4.5. T4-C Numunesinin Grafiği	39
Çizelge 4.6. T4-C Numunesinin Pik ve Patern Listesi	40
Çizelge 4.7. T4-D Numunesinin Grafiği	41
Çizelge 4.8. T4-D Numunesinin Pik ve Patern Listesi	43
Çizelge 4.9. T4-E Numunesinin Grafiği	43
Çizelge 4.10. T4-E Numunesinin Pik ve Patern Listesi	44
Çizelge 4.11. T4-F Numunesinin Grafiği	45
Çizelge 4.12. T4-F Numunesinin Pik ve Patern Listesi	46
Çizelge 4.13. T3-A Numunesinin Grafiği	46
Çizelge 4.14. T3-A Numunesinin Pik ve Patern Listesi	47
Çizelge 4.15. T3-B Numunesinin Grafiği	48
Çizelge 4.16. T3-B umunesinin Pik ve Patern Listesi	49
Çizelge 4.17. T3-C Numunesinin Grafiği	49
Çizelge 4.18. T3-C Numunesinin Pik ve Patern Listesi	50
Çizelge 4.19. T3-D Numunesinin Grafiği	51
Çizelge 4.20. T3-D Numunesinin Pik ve Patern Listesi	51
Çizelge 4.21. Y1 Numunesinin Grafiği	52
Çizelge 4.22. Y1 Numunesinin Pik ve Patern Listesi	53
Çizelge 4.23. OF1-A Numunesinin Grafiği	54
Çizelge 4.24. OF1-A Numunesinin Pik ve Patern Listesi	55
Çizelge 4.25. OF1-B Numunesinin Grafiği	55
Çizelge 4.26. OF1-B Numunesinin Pik ve Patern Listesi	56
Çizelge 4.27. OF1-C Numunesinin Grafiği	57
Çizelge 4.28. OF1-C Numunesinin Pik ve Patern Listesi	58
Çizelge 4.29. OF2-A Numunesinin Grafiği	58
Çizelge 4.30. OF2-A Numunesinin Pik ve Patern Listesi	59
Çizelge 4.31. OF2-B1 Numunesinin Grafiği	59
Çizelge 4.32. OF2-B1 Numunesinin Pik ve Patern Listesi	60
Çizelge 4.33. OF2-B2 Numunesinin Grafiği	61
Çizelge 4.34. OF2-B2 Numunesinin Pik ve Patern Grafiği	62
Çizelge 4.35. Raman Spektrop Ölçümleri	78
Çizelge 4.36. FTIR Ölçümleri	79

SİMGELER VE KISALTMALAR

- Kbp Purultepe Kireçtaşı Üyesi
- Kg Gezenek Melanjı
- Kge Gedikler Ultramafiti
- Trz Zümrüt Formasyonu
- Kö Örükyayla Melanjı
- Teba Bahçekışla Formasyonu
- Too Oltu Formasyonu
- Top Paşalı Formasyonu
- Tmp Penek Formasyonu
- Qal Alüvyon

1. GİRİŞ

Türkiye'nin doğusunda bulunan Doğu Anadolu Bölgesi'nde Kırdağ bölgesinde bulunan Erzurum ilinin Şenkaya ilçesinin batı-kuzeybatısında yer alan mevkiinde yeşil opal çıkmaktadır. Türkiye'de ve Dünya'da gerçekten nadir rastlanan bu yeşil opal türü, koyu ve açık tonlarda elma veya fıstık yeşili renginde bulunan bir mineraloiddir. Yeşil opalin üzerinde doğa tarafından işlenmiş bazı şekil ve desenler yer almaktadır. Bu desenlere orada yaşayan halk tarafından "manzara" adı verilmiştir. Ancak Şenkaya (Erzurum) yeşil opali, yeşil rengi sebebiyle de mücevher taşlarının en önemlilerinden biri olan zümrüt taşına çok benzediği için "Şenkaya Zümrütü" ismini de almıştır. Bu zümrüt yeşili rengi sadece ülkemizde çıkarılmaktadır. Bu nedenle de özelliği bulunan yarı değerlikli bir tastır. Burada bulunan yesil opal türü, jeolojik olarak bazaltların altında, ofiyolit istiflerinin üzerinde oluşmuştur. Yeşil opal taşına gemolojik olarak bakıldığında genellikle amorf bir yapıda olsa da, silisin kristal olmayan bir formudur. Yeşil opal 100°C' nin altında kristallenmiştir. Kristallenen bu jel sedimanter tabakanın çatlak ve yarıklarına sızarak oluşmuştur. Yeşil opal taşını oluşturan minerallerin sertlikleri Mohs sertlik cetveline göre 4-6 arasında değişmektedir.

Bu çalışmada yeşil opalinin fiziksel olarak renk, sertlik, kesilebilme ve işlenebilme özelliği, özgül ağırlığı, nadir bulunuşu, iri kristalli olma özelliği ve transparan özelliği araştırılmıştır. Çalışma alanımız olan Erzurum Zümrüt Köyü, Kırdağ ve Şenkaya Turnalı bölgesinde saha çalışmaları yapılmış ve amaca uygun temsili örnekler alınmıştır. İnceleme yapılan bölgelerin jeolojik haritaları yapılmıştır.

Erzurum Şenkaya bölgesinde çıkan bu yarı değerlikli yeşil opalin, mineralojik ve petrografik özellikleri belirlenmiştir. İnce kesit çalışmalarında örneklerin detaylı olarak makro ve mikro incelemeleri yapılmış olup, mikroskop ile fotoğrafları çekilmiştir. Yeşil opal numunesinin XRD analizinde çıkan bu ana piklerin kristobalitlerden oluştuğu gözlenmiştir. Ayrıca bunun yanında da magnezit ve düşük oranda kuvars piklerine de rastlanmıştır. Yine bu çalışmada yapılan F-TIR ve Raman ölçümleri yapılmıştır. Bu analizlerin neticesinde çıkan yeşil opali meydana getiren mineraller ve yan kayaçlarında yer alan mineraller tespit edilerek çıkan sonuçlar da ortaya konmuştur. (Y1) Yeşil opal numunemizin XRF analiz sonucunda ise bu çalışmada yapılan XRF incelemelerine bakıldığında numunemizin silis oranının oldukça yüksek çıktığı tespit edilmiştir.

Bu tez çalışmasının diğer bölümünde; Erzurum Şenkaya yeşil opallerinin işlemeciliği anlatılmıştır. Yeşil opalin işlemesi yapılırken kırıklık, dağılma ve çatlama gibi sıkıntılar yaşanmıştır. Bu taşın gevrek bir yapıya sahip olmasından ileri gelmektedir. Bu nedenle, uygulanan kesim ve şekillendirme işlemlerinde yeşil opaller dikkatlice işlenmiştir.

Genellikle çıkarılan bölgede uygulanan klasik kabaşon kesim uygulanmaktadır. Yine gümüş klasik bir montüre yerleştirilerek satışa sunulmaktadır. Fakat bu tez kapsamında, farklı kesim teknikleri de uygulamaya çalışılmıştır. Bu nedenle faset kesim ve oyma (carving) tekniği uygulanmıştır. Bunun nedeni ise farklı, standart dışı ve modern işleme teknikleri uygulanarak, özellikle kuyum sektöründe de kullanım alanlarının sağlanması ve dikkatlerini çekmekmektir. Yeşil opallerin üzerleinde bulunan desenler sayesinde hicbiri birbirine benzemeyen desenleri ile kişiye özel ürünler haline getirebilir. Özellikle beyaz, yeşil altın ve pırlantalı modern ürünlerde de oldukça rahat kullanılabileceği ve beğeni sağlayacağı desteklenmiştir.

Erzurum Şenkaya yeşil opalinin incelenmesine yönelik, tez süresince uygulanan tüm çalışmalar ve araştırmalar sonucunda, yeşil opallerin Türkiye'de bulunan birçok diğer yarı değerlikli taşları arasında renk ve desen anlamında diğerlerinden farklı ve önemli bir yere sahip olduğu vurgulanmıştır.

2. LİTERATÜR ÖZETİ

5. Endüstriyel Hammaddeler Sempoyumunda sunulan çalışmada, genel olarak opal ve özellikleri, fiziksel ve mineralojik özelliklerinin yanı sıra dünyada ve Türkiye'deki opal yataklarından bahsetmişlerdir (Vıcıl vd. 2004).

Bileşimi Turnalı opalindeki su oranı, yapılan deneysel çalışmalar sonrasında toplam ağırlığının %7'sini oluşturduğu belirlenmiştir. Renk Yeşil ve tonları, mavi ve tonları, mor, kahverengi, kiremit kırmızısı, turuncu, san, gri ve beyaz renkler bulunmaktadır. Yer yer bu renklerin siyaha yakın koyu renklerde opalleri varken, aynı renklerin açık ve pastel renklerde opaller de bulunmaktadır. Uzun süre güneş altında doğal ortamında kalmış opal parça ve bloklarının dış yüzey renklerinin aynşarak beyaz ve beyaza yakın aynşım renkleri oluşturduğu gözlemlenmiştir. Dıştan içeriye doğru, yeni kırılmış örneklerde renklerin daha canlı ve koyulaştığı gözlemlenmiştir. İşlenmiş ve kırılmış küçük örneklerde tek renk görülse bile, Turnalı opallerinde genellikle iç içe çok renklilik etkendir. Bu nedenle de Turnalı opalleri çoğu kere resim tabloları gibi manzaralar arz etmektedir Kaba olmayan, sanatsal, estetik, işlenebilecek ürünler ve bunlara seçilecek takılar Turnalı opallerinin renk güzelliklerini daha güzide kılabilecektir. Deneysel mikroskobik çalışmalarda, parlatılmış örneklerde çokça kromit, hematit, kromitlerin aynşması ile silisli alanlara yayılmış hematit ve limonitler renklerin oluşumlarında etkili olduğu belirlenmiştir. Turnalı opallerinde Cr, Fe, Ni ve Cu'ın renk pigmentlerini oluşturduğu düşünülmüştür. Turnalı opallerindeki çok renkli pek çok örneklerde, uyumlu ve zıt renklerin bulunuştan da ayn ayn bir özellik taşımaktadır. Belki çok kıymetli gözükmeyen Turnalı opallerinin de renk oyunları (play of color) olmasa bile yukanda değinilen renk özellikleri ile albenisi artabilecektir (Vıcıl vd. 2004).

Sertliği Bilinen cisimlerle yapılan deneylerle Turnalı opalinin sertliği 6,5 olarak belirlenmiştir. Aynşmış örneklerde ise 5,5-6 arasında sertlikler bulunmuştur. Kristal sistemleri, kütle ve taneleri ile opallerin amorf olduğu belirlenmiştir ve bilinmektedir. Aynca bir mineral olmayıp muntazam olan

bir mineraloiddir. Standartlara uyan bir kristal yapıya sahip olmasıyla kristal grupları içinde yer almaktadır. Turnalı taşının ince kesitinin incelenmesinde; ayrısmış olivin ve ortopiroksenler belirlenmiştir. Ayrıca serpantin, antigorit, krizolit, klorit, bastit ve lizartit ayrışma ürünleri gözlemlenmiştir. Bunun yanında mikro kırıklarda kalsitler ve rekristalize silikatlar saptanmıştır. Bir ultrabazik kayacın ayrışması ile oluşmuş bir yüzeyde hidrotermal etkili bir zonda Turnalı taşı oluşmuştur. Mat ve çok az yarı şeffaf olan yeşil, turkuvaz ve kahve renkli Turnalı taşı, Turnalı opali olarak isimlendirilmiştir. Ayrıca XRD analizleri yapılarak grafikleri incelenmiş, olivin ve ayrışmış hematitler saptanmıştır. Turnalı taşını oluşturan minerallerin sertlikleri 3-7 arasında (Mohs'a göre) değişmekte ve ortalama 5 olarak hesaplanmıştır. Hâlbuki kırılmış taze yüzeylerde sertlik 6,5 olarak bulunmuştur. Minerallerin ortalama sertliği kayacın sertliğinden azdır. Bu kayaç grubunun sertliğini kazanabilmesi ancak sıvı kapanım verileri olan 220-280°C bir ısıda Turnalı hidrotermal solüsyonlarının etkisiyle olușabileceğini tasının düşündürmüştür (Vıcıl vd. 2004).

Ayrıca Turnalı taşını oluşturan minerallerin renkleri koyu yeşil, yeşil ve sarı tonlardadır. Kayacı oluşturan mineral renkleri ile kayacın renkleri kayacın harzburjit (Olivin-Ortopiroksen) olduğu uvusmaktadır. Ana belirlenmiştir. Turnalı opali masif, katmansı, damarcık, breşik ve nodüler sekillerde oluşumları gözlemlenmiştir. Maden vatağında yer ver kümelenmeleri bulunmaktadır. Kümelenmiş yerler az eğimli orta alanlarda küçük tepecikler ve sırtlar oluşturmuşlardır. Bu tepeciklerin bazıları maşif, bazıları katmansı paralel seviyeler, kimileri ise damarcıklar, bazıları ise killi ve kaolenize alanlarda nodul ve yumrular şeklinde bulunmaktadır. Turnalı gölüne bakan yamaçlarda heyelan ve toprak kaymaları nedeniyle blok ve çakıllar şeklinde pek çok opaller bulunmaktadır. Turnalı gölü bir heyelan gölüdür. Ancak vadi, heyelanla kapatılarak oluşan bir heyelan oluşumu olmayıp kayan bloklar arasındaki boşluk alanda oluşmuş heyelan gölü gölüdür. Turnalı opalinin temel kayasını serpantinler teşkil etmektedir. Bu ofiyolitik birimin yaşı Üst Kretase'dir. Ancak opaller, ayrışmış serpantinli seviyenin silis ve demirli (jaspilitli) üst seviyesinde Eosen veya Tersiyer

yaşındaki volkanitler döneminde gelen yeraltından yükselen Si02 içerikli suların bu silisli ve demirli zona gelip yerleşmeleri ile Tumalı opallerinin olusturmustur. Opaller tamamen üst zonda 3-10 m'lik bir seviyededir. Opallerin çıkarılması bu nedenlerle oldukça kolay olmaktadır. Opaller içerisinde zengin kromitlerin olması ofiyolitikleri bir yönüyle teyit etmektedir. Magmatik kayaçlann ayrışma zonunda oluşmuş Turnalı opallerinde, ortamda fosil ve odunsu kalıntılar bulunmadığı için bu yapılarla ilgili opal türleri mümkün gözükmemektedir. Belirlenmiş mevcutlar dışında başka yapı, doku ve diğer renklerde opallerin bulunabilmesi olası gözükmektedir. Isık geçirme (seffaflık); Turnalı opalleri genelde mattır. Dış görünüşleri ile opak minerallere benzer bir görünüm arz ederler. Ancak bazı kısımlarda hem yeşil opallerde hem de açık gri kısımlarda yarı şeffaf olanları bulunmaktadır. Bu özelliği ile hem derinlik kazanmakda hem de griler dumanlı bir görünüm kazanmaktadır (Vıcıl vd. 2004). Mevcut örnekler içerisinde tamamen şeffaf olanlar bulunamamıştır. Ancak daha ışın başlangıcında olduğu için yem açılabilecek ocaklarda veya çevrede bulunabilecek yeni yerlerde bu yatakta bulunmayan türlerin olasılığı her zaman bulunmaktadır. Özgül ağırlık ile yapılan piknometre deneyi sonucunda Turnalı opallerinin özgül ağırlığı 2,17 olarak belirlenmiştir. Bu değerle Turnalı opalleri, kıymetli opallerin özgül ağırlığı verilerine uygunluk gösterdiği görülmektedir. Parlaklık, cila Turnalı opallerinin yüzeyi oldukça parlaktır. Kırılma yüzeylerinin taze kırılmış olanlarda bu parlaklık değeri daha da yüksektir. Yüzeyde kalan örneklerde ise ayrışma derecelerine bağlı olarak parlaklık ve cilalarını kaybetmektedir. Buradaki opallerde camsı ve mumsu cilalar gözlemlenmiştir. Bazı örneklerde camsı bazılarında mumsu cilalı özellikler daha etkilidir. Özel bir firmanın yaptığı takıların çok iyi parladığı ve cilalandığı gözlemlenmiştir. Hem doğal cilalarının iyi hem de hazırlanmış takı örneklerinin çok iyi cila alması Turnalı opalleri için çok önemli bir özelliktir. Dilinim yok, homojen, yer yer mikro kırılmalar var. Kırılma, Midye kabuğu ve camsı kırılması var. Çoğu kere konkoıdal (midye kabuğu) kırılması etkilidir. Oldukça gevrektirler. Büyük bloklar çekiç ve balyozla kırıldığında bazen düz kırılmalı yüzeyler elde edilebilmektedir. Diğer özellikleri Turnalı opallerinde hakim rengin yeşil ve tonları olmasına

karşın çok renklerin yer yer birkaç milimetrik alanda oluşmuş olması opallere oldukça farklı bir özellik kazandırmıştır. Turnalı opallerinde cevher mikroskobu ile yapılan çalışmalarda; özel bir şirketin hazırlamış olduğu takı örneklerinin parlatılmış yüzeyleri incelenmiştir. Seçilen örneklerin genelde farklı renklerde olanları seçilip incelemeye alınmıştır. Yapılan araştırma sonucunda: Parajenezde Kromit, götit, hematit, limonit, nabit kristaller belirlenmiştir. Turnalı opallerinde ilk oluşan opak mineral (cevher minerali) kromittir. Buradaki kromitlerin ayrışmış taban kayacı serpantinlerden sökülüp alınıp taşındığı belirlenmiştir. Kromitler yer yer deformasyonlara uğramışlar ve kenarları boyunca bozuşarak hematit ve limonitleri oluşturmuşlardır. Opaller içerisinde dağılmış bu mineraller opallerin çok renkliliklerine neden olmuşlardır. Burada özellikle Cr ve Fe bileşikleri (oksit ve silikatları) opallerin yeşil, kırmızı, turuncu, sarı, mavimsi yeşil ve kahve renkli renklerini oluşturmuşlardır(Vıcıl vd. 2004).

Serpantinler de iz olarak bulunmaktadırlar. Cr ve Fe silikatları için: 1- Cr (SİO3) —» (Uvarovıt benzeri) Kromlu sulu silikat (Yeşil opallerde).

2- Fe (SİO3) - Fe2O3.nH20 – FeO2nHjO -» Grupları san, kahve, kırmızı, turuncu ve yeşil renkli (Fe+3) opalleri oluşturmuşlardır. Bu iki element bileşiklerinin karışımları ise Turnalı opallerindeki çok renklilik oluşumlarını sağlamışlardır. Parlatılmış örneklerdeki siyah beneklerin kromit tanecikleri olduğu belirlenmiştir. Ayrıca siyah parçalı renk kümelenmiş kısımlarda kromit taneciklerinin yığıştığı (birikim sağladığı) gözlemlenmiştir. Bu çok renkli opallerdeki sarı, kırmızı alanlara yakın kromitlerin aşın bozuştuğu ve açığa çıkmış hematit, limonit ve demirli silikatların oldukça yaygın olduğu gözlemlenmiştir. Yine çok renkli opallerin mavi ve yeşilimsi alanlarında ayrışmış kromit taneleri bulunmaktadır. Açığa çıkan limonit, hematit ve götitler kılcal damarcık, hücresel ve üçgen şekillerle dağınık olarak oluşmuşlardır(Vıcıl vd. 2004). Ayrıca bu mavi ve yeşil alanlarda kıvrılmış ve bükülmüş kromitler (deforme olmus) belirlenmiştir. Bunun yanı sıra koyu yeşil jelimsi (pıhtı) yapılarda saptanmıştır. Aynı koyu yeşil opallerde (siyah opaller) hematit ve limonit kümelenmeleri ile spekülarit benzeri hematitler gözlemlenmiştir. Bu alanda grafiksel sekiller oluşmuş, ücgen, paralel kenar, trapez ve daha pek çok geometrik şekiller gözlemlenmiştir. Hematit ve limonitler silisli ortamda bulundukları için çok kuvvetli iç yansımalar göstermektedir. Bazı kristaller yapılarını oluşturmuş, kristallerin ortaları ayrışmış kenarları kafes rekristalize olmuşlardır. Yer yer çok iri kromitler bulunmaktadır ve kırıklı yapıları yanında uçları bükülmüşlerdir. Koyu yeşil opallerin bazılarında çok koyu kılcal damarcıklar oluşmuştur. Bu damarları hematitler (götit+lepidokrosit) teşkil etmişler ve bazıları birbirine paraleldirler. Turnalı opalleri bir ultrabazik kayacın ayrışım zonu olan üst zonunda oluşmuş olduğuna göre, bu zonda kalıntı olarak zenginleşmiş elementlerin mutlaka etkisinde kalmıştır. Ultrabazik kayaç ayrışımları ile Cr, Sı, Fe, Al, Mn, Ni, U, Ba, Mg, Co elementleri bu zonda zenginlesmektedir. Bunlardan Fe, Cr, Si zenginleşmesi belirlenmiştir. Diğer elementlerin durumu ise yapılacak kimyasal analizler sonucu belli olacaktır (Vıcıl vd. 2004).

Ayrıca opallerde belirlenen nabit kristaller nabit Au ve nabit Ni'e benzemektedir. Turnalı opallerinde çalışmaları yapılan sıvı kapanım çalışmaları; Leitz ısıtma tablası ve ekipmanları ile Jeoloji Bölümü Araştırma Laboratuarında gerçekleştirilmiştir. Her tür opalden hazırlanan kesitlerde sıvı kapanım içeriklerinin çok azlığı ve oldukça küçük boylarda oluşları gözlemlenmiş ve çok fazla deney yapılamamıştır. Bu nedenlerle ancak 12 sıvı kapanımın ısıtma deneyleri gerçekleşmiş, şu özellikler belirlenmiştir: Birincil kapanımlar olan bu sıvı kapanımların boyutları 4-15 mikron arasında değişmektedir. Genelde elips şekilli olan kapanımlarda 3 ayrı tür belirlenmiştir (Vıcıl vd. 2004).

3. STRATİGRAFİ

Transkafkaslar ile Küçük Kafkaslar'ın batı uzanımında bulunan ve güneyden Doğu Anadolu Yığışım Karmaşığı (Şengür ve Yılmaz, 1981) ile sınırlanan inceleme alanı, Ketin (1966) tarafından Pontidler olarak tanımlanan kuşağın doğu kesiminde yer alır. Pontidler'i (Şengör ve Yılmaz, 1981), kuzeyde Rodop-Pontid fragmanı ve güneyde Sakarya Kıtası olmak üzere ikiye ayrılırlar ve bu iki kıtasal blok arasında İntra-Pontid kenedinin yer aldığını belirtirler. Sakarya Kıtası güneyinde yer alan İzmir-Ankara-Yozgat-Erzincan kenedi ise daha doğuda Sevan-Akera Zonu ile birleşir. Ayrıca Adjara-Trialeti ve Artvin-Bolnisi zonlarının da (Yılmaz, 1989; Adamia vd. 1992) ülkemiz sınırları içinde devam ettiği bilinmektedir. Çalışma alanını da yakından ilgilendiren, Doğu Anadolu Bölgesi'ndeki ilk jeolojik araştırmalar Hamilton (1842) ile başlar; bu çalışmayı (1846), Tchihatceff (1867, 1887), Abich (1878, 1882, 1887) ve Oswald (1910, 1912)' in araştırmaları izler (Erentöz ve Ketin, 1962 ve 1974' den). MTA'nın kurulmasıyla bölgedeki jeolojik çalışmalar hız kazanmış ve çeşitli araştırmacılar (Chaput, 1936; Arni, 1939; Parejas, 1940; Lahn, 1940) genel ve ekonomik jeolojiye yönelik çalışmalar yapmışlardır. Bu araştırmaları 1/500.000 Ölçekli Türkiye Jeoloji Haritası'na Trabzon ve Kars Paftaları; Gattinger vd., (1962) Erentöz ve Ketin (1974) baz teşkil edecek 1/100.000 ölçekli jeoloji harita çalışmaları (Baykal 1949 ve 1950; Ketin, 1949 ve 1950; Erentöz, 1954; Gattinger, 1955; Demirsü, 1955) izlemiştir. Bu araştırmacılardan Baykal (1950), Oltu-Olur dolayındaki çalışmasında, kristalen temel üzerinde uyumsuz olarak gelen Mesozoyik yaşlı Akdağ kopmleksinin alttan üste doğru; ara fliş, esmerfliş, kalker serisi, Belemnites'li fliş, koyu renkli greler, İnoceramus'lu kalkerler ve nefti renkli flişle temsil edildiğini, bunun üzerinde de uyumsuzlukla gri veya sarı Nummulites veya jips ihtiva eden nummulitik formasyonların geldiğini belirtir. İnceleme alanı sınırları içinde Balkaya, Sütkans ve Hanege gibi önemli kömür yataklarının yer alması nedeniyle belirli bir dönem bu yatakların araştırılmasına yönelik çeşitli çalışmalar (Lahn ve Romber, 1939; Tendam, 1951; Wedding 1956; Nebert, 1963a,b; Engin ve Engin, 1964) yapılmıştır. Kömür potansiyelini

ortaya koymak amacıyla Balkaya-Oltu-Narman Tersiyer havzasının jeolojisini ve bir bütün olarak inceleyen ve haritalayan Nebert vd., (1964), Tersiyer istifini Eosen fliş, Oligosen çökelleri ve Pliyosen çökelleri olmak üzere üç bölümde incelemişlerdir. Baydar vd., (1969); Yusufeli, Öğdem, Madenköy ve Tortum Gölü dolayında gerçeklestirdikleri genel jeoloji amaçlı çalışmada, geniş bir alanın 1/25.000 ölçekli jeoloji haritasını yapmışlar, daha sonra bu çalışmadan yararlanılarak 1/50.000 ölçekli Tortum-G47a Jeoloji Haritası'nın basımı gerçekleştirilmiştir (Akyürek vd., 1977). Altınlı (1969), Oltu-Olur-Narman dolayında petrol aramasına yönelik yaptığı jeolojik araştırmada, Oltu yöresindeki Eosen flis, Olur yöresindeki Eosen'in ise nummulitli ve sığ denizel olduğunu belirterek bölgede iki farklı Eosen'in varlığını ifade eder. Bayraktutan (1985 ve 1994)'a göre; Narman Havzası'ndaki volkanitler, andezitik ve kalkalkalen bileşimi olup yay magmatizması özelliğindedir. Narman Havzası'nın Paleosen temelini oluşturan bu volkanitlerden radyometrik ölçümlerle 23-42 My arasında değişen yaşlar elde eden araştırıcı, 1994 yılındaki çalışmasında genç miyosen (6.7 My), Pliyosen (5.6 My) ve Pliyo-Kuvaterner (3.8 My) yaşlı olmak üzere çarpışma sonrası gelişmiş üç ayrı volkanizmadan söz eder. Olur dolaylarında çalışan Yılmaz (1985), metamorfik bir temel üzerinde uyumsuzlukla gelen Mesozoyik istifini yedi formasyona (Köprübaşı dasitleri, Olurdere formasyonu, Yeşilbağlar kireçtaşları, Karmasor formasyonu, karagüney formasyonu, Kilistepe formasyonu, Akbayır kirectaşları) ayırarak inceler. Totum-Narman-Oltu-Olur bölgesinin Tersiyer stratigrafisini ve kömür potansiyelini araştıran Bulut vd., (1989), Tersiyer öncesi temel üzerinde uyumsuzlukla yer alan Eosen yaslı çökelleri, fliş ve sığ denizel olmak üzere iki farklı fasiyeste incelerler. Eosen üzerinde uyumsuzlukla yer alan Oligo-Miyosen'in karasal çökeller ve volkanitlerden meydana geldiğini belirtirler.

Deveciler (1990), Göle dolayında yaptığı çalışmada Üst Miyosen, Pliyosen ve Kuvaterner dönemi olmak üzere üç evrede olumuş çeşitli bileşimli volkaniklerden bahseder.

Horasan dolayında çalışan Arbas vd., (1991), Kars-H48 1/100.000 ölçekli paftanın1/25.000 ölçekli jeoloji haritalarının yapmışlardır.

Bozkuş (1990 ve 1992), Oltu-Narman havzasının kuzeydoğusunda yaptığı çalışmada, yöredeki Tersiyer istifinin Eosen yaşlı sığ denizel çökellerde başladığını ve üste doğru volkanatortul kayalarla devam ettiğini belirtir. Üstte açılı uyumsuzlukla yer alan Oligosen-Miyosen yaşlı karasal çökelleri, Üst Miyosen-Pliyosen yaşlı kayalar açılı uyumsuzlukla örter.

Olur yöresindeki Üst Jura-Alt Kretase yaşlı kireçtaşlarının biyostratigrafisini inceleyen Tunç (1992) Calpionellid türlerine dayanarak, birimin Titoniyen-Hoteriviyen arasında çökeldiğini saptamıştır.

Doğu Pontidler'in doğu kesinde, yanal ve/veya yatay hareketler sonucu yaklaşık KD-GB gidişli yapısal hatlarla yan yana ve üst üste gelen ve bir kısmında Üst Paleosene kadar süreklilik sunan, genelde Jura-Kretase yaşlı çeşitli istiflerin varlığı ilk kez Konak vd., (1992) tarafından farkedilerek ön sınıflaması yapılmıştır. Daha sonraki yıllarda bu istifler detaylandırılarak yeniden tanımlanmış ve değişik litostratigrafif özellikler sunan bu istifler arasında ortak yönler dikkate alınarak Hopa-Narman, kesitinde dört zon bazında gruplandırılmışlardır (Konak ve Hakyemez, 2001; Konak vd., 2001). Bunlar kuzeyden güneye doğru Hopa-Borçka zonu, Artvin-Yusufeli zonu ve Erzurum-Kars ofiyolit zonu adlarıyla konumlanırlar.

3.1. Purultepe Kireçtaşı Üyesi (Kbp)

Bardızçayı formasyonunun içinde, olistolitler, Gezenek melanjının içinde ise tektonik dilimler halinde yer alan, sığ denizel, oolitik ve yer yer mikritik kireçtaşları, Konak vd., (2001) tarafından Purultepe kireçtaşı adıyla ayırtlanmıştır. Bu çalışmada ise üye aşamasında değerlendirilmiştir.

Purultepe kireçtaşı üyesi genelde gri renkli olup yer yer pembe-gri renklerin ardalandığı bir görünüm sunar. Özellikle gri renkli kesimleri masif veya kalın katmanlı olup başlıca oolitik kireçtaşlarından meydana gelir. Pembe-sarı ve yer yer de yeşilimsi gri renkli kesimleri ise ince-orta katmanlı killi kireçtaşı ve mikritlerden oluşur. Gri renkli neritik kireçtaşları düzensiz ve bol eklemlidir. Birkaç cm kalınlığında gelişendüzensiz ve sık çatlaklar kalsitle doldurulmuştur.

Kireçtaşı olistilitlerinden derlenen örneklerde saptanan fosil topluluğuna (Psedotexturaliella Salavensis Charol, Pseudocyclammina Lituus (Yokoyam) Trochalina cf. Alpina Leupold, Everticyclammina sp., Ammocycloloculina sp., Nezzata sp., Cylindiroporella sp., Aviculariasp.) göre formasyonun yaşı Berriyasien-Barremiyen'dir (Tanımlayan: F, Armağan). Ayrıca gastropod, pelesipod, mercan, ekinid ve bryozoa paçaları içermesi ve genelde oolitik kireçtaşlarından meydana gelmesi, birimin bir karbonat şelfinde çökeldiğini gösterir. Bu özellikleri ile birim Sakarya Zonu'ndaki Bilecik kireçtaşı'nı hatırlatmaktadır.

3.2. Gezenek Melanjı (Kg)

Serpantinit, gabro, mikrogabro, bazik volanit, tronjemit/tonalit, kireçtaşı, çörtlü kireçtaşı, kumtaşı, silttaşı gibi çeşitli kayaların tektonik dilim ve blokların karışımından meydana gelen birim, Konak vd., (2001) tarafından Gezenek melanjı olarak ayırtlanmıştır.

Gezenek Köyü dolayında tipik olarak izlenen birimi oluşturan kaya türlerinden en yaygın olanları serpantinitler ve gabrolardır. Yogun tektonik etki ile makaslamaya uğrayan serpantinitler, açık yeşilden koyu yeşile kadar değişen çeşitli renklerde olabilmektedir. Arasında tektonik dilim şeklinde yer alan Karataştepe granitiyodi ile olan dokanaklarında ileri derecede makaslamaya sonucu bu zonlarda serpantinitlerde krizotil/asbest oluşımları ve talklaşmalar meydana gelmiştir.

Melanj içinde yaygın olarak bulunan ve genellikle serpantinitlerle tektonik ilişkili olan gabroların önemli bir bölümü Pulumdağ gabrosuna ait tektonik dilimlerdir. Bolca plajiyoklasla birlikte, iri kristaller halinde mafik mineraller (piroksen) de içeren gabrolar, yer yer pegmatittik, bazen de diyabazik dokuludurlar. Serpantinitler içinde dağınık bloklar şeklinde yer alan ve diğer kayalar gibi ileri derecede ezilmiş ve alterasyona uğramış kümülat benzeri gabrolar, bantlı yapıları ile diğerlerinden ayrılır. Bu tür gabro blokları Gedikler ultramafitinin altında yoğunlaşır. Melanj içinde yer alan blok görünümlü gabroların bir kısmında rodenjitleşme etkileri gözlenir.

Ayrıca Gaziler (Bardız) yolu üzerinde yüzlek veren ve Bardızçayı formasyonuna ait çökeller tarafından sıvanmış olan Purultepe kireçtaşı üyesine ait bloklar, Bardızçayı formasyonunun olistostromal kesimine ait ektonik dilimler olarak yorumlanmaktadır. Gezenek melanjı yukarıdaki

litolojilerin dışında kumtaşı, silttaşı, tüf, ladyolaryalı çamurtaşı, radyolarit ve çörtlü miritik kireçtaşı ardalanmasından meydana gelen tektonik dilimleri de içermektedir.

Gezenek melanjı, Kırdağ'da (Gaziler yolunda) gözlendiği gibi Bardızçayı formasyonunu tektonik olarak üzerler ve üstte Gedikler ultramafiti tarafından tektonik olarak örtülür. Ekaylı bir yapıya sahip olan Gezenek melanjının kalınlığı, bu haliyle km'ye ulaştığı söylenebilir.

Ofiyolitik kayalardan Pulumdağ gabrosunu uyumsuzlukla örten Bardızçayı formasyonunun yaşı dikkate alınırsa, birimin ilk yerleşiminin Kampaniyen öncesinde gerçekleştiği söylenebilir.

3.3. Gedikler Ultramafiti (Kge)

Genelde harzburjit, dünit ve piroksonitlerden oluşan birim, Konak vd., (2001) tarafından Gedikler Ultramafiti olarak tanımlanmıştır.

Koyu yeşil, siyaha yakın rengi ve masif görünüşü ile dikkati çeken Gedikler ultramafiti, çoğunlukla serpantinleşmiş harburjit ve dünitten meydana gelir. Harzburjitler arasında bantlar düzensiz mercekler şeklinde yer alan dünitler, kızılımsı kahveengi renkleriyle harzburjitlerden ayrılırlar. İçlerinde saçılmış olarak bulunan kromitler harzburjitlere oranla daha fazladır. Bazı kesimlerinde ileri derecedeserpantinleşen harzburjitler parlak camsı, zeytin yeşili, koyu yeşil ve siyaha yakın renkleriyle dunitlerden ayrılırlar. Her iki kaya arasındaki sınır yer yer geçişli, bazen de tektonik kalkerlidir. Yer yer piroksenit, gabro ve diyabaz daykları tarafından kesilmişlerdir. Peridotitleri kesen gabro ve soğuma kenarlı diyabaz daykları, tektonizma sonucunda ilksel konumlarını kaybetmiş bloklar şeklinde gözlenirler. Zümrüt formasyonu tarafından üzerlendikleri tektonik zon boyunca rodenjitleşmiş gabrolara, ayrıca krizotil ve asbes oluşumlarına sıkça rastlanmaktadır.

Mikroskobik incelemelerde taneli doku sunan dünitler tamaman olivinden oluşurken, benzer dokulu harzburjitler olivinin yanında bazı örneklerde kısmen veya tamamen bastitleşmiş ortopiroksen içerirler. Opak mineral olarak kromit manyetit içeren peridititler serpantinleşme sonucu ağ dokusu kazanmışlardır.

Altta Gezenek melanjını tektonik olarak üzerleyen Gedikler ultramafitinin üzerinde bindirmeli bir dokanakla Zümrüt formasyonu yer alır. Oluşum yaşı kesin olarak bilinmemekle birlikte, Gezenek melanjında olduğu gibi ilk yerleşimin Kampaniyen dönemi öncesi dönemde gerçekleştiği düşünülmektedir. Gedikler ultramafiti genel özellikleriyle ofiyolit dizisindeki tektonitlerin karşılığı olmalıdır.

3.4. Zümrüt Formasyonu (Trz)

Bazik volkanik, volkanoklastik ve sedimanter kaya ardalanmasından oluşan dinemometamorfizma/ankimetamorfizmaya uğramış olan birim Konak vd., (2001) tarafından Zümrüt formasyonu adı altında ayırtlanmıştır.

Zümrüt Köyü güneybatısında tipik olarak görülen birimin volkanik kesimlerin mavimsi gri, grimsi yeşil ve yer yer sarımsı kahve; tüf tüfit kökenli kayalar ise mavimsi beyaz ve az olarak da açık gri renklidir. Kumtaşı, silttaşı ve marndan meydana gelen kesimler ise genelde koyu gri ve kül renginde olup metamorfizma etkisiyle parlak görünüm kazanmışlardır. Ardalanma nedeniyle alacalı görünüm sunan birim içinde, yer yer kaba kırıntılı düzeylerdeki tane ve mineraller hafifçe yönlenmiştir. Silttaşı ve marnlarda yapraklanma daha belirgindir. Kumtaşı ve bazik volkanit kökenli kayalarda yönlenme gelişmiş olmasına karşın, ilksel özellikleri korumuşlardır. Ancak tektoniğin daha yoğun olduğu kesimlerde makaslanmalara bağlı olarak, dayanımlı kısımlar dayanımsız litolojiler arasında çakıl ve blok benzeri sucuk yapısı özelliği kazanmıştır.

Mikroskobik incelemelerde, hafif yönlenme gösteren kumtaşları kuvars, feldspat ve karbonat kırıntılarının kil ve karbonat çimentosuyla tutturulması sonucu oluştuğu saptanmıştır. Daha çok kuvarslarda hafif bir yönlenme gözlenir. Dinamik etkilerin giderek artmasıyla kayadaki yönlenme belirginleşir ve bu süreçte gelişen iğnemsi serizitler ile kloritler yapraklanmaya paralel olarak dizilir.

Zümrüt formasyonu altta Gedikler ultramafitinin üzerinde düşük bir açı ile bindirmiş, üstte ise Örükyayla melanji tarafından tektonik olarak üzerlenmiştir. Herhangi bir fosil bulgusuna rastlanmayan birimin yaşı bilinmemektedir. Ancak birim, bölgesel korelasyonla Triyas yaşında

düşünülen Agvanis metamorfitlerinin (Okay 1983) bir bölümüyle eşleştirilebilir. Mineral bileşenleri ve dokusal özellikleri dikkate alındığında, Zümrüt formasyonu ankimetamorfizma ile yeşilşist fasiyesi başlangıcı arasında başkalaşıma uğramış bir fliş istifini anımsatmaktadır.

3.5. Örükyayla Melanjı (Kö)

Serpantinit, gabro, diyabz, glolokanlı yeşilşist ve Zümrüt formasyonuna ait kayalarla daha çok küçük yüzlekler halindeki bordo renkli mikritik kireçtaşı, radyolarit ve Çardaklı birliği kapsamında yer alan Kaleoğazı formasyonuna ait tektonitk dilim blokların karışımından oluşan litoloji topluluğu, Konak vd., (2001) tarafından Örükyayla melanjı olarak tanımlanmıştır.

Örükyayla'da gözlendiği gibi, Örükyayla melanjında yaygın olarak bulunan glokofanlı yeşilsişt fasiyesindeki metamorfitler, genel olarak yeşilin değişik tonlarındaki renkleri, orta-kalın ve az belirgin yapraklanmaları ile dikkati çekerler. Yer yer mavimsi ve grimsi renklerde olan bu metamorfitler başlıca metabazit, metaultrabazit, metagrovak, metasilttaşı ve metaçökeltlerden meydana gelir. Ayrıca çört bantlı rekristalize kireçtaşı, klakşist, metakalsitürbidit ve metaolistostrom merceklerini de kapsar.

Yeşil renkli, kalın ve az belirgin yapraklanmalı metabazitlerin protolitleri spilitik lav, tüf, gabro, diyabaz gibi bazik kayalardır. Özellikle metagabro olarak tanımlanan kayalar kalın ve az belirgin yapraklanmalı, koyu yeşilsiyahımsı renklidir. Plajiyoklaslardan meydanan gelen açık renkli minerallerle amfibollerden oluşan koyu renkli minerallerin ardalanmalı olarak sıralanması sonucu, kaya bantlı bir görünüm kazanmıştır. Metalavlar kalın ve belirsiz yapraklanmalı, metatüfler ise ince-orta belirgin yapraklanmalı olup her iki kayanın renkleri açık yeşil ve koyu yeşil arasında değişmektedir. Metamorfizma sonucu serpantin şiste dönüşen ultrabazitler yeşilin değişik tonlarındaki renkleri ile dikkati çeker. Orta-kalın ve belirgin yapranlanmalı, grimsi, yeşilimsi, kahvemsi renkli metagrovaklar ile ince ve belirgin yapraklanmalı, yeşilimsi, açık gri renkli metasilttaşları ardalanmalı olarak bulunurlar ve matatüf ara katkıları içerirler. Daha çok metakıntılılar

arasında ara bant halinde bulunan mermerler çört bantlıdır. Kalkşistler arasında yer yer taneleri uzamış- metakalkarenitik düzeyler korunmuştur.

Mikroskobik incelemelerde lepidoblastik ve nematoblastik doku sunan metabazitler, başlıca tremolit/aktinolit, glokofan, albit, epidot, kalsit, klorit çok az serizit, kısmen lökoksenleşmiş sfen, relikt klinopiroksen ve opak mineral içerirler. Lepdoblastik doku özelliği gösteren metagrovaklar kuvars, albit, kalsit, serizit, klorit, epidot ve opak minerallerden oluşur. Bazı örneklerde stilpnomelan ve çok az oranda iğnemsi glokofana rastlanmıştır. Metasilttaşlarında uzamış kuvars tanecikleri arasında yer alan ve belli bir düzen dâhilinde dizilen iğnemsi serizit ve kloritler, kayaya ince şisti bir doku özelliği zandırmıştır. Mikroskop altında lepidoblastik/porfirobastik dokuya sahip olduğu görülen kalkşistler başlıca kalsit, az oranda kuvars, beyaz mika, epidot ve çok az aktinolit içerirler. Tamamen serpantin minerallerinden oluşan serpantin şistler ise opak mineral olarak kromit ve manyetit bulundururlar.

Ofiyolitik melanj özelliği gösteren birim kapsamındaki metabazitlerde belirlenen parajenezler göreli yüksek basınç ve düşük sıcaklıklarda gelişen metamorfizma özelliklerini yansıtmaktadır. Örükyayla melanjı güneyde Zümrüt formasyonuna bindirir. Kuzeyde ise Paleosen (?) Erken Eosen yaşlı Bahçekışla formasyonu ve Oligo-Miyosen yaşlı kayalara bindirmektedir. Birimin kalınlığının birkaç km'yi aştığı söylenebilir.

Faklı özellikteki kayaların birbirleriyle ekaylanmasıyla oluşan birimin ilk tektonik biçimlenmesiyle Kampaniyen öncesinde kazandığı ve bu tektonik biçimlenme sürecinin Tontoniyen öncesine kadar sürdüğü söylenebilir. Örükyayla melanjı içinde tektonik dilim halinde yer alan glokofanlı yeşilşist fasiyesindeki metamorfitler ise Triyas yaşında düşünülen Agvanis metamorfitlerinin (Okay, 1983) bir bölümünün inceleme alanındaki karşılığı olabilir.

3.6. Bahçekışla Formasyonu (Teba)

Genel olarak bordo-yeşil gri renkli, yer yer belirsizleşen kalın katmanlı çakıltaşı, kumtaşı ardalanımıyla temsil edilen birim, Konak vd., (2001) tarafından Bahçekışla formasyonu adı altında tanımlanmıştır. Birkaç kez yukarı doğru kabalaşan istiflenme gösteren birim, 2-3 m kalınlığında uzun mercekler halindeki çakıltaşları keskin, aşındırmalı tabanlı, kalın katmanlı ve kötü-orta boylanmalı olup yer yer yassı çakıllı yüzeyler içermektedir; malzemesi başlıca volkanit, serpantinit, glokofanlı yeşil şist ve kireçtaşlarından türemiştir. Kumtaşları kalın-orta katmanlı, yer yer büyük ve küçük ölçekli çapraz katmanlı ve bitki kırıntılı olup, gri renkli ince silitaşı ara katmanları içerir. Birimin üst kısmını çakıllı kumtaşı-kumtaşı ve beyaz kireçtaşı ara katmanları içeren, kalın düzeyler halindeki kırmızı-kahverengi çamurtaşları oluşturur.

Bahçekışla formasyonunun Örükyayla melanjı ile olan dokanak tektoniktir. Paşalı Köyü batısında, Oltu ekaylı zonu kapsamındaki ayrılmamış volkanitler üzerinde uyumuz olarak bulunur. Birimin üzerinde ise uyumlu ve geçişli olarak Vişneli formasyonu yer alır. Kalınlığı yaklaşık 750-1000 m arasında değişir.

Birim içinde herhangi bir fosil saptanamamıştır. Ancak, üzerinde geçişli olarak yer alan Vişneli formasyonunun Erken Eosen yaşında olması nedeniyle Bahçelikışla formasyonunun yaşı Geç Paleosen (?)-Erken Eosen olarak kabul edilmiştir.

Bahçelikışla formasyonu, birkaç kez yinelenen ve altta ince taneli kırıntılı kayalarla başlayıp üste doğru iri çakıltaşlarına geçen devreler halindeki yukarı doğru kabalaşan istiflerden oluşması, büyük ölçek çapraz katmanlar içermesi ve yer yer dalga işleviyle yeniden işlenmiş yassı çakıllı düzeylerine sahip olması nedeniyle bir yelpaze deltası istifi olarak yorumlanmıştır.

3.7. Oltu Formasyonu (Too)

Jips ve kireçtaşı ara katmanları içeren, sarı-kırmızı-yeşil renkli, çakıltaşı, kumtaşı ve çamurtaşları, Konak (2001) tarafından Oltu formasyonu olarak adlandırılmıştır.

Birim, sarı-kırmızı renkli, kötü boylanmalı, çoğunluğunu kireçtaşı kökenli olan köşeli çakıllı çakıltaşları ile başlar. Üste doğru kırmızı renkli kumtaşıçamurtaşı-jips-aglomera ardalanımına geçer. İçindeki aglomeraların üye olarak ayrıldığı (Volkanit üyesi) bu düzeyin üzerinde sarı-kırmızı renkli, orta yuvarlaklaşmış ve iri ojit fenokristalli olivin bazaltlardan türemiş çakıllı kalın çakıltaşı düzeyleri içeren kumtaşı-çamurtaşı ardalanması bulunur. İstif, Narman volkanitine ait bir dilve onun da üzerinde yer alan yine Oltu formasyonuna ait sarı-kırmızı-gri renkli çamurtaşı-kumtaşı ardalanması bulunur. İstif, Narman volkanitine ait bir dil ve onun da üzerinde yer alan yine Oltu formasyonuna ait sarı-kırmızı-gri renkli çamurtaşı-kumtaşı ve gölsel kireçtaşı ile son bulur.

Birim; Kızıltaş Tepe'de (Bedenkışla güneyi) Çengelli formasyonuna ait gri çakıltaşları (Tombultaş üyesi) üzerinde yer alan ve gri renkli ince kumtaşı katmanları içeren kırmızı renkli çamurtaşlarıile başlar ve üste doğru ince bir lav ara düzeyi içeren, sarı renkli, volkanik kırıntılı kumtaşı ve çakıltaşları ile devam eder. Daha üstte kırmızı renkli, çakıltaşı-kumtaşı-çamurtaşı ardalanımı yer alır ve istif, en üstte bulunan sarı renkli volkanosedimanter bir düzey ile son bulur.

Oltu formasyonu, tabanında yersel olarak gelişen Çengelli formasyonu ile birlikte Bahçelikışla ve Vişneli formasyonları, Dağdibi Köyü'nde ve Balkaya yöresinde ise Karataş ve Dağdibi formasyonları üzerinde açılı uyumsuzlukla yer alır. Oltu formasyonu, Narman volkanitinin hem altında hem de üzerinde yer alması nedeniyle bu birimle yanal geçişli olmalıdır. Çalışma alanının büyük bölümünde, birimin üzerinde uyumlu ve geçişli olarak Alabalık formasyonu, Balkaya dolayında Susuz formasyonu, Oltu çayının kuzey kenarı boyunca ise Tuzla formasyonu yer alır. Oltu formasyonunun kalınlığı en fazla 750 metredir.

Oltu formasyonunun alt kesiminde yer alan sütkans kömürleri, Susuz-Balkaya'da Benda (1971) tanımladığı Kurbalık polen topluluğunu içerirler. Bu nedenle birimin yaşı Geç Oligosen-Erken Miyosen olarak verilmiştir (Konak vd., 2001)

Birimin litolojik özellikleri, makrofosil kapsamı (Melanopsis sp.) ve kömür içermesi, bataklık ve göl ortamlarındaki depolanmayı belirtmektedir. Aglomera ara katmanları içermesi ise çökelme döneminde ve volkanik etkinliğin varlığını göstermektedir.

Oltu formasyonuna karşılık gelen çökelleri Oltu-Narman havzasında çalışan Nebert vd., (1964) alt alacalı horizon, Bozkuş (1990) ise Deliktaş formasyonu adı ile tanımlanmış ve yaşını Oligosen olarak kabul etmiştir.

3.8. Paşalı Formasyonu (Top)

Sarı-kırmızı renkli çakıltaşı-çamurtaşı ardalanımının meydana gelen ve Toprakkale formasyonu ile olan alt dokanağında kireçtaşı ara katkıları içeren çökel istif, Konak vd., (2001) tarafından Paşalı formasyonu olarak tanımlanmıştır.

Birim Subaşı batısında kırmızı renkli çakıltaşı-kumtaşı-çamurtaşı ardalanımı ile başlar ve üste doğru sarı-gri-açık kırmızı renkli kireçtaşı-kumtaşıçamurtaşı ardalanımı ile devam eder. Subaşı üyesi adıyla tanımlanan bu seviyenin üzerinde ise formasyonun egemen litolojisini oluşturan sarıkırmızı renkli ve kalın katmanlı çakıltaşı-çamurtaşı-kumtaşı ardalanımı yer alır. Çakıltaşları 0,5-2 m kalınlığında, yanal olarak devamsız düzeyler halinde olup taban dokanakları keskindir. Çakıllar yuvarlaklaşmış ve heterojendir. Ayrıca blok boyu materyal içerir. Orta-iri kum boyutunda malzemeden oluşan kumtaşları, 1030 cm kalınlığında katmanlara sahip olup yer yer çapraz katmanlanmalıdır. Çamurtaşları ise kırmızı çakıltaşı-çamurtaşıkumtaşı ardalanımı oluşturur.

Paşalı formasyonu Paşalı-Turnalı arasında Toprakkale formasyonu üzerinde, Penek-Söğütlü arasında ise Çatalsöğüt jipsi üzerinede uyumlu ve geçişli olarak yer alır. Birimin üzerinde ise, Geç Miyosen yaşlı Penek formasyonu ve Erdavut volkaniti açılı uyumsuzlukla yer alır. Paşalı-Penek arasındaki kalınlığı 500-750 m arasındadır.

Birim içinde herhangi bir fosil saptanamamıştır. Stratigrafik konumu göz önünde bulundurularak yaşlı Geç Oligosen (?)-Erken Miyosen kabul edilmiştir.

Paşalı formasyonu menderesli akarsu ortamında, alt seviyesini oluşturan Subaşı üyesi ise göl ortamında depoşanmıştır. Birim Nebert vd., (1964) tarafından alt alacalı horizon kapsamında incelenmiştir.

3.9. Penek Formasyonu (Tmp)

Lav ara katkılı aglomeralar ile temsil edilen birim, (Bozkuş, 1990) Penek formasyonu adıyla tarafından tanımlanmıştır.

Birim genelde siyah, mor, gri renkli, masif veya çok kalın katmanlı ve seyrek lav ara katkılı aglomeralarla temsil edilir. Aglomeralar çok kötü boylanmalı olup, blok boyutunda materyal de içerir; bileşenler köşeli andezit-bazalt parçalarıdır. Aglomeralar arasında yer alan siyah renkli bazaltik lav düzeyleri (Bazalt üyesi) 5-10 m kalınlığında olup yanalda devamlı seviyeler oluşturur. Aglomeraların daha çok üst düzeylerinde ince mercekler şeklinde sarı-beyaz renkli, ince taneli kırıntılı çökeller yer alır. En üstte ise, alttaki Penek formasyonuyla ve üzerindeki Erdavut volkanitiyle geçişli, linyit içeren kumtaşı-marn-kireçtaşı ardalanması (İğdeli üyesi) bulunur. Bazı bazalt mikroskobik incelemesinde örneklerinin olivin ve plajiyoklas fenokristalerinin plajiyoklas, piroksen ve olivin mikrokristallerinden oluşan bir hamur içinde yer aldığı gözlemlenmiştir.

3.10. Alüvyon (Qal)

Günümüz akarsu yataklarında dolgulanan çakıl, blok, kum, silt, kil gibi çok çeşitli boyutlarda tutturulmamış çökellerdir. Narman Çayı, Oltu Çayı ve Penek Çayı vadileri boyunca en yaygın örneklerini sunar.

4. ARAŞTIRMA BULGULARI VE TARTIŞMA

4.1. Opal Tanımı

Kelime anlamı; Sanskritçede 'Değerli Taş' anlamına gelen Upala'dan türemiştir. Opal, doğada kütlesel, genellikle üzüm salkımı gibi, sarkıt biçiminde veya yuvarlak şekillerde bulunabilir. Yani kristal sistemi ani soğumadan dolayı yoktur, amorftur. (Yahyabeyoğlu vd., 2006).

Opal, kristobalit silis küreciklerinin düzenli ve düzensiz bir kafes yapısına sahip ve %3 ile %21 arasında su içeren bir sulu amorf silikasıdır. Opal, amorf bir yapıya sahip olmasına rağmen silisin kristal olmayan bir şeklidir. Opal 100°C altında oluşmuş bir silika jelidir. Bu jel sedimanter tabaka çatlak ve yarıkları içine alarak oluşmuştur. Metorik sudaki silika, buharlaşmayla konsantre haline gelir ve bunun sonucunda kolloidal silika jeli yani opal oluşumu gerçekleşir (Simandl vd., 1998). Opalin bilinen klasik jel dokusu yanında taneli agregalar gösterebileceği ve bu doku ile kristobalite bir geçiş gösterdiği bilinmektedir (Andaç vd., 1976).

4.2. Yeşil Opalin Gemolojik Ve Mineralojik Özellikleri

Yeşil Opal ve opalin genel olarak gemolojik ve mineralojik özellikleri karşılaştırmalı olarak tablo 4.1 de verilmiştir.

		Uluslararası genel
Özellik	Turnalı Opali	(Fiilin, 2003)
Kimyasal Bileşim	Sulu silisyum dioksit	Sulu silisyum dioksit
	Su oranı %7	Su oranı %3-%21
Sertlik	6,5 (ayrışmışlarda 5,5)	5,5-6,5
Kırılma	Konkoidal (midye kabuğu)	Konkoidal
Klivaj	Yok	Yok
Özgül Ağırlık	2,17 (su içeriğine bağlı)	1,98-2,25(su içeriğinebağlı)
Şeffaflık	Yarı şeffaf, mat	Şeffaf olmayan, saydam
Parlaklık	Camsı	Camsı
Çizgi rengi	Beyaz	Beyaz

Tablo 4.1. Yeşil Opalin Gemolojik ve Mineralojik Özellikleri (Vıcıl vd., 2004).

Çalışma alanımız olan Erzurum Şenkaya bölgesinde çıkan ve Şenkaya Zümrütü olarak adlandırılan yeşil opalin, daha önceki yapılan araştırmalarda, mineralojik ve petrografik özellikleri beirtilmiş, bu çalışmada yapılan F-TIR Raman ölçümleri neticesinde çıkan sonuçları ortaya konmuştur (Şekil 4.1).

Şekil 4.1. Yeşil opalin bulunduğu lokasyon (Selim, 2015).

Erzurum Şenkaya yeşil zümrütü olarak bilinen yeşil opale ait inceleme alanının jeoloji haritası hazırlanmıştır (Şekil 4.2, 4.3).

Şekil 4.2. İnceleme alanının jeoloji haritası.

Şekil 4.3. İnceleme alanındaki ofiyolit istif içerisinde alınan örneklerin lokasyon haritası.

Erzurum Zümrüt Köyü, Kırdağ ve Şenkaya Turnalı Köyü civarında saha çalışmaları yapılmış ve amaca uygun temsili örnekler kodlanarak alınmıştır. İnceleme alanındaki ofiyolitlerin istif içerisinde alınan örneklerin lokasyon haritası yapılmıştır.

Kodlanarak alınan örneklerin alındığı bölgeler haritada belirtilmiştir. Örneklere verilen kodlar; T4-A, T4-B, T4-C, T4-D, T4-E, T4-F, T3-A, T3-B, T3-C, T3-D, Y-1, OF1-A, OF1-B, OF1-C, OF2-A, OF2-B1, OF2-B2 şeklindedir. Bu örnekler analizleri yapılmak üzere hazırlanmıştır (Tablo 4.2).
	Analizleri yapılan numune kodları								
1	T4-A	(Turnalı köyü üst seviye)							
2	T4-B	(Turnalı köyü üst seviye)							
3	T4-C	(Turnalı köyü üst seviye)							
4	T4-D	(Turnalı köyü üst seviye)							
5	Т4-Е	(Turnalı köyü üst seviye)							
6	T4-F	(Turnalı köyü üst seviye)							
7	ТЗ-А	(Turnalı köyü alt seviye)							
8	Т3-В	(Turnalı köyü alt seviye)							
9	Т3-С	(Turnalı köyü alt seviye)							
10	T3-D	(Turnalı köyü alt seviye)							
11	Y-1	(Turnalı köyü yeşil opal)							
12	OF1-A	(Zümrüt köyü)							
13	OF1-B	(Zümrüt köyü)							
14	OF1-C	(Zümrüt köyü)							
15	OF2-A	(Kırdağ)							
16	OF2-B1	(Kırdağ)							
17	OF2-B2	(Kırdağ)							

Tablo 4.2. Çalışma sahasından derlenen yan kayaç ve opal örnekleri.

Numune alınan Zümrüt Köyü'nün kuzeydoğu bakışlı genel görünümü (Şekil 4.4) Zümrüt köyünde örnek alınan bölgenin genel görünüşü (Şekil 4.5), ofiyolitserpantin birimlerin alt kesimleri (Şekil 4.6), ofiyolit-serpantin birimlerin alt kesimleri (Şekil 4.7), numune el örneği (Şekil 4.8) de yer almaktadır.

Şekil 4.4. Zümrüt Köyü'nün kuzeydoğu bakışlı genel görünümü.

Şekil 4.5. Zümrüt Köyü'nde örnek alınan bölgenin genel görünüşü.

Şekil 4.6. Ofiyolit-serpantin birimlerin alt kesimleri.

Şekil 4.7. Ofiyolit-serpantin birimlerin alt kesimleri.

Şekil 4.8. Numune el örneği.

Çalışma alanının egemen litolojileri, ilksel kayaçları harzburjit ve dünit olan peridoditlerin serpantinleşmiş ikincil oluşumlardır.

Yeşilden kahveye değişik renk tonlarında, yağlı parlaklıkta, sabunumsu görünümde olan bu kayaçlar, çaklaklı-kırıklı ve kataklastik dokuya sahiptirler. Kayacın ortalama sertliği; mineral bileşimleri dikkate alındığında 4-6 Mohs olup, orta sert kayaç grubuna girmektedir.

İnceden iri tane boyutuna değişkenlik gösteren kayaçta, makroskopik olarak ayrışma demir oksit getirimi şeklinde izlenmektedir (Şekil 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18).

Şekil 4.9. Kırdağ Bölgesi-serpantin oluşumları-ofiyolit birimin en üst seviyeleri.

Şekil 4.10. Kırdağ Bölgesi-serpantin oluşumları-ofiyolit birimin en üst seviyeleri.

Şekil 4.11. Turnalı Köyü'ne doğudan batıya bakış.

Şekil 4.12. Turnalı Köyü'nde yeşil opalin arazide görünüşü (sol). Şekil 4.13. Turnalı Köyü'nde yeşil opalin arazide görünüşü (sağ).

Şekil 4.14. Turnalı Köyü'nde yeşil opalin makro boyutta görünüşü.

Şekil 4.15. Yeşil opal el numunesi.

Şekil 4.16. Turnalı Köyü güneybatı Dorukluk Mevkii.

Şekil 4.17. Turnalı Köyü güneybatı Dorukluk Mevkii.

Şekil 4.18. Turnalı Köyü güneybatı Dorukluk Mevkii.

4.3. Şenkaya Yeşil Opalin Kimyasal Analiz Sonuçları

Erzurum Zümrüt Köyü, Kırdağ ve Şenkaya Turnalı Köyü civarında saha çalışmaları yapılmış ve amaca uygun olarak kodlanarak alınan temsili örneklerin, XRF analiz sonuçlarına göre kimyasal içerikleri tablo 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9' da verilmiştir.

T4-A(Tu	rnalı köyü üst	 T4-B(Turnalı köyü üst			T4-C(Turnalı köyü üst		
seviye)		seviye)			seviye)		
Formül	Konsatrasyon (%)	Formül	Konsatrasyon (%)		Formül	Konsatrasyon(%)	
SiO2	86,63	SiO2	67,11%		SiO2	56,76%	
A12O3	0,40	A12O3	0,71%		A12O3	1,64%	
Fe2O3	4,98	Fe2O3	7,01%		Fe2O3	10,37%	
MgO	1,85	MgO	4,00%		MgO	8,65%	
CaO	0,61	CaO	6,05%		CaO	0,56%	
Na2O	0,06	Na2O	0,08%		Na2O	0,10%	
K2O	0,06	K2O	0,05%		K2O	0,05%	
P2O5	0,02	MnO	0,12%		TiO2	0,02%	
MnO	0,03	Cr2O3	0,42%		MnO	0,06%	
Cr2O3	0,49	Cl	0,06%		Cr2O3	0,31%	
Cl	0,02	Ni	0,13%		Cl	0,05%	
Ni	0,07	A.Z	14,18%		Ni	0,33%	
A.Z	4,74	Toplam	99,93%		A.Z	20,95%	
Toplam	99,95			/	Toplam	99,85%	

Tablo4.3. Turnalı Köyü Üst Seviye Numunelerinin Kimyasal İçeriği

Tablo4.4. Turnalı Köyü Üst Seviye Numunelerinin Kimyasal İçeriği

T4-D(Tu seviye)	ırnalı köyü üst	T4-E(Tu seviye)	ırnalı köyü üst	T4-F(Turnalı köyü üst seviye)		
Formül	Konsatrasyon (%)	Formül	Konsatrasyon (%)		Formül	Konsatrasyon (%)
SiO ₂	71,73%	SiO2	90,60%		SiO2	27,54%
Al ₂ O ₃	1,04%	A12O3	0,43%		A12O3	0,51%
Fe ₂ O ₃	5,04%	Fe2O3	4,87%		Fe2O3	9,89%
MgO	8,50%	MgO	0,31%		MgO	9,74%
CaO	6,45%	CaO	0,15%		CaO	19,59%
Na ₂ O	0,26%	Na2O	0,09%		Na2O	0,05%
K ₂ O	0,15%	K2O	0,06%		K2O	0,02%
MnO	0,10%	MnO	0,02%		P2O5	0,01%
Cr ₂ O ₃	0,30%	Cr2O3	0,40%		MnO	0,23%
Cl	0,02%	Cl	0,02%		Cr2O3	0,33%
Ni	0,13%	A.Z	2,97%		Cl	0,06%
A.Z	6,24%	Toplam	99,92%		Ni	0,15%
Toplam	99,96%				A.Z	31,78%
					Toplam	99,89%

тз-а(Т	urnalı köyü alt	T3-B(T3-B(Turnalı köyü alt			T3-C(Turnalı köyü alt		
seviye)		seviye)		seviye)				
Formül	Konsatrasyon(%)	Formül	Konsatrasyon(%)		Formül	Konsatrasyon(%)		
SiO2	88,31%	SiO2	39,10%		SiO2	86,42%		
Al2O3	1,61%	Al2O3	0,24%		Al2O3	0,96%		
Fe2O3	2,38%	Fe2O3	6,01%		Fe2O3	4,10%		
MgO	0,89%	MgO	19,50%		MgO	1,10%		
CaO	0,30%	CaO	4,78%		CaO	0,41%		
Na2O	0,13%	Na2O	0,07%		Na2O	0,11%		
K2O	0,07%	K2O	0,03%		K2O	0,08%		
TiO2	0,02%	MnO	0,12%		TiO2	0,01%		
Cr2O3	0,67%	Cr2O3	0,19%		MnO	0,02%		
Cl	0,04%	Cl	0,06%		Cr2O3	0,69%		
Ni	0,10%	Ni	0,18%		Cl	0,06%		
A.Z	5,43%	A.Z	29,61%		Ni	0,10%		
Toplam	99,95%	Toplam	99,88%	/	S	70 PPM		
					A.Z	5,86%		
					Toplam	99,92%		

Tablo4.5. Turnalı Köyü alt seviye numunelerinin kimyasal içeriği

Tablo 4.6. Turnalı Köyü Alt Seviye ve Şenkaya Yeşil Opalinin Kimyasal İcerikleri

		içerikteri		
T3-D(T seviye)	Turnalı köyü alt	Y-1	(Yeş	șil opal numune)
Formül	Konsatrasyon (%)	For	mül	Konsatrasyon (%)
SiO2	89,46%	SiC	02	89,53%
A12O3	1,15%	Al2	.03	1,26%
Fe2O3	2,01%	Fe2	03	1,60%
MgO	0,90%	Mg	0	0,85%
CaO	0,53%	Ca)	0,28%
Na2O	0,13%	Naž	20	0,17%
K2O	0,08%	K20	О	0,14%
Cr2O3	0,65%	TiC	02	0,01%
Cl	0,04%	Mn	0	0,01%
Ni	0,08%	Cr2	.03	0,48%
A.Z	4,94%	Cl		0,08%
Toplam	99,96%	S		62 ppm
		A.Z	2	5,48%
		Top	olam	99,89%

Yeşil opal (Y1) numunemizin XRF analiz sonucunda, bu çalışmada yapılan XRF incelemelerine bakıldığında numunemizin silis oranının %90'a kadar vardığı görülmektedir. Ancak Cr-Mg gibi değerlerin yüksek olması, bunların serpantinle yan yana bulunmasından ve serpantinin silisleşmesine etki etmiş olduğu tahmin edilmektedir. Çatlakların arasında manyezit dolguların olması da bu çalışmanın doğruluğunu ve çıkan değerler opallerin, serpantin ve harzburjitten de etkilendiğini ortaya koymaktadır.

OF1-A(Zümrüt		OF1-B(Z	Zümrüt köyü)	OF1-C(Zümrüt köyü)			
köyü)							
Formül	rmül Konsatrasyon Formül Konsatrasyon (%)		Formül	Konsatrasyon (%)			
SiO2	40,03%	SiO2	65,61%	SiO2	87,54%		
A12O3	0,75%	Al2O3	0,71%	Al2O3	0,91%		
Fe2O3	7,64%	Fe2O3	4,44%	Fe2O3	3,81%		
MgO	37,52%	MgO	17,76%	MgO	1,80%		
CaO	0,61%	CaO	0,90%	CaO	0,37%		
MnO	0,11%	Na2O	0,04%	Na2O	0,10%		
Cr2O3	0,41%	K2O	0,03%	K2O	0,06%		
C1	0,08%	MnO	0,05%	TiO2	0,01%		
Ni	0,29%	Cr2O3	0,42%	MnO	0,01%		
S	60 PPM	Ni	0,14%	Cr2O3	0,45%		
A.Z	12,43%	S	53 PPM	Cl	0,02%		
Toplam	99,87%	A.Z	9,80%	Ni	0,08%		
		Toplam	99,91%	S	62 PPM		
				A.Z	4,79%		
				Toplam	99,94%		

Tablo4.7. Zümrüt KöyüNumunelerinin Kimyasal İçeriği

Tablo 4.8. Kırdağ Numunelerinin Kimyasal İçeriği

OF2-A(Kırdağ)		OF2-B1	(Kırdağ)	OF2-B2(OF2-B2(Kırdağ)		
Formül	Konsatrasyon(%)	Formül	Konsatrasyon (%)	Formül	Konsatrasyon(%)		
SiO2	40,99%	SiO2	41,02%	SiO2	40,22%		
Al2O3	0,43%	Al2O3	0,39%	Al2O3	0,44%		
Fe2O3	5,98%	Fe2O3	4,25%	Fe2O3	6,13%		
MgO	38,64%	MgO	39,58%	MgO	39,78%		
CaO	0,13%	CaO	0,07%	CaO	0,04%		
MnO	0,09%	TiO2	0,01%	TiO2	0,01%		
Cr2O3	0,42%	MnO	0,08%	MnO	0,08%		
Ni	0,33%	Cr2O3	0,37%	Cr2O3	0,33%		
S	83 PPM	Ni	0,24%	Ni	0,25%		
A.Z	12,87%	S	0,01%	S	65 PPM		
Toplam	99,88%	A.Z	13,88%	A.Z	12,62%		
		Toplam	99,90%	Toplam	99,91%		

4.4. Yeşil Opal Ve Yan Kayaçların ICP-MS Analiz Sonuçları

Erzurum Zümrüt Köyü, Kırdağ ve Şenkaya Turnalı Köyü civarında saha çalışmaları yapılmış ve amaca uygun olarak kodlanarak alınan temsili örneklerin ICP-MS analiz çalışmaları yapılmış ve sonuçlar tablo 4.9 da verilmiştir.

		ND		not d	etected													
		HC	high	concentr	ation for I	CP-MS												
		ITU 1	ITU 2	ITU 3	ITU 4	ITU 5	ITU 6	ITU 7	ITU 8	ITU 9	ITU 10	ITU 11	ITU 12	ITU 13	ITU 14	ITU 15	ITU 16	ITU 17
		T4-A	T4-B	T4-C	T4-D	T4-E	T4-F	T3-A	T3-B	T3-C	T3-D	Y-1	OF1-A	OF1-B	OF1-C	OF2-A	0F2-B1	OF2-B2
		conc.	conc.	conc.	conc.	conc.	conc.	conc.	conc.	conc.	conc.	conc.	conc.	conc.	conc.	conc.	conc.	conc.
Sc	ppm	98,706	116,051	109,602	121,889	120,545	72,839	123,045	88,694	120,897	123,083	153,632	80,637	93,482	115,613	75,042	70,136	69,281
Y	ppm	0,709	0,871	2,107	2,758	0,545	2,002	0,632	0,666	0,751	0,795	2,265	0,896	1,120	1,058	0,584	0,620	0,517
La	ppm	0,226	0,231	2,156	0,376	0,086	0,640	0,568	0,050	0,305	0,430	0,355	0,149	0,579	1,067	0,018	0,047	0,035
Ce	ppm	0,332	0,354	3,177	0,648	0,132	0,852	0,511	0,073	0,349	0,430	0,735	0,240	0,660	1,100	0,046	0,097	0,071
Pr	ppm	0,111	0,096	0,535	0,120	0,058	0,189	0,175	0,046	0,102	0,134	0,147	0,068	0,188	0,309	0,039	0,041	0,041
Nd	ppm	0,415	0,343	2,017	0,527	0,202	0,727	0,587	0,161	0,346	0,467	0,641	0,257	0,731	1,222	0,137	0,152	0,136
Sm	ppm	0,092	0,079	0,412	0,131	0,040	0,174	0,106	0,049	0,071	0,087	0,239	0,036	0,140	0,239	0,008	0,014	0,012
Eu	ppm	0,039	0,042	0,135	0,053	0,024	0,065	0,041	0,037	0,037	0,038	0,112	0,016	0,043	0,069	0,004	0,006	0,005
Gd	ppm	0,119	0,099	0,412	0,249	0,045	0,203	0,086	0,039	0,066	0,069	0,262	0,067	0,169	0,290	0,023	0,034	0,030
Tb	ppm	0,016	0,012	0,053	0,037	0,004	0,031	0,009	0,003	0,007	0,008	0,042	0,007	0,021	0,028	0,001	0,002	0,002
Dy	ppm	0,123	0,090	0,289	0,285	0,041	0,213	0,064	0,034	0,059	0,056	0,280	0,059	0,136	0,155	0,020	0,027	0,025
Но	ppm	0,033	0,028	0,066	0,086	0,021	0,051	0,022	0,009	0,023	0,024	0,096	0,017	0,049	0,055	0,008	0,011	0,008
Er	ppm	0,062	0,056	0,169	0,192	0,016	0,151	0,028	0,012	0,028	0,025	0,172	0,041	0,072	0,065	0,009	0,014	0,014
Tm	ppm	0,010	0,009	0,023	0,025	0,005	0,025	0,006	0,003	0,007	0,006	0,027	0,007	0,013	0,010	0,003	0,003	0,003
Yb	ppm	0,066	0,060	0,156	0,151	0,014	0,172	0,025	0,017	0,033	0,022	0,150	0,046	0,071	0,045	0,017	0,020	0,019
Lu	ppm	0,011	0,010	0,028	0,021	0,003	0,030	0,006	0,004	0,007	0,005	0,024	0,008	0,012	0,007	0,004	0,004	0,004
Th	ppm	1,514	0,164	1,273	0,038	0,051	0,091	0,442	0,020	0,194	0,327	0,096	0,068	0,093	0,061	0,020	0,032	0,026
Li	ppm	9,857	5,697	3,891	5,287	4,435	2,420	2,679	8,294	4,147	8,364	0,374	2,038	1,478	5,324	1,124	4,319	1,846
Be	ppm	0,729	1,271	1,324	0,664	0,570	0,690	1,085	0,901	1,687	0,735	0,936	0,860	1,498	1,286	1,048	1,024	0,275
Co	ppm	42,473	116,469	191,733	59,395	24,969	132,397	23,935	84,719	42,351	25,131	31,457	108,750	54,742	27,082	104,187	73,933	102,926
Ni	ppm	HC	HC	HC	HC	351,035	HC	HC	HC	HC	HC	254,473	HC	HC	HC	HC	HC	HC
Cu	ppm	11,731	11,541	16,518	5,992	13,115	14,932	19,890	10,728	27,191	18,706	56,715	16,990	34,870	60,124	15,599	6,776	8,830
Zn	ppm	45,596	87,345	110,568	77,324	38,315	267,614	275,880	45,772	76,229	62,731	46,163	34,352	43,963	22,955	39,872	26,233	36,373
Ga	ppm	1,477	3,260	4,123	2,185	1,571	2,375	2,445	ND	2,596	4,489	2,552	ND	ND	ND	ND	ND	ND
As	ppm	352,049	303,553	266,658	286,292	315,857	319,426	227,101	363,675	288,848	289,115	124,172	177,358	195,131	178,241	158,817	234,532	242,093
Se	ppm	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Rb	ppm	1,578	3,158	3,073	8,486	1,621	2,958	4,492	1,604	3,277	3,516	4,966	2,189	2,306	2,780	2,012	1,842	1,780
Sr	ppm	24,412	116,340	32,801	27,169	18,228	338,663	35,086	146,994	36,766	23,045	26,572	11,258	31,473	20,107	3,934	5,537	7,379
Ag	ppm	0,168	0,104	0,690	0,092	0,165	0,083	0,269	ND	ND	0,069	0,271	0,146	0,152	0,643	0,209	0,220	0,317
Cd	ppm	0,110	0,286	0,244	0,085	ND	0,179	0,065	ND	ND	ND	ND	0,120	ND	ND	ND	ND	0,040
In	ppm	0,001	0,026	0,002	0,012	0,006	ND	0,012	0,054	0,035	0,054	0,008	0,009	ND	0,006	ND	ND	0,002
Cs	ppm	0,597	1,034	1,465	1,769	0,492	0,918	1,817	0,653	1,138	1,345	2,892	0,040	0,374	0,560	0,059	0,079	0,069
Ва	ppm	24,536	36,914	88,655	28,814	29,515	57,548	43,125	34,470	45,714	38,511	169,592	26,257	30,703	36,170	6,712	12,790	11,399
TI	ppm	0,033	0,032	0,004	0,013	0,024	0,031	0,034	0,024	0,030	0,028	0,033	0,024	0,046	0,051	0,008	0,026	0,016
Pb	ppm	5,451	4,742	46,579	3,697	3,999	3,664	5,180	3,692	4,558	6,492	9,519	11,307	9,970	11,451	9,412	9,491	8,635
U	ppm	0,152	0,114	0,058	0,042	0,091	0,046	0,049	0,156	0,011	0,061	0,009	0,012	0,033	0,129	0,015	0,019	ND
Au	ppm	0,048	0,008	0,017	0,023	0,018	0,007	0,004	0,013	0,018	0,079	0,009	0,025	0,014	0,011	0,013	0,003	0,009
Hf	ppm	0,116	0,049	0,089	0,037	0,063	0,039	0,145	0,054	0,061	0,123	0,305	0,034	0,085	0,068	0,030	0,032	0,035
Ir	ppm	0,102	0,031	0,014	0,006	0,013	0,005	0,012	0,003	0,010	0,003	0,017	0,010	0,004	0,001	0,006	0,001	ND
Pd	ppm	0,127	0,235	0,167	0,239	0,147	0,516	0,184	0,297	0,194	0,203	0,507	0,318	0,422	0,458	0,267	0,340	0,314
Pt	ppm	0,009	0,014	0,009	0,004	0,010	0,008	0,018	0,010	0,016	0,017	0,009	0,008	0,007	0,006	0,008	0,006	0,006
Rh	ppm	0,016	0,025	0,021	0,018	0,021	0,036	0,033	0,032	0,037	0,039	0,039	0,045	0,041	0,043	0,047	0,042	0,034
Ru	ppm	0,106	0,137	0,126	0,113	0,132	0,127	0,153	0,128	0,173	0,173	0,175	0,188	0,152	0,152	0,175	0,161	0,151
Sb	ppm	0,934	0,553	0,391	0,245	1,418	0,629	0,411	1,574	0,393	0,659	0,312	0,583	0,352	0,415	0,397	0,384	0,381
Sn	ppm	2,721	2,906	2,469	2,118	3,853	2,243	3,972	2,588	2,750	2,658	2,838	2,178	2,702	3,307	1,911	1,687	3,534
Te	ppm	0,156	0,255	0,293	0,171	0,245	0,083	0,178	0,250	0,216	0,245	0,117	0,099	0,151	0,054	0,096	0,066	0,074
PLA	1%	0.063	0.081	0.089	0.064	0.093	0.123	0.077	0.080	0.066	0.061	0.089	0.048	0.051	0.049	0.042	0.045	0.050

Tablo 4.9. Numunelerin Kimyasal İçeriği

4.5 Şekaya Yeşil Opalin XRD (X Işınları Difraksiyonu) Analizleri

XRD (X-ışını) çalışmaları, özellikle ince kesit incelemeleri sonucunda toparlanan örnekler üzerinde kesin sonuç ve ayrıntılı incelemeler için yapılmıştır. Yeşil opal ve yan kayaç örnekleri öğütülerek toz haline getirilip analiz edilmiştir.

4.5.1 Şekaya Yeşil Opalin X-Ray Diffraction (XRD) Analiz Raporu

XRD analizlerinde, analiz yönteminden kaynaklı olarak ortalama %5 ve daha düşük oranda bulunan mineraller genellikle tespit edilemez ve yalnızca tespit edilen mineraller için SemiQuant [%] sonuç verilir. Bu nedenle sadece tek numunenin kendi içerisindeki mineralleri birbirleriyle görece SemiQuant [%] olarak kıyaslanabilir. Fakat 2 farklı numunenin mineral yüzdeleri birbirleriyle kıyaslanamaz. Bu kıyaslama için XRF (major oksit ve iz element), AAS, ICP-OES ve ICP-MS kimyasal analiz sonuçları kullanılmalıdır. X ışınlarının tüm çalışma şartları Tablo 4.10 da verildiği gibidir.

Ölgöm Kagulları	Measurement Conditions
Raw Data Origin	BRUKER-binary V3 (.RAW)
Scan Axis	Gonio
Start Position [°2Th.]	4,000
End Position [°2Th.]	90,000
Step Size [°2Th.]	0,003
Scan Step Time [s]	32,0000
Scan Type	Pre-set time
Offset [°2Th.]	0,0000
Divergence Slit Type	Fixed
Divergence Slit Size [°]	0,6000
Specimen Length [mm]	10,00
Receiving Slit Size [mm]	0,1000
Measurement Temperature [°C]	25,00
Anode Material	Cu
K-Alpha1 [Å]	1,54060
K-Alpha2 [Å]	1,54443
K-Beta [Å]	1,39225
K-A2 / K-A1 Ratio	0,50000
Generator Settings	40 mA, 40 kV
Diffractometer Type	Unknown
Diffractometer Number	0

Tablo 4.10 X Işınları Çalışma Şartları

Goniometer Radius [mm]	250,00
Dist. Focus-Diverg. Slit [mm]	91,00
Incident Beam Monochromator	No

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
74	98-004-0906	Quartz low	O ₂ Si ₁
26	98-001-6989	Cristobalite low	O ₂ Si ₁

T4-A adlı numune üzerinde yapılan XRD incelemesinde % 74 oranında kuvars ve % 26 oranında kristobalit olduğu belirlenmiştir.

Çizelge 4.1. T4-A numune grafiği

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
20,863450	327,550500	0,067200	4,25430	25,62
21,666160	495,006600	0,172800	4,09846	38,72
24,897560	13,748080	0,230400	3,57337	1,08
26,639960	1278,574000	0,038400	3,34347	100,00
30,964530	42,899650	0,076800	2,88566	3,36
32,267660	183,380500	0,096000	2,77204	14,34
32,388970	174,332100	0,057600	2,76193	13,63
35,938990	115,832400	0,192000	2,49683	9,06
36,541530	71,930820	0,153600	2,45703	5,63
38,520360	10,382260	0,307200	2,33524	0,81
39,452630	76,873380	0,115200	2,28218	6,01
40,287800	24,246130	0,192000	2,23678	1,90
42,445410	58,564660	0,153600	2,12793	4,58
45,783710	27,027050	0,153600	1,98024	2,11
46,428300	15,474490	0,307200	1,95424	1,21
50,143650	112,416200	0,153600	1,81780	8,79
53,294230	32,128210	0,172800	1,71752	2,51
54,879990	24,863630	0,192000	1,67159	1,94
59,948810	65,755620	0,192000	1,54179	5,14
64,043750	11,652180	0,460800	1,45273	0,91
67,731270	51,397910	0,153600	1,38233	4,02
68,136470	78,427510	0,192000	1,37509	6,13
73,471960	16,103800	0,230400	1,28785	1,26
75,696780	17,716780	0,460800	1,25543	1,39
77,697420	10,931430	0,460800	1,22803	0,85
79,870200	29,253400	0,307200	1,19999	2,29
81,139660	28,414040	0,230400	1,18439	2,22
83,759450	8,140232	0,460800	1,15389	0,64

Tablo 4.12. Numune adı: T4-B

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
49	98-008-5890	Dolomite	C ₂ Ca ₁ Mg ₁
			O ₆
12	98-001-6988	Cristobalite low	O ₂ Si
38	98-004-6948	Tridymite	O ₂ Si

T4-B adlı numune üzerinde yapılan XRD incelemesinde % 49 oranında Dolomit ve % 12 oranında Kristobalit ve % 38 oranında Tridimit olduğu belirlenmiştir.

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
20,495930	213,662200	0,134400	4,32975	22,13
21,737170	486,843700	0,499200	4,08523	50,43
24,056240	58,458460	0,086400	3,69640	6,06
24,917350	12,827370	0,460800	3,57057	1,33
26,625450	19,432400	0,153600	3,34526	2,01
30,952510	965,432100	0,057600	2,88676	100,00
32,263810	163,649800	0,086400	2,77236	16,95
32,453530	100,185000	0,067200	2,75658	10,38
33,556710	16,447990	0,230400	2,66844	1,70
35,934830	110,592700	0,153600	2,49711	11,46
37,366770	57,435190	0,076800	2,40464	5,95
41,151560	97,595950	0,134400	2,19180	10,11
42,611670	41,297330	0,115200	2,12001	4,28

-					
	44,930770	57,711360	0,134400	2,01583	5,98
	46,486800	11,881690	0,460800	1,95191	1,23
	49,292660	12,505130	0,230400	1,84717	1,30
	50,499860	51,360920	0,134400	1,80581	5,32
	51,074210	66,520030	0,153600	1,78684	6,89
	53,244620	25,190970	0,460800	1,71901	2,61
	59,831890	14,795420	0,230400	1,54452	1,53
	63,449620	12,915210	0,230400	1,46489	1,34
	64,509380	17,913210	0,268800	1,44336	1,86
	67,401450	11,265800	0,230400	1,38829	1,17
-					

Tablo 4.13. Numune adı: T4-C

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
89	98-002-1962	Magnesite	C Mg O ₃
5	98-001-6981	Cristobalite high	O ₂ Si ₁
5	98-004-7596	Tridymite	O ₂ Si ₁
1	98-003-5657	Quartz low	O ₂ Si ₁

T4-C adlı numune üzerinde yapılan XRD incelemesinde % 89 oranında Magnezit ve % 5 oranında Kristobalit, % 5 oranında Tridimit ve % 1 oranında kuvars olduğu belirlenmiştir.

Çizelge 4.6. T4-C numunesinin pik ve patern listesi.

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
5,965679	8,670532	0,921600	14,80295	0,45
20,569030	98,148530	0,460800	4,31452	5,10
21,612160	282,642400	0,307200	4,10858	14,68
24,982370	85,293210	0,076800	3,56143	4,43
26,596170	24,345290	0,192000	3,34888	1,26
32,354920	1924,755000	0,028800	2,76476	100,00
32,459410	1274,441000	0,038400	2,75610	66,21
35,502120	71,504140	0,192000	2,52655	3,71
38,611820	66,141040	0,134400	2,32992	3,44
42,708520	236,942700	0,076800	2,11543	12,31
46,553780	110,069400	0,067200	1,94926	5,72
51,234190	31,047040	0,153600	1,78164	1,61
53,390910	217,662900	0,096000	1,71464	11,31
61,073710	18,781720	0,230400	1,51606	0,98
62,039180	41,372220	0,153600	1,49477	2,15
66,016760	28,659420	0,307200	1,41401	1,49
67,816540	23,298160	0,384000	1,38080	1,21
68,754750	26,602460	0,307200	1,36423	1,38
69,880650	42,074490	0,153600	1,34498	2,19
75,224110	10,523680	0,614400	1,26214	0,55
80,915120	9,158203	0,460800	1,18711	0,48

Tablo 4.14. Numune adı: T4-D.

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
4	98-001-6988	Cristobalite low	O ₂ Si ₁
11	98-004-0593	Tridymite low	O ₂ Si ₁
80	98-004-9918	Actinolite	H1.565 Al0.255
			Ca1.904 F0.365
			Fe0.891 K0.048
			Mg4.083 Mn0.02
			Na0.14 O23.635
			Si7.785 Ti0.014

4	98-003-5657	Quartz low	O ₂ Si ₁
---	-------------	------------	--------------------------------

T4-D adlı numune üzerinde yapılan XRD incelemesinde % 4 Kristobalit oranında ve %11 oranında Tridimit, % 80 oranında aktinolit ve % 4 oranında kuvars olduğu belirlenmiştir.

Çizelge 4.5.7. T4-D numunesinin grafiği.

Cizelge 4.8, T4-D	numunesinin patern	listesi
GIZCIGC I.O. I I D	numunesinin patern	IISCOI

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
6,179064	30,313900	0,307200	14,29222	2,93
9,784200	181,558100	0,067200	9,03264	17,56
10,506110	978,305800	0,033600	8,41354	94,62
17,402080	77,513890	0,057600	5,09192	7,50
18,164350	67,416460	0,105600	4,87992	6,52
18,625000	59,502310	0,067200	4,76025	5,75
19,626460	181,968500	0,057600	4,51955	17,60
20,476690	105,995400	0,230400	4,33377	10,25
21,083550	220,525800	0,038400	4,21038	21,33
21,703980	222,955500	0,384000	4,09140	21,56
22,908880	106,509400	0,076800	3,87887	10,30
26,335260	124,282100	0,038400	3,38146	12,02
26,640590	171,926300	0,067200	3,34339	16,63
27,187530	321,496700	0,052800	3,27736	31,09
28,537460	1033,961000	0,076800	3,12532	100,00
30,344310	159,405100	0,067200	2,94322	15,42
30,913350	105,250100	0,115200	2,89032	10,18
31,846860	114,023500	0,067200	2,80770	11,03
32,465700	110,507300	0,057600	2,75558	10,69
32,740190	101,259200	0,067200	2,73310	9,79
33,049000	383,772200	0,043200	2,70826	37,12
34,545230	124,652800	0,076800	2,59431	12,06
35,376050	138,119500	0,067200	2,53526	13,36
35,772080	44,326080	0,230400	2,50810	4,29
37,292420	16,662690	0,230400	2,40927	1,61
37,683300	61,339740	0,076800	2,38517	5,93

38,456680	148,933100	0,067200	2,33896	14,40
39,125570	50,526630	0,076800	2,30050	4,89
39,543230	53,441730	0,057600	2,27716	5,17
41,708020	133,300200	0,067200	2,16383	12,89
42,725630	15,176270	0,230400	2,11462	1,47
44,257880	44,737010	0,096000	2,04490	4,33
44,860990	76,646700	0,067200	2,01880	7,41
45,232770	44,977190	0,076800	2,00307	4,35
46,180870	26,716710	0,115200	1,96413	2,58
47,988640	89,741310	0,096000	1,89427	8,68
48,747440	42,319110	0,076800	1,86655	4,09
50,183040	56,532080	0,115200	1,81646	5,47
52,312990	18,137220	0,115200	1,74741	1,75
53,324040	16,912570	0,384000	1,71663	1,64
54,388260	31,291050	0,153600	1,68553	3,03
55,608980	137,354600	0,057600	1,65139	13,28
56,068660	44,424960	0,115200	1,63893	4,30
58,053680	51,651180	0,057600	1,58753	5,00
58,390020	38,414050	0,096000	1,57918	3,72
60,287560	28,639920	0,172800	1,53394	2,77
61,200760	37,831680	0,067200	1,51322	3,66

Tablo 4.15. Numune adı: T4-E.

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
11	98-001-2749	Hematite	Fe ₂ O ₃
15	98-001-6981	Cristobalite high	O ₂ Si ₁
12	98-004-0906	Quartz low	O ₂ Si ₁
17	98-004-7596	Tridymite	O ₂ Si ₁
44	98-008-4824	Zeolite	O ₂ Si ₁
SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula

T4-E adlı numune üzerinde yapılan XRD incelemesinde % 11 oranında Hematit, %15 oranında Kristobalit, % 12 oranında Kuvars, % 17 oranında Tridimit ve % 44 oranında Zeolit olduğu belirlenmiştir.

Çizelge 4.9. T4-E numunesinin grafiği.

Çizelge 4.10. T4-E numunesinin pik ve patern listesi.

Tablo 4.16. Numune adı: T4-F

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
98	98-008-5907	Dolomite	C_2 Ca Mg O_6
2	98-001-6989	Cristobalite low	O ₂ Si ₁

T4-F adlı numune üzerinde yapılan XRD incelemesinde % 98 oranında Dolomit ve %2 oranında Kristobalit olduğu belirlenmiştir.

11,7110 /0	152,020000	0,007000	1,00721	0,00
24,034360	126,310400	0,067200	3,69972	3,21
26,602680	8,440887	0,460800	3,34807	0,21
27,837170	15,245160	0,134400	3,20234	0,39
30,932870	3938,316000	0,076800	2,88854	100,00
32,308330	61,152200	0,134400	2,76864	1,55
33,492100	84,024690	0,115200	2,67344	2,13
35,286080	64,427390	0,115200	2,54152	1,64
35,956790	34,229870	0,537600	2,49564	0,87
37,349560	184,127800	0,086400	2,40571	4,68
41,111160	403,129700	0,105600	2,19386	10,24
43,783360	34,023280	0,153600	2,06596	0,86
44,902500	225,851900	0,096000	2,01703	5,73
49,242790	45,465600	0,153600	1,84892	1,15
50,447000	206,279600	0,172800	1,80758	5,24
51,029080	268,080500	0,153600	1,78831	6,81

53,379970	12,595290	0,460800	1,71497	0,32
58,875860	33,273090	0,153600	1,56730	0,84
59,758910	66,744570	0,134400	1,54624	1,69
63,382590	62,057520	0,134400	1,46628	1,58
64,446840	49,988140	0,153600	1,44461	1,27
65,089790	29,840740	0,192000	1,43189	0,76
66,062370	14,664520	0,230400	1,41315	0,37
67,377910	57,397560	0,153600	1,38872	1,46
70,329070	26,857250	0,230400	1,33750	0,68
72,801470	14,881300	0,307200	1,29805	0,38
74,601230	19,278350	0,307200	1,27113	0,49
76,947650	21,696130	0,230400	1,23811	0,55
79,652840	15,886420	0,230400	1,20272	0,40
82,515400	17,539220	0,307200	1,16810	0,45
86,561420	15,348830	0,307200	1,12358	0,39
87,878420	28,794610	0,230400	1,11011	0,73
89,240100	15,079260	0,230400	1,09666	0,38

Tablo 4.17.	Numune	adı:	T3-A.
-------------	--------	------	-------

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
15	98-001-6982	Cristobalite high	O ₂ Si ₁
20	98-004-7596	Tridymite	O ₂ Si ₁
3	98-002-3116	Quartz low	O ₂ Si ₁
49	98-008-4824	Zeolite	O ₂ Si ₁
13	98-002-1963	Magnesite	C Mg O ₃

T3-A adlı numune üzerinde yapılan XRD incelemesinde % 15 oranında Kristobalit, % 20 oranında Tridimit, % 3 oranında Kuvars, % 49 oranında Zeolit ve % 13 oranında Magnezit olduğu belirlenmiştir.

Çizelge 4.13. T3-A numunesinin grafiği.

Çizelge 4.14. T3-A numunesinin pik ve patern listesi.

Tablo 4.18. Numune adı: T3-B

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
62	98-002-1811	Magnesite	C Mg O ₃
21	98-001-2022	Dolomite	C ₂ Ca ₁ Mg ₁
			O ₆
3	98-006-2082	Cristobalite \$-beta	O ₂ Si ₁
6	98-001-2749	Hematite	Fe ₂ O ₃
6	98-004-6686	Tridymite	O ₂ Si ₁
2	98-005-4829	Quartz low	O ₂ Si ₁

T3-B adlı numune üzerinde yapılan XRD incelemesinde % 62 oranında Magnezit, %21 oranında Dolomit, % 3 oranında Kristobalit, % 6 Hematit oranında, % 6 oranında Tridimit ve % 2 Kuvars minerallerine rastlanmıştır.

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
20,489810	111,805100	0,384000	4,33103	5,68
21,609400	258,806500	0,384000	4,10910	13,16
24,097250	46,211140	0,192000	3,69020	2,35
26,597500	84,185970	0,134400	3,34871	4,28
30,912970	497,039100	0,134400	2,89036	25,27
32,599120	1966,800000	0,048000	2,74461	100,00
32,624230	1629,878000	0,019200	2,74255	82,87
33,128390	116,841700	0,067200	2,70196	5,94
35,613460	125,486700	0,076800	2,51890	6,38
35,812690	291,826700	0,086400	2,50535	14,84
37,354340	41,141590	0,115200	2,40541	2,09
38,785930	68,627910	0,067200	2,31986	3,49
41,124100	83,476590	0,172800	2,19320	4,24
42,953000	619,812100	0,033600	2,10395	31,51
43,792380	16.984640	0.230400	2.06555	0.86

-					
	44,907540	44,685710	0,153600	2,01682	2,27
	46,785350	201,285100	0,086400	1,94015	10,23
	49,442880	31,537010	0,153600	1,84191	1,60
	50,533390	41,252760	0,230400	1,80469	2,10
	51,045360	48,290990	0,307200	1,78778	2,46
	51,547330	52,541550	0,076800	1,77155	2,67
	53,830990	527,465300	0,096000	1,70166	26,82
	59,825650	19,214110	0,307200	1,54467	0,98
	61,327960	46,659390	0,096000	1,51038	2,37
	62,381810	84,184270	0,115200	1,48738	4,28
	63,971530	28,197980	0,192000	1,45419	1,43
	66,363170	59,770470	0,115200	1,40747	3,04
	67,444240	14,715180	0,307200	1,38751	0,75
	68,315840	29,653330	0,153600	1,37192	1,51
	69,285800	84,501370	0,096000	1,35506	4,30
	70,278100	106,441800	0,115200	1,33834	5,41
	75,893790	40,837900	0,153600	1,25266	2,08
	76,863820	18,257150	0,230400	1,23925	0,93
	79,624570	17,634210	0,230400	1,20308	0,90
	81,482110	20,183390	0,230400	1,18028	1,03
	88,608750	9,529587	0,460800	1,10284	0,48

Tablo 4.19. Numune adı: T3-C.

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
19	98-001-6982	Cristobalite high	O ₂ Si ₁
21	98-002-1963	Magnesite	$C_1 Mg_1 O_3$
60	98-004-0593	Tridymite low	O_2 Si ₁

T3-C adlı numune üzerinde yapılan XRD incelemesinde % 19 oranında Kristobalit, %21 oranında Magnezit ve % 60 oranında Tridimit olduğu belirlenmiştir.

Çizelge 4.17. T3-C numunesinin grafiği.

Çizelge 4.18. T3-C numunesinin pik ve patern listesi.

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
20,524000	256,233000	0,153600	4,32389	46,60
21,668500	549,897200	0,422400	4,09802	100,00
24,880410	24,096920	0,076800	3,57579	4,38
26,605270	31,805200	0,230400	3,34775	5,78
32,230850	196,887000	0,086400	2,77512	35,80
35,792410	128,691100	0,153600	2,50672	23,40
35,975620	114,095100	0,153600	2,49437	20,75
38,484290	20,073690	0,115200	2,33735	3,65
42,542850	38,184620	0,096000	2,12328	6,94
43,924190	17,952030	0,768000	2,05966	3,26
46,400670	8,748611	0,460800	1,95534	1,59
53,189170	31,842180	0,153600	1,72067	5,79
61,398580	5,050926	0,921600	1,50882	0,92
64,467740	9,827751	0,614400	1,44419	1,79

Tablo 4.20. Numune adı: T3-D.

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
8	98-004-0906	Quartz low	O_2 Si ₁
16	98-001-6988	Cristobalite low	O_2 Si ₁
26	98-004-6253	Tridymite 2H high	O ₂ Si ₁
9	98-002-1962	Magnesite	C1 Mg ₁ O ₃
41	98-008-4824	Zeolite	O ₂ Si ₁

T3-D adlı numune üzerinde yapılan XRD incelemesinde % 8 oranında Kuvars,
% 16 oranında Kristobalit, % 26 oranında Tridimit, % 9 Magnezit oranında,
% 41 oranında Zeolit olduğu belirlenmiştir.

Çizelge 4.20. T3-D numunesinin pik ve patern listesi.

	Position [°2Theta] (Copper (Cu))			
Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
20,484450	250,311600	0,268800	4,33215	41,55
21,617200	602,397600	0,384000	4,10763	100,00
24,890060	14,911190	0,115200	3,57443	2,48
26,618600	168,477900	0,153600	3,34610	27,97
30,945560	89,515540	0,038400	2,88739	14,86
32,227750	146,606000	0,086400	2,77538	24,34
35,858030	131,603000	0,384000	2,50228	21,85
39,445300	8,961128	0,230400	2,28259	1,49
42,536000	24,710370	0,153600	2,12361	4,10
43,910050	16,463600	0,768000	2,06029	2,73
50,085320	15,520770	0,230400	1,81978	2,58
51,057930	16,170660	0,153600	1,78737	2,68
53,134450	11,815770	0,230400	1,72231	1,96
59,875750	6,782879	0,460800	1,54350	1,13
64,439570	11,429330	0,614400	1,44476	1,90
68,226270	10,884110	0,460800	1,37350	1,81
79,859000	9,209946	0,768000	1,20013	1,53

SemiQuant [%]	Ref. Code	Compound	Chemical
		Name	Formula
50	98-006-2082	Cristobalite \$-	O ₂ Si ₁
		beta	
11	98-004-0906	Quartz low	O ₂ Si ₁
27	98-004-7596	Tridymite	O ₂ Si ₁
12	98-002-1811	Magnesite	$C_1 Mg_1 O_3$

Tablo 4.21. Numune adı: Y-1

Yeşil opal numunesinin XRD analizinde çıkan bu ana piklerin kristobalitlerden oluştuğu gözlenmiştir. Ayrıca bunun yanında da magnezit ve düşük oranda kuvars piklerine de rastlanmıştır. Buna göre de numunemizin % 50 oranında Kristobalit, %11 oranında kuvars, %27 oranında Tridimit, % 12 oranında Magnezit olduğu belirlenmiştir.

Çizelge 4.22. Y1 numunesinin pik ve patern listesi.

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
20,483860	253,458300	0,230400	4,33227	40,41
21,579550	627,155000	0,499200	4,11471	100,00
26,597820	49,881130	0,096000	3,34867	7,95
30,911670	15,013920	0,115200	2,89048	2,39
32,320350	80,496700	0,076800	2,76764	12,84
35,836720	132,050900	0,192000	2,50372	21,06
42,642730	22,147460	0,307200	2,11854	3,53
44,167790	16,361040	0,768000	2,04887	2,61
53,265630	11,983850	0,614400	1,71838	1,91
56,332950	14,733070	1,075200	1,63187	2,35
64,364060	11,472110	0,921600	1,44627	1,83
68,723890	7,197487	1,075200	1,36476	1,15
79,732990	11,100530	0,614400	1,20171	1,77

Tablo 4.22. Numune adı: OF1-A

SemiQuant	Ref. Code	Compound Name	Chemical Formula
1	98-007- 8202	Magnetite	Fe ₃ O ₄
3	98-003- 8534	Lizardite 1M	H ₄ Mg ₃ O ₉ Si ₂
95	98-007- 9872	Antigorite-M	$\begin{array}{c}H_{3} {}_{.6 \ 3 \ 9} Mg_{2} {}_{.8 \ 2 \ 3} O_{8 \ .6 \ 3 \ 9} \\Si_{2}\end{array}$

OF1-A adlı numune üzerinde yapılan XRD incelemesinde % 1 oranında Magnetit, % 3 oranında Lizardit, % 95 oranında Antigorit olduğu belirlenmiştir.

37.064830	150 771700	0.048000	2 42354	3.83
11 (1(010	54,505000	0,048000	2,72337	5,05
41,616010	54,585900	0,153600	2,16841	1,39
41,971710	69,379980	0,115200	2,15085	1,76
43,123610	26,298860	0,230400	2,09603	0,67
50,156600	41,459650	0,153600	1,81736	1,05
51,118280	21,598300	0,460800	1,78540	0,55
52,363450	22,329280	0,614400	1,74584	0,57
53,420820	19,841060	0,230400	1,71375	0,50
56,954030	26,134320	0,115200	1,61554	0,66
59,226420	64,985070	0,153600	1,55886	1,65
59,965870	113,427700	0,134400	1,54139	2,88
61,435610	49,979600	0,230400	1,50799	1,27
62,564880	41,021950	0,076800	1,48346	1,04
63,861860	15,636390	0,345600	1,45643	0,40
71,811990	28,271190	0,768000	1,31348	0,72
78,947380	9,164421	0,460800	1,21169	0,23

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
14	98-004-7596	Tridymite	O ₂ Si ₁
16	98-008-5905	Dolomite	C ₂ Ca ₁ Mg ₁
			O ₆
8	98-005-4845	Quartz high	O ₂ Si ₁
61	98-005-2466	Lizardite 2H1	H ₄ Mg ₃ O ₉
			Si ₂

OF1-B adlı numune üzerinde yapılan XRD incelemesinde % 14 oranında Tridimit, % 16 oranında Dolomit, % 8 Kuvars ve % 61 oranında Lizardit olduğu belirlenmiştir.

Çizelge 4.25. OF1-B numunesinin grafiği.

Çizelge 4.23.	OF1-B	numunesinin	pik ve	patern	listesi.

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
12,179770	787,861500	0,019200	7,26091	100,00
19,240050	57,571010	0,230400	4,60944	7,31
20,471680	155,244000	0,230400	4,33482	19,70
21,628980	294,841200	0,345600	4,10542	37,42
24,428790	275,407100	0,115200	3,64086	34,96
26,627280	142,787700	0,115200	3,34503	18,12
30,920700	186,108500	0,076800	2,88965	23,62
32,193250	6,284866	0,460800	2,77827	0,80
35,814150	120,360500	0,384000	2,50525	15,28
36,573240	47,772970	0,307200	2,45497	6,06
41,939780	21,050500	0,307200	2,15241	2,67
43,087270	20,435110	0,230400	2,09771	2,59
44,940210	12,402010	0,115200	2,01543	1,57
50,126430	23,706260	0,115200	1,81838	3,01
51,014490	11,858100	0,460800	1,78879	1,51
59,971020	41,362830	0,268800	1,54127	5,25
71 959250	10.940070	0.769000	1 21075	1 20
/1,858250	10,840070	0,768000	1,312/5	1,38

Tablo 4.24. Numune adı: OF1-C

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
34	98-004-0906	Quartz low	O ₂ Si ₁
22	98-001-6981	Cristobalite high	O ₂ Si ₁
37	98-004-6253	Tridymite 2H high	O ₂ Si ₁
6	98-007-2325	Zeolite UTD-1	O ₂ Si ₁

OF1-C adlı numune üzerinde yapılan XRD incelemesinde % 34 oranında kuvars ve % 22 oranında kristobalit, % 37 oranında Tridimit ve % 6 oranında Zeolit olduğu belirlenmiştir.

Çizelge 4.5.27. OF1-C numunesinin grafiği.

Çizelge 4.28. OF1-C numunesinin pik ve patern listesi.

75,637780	8,237881	0,460800	1,25626	2,01
79,896800	7,828331	0,768000	1,19966	1,91

Tablo 4.25. Numune adı: OF2-A.

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
93	98-005-2466	Lizardite 2H1	H ₄ Mg ₃ O ₉
			Si ₂
7	98-007-8202	Magnetite	Fe ₃ O ₄

OF2-A adlı numune üzerinde yapılan XRD incelemesinde % 93 oranında Lizardit ve % 7 oranında Magnetit olduğu belirlenmiştir.

Çizelge 4.29. OF2-A numunesinin grafiği.

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
12,128860	1487,422000	0,052800	7,29127	100,00
19,154060	73,154750	0,192000	4,62994	4,92
22,751720	19,746440	0,230400	3,90530	1,33
24,429280	553,340600	0,115200	3,64079	37,20
30,068960	28,708520	0,076800	2,96954	1,93
33,738400	31,478020	0,268800	2,65448	2,12
34,389320	59,190740	0,460800	2,60572	3,98
35,432120	162,733600	0,057600	2,53138	10,94
35,731800	265,790600	0,172800	2,51083	17,87
36,598860	158,288100	0,268800	2,45331	10,64
38,499790	20,538910	0,460800	2,33644	1,38
41,932440	51,732150	0,307200	2,15277	3,48
43,140400	28,924150	0,384000	2,09525	1,94
46,107210	7,393944	0,768000	1,96710	0,50
50,026720	14,882960	0,460800	1,82177	1,00
50,796190	14,947860	0,460800	1,79597	1,00
52,391940	18,808990	0,460800	1,74496	1,26
56,956060	18,506140	0,115200	1,61549	1,24
59,967770	114,057700	0,537600	1,54135	7,67
61,485180	41,458850	0,614400	1,50690	2,79
62,547110	30,640240	0,115200	1,48384	2,06
65,792390	5,451897	0,921600	1,41829	0,37
71,816540	37,631820	0,230400	1,31341	2,53

Tablo4.26. Numune adı: OF2-B1.

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
64	98-005-3206	Lizardite 2H1	H ₄ Mg ₃ O ₉
			Si ₂
36	98-006-7728	Antigorite-T	H _{5 0} Mg _{3 9}
			O _{1 2 0} Si _{2 8}

OF2-B1 adlı numune üzerinde yapılan XRD incelemesinde % 64 oranında Lizardit ve % 36 oranında Antigorit olduğu belirlenmiştir.

Çizelge 4.5.31. OF2-B1 numunesinin grafiği.

Çizelge 4.32. OF2-B1 numunesinin pik ve patern listesi.

Tablo 4.27. Numune adı: OF2-B2.

0,921600

1,41721

0,39

65,849010

5,145744

SemiQuant [%]	Ref. Code	Compound Name	Chemical Formula
89	98-004-5930	Lizardite 2H1	H ₄ Mg ₃ O ₉
			Si ₂
11	98-007-8202	Magnetite	Fe ₃ O ₄

OF2-B2 adlı numune üzerinde yapılan XRD incelemesinde % 89 oranında Lizardit ve % 11 oranında Magnetit olduğu belirlenmiştir.

Position [°2Theta] (Copper (Cu))						
Pos [°7Th]	Height [cts]	FWHM Left [°7Th]	d-spacing [Å]	Rel Int [%]		
12 140480	1760 595000	0.052800	7 28432	100.00		
19,175560	75.785830	0.115200	4.62480	4.30		
22,716830	11,215820	0,460800	3,91122	0,64		
24,432670	597,470800	0,115200	3,64030	33,94		
30,085530	43,110250	0,096000	2,96794	2,45		
33,688920	26,397260	0,230400	2,65827	1,50		
34,381750	50,494150	0,460800	2,60627	2,87		
35,438660	228,789400	0,067200	2,53093	13,00		
35,793190	225,650900	0,230400	2,50667	12,82		
36,546590	134,668700	0,153600	2,45670	7,65		
37,063250	79,026030	0,230400	2,42363	4,49		
41,893460	45,925320	0,384000	2,15468	2,61		
43,105130	38.307080	0.307200	2.09688	2.18		

Çizelge 4.33. OF2-B2 numunesinin grafiği.

46,101840	5,416008	0,921600	1,96731	0,31
50,019690	16,203940	0,460800	1,82201	0,92
50,963720	15,421010	0,614400	1,79045	0,88
52,450520	18,986550	0,460800	1,74315	1,08
56,951320	38,070930	0,057600	1,61561	2,16
60,011860	105,049700	0,537600	1,54032	5,97
61,466110	40,260250	0,614400	1,50732	2,29
62,556330	62,155810	0,115200	1,48365	3,53
63,539770	13,530000	0,230400	1,46303	0,77
65,780720	4,898247	0,921600	1,41851	0,28
71,862940	32,784590	0,307200	1,31267	1,86

4.6 Petrografik Analizler

Arazi çalışmaları esnasında toplanan örneklerin, petrografik olarak tanımlamaları yapılarak mineralojik, petrografik, dokusal ve yapısal özelliklerinin belirlenmesi için ince kesitleri yapılmıştır. İ.T.Ü Jeoloji Mühendisliği Bölümü gemoloji laboratuarında yapılan ince kesitler polarizon mikroskopta incelenmiş ve ince kesitlerin dijital fotoğraf makinesi ile mineral resimleri çekilmiştir.

4.6.1. Örnek no: OF1A makro inceleme

Örnek, grimsi yeşil renk tonlarında, homojen renk dağılımlı ve beyaz minerallerce benekli görünümlü bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon gösteemesi kalsit, dolomit gibi karbonat grubu mineral içerdiğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 2-4 Mohs olup, az sert kayaç grubuna girmektedir. İnceden tane boyutuna sahip kayaçta makroskopik olarak ayrışma ikincil karbonatlaşma şeklinde izlenmektedir.

4.6.2. Mikro İnceleme

Kayaç; kataklastik, kısmen yönlü dokuludur. Kayacın mineral bileşimi serpantin, talk, krizotil, antigorit ile kalıntı olivin ve piroksen, kromit ve diğer opak minerallerden meydana gelmiştir. Serpantin mineralleri (~%55) ince taneli, dalgalı sönmeli ve talk mineralleriyle iç içe görülürler. Çoğunlukla mikro taneli krizotil ve lata şekilli antigorit türündedirler. Talklar (~%5-6) lifsel görünümlü, ince taneli ve serpantin mineralleriyle içiçe görülürler. Kalıntı olivinler ve piroksenler (~%10-15) psödomorfları şeklindedir. Bol miktarda kromit (%15) ve manyetit opak minerallerdir. İkincil karbonatlaşma görülmektedir (Şekil 4.19). Kayaç Serpantinleşmiş peridodittir.

Şekil 4.19. OF1A nolu örneğin çift nikol mikroskop görünümü.

4.6.3. Örnek no: OF1B makro inceleme

Örnek yeşilden kahveye değişik renk tonlarında, çatlaklı-kırıklı ve kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 2-3 Mohs olup, az sert kayaç grubuna girmektedir. İnceden orta tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmektedir.

4.6.4. Mikro İnceleme

Kayaç kataklastik kısmen yönlü dokuludur. Kayacın mineral bileşimi serpantin, talk, piroksen, kuvars+albit, kromit ve diğer opak minerallerden meydana gelmiştir. Serpantin mineralleri (~%40) ince taneli, dalgalı sönmeli ve talk mineralleriyle iç içe görülürler. Çoğunlukla mikro taneli krizotil ve lata şekilli antigorit türündedirler. Talklar (~%5-7) lifsel görünümlü, ince

taneli ve serpantin mineralleriyle içiçie görülürler. Kalıntı piroksenler (~%8-10) bastit psödomorfları şeklindedir. Kuvarslar albitlerle beraber, ikincil oluşum-damar dolgu şeklinde ve mikro boyuttaki minerallerdir. Az miktarda kromit olması muhtemel ve diğer opak mineraller de bileşime katılmışlardır (Şekil 4.20). Kayaç kataklastik talklaşmış ve serpantinleşmiş peridodit.

Şekil 4.20. OF1B nolu örneğin çift nikol mikroskop görünümü.

4.6.5. Örnek no: OF1C makro inceleme

Örnek; yeşilden kahveye değişik renk tonlarında, çaklaklı-kırıklı ve kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 4-6 Mohs olup, orta sert kayaç grubuna girmektedir. İnceden iri tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmektedir.

4.6.6. Mikro İnceleme

Kayaç; kataklastik çok az yönlü dokuludur. Kayacın mineral bileşimi kuvars, manyezit, piroksen, serpantin, kromit ve diğer opak minerallerden meydana gelmiştir. Kuvarslar kayacın neredeyse yarısını oluşturan mikro taneli, muhtemelen kristobalit ve tridimit türündeki ikincil oluşumlardır. Manyezitler kayaçta yaklaşık %15 civarında bulunan ikincil mineral oluşumlardır. Piroksenler bastite gönüşmüş kalıntı piroksenlerdir ve yaklaşık % 10-12 civarındadır. Serpantin mineralleri lifsel krizotil türünde nadiren de antigorit türündedir ve talk mineralleriyle iç içe görülürler. Kromit ve diğer opak minerallerin toplamı yaklaşık %15-17 civarındadır (Şekil 4.21). Kayaç kataklastik serpantinleşmiş peridodit.

Şekil 4.21. OF1C nolu örneğin çift nikol mikroskop görünüm.

4.6.7. Örnek no: OF2A makro inceleme

Örnek yeşilden siyaha değişik renk tonlarında, mikro çaklaklı-kırıklı ve kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 4-6 Mohs olup, orta sert kayaç grubuna girmektedir. İnce tane boyutuna sahip kayaçta makroskopik izlenememektedir.

4.6.8. Mikro İnceleme

Kayaç kataklastik çok az yönlü dokuludur. Kayacın mineral bileşimi krizotil, antigorit türü serpantin mineralleri, talk, kalıntı olivin ve kromit ve diğer demir oksitlerden meydana gelmiştir. Kayaç yarıdan fazla (%50-55) oranında yönlü, uzamış kristaller olarak görülen serpantin mineralleri içerir. Talklar sarımsı renkleriyle belirgindir ve damar ve zonlar halindedirler ve kayaçta %15-20 oranındadırlar. Kromitler (%10-12) kırıklı-aşınmış ve yönlü görülürler. Altere – kalıntı olivinlerin oranı %10 civarındadır (Şekil 4.22). Kayaç serpantinleşmiş peridodittir.

Şekil 4.22. OF2A nolu örneğin çift nikol mikroskop görünüm.

4.6.9. Örnek no: OF2B makro inceleme

Makroskopik olarak OF2A kodlu örnekle benzer özellikler sunan örnek yeşilden siyaha değişik renk tonlarında, mikro çaklaklı-kırıklı ve kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 4-6 Mohs olup, orta sert kayaç grubuna girmektedir. İnce tane boyutuna sahip kayaçta makroskopik izlenmemektedir.

4.6.10. Mikro İnceleme

Kayaç kataklastik az yönlü dokuludur. Kayacın mineral bileşimi serpantin, talk, olivin-piroksen ve kromit ile diğer opak minerallerden meydana gelmiştir. Krizotil, antigorit kayacın serpantin minerallerdir (%55-60). %10 civarındaki talklar ince, lifsel ve yönlü şekillerde ve sarı renkleriyle belirgindirler. Piroksenler veolivinler kalıntı minerallerdir ve %10-15 civarındadır. Kromitler (%14-16) kısmen yönlü kırıklanmış ve dağınık taneler halinde görülürler (Şekil 4.23). Kayaç serpantinleşmiş peridodittir.

Şekil 4.23. OF2B nolu örneğin çift nikol mikroskop görünümü.

4.6.11. Örnek no: T3A makro inceleme

Örnek kahve renk tonlarında, çaklaklı-kırıklı ve kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 5-6 Mohs olup, sert kayaç grubuna girmektedir. İnceden iri tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmektedir.

4.6.12. Mikro İnceleme

Kayaç kataklastik dokuludur ve bolça mikro çatlaklıdır. Kayacın mineral bileşimi manyezit, olivin, kuvars+albit, kromit ve diğer opak minerallerden meydana gelmiştir. Manyezit (~%56-60) ince taneli ve ikincil oluşumlardır. Olivinler (~%15-20) kalıntı-parçalanmış iri taneler halinde ve alteredirler. Kromitler bol aşınmış, yönlenmiş taneler olarak görülürler. Kuvarslar albitlerle beraber, ikincil oluşum-damar dolgu şeklinde ve mikro boyuttaki minerallerdir (Şekil 4.24). Kayaç kataklastik serpantinleşmiş dünittir.

Şekil 4.24. T3A nolu örneğin çift nikol mikroskop görünümü.

4.6.13. Örnek no: T3B makro inceleme

Örnek yeşil renk tonlarında, çaklaklı-kırıklı ve kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 3-5 Mohs olup, orta sert kayaç grubuna girmektedir. İnceden iri tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmektedir.

4.6.14. Mikro İnceleme

Kayaç kataklastik dokuludur ve bolca mikro çatlaklıdır. Kayacın mineral bileşimi serpantin, manyezit, kuvars+albit, kromit ve diğer opak minerallerden meydana gelmiştir. Serpantin (~%80-82) ince lifsel krizotillizardit ve görece daha iri lata şekilli antigorit kristallerinden oluşmaktadır. Manyezit (~%5-8) ince taneli, demir oksitlerle beraber görülen ikincil oluşumlardır. Çok az miktardaki kromit (~%2-4) ve çatlaklarda görülen ikincil demir oksitler diğer opak minerallerdir. Kuvarslar albitlerle beraber, ikincil oluşum-damar dolgu şeklinde ve mikro boyuttaki minerallerdir (Şekil 4.25). Kayaç kataklastik serpantinleşmiş peridodittir.

Şekil 4.25. T3B nolu örneğin çift nikol mikroskop görünümü.

4.6.15. Örnek no: T3C makro inceleme

Örnek bej, gri kahve ve yaygın yeşil renk tonlarında, çaklaklı-kırıklı ve kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 3-5 Mohs olup, orta sert kayaç grubuna girmektedir. İnceden iri tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmektedir.

4.6.16. Mikro İnceleme

Kayaç kataklastik dokuludur ve bolça mikro çatlaklıdır. Kayacın mineral bileşimi serpantin, manyezit, kuvars+albit, kromit ve diğer opak minerallerden meydana gelmiştir. Serpantin (~%28-30) ince lifsel krizotillizardit kristallerinden oluşmaktadır. Manyezit (~%20-25) ince taneli, demir oksitlerle beraber görülen ikincil oluşumlardır. Kromit (~%8-10) ve çatlaklarda görülen ikincil demir oksitler diğer opak minerallerdir. Kuvarslar albitlerle beraber, ikincil oluşum-damar dolgu şeklinde ve mikro boyuttaki minerallerdir (Şekil 4.26). Kayaç kataklastik serpantinleşmiş peridodittir.

Şekil 4.26. T3C nolu örneğin çift nikol mikroskop görünümü.

4.6.17. Örnek no: T3D makro inceleme

Örnek yeşil renk tonlarında, çaklaklı-kırıklı ve kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 3-5 Mohs olup, orta sert kayaç grubuna girmektedir. İnce-orta tane boyutuna sahip kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmektedir.

4.6.18. Mikro İnceleme

Kayaç kataklastik dokuludur ve bolça mikro çatlaklıdır. Kayacın mineral bileşimi serpantin, manyezit, kuvars+albit, olivin, kromit ve diğer opak minerallerden meydana gelmiştir. Serpantin (~%50-55) ince lifsel krizotillizardit kristallerinden oluşmaktadır. Manyezit (~%5-8) ince taneli, demir oksitlerle beraber görülen ikincil oluşumlardır. Kromit (~%12-14) ve çatlaklarda görülen ikincil demir oksitler diğer opak (hematit+limonit) minerallerdir. Kuvarslar (%12-15) albitlerle beraber, ikincil oluşum-damar dolgu şeklinde ve mikro boyuttaki minerallerdir. Olivinler (8-10) kalıntı taneler halindedirler (Şekil 4.27). Kayaç kataklastik serpantinleşmiş peridodittir.

Şekil 4.27. T3D nolu örneğin çift nikol mikroskop görünümü.

4.6.19. Örnek no: T4A makro inceleme

Örnek kahve renk tonlarında, kataklastik dokuda ve damarlı görünümlü bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 5-6 Mohs olup, sert kayaç grubuna girmektedir. İnceden iri tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmektedir.

4.6.20. Mikro İnceleme

Kayaç kataklastik dokuludur ve bol mikro çatlaklıdır. Kayacın mineral bileşimi serpantin, talk, manyezit, kuvars+albit, kromit ve bol oranda diğer opak minerallerden meydana gelmiştir. Serpantin (~%40-42) ince lifsel krizotil-lizardit türünde ikincil mineral oluşumları şeklindedir. Kuvarslar ve albitler (% 10-12) ikincil oluşumlardır. Talklar manyezitlerle beraberdir ve ikincildirler. Olivinler (%12-15) kalıntı tanelerden ibarettir. Kromit (~%10)

aşınmış-kırıklanmış taneler halindedir. Diğer opak mineraller olasılıkla hematittirler (Şekil 4.28). Kayaç kataklastik serpantinleşmiş dünittir.

Şekil 4.28. T4A nolu örneğin çift nikol mikroskop görünümü (kesit uzun ekseni 3 mm'dir).

4.6.21. Örnek no: T4B1 makro inceleme

Örnek kirli beyaz-gri ve yeşil renk tonlarında ve kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 3-5 Mohs olup, orta sert kayaç grubuna girmektedir. İnceden iri tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmektedir.

4.6.22. Mikro İnceleme

Kayaç kataklastik dokuludur ve mikro çatlaklıdır. Kayacın mineral bileşimi serpantin, manyezit, kuvars+albit, kromit ve diğer opak minerallerden meydana gelmiştir. Serpantin (~%35-38) ince lifsel krizotil-lizardit türünde ikincil mineral oluşumları şeklindedir. Manyezit (~%35-38) oval, iri taneden mikro taneye değişik boyutlarda ve bazende damar dolguları şeklinde ikincil mineral oluşumlarıdır. Kromit (~%20) aşınmış-kırıklanmış taneler halindedir. Diğer opak mineraller olasılıkla hematittirler (Şekil 4.29). Kayaç kataklastik serpantinleşmiş dünittir.

Şekil 4.29. T4B1 nolu örneğin çift nikol mikroskop görünümü (kesit uzun ekseni 3 mm'dir).

4.6.23. Örnek no: T4B2 makro inceleme

Örnek T4B1 ile benzer makro özelliklerden ancak, daha açık renkli, yeşilbeyaz-bej renk karışımlı ve kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 3-5 Mohs olup, orta sert kayaç grubuna girmektedir. İnceden iri tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmektedir.

4.6.24. Mikro İnceleme

Kayaç kataklastik dokuludur ve mikro çatlaklıdır. Kayacın mineral bileşimi serpantin, manyezit+dolomit, kuvars+albit, kromit, olivin, piroksen ve diğer opak minerallerden meydana gelmiştir. Serpantin (~%10-15) ince lifsel krizotil-lizardit türünde ikincil mineral oluşumları şeklindedir. Manyezit ve dolomitler (~%35-38) oval, iri taneden mikro taneye değişik boyutlarda ve bazende damar dolguları şeklinde ikincil mineral oluşumlarıdır. Kromit (~%20) aşınmış-kırıklanmış taneler halindedir. Diğer opak mineraller olasılıkla hematittirler (Şekil 4.30). Kayaç kataklastik serpantinleşmiş dünittir.

Şekil 4.30. T4B2 nolu örneğin çift nikol mikroskop görünümü(kesit uzun ekseni 3 mm'dir).

4.6.25. Örnek no: T4C makro inceleme

Örnek kirli beyaz-gri ve yeşil renk tonlarında ve kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele yerel olarak reaksiyon göstermesi kalsit, dolomit gibi karbonat grubu mineral içerdiğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 4-5 Mohs olup, orta sert kayaç grubuna girmektedir. İnceden iri tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmektedir.

4.6.26. Mikro İnceleme

Kayaç kataklastik dokuludur ve yerel olarak eziklidir. Kayacın mineral bileşimi kuvars, kalsit+manyezit, serpantin, piroksen ve krom ile diğer opak minerallerden meydana gelmiştir. Kuvarslar (%35-38) merceksel veya damar dolguları şeklindeki ikincil oluşumlardır. Mikro tane boyutludurlar. Kalsitler ve manyezitler mikro boyutlu ikincil oluşumlardır. Serpantinler (% 20-22) ince-lifsel krizotil kristalciklerinden meydana gelmiştir. Piroksenler (%6-8) kalıntı piroksenlerdir ve kalsit dolguludurlar. Kromitler aşınmış-kırıklanmış tanelerdir (Şekil 4.31). Kayaç kataklastik serpantinleşmiş dünittir.

Şekil 4.31. T4C nolu örneğin çift nikol mikroskop görünümü

4.6.27. Örnek no: T4D makro inceleme

Örnek kirli beyaz-gri, kahve ve yeşil renk tonlarında ve yönlü – az kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 3-5 Mohs olup, orta sert kayaç grubuna girmektedir. İnce-orta tane boyutundaki kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmektedir.

4.6.28. Mikro İnceleme

Kayaç yönlü- az kataklastik dokuludur. Kayacın mineral bileşimi serpantin, kuvars, kromit ve diğer opak minerallerden meydana gelmiştir. Serpantin (~%70-72) ince lifsel krizotil-lizardit türünde ikincil mineral oluşumları şeklindedir. Kuvarslar (~%6-8) damar dolguları şeklinde ikincil mineral oluşumlarıdır. Kromit (~%10) aşınmış-kırıklanmış taneler halindedir. Diğer az orandaki opak mineraller olasılıkla hematittirler (Şekil 4.32). Kayaç kataklastik serpantinleşmiş dünittir.

Şekil 4.32. T4D nolu örneğin çift nikol mikroskop görünümü.

4.6.29. Örnek no: T4F makro inceleme

Örnek kirli beyaz-gri, kahve ve yeşil renk tonlarında ve yönlü – az kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermesi kalsit, dolomit gibi karbonat grubu mineral içerdiğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 3-5 Mohs olup, orta sert kayaç grubuna girmektedir. İnce-orta tane boyutundaki kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmektedir.

4.6.30. Mikro İnceleme

Kayaç kataklastik dokuludur. Yarı mikro taneli yarı taneli ve ikincil damar dolguludur. Kayacın mineral bileşimi manyezit+dolomit, serpantin, kuvars, kromit ve diğer opak minerallerden meydana gelmiştir. Manyezit ve diğer karbonat minerallerinin oranı kayacın yarıdan fazlasını oluşturmaktadır. Serpantin (~%20-22) ince lifsel krizotil-lizardit türünde ikincil mineral oluşumları şeklindedir. Kuvarslar (~%8-10) damar dolguları şeklinde ikincil mineral oluşumlarıdır. Kromit (~%10) oval-iri taneler halindedir. Diğer az orandaki opak mineraller olasılıkla hematittirler (Şekil 4.33). Kayaç kataklastik serpantinleşmiş dünittir.

Şekil 4.33. T4F nolu örneğin çift nikol mikroskop görünümü.

4.6.31. Örnek no: Y1A (Yeşil Opal) makro inceleme

Örnek yeşil, kısmen siyahımsı renk tonlarında, az kataklastik dokuda bir kayaçtır. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 3-5 Mohs olup, orta sert kayaç grubuna girmektedir. İnce-orta tane boyutundaki kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmektedir.

4.6.32. Mikro İnceleme

Kayaç çok az kataklastik ve daha çok ezikli-yönlü dokuludur. Kayacın mineral bileşimi serpantin manyezit, piroksen, kuvars, talk, kromit ve diğer demir oksitlerden meydana gelmiştir. Manyezitler (% 24-26) ikincil küçük taneler halindedir. Serpantinler (%20-22) çoğunlukla krizotil türündedirler ve yönlenmiş lifsel taneler olarak görülürler. Piroksenler kalıntı taneler halindedir ve bastitleşmişlerdir. Kuvarslar (%50-52) ikincil oluşumlardır. Talk (% 5-8) oluşumları sarımsı renkleriyle belirgindirler. Kromitler tane küçülmesine sebep olarak deformasyona maruz kalmışlardır (Şekil 4.34). Kayaç kataklastik serpantinleşmiş dünittir.

Şekil 4.34. Y1A nolu örneğin çift nikol mikroskop görünümü.

4.7. Y1 Nolu Numunenin Raman Spektrumları

Yeşil opal numunesinin Raman Spektrumunda çıkan sonuçlar grafikte açıklanmıştır (Çizelge 3.35). (Kahverengi) 305 ve 1090 cm-1 pikinde Siderit (FeCO₃), (Mavi) 228, 320, 350, 415, 792 cm-1 pikinde Kristobalit ve 463 cm-1 pikinde Kuvars tespit edilmiştir.

Çizelge 4.35. Raman Spektrum sonuçları (Renishaw in Via, 532 nm yeşil lazer)

4.8. F-TIR Spektrumları

Yeşil opal taş ve toz numunelerinin F-TIR Raman Spektrumunda çıkan sonuçlar grafikte açıklanmıştır (Çizelge 3.36). 1089 cm-1 pikinde Si-O-Si, 785 cm-1 pikinde Si-O ve 470 cm-1 pikinde Opal-CT ve Si-O tespit edilmiştir.

Çizelge 4.36. Raman Spektrum sonuçları (ThermoFisher Scientific Nicolet[™] iS[™] 50 FT-IR Spectrometer)

5. DEĞERLİ VE YARI DEĞERLİ TAŞLARI İŞLEME TEKNİKLERİ

Değerli taşlar, nadir bulunması, belirli fiziksel ve kimyasal ayrıcalıkları sebebiyle, özel değerdeki malzemelerdir.Bu ana kriterlere ek olarak taşınabilir olması, kesilebilmesi, parlatılabilmesi, ışık yansıtması, ışık kırması, şekillendirmeye uygun olması, saf olması gibi bazı özelliklerde taşların değerlerini belirleyen, etkileyen ve artıran diğer unsurlardır.Mücevherat sektöründe çeşitli makinalar ile kesme ve işleme teknikleri uygulanmaktadır. Bunlar; faset kesim, kabaşon kesim, oyma teknikleri (cameo, integlio), bilye (boncuk), dilim kesim, tambur ve değerli taşlardan dekoratif süs objeleri uygulamalarıdır.

Doğada bulunan süs taşları işlemeye başlanmadan önce fiziksel ve kimyasal temizliği yapılır. Bu temizleme işleminde ilk önce ham haldeki taş saf su ile yıkanır ve fırçalanır. Fırça ile temizleme işleminde çıkmayan kalıntı ve lekelerhidroklorik asit yardımıyla dikkatlice temizlenir.

Kesim işlemine başlamadan önce işlenecek süs taşının çatlak, damar, dilinim yönü gibi özellikleri dikkate alınır. Bu özellikleri tayin edildikten sonar dilim alma işlemine başlanır.Yeşil opal taşı genellikle bulunduğu bölgede kabaşon formlarda işlenmektedir. Genellikle üzeri bombe altı düz halde işlenmektedir.

Kabaşon kesim, değerli taşlara altının düz, üst kısmının bombeli fasetli ya da fasetsiz yapılan her türlü geometrik ve amorf model işleme tekniğidir.

Faset kesim tekniği ise; mücevher taşlarına ve değerli taşlara uygulanan çeşitli diyagramlar sayesinde belirli açılarda ve ölçülerde yapılan kesim işlemidir. Faset kesimin pırlanta kesim, prenses kesim, zümrüt kesim dışında taşlara uygulanabilen oldukça fazla fancy cut modelleri vardır ve endüstride uygulanmaktadır. Kesim ve parlatma işlemleri aynı makine üzerinde lapların değişmesi suretiyle yapılır. Günümüzde ise faset (geometrik şekil kesimi) kesim öylesine gelişmiştir ki, özellikle lazer teknolojisi sayesinde, çok özel matkap uçları ile 1 mm'nin altında duyarlılıklarda geometrik şekiller kesilmiş ve cilalanmış hallerde mücevher taşları ortaya çıkmaktadır. Oyma teknikleri (carving), form verilmiş değerli ve yarı değerli taşlara elmas aletlerle oyma yapma işlemidir. Cameo tekniği, değerli veya yarı değerli taşlara, elmas uçlar ve el frezesi sayesinde yağ, su ve çeşitli parlatıcı tozlar kullanılarak, motifi pozitif yönde (dışa doğru) kabartma yapma işlemidir. Intaglio tekniği, değerli veya yarı değerli taşlara, elmas uçlar ve el frezesi sayesinde, yağ, su ve çeşitli parlatıcı tozlar kullanılarak, motifi negatif yönde (içe doğru) oyma yapma işlemidir.

Değerli ve yarı değerli taşlar dekoratif amaçlı küre, tablo, heykel gibi çeşitli şekillerde de işlenebilir. (Şahin,F. vd., 2015)

5.1. Şenkaya Yeşil Opalinin İşleme Tasarımı

Tez çalışması doğrultusunda bölgeye yapılan arazi çalışması sonucunda, toplanan yeşil opal örnekleri, mücevher taşı kalitesinde işlenmek üzere öcelikle işlenecek modelin planlanması yapılmıştır. İşlenecek modelin belirlenmesinin ardından, metalle birleşecek ve ürüne dönücek tasarım sürecine başlanmıştır. Öncelikle eskiz çizimler, profesyonel çizimler haline getirildikten sonra, tasarımlara uygun yeşil opaller işlenmeye başlanmıştır.

5.2. Yeşil Opali Faset İşleme Aşamaları

Ham haldeki opallerin temizleme işlemleri yapıldıktan sonra kesim aşaması için hazırlıklara başlanmıştır. Öncelikle kesilecek formun belirlenmesinden sonra dilim kesme aşaması gerçekleştirilmiştir. Büyük dilim kesme makinesinde dilim kesildikten sonra, ince dilim kesme makinesinde küçük parçalar halinde kesilir (Şekil 4.35, 4.36, 4.37).

Şekil 4.35. İnce dilim kesme işlemi.

Şekil 4.36. Aşındırma makinesi ile pre-form işlemi (sağ). Şekil 4.37. Aşındırma makinesi ile pre-form işlemi (sol).

Şekil 4.38. Doplama İşlemi.

İnce kesiti alınan yeşil opale, aşındırma makinesi ile pre-form (ilk form) şekli verilmiştir. Daha sonra istenilen formda ilk aşındırma işlemi yapılmıştır. Facet kesim yapılacak makinenin kendi doplarına (metal çubuk) yapıştırılmak için hazırlanmıştır.

Yapıştırıcı mum (wax) yardımıyla uygulanan doplama işlemi yapılan opalin, faset makinesinde mücevher taşı olarak işlenebilmesi için hazırlığı yapılmıştır (Şekil 4.38). Kesilecek faset formunun diyagramı belirlenmiştir. Facetron makinesinin kesim aparatına bağlanan doplanmış opal, makine üzerindeki açı ve derecelerin ayarlaması sonrasında sırasıyla kesim işlemine tabi tutulmuştur (Şekil 4.39).

MARKS
terpoint
terpoint
terpoint
4
2. 25
le
6, P7
3, 28
6, P7, P8
18
width
MARKS
lion girdle
lion
1105
lion
simile
3
4
2 05 06
4 66 67
+, 00, 07
width
4 TH OLI
ions which are
See also
atterns suitable

96

Şekil 4.39. Faset Kesim Diyagramı.

İlk önce taşa preform kısmı verildikten sonra kemer kısmının kesimi sırasıyla lapların ve derecelerin değiştirilmesi ile yapılmıştır (Şekil 4.40).

Şekil 4.40. Taşın kemer kısmının kesim aşaması.

Taşın kemer bölümünün kesim işlemi tamamlanınca, diğer kesim bölümü için makine üzerindeki açı ve derecelerin ayarlanması yapılmıştır.

Önce kaba olan 360 nolu elmas aşındırıcı disk ile kesime başlanır ve sırasıyla 600-1000-1200 nolu lapların değiştirilmesi ile aşındırma işlemi devam eder (Şekil 4.41). Kesim diyagramına göre açı ve derecelerin ayarlanması ile işlemler yapılmaya devam edilmiştir.

Şekil 4.41. Taşın taç kısmının kesim aşaması.

Şekil 4.42. Aşındırıcı 600 nolu lapta kesim işlemi.

Taşın taç kısmının kesiminden sonra, taşın külah kısmının kesim aşamalarına başlanılmıştır. 360-600-1200 nolu elmas kaplı laplar sırasıyla diyagramdaki açı ve dereceler ayarlanarak, kesim işlemine devam edilmiştir (Şekil 4.42). Kesim işleminin akabinde aynı açı ve deceler kullanılarak parlatma işlemi bakır lap üzerinde elmas tozu kullanılarak yapılmıştır (Şekil 4.43).

Şekil 4.43. Bakır lap üzerinde parlatma aşaması.

Opali tutan dopun, dop transfer aparatı ile ayrılma işlemi yapıldıktan sonra taş yüzeyinde kalan yapıştırıcı mumun (wax) temizliği yapılmıştır (Şekil 4.44, 4.45).

Şekil 4.44. Kesim ve parlatma işlemi tamamlamış yeşil opal. Şekil 4.45. Kesim ve parlatma işlemi tamamlamış yeşil opal.

5.3. Yeşil Opali Carving (oyma) İşleme Aşamaları

Carving (oyma) işleme tekniği ile unik kesim uygulanacak yeşil opalin, öncelikle kesim işleminin ardından preform işlemi yapılmıştır. İşlenecek modele göre kombine aşındırma makinesinde işlemeye başlanıldı (Şekil 4.46). Yapılması karar verilen form düzgün hale gelene dek aşındırma işlemine devam edilmiştir. Modelin dış formu verildikten sonra ince desenlerini vermek için el frezesi (Dremel) ve elmas kaplı uçlar hazırlanmıştır. El frzesi ile elmas kaplı uçlar kullanılarak ince detayları işlenmiştir. Son olarak parlatma işlemi keçe üzerinde seryum oksit kullanılarak yapılmıştır (Şekil 4.47, 4.48).

Şekil 4.46. Aşındırarak pre-form işlemi.

Şekil 4.47. Aşındırarak pre-form işlemi.

Şekil 4.48. Carving (oyma) uygulaması.

5.4. Faset Kesilen Yeşil Opalin Mücevhere Dönüştürülme Süreci

Büyük bir titizlik ve dikkatle faset kesim işlemi yapılan yeşil opal taşının takıya dönüşme süreci öncelikle tasarım aşaması ile başlamaktadır. Nasıl bir ürün yapılacağı taşın kesim aşamasında belirlenmiştir ve taşımız gerdanlığa dönüşmesi planlanmıştır. Bu süreçte eskiz çizimleri yapılmış ve nasıl bir model olacağı belirlenmiştir(Şekil 4.49, 4.50, 4.51).

Faset kesim yapılmış yeşil opal taşının montür ve motif kısmı kuyumcu mumundan, mum işleme teknikleri ile elde hazırlanmıştır. Kalıp mum olarak çıkan modelin dökümü yapılmıştır. Dökümden gelen ana kalıbın tesviye işlemleri yapılmıştır.

İkinci aşama olarak montürü hazırlanan modelin motif kısımlarının yapımına başlanmıştır. Motif kısımları tasarıma uygun olarak düzenlenmiştir. Tesviye aşamasının ardından motiflerin kaynağı yapılmıştır. Zincir kısmı taşlı suyolu olarak tasarlanmıştır ve tasarıma uygun zinciri hazırlanıp kaynağı yapılmıştır. Tesviye ve cila işlemleri yapılıktan sonra ana taşımız olan yeşil opal taşı ve diğer taş yuvalarına zirkon ve zümrüt taşları mıhlanmıştır. Özel tasarım olarak üretilen gerdanlıkta metal olarak altın ve gümüş, değerli taş olarak zümrüt, zirkon ve yeşil opal kullanılmıştır. Montür kısımları siyah rodyum ve diğer kısımları rose altın kaplama yapılmıştır (Şekil 4.52).

Şekil 4.49. Tasarım Aşaması.

Şekil 4.50. Üretim Aşamaları. Şekil 4.51. Üretim Aşamaları.

Şekil 4.52 Gerdanlığa Dönüşen Yeşil Opal.

6. SONUÇ VE ÖNERİLER

Erzurum Şenkaya Turnalı köyü civarındaki gözlenen yeşil opallerin mineralojik ve petrografik özelliklerinin detaylı incelenmesi yapılmıştır. Bu inceleme sonuçlarına göre Şenkaya Turnalı Köyü üst seviyesinden alınan temsili örneklerin, XRF, XRD, ICP-MS, Raman F-TIR analiz çalışmaları yapılmıştır.

Bu analiz sonuçlarına göre, T4-A adlı numune üzerinde yapılan incelemesinde kimyasal içeriklerinde % 74 oranında kuvars ve % 26 oranında kristobalit olduğu belirlenmiştir. T4-B adlı numune üzerinde yapılan XRD incelemesinde kimyasal içeriklerinde % 49 oranında Dolomit ve % 12 oranında Kristobalit ve % 38 oranında Tridimit olduğu belirlenmiştir. T4-C adlı numune üzerinde yapılan XRD incelemesinde kimyasal içeriklerinde % 89 oranında Magnezit ve % 5 oranında Kristobalit, % 5 oranında Tridimit ve % 1 oranında kuvars olduğu belirlenmiştir. T4-D adlı numune üzerinde yapılan XRD incelemesinde % 4 Kristobalit oranında ve %11 oranında Tridimit, % 80 oranında Aktinolit ve % 4 oranında kuvars olduğu belirlenmiştir. T4-E adlı numune üzerinde yapılan XRD incelemesinde kimyasal içeriklerinde % 11 oranında Hematit, %15 oranında Kristobalit, % 12 oranında Kuvars, % 17 oranında Tridimit ve % 44 oranında Zeolit olduğu belirlenmiştir.T4-F adlı numune üzerinde yapılan XRD incelemesinde kimyasal içeriklerinde % 98 oranında Dolomit ve %2 oranında Kuvars olduğu belirlenmiştir. Şenkaya Turnalı Köyü alt seviyesinden alınan temsili örneklerin, XRD analiz sonuçlarına göre, T3-A adlı numune üzerinde yapılan XRD incelemesinde kimyasal içeriklerinde % 15 oranında Kristobalit, % 20 oranında Tridimit, % 3 oranında Kuvars, % 49 oranında Zeolit ve % 13 oranında Magnezit olduğu belirlenmiştir. T3-B adlı numune üzerinde yapılan XRD incelemesinde kimyasal içeriklerinde % 62 oranında Magnezit, %21 oranında Dolomit, % 3 oranında Kristobalit, % 6 Hematit oranında, % 6 oranında Tridimit ve % 2 Kuvars olduğu belirlenmiştir. T3-C adlı numune üzerinde yapılan XRD incelemesinde kimyasal içeriklerinde %19 oranında Kristobalit, %21 oranında Magnezit ve %60 oranında Tridimit olduğu

91

belirlenmiştir. T3-D adlı numune üzerinde yapılan XRD incelemesinde % 8 oranında Kuvars, % 16 oranında Kristobalit, % 26 oranında Tridimit, % 9 Magnezit oranında, % 41 oranında Zeolit olduğu belirlenmiştir. Y1 adlı yeşil opal numunesinin XRD analizinde çıkan bu ana piklerin kristobalitlerden oluştuğu gözlenmiştir. Ayrıca bunun yanında da magnezit ve düşük oranda kuvars piklerine de rastlanmıştır. Buna göre de numunemizin % 50 oranında Kristobalit, %11 oranında kuvars, %27 oranında Tridimit, % 12 oranında Magnezit olduğu belirlenmiştir.

Yapılan XRF incelemeleri sonucunda ise; Yeşil opal (Y1) numunemizin XRF analiz sonucunda, bu çalışmada yapılan XRF incelemelerine bakıldığında numunemizin silis oranının %90'a kadar vardığı görülmektedir. Ancak Cr-Mg gibi değerlerin yüksek olması, bunların serpantinle yan yana bulunmasından ve serpantinin silisleşmesine etki etmiş olduğu tahmin edilmektedir. Çatlakların arasında manyezit dolguların olması ve çıkan değerler opallerin, serpantin ve harzburjitten de etkilendiğini ortaya koymaktadır.

Arazi çalışmaları sırasında toplanan örneklerin, petrografik tanımlamaları yapılarak mineralojik, petrografik, dokusal ve yapısal özelliklerinin belirlenmesi amacıyla yapılan ince kesitlerde, OF-1A adlı numunenin makro incelemesinde örnek, grimsi yeşil renk tonlarında, homojen renk dağılımlı ve beyaz minerallerce benekli görünümlü bir kayaç olduğu, sertliğinin 2-4 Mohs olduğu ve İnceden tane boyutuna sahip kayacta makroskopik olarak ayrışma ikincil karbonatlasma seklinde izlenmistir. Mikro incelemesinde ise kayacın; kataklastik, kısmen yönlü dokulu olduğu, kayacın mineral bileşiminin serpantin, talk, krizotil, antigorit ile kalıntı olivin ve piroksen, kromit ve diğer opak minerallerden meydana geldiği görülmüştür. OF-1B adlı numunenin makro incelemesinde örnek, yeşilden kahveye değişik renk tonlarında, çatlaklı-kırıklı ve kataklastik dokuda bir kayaç olduğu, 2-3 Mohs sertliğinde olduğu ve İnceden orta tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmiştir. Mikro incelemesinde ise kayacın; kataklastik kısmen yönlü dokulu olduğu, kayacın mineral bileşiminde ise serpantin, talk, piroksen, kuvars+albit, kromit ve

92

diğer opak minerallerden meydana gelmiştir. OF-1C adlı numunenin makro incelemesinde örnek, yeşilden kahveye değişik renk tonlarında, çaklaklıkırıklı ve kataklastik dokuda bir kayaç olduğu, 4-6 Mohs sertliğinde olduğu ve İnceden iri tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmiştir. Mikro incelemesinde ise kayacın mineral bileşimi kuvars, manyezit, piroksen, serpantin, kromit ve diğer opak minerallerden meydana geldiği gözlenmiştir. OF-2A adlı numunenin makro incelemesinde, örnek yeşilden siyaha değişik renk tonlarında, mikro çaklaklı-kırıklı ve kataklastik dokuda bir kayaç olduğu, ortalama sertiği 4-6 Mohs, İnce tane boyutuna sahip kayaçta makroskopik izlenememektedir. Mikro incelemesinde ise kayacın, kataklastik çok az yönlü dokulu olduğu, kayacın mineral bileşimi krizotil, antigorit türü serpantin mineralleri, talk, kalıntı olivin ve kromit ve diğer demir oksitlerden meydana geldiği gözlenmiştir. OF-2B adlı numunenin makro incelemesinde örneğin OF2A kodlu örnekle benzer özellikler sunan örnek yeşilden siyaha değişik renk tonlarında, mikro çaklaklı-kırıklı ve kataklastik dokuda bir kayaç olduğu, sertliğinin 4-6 Mohs, İnce tane boyutuna sahip kayaçta makroskopik izlenmemiştir. Mikro incelemesinde ise kayacın kataklastik az yönlü dokulu olduğu kayacın mineral bileşiminin serpantin, talk, olivin-piroksen ve kromit ile diğer opak minerallerden meydana geldiği izlenmiştir. T3-A adlı numunenin makro incelemesinde, kahve renk tonlarında, çaklaklı-kırıklı ve kataklastik dokuda bir kayac olduğu, 5-6 Mohs olup, sert kayac grubuna girdiği, İnceden iri tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrısma demiroksit getirimi seklinde izlenmistir. Mikro incelemesinde ise kayacın kataklastik dokuludur ve bolça mikro çatlaklı olduğu, kayacın mineral bileşiminin manyezit, olivin, kuvars+albit, kromit ve diğer opak minerallerden meydana geldiği, manyezit (~%56-60) ince taneli ve ikincil oluşumlardır. Olivinler (~%15-20) kalıntı-parçalanmış iri taneler halinde ve alteredirler. Kromitler bol aşınmış, yönlenmiş taneler olarak görülürler. Kuvarslar albitlerle beraber, ikincil oluşum-damar dolgu şeklinde ve mikro boyuttaki mineraller olduğu gözlenmiştir. T3-B adlı numunenin makro incelemesinde, yeşil renk tonlarında, çaklaklı-kırıklı ve kataklastik dokuda bir kayaç olduğu, sertliğinin 3-5 Mohs olup, İnceden iri tane boyutuna

değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmiştir. Mikro incelemesinde ise kayacın kataklastik dokuludur ve bolca mikro çatlaklıdır. Kayacın mineral bileşimi serpantin, manyezit, kuvars+albit, kromit ve diğer opak minerallerden meydana geldiği izlemistir. T3-C adlı numunenin makro incelemesinde, bej, gri kahve ve yaygın yeşil renk tonlarında, çaklaklı-kırıklı ve kataklastik dokuda bir kayaç olduğu ve sertiğinin 3-5 Mohs olduğu görülmüştür. Mikro incelemesinde ise kayacın kataklastik dokulu bolca mikro çatlaklı olduğu, kayacın mineral bilesimi serpantin, manyezit, kuvars+albit, kromit ve diğer opak minerallerden meydana geldiği, serpantin (~%28-30) ince lifsel krizotillizardit kristallerinden oluştuğu gözlenmiştir. T3-D adlı numunenin makro incelemesinde, yeşil renk tonlarında, çaklaklı-kırıklı ve kataklastik dokuda bir kayaç olduğu, sertliğinin 3-5 Mohs olup . İnce-orta tane boyutuna sahip kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde olduğu gözlenmiştir. Mikro incelemesinde ise kayacın kataklastik dokuludur ve bolça mikro çatlaklı olduğu, kayacın mineral bileşimi serpantin, manyezit, kuvars+albit, olivin, kromit ve diğer opak minerallerden meydana geldiği izlenmiştir. T4-A adlı numunenin makro incelemesinde, kahve renk tonlarında, kataklastik dokuda ve damarlı görünümlü bir kayaç olduğu sertliğinin 5-6 Mohs olduğu tespit edilmiştir. Mikro incelemesinde ise kayacın kataklastik dokulu ve bol mikro çatlaklı olduğu, kayacın mineral bilesimi serpantin, talk, manyezit, kuvars+albit, kromit ve bol oranda diğer opak minerallerden meydana geldiği izlenmiştir. T4-B1 adlı numunenin makro incelemesinde, kirli beyaz-gri ve yesil renk tonlarında ve kataklastik dokuda bir kayaç olduğu, sertliğinin 3-5 Mohs olup inceden iri tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izleniştir. Mikro incelemesinde ise kayacın kataklastik dokulu ve mikro çatlaklı olduğu, kayacın mineral bileşimi serpantin, manyezit, kuvars+albit, kromit ve diğer opak minerallerden meydana geldiği izlenmiştir. T4-B2 adlı numunenin makro incelemesinde, T4B1 ile benzer makro özelliklerden ancak, daha açık renkli, yeşil-beyaz-bej renk karışımlı ve kataklastik dokuda bir kayaç olduğu, sertiğinin 3-5 Mohs olup, İnceden iri tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma

94

demiroksit getirimi şeklinde izlenmiştir. Mikro incelemesinde ise kayacın kataklastik dokulu ve mikro çatlaklı olduğu, kayacın mineral bileşimi serpantin, manyezit+dolomit, kuvars+albit, kromit, olivin, piroksen ve diğer opak minerallerden meydana geldiği gözlenmiştir. T4-C adlı numunenin makro incelemesinde, kirli beyaz-gri ve yeşil renk tonlarında ve kataklastik dokuda bir kayaç olduğu, sertliğinin 4-5 Mohs olup, inceden iri tane boyutuna değişkenlik gösteren kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde olduğu izlenmiştir. Mikro incelemesinde ise kayacın kataklastik dokulu ve verel olarak ezikli olduğu, kayacın mineral bileşiminin kuvars, kalsit+manyezit, serpantin, piroksen ve krom ile diğer opak minerallerden meydana geldiği izlenmiştir. T4-D adlı numunenin makro incelemesinde, kirli beyaz-gri, kahve ve yeşil renk tonlarında ve yönlü – az kataklastik dokuda bir kayaç olduğu, sertliğinin 3-5 Mohs olup, İnce-orta tane boyutundaki kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde olduğu izlenmiştir. Mikro incelemesinde ise kayacın yönlü- az kataklastik dokulu olduğu, kayacın mineral bileşimi serpantin, kuvars, kromit ve diğer opak minerallerden meydana geldiği izlenmiştir. T4-F adlı numunenin makro incelemesinde, kirli beyaz-gri, kahve ve yeşil renk tonlarında ve yönlü – az kataklastik dokuda bir kayaç olduğu, sertliğinin 3-5 Mohs olup, orta sert kayaç grubuna girmektedir. İnce-orta tane boyutundaki kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde izlenmiştir. Mikro incelemesinde ise kayacın yarı mikro taneli yarı taneli ve ikincil damar dolgulu olduğu, kayacın mineral bileşimi manyezit+dolomit, serpantin, kuvars, kromit ve diğer opak minerallerden meydana geldiği izlenmiştir. Y1 adlı numunenin makro incelemesinde, örneğin yeşil, kısmen siyahımsı renk tonlarında, az kataklastik dokuda bir kayaç olduğu belirlenmiştir. %10'luk HCl asidi ile muamele reaksiyon göstermemesi kalsit, dolomit gibi karbonat grubu mineral içermediğini işaret etmektedir. Kayacın ortalama sertliği mineral bileşimindeki bollukları dikkate alındığında 3-5 Mohs olup, orta sert kayaç grubuna girdiği ve ince-orta tane boyutundaki kayaçta makroskopik olarak ayrışma demiroksit getirimi şeklinde olduğu izlenmiştir. Mikro incelemesinde ise kayacın çok az kataklastik ve daha çok ezikli-yönlü dokulu olduğu, kayacın mineral bileşimi serpantin manyezit,

95
piroksen, kuvars, talk, kromit ve diğer demir oksitlerden meydana geldiği belirlenmiştir. İçindeki manyezitler (%24-26) ikincil küçük taneler halindedir. Serpantinler (%20-22) çoğunlukla krizotil türündedirler ve yönlenmiş lifsel taneler olarak görülürler. Piroksenler kalıntı taneler halindedir ve bastitleşmişlerdir. Kuvarslar (%50-52) ikincil oluşumlardır. Talk (% 5-8) oluşumları sarımsı renkleriyle belirgindirler. Kromitler tane küçülmesine sebep olarak deformasyona maruz kaldığı izlenmiştir.

Y1 nolu yeşil opal numunesinin Raman spektrumlarında 305 ve 1090 cm-1 pikinde Siderit (FeCO₃), (Mavi) 228, 320, 350, 415, 792 cm-1 pikinde Kristobalit ve 463 cm-1 pikinde Kuvars olduğu tespit edilmiştir. Yeşil opal taş ve toz numunelerinin F-TIR Raman Spektrumunda çıkan grafikte ise 1089 cm-1 pikinde Si-O-Si, 785 cm-1 pikinde Si-O ve 470 cm-1 pikinde Opal-CT ve Si-O olduğu tespit edilmiştir.

Turnalı opalinin temel kayasını serpantinler teşkil etmektedir. Bu ofiyolitik birimin yaşı Üst Kretase'dir. Ancak opaller, ayrışmış serpantinli seviyenin silis ve demirli (jaspilitli) üst seviyesinde Eosen veya Tersiyer yaşındaki volkanitler döneminde gelen yeraltından yükselen SiO₂ içerikli suların bu silisli ve demirli zona gelip yerleşmeleri ile Turnalı opallerinin oluşturmuştur. Opaller tamamen üst zonda 3-10 m'lik bir seviyededir (Vıcıl vd., 2004).

Gemoloji biliminin bölümlerinden biri olan, lapidary (süs taşı işlemeciliği) ile yeşil opal numunelerine İstanbul Ticaret Üniversitesi Değerli Taş İşleme Atölyesi'nde çeşitli kesim teknikleri uygulanmıştır.

Bu kesim işlemleri sırasıyla; dilim alma, markalama, ince kesim, kaba aşındırma, ince aşındırma ve parlatma aşamaları uygulanmıştır. Bu işlemler uygulanırken yapılan kesim tekniklerine uygun olarak hareket edilmiştir. Özellikle bu çalışma için ilk defa uygulanan fasetron makinesi ile taşın taç ve kemer bölümüne 8 faset kesim uygulanmıştır. Opal oldukça kırılgan olduğundan bu işlemler oldukça hassas ve dikkatli bir şekilde yapılmıtır. Taşın diğer parçasına aşındırma makinesi, el frezesi, elmas uçlar ile carving (oyma) işlemeleri yapılmıştır.

Yarı değerli Yeşil opal minerali, oldukça hassas ve çok nazikçe işlenmesi gereken bir taştır. Bu yüzden Yaklaşık 3 kg taştan 100 gr işlenmiş taş çıkabilmektedir. Şimdiye kadar faset kesim ve oyma uygulaması bu sebeplerden dolayı uygulanamamıştır. Bu sebeple özellikle faset kesimi ve carving (oyma) işlemeleri büyük bir titizlikle yapılmıştır. Bu işlemenin sebebi kuyum sektöründe kullanım alanlarının geliştirilmesi ve tanıtılması amacıyla faset kesim ve carving (oyma) tekniği uygulanmıştır. Atölyede işlenen yeşil opallerin gerdanlık, kolye ve yüzük tasarımları yapılmıştır. Tasarımları tamamlanan yeşil opallerden bir tanesi kişiye özel ve unik bir gerdanlık tasarım olarak üretimi gerçekleştirilmiştir.

Şenkaya zümrütü olarak da bilinen bu opal türünün kuyumculuk sektörüne tanıtımı ve özellikle mücevher taşı olarak pırlantalı altın ürünlerde kullanım alanlarının geliştirilmesi amaçlanmıştır.

KAYNAKLAR

- Adamia, Sh., Akhvlediani, K.T., Kilasonia, V.M., Nairn, A.E.M., Papava, D. ve Patton, D.K., 1992, Geology of the Republic of Georgia: A rewiev: Int.Geol.Review, 34, no:5, 447-476.
- Akyürek, B., Bingöl, E., Doyuran, S., Korkmazer, B., Metin, S. ve Öztemur, C., 1977, 1/50.000 ölçekli Tortum G 57-a paftasının jeoloji haritası izahnamesi: MTA 1/50.000 ölçekli jeolojik haritalar serisi.
- Altınlı, İ. E., 1969, Olur-Oltu-Narman dolayının jeolojik incelemesi: TPAO Rap. No:449, (yayımlanmamış).
- Andaç, M., Newesely, H., Wilk, H., 1976, Bayat-Afyon ve Karamanca köyü (Şaphane-Kütahya) Opal Zuhurlarının Elektron Mikroskobu ile Etüdü, MTA Derg., Sayı: 87, Ankara.
- Arbas, A., Gök, L., Ateş, M., İmik, M., Kılıç, F., Canpolat, M., ve Aydın, A., 1991, Horasan (Erzurum ili) dolayının jeolojisi:MTA Rap. No:9431, (yayımlanmamış).
- Arni, P., 1939, Tektonische Grundzüge Ostanotoliens und benachbarter Gebite: Veröff. Inst. Lagerstattenforsch. Türkei, Ser. B, 4, 90 s.
- Baydar, O., Erdoğan, B., Akyürek, B., Topçam, A., Kengil, R., Korkmazer, B., Kaynar, A., ve Selim, M., 1969, .Yusufeli-Öğdem-Madenköy-Tortum Gölü ve Ersis arasındaki bölgenin jeolojisi: MTA Rap. No: 5202, (yayımlanmamış).
- Baykal, F., 1949, Of-Rize-Pazar kıyı dağları hakkında: MTA Rap. No: 2198 (yayımlanmamış).

Baykal, F., 1950, Oltu-Göle-Ardahan-Çıldır bölgesinin jeolojik ana çizgisi: MTA Rap No: 1928 (yayımlanmamış).

Bayraktutan, S., 1985, Geochronology and geochemistry of Paleogene volcanic basement of the Narman Basin, E Turkey: Terra Cognita, 6, 168.

Bayraktutan, S., 1994, Narman-Gaziler bölgesinin Tersiyer'deki volkanotektonik evrimi: 47, Türkiye Jeoloji Kurultayı, Bildiri Özleri.

Benda, L., 1971, Grundzüge einer pollenanalytischen Gliederung des Türkischen Jungtertiars: Beih. Geol. Jb., 113.

Bozkuş, C., 1990, Oltu-Narman Tersiyer havzası kuzeydoğusunun (Kömürlü) stratigrafisi: Türkiye Jeoloji Bült., 33, 2, 47-56.

Bozkuş, C., 1992, Olur (Erzurum) yöresinin stratigrafisi: Türkiye Jeoloji Bült., 35, 1, 103-120.

Bulut, Y., Öğün, Y., Dümenci, S.,Bozkuş, C., Taka, M. ve Öner, A., 1989, Tortum-Narman-Oltu-Olur dolayının jeolojisi ve kömür olanakları: MTA Rap. No:8889 (yayımlanmamış).

Chaput, E., 1936, Türkiye'de jeolojik ve jeomorfolojik tetkik seyahatleri (Tercüme : Ali Tanoğlu): İÜ Coğr. Enst. Neş., 11, 326 s.

Demirsü, A., 1955, Çıldır-Posof-Şavşat-Kemalpaşa bölgesinin jeolojik etüdü hakkında memuar: MTA Rap. No: 2377 (yayımlanmamış).

Deveciler, E., 1990 Göle dolayının (Kars ili) jeolojisi: MTA Rap. No: 9040 (yayımlanmamış).

Engin, O., Engin, T., 1964, Hanege Köyü (Erzurum-Oltu) ve civarındaki linyit ihtiva eden sahanın jolojisi hakkında rapor: MTA Rap. No: 3548 (yayımlanmamış).

Erentöz, C., Ketin, İ., 1974, 1/500.000 ölçekli Türkiye jeoloji haritası ve izahnamesi, Kars paftası: MTA yayını.

Gattinger, T. E., 1955, Kuzeydoğu Türkiye'de Çoruh ile Erzurum arasındaki bölgede yapılan jeolojik harita çalışmaları hakkında rapor: MTA Rap. No: 2379 (yayımlanmamış)

Gattinger, T. E., Erentöz, C., Ketin, İ., 1962, 1/500.000 ölçekli Türkiye Jeoloji Haritası İzahnamesi, Trabzon paftası, MTA yayını.

Hakyemez, H.Y., Konak, N., 2001, Tectonic evolution and statigraphy of Eocene basins in the eastermost part of te Pontines, In: Proceeding of the 2. Int. Symp. On the Petroleum Geology and Hydrocarbon potential of the Black Sea Area, 19-25, Turkish Association ao Petroleum Geologist, Spec. Publ. 4.

Hamilton, W.J., 1842, Researches in Asia Minor, Pontus and Armenia: London.

Ketin, İ., 1966, Anadolu'nun tektonik birlikleri: MTA Derg., 66, 23-34.

Konak, N., Hakyemez, H.Y., 2001, Tectonic Units of the easternmost part of the Pontides: Stratigraphical and structural implications, Proceedings of the 2. Int. Symp. On the Petroleum Geology and Hydrocarbon Potential of the blackSea Area, 93-103, Turkish Association of Petroleum Geologist, Spec. Publ. 4.

Konak, N., Hakyemez, Y., Bilgin, R., Bilgiç, T., Ercan, T., Öztürk, Z., Hepşen, N., Mengi, H., Bulut, M., 1992, Tectono-stratigraphic units of Mesozoic age between Erzurum and Artvin (E.Pontids): Int.Symposium on the Geology of the Black Sea Region, Abstracts, 16. Konak, N., Hakyemez, Y., 2008, Türkiye Jeoloji Haritaları, MTA 1:100 000 ölçekli, No:4, Kars-G48 Paftası, Jeoloji Etütleri Dairesi, Ankara

Konak, N., Hakyemez, Y., Bilgin, R., Bilgiç, T., Öztürk, Z., Hepşen, N. ve Ercan, T., 2001, Kuzeydoğu Pontidlerin (Oltu-Olur-Şenkaya-Narman-Uzundere-Yusufeli) Jeolojisi, MTA Rap. No:10489 (yayımlanmamış).

Lahh, E., Romber, H., 1939, Balkaya linyit zuhuratının jeolojik tetkikatı ile mezkur havzada yapılan araştırma işleri ve işletme teklifleri hakkında rapor: MTA Rap. No: 765 (yayımlanmamış).

Lahh, E., 1940, Les geologiques la region d'Erzurum: MTA Mecm., 2/19, Ankara.

Nebert, K., Engin, T., Engin, O., 1964, Oltu (Erzurum) çevresindeki oligosen çökellerinin (Alacalı horizon) jeolojisi hakkında rapor: MTA Rap. No: 3485 (yayımlanmamış).

Nebert, K., 1963b, Henege köyü (Kaza-Oltu, Vilayet Erzurum) bölgesinde yapılan kömür prospeksiyonu sonuçları hakkında rapor: MTA Rap. No: 3344(yayımlanmamış).

Okay, A.İ., 1983, Ağvanis metamorfitleri ve çevre kayaların jeolojisi MTA Derg., 99/100,51-71

Parejas, E., 1940, La tectonique tranversale de la Tukie: Publ. Ins. Geol. Univ., İstanbul, N.S., 8, 244s.

Şengör, A.M.C., Yılmaz, Y., 1981, Tethyan evolution of Tukey: A plate tectonic approach: Tectonophysics, 75,181-241.

Tunç, M., 1992, Olur (Erzurum) yöresindeki ÜstJura-Alt Kretase yaşlı kireçtaşlarının biyostatigrafisi: Türkiye Jeoloji Kurultayı Bült., 35,1, 121-130.

Simandl, G.J., Paradis, S., Diakow, Li., Wojdak, P.J., Hartley, A.J., 1998, Precious Opal in the Whitesail Range, West-Central British Columbia, Geological Fieldwork, 285-293, Canada.

Selim, H.H., 2015, Türkiye'nin Değerli ve Yarı Değerli Mücevher Taşları, İTO yayın no: 2014-4, İstanbul

Şahin, F., Selim, H.H., Güner, E., 2015, Değerli ve Yarı Değerli Mücevher Taşlarında Uygulanan Kesim ve İşleme Teknikleri, Değerli ve Yarı Değerli Taşlar Çalıştayı, Bildiriler Kitabı, 141-147 s., İstanbul, Türkiye.

Vıcıl, M., Çavuşoğlu, I., Celep, O., Alp, I. Ve Yılmaz, A.O., 2004, Opal ve Genel Özellikleri 5. Endüstriyel Hammaddeler Sempozyumu, 13-14 Mayıs, 2004, İzmir, Türkiye. Yahyabeyoğlu, C., Özen, F., Ekinci, İ., Arıkan, M. F., Körüstan, 2006, Taş işleme Aşamaları, Kalsedon dergisi, sayı: 8-9. Türkiye.

Yılmaz, H., 1985, Olur (Erzurum) yöresinin Jeolojisi: KTÜ Yerbilimleri Derg., 4,1-2,23-41.

Yılmaz, H., 1989, Kafkasya'nın tektonik kuşakları ve bu kuşakların kuzeydoğu Türkiye'deki uzantıları: Bir Karşılaştırma, MTA Derg., 109,89-106.

Wedding, H., 1956, Balkaya Linyit zuhuru, vilayet Erzurum, Kaza Oltu, Pafta 31/2: MTA Rap. No: 2947 (yayımlanmamış).

ÖZGEÇMİŞ

Adı Soyadı	: Ferhan ŞAHİN
------------	----------------

Doğum Yeri ve Yılı : İstanbul, 17/06/1981

Medeni Hali : Evli

Yabancı Dili : İngilizce

E-posta : ferhank@hotmail.com

Eğitim Durumu

Lise	: Kartal Li	sesi, 1998				
Lisans Fakültesi, Gemoloj	: Mersin i Bölümü	Üniversitesi,	Takı	Tasarımı	ve	Teknolojisi
Yüksek Lisans	: İstanbul Fen Bilir	Ticaret Üniver nleri Enstitüsü	sitesi			
Anabilim Dalı	: Mücevhei	rat Mühendisl	iği			

Mesleki Deneyim

İstanbul Ticaret Üniversitesi, Değerli Taş Laboratuvar Sorumlusu ve Eğitmeni	2014-2017
İstanbul Kemerburgaz Üniversitesi Kuyumculuk ve Takı Tasarımı Öğr. Gör.	2017
Marmara Üniversitesi, Tasarım ve Teknoloji Fakültesi Öğr. Gör.	2015
Ladyfery Markası Tasarımcısı ve Üreticisi	2015-2017
Değerli Taş ve Değerli Taş İşlemeciliği Danışmalığı	2012-2017

Mücevher İhracatçıları Birliği, Proje Koordinatörlüğü ve Değerli Taş Kesim Atölyesi Eğitmeni ve Koordinatörü	2012-2017
Bostancı Halk Eğitimi Merkezi, Kuyumculuk-Tasarım-Gemoloji Uzman Eğitmeni	2007-2011
Atatürk Üniversitesi GSF, Kuyumculuk-Tasarım-Değerli Taş İşleme Atölyesi Eğitmeni	2006-2007
Renkli Mücevher Taşlarını Gemolojik Cihazlarla Tanımlama Eğitmenliği	2012-2013
Gemoloji Derneği Saymanlık	2011-2013
Kuyumculuk Sektör Dergilerinde Yazarlık	2011-2017
Mücevherat Sektöründe Özel Firmalar Özel Tasarım Mücevher-Mum kalıp tasarımı	2005-2010
Kuyumculuk Mum Malıp Teknikleri Eğitimciliği	2006-1017
Pırlanta ve Renkli taş experliği	2009
Kayra ve Ceylan Kuyumculuk	1998-2015

Yayınları

Ferhan ŞAHİN, H. Haluk SELİM, Elanur GÜNER, 2015. "Characterization of Ankara Çubuk Agate (Saganite)" 12th International Congress for Applied Mineralogy, 10-12 Ağustos 2015, İstanbul.

Elanur GÜNER, H.Haluk SELİM, Ferhan ŞAHİN, 2015. "Gemological Properties of Diaspor (Zultanite) Gemstone in Turkey" 12th International Congress for Applied Mineralogy, 10-12 Ağustos 2015, İstanbul.

H. Haluk SELİM, Ferhan ŞAHİN, Elanur GÜNER, 2015. "Characteristics of Fire Opal in Turkey". 12th International Congress for Applied Mineralogy, 10-12 Ağustos 2015, İstanbul.

Ferhan ŞAHİN, H. Haluk SELİM, Sefer ÖRÇEN, Elanur GÜNER, 2015. "Geçmişten Günümüze Değerli ve Yarı Değerli Mücevher Taşlarının Kabaşon ve Faset Kesim Teknikleri". Lidya 'Altın Ülke' Uluslararası Katılımlı Altın, Kuyumculuk ve Gemoloji Sempozyumu, 09-11 Ekim 2015, Manisa.

Elanur GÜNER, H. Haluk SELİM, Sefer ÖRÇEN, Ferhan ŞAHİN, 2015. "Batı Anadolu'da Yer Alan Yarı Değerli Mücevher Taşları". Lidya 'Altın Ülke' Uluslararası Katılımlı Altın, Kuyumculuk ve Gemoloji Sempozyumu, 09-11 Ekim 2015, Manisa.

Elanur GÜNER, H. Haluk SELİM, Ferhan ŞAHİN, 2015. "Türkiye Çıkarılan Mücevher Taşlarının Kuyumculukta Kullanımı". Değerli ve Yarı Değerli Taş Çalıştayı, 09-10 Aralık 2015, İstanbul.

Ferhan ŞAHİN, H. Haluk SELİM, Elanur GÜNER, 2015. "Değerli ve Yarı Değerli Mücevher Taşlarında Uygulanan Kesim ve İşleme Teknikleri". Değerli ve Yarı Değerli Taş Çalıştayı, 09-10 Aralık 2015, İstanbul.

Ferhan ŞAHİN, H. Haluk SELİM, Aykut GÜÇTEKİN, K. Ömer TAŞ, Elanur GÜNER, 2017. "Şenkaya (Erzurum) Zümrütü olarak bilinen yeşil opalin oluşumu ve sektördeki kullanımı". 70. Jeoloji Kurultayı, 2017, Ankara.