
 
 
 
 
 

 CHAPTER 1 
 
 
 

 
  INTRODUCTION 

 
 
 

  1.1   Motivation 
 
 

In the last decades there has been a considerable growth in the semiconductor 

technology. With the advances in this field, the size of measuring devices are now 

smaller and smaller and their prices are quite low when compared to the past. 

Consequently these devices can now be deployed in various places where their 

small form factor is a major advantage. This gave rise to a big interest to the 

sensor networks and technology. Sensor networks have found application areas 

both in military and civil environments. In multi-sensor networks, multiple 

measurement devices, namely sensors, are employed in an area of interest to 

collect data and share this data with a data fusion center directly or by forwarding 

through their neighbors. Thus, we need to effectively control the sensors and 

interpret the information they send us. Effective utilization of sensors brings some 

other concepts into our consideration: Operational costs and sensor lifetime. 

Operational costs include cost of bandwith, power and computation while sensor 

lifetime is an issue directly related to the power consumption of the device. A 
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powerful method for the effective utilization of sensors is to schedule them in a 

smart way. Sensor scheduling is performed to save the resources and improve the 

overall system performance.  

 
 

       1.2   Problem Statement 
 
 

In this thesis we focus on a target tracking application based on observations 

received from multiple sensors. Our main objective is to estimate the position and 

velocity of our target. While doing this we want to utilize our sensors in an 

effective manner. The kinematics are defined with respect to a 2-dimensional 

Cartesian coordinate system. To estimate the position and velocity of our target 

we use Particle Filtering algorithm. For the sensor  scheduling we propose a very 

simple algorithm by first grouping the sensors in clusters under the leadership of a 

master, and then comparing our position estimate with the position of  each master 

one by one. The slaves associated with the closest master to the position estimate 

will be used to form the observation vector for the next time epoch. 
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                      Figure 1: Basic diagram of sensor distribution. Green points represent active  
                  sensors while red colored ones indicate sleeping sensors.   
 
 
  
 

       1.3   Organisation 
 
 

The thesis is organised as follows. In section 2 we will discuss Bayesian 

estimation techniques and  the Particle filtering algorithm in a detailed manner. 

Our proposed algorithm for target tracking with sensor scheduling will be 

presented in Chapter 3. Finally in Chapter 4  we will provide our concluding 

remarks and future research plans.  

 
 
 
 
 
 
 
 

 3



 
 
 
 
 
 
 
 
 
 

     CHAPTER 2 
 
 
 
     BAYESIAN ESTIMATION TECHNIQUES 
 
 
 
 
       2.1   State-Space Model 

 
 

Many real world problems require estimation of the state of a system that is 

changing in time, using the sequence of noisy measurements from the system. The 

main goal of the Bayesian approach is to estimate the current state of the system 

based on the observations until that time. Generally, the observations are received 

sequentially in time. Thus, the current state estimate is also sequentially updated. 

In the state-space model, the parameters to be estimated form a state vector 

;{ k k }xx ∈= `  with dimension xe . Observation vector ;{ }k kyy ∈= `  with 

dimension  is the noisy measurement of this state vector.  Both the current state 

of  the system and the estimate of this state evolves dynamically in time. In the 

Bayesian framework, all the information about  

ye

0, 1, .........,{ }kx x xx =  can be 

obtained from the joint a posteriori distribution,  
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0, 1, ......, 1, 2, ......,|( k )kx x x y y yp . So our final goal is to recursively estimate this 

joint a posteriori distribution or in some cases its marginals. We denote by 

0 : 0, 1, ,( .... )k kx x xx �  and 1 : 1, 2, ,( .... )k y y yky �  the state sequence, and the 

observations until time step k, respectively. Thus the joint a posteriori distribution 

can be written as . 0 : 1 :( |k kp x y )

 
 

 

x0 x1 x2 x3 xk

y1 y2 y3 yk

Bayesian Estimator

P(x1| y1) P(x2| y1,y2) P(x3| y1,y2,y3) P(xk| y1,…yk)

P(y1| x1) P(y2| x2) P(y3| x3) P(yk| xk)

 
 
       
               Figure 2: General bayesian approach to the state estimation problem  
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           2.2   System Dynamics 
 
 

In order to make inference about the current state of the system we need  two 

models: System model and the observation model. These two models together 

describe the dynamics of our system. System model defines the transition from 

one state to the next in time and is described in [1] as 

 

1( ,k k k k 1)f x vx − −=        (1) 
 
where  : x vk e e xef ℜ ×ℜ →ℜ  is a non-linear function of the state 1kx − , 

 is an independent and identically distributed noise sequence, 1kv − xe  and  are 

the dimensions of the state and noise vectors, respectively. Measurement model 

defines the observation vector as the noisy measurements of states and is 

described in [1] as 

ve

 
 

( , )k k k kh x ny =         (2) 

 

where : x nk e eh ℜ ×ℜ →ℜ ye  is a non-linear function of the state kx ,  is 

an independent and identically distributed noise sequence, and  are the 

dimensions of the observation and noise vectors, respectively.  

kn
ye ne

 

We want to obtain the filtered estimates of kx  based on the set of all available 

measurements 1 : 1, 2, ,( .... )k y y yky =  upto time k. Thus we need to construct the 

pdf . We are assuming that we have the knowledge of initial state 1 :( | )kp x y k

0x , therefore, 0 0 0( | ) ( )p x y p x= . The distribution  can be 

obtained in two stages : prediction and update. 

1 :( | )kp x y k
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If we assume that the posterior distribution  at time step k-1 is 

available, prediction stage can be formulated by  use of Chapman-Kolmogorov 

equation as follows 

1 1 : 1( |k kp x y− )−

 

1 : 1 1 1 1 : 1 1( | ) ( | ) ( | )k k k k k k kp x y p x x p x y dx− − − −= ∫ −   (3) 

 

Stochastic model of the state transition, , is defined by the system 

equation  (1) .  

1( | )k kp x x −

At time step k, a new measurement  becomes available and this new 

information is used to update our prediction by use of Bayes’ rule.  

ky

1 : 1
1 :

1 : 1

( | ) ( | )( | )
( | )

k k k k
k k

k k

p y x p x yp x y
p y y

−

−
=     (4) 

 

where  

 

1 : 1 1 : 1( | ) ( | ) ( | )k k k k k k kp y y p y x p x y dx− = ∫ −    (5) 

 

is the normalizing constant, and depends on the likelihood function defined by the 

measurement model (2). 

 

By the equation (3)  we are creating a prior density , namely the prediction, and by 

the equation (4) updating it with the likelihood function and normalizing with a 

constant. Recursive estimation of posterior density with this method is 

analytically possible only for some special cases of  kf , ,  and . Two 

restrictions for the immediate analytic solution are the linearity of  the models

kh kn 1kv −

kf  

and , and the gaussainity of the process and observation noises,  and .  kh 1kv − kn
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       2.3   Kalman Filter 
 

 

Assuming that the restriction of linearity holds for both the system and 

observation models we can write them as 

 

1 1

(0, )
(0, )

k k k k

k
k k

F

k

x v

Q
R

x

v
n

− −= +

∼
∼
N
N

        (6) 

 

k k k kH x ny = +          (7) 

 

Furthermore, if the process and observation noises are gaussian, Kalman Filter is 

the optimal recursive solution for the Bayesian estimation problem. 

 

Considering the case when 1kv −  and  are zero mean and statistically 

independent, Kalman Filter algorithm is described by the following relationships: 

kn

 

1 1 : 1 1 1 | 1, 1 | 1;( | ) (k k k k k k kPp x y x m− − − − − −= )−N    (8) 

 

1 : 1 | 1, | 1;( | ) ( )k k k k k k kPp x y x m− −= −N     (9) 

 

1 : | , |;( | ) ( )k k k k k kPp x y x m k=N      (10) 

 

where 

 

| 1 1 |k k k k kFm m− −= 1−        (11) 
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| 1 1 1 | 1
T

k k k k k k kP Q F P− − − −= + F

1)

     (12)  

 

| | 1 |(k k k k k k k k kK y Hm m m−= + − −

1

     (13) 

 

| | 1 |k k k k k k k kP P K H P− −= −       (14) 

 

where ,;( P)x mN  is Gaussian density with argument x , mean  and 

covariance . We also assume 

m

P (0, )k kQv ∼N  and  (0, )k kRn ∼N . 

 

| 1
T

k k k k kS H P H R−= k+        (15) 

 

is the covariance of the innovation term and   

 
1

| 1
T

k k k k kK P H S −
−=        (16)  

 

is the Kalman gain.  

 

Kalman Filter [2] is optimal in the sense that it minimizes the estimated error 

covariance under the following conditions: 

 

• Evolution of the state is according to a known linear equation. 

• Observation model is a linear function of the state with an additive zero         

        mean  WGN with known covariance. 

• Initial state is assumed to be a random variable with known mean and   

             covariance.      

• Process and observation noise sequences are mutually uncorrelated. 
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2.4 Grid Based Methods 
 

 

If the state is discrete and finite, grid-based methods can provide a good solution 

as an optimal way to update the filtering density  . Suppose the 

discrete state 

1 :( | )kp x y k

x  consists of  a finite number of distinct discrete states 

{1,2,.........., }xN . For the state 1kx − , let 1 | 1
i
k kω − −  denote the conditional 

probability of each   given the measurements upto time k-1. That is,  

. Then the posterior pdf at k-1 can be 

written as  

1k
ix −

1 1 1 : 1 1 |Pr( | ) i
k k k k k

ix x y ω− − − −= = 1−

)−−

k

k−

 

1 1 : 1 1 | 1 1 1

1

( | ) (
Nx

i
k k k k k k

i

ip x y x xω δ− − − − −

=

=∑    (17) 

 

Then, prediction and filtering equations are derived by substituting (17) into (3) 

and (4), respectively. 

 

1 : 1 | 1

1

( | ) ( )
Nx

i
k k k k k

i

ip x y x xω δ− −

=

= −∑           (18) 

 

1 : |

1

( | ) ( )
Nx

i
k k k k k

i

ip x y x xω δ
=

=∑      (19) 

 

where 
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| 1 1 | 1 1

1
( | )i

k k k k k k

Nx
j i

j
p x xω ω− − −

=
∑� j

−     (20) 

 

| 1
|

| 1

1

( | )

( | )

i
k k k ki

k k

k k k k

i

Nx
j j

j

p y x

p y x

ωω
ω

−

−

=
∑

�        (21) 

         

 

If the state space is continuous the approximate-grid based method can  be 

similarly derived by discretizing the state space into Nx  discrete cell states. 
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   2.5    Extended Kalman Filter  

 
 

Kalman Filter provides an exact solution for linear Gaussian prediction and 

filtering problem. But in practice it is limited by the non-linearity and the non-

gaussianity of the physical world. If the functions (.)kf  and  in equations 

(1) and (2) are non-linear then we need to use another method called Extended 

Kalman Filter (EKF). Method depends on the local linearization of the functions 

(.)kh

(.)kf  and . Our previous assumption of gaussian and uncorrelated process 

and observation noise sequences still holds. EKF is based on the following 

approximations : 

(.)kh

 

 

1 1 : 1 1 1 | 1, 1 | 1;( | ) (k k k k k k kPp x y x m− − − − − −≈ )−N    (22) 

 

1 : 1 | 1, | 1;( | ) ( )k k k k k k kPp x y x m− −≈ −N     (23) 

 

1 : | , |;( | ) ( )k k k k k kPp x y x m k≈N      (24) 

 

where 

 

| 1 1 | 1(k k k k km )f m− −= −

ˆ

       (25) 

 

| 1 1 1 | 1ˆ Tk k k k k k kP Q F P F− − − −= +      (26) 

 

| | 1 |( (k k k k k k k k kK ym m h m−= + − 1))−     (27) 
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| | 1 |ˆk k k k k k k kP P K H P−= − 1−      (28) 

where  and ˆkF ˆkH  are local linearizations of  (.)kf  and . (.)kh
 

 

1| 1

ˆ ( )k

x mk k

kF df x
dx = − −

=        (29) 

 
 
 

| 1

ˆ ( )k

x mk k

kH dh x
dx = −

=        (30) 

 

 

| 1ˆ ˆ Tk k k k kS H P H R−= k+       (31) 

 

 

1| 1 ˆ Tk k k kK P Hk S −
−=        (32) 

 
 
 
 
           2.6    Particle Filter 
 
 

With the background knowledge of Stochastic filtering and Bayesian estimation 

we now focus our attention on the Particle Filtering for sequential state 

estimation. Particle Filtering is a kind of recursive Bayesian filter based on Monte 

Carlo simulation. Main idea is to represent the required posterior density function 

by a set of random samples with associated weights and to compute estimates 
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based on these samples and weights. As the number of particles approaches 

infinity Monte Carlo characterization converges to the true posterior pdf. Higher 

the probability at a specific point, denser  the particles concentrated around that 

point. The particles evolve along the time according to the state equation. By 

randomly sampling the state space we get a number of particles representing the 

evolving pdf. However, since the posterior density model is unknown we choose 

another distribution for the simplicity and call it as importance density.   

 

 

 
 

         Figure 3 : Particle Filter illustration with importance sampling and resampling 
 

 

 

If  0 : , 1}{ i i
k k ix Nsω =  denotes a random measure characterizing the posterior pdf 

 where 0 : 1 :( |kp x y )k 0 : , 1,...... }{ s
i

k ix = N  is the set of support points with 

associated weights , 1,...... }{ k s
i i Nω =  and 0 : , 0,...... }{k j j kx x= =  is the set 
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of all states upto time k. The weights are normalized such that . Then, 

the posterior density at k can be approximated as  

1i
k

i
ω =∑

 

 

0 : 1 : 0 : 0 :

1

( | ) (
Ns

i
k k k k

i

p x y x xω δ
=

≈ −∑ )i
k

)k

    (33) 

 

Validity of this approximation is guaranteed by the strong law of large numbers 

(SLLN), which states that the average of many independent random variables with 

common mean and finite variance converges to their common mean [8]. 

 

 Thus, we have a discrete weighted approximation to the true posterior,  

. Weights are chosen by use of importance density. If the samples 0 : 1 :( |kp x y

0 :
i

kx  were drawn from an importance density  then the weights 

in (33)  are defined to be  

0 : 1 :( |kq x y )k

 

0 : 1 :

0 : 1 :

( |
( |

i
k ki

k i
k k

p x y
q x y

ω ∝
)
)

       (34) 

 

Where  tells us that there is a proportionality rather than the exact equality. The 

constant coefficient in order to turn (34) into a equation can be found by the fact 

that  

∝

1i
k

i
ω =∑ . 

Main idea behind this equation can be summarized as follows: If the weight of a 

sample at a specific suppport point is smaller than it should be, this means at that 

point, the importance density  that we proposed have a smaller value than the (.)q
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real density . Considering the fact that initially we have assigned equal 

weights to all samples this results in an increase in the weight.  

(.)p

 

As stated in [1],  if we choose the importance density such that 

 

0 : 1 : 0 : 1 1 : 0 : 1 1 : 1( | ) ( | , ) ( |k k k k k k kq x y q x x y q x y− −= )−

)k

  (35) 

 

we can obtain samples 0 : 0 : 1 :( |i
k kx q x y∼  by augmenting each of the 

existing samples 10 : 0 : 1 1 : 1( |i
k kx q x )ky− − −∼  with the new state  

 

 

0 : 1 1 :( | , )k k k
i

kx q x x y−∼ . That is, once we have decided the samples for the 

initial state we can update those samples in time by the state evolution equation 

(we are going to define these steps in the SIS algorithm).  If we express  

 

 

0 : 1 :( |kp x y )k k kp x y− − ( | )k kp y x
)

 in terms of  ,  and 

 

0 : 1 1 : 1( | )

1( |k kp x x −

 

0 : 1 : 1 0 : 1 : 1
0 : 1 :

1 : 1

( | , ) ( | )( | )
( | )

k k k k k
k k

k k

p y x y p x yp x y
p y y

− −

−
=  

 

 

  

0 : 1 : 1 0 : 1 1 : 1
0 : 1 1 : 1

1 : 1

( | , ) ( | , ) ( |
( | )

k k k k k k
k k

k k

p y x y p x x y p x y
p y y

− − −
− −

−
= × )  
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1

0 : 1 1 : 1
1 : 1

( | ) ( | ) ( |
( | )

k k k k
k k

k k

p y x p x x p x y
p y y

−
−

−
= × )−

1)−

  (36) 

 

1 0 : 1 1 :( | ) ( | ) ( |k k k k k kp y x p x x p x y− −∝    (37) 

 

 

The weight update equation is obtained by substituting (35) and (37) into (34) as 

 

1 0 : 1 1 :

0 : 1 1 : 0 : 1 1 :

( | ) ( | ) ( | )
( | , ) ( | )

i i i i
k k k k k ki

k i i i
k k k k k

p y x p x x p x y
q x x y q x y

ω − −

− −
∝

1−
 

 

        
1

1
0 : 1 1 :

( | ) ( | )
( | , )

i i i
k k k ki

k i i
k k k

p y x p x x
q x x y

ω −
−

−
=      (38) 

 

If moreover  0 : 1 1 : 1( | , ) ( | , )k k k k kq x x y q x x y− k−= , which is generaly true 

because of the first order markovian characteristics of the system model plus the 

observation model itself , importance density becomes only dependent on 

previous state  1kx −  and the latest observation . The weight update equation 

is then 

ky

 

 

1
1

1

( | ) ( | )
( | , )

i i i
k k k ki i

k k i i
k k k

p y x p x x
q x x y

ω ω −
−

−
∝      (39) 

 

And the posterior filtered density is approximated as 
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1 :

1

( | ) ( )
Ns

i
k k k k

i

p x y x xω δ
=

≈ −∑ i
k      (40) 

 

As , the approximation in (40) approaches the true posterior. sN →∞
SIS algorithm consists of recursive propagation of the weights and support points 

as each measurement is received sequentially.  

 

1 11 1

1
 i=1:Ns

    - Draw  

END

( | , )
   - Calculate  according to (39)

] [ , ]

 

Algorithm 1: Sequential Importance Sampling

[{ , } { , }

.

.
i

i

Ns Nsk k k k k

k k k k
k

i i i i

FOR

FOR

q y

SIS

x x x

x x y

ω

ω ω− −

−

=

∼
 

 
 

            Figure 4: Sequential Importance Sampling Algorithm 
 

 

 

Altough we now have a viable statistical approach for approximating a recursive 

Bayesian filter, the SIS algorithm has a significant practical shortcoming. After a 

few iterations all but one particle will have negligible weight. This situation is 

called degeneracy phenomenon and causes to devote large computational effort to 

update the particles whose contribution to the approximation to  is 

almost zero. It has been shown [3]  that the variance of the importance weights 

can only increase over time and thus it is impossible to avoid degeneracy. 

1 :( | )k kp x y

 

Effects of degeneracy can be reduced by the method of  resampling. Resampling 

step is aimed to eliminate the samples with small importance weights and 
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duplicate the samples with large weights. Resampling usually occurs between two 

sampling steps. In resampling step particles and associated importance weights  

{ , }k k
i ix ω  are replaced by the new samples with equal importance weights 

(
1i

sN
ω = ) where sN  is the total number of samples that we have drawn. 

Resampling schedule can be deterministic or dynamic. In deterministic framework 

resampling is taken at every time step after running the sampling algorithm. In a 

dynamic schedule, a sequence of thresholds are set up and the variance of the 

importance weights are monitored; resampling is taken only if the variance 

exceeds the threshold. 

 

Although the resampling step solves the problem of degeneracy, it introduces 

some other practical problems. It limits the opportunity to parallelize since all the 

particles must be combined. Also since the particles with high weight are 

statistically multiplexed this results in a loss of diversity. This second problem is 

known as sample impoverishment  [4] and is severe especially in the case of small 

process noise. 
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          Figure 5: Resampling Algorithm 
 

 

One of the critical point in the sequential  importance sampling algorithm is the 

choice of proposal density. SLLN guarantees the convergence to the true posterior 

as . However, to obtain satisfactory performance for finite sN →∞ sN , more 

care is required when choosing .  0 : 1 :( |k kq x y )

 

 

Theorem : 

 
To reduce the effects of degeneracy in the SIS algorithm a reasonable choice of 

 is the distribution that minimizes the conditional variance of the 1( | , )k k kq x x y−
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importance weights. This proposal distribution that minimizes 

1var | ,[ ]i i
q k k kx yω −  is   

 

1| , | ,( ) (iopt k k k k k kq x x y p x x y− = 1 )i
−     (41) 

 

Proof  [3]: 

 
Beginning with (39), we have  

 

1
1

1

( | ) ( | )
( | , )

i i i
k k k ki i

k k i i
opt k k k

p y x p x x
q x x y

ω ω −
−

−
=      (42) 

      
1

1
1

( , | )
( | ,

i i
k k ki

k i i
k k k

p x y x
p x x y

ω −
−

−
=

)

1
i

−

      (43) 

 

             (44) 1 ( | )i
k k kp y xω −=

 

where we used the conditional independence of   given ky kx  to go from (42) to 

(43). Thus for the proposal distribution suggested in (41), the weight i
kω  is 

conditionally independent of the actual draw of the current state i
kx , or  

, as stated. There are two problems with the optimal 

proposal distribution. First, it requires the ability to sample from 

, a distribution that may be nonstandard. Second, calculation 

of  

1var | ,[opt
i i

q k k kx yω − =] 0

)1| ,( ik k kp x x y−

i
kω  as specified in (44) requires the evaluation of the integral 

 

1( | ) ( | ) ( | )i
k k k k k k d1

i
kp y x p y x p x x x− = ∫ −     (45) 
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which may be analytically intractable. There are two cases where the use of   

is possible. The first is when 

optq
kx  is from a discrete finite state space. In that case, 

the integral in (45) becomes a sum and sampling from  is 

possible. The second case occurs for dynamic models with additive Gaussian 

noise processes and linear measurement equations. With this model, equation (45) 

can be solved analytically because both terms in the integrand are Gaussian. 

Furthermore, because the measurement process is linear,   is 

also Gaussian and can be sampled.   

1| ,( )ik k kp x x y−

1| ,( )ik k kp x x y−

 

There is one more possibility for the proposal distribution. Although it may be far 

from optimal, a popular and easy-to-implement choice is the so called prior 

distribution. 

 

1| , |( ) (ik k k k kq x x y p x x− = 1)i
−

1

     (46) 

 

Sampling from the prior is often straightforward. For instance, in the case of  

additive noise model , 1( )k k k kf x vx − −= + , sampling from  

amounts to sampling from the noise distribution 

1( | )i
k kp x x −

1( k )p v − . Furthermore, the 

weight update equation assumes even a simpler form, 

 

1 ( |i i i
k k kp y xω ω −= )k        (47)   

 

Although the prior density as proposal distribution does not take the current 

measurement  into account and thus is suboptimal in that sense, we are going 

to use it in our simulations in this thesis.  

ky
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Advanced and more efficient particle filtering techniques like the Auxiliary 

Particle Filtering [9], Marginalized Particle Filtering [10], Unscented Particle 

Filtering [11], [12] and the Rao-Blackwellized Particle Filtering [13] over the 

generic method described above exist but they are not going to be discussed in 

this thesis. 
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       CHAPTER 3 
 
 
 
       PARTICLE FILTER BASED TARGET  TRACKING 
 
 
 
 

3.1   Description of Tracking Scenario 
 

 

Because it provides the ability of  a broad spatial coverage and multiplicity in 

sensing aspect, Sensor Networks are ideally suited for target tracking applications. 

Our problem of sensor scheduling for target tracking in sensor networks is 

illustrated in Figure 3. We don’t have a road constraint and therefore no prior 

knowledge of possible vehicle trajectories can be exploited. 
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                    Figure 6:  Tracking scneario. A vehicle moves through the sensor field. 
                Active cluster is shown in red color.   

 

 

 

 

We consider the task of  tracking a moving vehicle through our two dimensional 

stationary sensor field under surveillance while conserving power by minimizing 

the number of active sensors. Before we run our tracking algorithm there is a set-

up procedure which works as follows : First, we randomly distribute all the 

sensors into our region of interest. Then we again randomly decide which of the 

sensors will be masters. Master sensors are basically responsible for 

communicating with the data fusion center. Remaining sensors will be called 

slaves. Slave sensors report the position of target to their master periodically or if 

there is no target detected, they report this situation as well . After randomly 

distributing both type of sensors, we associate each slave with a master by runing 
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our master-slave association algorithm.  Basic criteria for this process is the 

Cartesian distance between the master and the slave sensors. Each slave is 

associated with the closest master. Another practical real world constraint that we 

take into account at this point is the service capacity of a master node. Maximum  

number of slaves that we can associate with each master is defined. If this limit is 

exceeded for any of the master during the set-up process than the remaining slaves 

are associated with another master. If we summarize our assumptions : 

 

• We track a single target. 

• We know the initial position of this target. 

• Target state to be tracked consists of its two dimensional position and 

velocity. 

• There are randomly distributed M stationary master sensors.  

• There are randomly distributed S stationary slave sensors.  

• Each slave sensor is associated with a master. 

• Maximum number of slaves that can be associated with a master is C.  

• At each time step there is only one active master communicating with the sink. 

• All masters can communicate with each other. 

• Slaves can communicate with their associated master sensor only.  
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Algorithm 3 : Master-Slave  Association 

max
max 

max   

Number of Slave Sensors
Number of Master Sensors
Max Number of slaves that can be 

               associated with a master

Master sensors
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C  

  
  

�
�
�

�
�B        

A        

max
max

max

         

         

te Distance from all slaves to all masters:
FOR i=1:M

FOR j=1:S

END FOR
END FOR

Assign each slave to the most close master:
FOR j=1:S

            - || ||   
     

- 

. .
..

.

D[i : j] Bj

[

i= A -

min
IF capacity of   ith master <= Cmax

Assign slave j to master i
END IF

END FOR

 = 
 

          
     

.

..

d ,i] (D[:, j])
     

 
 

          Figure 7: Master-Slave association algorithm 

 

 

The driving force behind this scenario is the limiting conditions of the physical 

world. Above scenario for instance, can be exactly achieved by throwing the 

sensors away from a plane. Since the average communication time and the power 

consumption of the master sensors will be  much more than the slaves, they can be 

equipped with longer life batteries and higher output transmit power RF 

communication  ICs. That means we can differentiate master and slave sensors  

before the setup process and distribute both type of sensors in a completely 
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random fashion. Number of master sensors and the number of slaves that each 

master can give service is a matter of optimization.  

 

Another advantage of this scenario is the efficient use of bandwith when 

compared with the case each sensor sends the target position individually to the 

sink. By limiting the output transmission power of the slave sensors we can 

overcome the possible interference problem between the neighboring clusters as 

well. The reader may refer to [5] and [7] for a detailed description of different real 

world scenarios. 

 

As mentioned before, our main objective is to accurately track the target while 

minimizing the number of active sensors. Only the active sensors provide 

observation about target position, otherwise they are configured to remain in sleep 

mode to reduce the power consumption. Thus, activation of sensors within a 

specified distance from the current target position estimate is quite important. 

Several different formulations of this problem are possible as target of interest 

moves through our randomly distributed sensors. Our approach at this point is 

simply to compare the current position estimate of the target with the position of 

each master  sensor at every time step and to activate the associated slaves of the 

closest master for the next epoch. Here we are using the assumption that master 

sensors are always active and thus leadership can be immediately transferred from 

one master to another. Every master can  activate its own slaves whenever needed. 

More sophisticated algorithms for this procedure can be implemented [7] such as 

the adaptive sensor activation regions. This problem will not be addressed in this 

thesis.  
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   3.2     Models 
 
 

We are now going to define system and obsevation models given in (1) and (2) in 

a detailed manner. For the 2-dimensional case state vector kx  contains four 

elements: positions in the x and y directions and velocities in the x and y 

directions.  

 

 

1

2

1

2

k

k
k

k

k

x
x
x
x

x
⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥⎣ ⎦

= �
�

⎥         (48) 

 

where 1kx and 2kx  are the position in the x and y directions, respectively and  

1kx�  and 2kx�  are the velocities in x  and y directions, respectively. Kinematics 

for the target can be written as  

 

2
1 1 1 1 1 1 1 1 1

1 1
2 3

k k k k kt tx x x x x− − − −
3t+ Δ + Δ + Δ= � �� ���    (49) 

 

2
2 2 1 2 1 2 1 2 1

1 1
2 3

k k k k kt tx x x x x− − − −
3t+ Δ + Δ + Δ= � �� ���   (50) 

 

tΔ  is the time difference between state transitions or simply the sampling 

frequency of us. The parameters 1kx��  and  2kx��  represents the acceleration in the 

x and y directions, respectively. Finally, 1kx���  and  2kx���  are to represent the 

variations in the acceleration in two directions again. We model the acceleration 

components using random noise. Using (49) and (50), the state equation can be 

written as 
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(51) 

 

where  is used to control the intensity of  the process noise. This equation can 

be expressed as 

q

 
1 2

1k k kF Q 1x x v−= + −        (52) 

 

where  is the state error covariance matrix. The matrix Q  models the 

acceleration terms in the x and y directions. The vector  is a Gaussian random 

vector of zero mean, unit variance and independent components.  The observation 

vector can simply  be linearly related to the satate vector as  

Q
kv

 

k k Ry knx= +         (53) 

 

where R denotes the measurement error covariance matrix. The noise component  

 is an m x 1  vector whose elements are generated by a Gaussian random 

variable of zero mean and unit variance, where m is the number of slave sensors 

used to generate observations at time step k. 

kn

 

We want to emphasize that the reason behind our choice of this linear observation 

model instead of nonlinear range and bearing model is our application itself.  
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Based on this model we use the  particle filtering method to estimate the state of 

the system. As mentioned earlier, we use the prior distribution as the importance 

density.   At time step k, having the samples ikx  with associated weights i
kω , 

the estimate of the state is given by 

 

1

ˆ
Ns

i i
k k

i

kx xω
=

=∑         (54) 

 

If we assume each  i
kω  as the discrete probability masses at corresponding 

support points, then equation (54) can  be thought of as an MMSE Estimator 

which is optimum only for Gaussian densities. 

 

And the estimation error  covariance matrix is given by 

 

1

( )(ˆ ˆ
Ns

i i i
k k k k k k

i

P )Tx x x xω
=

= − −∑      (55) 

 

We resample the particles at each time step instead of using dynamic resampling. 

After resampling, the weights are all initialized to  1 Ns  to overcome the 

degeneracy. 

 

 

 

3.3   Sensor Scheduling 
 
 

In sensor scheduling tasks, we first need to define a cost function. This cost 

function should   consider the combination of the following criteria depending on 

the physical situations and the specific problem at hand. 
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• Cost of bandwith 

• Cost of sensor usage 

• Cost of power 

• Cost of accuracy of measurement 

 

There may be several different costs for different applications. But the ones  that 

we mentioned above are the most common ones. In this thesis when scheduling 

our sensors we only  considered the cost of power assuming that power  

consumption is the most important constraint in sensor network applications. 

 

Defining 

�M  Number of master sensors  

�S   Number of slave sensors 

 

�A {Ai; i = 1,....,M }  set of master sensors in our region of interest 

�B {Bi; i = 1,....,S }    set of slave sensors in our region of interest 

 

We can define  the cost function at time step k  for a master sensor as the cartesian 

distance between the position estimate of target and the position of that master  

 

ˆ|| ||ik kC x −� Ai         (56) 

 

and finally our scheduling decision is that we choose the master sensor for which 

the cost function is minimized. 

 

opt =A
i

minarg  iC k          (57) 
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Then, the corresponding master sensor takes the leadership and activates its 

associated slaves immediately. For the next time step we use the observation 

vector obtained by this new sensor set. 

 

Proposed tehnique is quite novel and applicable for only a single target. 

Sophisticated methods for tracking multiple maneuvering targets like Probability 

Hypothesis Density  Filter [14] , [15] can be also examined.  

 

3.4 Simulations and Results 
 
 

In this section, we will discuss an example of target tracking using our proposed 

sensor scheduling algorithm. For the simulations the trajectory for a target is 

generated in a 2-dimensional cartesian coordinate system. Observations are made 

using sensor scheduling and the particle filtering algorithm is used for target 

tracking. Throughout the simulations Matlab 7.0 was used.  

 

Initially 64 master sensors and 256 slave sensors are distributed randomly in the 

area x = (-8000,8000)  and  y = (-8000,8000). Then, our simple clustering 

algorithm is applied. Maximum number of slave that a master can give service is 

assumed to be 7.  

Sampling period, , was choosen to be 2 seconds. The process noise intensity 

factor  in (51) was taken as 0.01 and  the initial position of target was taken to  

tΔ
q

be  (x,y) = (10,0). The measurement error covariance matrix in (53) was assumed 

to be 4 by 4 identity matrix noting that the accuracy of position measurements 

actually defines it. The state covariance matrix in   (51) is defined as 
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2.67    0           2      0 
0          2.67     0      2 
2          0          2      0
0          0          0      2

Q
⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

⎥
⎥       (58) 

 

The last one directly comes from  tΔ = 2. For the particle filter algorithm we used 

a total of 200 particles and 1000 time steps.  
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                                 Figure 8 : True trajectory and the estimated trajectory 
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                          Figure 9 : Slave Positions 
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                        Figure 10: Activated sensors throughout the track. Each color indicates a     
   cluster.             
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              Figure 11 : rms position errors 
 
 
 
 
 
 
 
 
 
 
 
 

 37



 
 
 
 

       
 
 
 
     CHAPTER 4 
 
 
 
      CONCLUSION AND REMARKS 

 
 
 

In this thesis we have presented a recursive Bayesian formulation for target 

tracking and proposed a simple sensor scheduling technique in order to reduce 

power consumption of the system. We discussed in detail the Bayesian approach 

to target tracking. In particular, we have formulated the target tracking problem 

using state-space equations. Tracking was considered as a sequential estimation 

problem and particle filtering algorithm was implemented. In order to schedule 

the sensors in our region of interest we have compared the position estimate of our 

target and the master sensors. Approach can be named “Closest Master Activate” 

since the closest master takes the leadership and its associated slaves were used to 

obtain observations for the next time step. We observed that our scheduling 

results are quite satisfactory. Over all power consumption of the system is 

extremely low when compared to the case where no scheduling is done. 
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