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ABSTRACT 
 

AN INDUSTRIAL APPLICATION 

USING BLACKBOARD ARCHITECTURE 

 

KEREM BURAK TÜNAY 

 

 This thesis implements control architecture for goal-driven blackboard systems. The 

architecture is based on searching a general goal tree by diminishing into sub-goal trees. The 

aim is to develop a problem solving architecture in the AI space via blackboard system. The 

basic elements of the architecture are goals, policies, strategies, facts, methods, and 

knowledge sources. The basic control loop employs a bidding mechanism to determine the 

knowledge source to be executed at the current cycle. A policy is a local scheduling criterion 

which guides to bidding process and it indicates which of the attributes of the knowledge 

sources are relevant in this process. A strategy is a global scheduling criteria such as depth-

first, breadth-first etc. A method is a partially complete general goal tree structure 

representing high level knowledge on how to solve a problem. The architecture employs a 

control blackboard, and separate knowledge sources for the control problem and for 

representing the domain knowledge.  

 

A production planning application is developed using this architecture. Both C++ and 

ABAP languages were used to implement this application. 

 

Keywords: Blackboard systems, artificial intelligence, AI search algorithms, collaborating 

software, C++, SAP, ABAP, production planning. 
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ÖZET 
 

KARATAHTA MİMARİSİ İÇİN  
ENDÜSTRİYEL UYGULAMA 

 
KEREM BURAK TÜNAY 

  

Bu tez amaç-güdümlü karatahta sistemleri için bir kontrol mimarisinin uygulamasını 

içermektedir. Mimari, genel amaç ağaçlarının alt-amaç ağaçlarına indirgenerek taranmasına 

dayanmaktadır. Tezin amacı, karatahta sistemini kullanarak yapay zeka alanında problem 

çözme mimarisi geliştirmektir. Amaçlar, genkurallar, stratejiler, yöntemler ve bilgi kaynakları 

mimarinin temel elemanlarını oluşturmaktadırlar. Ana kontrol döngüsü, o andaki çevrimde 

işlenecek bilgi kaynağını belirlemek için bir değerleme mekanizması kullanmaktadır. Burada 

genkurallar bilgi kaynaklarının hangi niteliklerinin kullanılacağını belirleyen lokal zamanlama 

kriterleridir. Öte yandan, strateji, önce-derine, önce-enine gibi global zamanlama kriteridir. 

Yöntemler ise, bir problemi nasıl çözmek gerektiği üzerine varolan yüksek düzeyde iki bilgiyi 

tanımlayan kısmen tamamlanmış genel amaç ağacı yapısıdır. Mimari, ayrı kontrol ve domen 

karatahtaları kullanır. Kontrol problemi ve domen ile ilgili bilgiler ayrı bilgi kaynakları ile 

temsil edilir.  

 

Bu mimari kullanılarak bir üretim planlaması uygulaması geliştirilmiştir. Uygulamayı 

geliştirmek için, C++ ve ABAP dilleri birlikte kullanılmıştır. 

 

Keywords : Karatahta sistemleri, yapay zeka, yapay zeka tarama algoritmaları, işbirliği 

yazılımları, C++, SAP, ABAP, üretim planlaması. 
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1. INTRODUCTION 
 

A blackboard system is a way of combining a set of diverse software modules to solve a 

problem using AI technique. In this thesis, an industrial production planning application will 

be proposed by using blackboard control architecture. The architecture is based on searching a 

general goal tree by diminishing into sub-goal trees. The objective is to improve the 

performance of this AI search of the blackboard systems by using real time experiences as 

high level knowledge sources. 

 

The basic elements of the architecture are goals, policies, strategies, facts, methods, a 

basic control loop and knowledge sources. 

 

The high level knowledge can be statistical data about a problem, some imitations of 

human experts and so on. We will define this high level knowledge in two leveled 

hierarchical way: methods and facts. While methods define a partially complete general goal 

tree structure how to solve the problem, facts have a higher priority that orders a way to 

execute in the search space. Both of them improve the performance of the search action in a 

blackboard system.   

 

The basic control loop employs a bidding mechanism to determine the knowledge source 

to be executed at the current cycle. A policy is a local scheduling criterion which guides to 

bidding process and it indicates which of the attributes of the knowledge sources are relevant 

in this process. A strategy is a global scheduling criteria such as depth-first, breadth-first etc. 

  

The next chapter discusses blackboard systems in detail. Then the proposed architecture is 

introduced in the terms of definition. After that, the implementation of the system in C++ will 

be explained in detail. The whole system flow chart and the control loop flowchart will be 

given to show how architecture works.  Also, a flight ticketing example will be given to show 

how to use the system to solve problems and we will examine a trace of all the parts of the 

implemented program. As a second example we will give a routing planning model about a 

plastic injection machine in a workshop to show the power of the architecture. The last 

chapter gives an evaluation of the approach. 
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2. BLACKBOARD SYSTEMS 
 

In attempting to solve a problem, a blackboard system employing an artificial intelligence 

(AI) technique typically performs a series of problem solving actions [1]. This process usually 

involves a search in the space of partial solutions, and each action extends the current partial 

solution. Then, the system collaborates these solutions to achieve a flexible, brainstorming 

style of problem solving exhibited by a group of diverse human experts working together to 

address problems that no single expert could solve alone. 

 

Problem solving begins when the problem and initial data are written onto the blackboard. 

The specialists watch the blackboard, looking for an opportunity to apply their expertise to the 

developing solution. When a specialist finds sufficient information to make a contribution, 

she records the contribution on the blackboard, hopefully enabling other specialists to apply 

their expertise. This process of adding contributions to the blackboard continues until the 

problem has been solved. 

 

In this point we have a several issues into consideration. The first issue is the direction of 

the search, which is also called the search strategy. There are two basic search strategy, goal-

driven and data-driven search strategies. In this thesis we are going to use goal-driven search 

strategy that begins with the goal to be solved, then finds rules or moves that could be used to 

generate this goal and determine what conditions must be true to use them. These conditions 

become the new goals, sub-goals, for the search. This process continues, working backward 

through successive sub-goals, hopefully until a path is generated that leads back to the facts of 

the problem. This is why; this strategy is also called backward chaining [2].  In data-driven 

search, sometimes called forward chaining, the problem solver begins with the given facts and 

a set of legal moves or rules for changing the state. Search proceeds by applying rules to facts 

to produce new facts. This process continues until it generates a path that satisfies the goal 

condition. 

 

At each point in the problem solving process, more than one potential action may be 

possible. Then the second issue is to decide which of its potential actions the AI system 

should perform. This issue is called the control problem. To solve this problem, a control 

structure decides which action will be performed and the choice of this control structure is 

playing an urgent role on success and the efficiency of the system.  
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The third issue is related to the distribution of the problem solving capability among 

several problem-solving agents. In that sense, we have centralized systems on one hand - such 

as multi-agent systems - and distributed systems on the other.  

 

In this thesis, blackboard architecture for the goal-driven strategy that uses the control 

architecture paradigm will be implemented. The basic elements of the architecture are goals, 

policies, strategies, methods, knowledge sources (KS’s) and facts. Also the architecture 

employs a basic control loop that uses a bidding mechanism in choosing the knowledge 

source to be executed at the current cycle. 

 
2.1. A BLACKBOARD SYSTEM IN DETAIL 

 

A blackboard system is a way of combining a set of diverse software modules is to 

connect them according to their data-flow requirements [3]. In Figure 2-1, you can see a 

combination of five modules that shows the data-flow. Also this is called directly connected 

graph. 

 

When appropriate, the modules can appear multiple times in the communication graph, 

but the connections are predetermined and direct. This approach can work well when both the 

module set and the appropriate communications among modules are static. When the specific 

modules are subject to change and/or when the ordering of modules cannot be determined 

until specific data values become known at execution time, the inflexibility of direct 

interaction becomes unwieldy. From a system-building perspective, direct interaction 

promotes the use of private communication protocols between modules. 

 

Another approach is to use indirect and anonymous communication among modules via an 

intermediary, such as a blackboard data repository. In Figure 2-2 you can see how can a data 

repository can be controlled by a control intermediary. In this approach, all processing paths 

are possible, and the choice among paths can be made dynamically by a separate “moderator” 

mechanism that selects among the possible paths. The information placed on the blackboard is 

public, available to all modules, control mechanisms, newly added modules, and monitoring 

and debugging tools. Indirection reduces the number of communication interfaces that must 

be supported among highly collaborating modules. 
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Figure 2-1 : Directly Connected Graph 
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Figure 2-2 : Anonymously Interacting Modules 
 

 

A blackboard system consists of three main components: 

• Knowledge sources (KSs) are independent computational modules that together 

contain the expertise needed to solve the problem. KSs can be widely diverse in their 

internal representation and computational techniques and are anonymous in that they 

do not interact directly with one another or know what other specific KSs are present 

in the system. 

A 
 
 
 
 
Blackboard 

B 
C 

D 
E 

control 
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• The blackboard is a global data repository containing input data, partial solutions, 

and other data that are in various problem-solving states. All KS interaction is via 

changes made on the blackboard. 

• A control component that makes runtime decisions about the course of problem 

solving and the expenditure of problem-solving resources. The control component is 

separate from the individual KSs. 

 

Figure 2-3 shows these three main components of the blackboard system: 

 

Knowledge 
Sources 

Blackboard 

Control 
Shell

Figure 2-3 : Blackboard System Components 
 

2.2. KNOWLEDGE SOURCES 
 

Blackboard systems use a functional modularization of expertise. Each KS is a specialist 

at solving certain aspects of the overall application and is separate and independent of all 

other KSs. A KS does not require other KSs in making its contribution. Once it finds the 

information it needs on the blackboard, it can proceed without any assistance from other KSs. 

Furthermore, without making changes to any other KSs, additional KSs can be added to the 

blackboard system, poorer performing KSs can be enhanced, and inappropriate KSs can be 

removed. KSs perform relatively large computations, reflecting the processing required 

implementing their specialty.  

 

A KS needs no knowledge of the expertise, or even the existence, of the others; however, 

it must be able to understand the state of the problem-solving process and the representation 

of relevant information on the blackboard. Each KS knows the conditions under which it can 

contribute to the solution and, at appropriate times, attempts to contribute information toward 
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solving the problem. This knowledge that each KS has about when it might be able to 

contribute to the problem-solving process is known as a triggering condition.  

 

At an abstract level, a blackboard system may appear to be very similar to a rule-based 

system: the blackboard system’s blackboard and the rule-based system’s working memory; 

the blackboard system’s KSs and the rule-based system’s production rules; event-based 

triggering of KSs and of rules; anonymous interaction of KSs and rules; and so on. 

Historically and operationally, however, blackboard-systems and rule-based systems are very 

different, especially in the size and scope of rules versus the size and complexity of KSs and 

in the relatively small number of large-grained control decisions that are made by a 

blackboard system versus the large number of fine-grained conflict-resolution decisions made 

by a rule-based system. With regard to knowledge granularity, KS s are substantially larger 

and more complex than each isomorphic rule in an expert system. While expert systems work 

by firing a rule in response to stimuli, a blackboard system works by executing an entire KS 

in response to an event. Each KS can be arbitrarily complex and internally different from one 

another. In particular, a single KS in a blackboard system could be implemented as a complete 

rule-based system [4].  

 

KSs are not the active “agents” in a blackboard system. Instead, KS activations are the 

active entities competing for computational resources. A KS activation is the combination of 

the KS knowledge and a specific triggering context. The distinction between KSs and KS 

activations is important in applications where numerous events occur that trigger the same 

KS. In such cases, control decisions involve choosing among particular applications of the 

same KS knowledge, rather than among different KSs. Taking this distinction one step 

further, KSs are static repositories of knowledge while KS activations are the active “agents” 

that are created in response to each triggering context. These KS-activation “agents” remain 

alive only until the KS activation is executed or is canceled prior to execution. 

 

2.3. THE BLACKBOARD 
 
The blackboard component of a blackboard system serves as: 

• a community memory of raw input data; partial solutions, alternatives, and final 

solutions; and control information 

• a communication medium and buffer 

• a KS trigger mechanism 
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Blackboard applications tend to have elaborate blackboard structures, with multiple levels 

of abstraction. Although this organization of blackboard data is often useful to the developer 

and user of the system, the principal reason is to make locating appropriate information on the 

blackboard more efficient. If the problem being solved is complex and the number of 

contributions placed on the blackboard becomes large, quickly locating pertinent information 

becomes a problem. A KS execution should not have to scan the entire blackboard to see if 

appropriate items have been placed on the blackboard by another KS execution. 

 

One solution is to subdivide the blackboard into regions, each corresponding to a 

particular kind of information [5]. This approach is commonly used in blackboard systems, 

where different levels, planes, or multiple blackboards are used to group related objects. 

Similarly, ordering metrics can be used within each region, to organize information 

numerically, alphabetically, or by relevance. Advanced blackboard-system frameworks 

provide rich positional metrics for efficiently locating blackboard objects of interest . 

 

Efficient retrieval is needed to support the use of the blackboard as a group memory for 

contributions generated by earlier KS executions. An important characteristic of the 

blackboard approach is the ability to integrate contributions for which relationships would be 

difficult to specify by the KS writer in advance. For example, a KS working on one aspect of 

the problem may put a contribution on the blackboard that does not initially seem relevant or 

immediately interesting to any other KS. Only until much later, when substantial work on 

other aspects of the problem has been performed, is there enough context to realize the value 

of the early contribution. By retaining these contributions on the blackboard, the system can 

save the results of these early problem-solving efforts, avoiding recomputing them later. 

Additionally, the blackboard control component can notice when promising contributions 

placed on the blackboard remain unused by other KSs and possibly choose to focus problem-

solving activity on understanding why they did not fit with other contributions.  

 

Typically, locating previously generated contributions of interest is dependent upon the 

context of other information being used by a KS. This makes a simple pattern-matching 

specification of the specific contributions difficult and computationally inefficient. Many 

contributions placed on the blackboard may never prove useful, and maintaining the state of 

numerous, partially completed patterns is expensive. Therefore, an important characteristic of 
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blackboard systems is enabling a KS to efficiently inspect the blackboard to see if relevant 

information is present. 

 

2.4. CONTROL COMPONENT 
 
In a blackboard system, a separate control mechanism, sometimes called the control shell, 

directs the problem-solving process by allowing KSs to respond opportunistically to changes 

made to the blackboard. A blackboard system uses an incremental reasoning style: the 

solution to the problem is built one step at a time. 

 

In a classic blackboard-system control approach, the currently executing KS activation 

generates events as it makes changes on the blackboard. Figure 2-4 shows this generation of 

changing events. These events are maintained until the executing KS activation is completed. 

At that point, the control shell uses the events to trigger and potentially activate KSs. The KS 

activations are ranked, and the most appropriate KS activation is selected for execution. For 

continuous applications, this KS-execution cycle continues indefinitely. For single solution 

based applications, this cycle continues until the problem is solved. 

 

It is important that the control component in a blackboard system is able to make its 

selection among pending KS activations without possessing the detailed expertise of the 

individual KSs. Without such a separation, the modularity and independence of KSs would be 

lost. If specific knowledge of all the KSs had to be included within the control shell, it would 

have to be modified every time a KS was added or removed from the system. On the other 

hand, we do not want KSs to be making autonomous control decisions—in a blackboard 

system, control decisions are made by the control shell. In that point, facts and policies help 

us. 

 

The solution is to separate control knowledge into generic, overall control knowledge 

contained in the control shell and detailed KS-specific control knowledge packaged with each 

KS. Then, whenever the control shell needs KS-specific control information, it asks the 

individual KSs for these estimates on how the KS will behave. This separation of control 

knowledge is shown in Figure 2-5. When a KS is triggered, the control shell passes the 

triggering context to the KS, which uses its KS-specific control knowledge to estimate factors 

such as the quality, importance, cost, and likelihood of successfully making potential 
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contributions. This estimate is determined without actually performing the work to compute 

the contributions. 

Best 
KSA 

New 
KSA 

 
 
 
 
 

Blackboard 

Control Shell 

 
 

Pending 
KSAs 

events

Executing KSA 

KS

 
Figure 2-4 : Classic Blackboard System Cycle 

 

Instead, each KS generates estimates of the contributions that would be generated by using 

fast, low-cost, approximations developed by the KS writer. These estimates are of the form, 

“If this activation is selected for execution, I estimate it will generate contributions of this 

type, with these qualities, while expending these resources.” The KS returns these estimates to 

the control shell which uses them in deciding how to proceed. 

 

Estimate 

Context 
 

Control 
Shell 

 
 

Control 
Estimator 

 
 

Knowledge 
Source 

 
Figure 2-5 : Separation (Encapsulation) of Control Knowledge 
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2.5. BLACKBOARD SYSTEMS AS COLLABORATING SOFTWARE 
 
As collaborating software, blackboard systems have six key challenges to be effective in 

problem solving [2]: 

• Representation: getting software modules to understand one another 

• Awareness: making modules aware when something relevant to them occurs 

• Investigation: helping modules to quickly find information related to their current 

activities 

•  Interaction: creating modules that are able to use the concurrent work of others 

while working on a shared task 

• Integration: combining results produced by other modules  

• Coordination: getting modules to focus their activities on the right things at the 

right time. 

 

Now let us discuss these challenges: 

 

2.5.1. REPRESENTATION 
 

The structure of information on the blackboard is at the center of the blackboard-system 

approach. In principle, the blackboard representation should not be based on any specific set 

of KSs. Instead, the design of the blackboard representation should stem directly from the 

characteristics of the application and the goal of allowing any potential KS to make 

contributions toward a solution. In practice, however, the design of the blackboard 

representations are not fully separated from a general sense of the kind of KSs that will be 

used in the application, and experience has demonstrated that choices made in the blackboard 

representation can have a major effect on system performance and complexity. 

 

The KSs in a blackboard application must be able to correctly interpret the information 

recorded on the blackboard by other KSs. Additionally; the control shell may also need to 

understand aspects of blackboard data in order to make strategic focus-of-attention decisions. 

However, all aspects of blackboard data do not need to be understandable by all KSs. Many 

KSs only use data from one or two blackboard levels as input and only make modifications at 

a single blackboard level. Similarly, KSs may only operate on a few classes of blackboard 

objects. In a very practical sense, this characteristic means that portions of the blackboard 

may be relevant to only a few KSs and could be specialized to the interaction requirements 
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among those KSs. Yet, private jargon shared by only a few KSs limits the flexibility of 

applying other KSs on that information in the future. In practice, there is a trade-off between 

the representational expressiveness of a specialized representation shared by only a few KSs 

and a fully general representation understood by all KSs. Determining the proper balance 

between a general and specialized representation is an important aspect of blackboard-

application engineering. 

 

In the basic blackboard-system control cycle, only a single KS activation is executing at 

any time. This KS execution runs to completion or termination by the control shell before 

another KS execution begins. To further simplify the architecture in this basic control cycle, 

only the executing KS is allowed to make changes to the blackboard while it is executing. 

This requirement eliminates the need to incorporate complex blackboard locking or 

transaction mechanisms that would slow down blackboard operations. 

 
2.5.2. AWARENESS 

 
In a blackboard application, KSs are triggered in response to specific types of blackboard 

events that indicate that the KS may be able to contribute to problem solving. Rather than 

having KSs continually poll the blackboard, the control shell is told about the kind of events 

in which each KS is interested. This is typically called registering the KS. The control shell 

maintains this triggering information and directly considers the KS for activation whenever 

that kind of event occurs. To be efficient, this triggering information is provided to the low-

level blackboard repository accessor routines which only notify the control shell of events for 

which any KS is currently registered. KS triggering can be made highly efficient when the 

registration involves only simple, disjunctive trigger events. 

 
2.5.3. INVESTIGATION  

 
When a KS is triggered by one or more events, it must often look on the blackboard for 

other information that is related to these events. This search for associated data involves: 1) 

computing approximate attribute values for the kind of blackboard objects that are relevant to 

computations stemming from these triggering events, and then 2) finding those objects on the 

blackboard. For example, a KS that is triggered by the sudden movement of an unfriendly unit 

toward a friendly position might look on the blackboard for related movement of other 

unfriendly units that could indicate the initiation of an orchestrated threat. Units of interest 

would be unfriendly, within some radius of the friendly position, and may have recently 
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changed their movements. The identity names of these units of interest are not known, nor are 

they linked to the unit whose change triggered the event or to units at the friendly position. 

The units of interest can only be determined by the approximate values of some of their 

attributes. The importance of such proximity-based associative retrieval to locate relevant 

objects that have been placed on the blackboard by other KSs is often overlooked in casual 

discussions of blackboard systems. 

 

In Figure 2-6, most KS executions in a blackboard system involve the following steps: 

1. The control shell is notified of an event of interest to the KS 

2. This triggering context is used to activate the KS 

3. The KS uses the triggering context to determine the ranges of attribute values that 

are relevant to the triggering context and looks on the blackboard to see what 

additional blackboard objects have attributes within those ranges 

4. The KS uses the retrieved objects and the triggering context information to perform 

its computations 

5. The results of this computation are written onto the blackboard 

 

In this sequence, step 3 is the step associated with investigation. 

 

Trigger Context BB Component 

Find associated data BLACKBOARD 

 
Figure 2-6 : KS Activities 
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2.5.4. INTERACTION 
 

Blackboard systems prohibit direct interaction among modules, as all communication is 

done via the blackboard. Traditional blackboard systems have only a single control thread and 

execute only one KS activation at a time; once execution is started, the KS activation runs to 

completion or until it is aborted by the control shell. This means that all interaction among KS 

activations is serial, is unidirectional from earlier to later executions, can have unbounded 

latency, and is indirect via the blackboard. This severe restriction on interaction greatly 

simplifies the development of blackboard applications, but in certain situations this restriction 

can be a significant collaborating-software limitation [6]. 

 

Assume that KS A and B both are interested in the same event and can both do some 

initial work without interacting with one another. However, the initial work of A is needed for 

B to complete its work and vice versa. In this situation, the blackboard-application designer 

must artificially split A into two KSs, APRE and APOST, and similarly, B is split into BPRE 

and BPOST. Once APRE completes, BPOST can begin and, similarly, once BPRE completes, 

APOST can begin. If a lot of interaction is required, this KS-splitting approach can result in a 

large number of artificial KS fragments. Alternatively, the same iterative form of interaction 

can be achieved by creating KSs that are able to jump into later computations, based on the 

information present on the blackboard. In this case, multiple KS executions are still required 

to support the serial interaction, but the number of KSs present in the system does not need to 

be increased. 

 

Parallel and distributed blackboard-system extensions of the classic, single-threaded 

blackboard architecture allow true concurrent KS executions, and this raises another 

important interaction issue. If the KSs are to remain anonymous and indirect in their 

interaction, then all interaction must still occur via changes to the blackboard. Executing KSs 

must be able to notice and respond to changes made to the blackboard during their execution 

to support such indirect interaction. We could also extend the KS model to allow for direct 

communication among co-executing KS activations. However, this is a major departure from 

the blackboard-system model, and it is problematic because of the uncertainty about which 

KS activations will be executing concurrently at any moment. 
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2.5.5. INTEGRATION 
 

Integration and representation are closely linked in blackboard-system applications. The 

representation choices that are made not only affect the ability of KSs to use the results of 

others, but also how KS results are combined. In a blackboard application, integration of 

results involves three major activities [7]: relationship management, attribute merging, and 

value propagation. 

 

The need for relationship management occurs when a KS execution wants to create a 

new object on the blackboard and the semantics of the blackboard representation requires that 

the relationship between the new object and some existing objects be represented. A simple 

example of this is the creation of a higher-level object as a result of identifying a set of lower-

level supporting objects, such as creating a platoon object based on a set of individual unit 

objects. If this synthesis activity is performed by a single KS execution, the relationship 

between the new platoon object and the set of supporting unit objects can be easily 

represented by also creating support links that connect the objects. Such support links 

explicitly maintain the relationship between the objects on the blackboard. 

 

What blackboard-system component should be responsible for maintaining these 

relationships? There are two approaches for this answer. 

 

One approach makes each KS responsible for this. When an executing KS wants to 

create a new blackboard object, it must first check to see if a semantically equivalent object 

already exists which involves a blackboard retrieval. If one is found, the KS modifies the 

relationships of the existing object instead of creating a new object and relationships. This 

approach requires that each KS writer perform this check and that the semantics of 

equivalency are consistent across all KSs. 

 

Another approach is to make equivalent-object checking and relationship management 

part of the unit-creation operation. In this case, the KS would ask to create a new platoon unit 

with links to the support units and the blackboard itself would perform the required 

bookkeeping. This latter approach begins to move the blackboard from a passive repository to 

a more active entity with application knowledge about what constitutes equivalency and how 

to handle duplicate creation requests. 
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The second integration activity is attribute merging. As with relationship management, 

we can have the KS execution determine the new belief value or we can have the blackboard 

object-creation routines do it automatically. The problem with the latter approach is that the 

knowledge required by the blackboard grows with the complexity of determining merged 

values. We certainly do not want to end up duplicating much of the knowledge used by KSs 

in computing new blackboard objects in automatic blackboard-integration routines. Clearly, 

as the number of object attributes that need to be appropriately merged grows, the complexity 

of work required by either every KS execution or the shared blackboard representation 

maintenance routines also grows. 

 

The third integration activity is value propagation. Assume that a belief associated with 

a platoon object is a function of the beliefs of its supporting units and their spatial locations 

relative to one another. Assume a field report is received that contains a confirmed sighting of 

one of the supporting units of the platoon and that the KS execution that processes this 

information increases the belief value of the supporting unit. We would like this increased 

belief value to propagate to the platoon value, increasing our belief in it as well. Again, we 

could make this propagation be the responsibility of the executing KS or an activity of a more 

active blackboard repository. Similarly, suppose yet another KS execution, using different 

sensor data than was available to earlier KS executions, is able to compute a more accurate 

position for one of the support units and changes the position attribute of that support unit. We 

would like this new position value to be used to update the position attribute of the platoon 

unit and, potentially, the platoon unit’s belief value if the new location of the supporting unit 

affects the belief calculation. Historically, blackboard systems have handled these integration 

activities in a very specific manner. Some applications placed the responsibility for these 

activities with the executing KSs. This required substantial discipline on the part of KS 

writers to maintain semantic consistency across KSs. Other applications placed this 

responsibility with the blackboard, risking duplication of KS knowledge and the potential for 

inconsistency if the way that the KS performed its activities was changed significantly. By 

careful modularization and sharing of code among KSs and the “active” blackboard, it is 

possible to reduce this duplication and risk. Finally, some applications dealt with value 

propagation by simply triggering and executing KSs again if important attributes used in their 

contributions changed. In this case, a re-executed KS simply replaced its original 

contributions with the latest version. Each of these approaches worked well enough in specific 
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situations and, when used with care, allowed complex blackboard-system applications to be 

built. 

 

Also, creating a principled integration model for a blackboard application requires close 

analysis of how the KSs in the application operate in conjunction with one another. From a 

practical standpoint, how we maintain the consistency of the result-integration model with the 

current KS set is an important issue. Just as KS-specific control expertise is developed and 

maintained with each KS, it is important to develop KS-specific models of result generation 

that can be incorporated into an overall result-integration model when the KS is added to the 

system. In Figure 2-7, you can see this separation of result integration. Such a capability 

remains to be developed, but it is an important research goal in enabling principled result 

integration in applications, that will have many KS changes throughout their lifetimes. 

 

Finally, the degree that results are shared in a blackboard application has a direct relation 

to the complexity of the result-integration models. The integration model need only address 

results produced by KSs that are placed onto the blackboard, so there is a tension between 

limited sharing and aggressive sharing. Notice that, limited sharing is the small size of the 

integration model and aggressive sharing is a complex integration model. Principled result 

integration adds yet another consideration to degree of sharing design decisions. 
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Figure 2-7 : Separation (Encapsulation) of Integration Knowledge 

 
 
2.5.6. COORDINATION 

 
The last collaborating-software challenge is running the right KSs on the right data at the 

right time. The opportunistic control that is the hallmark of blackboard systems is highly 

flexible, responsive, and generally efficient. During each control cycle, a traditional 

blackboard system makes a single, instantaneous choice of the best KS activation to execute 
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and, if new conditions warrant, the system can focus its attention on a new area as early as the 

next cycle. As discussed earlier, executing only one KS activation at a time also greatly 

simplifies the architecture. Nevertheless, even achieving effective single-threaded control in a 

complex blackboard application can be challenging. 

 

At any given moment, a blackboard application rarely lacks choices among a large 

number of potential KS activations to execute. These choices stem from multiple inputs 

arriving into the system, combinatory ways in which this data can be combined and used, and, 

in many applications, multiple KSs that can be applied to the same data. Figure 2-8 shows 

some models of these KSs. This results in a large and dynamic space of possible KS 

executions, of which only a small fraction can be pursued. Because blackboard systems 

operate incrementally, poor choices early on can result in triggering a large number of 

inappropriate downstream KS executions in response to the results generated by a single 

“inappropriate” KS execution. Agenda-based control uses a utility-based rating computed for 

each KS activation to select the best activation to execute in each cycle. 

 

 
a b c

Figure 2-8 : Linearly and partially ordered KSs 
 

This rating incorporates the estimates of what the activation will do if executed and more 

global requirements, such as parts of the solution that need attention. Unselected activations 

remain on the agenda, potentially to be executed in the future. 
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While the activations that are queued on the agenda await execution, the state of the 

blackboard and of overall problem solving is being changed by other KS executions. This 

results in a queue-latency problem [8] where the information associated with the KS 

activation becomes inconsistent with the current situation. In Figure 2-9, we can see a model 

of queue latency problem. One naive solution to this problem is to re-rate all KS activations 

on every cycle. However, since the number of pending KS activations can become large, this 

is not an efficient solution, particularly if the re-rating of each KS activiation involves 

searching the blackboard for changes relevant to the activation. Blackboard systems using this 

approach have needed to artificially limit the number of activations held pending or to re-rate 

only the topmost activations, under the assumption that the other ratings would not have 

changed too drastically. Other systems have organized the agenda in much the same way as 

the blackboard, so that the control shell could quickly identify pending KS activations that 

might be affected by changes on the blackboard. Event based re-triggering of pending KS 

activations is an example of this strategy. 
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Figure 2-9 : The queue latency problem 

 

In addition to the queue-latency problem, simple agenda based control techniques can 

introduce unwelcomed depth-first bias to opportunistic control. Consider the agenda shown in 

Figure 2-10. KS activations of A and B have the same rating with C close behind. From a 

control standpoint, these can be considered equally valid choices to be executed next. If A is 

selected and executed, its results may trigger a number of other KS activations, such as X, Y, 

and Z, potentially at higher ratings than B and C. If B had been selected instead of A, it might 
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have triggered X0 and Y0, again with ratings much higher than A and C and potentially even 

higher than the ratings of X, Y, and Z. To be fair, and to make our control decisions as 

informed as possible, we should execute A, B, and C before executing any of the KS 

activations that are triggered by them. 

 

This is one simple example of some of the problems that result from making 

instantaneous, history and purpose free, control decisions, and this problem was observed in 

the original Hearsay-II blackboard system [4]. 
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Figure 2-10 : Depth-First Search Bias 
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3. THE PROPOSED ARCHITECTURE 
 

The proposed architecture extends and elaborates the standard architecture and has the 

following characteristics: 

• The blackboard control architecture defines an explicit control blackboard. 

• The blackboard control architecture defines explicit control knowledge source 

• The blackboard control architecture defines a simple, adaptive scheduling mechanism. 

The basic control loop of the proposed control architecture employs the following three 

steps: 

• Update the set of pending goals 

• Select a pending goal 

• Execute the owner KS of the goal selected 

The basic control loop is expressed in terms of goals rather than KSs. The set of all goals 

to relevant to a problem form a general goal tree. Let’s discuss the proposed control 

architecture. 

 

3.1. ELEMENTS OF THE CONTROL LOOP 
 

Before to go in deep of the architecture, let us summarize the elements of the architecture: 

a. Knowledge Sources: Our computational modules that together contain the expertise 

needed to solve the problem. 

b. Policies: Our local scheduling criterion which guides to bidding process and it 

indicates which of the attributes of the knowledge sources are relevant in the process. 

c. Bids: Our mechanism to determine the knowledge source to be executed at the current 

cycle by evaluation of each parameters in the knowledge source. And if we want to 

see all the solutions for a problem, then, we can add the bidding mechanism at the end 

of the architecture. 

d. Strategies: Our global scheduling criteria such as depth-first, breadth-first etc. 

e. Methods: A method is a partially complete general goal tree structure representing 

high level knowledge on how to solve a problem. The method is used to reduce the 

number of children of the nodes. Hence, the size of the problem is reducing in the 

search space. Also, we can give the execution order of the children nodes. 
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f. Facts: Facts are like knowledge sources. We can think the facts as nodes, however, 

domain facts have no local evaluation parameters and always higher priority than 

knowledge sources. 

 

3.2. THE CONTROL LOOP IN DETAIL 
 

The pseudo code of control loop is given in Figure 3-1: 

take the goal that is in front of the queue 
if there is a KS that solves the problem 
 put KS into solution list  
if there are pending domain facts then  
 if goal matches a pending domain fact 
  put domain fact into solution list  
 elseif goal unifies some pending domain facts 
  select one of the domain facts 
  unify it 
  put domain fact into solution list 
 endif. 
if there are no pending domain facts 
 identify the policy for the goal and the owner KSs 
 set the goal tree 
 reduce pending KSs according to the method 
 get the bids of the KSs 
 select the winning KS according to the current policy 
 Execute the KS to generate the goal to be posted 

 
Figure 3-1 : The Control Loop of the proposed Architecture 

 
After the system gets the global data (KSs, strategy,  facts, policies and methods), it enters 

to the control loop. The control loop’s purpose is to find an optimal solution set about the 

problem defined.  

 

At first, the control architecture defines the starting point of the problem. Then, it 

generates a new stack and appends all the adjacent nodes to the starting point. The nodes are 

selected according to the strategy. After that, the control loop searches the facts for these 

adjacent nodes. If any found, then the system puts this fact into the solution queue. If there is 

no fact about the starting point, then the system eliminates the adjacent nodes according to the 

method. After eliminating nodes, the system calculates the bids of the remaining nodes, and 

appends the higher valued node to the solution list. Then, the system takes the selected node 

as the starting point and regenerates the stack that includes all the adjacent nodes to the 

starting point. This process goes on until the problem is solved or there are no more nodes. In 

the next chapter, we will discuss the implementation of the structure. 
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3.3. A SIMPLE EXAMPLE OF ARCHITECTURE 
 

For better understandability of the control architecture, let us give a simple but effective 

example.  

 
3.3.1. FLIGHT TICKETING PLAN 

 
In this example, we will see how can we apply this structure to an application. The 

example application finds the optimal flight plan for a customer.  

 
What does this simple application do is: 
 
• Takes all the flight info into memory 

• Takes additional information for the flights (facts, methods, policies) 

• Then takes the origin and the final destination from the user.  

• Finally, finds a solution according to information given 

 
3.3.2. THE SCENARIO 

 

If we write a scenario for this application, it would be like this: 

There is a small airline company that makes charter flights accros USA. The company has 

eleven different flight routes to the most popular eight cities. The cities are : 

• New York 

• Chicago 

• Denver 

• Toronto 

• Calgary 

• Los angeles 

• Dallas 

• Houston 

 

Each flight service have a distance between origin and the destination  of the flight and 

each route have its own price. The distance and the price are affecting to the selection of 

service at the bidding mechanism in the program. As we said before, all knowledge sources 

and policies act like human experts. So, each flight services act like a server, and the bidding 

mechanism will act like a customer. 
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The flight routes are shown in Table 3.1:  

Table 3.1 : Flight Services List of the Company 

From To Distance(Miles) Price(USD) 

New York Chicago 900 350 

New York Toronto 500 350 

New York Denver 1800 550 

Chicago Denver 1000 400 

Denver Dallas 1000 400 

Denver Houston 1000 400 

Denver Los Angeles 1000 400 

Toronto Calgary 1700 500 

Toronto Los Angeles 2500 850 

Toronto Chicago 500 350 

Houston Los Angeles 1500 475 

 

If we draw a map of the flights, it would be seen like in Figure 3-2 
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Figure 3-2 : Map of the Flights 
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3.3.3. ELEMENTS, KNOWLEDGE SOURCES AND FACTS 

 

 The elements of the program: Actually we have mentioned about the elements of 

the architecture, however, there are some special things that we have to explain. First 

of all, our class name is ControlBB again. However, we have changed the name of 

Goals structure to FlightInfo since the scenario is about a flight planning program. 

Also, we have changed its parameters name. Hence, it is easier to follow the program 

steps in terms of program parameters. The new structure can be seen in the Figure 3-3. 

 

 

 
struct FlightInfo {  
  string from;    // departure city 
  string to;      // destination city 
  int   distance; // distance between from and to 
  int   price;    // price 
  bool  skip;     // used in backtracking  
  short key;      // key field to select the best solution 

Figure 3-3 : The FlightInfo Structure for KS in the blackboard 
 

As is seen in Figure 3-3, the ‘source_node’ was named as ‘from’, the child node was 

named ‘to’. ‘distance’ and ‘price’ are our ‘cost_parameters’. Remember that we can 

add as many cost_parameters as we want into the proposed structure. skip and key 

parameteres are the same. Then, all other parameter names were adjusted in this way. 

 

 Knowledge Sources : In the example, each of the flight services are one knowledge 

source. So we have eleven KSs in this scenario. Although we have six parameters in 

FlightInfo structure, at the beginning of the program, we just need four of them. The 

origin of the flight service, the destination, the distance between origin and 

destination, and its cost to the customer. In the source code, we have used addflight 

function to add the KSs into the memory. The code part can be seen in Figure 3-4. 

 

 Facts : A  fact is a data structure that includes two objects.  And ‘facts’ is a list that 

consists of one or more facts. For this example, a fact’s first object is the origin of the 

flight and the second one is the flight’s destination. In the source code, SetFacts() 

function is used to add some facts into memory. 
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// Add flight connections to database. 
  bb.addflight("New York", "Chicago"

"Chicago", "Denver", 1000, 400); 
"New York", "Toronto"
"New York", "Denver", 1800, 550);  
"Toronto", "Calgary", 1700, 500);  
"Toronto", "Los Angeles", 2500, 850);  
"Toronto", "Chicago", 500, 350);  
"Denver", "Dallas", 1000, 400);  
"Denver", "Houston", 1000, 400);  
"Houston", "Los Angeles", 1500, 475);  
"Denver", "Los Angeles", 1000, 400); 

, 900, 350);  
  bb.addflight(
  bb.addflight( , 500, 350);  
  bb.addflight(
  bb.addflight(
  bb.addflight(
  bb.addflight(
  bb.addflight(
  bb.addflight(
  bb.addflight(
  bb.addflight(

 

Figure 3-4: Adding flight Information into the system 

 
Like addflight function it is enough to write “bb.SetFacts(“New York”, “Denver”);” 

to add a fact into the facts list. For our scenario, just one fact(from New York to 

Denver) was added into memory to show how it affect to the solution. Later, we will 

see how does this fact affect to the solution. 

 

 Policies : There is one policy for all the flight connections in the system, however 

we can add different policies for all the connections. The system will check if there is 

a special policy for the current connection. If not, it will use the general policy to 

evaluate the bids. For this scenario, three policy parameters were defined. These 

parameters have all negative effects in the bidding mechanism, however, it may not to 

be always negative. The policy parameters are : 

 

1. The distance between origin and the destination, 

2. The price between origin and the destination, 

3. The number of transit flights of the plan.  

 

As you see, these three parameters have negative effects on the customer. Because, 

when one of these parameters increase, then the satisfaction of the customer will 

decrease.  

 

 Methods: For our scenario we will give just one method. By using the method, we 

will exclude New York – Chicago connection. Then we will see how this would affect 

to the performance of the system. 
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3.3.4. EXECUTION OF THE SYSTEM 

 
To test the proposed architecture entirely, we will execute the program three times.  

 

At the first time, we will not add any facts or methods to see how system searches the 

general goal tree. Then we will add the method and rerun the program to see the effects of 

methods. And thirdly, we will add the fact to the program (the method is also will be 

included) to reach full performance control of the program. Also, we will analyze the traces of 

these three iterations of the program to compare their performances. 

 

Before go any further, it is good to know that, in all three iterations, the program inputs 

will be the same. It means that, in all three cases, the origin will be New York and the 

destination will be Los Angeles, and all the KSs will be the same. In this case the general goal 

tree for New York will be like Figure 3-5. 
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Figure 3-5 : General Goal Tree for NewYork 
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 First Run 

In the first run, we do not add nor any facts neither any methods to the system. Then the 

system defines the general goal tree as the searching area. The control architecture makes a 

search in the whole goal tree. The type of the search is depend on the strategy that we define 

in the program. In this example a breadth-first search is made and all the solutions were 

written in the solutions.txt file. Then the system makes the bids of the three solutions 

according to policy. And selects the best solution between them. The output of the file is 

shown in Figure 3-6. In solutions.txt file, as we can see there are three solutions found, and 

the second was selected as the best solution. After the system finds three solutions, a bidding 

mechanism also helps us to select the best. 

 

New York to Toronto to Los Angeles 
Distance is 3000 
Price is 2850 
New York to Denver to Los Angeles 
Distance is 2800 
Price is 1550 
New York to Chicago to Denver to Houston to Los Angeles 
Distance is 4400 
Price is 2650 
 
THE Selected Route is: 
New York -> Denver -> Los Angeles 
Distance :2800 
Price :1550 
Steps :2 
BID :-10260 
KEY :2 

 

Figure 3-6 : The output of Solutions.txt file 
 
 Second Run 

In the second run, we just add the method to exclude the flight from New York to Los 

Angeles. Hence the searching area was diminished very effectively. After exclusion of 

destination Chicago the new goal tree will be like Figure 3-7. In this new goal tree, we are 

seeing that the leftmost node in the first level of the search tree and all of its children were 

deleted in the search area. Figure 3-8 shows the output file after the second run of the 

program. Here also, we can see that the third solution of the first run was gone. And this 

output proves that using a method can be an effective way to improve the performance and 

quality to find solutions. 
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New

Toronto Denver

Los Angeles Chicago Calgary Los Angeles

Figure 3-7 : The new sub-goal tree after adding the methods 

New York to Toronto to Los Angeles 
Distance is 3000 
Price is 2850 
New York to Denver to Los Angeles 
Distance is 2800 
Price is 1550 
THE Selected Route is: 
New York -> Denver -> Los Angeles 
Distance :2800 
Price :1550 
Steps :2 
BID :-13356 
KEY :2 

 
Figure 3-8 : The output of solutions.txt file after second run 

 

 Third Run 

In the third run, we have added the fact New York -> Denver. By this way, we exclude all 

other possible flights from the search tree. And we just guarantee that New York -> Denver is 

the first leg for a flight plan to go from New York to Los Angeles. Then, there is no more 

doubt that, it will search just two nodes to find a solution. In Figure 3-9 you can see the sub-

goal tree after the fact is found. And the system will just search the children of Denver node 

after executing this KS. The output of the program is seen in Figure 3-10. 

 

 

New York 

Denver

Los Angeles

Figure 3-9 : The new sub-goal tree after adding fact 
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New York to Denver to Los Angeles 
Distance is 2800 
Price is 1550 
THE Selected Route is: 
New York -> Denver -> Los Angeles 
Distance :2800 
Price :1550 
Steps :2 
BID :-13356 
KEY :1 

 

Figure 3-10 : The output of the solutions.txt after third run of the program 
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4. IMPLEMENTATION 
 

The proposed architecture is implemented in C++ language. C++ is a language that 

supports the concept of an “object”, and provides a uniform means for referring to the objects 

in its universe. C++ provides an object-oriented model. [9] 

 

The reason why the control architecture is implemented in an object-oriented language is 

that the possibility to orientate programming to objects allows us to design applications from 

a point of view more like a communication between objects rather than on a structured 

sequence of code. Hence, we can use the same architecture in many different decision making 

procedures. 

 
4.1. GENERAL FLOW OF THE IMPLEMENTATION 

 
The general flow of the proposed architecture is simple. As you can see in the Figure 4-1: 

• Firstly, the system gets all the knowledge sources into memory from an outer 

system or from a user.    

• Secondly, the system gets the problem definition. 

• In the third step, the system gets all the facts, policies and methods into memory. 

• Then, the system executes the control loop to find a solution set about the problem. 

• Finally, the system returns the solution set if it can find any 

 

 

Append all the 
KSs into 
Memory  

Find a solution set by 
using the control loop 

Return the solution set 
to the outer world 

Define the Problem & 
select a strategy 

Get the facts, policies 
and methods 

Figure 4-1 : Flowchart of the proposed architecture 
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4.2. ARCHITECTURE ELEMENTS 
 
The elements shown below are general elements for the architecture. And these can be 

changed according to specified implementations.  

 

First of all, lets define the data structures in the architecture: 

• Struct Goals : This is the structure that defines a  KS in the system. Its elements are: 

o string source_node : this is a string that defines a goal in the blackboard 

o string child_node : this is a string that defines a child of the goal in the 

blackboard. 

o int _cost_parameter1 : this is an integer parameter that you can define any 

property of the service between source_node and child_node. For example, if 

you are planning a daily touristic trip,  it can define a quality of a restaurant. Or 

it can define the cost of the restaurant. Also we can define as many 

_cost_parameters as we want. It will affect the bidding mechanism. 

o bool skip : this flag is used for backtracking information 

o int key :  this field provides a relation between KSs and solutions. It is like a 

key field in a database table. 

 

• Struct facts : This structure defines a fact in the system. Its elements are: 

o string source_node : this is the string that defines a goal in the blackboard 

o string child_node : this is the string that defines the child node of the goal 

node in the blackboard. 

 

• Struct Methods : This is the structure that defines a method in the blackboard system.  

o string source_node : this is the string that defines a goal in the blackboard. 

o string child_node : this is the string that defines tha child node of the curent 

goal node in the blackboard. 

o char option : this character can take just two values. ‘I’ or ‘E’. ‘I’ means 

include the KS and ‘E’ means exclude the KS in the goal tree. During search 

mechanism, this option is used to eliminate or to make an execution order the 

KSs. By this way, we can improve the perfromance of the search mechanism. 

o int key : this integer is useful only if the option is ‘I’. As we said above, the 

option ‘I’ means include the KS. And via using key integer, we can define an 

execution order of the sub-goals. 
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• Struct Solutions : This structure defines a complete solution in the blackboard. 

o string source_node : this is the string that defines a goal in the blackboard. 

o string end_node : this is the string that defines the last node of the solution 

list.  

o int cost_parameter1 : this parameter defines the sum of the cost_parameter1 

in the solution list of the blackboard. We have to define one cost_parameter for 

each cost_parameters in the goals structure. 

o int steps : this parameter defines the number of steps in the solution list. This 

variable, is used to calculate the bid of the solution. 

o int bid : this parameter defines a total bid of the found solution. It is calculated 

by using the policies and the cost parameters.  

o int key : this is the key to make a relation of the found solutions. This is the 

second leg of the relation between KSs and solutions. 

 

• Struct Policy : this structure defines a policy for the blackboard system. The policy 

can be defined for all KSs and can be specialized for any of the KSs. What parameters 

have this structure are : 

o string source_node : this is the string that defines a goal. Its value can be a 

goal value or an asterisk(*) . It its value is star, then it means it is valid for all 

KSs in the blackboard. 

o string child_node : this string defines a child of the goal node. Like 

source_node this parameter also can take an asterisk(*) value. If source_node 

contains a normal goal and child_node contains an asterisk then, it would mean 

the policy is valid for all child nodes for the goal defined in the KS. 

o int rule1 : this parameter defines a coefficient to calculate the bid by 

multiplying the first cost_parameter of the KS. For each cost_parameter, 

there must be a rule parameter. 

 

• Struct key :  this is the structure that defines a counter to make a relationship between 

solutions and KSs. 

o int key : this integer defines a unique key identifying the number of the 

solution, and its KSs.  
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Now lets define the Blackboard of the system. The blackboard is a class that defines all 

the KS information, policies, facts, methods, search functions, and so on.  

 

Here are the blackboard elements: 

• Class ControlBB : The base class of the blackboard system is ControlBB. 

o vector goals : this vector stores all KSs that were given to the system. It is 

constructed from the structure Goals.  

o vector sub_goals : this vector stores the goals that are adjacent to the starting 

point(i.e. children of the goal node). Like vector goals it is also constructed from 

the structure Goals. 

o stack btStack : this stack includes backtracking information. It is constructed 

from structure Goals. It includes executed KSs in the search space. We can call it 

(b)ack(t)racting Stack. 

o stack slStack : this stack contains the solution queue with key information that is 

used to sort and read at any point. The solution queue consists of all steps of the 

problem solution. That means that, if a solution consists of five KSs then, slStack 

includes five KSs. We can call it (s)o(l)ution stack.  

o stack solutions : this stack is used for bidding mechanism. It includes the problem 

definition(the first and the last goals), and the total of cost_parameters. And also, if 

there is more than one solutions, then it includes all solutions for the defined 

problem.  

o stack bids : this stack consists of all information in stack solutions. In addition to 

this information, the bid parameter of the structure is also calculated. It has the 

same structure as the stack solutions. 

o stack policy : this stack stores the policies. It is constructed from Policy structure. 

o vector methods : stores the methods for all the goals 

o vector facts : stores the fact about a starting point 

o bool match() : this function returns true if there is a direct connection between the 

starting point and the final goal 

o Bool find_depth(string from, &sub_goals ) :This function makes the depth_first 

search to find a solution. And then, returns true if the problem was solved. During 

this function is executed, the solution queue is filled.  
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o Bool find_breadth(string from, &sub_goals ) : This function makes the 

breadth_first search to find a solution. And then, returns true if the problem was 

solved. During this function is executed, the solution queue is filled. 

o Bool find_least(string from, &sub_goals ) : This function makes the depth_first 

search to find a solution. And then, returns true if the problem was solved. During 

this function is executed, the solution queue is filled. 

o void add_goal() : This function adds KSs to the memory. 

o void show_solution(): If there is a solution about the problem, then this function 

shows the solution queue. 

o void select_best(): After evaluating the bids of KSs, this function selects the 

highest valued solution. 

o void set_policy(): This function sets the policies of the blackboard. 

o void get_policy(): this function gets the policy of the current service. 

o void evaluate_bid(): This function calculates the bid of the service. 

o void set_facts(): This function sets the fact vector for all the goals.  

o bool is_a_fact: This function returns true if there is a fact for the current node.  

o void define_strategy(): This function defines the searching strategy of the 

architecture such as depth_first, breadth_first etc. 

o void solve_depth(): Solves the problem using depth_first strategy 

o void solve_breadth(): Solves the problem using breadth_first strategy 

o void solve_least(): solves the problem using least_cost strategy 

o bool problem_solved(): returns true if there is a solution set in the memory. 
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4.3. THE CONTROL LOOP FLOWCHART 
 

If we write the loop in terms of the architecture functions it seems like in figure(4-2). 

 

 

no 

yes 

false 

true 

Take the first goal 

is_a_fact() 

get_policy() 

generate_sub_goals() 

eliminate_sub_goals() 

evaluate_bid()  

select_best() append_solution() 

Pending goals 
are finished

Return the Solution 
Queue

Take the next goal

Figure 4-2 : Flow chart of control loop 
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5. EXAMPLES 
 

In this chapter, two examples will be given. The first example is about ticketing problem 

on a flight schedule. And the second chapter is about routing planning in a factory on plastic 

injection machines. 

 
5.1. APPLICATION: ROUTING PLANNER IN A FACTORY  

 
In the previous example, we saw that how can architecture handle the AI search basically. 

But we can give another example to express its power. Consider, a factory produces several 

types of vacuum cleaners and one of its workshops produces all the plastic parts of the 

vacuum cleaners. The company uses an ERP program. Then, since the ERP program does not 

have an efficient planning tool, according to the scenario, our program has to make a plan for 

a plastic injection machine. There are several types of moulds in several colors. Setting-up the 

injection machine takes a time, and we want to reduce this setup time. Our program will take 

all information from a formatted file automatically (that would come from the ERP program), 

and then will make a plan that the machine will produce the parts in optimal time. 

 
5.1.1. THE SCENARIO 

 

As the scenario, we will analyze Elektropak’s production process and then we will solve 

the production planning issue by our architecture.  

 

Let us give some information about Elektropak: Elektropak is a company that produces 

vacuum cleaners, flat-irons and other small home appliances. Their products take Arzum, 

Conti and Rowenta trademarks in the market. Elektropak uses SAP system [10] to manage all 

its information in an integrated environment. All departments of Elektropak - such as 

accounting, sales and distribution, production etc. - are connected each other in SAP system. 

 

In Elektropak, we can define a production process in four main steps [11]: 

 

• Design of a product: in this step, technical designs of the product are drawn in 

R&D department. Then bills of materials (BOM) [12] are created and loaded into 

SAP. A BOM includes all parts of a product. The elements of a BOM are raw 

materials, semi-products, accessories and moulds. Also, semi-products have their 
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own BOMs. Other elements do not have their own BOM and generally they are 

obtained from outer sources.   

 

• Design of routing plans in SAP: in this step, for all new designed products, a 

production scheme is constructed. This scheme shows all the following 

information: 

o In which order, the elements of product in the BOM will be produced. 

o How much time would take the production of a unit product. (Also semi-

product) 

o What will be the quantity of a minimum party of the product? 

o How the capacity of machines will be affected. 

o After all, how much will be the cost of the product 

Hence, Elektropak adds a new type of product to its product spectrum. 

 

• Production Orders: According to customers’ purchase orders and material 

resource planning (MRP) data, the system generates planned production orders for 

the products/semi products.  

 

• Production: The last step is production of products. After producing all semi-

products in the BOM, all the parts of the product is assembled in another workshop 

in the company. 

 

 The biggest workshop of Elektropak is injection workshop. In this workshop, all the 

plastic parts in the whole product spectrum of the company are produced. In SAP, there are 5 

different types of injection machines. And the moulds of these machines differ from each 

other. In Table 5-1 you see a list of injection machine types, their names and the numbers of 

these machines in Elektropak. The number of machines is important because we want to 

reduce the number of working machines to reduce the cost. 

 

The plastic semi-products that were ordered to produce, are produced by these machines. 

In a technical plan of a plastic semi-product, there are the following characteristics: 

• The color code of the semi-product 

• The plastic type of the semi-product 

• The mould type that would be attached to the machine 
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• The production time for a unit semi-product 

Table 5.1 : The list of injection machines 
 
 

 

 

 

Machine Group Machine Names # of Machines 

E1000G 1000 Gr. Injection Machines 9 

E1600G 2000 & 1600 Gr. Injection Machines 8 

E200G 600-100 Gr. Injection Machines 21 

E2400G 2400 Gr. Injection Machines 1 

E750G 750 Gr. Injection Machines 7 

 

 

 

 

An ABAP report was written in Elektropak’s SAP system to get a list of production orders 

for the machines that we have seen Table 5-1. In this list, we can see the following elements: 

• Finishing date of the planned product 

• Machine code for the semi-product 

• Mould ( setup ) code for the semi-product 

• Setup-time of the mould 

• Color code of the semi-product 

• Production quantity  

• Current stock quantity of the semi-product 

• Unit production time of the semi-product 

 

The purpose in production planning is producing maximum quantity of products with a 

minimum cost. Though we can see the semi-products list, within their mould types, setup 

times, dead-lines for the production etc, it becomes more complicated to handle all the 

production in the workshop manually. And at this point, our architecture will help us. 

 
5.1.2. ABAP PROGRAM : ZPLANTEST 

 
For SAP part of the example, a program was written in ABAP [13, 14] in the test system 

of Elektropak system. The program’s name is ZPLANTEST. The general inputs of this 

program are plant name, storage location, machine codes and planned finishing dates. Also 

there are additional input parameters that define the type of the list. In Figure 5-1, we are 

seeing all the input parameters of the ABAP program. In this program, we can take several 

different lists either to see or to download into architecture. ALV tool (ABAP List Viewer) of 
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SAP was used to get the list. ALV is a special reporting tool in SAP [15] that will help us to 

analyze the problem more specifically: 

 

• Routing plans of semi-products: in this list, we are seeing routing plan information 

of semi-products. The columns are material number, material explanation, routing plan 

number, machine code(this is also calles work center in SAP system), setup (mould) 

code, unit production speed and color code of the product. In Figure 5-2, we can see 

the routing plan list.  

• Production orders of semi-products: In this list, there are five columns: production 

order number, material number, material description, order quantity and finishing date. 

In Figure 5-3, we can see this list. 

• Stock List: If there are some stocks in the warehouse, then we can see this 

information in this list Figure 5-4. 

• Machines List: Figure 5-5 shows the machines list. This is the list that we can see all 

the machines and all of their compatible mould codes. Also, we can see setup times of 

moulds in seconds.  

• General List: This is the list that we all merged into one list. We also would 

download this list to the local computer to use further in the architecture. In Figure 5-6 

we can see the screenshot of this list.  
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Figure 5-1 : Selection parameters screen of ZTESTPLAN program 

 

 

Figure 5-2 : Output of production plans list 
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Figure 5-3 : Production Orders List 

 

 

Figure 5-4 : Stock list of products 
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Figure 5-5 : Machines List 
 

 

 

Figure 5-6 : General list  
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5.1.3. ELEMENTS, KNOWLEDGE SOURCES AND FACTS 
 

Above, we have introduced an ABAP program to feed a complex list of production 

orders to our composed architecture. Now, we will analyze our control architecture and see 

how it would make a plan for a specific machine for a specific finishing day. 

 

A general goal tree actually includes the combination of production orders of the 

product. For example, if we have three products (A,B,C) to be produced in the same date and 

in the same machine, then the general goal tree  for this machine would be seen like in the 

Figure 5-7. In this figure, it is guaranteed that all these products will be produced in the same 

date and in the same machine. However, their mould code and color code can differ from each 

other. For example, A and B can have the same mould code with different colors while C has 

the same color with A and different mould code from A and B. 

 

Machine, Date 

A B C

B C A C A B 

C B C A B A 

 

Figure 5-7 : Example for production combination tree for a machine 
 

• Knowledge Sources:  All KSs come from SAP system  in a tabular formatted text 

file. And they are read from the text file. A KS of this program includes these 

parameters : 

 Production date 

 Machine Code 

 Mould Code (Setup Code) 

 Setup Time (in seconds) 

 Color Code 

 Product code  

 Unit production time (in seconds) 
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 Number of products to be produced 

 

All we have to do in the architecture is to generate a production order for these machines 

to reduce the production cost and increase efficiency.  

 

• Facts: For this example, a fact can be defined as a production priority of a product. 

For example, consider we have two types of production on the same machine with the 

same mould int the same day. Their planned order quantities also are same. The first 

product will be yellow and the second one will be red. Then, if you need red products 

first, you can give it as a fact. A fact has the following parameters in the system : 

 Production date 

 Machine Code 

 Mould Code 

 Color Code 

 Previous production code (source_node) 

 Product to be produced (child_node) 

Hence, we can specify a production order with these parameters. In figure(24), if we 

want to force the production of B after C, it will be enough to express with the 

parameters written above. 

 

• Methods: Within a method, we would exclude or include KSs in the same level of the 

search. A method has the following elements : 

 Production date 

 Machine code 

 Mould code 

 Color code 

 Previous production code (source_node) 

 Product to be produced (child_node) 

 Option to exclude or include the KS 

 

• Policies: The policy parameters must be set to reduce the cost of the productions. To 

reduce the cost, we have to reduce the number of machines, the working time of the 

machines, the number of the mould changes and the number of the color changes. 
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While these parameters are valid, also, we hae to produce as many products as we can 

do.So let us define the parameters that effect to the  cost of productions : 

 

 Machine setup times : the most important time taking parameter is machine 

mould setups. Because, changing a mould in a machine takes from 2 to 5 

hours. If we consider this time interval as seconds, changing a mould of a 

machine can vary from 7200 seconds to 18000 seconds. Stopping a machine 

means increasing the cost. So we must maximize the number of productions 

after changing a mould.  

 Color setups : This is also an important parameter to reduce cost. It does not 

take so much time as mould setup, however changing  colors many times will 

reduce effectiveness of the production. And it means to waste the raw-material 

of the product. And be sure that it will have an extra cost for a unit production. 

Also, we must maximize the number of productions after changing the color. 

 The number of products to be produced : We have to select the bigger 

production order first in terms of quantity.  

 

According to these parameters we can define our policy with the following 

parameters and their coefficients: 

 

1. Date : This parameter is used to select policy by the program. It can take a 

specific date value or take (*) asterisk character to validate the policy for 

all entries. 

2. Machine Code : This parameter is also used to select appropriate policy 

for bidding mechanism. Also it can take a specific machine name or can 

take (*) asterisk character.  

3. Mould Code : This parameter also helps to identify the appropriate policy 

for bidding mechanism. 

4. Product to be Produced : It mostly takes (*)  to define its validty to all 

products to be produced in a specific day, machine and mould code. But if 

you want to define an exact policy for a specific production, it may take the 

value of production code also. 

5. Setup Time : This is the first and most important coefficient. Because, 

pluggin-in of a mould in a machine takes a lot of time and this is the most 
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effective wasting time parameter. We will give the biggest negative 

coefficient in the program. 

6. Total Production Time : This value has the multiplication of unit 

production time and total number of products for a specific finishing date. 

The importance of this coefficient is not so much like setup time. 

Generally, its effect is negative and considered with the number of 

products.  

7. Number of products : As we said before, we want to maximize the nuber 

of products in the minimum of time. So this coefficient will take a positive 

value.. 

 
 
5.1.4. EXECUTION OF THE SYSTEM 
 

In ABAP program, we can give more than one value for storage location, machine code 

and finishing date as selection parameters. While you see the selection screen for 

ZPLANTEST program in Figure 5-1, you can also see the multiple selection screen in Figure 

5-8. In this screen, we can give a number range of single values for the selected variable in the 

program. Also, we can choose include or exclude these values. 

 

 

Figure 5-8 : Multiple Selection Screen for Machine Codes 
 

For our example, we have chosen two storage locations and five machine codes to get the 

production list. After execution of the ABAP program, a 711 lined list was generated. And 

then we have downloaded to the computer where we run the architecture program. 
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After downloading to the local computer, the tabular formatted list is seen like in Figure 

5-9. There are eight columns : the production finishing date, machine code, mould code, color 

code, setup time of the machine, total production time, production amount and finally product 

code. As we have seen before, every line of this list will be our KSs. 

 

We will download the policies, facts and methods from SAP. However, I will try to 

complete the policy to the presentation. This is why, the control mechanism was given 

manually for right now. 

 

 

Figure 5-9 : Downloaded production orders list 

 

For policy, it is optimum to give a different policy to each machines on the list, because 

since the energy needs, setup times of the machines vary, we may want to change the policy 

coefficients for each machine. If we have given different policies for each machine, then the 

policies would seen like this :  

• Policy(*,E200G,*,*,-1,0.1,3) 

• Policy(*,E750G,*,*,-1,0.1,3) 

• Policy(*,E1000G,*,*,-1,0.1,3) 

• Policy(*,E1600G,*,*,-1,0.1,3) 

• Policy(*,E2400G,*,*,-1,0.1,3) 
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These policies mean, for all KSs, the setup time coefficient will be taken as ‘-1’, total 

production time coefficient will be taken as ‘0.1’ and we will have to multiply production 

order quantities by ‘3’ for the bidding mechanism. But now we just give a general policy for 

the whole list. It is seen like this : 

 

   Policy(*,*,*,*,-1,0.1,3) 

 

In figure 5-10, we are seeing the lines of a list with boxes. To specify the facts, we just 

click these leftmost boxes of the lines in the general list and then we click to FACT button 

like in the Figure 5-11. By this way, SAP system will download the facts list to the 

architecture. With the same way, if we want to specify methods, we select the lines and then, 

download the list to the local computer. On the other side, we have to be aware that there 

must be only one fact in a production level. If we want to set high priority for more than one 

production orders, them we must select methods. 

 

  

 

Figure 5-10 : Selection boxes on the general list 
 

 

Figure 5-11 : Download Buttons 
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After setting up the control parameters, we run the program that includes our control 

architecture. The program first takes, methods, facts, knowledge sources into memory. Then it 

starts to loop in the goals. For each pairs of the date and the machine codes, the program 

generates new sub-goal trees. As a strategy, a breadth-first search would be enough. Because, 

depth-first search does not have a meaning for this example.  

 

After executing the application we get the output file our local computer. Since it is 

tabular formatted text file, we can any program that supports this format. Also we can upload 

to SAP system again if needed. In Figure 5-12 you can see MS Excel screenshot of the output 

file. 

 

 

Figure 5-12 : Excel screenshot of the output file after executing application 
 

So these are the advantages of this application after using blackboard control architecture: 

• By using collaboration specialties of a blackboard system, you can easily interact 

with this application as a module of a bigger system. 
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• You can arrange the output type what type ever you want to get. For example, you 

can automatically feed the interfaces of PLC machines by the output of this 

application.  

• This is a platform independent application, so you can compile this algorithm in 

different OS’es.  

• Two different planning examples about this architecture prove that the range of the 

application area is wide. This is to say we can manage all scheduling problems in 

the industry by using this architecture. 

• Two phased high level knowledge provides an exact control over artificial 

intelligence.  

 

The only disadvantage is, there is always a risk about facts or methods that they may not 

have the right values as you want. So, they are to be implemented wisely.  

 

5.2. OTHER APPLICATIONS IN THE MARKET 

 

These kind of scheduling applications are commonly used in the world. However in 

Turkey, this is a new solution area and this is a good chance to get a better place on this topic. 

There are two examples that would be explained in this thesis. The first one is Trigger and the 

second one is Preactor. Trigger is a Turkish application and not released yet. Preactor is the 

most popular scheduling program in the world. They are very different from each other, and 

our application carries all advantages of  these applications. 

 

 

5.2.1. TRIGGER 

 

Trigger is a scheduling program for plastic injection machines. It collects all the 

information about operation processes, capacities of machines, production orders and other 

data of the company. Then, it generates a schedule of production orders.  This is new software 

in the market, and it is specially being developed for BEKO. However, it will be delivered to 

the market soon.  

 

Trigger uses Simulated Annealing algorithm in the decision making process. Its purpose is 

to find optimum solution according to characteristics of a plastic. Simulated annealing is a 
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generic probabilistic meta-algorithm for the global optimization problem, namely locating a 

good approximation to the global optimum of a given function in a large search space [16]. 

The name and inspiration come from annealing in metallurgy, a technique involving heating 

and controlled cooling of a material to increase the size of its crystals and reduce their defects. 

The heat causes the atoms to become unstuck from their initial positions (a local minimum of 

the internal energy) and wander randomly through states of higher energy; the slow cooling 

gives them more chances of finding configurations with lower internal energy than the initial 

one. 

 

Hence, more plastic products would be developed with less energy. The pseudo code of 

the simulated annealing algorithm  can be seen in Figure 5-13 : 

 

s := s0; e := E(s)    // Initial state, energy. 
sb := s; eb := e    // Initial "best" solution 
k := 0     // Energy evaluation count. 
while k < kmax and e > emax  // While time remains & not good enough: 
  sn := neighbour(s)    //Pick some neighbor. 
  en := E(sn)     //Compute its energy. 
  if en < eb then    //Is this a new best? 
    sb := sn; eb := en     //Yes, save it. 
  if random() < P(e, en, temp(k/kmax)) then  //Should we move to it? 
    s := sn; e := en     //Yes, change state. 
  k := k + 1     //One more evaluation done 
return sb     //Return the best solution found. 

 

Figure 5-13 : Pseudo Code of simulated annealing algorithm 
 

As an advantage, we can say that Trigger would work very good for plastic and metal 

products. However, this will not work for other scheduling needs of the industry. And this is a 

big disadvantage in the software market. Because, this disadvantage restricts the application 

range of the program. Another disadvantage is, incompatibility with any operating system 

other than Microsoft Windows. 

 

In Figure 5-14, Figure 5-15 and Figure 5-16, we are seeing some simple screenshots from 

the first beta of Trigger.  
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Figure 5-14 : Trigger – min/max function parameters menu 
 

 

Figure 5-15 : Trigger – Production Orders Menu 
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Figure 5-16 : Trigger - SAP Transfer Menu 
 

5.2.2. PREACTOR 

 

Preactor is the most popular scheduling solution in the world. Preactor is a software 

package that provides a planner with an interactive decision support tool that balances 

demand and capacity [17]. With Preactor, you can make production planning, production 

scheduling and supply chain management. Preactor is also running PC based applications and 

it is compatible with only Microsoft Operating systems. Before using Preactor, you have to 

configure whole production system of the company into it. This configuration setup time can 

take up to three months of a year.  

 

Preactor have three main products: Preactor 200, Preactor 300 and Preactor APS [18]. 

Preactor 200 and Preactor 300 are ‘Finite Capacity Scheduling (FCS)’ software and Preactor 

APS is ‘Advanced Planning and Scheduling’ software. While in FCS, you just can schedule 

your production orders; in APS you can schedule your operations also. In Preactor, you use 
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Gannt chart to generate schedules. That means, user generates his own schedule via Preactor 

manually. Not like Trigger or our application. 

 

There is more than 5000 companies use Preactor to plan their production. Some of these 

companies are, Cosworth Racing, Delphi, Imperial Tobacco, Pfizer, Philips and Vienna 

Airport. 

 

So what is the advantage and disadvantage of this software package? First of all, let us 

mention about advantages :  

• Because the software is used widely, its technical support is very good.  

• User interactive menus are very good; you can easily drag and drop the elements 

of a production order.  

• Supports very wide range of industrial applications.  

 

Then let us see disadvantages of Preactor: 

• There is no automated decision tool in the package. The user must decide which 

production would be produced first. By this way, user can make mistakes during 

decision.  

• Manual decision increases working hour of a worker. 

• You have to enter all the raw data from your MRP or ERP system and configure 

them wisely. And it takes a lot of time before using it.  

• Just Microsoft Windows compatible. You cannot use under Linux or Unix based 

systems.  

 

You can see two screenshots from Figure 5-17 and Figure 5-18. 
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Figure 5-17 : Preactor – Main window screenshot 
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Figure 5-18 : Preactor – A Sequence overview window 
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6. CONCLUSION AND EVALUATION 
 

The control architecture introduced for goal-driven blackboard systems is based on 

searching a general goal tree. The basic elements of the architecture are goals, policies, 

strategies, KSs, methods, and facts. It employs a basic control loop that uses a bidding 

mechanism in choosing the knowledge source to be executed at the current cycle. The bidding 

mechanism is guided by a policy. The policy can be called local scheduling criteria for this 

control architecture. A strategy on the other hand, is a global scheduling criterion such as 

depth-first etc. Strategies and policies together determine how a partial solution is to be 

extended in the control loop. Then the search space can be diminished by applying methods 

and facts. The methods and facts are high level knowledge on how to solve a problem. And 

they have to be well known before applying. Because they force to change the direction of the 

solution. 

 

We have used this control architecture in an industrial production planning application 

and then, we compared our architecture with two applications. As a conclusion, we saw that 

the control architecture can achieve other applications’ issues. Also our simple example flight 

scheduling application proves that this control architecture can be used in most of all kind of 

planning and scheduling applications.  

 

Furthermore, high level knowledge over artificial intelligence provides us an exact and 

flexible intervention over scheduling and planning. None of the present applications of the 

market provide this special feature. And this is a big advantage of our application.  

 

As a disadvantage, we can say that there is always a risk about facts or methods that they 

may not have right values. This is why, when expressing these high level knowledge sources 

we have to be careful.  

 

In the future, some other search strategies may be implemented. Some standardized sort 

algorithms can be applied to handle search in more effective way. Also, at each run of the 

program, a system can record a list of solutions and can make some statistical work to use in 

the architecture itself as methods and facts. 
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APPENDIX A 
All the program codes and the soft document of this thesis can be found in the attached CD. 
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