

AN INDUSTRIAL APPLICATION USING BLACKBOARD ARCHITECTURE

A Thesis
Presented to the Institute of Science and Engineering

of IŞIK University
in Partial Fulfillment of the Requirements

For the Degree of
Master of Science

in
The Department of Computer Engineering

by
KEREM BURAK TÜNAY

IŞIK UNIVERSITY
2006

Approval of the Institude of Science and Engineering.

Prof. Dr. Hüsnü A. Erbay

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Selahattin Kuru

 Head of the

Computer Engineering
 Department

This is to certify that I have read this thesis and that, in my opinion, it is fully adequate

in scope and quality as a thesis for the degree of Master of Science

Prof. Dr. Selahattin Kuru

Supervisor

Examining committee members

……………………………… ___________________________

……………………………… ___________________________

……………………………… ___________________________

 ii

ABSTRACT

AN INDUSTRIAL APPLICATION

USING BLACKBOARD ARCHITECTURE

KEREM BURAK TÜNAY

 This thesis implements control architecture for goal-driven blackboard systems. The

architecture is based on searching a general goal tree by diminishing into sub-goal trees. The

aim is to develop a problem solving architecture in the AI space via blackboard system. The

basic elements of the architecture are goals, policies, strategies, facts, methods, and

knowledge sources. The basic control loop employs a bidding mechanism to determine the

knowledge source to be executed at the current cycle. A policy is a local scheduling criterion

which guides to bidding process and it indicates which of the attributes of the knowledge

sources are relevant in this process. A strategy is a global scheduling criteria such as depth-

first, breadth-first etc. A method is a partially complete general goal tree structure

representing high level knowledge on how to solve a problem. The architecture employs a

control blackboard, and separate knowledge sources for the control problem and for

representing the domain knowledge.

A production planning application is developed using this architecture. Both C++ and

ABAP languages were used to implement this application.

Keywords: Blackboard systems, artificial intelligence, AI search algorithms, collaborating

software, C++, SAP, ABAP, production planning.

 iii

ÖZET

KARATAHTA MİMARİSİ İÇİN
ENDÜSTRİYEL UYGULAMA

KEREM BURAK TÜNAY

Bu tez amaç-güdümlü karatahta sistemleri için bir kontrol mimarisinin uygulamasını

içermektedir. Mimari, genel amaç ağaçlarının alt-amaç ağaçlarına indirgenerek taranmasına

dayanmaktadır. Tezin amacı, karatahta sistemini kullanarak yapay zeka alanında problem

çözme mimarisi geliştirmektir. Amaçlar, genkurallar, stratejiler, yöntemler ve bilgi kaynakları

mimarinin temel elemanlarını oluşturmaktadırlar. Ana kontrol döngüsü, o andaki çevrimde

işlenecek bilgi kaynağını belirlemek için bir değerleme mekanizması kullanmaktadır. Burada

genkurallar bilgi kaynaklarının hangi niteliklerinin kullanılacağını belirleyen lokal zamanlama

kriterleridir. Öte yandan, strateji, önce-derine, önce-enine gibi global zamanlama kriteridir.

Yöntemler ise, bir problemi nasıl çözmek gerektiği üzerine varolan yüksek düzeyde iki bilgiyi

tanımlayan kısmen tamamlanmış genel amaç ağacı yapısıdır. Mimari, ayrı kontrol ve domen

karatahtaları kullanır. Kontrol problemi ve domen ile ilgili bilgiler ayrı bilgi kaynakları ile

temsil edilir.

Bu mimari kullanılarak bir üretim planlaması uygulaması geliştirilmiştir. Uygulamayı

geliştirmek için, C++ ve ABAP dilleri birlikte kullanılmıştır.

Keywords : Karatahta sistemleri, yapay zeka, yapay zeka tarama algoritmaları, işbirliği

yazılımları, C++, SAP, ABAP, üretim planlaması.

 iv

ACKNOWLEDGEMENTS

I would like to express my thanks to Prof. Dr. Selahattin Kuru for his comments, help and

supervision on this topic and for his all supervision during our previous studies.

 v

TABLE OF CONTENTS
ABSTRACT..iii
ÖZET... iv
ACKNOWLEDGEMENTS ... v
TABLE OF CONTENTS.. vi
TABLE OF FIGURES ...vii
LIST OF TABLES .. ix
1. INTRODUCTION.. 1
2. BLACKBOARD SYSTEMS ... 2

2.1. A BLACKBOARD SYSTEM IN DETAIL ... 3
2.2. KNOWLEDGE SOURCES ... 5
2.3. THE BLACKBOARD.. 6
2.4. CONTROL COMPONENT ... 8
2.5. BLACKBOARD SYSTEMS AS COLLABORATING SOFTWARE.................... 10

2.5.1. REPRESENTATION ... 10
2.5.2. AWARENESS ... 11
2.5.3. INVESTIGATION ... 11
2.5.4. INTERACTION ... 13
2.5.5. INTEGRATION... 14
2.5.6. COORDINATION ... 16

3. THE PROPOSED ARCHITECTURE ... 20
3.1. ELEMENTS OF THE CONTROL LOOP... 20
3.2. THE CONTROL LOOP IN DETAIL .. 21
3.3. A SIMPLE EXAMPLE OF ARCHITECTURE .. 22

3.3.1. FLIGHT TICKETING PLAN.. 22
3.3.2. THE SCENARIO ... 22
3.3.3. ELEMENTS, KNOWLEDGE SOURCES AND FACTS 24
3.3.4. EXECUTION OF THE SYSTEM ... 26

4. IMPLEMENTATION .. 30
4.1. GENERAL FLOW OF THE IMPLEMENTATION ... 30
4.2. ARCHITECTURE ELEMENTS.. 31
4.3. THE CONTROL LOOP FLOWCHART... 35

5. EXAMPLES... 36
5.1. APPLICATION: ROUTING PLANNER IN A FACTORY 36

5.1.1. THE SCENARIO ... 36
5.1.2. ABAP PROGRAM : ZPLANTEST... 38
5.1.3. ELEMENTS, KNOWLEDGE SOURCES AND FACTS 43
5.1.4. EXECUTION OF THE SYSTEM ... 46

5.2. OTHER APPLICATIONS IN THE MARKET ... 50
5.2.1. TRIGGER... 50
5.2.2. PREACTOR... 53

6. CONCLUSION AND EVALUATION ... 57
REFERENCES... 58
APPENDIX A .. 59

 vi

TABLE OF FIGURES

Figure 2-1 : Directly Connected Graph.. 4

Figure 2-2 : Anonymously Interacting Modules .. 4

Figure 2-3 : Blackboard System Components.. 5

Figure 2-4 : Classic Blackboard System Cycle.. 9

Figure 2-5 : Separation (Encapsulation) of Control Knowledge.. 9

Figure 2-6 : KS Activities .. 12

Figure 2-7 : Separation (Encapsulation) of Integration Knowledge .. 16

Figure 2-8 : Linearly and partially ordered KSs .. 17

Figure 2-9 : The queue latency problem .. 18

Figure 2-10 : Depth-First Search Bias.. 19

Figure 3-1 : The Control Loop of the proposed Architecture .. 21

Figure 3-2 : Map of the Flights .. 23

Figure 3-3 : The FlightInfo Structure for KS in the blackboard .. 24

Figure 3-4: Adding flight Information into the system.. 25

Figure 3-5 : General Goal Tree for NewYork.. 26

Figure 3-6 : The output of Solutions.txt file... 27

Figure 3-7 : The new sub-goal tree after adding the methods.. 28

Figure 3-8 : The output of solutions.txt file after second run .. 28

Figure 3-9 : The new sub-goal tree after adding fact ... 28

Figure 3-10 : The output of the solutions.txt after third run of the program............................ 29

Figure 4-1 : Flowchart of the proposed architecture .. 30

Figure 4-2 : Flow chart of control loop .. 35

Figure 5-1 : Selection parameters screen of ZTESTPLAN program 40

Figure 5-2 : Output of production plans list ... 40

Figure 5-3 : Production Orders List ... 41

Figure 5-4 : Stock list of products.. 41

Figure 5-5 : Machines List ... 42

Figure 5-6 : General list ... 42

Figure 5-7 : Example for production combination tree for a machine..................................... 43

Figure 5-8 : Multiple Selection Screen for Machine Codes... 46

Figure 5-9 : Downloaded production orders list .. 47

Figure 5-10 : Selection boxes on the general list ... 48

 vii

Figure 5-11 : Download Buttons.. 48

Figure 5-12 : Excel screenshot of the output file after executing application.......................... 49

Figure 5-13 : Pseudo Code of simulated annealing algorithm... 51

Figure 5-14 : Trigger – min/max function parameters menu ... 52

Figure 5-15 : Trigger – Production Orders Menu .. 52

Figure 5-16 : Trigger - SAP Transfer Menu .. 53

Figure 5-17 : Preactor – Main window screenshot .. 55

Figure 5-18 : Preactor – A Sequence overview window.. 56

 viii

LIST OF TABLES

Table 3.1 : Flight Services List of the Company.. 23

Table 5.1 : The list of injection machines .. 38

 ix

1. INTRODUCTION

A blackboard system is a way of combining a set of diverse software modules to solve a

problem using AI technique. In this thesis, an industrial production planning application will

be proposed by using blackboard control architecture. The architecture is based on searching a

general goal tree by diminishing into sub-goal trees. The objective is to improve the

performance of this AI search of the blackboard systems by using real time experiences as

high level knowledge sources.

The basic elements of the architecture are goals, policies, strategies, facts, methods, a

basic control loop and knowledge sources.

The high level knowledge can be statistical data about a problem, some imitations of

human experts and so on. We will define this high level knowledge in two leveled

hierarchical way: methods and facts. While methods define a partially complete general goal

tree structure how to solve the problem, facts have a higher priority that orders a way to

execute in the search space. Both of them improve the performance of the search action in a

blackboard system.

The basic control loop employs a bidding mechanism to determine the knowledge source

to be executed at the current cycle. A policy is a local scheduling criterion which guides to

bidding process and it indicates which of the attributes of the knowledge sources are relevant

in this process. A strategy is a global scheduling criteria such as depth-first, breadth-first etc.

The next chapter discusses blackboard systems in detail. Then the proposed architecture is

introduced in the terms of definition. After that, the implementation of the system in C++ will

be explained in detail. The whole system flow chart and the control loop flowchart will be

given to show how architecture works. Also, a flight ticketing example will be given to show

how to use the system to solve problems and we will examine a trace of all the parts of the

implemented program. As a second example we will give a routing planning model about a

plastic injection machine in a workshop to show the power of the architecture. The last

chapter gives an evaluation of the approach.

 1

2. BLACKBOARD SYSTEMS

In attempting to solve a problem, a blackboard system employing an artificial intelligence

(AI) technique typically performs a series of problem solving actions [1]. This process usually

involves a search in the space of partial solutions, and each action extends the current partial

solution. Then, the system collaborates these solutions to achieve a flexible, brainstorming

style of problem solving exhibited by a group of diverse human experts working together to

address problems that no single expert could solve alone.

Problem solving begins when the problem and initial data are written onto the blackboard.

The specialists watch the blackboard, looking for an opportunity to apply their expertise to the

developing solution. When a specialist finds sufficient information to make a contribution,

she records the contribution on the blackboard, hopefully enabling other specialists to apply

their expertise. This process of adding contributions to the blackboard continues until the

problem has been solved.

In this point we have a several issues into consideration. The first issue is the direction of

the search, which is also called the search strategy. There are two basic search strategy, goal-

driven and data-driven search strategies. In this thesis we are going to use goal-driven search

strategy that begins with the goal to be solved, then finds rules or moves that could be used to

generate this goal and determine what conditions must be true to use them. These conditions

become the new goals, sub-goals, for the search. This process continues, working backward

through successive sub-goals, hopefully until a path is generated that leads back to the facts of

the problem. This is why; this strategy is also called backward chaining [2]. In data-driven

search, sometimes called forward chaining, the problem solver begins with the given facts and

a set of legal moves or rules for changing the state. Search proceeds by applying rules to facts

to produce new facts. This process continues until it generates a path that satisfies the goal

condition.

At each point in the problem solving process, more than one potential action may be

possible. Then the second issue is to decide which of its potential actions the AI system

should perform. This issue is called the control problem. To solve this problem, a control

structure decides which action will be performed and the choice of this control structure is

playing an urgent role on success and the efficiency of the system.

 2

The third issue is related to the distribution of the problem solving capability among

several problem-solving agents. In that sense, we have centralized systems on one hand - such

as multi-agent systems - and distributed systems on the other.

In this thesis, blackboard architecture for the goal-driven strategy that uses the control

architecture paradigm will be implemented. The basic elements of the architecture are goals,

policies, strategies, methods, knowledge sources (KS’s) and facts. Also the architecture

employs a basic control loop that uses a bidding mechanism in choosing the knowledge

source to be executed at the current cycle.

2.1. A BLACKBOARD SYSTEM IN DETAIL

A blackboard system is a way of combining a set of diverse software modules is to

connect them according to their data-flow requirements [3]. In Figure 2-1, you can see a

combination of five modules that shows the data-flow. Also this is called directly connected

graph.

When appropriate, the modules can appear multiple times in the communication graph,

but the connections are predetermined and direct. This approach can work well when both the

module set and the appropriate communications among modules are static. When the specific

modules are subject to change and/or when the ordering of modules cannot be determined

until specific data values become known at execution time, the inflexibility of direct

interaction becomes unwieldy. From a system-building perspective, direct interaction

promotes the use of private communication protocols between modules.

Another approach is to use indirect and anonymous communication among modules via an

intermediary, such as a blackboard data repository. In Figure 2-2 you can see how can a data

repository can be controlled by a control intermediary. In this approach, all processing paths

are possible, and the choice among paths can be made dynamically by a separate “moderator”

mechanism that selects among the possible paths. The information placed on the blackboard is

public, available to all modules, control mechanisms, newly added modules, and monitoring

and debugging tools. Indirection reduces the number of communication interfaces that must

be supported among highly collaborating modules.

 3

A

B

C

D
A

C

E

Figure 2-1 : Directly Connected Graph

.

Figure 2-2 : Anonymously Interacting Modules

A blackboard system consists of three main components:

• Knowledge sources (KSs) are independent computational modules that together

contain the expertise needed to solve the problem. KSs can be widely diverse in their

internal representation and computational techniques and are anonymous in that they

do not interact directly with one another or know what other specific KSs are present

in the system.

A

Blackboard

B
C

D
E

control

 4

• The blackboard is a global data repository containing input data, partial solutions,

and other data that are in various problem-solving states. All KS interaction is via

changes made on the blackboard.

• A control component that makes runtime decisions about the course of problem

solving and the expenditure of problem-solving resources. The control component is

separate from the individual KSs.

Figure 2-3 shows these three main components of the blackboard system:

Knowledge
Sources

Blackboard

Control
Shell

Figure 2-3 : Blackboard System Components

2.2. KNOWLEDGE SOURCES

Blackboard systems use a functional modularization of expertise. Each KS is a specialist

at solving certain aspects of the overall application and is separate and independent of all

other KSs. A KS does not require other KSs in making its contribution. Once it finds the

information it needs on the blackboard, it can proceed without any assistance from other KSs.

Furthermore, without making changes to any other KSs, additional KSs can be added to the

blackboard system, poorer performing KSs can be enhanced, and inappropriate KSs can be

removed. KSs perform relatively large computations, reflecting the processing required

implementing their specialty.

A KS needs no knowledge of the expertise, or even the existence, of the others; however,

it must be able to understand the state of the problem-solving process and the representation

of relevant information on the blackboard. Each KS knows the conditions under which it can

contribute to the solution and, at appropriate times, attempts to contribute information toward

 5

solving the problem. This knowledge that each KS has about when it might be able to

contribute to the problem-solving process is known as a triggering condition.

At an abstract level, a blackboard system may appear to be very similar to a rule-based

system: the blackboard system’s blackboard and the rule-based system’s working memory;

the blackboard system’s KSs and the rule-based system’s production rules; event-based

triggering of KSs and of rules; anonymous interaction of KSs and rules; and so on.

Historically and operationally, however, blackboard-systems and rule-based systems are very

different, especially in the size and scope of rules versus the size and complexity of KSs and

in the relatively small number of large-grained control decisions that are made by a

blackboard system versus the large number of fine-grained conflict-resolution decisions made

by a rule-based system. With regard to knowledge granularity, KS s are substantially larger

and more complex than each isomorphic rule in an expert system. While expert systems work

by firing a rule in response to stimuli, a blackboard system works by executing an entire KS

in response to an event. Each KS can be arbitrarily complex and internally different from one

another. In particular, a single KS in a blackboard system could be implemented as a complete

rule-based system [4].

KSs are not the active “agents” in a blackboard system. Instead, KS activations are the

active entities competing for computational resources. A KS activation is the combination of

the KS knowledge and a specific triggering context. The distinction between KSs and KS

activations is important in applications where numerous events occur that trigger the same

KS. In such cases, control decisions involve choosing among particular applications of the

same KS knowledge, rather than among different KSs. Taking this distinction one step

further, KSs are static repositories of knowledge while KS activations are the active “agents”

that are created in response to each triggering context. These KS-activation “agents” remain

alive only until the KS activation is executed or is canceled prior to execution.

2.3. THE BLACKBOARD

The blackboard component of a blackboard system serves as:

• a community memory of raw input data; partial solutions, alternatives, and final

solutions; and control information

• a communication medium and buffer

• a KS trigger mechanism

 6

Blackboard applications tend to have elaborate blackboard structures, with multiple levels

of abstraction. Although this organization of blackboard data is often useful to the developer

and user of the system, the principal reason is to make locating appropriate information on the

blackboard more efficient. If the problem being solved is complex and the number of

contributions placed on the blackboard becomes large, quickly locating pertinent information

becomes a problem. A KS execution should not have to scan the entire blackboard to see if

appropriate items have been placed on the blackboard by another KS execution.

One solution is to subdivide the blackboard into regions, each corresponding to a

particular kind of information [5]. This approach is commonly used in blackboard systems,

where different levels, planes, or multiple blackboards are used to group related objects.

Similarly, ordering metrics can be used within each region, to organize information

numerically, alphabetically, or by relevance. Advanced blackboard-system frameworks

provide rich positional metrics for efficiently locating blackboard objects of interest .

Efficient retrieval is needed to support the use of the blackboard as a group memory for

contributions generated by earlier KS executions. An important characteristic of the

blackboard approach is the ability to integrate contributions for which relationships would be

difficult to specify by the KS writer in advance. For example, a KS working on one aspect of

the problem may put a contribution on the blackboard that does not initially seem relevant or

immediately interesting to any other KS. Only until much later, when substantial work on

other aspects of the problem has been performed, is there enough context to realize the value

of the early contribution. By retaining these contributions on the blackboard, the system can

save the results of these early problem-solving efforts, avoiding recomputing them later.

Additionally, the blackboard control component can notice when promising contributions

placed on the blackboard remain unused by other KSs and possibly choose to focus problem-

solving activity on understanding why they did not fit with other contributions.

Typically, locating previously generated contributions of interest is dependent upon the

context of other information being used by a KS. This makes a simple pattern-matching

specification of the specific contributions difficult and computationally inefficient. Many

contributions placed on the blackboard may never prove useful, and maintaining the state of

numerous, partially completed patterns is expensive. Therefore, an important characteristic of

 7

blackboard systems is enabling a KS to efficiently inspect the blackboard to see if relevant

information is present.

2.4. CONTROL COMPONENT

In a blackboard system, a separate control mechanism, sometimes called the control shell,

directs the problem-solving process by allowing KSs to respond opportunistically to changes

made to the blackboard. A blackboard system uses an incremental reasoning style: the

solution to the problem is built one step at a time.

In a classic blackboard-system control approach, the currently executing KS activation

generates events as it makes changes on the blackboard. Figure 2-4 shows this generation of

changing events. These events are maintained until the executing KS activation is completed.

At that point, the control shell uses the events to trigger and potentially activate KSs. The KS

activations are ranked, and the most appropriate KS activation is selected for execution. For

continuous applications, this KS-execution cycle continues indefinitely. For single solution

based applications, this cycle continues until the problem is solved.

It is important that the control component in a blackboard system is able to make its

selection among pending KS activations without possessing the detailed expertise of the

individual KSs. Without such a separation, the modularity and independence of KSs would be

lost. If specific knowledge of all the KSs had to be included within the control shell, it would

have to be modified every time a KS was added or removed from the system. On the other

hand, we do not want KSs to be making autonomous control decisions—in a blackboard

system, control decisions are made by the control shell. In that point, facts and policies help

us.

The solution is to separate control knowledge into generic, overall control knowledge

contained in the control shell and detailed KS-specific control knowledge packaged with each

KS. Then, whenever the control shell needs KS-specific control information, it asks the

individual KSs for these estimates on how the KS will behave. This separation of control

knowledge is shown in Figure 2-5. When a KS is triggered, the control shell passes the

triggering context to the KS, which uses its KS-specific control knowledge to estimate factors

such as the quality, importance, cost, and likelihood of successfully making potential

 8

contributions. This estimate is determined without actually performing the work to compute

the contributions.

Best
KSA

New
KSA

Blackboard

Control Shell

Pending
KSAs

events

Executing KSA

KS

Figure 2-4 : Classic Blackboard System Cycle

Instead, each KS generates estimates of the contributions that would be generated by using

fast, low-cost, approximations developed by the KS writer. These estimates are of the form,

“If this activation is selected for execution, I estimate it will generate contributions of this

type, with these qualities, while expending these resources.” The KS returns these estimates to

the control shell which uses them in deciding how to proceed.

Estimate

Context

Control
Shell

Control
Estimator

Knowledge
Source

Figure 2-5 : Separation (Encapsulation) of Control Knowledge

 9

2.5. BLACKBOARD SYSTEMS AS COLLABORATING SOFTWARE

As collaborating software, blackboard systems have six key challenges to be effective in

problem solving [2]:

• Representation: getting software modules to understand one another

• Awareness: making modules aware when something relevant to them occurs

• Investigation: helping modules to quickly find information related to their current

activities

• Interaction: creating modules that are able to use the concurrent work of others

while working on a shared task

• Integration: combining results produced by other modules

• Coordination: getting modules to focus their activities on the right things at the

right time.

Now let us discuss these challenges:

2.5.1. REPRESENTATION

The structure of information on the blackboard is at the center of the blackboard-system

approach. In principle, the blackboard representation should not be based on any specific set

of KSs. Instead, the design of the blackboard representation should stem directly from the

characteristics of the application and the goal of allowing any potential KS to make

contributions toward a solution. In practice, however, the design of the blackboard

representations are not fully separated from a general sense of the kind of KSs that will be

used in the application, and experience has demonstrated that choices made in the blackboard

representation can have a major effect on system performance and complexity.

The KSs in a blackboard application must be able to correctly interpret the information

recorded on the blackboard by other KSs. Additionally; the control shell may also need to

understand aspects of blackboard data in order to make strategic focus-of-attention decisions.

However, all aspects of blackboard data do not need to be understandable by all KSs. Many

KSs only use data from one or two blackboard levels as input and only make modifications at

a single blackboard level. Similarly, KSs may only operate on a few classes of blackboard

objects. In a very practical sense, this characteristic means that portions of the blackboard

may be relevant to only a few KSs and could be specialized to the interaction requirements

 10

among those KSs. Yet, private jargon shared by only a few KSs limits the flexibility of

applying other KSs on that information in the future. In practice, there is a trade-off between

the representational expressiveness of a specialized representation shared by only a few KSs

and a fully general representation understood by all KSs. Determining the proper balance

between a general and specialized representation is an important aspect of blackboard-

application engineering.

In the basic blackboard-system control cycle, only a single KS activation is executing at

any time. This KS execution runs to completion or termination by the control shell before

another KS execution begins. To further simplify the architecture in this basic control cycle,

only the executing KS is allowed to make changes to the blackboard while it is executing.

This requirement eliminates the need to incorporate complex blackboard locking or

transaction mechanisms that would slow down blackboard operations.

2.5.2. AWARENESS

In a blackboard application, KSs are triggered in response to specific types of blackboard

events that indicate that the KS may be able to contribute to problem solving. Rather than

having KSs continually poll the blackboard, the control shell is told about the kind of events

in which each KS is interested. This is typically called registering the KS. The control shell

maintains this triggering information and directly considers the KS for activation whenever

that kind of event occurs. To be efficient, this triggering information is provided to the low-

level blackboard repository accessor routines which only notify the control shell of events for

which any KS is currently registered. KS triggering can be made highly efficient when the

registration involves only simple, disjunctive trigger events.

2.5.3. INVESTIGATION

When a KS is triggered by one or more events, it must often look on the blackboard for

other information that is related to these events. This search for associated data involves: 1)

computing approximate attribute values for the kind of blackboard objects that are relevant to

computations stemming from these triggering events, and then 2) finding those objects on the

blackboard. For example, a KS that is triggered by the sudden movement of an unfriendly unit

toward a friendly position might look on the blackboard for related movement of other

unfriendly units that could indicate the initiation of an orchestrated threat. Units of interest

would be unfriendly, within some radius of the friendly position, and may have recently

 11

changed their movements. The identity names of these units of interest are not known, nor are

they linked to the unit whose change triggered the event or to units at the friendly position.

The units of interest can only be determined by the approximate values of some of their

attributes. The importance of such proximity-based associative retrieval to locate relevant

objects that have been placed on the blackboard by other KSs is often overlooked in casual

discussions of blackboard systems.

In Figure 2-6, most KS executions in a blackboard system involve the following steps:

1. The control shell is notified of an event of interest to the KS

2. This triggering context is used to activate the KS

3. The KS uses the triggering context to determine the ranges of attribute values that

are relevant to the triggering context and looks on the blackboard to see what

additional blackboard objects have attributes within those ranges

4. The KS uses the retrieved objects and the triggering context information to perform

its computations

5. The results of this computation are written onto the blackboard

In this sequence, step 3 is the step associated with investigation.

Trigger Context BB Component

Find associated data BLACKBOARD

Figure 2-6 : KS Activities

Execute

Share Results

Level X

Level Y

Level Z

Control
Data
&
Agenda

 12

2.5.4. INTERACTION

Blackboard systems prohibit direct interaction among modules, as all communication is

done via the blackboard. Traditional blackboard systems have only a single control thread and

execute only one KS activation at a time; once execution is started, the KS activation runs to

completion or until it is aborted by the control shell. This means that all interaction among KS

activations is serial, is unidirectional from earlier to later executions, can have unbounded

latency, and is indirect via the blackboard. This severe restriction on interaction greatly

simplifies the development of blackboard applications, but in certain situations this restriction

can be a significant collaborating-software limitation [6].

Assume that KS A and B both are interested in the same event and can both do some

initial work without interacting with one another. However, the initial work of A is needed for

B to complete its work and vice versa. In this situation, the blackboard-application designer

must artificially split A into two KSs, APRE and APOST, and similarly, B is split into BPRE

and BPOST. Once APRE completes, BPOST can begin and, similarly, once BPRE completes,

APOST can begin. If a lot of interaction is required, this KS-splitting approach can result in a

large number of artificial KS fragments. Alternatively, the same iterative form of interaction

can be achieved by creating KSs that are able to jump into later computations, based on the

information present on the blackboard. In this case, multiple KS executions are still required

to support the serial interaction, but the number of KSs present in the system does not need to

be increased.

Parallel and distributed blackboard-system extensions of the classic, single-threaded

blackboard architecture allow true concurrent KS executions, and this raises another

important interaction issue. If the KSs are to remain anonymous and indirect in their

interaction, then all interaction must still occur via changes to the blackboard. Executing KSs

must be able to notice and respond to changes made to the blackboard during their execution

to support such indirect interaction. We could also extend the KS model to allow for direct

communication among co-executing KS activations. However, this is a major departure from

the blackboard-system model, and it is problematic because of the uncertainty about which

KS activations will be executing concurrently at any moment.

 13

2.5.5. INTEGRATION

Integration and representation are closely linked in blackboard-system applications. The

representation choices that are made not only affect the ability of KSs to use the results of

others, but also how KS results are combined. In a blackboard application, integration of

results involves three major activities [7]: relationship management, attribute merging, and

value propagation.

The need for relationship management occurs when a KS execution wants to create a

new object on the blackboard and the semantics of the blackboard representation requires that

the relationship between the new object and some existing objects be represented. A simple

example of this is the creation of a higher-level object as a result of identifying a set of lower-

level supporting objects, such as creating a platoon object based on a set of individual unit

objects. If this synthesis activity is performed by a single KS execution, the relationship

between the new platoon object and the set of supporting unit objects can be easily

represented by also creating support links that connect the objects. Such support links

explicitly maintain the relationship between the objects on the blackboard.

What blackboard-system component should be responsible for maintaining these

relationships? There are two approaches for this answer.

One approach makes each KS responsible for this. When an executing KS wants to

create a new blackboard object, it must first check to see if a semantically equivalent object

already exists which involves a blackboard retrieval. If one is found, the KS modifies the

relationships of the existing object instead of creating a new object and relationships. This

approach requires that each KS writer perform this check and that the semantics of

equivalency are consistent across all KSs.

Another approach is to make equivalent-object checking and relationship management

part of the unit-creation operation. In this case, the KS would ask to create a new platoon unit

with links to the support units and the blackboard itself would perform the required

bookkeeping. This latter approach begins to move the blackboard from a passive repository to

a more active entity with application knowledge about what constitutes equivalency and how

to handle duplicate creation requests.

 14

The second integration activity is attribute merging. As with relationship management,

we can have the KS execution determine the new belief value or we can have the blackboard

object-creation routines do it automatically. The problem with the latter approach is that the

knowledge required by the blackboard grows with the complexity of determining merged

values. We certainly do not want to end up duplicating much of the knowledge used by KSs

in computing new blackboard objects in automatic blackboard-integration routines. Clearly,

as the number of object attributes that need to be appropriately merged grows, the complexity

of work required by either every KS execution or the shared blackboard representation

maintenance routines also grows.

The third integration activity is value propagation. Assume that a belief associated with

a platoon object is a function of the beliefs of its supporting units and their spatial locations

relative to one another. Assume a field report is received that contains a confirmed sighting of

one of the supporting units of the platoon and that the KS execution that processes this

information increases the belief value of the supporting unit. We would like this increased

belief value to propagate to the platoon value, increasing our belief in it as well. Again, we

could make this propagation be the responsibility of the executing KS or an activity of a more

active blackboard repository. Similarly, suppose yet another KS execution, using different

sensor data than was available to earlier KS executions, is able to compute a more accurate

position for one of the support units and changes the position attribute of that support unit. We

would like this new position value to be used to update the position attribute of the platoon

unit and, potentially, the platoon unit’s belief value if the new location of the supporting unit

affects the belief calculation. Historically, blackboard systems have handled these integration

activities in a very specific manner. Some applications placed the responsibility for these

activities with the executing KSs. This required substantial discipline on the part of KS

writers to maintain semantic consistency across KSs. Other applications placed this

responsibility with the blackboard, risking duplication of KS knowledge and the potential for

inconsistency if the way that the KS performed its activities was changed significantly. By

careful modularization and sharing of code among KSs and the “active” blackboard, it is

possible to reduce this duplication and risk. Finally, some applications dealt with value

propagation by simply triggering and executing KSs again if important attributes used in their

contributions changed. In this case, a re-executed KS simply replaced its original

contributions with the latest version. Each of these approaches worked well enough in specific

 15

situations and, when used with care, allowed complex blackboard-system applications to be

built.

Also, creating a principled integration model for a blackboard application requires close

analysis of how the KSs in the application operate in conjunction with one another. From a

practical standpoint, how we maintain the consistency of the result-integration model with the

current KS set is an important issue. Just as KS-specific control expertise is developed and

maintained with each KS, it is important to develop KS-specific models of result generation

that can be incorporated into an overall result-integration model when the KS is added to the

system. In Figure 2-7, you can see this separation of result integration. Such a capability

remains to be developed, but it is an important research goal in enabling principled result

integration in applications, that will have many KS changes throughout their lifetimes.

Finally, the degree that results are shared in a blackboard application has a direct relation

to the complexity of the result-integration models. The integration model need only address

results produced by KSs that are placed onto the blackboard, so there is a tension between

limited sharing and aggressive sharing. Notice that, limited sharing is the small size of the

integration model and aggressive sharing is a complex integration model. Principled result

integration adds yet another consideration to degree of sharing design decisions.

context

model

Result
Integrator

Knowledge
Source

Control
Estimator

Figure 2-7 : Separation (Encapsulation) of Integration Knowledge

2.5.6. COORDINATION

The last collaborating-software challenge is running the right KSs on the right data at the

right time. The opportunistic control that is the hallmark of blackboard systems is highly

flexible, responsive, and generally efficient. During each control cycle, a traditional

blackboard system makes a single, instantaneous choice of the best KS activation to execute

 16

and, if new conditions warrant, the system can focus its attention on a new area as early as the

next cycle. As discussed earlier, executing only one KS activation at a time also greatly

simplifies the architecture. Nevertheless, even achieving effective single-threaded control in a

complex blackboard application can be challenging.

At any given moment, a blackboard application rarely lacks choices among a large

number of potential KS activations to execute. These choices stem from multiple inputs

arriving into the system, combinatory ways in which this data can be combined and used, and,

in many applications, multiple KSs that can be applied to the same data. Figure 2-8 shows

some models of these KSs. This results in a large and dynamic space of possible KS

executions, of which only a small fraction can be pursued. Because blackboard systems

operate incrementally, poor choices early on can result in triggering a large number of

inappropriate downstream KS executions in response to the results generated by a single

“inappropriate” KS execution. Agenda-based control uses a utility-based rating computed for

each KS activation to select the best activation to execute in each cycle.

a b c

Figure 2-8 : Linearly and partially ordered KSs

This rating incorporates the estimates of what the activation will do if executed and more

global requirements, such as parts of the solution that need attention. Unselected activations

remain on the agenda, potentially to be executed in the future.

 17

While the activations that are queued on the agenda await execution, the state of the

blackboard and of overall problem solving is being changed by other KS executions. This

results in a queue-latency problem [8] where the information associated with the KS

activation becomes inconsistent with the current situation. In Figure 2-9, we can see a model

of queue latency problem. One naive solution to this problem is to re-rate all KS activations

on every cycle. However, since the number of pending KS activations can become large, this

is not an efficient solution, particularly if the re-rating of each KS activiation involves

searching the blackboard for changes relevant to the activation. Blackboard systems using this

approach have needed to artificially limit the number of activations held pending or to re-rate

only the topmost activations, under the assumption that the other ratings would not have

changed too drastically. Other systems have organized the agenda in much the same way as

the blackboard, so that the control shell could quickly identify pending KS activations that

might be affected by changes on the blackboard. Event based re-triggering of pending KS

activations is an example of this strategy.

dependencies

Actions
AGENDA

.

.

.

BLACKBOARD

KS A

KS B

KS C

KS D

Figure 2-9 : The queue latency problem

In addition to the queue-latency problem, simple agenda based control techniques can

introduce unwelcomed depth-first bias to opportunistic control. Consider the agenda shown in

Figure 2-10. KS activations of A and B have the same rating with C close behind. From a

control standpoint, these can be considered equally valid choices to be executed next. If A is

selected and executed, its results may trigger a number of other KS activations, such as X, Y,

and Z, potentially at higher ratings than B and C. If B had been selected instead of A, it might

 18

have triggered X0 and Y0, again with ratings much higher than A and C and potentially even

higher than the ratings of X, Y, and Z. To be fair, and to make our control decisions as

informed as possible, we should execute A, B, and C before executing any of the KS

activations that are triggered by them.

This is one simple example of some of the problems that result from making

instantaneous, history and purpose free, control decisions, and this problem was observed in

the original Hearsay-II blackboard system [4].

Not executed for a long time

.

.

.

.

.

.

KS A

KS B

KS C

KS D
KS X

KS Y

KS Z

KS B

KS D

KS C

KS W

KS Y

KS W

KS Z

KS D

KS C

KS B

Figure 2-10 : Depth-First Search Bias

 19

3. THE PROPOSED ARCHITECTURE

The proposed architecture extends and elaborates the standard architecture and has the

following characteristics:

• The blackboard control architecture defines an explicit control blackboard.

• The blackboard control architecture defines explicit control knowledge source

• The blackboard control architecture defines a simple, adaptive scheduling mechanism.

The basic control loop of the proposed control architecture employs the following three

steps:

• Update the set of pending goals

• Select a pending goal

• Execute the owner KS of the goal selected

The basic control loop is expressed in terms of goals rather than KSs. The set of all goals

to relevant to a problem form a general goal tree. Let’s discuss the proposed control

architecture.

3.1. ELEMENTS OF THE CONTROL LOOP

Before to go in deep of the architecture, let us summarize the elements of the architecture:

a. Knowledge Sources: Our computational modules that together contain the expertise

needed to solve the problem.

b. Policies: Our local scheduling criterion which guides to bidding process and it

indicates which of the attributes of the knowledge sources are relevant in the process.

c. Bids: Our mechanism to determine the knowledge source to be executed at the current

cycle by evaluation of each parameters in the knowledge source. And if we want to

see all the solutions for a problem, then, we can add the bidding mechanism at the end

of the architecture.

d. Strategies: Our global scheduling criteria such as depth-first, breadth-first etc.

e. Methods: A method is a partially complete general goal tree structure representing

high level knowledge on how to solve a problem. The method is used to reduce the

number of children of the nodes. Hence, the size of the problem is reducing in the

search space. Also, we can give the execution order of the children nodes.

 20

f. Facts: Facts are like knowledge sources. We can think the facts as nodes, however,

domain facts have no local evaluation parameters and always higher priority than

knowledge sources.

3.2. THE CONTROL LOOP IN DETAIL

The pseudo code of control loop is given in Figure 3-1:

take the goal that is in front of the queue
if there is a KS that solves the problem
 put KS into solution list
if there are pending domain facts then
 if goal matches a pending domain fact
 put domain fact into solution list
 elseif goal unifies some pending domain facts
 select one of the domain facts
 unify it
 put domain fact into solution list
 endif.
if there are no pending domain facts
 identify the policy for the goal and the owner KSs
 set the goal tree
 reduce pending KSs according to the method
 get the bids of the KSs
 select the winning KS according to the current policy
 Execute the KS to generate the goal to be posted

Figure 3-1 : The Control Loop of the proposed Architecture

After the system gets the global data (KSs, strategy, facts, policies and methods), it enters

to the control loop. The control loop’s purpose is to find an optimal solution set about the

problem defined.

At first, the control architecture defines the starting point of the problem. Then, it

generates a new stack and appends all the adjacent nodes to the starting point. The nodes are

selected according to the strategy. After that, the control loop searches the facts for these

adjacent nodes. If any found, then the system puts this fact into the solution queue. If there is

no fact about the starting point, then the system eliminates the adjacent nodes according to the

method. After eliminating nodes, the system calculates the bids of the remaining nodes, and

appends the higher valued node to the solution list. Then, the system takes the selected node

as the starting point and regenerates the stack that includes all the adjacent nodes to the

starting point. This process goes on until the problem is solved or there are no more nodes. In

the next chapter, we will discuss the implementation of the structure.

 21

3.3. A SIMPLE EXAMPLE OF ARCHITECTURE

For better understandability of the control architecture, let us give a simple but effective

example.

3.3.1. FLIGHT TICKETING PLAN

In this example, we will see how can we apply this structure to an application. The

example application finds the optimal flight plan for a customer.

What does this simple application do is:

• Takes all the flight info into memory

• Takes additional information for the flights (facts, methods, policies)

• Then takes the origin and the final destination from the user.

• Finally, finds a solution according to information given

3.3.2. THE SCENARIO

If we write a scenario for this application, it would be like this:

There is a small airline company that makes charter flights accros USA. The company has

eleven different flight routes to the most popular eight cities. The cities are :

• New York

• Chicago

• Denver

• Toronto

• Calgary

• Los angeles

• Dallas

• Houston

Each flight service have a distance between origin and the destination of the flight and

each route have its own price. The distance and the price are affecting to the selection of

service at the bidding mechanism in the program. As we said before, all knowledge sources

and policies act like human experts. So, each flight services act like a server, and the bidding

mechanism will act like a customer.

 22

The flight routes are shown in Table 3.1:

Table 3.1 : Flight Services List of the Company

From To Distance(Miles) Price(USD)

New York Chicago 900 350

New York Toronto 500 350

New York Denver 1800 550

Chicago Denver 1000 400

Denver Dallas 1000 400

Denver Houston 1000 400

Denver Los Angeles 1000 400

Toronto Calgary 1700 500

Toronto Los Angeles 2500 850

Toronto Chicago 500 350

Houston Los Angeles 1500 475

If we draw a map of the flights, it would be seen like in Figure 3-2

1700
Calgary

Figure 3-2 : Map of the Flights

And a customer want to go from New York to Los Angeles. Then, lets see what will

happen!

1800

1000

1000

900

500 Toronto

500

New Yor

1000

1500

2500
k

Chicago

Denver

Los Angeles Dallas

Houston

 23

3.3.3. ELEMENTS, KNOWLEDGE SOURCES AND FACTS

 The elements of the program: Actually we have mentioned about the elements of

the architecture, however, there are some special things that we have to explain. First

of all, our class name is ControlBB again. However, we have changed the name of

Goals structure to FlightInfo since the scenario is about a flight planning program.

Also, we have changed its parameters name. Hence, it is easier to follow the program

steps in terms of program parameters. The new structure can be seen in the Figure 3-3.

struct FlightInfo {
 string from; // departure city
 string to; // destination city
 int distance; // distance between from and to
 int price; // price
 bool skip; // used in backtracking
 short key; // key field to select the best solution

Figure 3-3 : The FlightInfo Structure for KS in the blackboard

As is seen in Figure 3-3, the ‘source_node’ was named as ‘from’, the child node was

named ‘to’. ‘distance’ and ‘price’ are our ‘cost_parameters’. Remember that we can

add as many cost_parameters as we want into the proposed structure. skip and key

parameteres are the same. Then, all other parameter names were adjusted in this way.

 Knowledge Sources : In the example, each of the flight services are one knowledge

source. So we have eleven KSs in this scenario. Although we have six parameters in

FlightInfo structure, at the beginning of the program, we just need four of them. The

origin of the flight service, the destination, the distance between origin and

destination, and its cost to the customer. In the source code, we have used addflight

function to add the KSs into the memory. The code part can be seen in Figure 3-4.

 Facts : A fact is a data structure that includes two objects. And ‘facts’ is a list that

consists of one or more facts. For this example, a fact’s first object is the origin of the

flight and the second one is the flight’s destination. In the source code, SetFacts()

function is used to add some facts into memory.

 24

// Add flight connections to database.
 bb.addflight("New York", "Chicago"

"Chicago", "Denver", 1000, 400);
"New York", "Toronto"
"New York", "Denver", 1800, 550);
"Toronto", "Calgary", 1700, 500);
"Toronto", "Los Angeles", 2500, 850);
"Toronto", "Chicago", 500, 350);
"Denver", "Dallas", 1000, 400);
"Denver", "Houston", 1000, 400);
"Houston", "Los Angeles", 1500, 475);
"Denver", "Los Angeles", 1000, 400);

, 900, 350);
 bb.addflight(
 bb.addflight(, 500, 350);
 bb.addflight(
 bb.addflight(
 bb.addflight(
 bb.addflight(
 bb.addflight(
 bb.addflight(
 bb.addflight(
 bb.addflight(

Figure 3-4: Adding flight Information into the system

Like addflight function it is enough to write “bb.SetFacts(“New York”, “Denver”);”

to add a fact into the facts list. For our scenario, just one fact(from New York to

Denver) was added into memory to show how it affect to the solution. Later, we will

see how does this fact affect to the solution.

 Policies : There is one policy for all the flight connections in the system, however

we can add different policies for all the connections. The system will check if there is

a special policy for the current connection. If not, it will use the general policy to

evaluate the bids. For this scenario, three policy parameters were defined. These

parameters have all negative effects in the bidding mechanism, however, it may not to

be always negative. The policy parameters are :

1. The distance between origin and the destination,

2. The price between origin and the destination,

3. The number of transit flights of the plan.

As you see, these three parameters have negative effects on the customer. Because,

when one of these parameters increase, then the satisfaction of the customer will

decrease.

 Methods: For our scenario we will give just one method. By using the method, we

will exclude New York – Chicago connection. Then we will see how this would affect

to the performance of the system.

 25

3.3.4. EXECUTION OF THE SYSTEM

To test the proposed architecture entirely, we will execute the program three times.

At the first time, we will not add any facts or methods to see how system searches the

general goal tree. Then we will add the method and rerun the program to see the effects of

methods. And thirdly, we will add the fact to the program (the method is also will be

included) to reach full performance control of the program. Also, we will analyze the traces of

these three iterations of the program to compare their performances.

Before go any further, it is good to know that, in all three iterations, the program inputs

will be the same. It means that, in all three cases, the origin will be New York and the

destination will be Los Angeles, and all the KSs will be the same. In this case the general goal

tree for New York will be like Figure 3-5.

New York

Chicago Toronto Denver

Denver Los Angeles Chicago Calgary Los An

Figure 3-5 : General Goal Tree for NewYork

Los Angeles

geles

DallasHouston

Los Angeles

 26

 First Run

In the first run, we do not add nor any facts neither any methods to the system. Then the

system defines the general goal tree as the searching area. The control architecture makes a

search in the whole goal tree. The type of the search is depend on the strategy that we define

in the program. In this example a breadth-first search is made and all the solutions were

written in the solutions.txt file. Then the system makes the bids of the three solutions

according to policy. And selects the best solution between them. The output of the file is

shown in Figure 3-6. In solutions.txt file, as we can see there are three solutions found, and

the second was selected as the best solution. After the system finds three solutions, a bidding

mechanism also helps us to select the best.

New York to Toronto to Los Angeles
Distance is 3000
Price is 2850
New York to Denver to Los Angeles
Distance is 2800
Price is 1550
New York to Chicago to Denver to Houston to Los Angeles
Distance is 4400
Price is 2650

THE Selected Route is:
New York -> Denver -> Los Angeles
Distance :2800
Price :1550
Steps :2
BID :-10260
KEY :2

Figure 3-6 : The output of Solutions.txt file

 Second Run

In the second run, we just add the method to exclude the flight from New York to Los

Angeles. Hence the searching area was diminished very effectively. After exclusion of

destination Chicago the new goal tree will be like Figure 3-7. In this new goal tree, we are

seeing that the leftmost node in the first level of the search tree and all of its children were

deleted in the search area. Figure 3-8 shows the output file after the second run of the

program. Here also, we can see that the third solution of the first run was gone. And this

output proves that using a method can be an effective way to improve the performance and

quality to find solutions.

 27

New

Toronto Denver

Los Angeles Chicago Calgary Los Angeles

Figure 3-7 : The new sub-goal tree after adding the methods

New York to Toronto to Los Angeles
Distance is 3000
Price is 2850
New York to Denver to Los Angeles
Distance is 2800
Price is 1550
THE Selected Route is:
New York -> Denver -> Los Angeles
Distance :2800
Price :1550
Steps :2
BID :-13356
KEY :2

Figure 3-8 : The output of solutions.txt file after second run

 Third Run

In the third run, we have added the fact New York -> Denver. By this way, we exclude all

other possible flights from the search tree. And we just guarantee that New York -> Denver is

the first leg for a flight plan to go from New York to Los Angeles. Then, there is no more

doubt that, it will search just two nodes to find a solution. In Figure 3-9 you can see the sub-

goal tree after the fact is found. And the system will just search the children of Denver node

after executing this KS. The output of the program is seen in Figure 3-10.

New York

Denver

Los Angeles

Figure 3-9 : The new sub-goal tree after adding fact

 28

New York to Denver to Los Angeles
Distance is 2800
Price is 1550
THE Selected Route is:
New York -> Denver -> Los Angeles
Distance :2800
Price :1550
Steps :2
BID :-13356
KEY :1

Figure 3-10 : The output of the solutions.txt after third run of the program

 29

4. IMPLEMENTATION

The proposed architecture is implemented in C++ language. C++ is a language that

supports the concept of an “object”, and provides a uniform means for referring to the objects

in its universe. C++ provides an object-oriented model. [9]

The reason why the control architecture is implemented in an object-oriented language is

that the possibility to orientate programming to objects allows us to design applications from

a point of view more like a communication between objects rather than on a structured

sequence of code. Hence, we can use the same architecture in many different decision making

procedures.

4.1. GENERAL FLOW OF THE IMPLEMENTATION

The general flow of the proposed architecture is simple. As you can see in the Figure 4-1:

• Firstly, the system gets all the knowledge sources into memory from an outer

system or from a user.

• Secondly, the system gets the problem definition.

• In the third step, the system gets all the facts, policies and methods into memory.

• Then, the system executes the control loop to find a solution set about the problem.

• Finally, the system returns the solution set if it can find any

Append all the
KSs into
Memory

Find a solution set by
using the control loop

Return the solution set
to the outer world

Define the Problem &
select a strategy

Get the facts, policies
and methods

Figure 4-1 : Flowchart of the proposed architecture

 30

4.2. ARCHITECTURE ELEMENTS

The elements shown below are general elements for the architecture. And these can be

changed according to specified implementations.

First of all, lets define the data structures in the architecture:

• Struct Goals : This is the structure that defines a KS in the system. Its elements are:

o string source_node : this is a string that defines a goal in the blackboard

o string child_node : this is a string that defines a child of the goal in the

blackboard.

o int _cost_parameter1 : this is an integer parameter that you can define any

property of the service between source_node and child_node. For example, if

you are planning a daily touristic trip, it can define a quality of a restaurant. Or

it can define the cost of the restaurant. Also we can define as many

_cost_parameters as we want. It will affect the bidding mechanism.

o bool skip : this flag is used for backtracking information

o int key : this field provides a relation between KSs and solutions. It is like a

key field in a database table.

• Struct facts : This structure defines a fact in the system. Its elements are:

o string source_node : this is the string that defines a goal in the blackboard

o string child_node : this is the string that defines the child node of the goal

node in the blackboard.

• Struct Methods : This is the structure that defines a method in the blackboard system.

o string source_node : this is the string that defines a goal in the blackboard.

o string child_node : this is the string that defines tha child node of the curent

goal node in the blackboard.

o char option : this character can take just two values. ‘I’ or ‘E’. ‘I’ means

include the KS and ‘E’ means exclude the KS in the goal tree. During search

mechanism, this option is used to eliminate or to make an execution order the

KSs. By this way, we can improve the perfromance of the search mechanism.

o int key : this integer is useful only if the option is ‘I’. As we said above, the

option ‘I’ means include the KS. And via using key integer, we can define an

execution order of the sub-goals.

 31

• Struct Solutions : This structure defines a complete solution in the blackboard.

o string source_node : this is the string that defines a goal in the blackboard.

o string end_node : this is the string that defines the last node of the solution

list.

o int cost_parameter1 : this parameter defines the sum of the cost_parameter1

in the solution list of the blackboard. We have to define one cost_parameter for

each cost_parameters in the goals structure.

o int steps : this parameter defines the number of steps in the solution list. This

variable, is used to calculate the bid of the solution.

o int bid : this parameter defines a total bid of the found solution. It is calculated

by using the policies and the cost parameters.

o int key : this is the key to make a relation of the found solutions. This is the

second leg of the relation between KSs and solutions.

• Struct Policy : this structure defines a policy for the blackboard system. The policy

can be defined for all KSs and can be specialized for any of the KSs. What parameters

have this structure are :

o string source_node : this is the string that defines a goal. Its value can be a

goal value or an asterisk(*) . It its value is star, then it means it is valid for all

KSs in the blackboard.

o string child_node : this string defines a child of the goal node. Like

source_node this parameter also can take an asterisk(*) value. If source_node

contains a normal goal and child_node contains an asterisk then, it would mean

the policy is valid for all child nodes for the goal defined in the KS.

o int rule1 : this parameter defines a coefficient to calculate the bid by

multiplying the first cost_parameter of the KS. For each cost_parameter,

there must be a rule parameter.

• Struct key : this is the structure that defines a counter to make a relationship between

solutions and KSs.

o int key : this integer defines a unique key identifying the number of the

solution, and its KSs.

 32

Now lets define the Blackboard of the system. The blackboard is a class that defines all

the KS information, policies, facts, methods, search functions, and so on.

Here are the blackboard elements:

• Class ControlBB : The base class of the blackboard system is ControlBB.

o vector goals : this vector stores all KSs that were given to the system. It is

constructed from the structure Goals.

o vector sub_goals : this vector stores the goals that are adjacent to the starting

point(i.e. children of the goal node). Like vector goals it is also constructed from

the structure Goals.

o stack btStack : this stack includes backtracking information. It is constructed

from structure Goals. It includes executed KSs in the search space. We can call it

(b)ack(t)racting Stack.

o stack slStack : this stack contains the solution queue with key information that is

used to sort and read at any point. The solution queue consists of all steps of the

problem solution. That means that, if a solution consists of five KSs then, slStack

includes five KSs. We can call it (s)o(l)ution stack.

o stack solutions : this stack is used for bidding mechanism. It includes the problem

definition(the first and the last goals), and the total of cost_parameters. And also, if

there is more than one solutions, then it includes all solutions for the defined

problem.

o stack bids : this stack consists of all information in stack solutions. In addition to

this information, the bid parameter of the structure is also calculated. It has the

same structure as the stack solutions.

o stack policy : this stack stores the policies. It is constructed from Policy structure.

o vector methods : stores the methods for all the goals

o vector facts : stores the fact about a starting point

o bool match() : this function returns true if there is a direct connection between the

starting point and the final goal

o Bool find_depth(string from, &sub_goals) :This function makes the depth_first

search to find a solution. And then, returns true if the problem was solved. During

this function is executed, the solution queue is filled.

 33

o Bool find_breadth(string from, &sub_goals) : This function makes the

breadth_first search to find a solution. And then, returns true if the problem was

solved. During this function is executed, the solution queue is filled.

o Bool find_least(string from, &sub_goals) : This function makes the depth_first

search to find a solution. And then, returns true if the problem was solved. During

this function is executed, the solution queue is filled.

o void add_goal() : This function adds KSs to the memory.

o void show_solution(): If there is a solution about the problem, then this function

shows the solution queue.

o void select_best(): After evaluating the bids of KSs, this function selects the

highest valued solution.

o void set_policy(): This function sets the policies of the blackboard.

o void get_policy(): this function gets the policy of the current service.

o void evaluate_bid(): This function calculates the bid of the service.

o void set_facts(): This function sets the fact vector for all the goals.

o bool is_a_fact: This function returns true if there is a fact for the current node.

o void define_strategy(): This function defines the searching strategy of the

architecture such as depth_first, breadth_first etc.

o void solve_depth(): Solves the problem using depth_first strategy

o void solve_breadth(): Solves the problem using breadth_first strategy

o void solve_least(): solves the problem using least_cost strategy

o bool problem_solved(): returns true if there is a solution set in the memory.

 34

4.3. THE CONTROL LOOP FLOWCHART

If we write the loop in terms of the architecture functions it seems like in figure(4-2).

no

yes

false

true

Take the first goal

is_a_fact()

get_policy()

generate_sub_goals()

eliminate_sub_goals()

evaluate_bid()

select_best() append_solution()

Pending goals
are finished

Return the Solution
Queue

Take the next goal

Figure 4-2 : Flow chart of control loop

 35

5. EXAMPLES

In this chapter, two examples will be given. The first example is about ticketing problem

on a flight schedule. And the second chapter is about routing planning in a factory on plastic

injection machines.

5.1. APPLICATION: ROUTING PLANNER IN A FACTORY

In the previous example, we saw that how can architecture handle the AI search basically.

But we can give another example to express its power. Consider, a factory produces several

types of vacuum cleaners and one of its workshops produces all the plastic parts of the

vacuum cleaners. The company uses an ERP program. Then, since the ERP program does not

have an efficient planning tool, according to the scenario, our program has to make a plan for

a plastic injection machine. There are several types of moulds in several colors. Setting-up the

injection machine takes a time, and we want to reduce this setup time. Our program will take

all information from a formatted file automatically (that would come from the ERP program),

and then will make a plan that the machine will produce the parts in optimal time.

5.1.1. THE SCENARIO

As the scenario, we will analyze Elektropak’s production process and then we will solve

the production planning issue by our architecture.

Let us give some information about Elektropak: Elektropak is a company that produces

vacuum cleaners, flat-irons and other small home appliances. Their products take Arzum,

Conti and Rowenta trademarks in the market. Elektropak uses SAP system [10] to manage all

its information in an integrated environment. All departments of Elektropak - such as

accounting, sales and distribution, production etc. - are connected each other in SAP system.

In Elektropak, we can define a production process in four main steps [11]:

• Design of a product: in this step, technical designs of the product are drawn in

R&D department. Then bills of materials (BOM) [12] are created and loaded into

SAP. A BOM includes all parts of a product. The elements of a BOM are raw

materials, semi-products, accessories and moulds. Also, semi-products have their

 36

own BOMs. Other elements do not have their own BOM and generally they are

obtained from outer sources.

• Design of routing plans in SAP: in this step, for all new designed products, a

production scheme is constructed. This scheme shows all the following

information:

o In which order, the elements of product in the BOM will be produced.

o How much time would take the production of a unit product. (Also semi-

product)

o What will be the quantity of a minimum party of the product?

o How the capacity of machines will be affected.

o After all, how much will be the cost of the product

Hence, Elektropak adds a new type of product to its product spectrum.

• Production Orders: According to customers’ purchase orders and material

resource planning (MRP) data, the system generates planned production orders for

the products/semi products.

• Production: The last step is production of products. After producing all semi-

products in the BOM, all the parts of the product is assembled in another workshop

in the company.

 The biggest workshop of Elektropak is injection workshop. In this workshop, all the

plastic parts in the whole product spectrum of the company are produced. In SAP, there are 5

different types of injection machines. And the moulds of these machines differ from each

other. In Table 5-1 you see a list of injection machine types, their names and the numbers of

these machines in Elektropak. The number of machines is important because we want to

reduce the number of working machines to reduce the cost.

The plastic semi-products that were ordered to produce, are produced by these machines.

In a technical plan of a plastic semi-product, there are the following characteristics:

• The color code of the semi-product

• The plastic type of the semi-product

• The mould type that would be attached to the machine

 37

• The production time for a unit semi-product

Table 5.1 : The list of injection machines

Machine Group Machine Names # of Machines

E1000G 1000 Gr. Injection Machines 9

E1600G 2000 & 1600 Gr. Injection Machines 8

E200G 600-100 Gr. Injection Machines 21

E2400G 2400 Gr. Injection Machines 1

E750G 750 Gr. Injection Machines 7

An ABAP report was written in Elektropak’s SAP system to get a list of production orders

for the machines that we have seen Table 5-1. In this list, we can see the following elements:

• Finishing date of the planned product

• Machine code for the semi-product

• Mould (setup) code for the semi-product

• Setup-time of the mould

• Color code of the semi-product

• Production quantity

• Current stock quantity of the semi-product

• Unit production time of the semi-product

The purpose in production planning is producing maximum quantity of products with a

minimum cost. Though we can see the semi-products list, within their mould types, setup

times, dead-lines for the production etc, it becomes more complicated to handle all the

production in the workshop manually. And at this point, our architecture will help us.

5.1.2. ABAP PROGRAM : ZPLANTEST

For SAP part of the example, a program was written in ABAP [13, 14] in the test system

of Elektropak system. The program’s name is ZPLANTEST. The general inputs of this

program are plant name, storage location, machine codes and planned finishing dates. Also

there are additional input parameters that define the type of the list. In Figure 5-1, we are

seeing all the input parameters of the ABAP program. In this program, we can take several

different lists either to see or to download into architecture. ALV tool (ABAP List Viewer) of

 38

SAP was used to get the list. ALV is a special reporting tool in SAP [15] that will help us to

analyze the problem more specifically:

• Routing plans of semi-products: in this list, we are seeing routing plan information

of semi-products. The columns are material number, material explanation, routing plan

number, machine code(this is also calles work center in SAP system), setup (mould)

code, unit production speed and color code of the product. In Figure 5-2, we can see

the routing plan list.

• Production orders of semi-products: In this list, there are five columns: production

order number, material number, material description, order quantity and finishing date.

In Figure 5-3, we can see this list.

• Stock List: If there are some stocks in the warehouse, then we can see this

information in this list Figure 5-4.

• Machines List: Figure 5-5 shows the machines list. This is the list that we can see all

the machines and all of their compatible mould codes. Also, we can see setup times of

moulds in seconds.

• General List: This is the list that we all merged into one list. We also would

download this list to the local computer to use further in the architecture. In Figure 5-6

we can see the screenshot of this list.

 39

Figure 5-1 : Selection parameters screen of ZTESTPLAN program

Figure 5-2 : Output of production plans list

 40

Figure 5-3 : Production Orders List

Figure 5-4 : Stock list of products

 41

Figure 5-5 : Machines List

Figure 5-6 : General list

 42

5.1.3. ELEMENTS, KNOWLEDGE SOURCES AND FACTS

Above, we have introduced an ABAP program to feed a complex list of production

orders to our composed architecture. Now, we will analyze our control architecture and see

how it would make a plan for a specific machine for a specific finishing day.

A general goal tree actually includes the combination of production orders of the

product. For example, if we have three products (A,B,C) to be produced in the same date and

in the same machine, then the general goal tree for this machine would be seen like in the

Figure 5-7. In this figure, it is guaranteed that all these products will be produced in the same

date and in the same machine. However, their mould code and color code can differ from each

other. For example, A and B can have the same mould code with different colors while C has

the same color with A and different mould code from A and B.

Machine, Date

A B C

B C A C A B

C B C A B A

Figure 5-7 : Example for production combination tree for a machine

• Knowledge Sources: All KSs come from SAP system in a tabular formatted text

file. And they are read from the text file. A KS of this program includes these

parameters :

 Production date

 Machine Code

 Mould Code (Setup Code)

 Setup Time (in seconds)

 Color Code

 Product code

 Unit production time (in seconds)

 43

 Number of products to be produced

All we have to do in the architecture is to generate a production order for these machines

to reduce the production cost and increase efficiency.

• Facts: For this example, a fact can be defined as a production priority of a product.

For example, consider we have two types of production on the same machine with the

same mould int the same day. Their planned order quantities also are same. The first

product will be yellow and the second one will be red. Then, if you need red products

first, you can give it as a fact. A fact has the following parameters in the system :

 Production date

 Machine Code

 Mould Code

 Color Code

 Previous production code (source_node)

 Product to be produced (child_node)

Hence, we can specify a production order with these parameters. In figure(24), if we

want to force the production of B after C, it will be enough to express with the

parameters written above.

• Methods: Within a method, we would exclude or include KSs in the same level of the

search. A method has the following elements :

 Production date

 Machine code

 Mould code

 Color code

 Previous production code (source_node)

 Product to be produced (child_node)

 Option to exclude or include the KS

• Policies: The policy parameters must be set to reduce the cost of the productions. To

reduce the cost, we have to reduce the number of machines, the working time of the

machines, the number of the mould changes and the number of the color changes.

 44

While these parameters are valid, also, we hae to produce as many products as we can

do.So let us define the parameters that effect to the cost of productions :

 Machine setup times : the most important time taking parameter is machine

mould setups. Because, changing a mould in a machine takes from 2 to 5

hours. If we consider this time interval as seconds, changing a mould of a

machine can vary from 7200 seconds to 18000 seconds. Stopping a machine

means increasing the cost. So we must maximize the number of productions

after changing a mould.

 Color setups : This is also an important parameter to reduce cost. It does not

take so much time as mould setup, however changing colors many times will

reduce effectiveness of the production. And it means to waste the raw-material

of the product. And be sure that it will have an extra cost for a unit production.

Also, we must maximize the number of productions after changing the color.

 The number of products to be produced : We have to select the bigger

production order first in terms of quantity.

According to these parameters we can define our policy with the following

parameters and their coefficients:

1. Date : This parameter is used to select policy by the program. It can take a

specific date value or take (*) asterisk character to validate the policy for

all entries.

2. Machine Code : This parameter is also used to select appropriate policy

for bidding mechanism. Also it can take a specific machine name or can

take (*) asterisk character.

3. Mould Code : This parameter also helps to identify the appropriate policy

for bidding mechanism.

4. Product to be Produced : It mostly takes (*) to define its validty to all

products to be produced in a specific day, machine and mould code. But if

you want to define an exact policy for a specific production, it may take the

value of production code also.

5. Setup Time : This is the first and most important coefficient. Because,

pluggin-in of a mould in a machine takes a lot of time and this is the most

 45

effective wasting time parameter. We will give the biggest negative

coefficient in the program.

6. Total Production Time : This value has the multiplication of unit

production time and total number of products for a specific finishing date.

The importance of this coefficient is not so much like setup time.

Generally, its effect is negative and considered with the number of

products.

7. Number of products : As we said before, we want to maximize the nuber

of products in the minimum of time. So this coefficient will take a positive

value..

5.1.4. EXECUTION OF THE SYSTEM

In ABAP program, we can give more than one value for storage location, machine code

and finishing date as selection parameters. While you see the selection screen for

ZPLANTEST program in Figure 5-1, you can also see the multiple selection screen in Figure

5-8. In this screen, we can give a number range of single values for the selected variable in the

program. Also, we can choose include or exclude these values.

Figure 5-8 : Multiple Selection Screen for Machine Codes

For our example, we have chosen two storage locations and five machine codes to get the

production list. After execution of the ABAP program, a 711 lined list was generated. And

then we have downloaded to the computer where we run the architecture program.

 46

After downloading to the local computer, the tabular formatted list is seen like in Figure

5-9. There are eight columns : the production finishing date, machine code, mould code, color

code, setup time of the machine, total production time, production amount and finally product

code. As we have seen before, every line of this list will be our KSs.

We will download the policies, facts and methods from SAP. However, I will try to

complete the policy to the presentation. This is why, the control mechanism was given

manually for right now.

Figure 5-9 : Downloaded production orders list

For policy, it is optimum to give a different policy to each machines on the list, because

since the energy needs, setup times of the machines vary, we may want to change the policy

coefficients for each machine. If we have given different policies for each machine, then the

policies would seen like this :

• Policy(*,E200G,*,*,-1,0.1,3)

• Policy(*,E750G,*,*,-1,0.1,3)

• Policy(*,E1000G,*,*,-1,0.1,3)

• Policy(*,E1600G,*,*,-1,0.1,3)

• Policy(*,E2400G,*,*,-1,0.1,3)

 47

These policies mean, for all KSs, the setup time coefficient will be taken as ‘-1’, total

production time coefficient will be taken as ‘0.1’ and we will have to multiply production

order quantities by ‘3’ for the bidding mechanism. But now we just give a general policy for

the whole list. It is seen like this :

 Policy(*,*,*,*,-1,0.1,3)

In figure 5-10, we are seeing the lines of a list with boxes. To specify the facts, we just

click these leftmost boxes of the lines in the general list and then we click to FACT button

like in the Figure 5-11. By this way, SAP system will download the facts list to the

architecture. With the same way, if we want to specify methods, we select the lines and then,

download the list to the local computer. On the other side, we have to be aware that there

must be only one fact in a production level. If we want to set high priority for more than one

production orders, them we must select methods.

Figure 5-10 : Selection boxes on the general list

Figure 5-11 : Download Buttons

 48

After setting up the control parameters, we run the program that includes our control

architecture. The program first takes, methods, facts, knowledge sources into memory. Then it

starts to loop in the goals. For each pairs of the date and the machine codes, the program

generates new sub-goal trees. As a strategy, a breadth-first search would be enough. Because,

depth-first search does not have a meaning for this example.

After executing the application we get the output file our local computer. Since it is

tabular formatted text file, we can any program that supports this format. Also we can upload

to SAP system again if needed. In Figure 5-12 you can see MS Excel screenshot of the output

file.

Figure 5-12 : Excel screenshot of the output file after executing application

So these are the advantages of this application after using blackboard control architecture:

• By using collaboration specialties of a blackboard system, you can easily interact

with this application as a module of a bigger system.

 49

• You can arrange the output type what type ever you want to get. For example, you

can automatically feed the interfaces of PLC machines by the output of this

application.

• This is a platform independent application, so you can compile this algorithm in

different OS’es.

• Two different planning examples about this architecture prove that the range of the

application area is wide. This is to say we can manage all scheduling problems in

the industry by using this architecture.

• Two phased high level knowledge provides an exact control over artificial

intelligence.

The only disadvantage is, there is always a risk about facts or methods that they may not

have the right values as you want. So, they are to be implemented wisely.

5.2. OTHER APPLICATIONS IN THE MARKET

These kind of scheduling applications are commonly used in the world. However in

Turkey, this is a new solution area and this is a good chance to get a better place on this topic.

There are two examples that would be explained in this thesis. The first one is Trigger and the

second one is Preactor. Trigger is a Turkish application and not released yet. Preactor is the

most popular scheduling program in the world. They are very different from each other, and

our application carries all advantages of these applications.

5.2.1. TRIGGER

Trigger is a scheduling program for plastic injection machines. It collects all the

information about operation processes, capacities of machines, production orders and other

data of the company. Then, it generates a schedule of production orders. This is new software

in the market, and it is specially being developed for BEKO. However, it will be delivered to

the market soon.

Trigger uses Simulated Annealing algorithm in the decision making process. Its purpose is

to find optimum solution according to characteristics of a plastic. Simulated annealing is a

 50

generic probabilistic meta-algorithm for the global optimization problem, namely locating a

good approximation to the global optimum of a given function in a large search space [16].

The name and inspiration come from annealing in metallurgy, a technique involving heating

and controlled cooling of a material to increase the size of its crystals and reduce their defects.

The heat causes the atoms to become unstuck from their initial positions (a local minimum of

the internal energy) and wander randomly through states of higher energy; the slow cooling

gives them more chances of finding configurations with lower internal energy than the initial

one.

Hence, more plastic products would be developed with less energy. The pseudo code of

the simulated annealing algorithm can be seen in Figure 5-13 :

s := s0; e := E(s) // Initial state, energy.
sb := s; eb := e // Initial "best" solution
k := 0 // Energy evaluation count.
while k < kmax and e > emax // While time remains & not good enough:
 sn := neighbour(s) //Pick some neighbor.
 en := E(sn) //Compute its energy.
 if en < eb then //Is this a new best?
 sb := sn; eb := en //Yes, save it.
 if random() < P(e, en, temp(k/kmax)) then //Should we move to it?
 s := sn; e := en //Yes, change state.
 k := k + 1 //One more evaluation done
return sb //Return the best solution found.

Figure 5-13 : Pseudo Code of simulated annealing algorithm

As an advantage, we can say that Trigger would work very good for plastic and metal

products. However, this will not work for other scheduling needs of the industry. And this is a

big disadvantage in the software market. Because, this disadvantage restricts the application

range of the program. Another disadvantage is, incompatibility with any operating system

other than Microsoft Windows.

In Figure 5-14, Figure 5-15 and Figure 5-16, we are seeing some simple screenshots from

the first beta of Trigger.

 51

Figure 5-14 : Trigger – min/max function parameters menu

Figure 5-15 : Trigger – Production Orders Menu

 52

Figure 5-16 : Trigger - SAP Transfer Menu

5.2.2. PREACTOR

Preactor is the most popular scheduling solution in the world. Preactor is a software

package that provides a planner with an interactive decision support tool that balances

demand and capacity [17]. With Preactor, you can make production planning, production

scheduling and supply chain management. Preactor is also running PC based applications and

it is compatible with only Microsoft Operating systems. Before using Preactor, you have to

configure whole production system of the company into it. This configuration setup time can

take up to three months of a year.

Preactor have three main products: Preactor 200, Preactor 300 and Preactor APS [18].

Preactor 200 and Preactor 300 are ‘Finite Capacity Scheduling (FCS)’ software and Preactor

APS is ‘Advanced Planning and Scheduling’ software. While in FCS, you just can schedule

your production orders; in APS you can schedule your operations also. In Preactor, you use

 53

Gannt chart to generate schedules. That means, user generates his own schedule via Preactor

manually. Not like Trigger or our application.

There is more than 5000 companies use Preactor to plan their production. Some of these

companies are, Cosworth Racing, Delphi, Imperial Tobacco, Pfizer, Philips and Vienna

Airport.

So what is the advantage and disadvantage of this software package? First of all, let us

mention about advantages :

• Because the software is used widely, its technical support is very good.

• User interactive menus are very good; you can easily drag and drop the elements

of a production order.

• Supports very wide range of industrial applications.

Then let us see disadvantages of Preactor:

• There is no automated decision tool in the package. The user must decide which

production would be produced first. By this way, user can make mistakes during

decision.

• Manual decision increases working hour of a worker.

• You have to enter all the raw data from your MRP or ERP system and configure

them wisely. And it takes a lot of time before using it.

• Just Microsoft Windows compatible. You cannot use under Linux or Unix based

systems.

You can see two screenshots from Figure 5-17 and Figure 5-18.

 54

Figure 5-17 : Preactor – Main window screenshot

 55

Figure 5-18 : Preactor – A Sequence overview window

 56

6. CONCLUSION AND EVALUATION

The control architecture introduced for goal-driven blackboard systems is based on

searching a general goal tree. The basic elements of the architecture are goals, policies,

strategies, KSs, methods, and facts. It employs a basic control loop that uses a bidding

mechanism in choosing the knowledge source to be executed at the current cycle. The bidding

mechanism is guided by a policy. The policy can be called local scheduling criteria for this

control architecture. A strategy on the other hand, is a global scheduling criterion such as

depth-first etc. Strategies and policies together determine how a partial solution is to be

extended in the control loop. Then the search space can be diminished by applying methods

and facts. The methods and facts are high level knowledge on how to solve a problem. And

they have to be well known before applying. Because they force to change the direction of the

solution.

We have used this control architecture in an industrial production planning application

and then, we compared our architecture with two applications. As a conclusion, we saw that

the control architecture can achieve other applications’ issues. Also our simple example flight

scheduling application proves that this control architecture can be used in most of all kind of

planning and scheduling applications.

Furthermore, high level knowledge over artificial intelligence provides us an exact and

flexible intervention over scheduling and planning. None of the present applications of the

market provide this special feature. And this is a big advantage of our application.

As a disadvantage, we can say that there is always a risk about facts or methods that they

may not have right values. This is why, when expressing these high level knowledge sources

we have to be careful.

In the future, some other search strategies may be implemented. Some standardized sort

algorithms can be applied to handle search in more effective way. Also, at each run of the

program, a system can record a list of solutions and can make some statistical work to use in

the architecture itself as methods and facts.

 57

REFERENCES

1. Ferda Bek, A Goal-Driven Control Architecture for Blackboard Systems, Boğaziçi

University, 1986

2. Daniel D. Corkill, Blackboard and Multi-Agent Systems & the future, Dept. of

Computer Science, University of Massachusetts, 2003

3. Daniel D. Corkill, Blackboard Systems, AI Expert, 6(9): 40-47, September, 1991

4. L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. The Hearsay-II speech-

understanding system: Integrating knowledge to resolve uncertainty. Computing

Surveys, 12(2):213–253, June 1980.

5. Alan H. Bond and Les Gasser, Readings in Distributed Artificial Intelligence, Morgan

Kaufmann, 1988.

6. V. R. Lesser, R. C. Whitehair, D. D. Corkill, and J. A. Hernandez. Goal relationships

and their use in a blackboard architecture. Academic Press, 1989.

7. V. R. Lesser and L. D. Erman., Distributed interpretation: A model and experiment.

IEEE Transactions on Computers, Dec. 1980.

8. V. Jagannathan, R. Dodhiawala, and L. S. Baum. Blackboard Architectures and

Applications. Academic Press, 1989.

9. Herbert Schildt, The Art of C++, McGraw Hill/Osborne © 2004

10. http://www.sap.com/turkey/index.epx

11. http://help.sap.com/saphelp_46c/helpdata/en/ba/df293581dc1f79e10000009b38f889/fr

ameset.htm, Production and Planning Control in SAP

12. MM Materials Management in SAP, Release 46C, SapPress, 2000

13. BC ABAP User’s Guide, Release 40B, SapPress, 1999

14. BC ABAP Dictionnary, Release 40B, SapPress, 1999

15. Serdar Şimşekler, An Easy Reference for ALV Grid Control, SapPress, 2004

16. http://en.wikipedia.org/wiki/Simulated_annealing

17. http://www.preactor.com/default.asp

18. http://www.uytes.com.tr/cizelgeleme/preactor.html

 58

http://www.sap.com/turkey/index.epx
http://help.sap.com/saphelp_46c/helpdata/en/ba/df293581dc1f79e10000009b38f889/frameset.htm
http://help.sap.com/saphelp_46c/helpdata/en/ba/df293581dc1f79e10000009b38f889/frameset.htm
http://en.wikipedia.org/wiki/Simulated_annealing
http://www.preactor.com/default.asp
http://www.uytes.com.tr/cizelgeleme/preactor.html

APPENDIX A
All the program codes and the soft document of this thesis can be found in the attached CD.

 59

