AN INDUSTRIAL APPLICATION USING BLACKBOARD ARCHITECTURE

A Thesis
Presented to the Institute of Science and Engineering
of ISIK University
in Partial Fulfillment of the Requirements
For the Degree of
Master of Science
n
The Department of Computer Engineering

by
KEREM BURAK TUNAY

ISIK UNIVERSITY
2006

Approval of the Institude of Science and Engineering.

Prof. Dr. Hiisnii A. Erbay
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Selahattin Kuru

Head of the
Computer Engineering
Department

This is to certify that I have read this thesis and that, in my opinion, it is fully adequate
in scope and quality as a thesis for the degree of Master of Science

Prof. Dr. Selahattin Kuru
Supervisor

Examining committee members

il

ABSTRACT

AN INDUSTRIAL APPLICATION
USING BLACKBOARD ARCHITECTURE

KEREM BURAK TUNAY

This thesis implements control architecture for goal-driven blackboard systems. The
architecture is based on searching a general goal tree by diminishing into sub-goal trees. The
aim is to develop a problem solving architecture in the Al space via blackboard system. The
basic elements of the architecture are goals, policies, strategies, facts, methods, and
knowledge sources. The basic control loop employs a bidding mechanism to determine the
knowledge source to be executed at the current cycle. A policy is a local scheduling criterion
which guides to bidding process and it indicates which of the attributes of the knowledge
sources are relevant in this process. A strategy is a global scheduling criteria such as depth-
first, breadth-first etc. A method is a partially complete general goal tree structure
representing high level knowledge on how to solve a problem. The architecture employs a
control blackboard, and separate knowledge sources for the control problem and for

representing the domain knowledge.

A production planning application is developed using this architecture. Both C++ and

ABAP languages were used to implement this application.

Keywords: Blackboard systems, artificial intelligence, Al search algorithms, collaborating

software, C++, SAP, ABAP, production planning.

iii

OZET

KARATAHTA MIMARISI ICIN
ENDUSTRIYEL UYGULAMA

KEREM BURAK TUNAY

Bu tez amag-gilidiimlii karatahta sistemleri i¢in bir kontrol mimarisinin uygulamasini
icermektedir. Mimari, genel ama¢ agaclarinin alt-amac¢ agaglarina indirgenerek taranmasina
dayanmaktadir. Tezin amaci, karatahta sistemini kullanarak yapay zeka alaninda problem
¢ozme mimarisi gelistirmektir. Amagclar, genkurallar, stratejiler, yontemler ve bilgi kaynaklari
mimarinin temel elemanlarin1 olusturmaktadirlar. Ana kontrol dongiisii, o andaki ¢evrimde
islenecek bilgi kaynagini belirlemek icin bir degerleme mekanizmasi kullanmaktadir. Burada
genkurallar bilgi kaynaklariin hangi niteliklerinin kullanilacagini belirleyen lokal zamanlama
kriterleridir. Ote yandan, strateji, dnce-derine, 6nce-enine gibi global zamanlama kriteridir.
Yontemler ise, bir problemi nasil ¢cozmek gerektigi iizerine varolan yiiksek diizeyde iki bilgiyi
tanimlayan kismen tamamlanmis genel amag agaci yapisidir. Mimari, ayr1 kontrol ve domen
karatahtalar1 kullanir. Kontrol problemi ve domen ile ilgili bilgiler ayr bilgi kaynaklar ile

temsil edilir.

Bu mimari kullanilarak bir {iretim planlamasi uygulamasi gelistirilmistir. Uygulamay1

gelistirmek icin, C++ ve ABAP dilleri birlikte kullanilmistir.

Keywords : Karatahta sistemleri, yapay zeka, yapay zeka tarama algoritmalari, isbirligi

yazilimlari, C++, SAP, ABAP, iiretim planlamasi.

v

ACKNOWLEDGEMENTS

I would like to express my thanks to Prof. Dr. Selahattin Kuru for his comments, help and

supervision on this topic and for his all supervision during our previous studies.

TABLE OF CONTENTS

ABSTRACT ... e e e aaeaeasasaeeaeaaaassessesssssasssssssssssssnsnsnsnnnnnne 111
O ZET ettt ettt ettt et et e et ea et e ettt e ettt e et et et et et en e eeeaens v
ACKNOWLEDGEMENTSoooiiiiiiiiiiiiiitiiieeteieeieeiisataessaesssssesssasssssassssssssssssssassrsrssssasarararasrnnnes \%
TABLE OF CONTENTS ..ottt ettt e e e et e e e e e e e eeaaaeeaaeeeesenanes vi
TABLE OF FIGURES ..o aaaaaansanerannnes vii
LIST OF TABLES ..ottt e et e e e et e e e e e e eesaaraaaeeeeeeeas X
I. INTRODUCTION. ..o, 1
2. BLACKBOARD SYSTEMS ...ttt e e 2
2.1. A BLACKBOARD SYSTEM IN DETAILouuuuiiiiiiieieiieeiieeeeeiieeeeveeeeeesesennssnnnnnnns 3
2.2, KNOWLEDGE SOURCES ...t 5
2.3, THE BLACKBOARD.......outtttitiitiiiietiiiiieeieeieeeetesaesaaessasssssssssssssssssssssssassrassressrssannnana 6
2.4, CONTROL COMPONENT ...ttt ettt e e arareee e 8
2.5. BLACKBOARD SYSTEMS AS COLLABORATING SOFTWARE.................... 10
2.5.1. REPRESENTATIONooiiiiiiiie ettt 10
2.5.2. AWARENESS .ottt vaaasssaasssssssssasassssnsnsnssnnrnnes 11
2.5.3. INVESTIGATION ..ottt 11
2.54. INTERACTION ..ottt 13
2.5.5. INTEGRATIONooiiiiieceeeee ettt eeee et e e e aarnraee e 14
2.5.6. COORDINATION ..ottt e e et eee e 16

3. THE PROPOSED ARCHITECTUREccoovviiiiiiiiieeee et 20
3.1. ELEMENTS OF THE CONTROL LOOP.........ccoooiiiiiiiiiiieieeeeeeeee e 20
3.2. THE CONTROL LOOP IN DETAILovvviiiieiieeeeeeeee e 21
3.3. A SIMPLE EXAMPLE OF ARCHITECTUREcccccoooviiviiiiiieeeeeeeeieeeee, 22
3.3.1. FLIGHT TICKETING PLANoooiiiiie e 22
3.3.2. THE SCENARIO ..ottt e e 22
3.3.3. ELEMENTS, KNOWLEDGE SOURCES AND FACTSccoovviiiiiiiinnee, 24
3.34. EXECUTION OF THE SYSTEMoutiiiiiiiiiiiieee e 26

4, IMPLEMENTATION ...ttt ettt eee e e e e e e et anaeee e 30
4.1. GENERAL FLOW OF THE IMPLEMENTATIONccccccvvvviiiiiiieeeeeeee e, 30
4.2, ARCHITECTURE ELEMENTS......oooiiiiiiiie e 31
4.3, THE CONTROL LOOP FLOWCHART ...ttt 35

5. EXAMPLES ..ottt e e 36
5.1. APPLICATION: ROUTING PLANNER IN A FACTORYoooeevvviviiiiiieieeieenns 36
5.1.1. THE SCENARIO ..ottt 36
5.1.2. ABAP PROGRAM : ZPLANTEST ... 38
5.1.3. ELEMENTS, KNOWLEDGE SOURCES AND FACTSccooiviiiiiiiennee, 43
5.14. EXECUTION OF THE SYSTEM ..ottt 46

5.2. OTHER APPLICATIONS IN THE MARKETc..coooiiiiiiiieiieeeeeeeeieeeeeeee e 50
5.2.1. TRIGGER ...ttt e e et ee e 50
5.2.2. PREACTOR ...ttt e eeeeannes 53

6. CONCLUSION AND EVALUATION ...ttt eeiaeeeee e 57
REFERENCGES ...ttt et et e e e e e e et e e e e e e e e e eeaaranneeaeees 58
YN o AN B) 0 G PR 59

vi

TABLE OF FIGURES

Figure 2-1 : Directly Connected Graph...........ccceeevieriiiiiieiiieiiecieeieeeee e e sne e 4
Figure 2-2 : Anonymously Interacting Modulescccoouvieiiiiiiiiieiiiecieeee e 4
Figure 2-3 : Blackboard System COmpPONENnts............cocuerieriirienienienienieeieeeeneeie e 5
Figure 2-4 : Classic Blackboard System CyCle.........cceiiiiiriiiiiiiiiieiieeieeieeee et 9
Figure 2-5 : Separation (Encapsulation) of Control Knowledge...........cccovevvievienciieniieniieninnns 9
F1gUIE 2-6 1 KIS ACLIVILIES .uvviiiiiiieiiieciie ettt ettt et eeaeeetae e et e e eaeeeesvaeesnseeessseeennseeens 12
Figure 2-7 : Separation (Encapsulation) of Integration Knowledgecccccecveriininincnnn. 16
Figure 2-8 : Linearly and partially ordered KSsccoccviiiiiiiiiiiiieee e 17
Figure 2-9 : The queue latency problemcccuieiiieiiiinieniieiecieeee et 18
Figure 2-10 : Depth-First Search Bias.........c.cccoiiiiiiiiiiiicciiecie ettt 19
Figure 3-1 : The Control Loop of the proposed Architecturec.ccoceveeverciineencnnicneenen. 21
Figure 3-2 : Map of the FIIGhtscc.coiiiiii e 23
Figure 3-3 : The FlightInfo Structure for KS in the blackboardccocoveviiniinininnnn. 24
Figure 3-4: Adding flight Information into the system............ccceeeviiiiiiiniiiiniiieeeee e 25
Figure 3-5 : General Goal Tree for NeWYOorK......cccvveeiiiiiiiieiieceeeeeceeee e 26
Figure 3-6 : The output of Solutions.txXt file........coceviiiiiiiniiiiiee 27
Figure 3-7 : The new sub-goal tree after adding the methods...........cccoocveviiiiniiniiiniicne. 28
Figure 3-8 : The output of solutions.txt file after second runc.cccceeveevevienciiiniecciieeeee. 28
Figure 3-9 : The new sub-goal tree after adding fact.........c.cccccveeeiiieeiiiinciieee e 28
Figure 3-10 : The output of the solutions.txt after third run of the program..............cccccee... 29
Figure 4-1 : Flowchart of the proposed architecturecccuvevieriiieiieniieiecieeee e, 30
Figure 4-2 : Flow chart of control I0OPc.eeouieiiiiiiieiiiiiiecieeeeee et 35
Figure 5-1 : Selection parameters screen of ZTESTPLAN program.........ccccecceeeecvveencveeenneenns 40
Figure 5-2 : Output of production plans liSt..........ccoeeviriiniiiiiiiniiineceececeseeeae 40
Figure 5-3 : Production Orders LiStccocuiiiieiiiienieiiieieeie ettt 41
Figure 5-4 : Stock 1ist Of ProdUCES.........eooviiiiiiiieciieieece ettt 41
Figure 5-5 : Machines LIStcccuuiiiiiiiiiiiieciii ettt ettt e et e e e s e e snaeeenaneeens 42
Figure 5-6 1 General LIStooiiiiiiiiiiiiie et 42
Figure 5-7 : Example for production combination tree for a machine............cccccecvevverieneennen. 43
Figure 5-8 : Multiple Selection Screen for Machine Codes...........cccceevverieeriienieenienieeneeenn. 46
Figure 5-9 : Downloaded production orders liStcccccecuieeriieiiiieeieeeie e 47
Figure 5-10 : Selection boxes on the general listcocveviiiiiiiiniiiiniinciceccceeee 48

Vil

Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14

Figure 5-15:
Figure 5-16 :

Figure 5-17
Figure 5-18

: DoOWNload BUttOnScccuiiuieiiiiiiieieeieseeee e 48
: Excel screenshot of the output file after executing application.......................... 49
: Pseudo Code of simulated annealing algorithm..........c.ccccovoieniiiiniininiincnns 51
: Trigger — min/max function parameters MEeNUcceevueervereenieereeneeneneeneenens 52

Trigger — Production Orders MenUc.cccveviieiieniienieenieeieeeee e 52

Trigger - SAP Transtfer MenUcccoooviveeiiieeiiieeie et 53
: Preactor — Main window SCreenshotccccoeiieiiiiiiiniieiieccee e 55
: Preactor — A Sequence overview WindOW..........cccoevueeruierieenieenieeniienee e 56

viil

LIST OF TABLES

Table 3.1 : Flight Services List of the Company...........ccccoecerviriiniiiiiniiniicecceeeeee

Table 5.1 : The list of injection MACKINESc.cooiieiiiiiiiiiieie et

X

1. INTRODUCTION

A blackboard system is a way of combining a set of diverse software modules to solve a
problem using Al technique. In this thesis, an industrial production planning application will
be proposed by using blackboard control architecture. The architecture is based on searching a
general goal tree by diminishing into sub-goal trees. The objective is to improve the
performance of this Al search of the blackboard systems by using real time experiences as

high level knowledge sources.

The basic elements of the architecture are goals, policies, strategies, facts, methods, a

basic control loop and knowledge sources.

The high level knowledge can be statistical data about a problem, some imitations of
human experts and so on. We will define this high level knowledge in two leveled
hierarchical way: methods and facts. While methods define a partially complete general goal
tree structure how to solve the problem, facts have a higher priority that orders a way to
execute in the search space. Both of them improve the performance of the search action in a

blackboard system.

The basic control loop employs a bidding mechanism to determine the knowledge source
to be executed at the current cycle. A policy is a local scheduling criterion which guides to
bidding process and it indicates which of the attributes of the knowledge sources are relevant

in this process. A strategy is a global scheduling criteria such as depth-first, breadth-first etc.

The next chapter discusses blackboard systems in detail. Then the proposed architecture is
introduced in the terms of definition. After that, the implementation of the system in C++ will
be explained in detail. The whole system flow chart and the control loop flowchart will be
given to show how architecture works. Also, a flight ticketing example will be given to show
how to use the system to solve problems and we will examine a trace of all the parts of the
implemented program. As a second example we will give a routing planning model about a
plastic injection machine in a workshop to show the power of the architecture. The last

chapter gives an evaluation of the approach.

2. BLACKBOARD SYSTEMS

In attempting to solve a problem, a blackboard system employing an artificial intelligence
(AI) technique typically performs a series of problem solving actions [1]. This process usually
involves a search in the space of partial solutions, and each action extends the current partial
solution. Then, the system collaborates these solutions to achieve a flexible, brainstorming
style of problem solving exhibited by a group of diverse human experts working together to

address problems that no single expert could solve alone.

Problem solving begins when the problem and initial data are written onto the blackboard.
The specialists watch the blackboard, looking for an opportunity to apply their expertise to the
developing solution. When a specialist finds sufficient information to make a contribution,
she records the contribution on the blackboard, hopefully enabling other specialists to apply
their expertise. This process of adding contributions to the blackboard continues until the

problem has been solved.

In this point we have a several issues into consideration. The first issue is the direction of
the search, which is also called the search strategy. There are two basic search strategy, goal-
driven and data-driven search strategies. In this thesis we are going to use goal-driven search
strategy that begins with the goal to be solved, then finds rules or moves that could be used to
generate this goal and determine what conditions must be true to use them. These conditions
become the new goals, sub-goals, for the search. This process continues, working backward
through successive sub-goals, hopefully until a path is generated that leads back to the facts of
the problem. This is why; this strategy is also called backward chaining [2]. In data-driven
search, sometimes called forward chaining, the problem solver begins with the given facts and
a set of legal moves or rules for changing the state. Search proceeds by applying rules to facts
to produce new facts. This process continues until it generates a path that satisfies the goal

condition.

At each point in the problem solving process, more than one potential action may be
possible. Then the second issue is to decide which of its potential actions the Al system
should perform. This issue is called the control problem. To solve this problem, a control
structure decides which action will be performed and the choice of this control structure is

playing an urgent role on success and the efficiency of the system.

2

The third issue is related to the distribution of the problem solving capability among
several problem-solving agents. In that sense, we have centralized systems on one hand - such

as multi-agent systems - and distributed systems on the other.

In this thesis, blackboard architecture for the goal-driven strategy that uses the control
architecture paradigm will be implemented. The basic elements of the architecture are goals,
policies, strategies, methods, knowledge sources (KS’s) and facts. Also the architecture
employs a basic control loop that uses a bidding mechanism in choosing the knowledge

source to be executed at the current cycle.

2.1. A BLACKBOARD SYSTEM IN DETAIL

A blackboard system is a way of combining a set of diverse software modules is to
connect them according to their data-flow requirements [3]. In Figure 2-1, you can see a
combination of five modules that shows the data-flow. Also this is called directly connected

graph.

When appropriate, the modules can appear multiple times in the communication graph,
but the connections are predetermined and direct. This approach can work well when both the
module set and the appropriate communications among modules are static. When the specific
modules are subject to change and/or when the ordering of modules cannot be determined
until specific data values become known at execution time, the inflexibility of direct
interaction becomes unwieldy. From a system-building perspective, direct interaction

promotes the use of private communication protocols between modules.

Another approach is to use indirect and anonymous communication among modules via an
intermediary, such as a blackboard data repository. In Figure 2-2 you can see how can a data
repository can be controlled by a control intermediary. In this approach, all processing paths
are possible, and the choice among paths can be made dynamically by a separate “moderator”
mechanism that selects among the possible paths. The information placed on the blackboard is
public, available to all modules, control mechanisms, newly added modules, and monitoring
and debugging tools. Indirection reduces the number of communication interfaces that must

be supported among highly collaborating modules.

Figure 2-1 : Directly Connected Graph

Blackboard

\

control

Figure 2-2 : Anonymously Interacting Modules

A blackboard system consists of three main components:

Knowledge sources (KSs) are independent computational modules that together
contain the expertise needed to solve the problem. KSs can be widely diverse in their
internal representation and computational techniques and are anonymous in that they
do not interact directly with one another or know what other specific KSs are present

in the system.

e The blackboard is a global data repository containing input data, partial solutions,
and other data that are in various problem-solving states. All KS interaction is via
changes made on the blackboard.

e A control component that makes runtime decisions about the course of problem
solving and the expenditure of problem-solving resources. The control component is

separate from the individual KSs.

Figure 2-3 shows these three main components of the blackboard system:

Knowledge
Sources
A
< Control
Shell
A\ 4
Blackboard

Figure 2-3 : Blackboard System Components

2.2. KNOWLEDGE SOURCES

Blackboard systems use a functional modularization of expertise. Each KS is a specialist
at solving certain aspects of the overall application and is separate and independent of all
other KSs. A KS does not require other KSs in making its contribution. Once it finds the
information it needs on the blackboard, it can proceed without any assistance from other KSs.
Furthermore, without making changes to any other KSs, additional KSs can be added to the
blackboard system, poorer performing KSs can be enhanced, and inappropriate KSs can be
removed. KSs perform relatively large computations, reflecting the processing required

implementing their specialty.

A KS needs no knowledge of the expertise, or even the existence, of the others; however,
it must be able to understand the state of the problem-solving process and the representation
of relevant information on the blackboard. Each KS knows the conditions under which it can

contribute to the solution and, at appropriate times, attempts to contribute information toward

solving the problem. This knowledge that each KS has about when it might be able to

contribute to the problem-solving process is known as a triggering condition.

At an abstract level, a blackboard system may appear to be very similar to a rule-based
system: the blackboard system’s blackboard and the rule-based system’s working memory;
the blackboard system’s KSs and the rule-based system’s production rules; event-based
triggering of KSs and of rules; anonymous interaction of KSs and rules; and so on.
Historically and operationally, however, blackboard-systems and rule-based systems are very
different, especially in the size and scope of rules versus the size and complexity of KSs and
in the relatively small number of large-grained control decisions that are made by a
blackboard system versus the large number of fine-grained conflict-resolution decisions made
by a rule-based system. With regard to knowledge granularity, KS s are substantially larger
and more complex than each isomorphic rule in an expert system. While expert systems work
by firing a rule in response to stimuli, a blackboard system works by executing an entire KS
in response to an event. Each KS can be arbitrarily complex and internally different from one
another. In particular, a single KS in a blackboard system could be implemented as a complete

rule-based system [4].

KSs are not the active “agents” in a blackboard system. Instead, KS activations are the
active entities competing for computational resources. A KS activation is the combination of
the KS knowledge and a specific triggering context. The distinction between KSs and KS
activations is important in applications where numerous events occur that trigger the same
KS. In such cases, control decisions involve choosing among particular applications of the
same KS knowledge, rather than among different KSs. Taking this distinction one step
further, KSs are static repositories of knowledge while KS activations are the active “agents”
that are created in response to each triggering context. These KS-activation “agents” remain

alive only until the KS activation is executed or is canceled prior to execution.

2.3. THE BLACKBOARD

The blackboard component of a blackboard system serves as:

e a community memory of raw input data; partial solutions, alternatives, and final
solutions; and control information

e acommunication medium and buffer

e aKS trigger mechanism

Blackboard applications tend to have elaborate blackboard structures, with multiple levels
of abstraction. Although this organization of blackboard data is often useful to the developer
and user of the system, the principal reason is to make locating appropriate information on the
blackboard more efficient. If the problem being solved is complex and the number of
contributions placed on the blackboard becomes large, quickly locating pertinent information
becomes a problem. A KS execution should not have to scan the entire blackboard to see if

appropriate items have been placed on the blackboard by another KS execution.

One solution is to subdivide the blackboard into regions, each corresponding to a
particular kind of information [5]. This approach is commonly used in blackboard systems,
where different levels, planes, or multiple blackboards are used to group related objects.
Similarly, ordering metrics can be used within each region, to organize information
numerically, alphabetically, or by relevance. Advanced blackboard-system frameworks

provide rich positional metrics for efficiently locating blackboard objects of interest .

Efficient retrieval is needed to support the use of the blackboard as a group memory for
contributions generated by earlier KS executions. An important characteristic of the
blackboard approach is the ability to integrate contributions for which relationships would be
difficult to specify by the KS writer in advance. For example, a KS working on one aspect of
the problem may put a contribution on the blackboard that does not initially seem relevant or
immediately interesting to any other KS. Only until much later, when substantial work on
other aspects of the problem has been performed, is there enough context to realize the value
of the early contribution. By retaining these contributions on the blackboard, the system can
save the results of these early problem-solving efforts, avoiding recomputing them later.
Additionally, the blackboard control component can notice when promising contributions
placed on the blackboard remain unused by other KSs and possibly choose to focus problem-

solving activity on understanding why they did not fit with other contributions.

Typically, locating previously generated contributions of interest is dependent upon the
context of other information being used by a KS. This makes a simple pattern-matching
specification of the specific contributions difficult and computationally inefficient. Many
contributions placed on the blackboard may never prove useful, and maintaining the state of

numerous, partially completed patterns is expensive. Therefore, an important characteristic of

blackboard systems is enabling a KS to efficiently inspect the blackboard to see if relevant

information is present.

2.4. CONTROL COMPONENT

In a blackboard system, a separate control mechanism, sometimes called the control shell,
directs the problem-solving process by allowing KSs to respond opportunistically to changes
made to the blackboard. A blackboard system uses an incremental reasoning style: the

solution to the problem is built one step at a time.

In a classic blackboard-system control approach, the currently executing KS activation
generates events as it makes changes on the blackboard. Figure 2-4 shows this generation of
changing events. These events are maintained until the executing KS activation is completed.
At that point, the control shell uses the events to trigger and potentially activate KSs. The KS
activations are ranked, and the most appropriate KS activation is selected for execution. For
continuous applications, this KS-execution cycle continues indefinitely. For single solution

based applications, this cycle continues until the problem is solved.

It is important that the control component in a blackboard system is able to make its
selection among pending KS activations without possessing the detailed expertise of the
individual KSs. Without such a separation, the modularity and independence of KSs would be
lost. If specific knowledge of all the KSs had to be included within the control shell, it would
have to be modified every time a KS was added or removed from the system. On the other
hand, we do not want KSs to be making autonomous control decisions—in a blackboard
system, control decisions are made by the control shell. In that point, facts and policies help

us.

The solution is to separate control knowledge into generic, overall control knowledge
contained in the control shell and detailed KS-specific control knowledge packaged with each
KS. Then, whenever the control shell needs KS-specific control information, it asks the
individual KSs for these estimates on how the KS will behave. This separation of control
knowledge is shown in Figure 2-5. When a KS is triggered, the control shell passes the
triggering context to the KS, which uses its KS-specific control knowledge to estimate factors

such as the quality, importance, cost, and likelihood of successfully making potential

contributions. This estimate is determined without actually performing the work to compute

the contributions.

Blackboard

events

A 4

)

New

[Executing KSA]
A

Best

KSA

—
{—
(e

Control Shell J KSA

\ 4

Pending
KSAs

Figure 2-4 : Classic Blackboard System Cycle

Instead, each KS generates estimates of the contributions that would be generated by using

fast, low-cost, approximations developed by the KS writer. These estimates are of the form,

“If this activation is selected for execution, I estimate it will generate contributions of this

type, with these qualities, while expending these resources.” The KS returns these estimates to

the control shell which uses them in deciding how to proceed.

Control
Shell

Context

A 4

>l
l

Estimate

Control
Estimator

Knowledge
Source

Figure 2-5 : Separation (Encapsulation) of Control Knowledge

2.5. BLACKBOARD SYSTEMS AS COLLABORATING SOFTWARE

As collaborating software, blackboard systems have six key challenges to be effective in
problem solving [2]:
e Representation: getting software modules to understand one another
e Awareness: making modules aware when something relevant to them occurs
e Investigation: helping modules to quickly find information related to their current
activities
e Interaction: creating modules that are able to use the concurrent work of others
while working on a shared task
e Integration: combining results produced by other modules
e Coordination: getting modules to focus their activities on the right things at the

right time.

Now let us discuss these challenges:

2.5.1. REPRESENTATION

The structure of information on the blackboard is at the center of the blackboard-system
approach. In principle, the blackboard representation should not be based on any specific set
of KSs. Instead, the design of the blackboard representation should stem directly from the
characteristics of the application and the goal of allowing any potential KS to make
contributions toward a solution. In practice, however, the design of the blackboard
representations are not fully separated from a general sense of the kind of KSs that will be
used in the application, and experience has demonstrated that choices made in the blackboard

representation can have a major effect on system performance and complexity.

The KSs in a blackboard application must be able to correctly interpret the information
recorded on the blackboard by other KSs. Additionally; the control shell may also need to
understand aspects of blackboard data in order to make strategic focus-of-attention decisions.
However, all aspects of blackboard data do not need to be understandable by all KSs. Many
KSs only use data from one or two blackboard levels as input and only make modifications at
a single blackboard level. Similarly, KSs may only operate on a few classes of blackboard
objects. In a very practical sense, this characteristic means that portions of the blackboard

may be relevant to only a few KSs and could be specialized to the interaction requirements

10

among those KSs. Yet, private jargon shared by only a few KSs limits the flexibility of
applying other KSs on that information in the future. In practice, there is a trade-off between
the representational expressiveness of a specialized representation shared by only a few KSs
and a fully general representation understood by all KSs. Determining the proper balance
between a general and specialized representation is an important aspect of blackboard-

application engineering.

In the basic blackboard-system control cycle, only a single KS activation is executing at
any time. This KS execution runs to completion or termination by the control shell before
another KS execution begins. To further simplify the architecture in this basic control cycle,
only the executing KS is allowed to make changes to the blackboard while it is executing.
This requirement eliminates the need to incorporate complex blackboard locking or

transaction mechanisms that would slow down blackboard operations.

2.5.2. AWARENESS

In a blackboard application, KSs are triggered in response to specific types of blackboard
events that indicate that the KS may be able to contribute to problem solving. Rather than
having KSs continually poll the blackboard, the control shell is told about the kind of events
in which each KS is interested. This is typically called registering the KS. The control shell
maintains this triggering information and directly considers the KS for activation whenever
that kind of event occurs. To be efficient, this triggering information is provided to the low-
level blackboard repository accessor routines which only notify the control shell of events for
which any KS is currently registered. KS triggering can be made highly efficient when the

registration involves only simple, disjunctive trigger events.

2.5.3. INVESTIGATION

When a KS is triggered by one or more events, it must often look on the blackboard for
other information that is related to these events. This search for associated data involves: 1)
computing approximate attribute values for the kind of blackboard objects that are relevant to
computations stemming from these triggering events, and then 2) finding those objects on the
blackboard. For example, a KS that is triggered by the sudden movement of an unfriendly unit
toward a friendly position might look on the blackboard for related movement of other
unfriendly units that could indicate the initiation of an orchestrated threat. Units of interest

would be unfriendly, within some radius of the friendly position, and may have recently

11

changed their movements. The identity names of these units of interest are not known, nor are
they linked to the unit whose change triggered the event or to units at the friendly position.
The units of interest can only be determined by the approximate values of some of their
attributes. The importance of such proximity-based associative retrieval to locate relevant
objects that have been placed on the blackboard by other KSs is often overlooked in casual

discussions of blackboard systems.

In Figure 2-6, most KS executions in a blackboard system involve the following steps:
1. The control shell is notified of an event of interest to the KS
2. This triggering context is used to activate the KS
3. The KS uses the triggering context to determine the ranges of attribute values that
are relevant to the triggering context and looks on the blackboard to see what
additional blackboard objects have attributes within those ranges
4. The KS uses the retrieved objects and the triggering context information to perform
its computations

5. The results of this computation are written onto the blackboard

In this sequence, step 3 is the step associated with investigation.

Trigger Context < BB Component
A
A\ 4
Find associated data BLACKBOARD
il e Level X Control
Data
Execute &
N Level Y Agenda
\4
Share Results Level Z

Figure 2-6 : KS Activities

12

2.5.4. INTERACTION

Blackboard systems prohibit direct interaction among modules, as all communication is
done via the blackboard. Traditional blackboard systems have only a single control thread and
execute only one KS activation at a time; once execution is started, the KS activation runs to
completion or until it is aborted by the control shell. This means that all interaction among KS
activations is serial, is unidirectional from earlier to later executions, can have unbounded
latency, and is indirect via the blackboard. This severe restriction on interaction greatly
simplifies the development of blackboard applications, but in certain situations this restriction

can be a significant collaborating-software limitation [6].

Assume that KS A and B both are interested in the same event and can both do some
initial work without interacting with one another. However, the initial work of A is needed for
B to complete its work and vice versa. In this situation, the blackboard-application designer
must artificially split A into two KSs, APRE and APOST, and similarly, B is split into BPRE
and BPOST. Once APRE completes, BPOST can begin and, similarly, once BPRE completes,
APOST can begin. If a lot of interaction is required, this KS-splitting approach can result in a
large number of artificial KS fragments. Alternatively, the same iterative form of interaction
can be achieved by creating KSs that are able to jump into later computations, based on the
information present on the blackboard. In this case, multiple KS executions are still required
to support the serial interaction, but the number of KSs present in the system does not need to

be increased.

Parallel and distributed blackboard-system extensions of the classic, single-threaded
blackboard architecture allow true concurrent KS executions, and this raises another
important interaction issue. If the KSs are to remain anonymous and indirect in their
interaction, then all interaction must still occur via changes to the blackboard. Executing KSs
must be able to notice and respond to changes made to the blackboard during their execution
to support such indirect interaction. We could also extend the KS model to allow for direct
communication among co-executing KS activations. However, this is a major departure from
the blackboard-system model, and it is problematic because of the uncertainty about which

KS activations will be executing concurrently at any moment.

13

2.5.5. INTEGRATION

Integration and representation are closely linked in blackboard-system applications. The
representation choices that are made not only affect the ability of KSs to use the results of
others, but also how KS results are combined. In a blackboard application, integration of
results involves three major activities [7]: relationship management, attribute merging, and

value propagation.

The need for relationship management occurs when a KS execution wants to create a
new object on the blackboard and the semantics of the blackboard representation requires that
the relationship between the new object and some existing objects be represented. A simple
example of this is the creation of a higher-level object as a result of identifying a set of lower-
level supporting objects, such as creating a platoon object based on a set of individual unit
objects. If this synthesis activity is performed by a single KS execution, the relationship
between the new platoon object and the set of supporting unit objects can be easily
represented by also creating support links that connect the objects. Such support links

explicitly maintain the relationship between the objects on the blackboard.

What blackboard-system component should be responsible for maintaining these

relationships? There are two approaches for this answer.

One approach makes each KS responsible for this. When an executing KS wants to
create a new blackboard object, it must first check to see if a semantically equivalent object
already exists which involves a blackboard retrieval. If one is found, the KS modifies the
relationships of the existing object instead of creating a new object and relationships. This
approach requires that each KS writer perform this check and that the semantics of

equivalency are consistent across all KSs.

Another approach is to make equivalent-object checking and relationship management
part of the unit-creation operation. In this case, the KS would ask to create a new platoon unit
with links to the support units and the blackboard itself would perform the required
bookkeeping. This latter approach begins to move the blackboard from a passive repository to
a more active entity with application knowledge about what constitutes equivalency and how

to handle duplicate creation requests.

14

The second integration activity is attribute merging. As with relationship management,
we can have the KS execution determine the new belief value or we can have the blackboard
object-creation routines do it automatically. The problem with the latter approach is that the
knowledge required by the blackboard grows with the complexity of determining merged
values. We certainly do not want to end up duplicating much of the knowledge used by KSs
in computing new blackboard objects in automatic blackboard-integration routines. Clearly,
as the number of object attributes that need to be appropriately merged grows, the complexity
of work required by either every KS execution or the shared blackboard representation

maintenance routines also grows.

The third integration activity is value propagation. Assume that a belief associated with
a platoon object is a function of the beliefs of its supporting units and their spatial locations
relative to one another. Assume a field report is received that contains a confirmed sighting of
one of the supporting units of the platoon and that the KS execution that processes this
information increases the belief value of the supporting unit. We would like this increased
belief value to propagate to the platoon value, increasing our belief in it as well. Again, we
could make this propagation be the responsibility of the executing KS or an activity of a more
active blackboard repository. Similarly, suppose yet another KS execution, using different
sensor data than was available to earlier KS executions, is able to compute a more accurate
position for one of the support units and changes the position attribute of that support unit. We
would like this new position value to be used to update the position attribute of the platoon
unit and, potentially, the platoon unit’s belief value if the new location of the supporting unit
affects the belief calculation. Historically, blackboard systems have handled these integration
activities in a very specific manner. Some applications placed the responsibility for these
activities with the executing KSs. This required substantial discipline on the part of KS
writers to maintain semantic consistency across KSs. Other applications placed this
responsibility with the blackboard, risking duplication of KS knowledge and the potential for
inconsistency if the way that the KS performed its activities was changed significantly. By
careful modularization and sharing of code among KSs and the “active” blackboard, it is
possible to reduce this duplication and risk. Finally, some applications dealt with value
propagation by simply triggering and executing KSs again if important attributes used in their
contributions changed. In this case, a re-executed KS simply replaced its original

contributions with the latest version. Each of these approaches worked well enough in specific

15

situations and, when used with care, allowed complex blackboard-system applications to be

built.

Also, creating a principled integration model for a blackboard application requires close
analysis of how the KSs in the application operate in conjunction with one another. From a
practical standpoint, how we maintain the consistency of the result-integration model with the
current KS set is an important issue. Just as KS-specific control expertise is developed and
maintained with each KS, it is important to develop KS-specific models of result generation
that can be incorporated into an overall result-integration model when the KS is added to the
system. In Figure 2-7, you can see this separation of result integration. Such a capability
remains to be developed, but it is an important research goal in enabling principled result

integration in applications, that will have many KS changes throughout their lifetimes.

Finally, the degree that results are shared in a blackboard application has a direct relation
to the complexity of the result-integration models. The integration model need only address
results produced by KSs that are placed onto the blackboard, so there is a tension between
limited sharing and aggressive sharing. Notice that, limited sharing is the small size of the
integration model and aggressive sharing is a complex integration model. Principled result

integration adds yet another consideration to degree of sharing design decisions.

context

v

Result Control Knowledge
Integrator Estimator Source

<
l

model

Figure 2-7 : Separation (Encapsulation) of Integration Knowledge

2.5.6. COORDINATION

The last collaborating-software challenge is running the right KSs on the right data at the
right time. The opportunistic control that is the hallmark of blackboard systems is highly
flexible, responsive, and generally efficient. During each control cycle, a traditional

blackboard system makes a single, instantaneous choice of the best KS activation to execute

16

and, if new conditions warrant, the system can focus its attention on a new area as early as the
next cycle. As discussed earlier, executing only one KS activation at a time also greatly
simplifies the architecture. Nevertheless, even achieving effective single-threaded control in a

complex blackboard application can be challenging.

At any given moment, a blackboard application rarely lacks choices among a large
number of potential KS activations to execute. These choices stem from multiple inputs
arriving into the system, combinatory ways in which this data can be combined and used, and,
in many applications, multiple KSs that can be applied to the same data. Figure 2-8 shows
some models of these KSs. This results in a large and dynamic space of possible KS
executions, of which only a small fraction can be pursued. Because blackboard systems
operate incrementally, poor choices early on can result in triggering a large number of
inappropriate downstream KS executions in response to the results generated by a single
“inappropriate” KS execution. Agenda-based control uses a utility-based rating computed for

each KS activation to select the best activation to execute in each cycle.

Figure 2-8 : Linearly and partially ordered KSs
This rating incorporates the estimates of what the activation will do if executed and more

global requirements, such as parts of the solution that need attention. Unselected activations

remain on the agenda, potentially to be executed in the future.

17

While the activations that are queued on the agenda await execution, the state of the
blackboard and of overall problem solving is being changed by other KS executions. This
results in a queue-latency problem [8] where the information associated with the KS
activation becomes inconsistent with the current situation. In Figure 2-9, we can see a model
of queue latency problem. One naive solution to this problem is to re-rate all KS activations
on every cycle. However, since the number of pending KS activations can become large, this
is not an efficient solution, particularly if the re-rating of each KS activiation involves
searching the blackboard for changes relevant to the activation. Blackboard systems using this
approach have needed to artificially limit the number of activations held pending or to re-rate
only the topmost activations, under the assumption that the other ratings would not have
changed too drastically. Other systems have organized the agenda in much the same way as
the blackboard, so that the control shell could quickly identify pending KS activations that
might be affected by changes on the blackboard. Event based re-triggering of pending KS

activations is an example of this strategy.

KS A
VA
ctions
\ AGENDA
KS B
denendenci€s
KS C

BLACKBOARD

Figure 2-9 : The queue latency problem

In addition to the queue-latency problem, simple agenda based control techniques can
introduce unwelcomed depth-first bias to opportunistic control. Consider the agenda shown in
Figure 2-10. KS activations of A and B have the same rating with C close behind. From a
control standpoint, these can be considered equally valid choices to be executed next. If A is
selected and executed, its results may trigger a number of other KS activations, such as X, Y,

and Z, potentially at higher ratings than B and C. If B had been selected instead of A, it might

18

have triggered X0 and YO0, again with ratings much higher than A and C and potentially even
higher than the ratings of X, Y, and Z. To be fair, and to make our control decisions as
informed as possible, we should execute A, B, and C before executing any of the KS

activations that are triggered by them.

This is one simple example of some of the problems that result from making
instantaneous, history and purpose free, control decisions, and this problem was observed in

the original Hearsay-II blackboard system [4].

KS A

KSB

KSC

KSD
KS X
KSY
KSZ
KSB

Not executed for a long time KSC
KSD

KS W

KSY

KS W

KSZ

KS B

KSC

KSD

Figure 2-10 : Depth-First Search Bias

19

3. THE PROPOSED ARCHITECTURE

The proposed architecture extends and elaborates the standard architecture and has the
following characteristics:
e The blackboard control architecture defines an explicit control blackboard.
e The blackboard control architecture defines explicit control knowledge source
e The blackboard control architecture defines a simple, adaptive scheduling mechanism.
The basic control loop of the proposed control architecture employs the following three

steps:

Update the set of pending goals

Select a pending goal

Execute the owner KS of the goal selected
The basic control loop is expressed in terms of goals rather than KSs. The set of all goals
to relevant to a problem form a general goal tree. Let’s discuss the proposed control

architecture.

3.1. ELEMENTS OF THE CONTROL LOOP

Before to go in deep of the architecture, let us summarize the elements of the architecture:

a. Knowledge Sources: Our computational modules that together contain the expertise
needed to solve the problem.

b. Policies: Our local scheduling criterion which guides to bidding process and it
indicates which of the attributes of the knowledge sources are relevant in the process.

c. Bids: Our mechanism to determine the knowledge source to be executed at the current
cycle by evaluation of each parameters in the knowledge source. And if we want to
see all the solutions for a problem, then, we can add the bidding mechanism at the end
of the architecture.

d. Strategies: Our global scheduling criteria such as depth-first, breadth-first etc.

e. Methods: A method is a partially complete general goal tree structure representing
high level knowledge on how to solve a problem. The method is used to reduce the
number of children of the nodes. Hence, the size of the problem is reducing in the

search space. Also, we can give the execution order of the children nodes.

20

f. Facts: Facts are like knowledge sources. We can think the facts as nodes, however,
domain facts have no local evaluation parameters and always higher priority than

knowledge sources.

3.2. THE CONTROL LOOP IN DETAIL

The pseudo code of control loop is given in Figure 3-1:

take the goal that is in front of the queue
if there is a KS that solves the problem
put KS into solution list
if there are pending domain facts then
if goal matches a pending domain fact
put domain fact into solution list
elseif goal unifies some pending domain facts
select one of the domain facts
unify it
put domain fact into solution list
endif.
if there are no pending domain facts
identify the policy for the goal and the owner KSs
set the goal tree
reduce pending KSs according to the method
get the bids of the KSs
select the winning KS according to the current policy
Execute the KS to generate the goal to be posted

Figure 3-1 : The Control Loop of the proposed Architecture

After the system gets the global data (KSs, strategy, facts, policies and methods), it enters
to the control loop. The control loop’s purpose is to find an optimal solution set about the

problem defined.

At first, the control architecture defines the starting point of the problem. Then, it
generates a new stack and appends all the adjacent nodes to the starting point. The nodes are
selected according to the strategy. After that, the control loop searches the facts for these
adjacent nodes. If any found, then the system puts this fact into the solution queue. If there is
no fact about the starting point, then the system eliminates the adjacent nodes according to the
method. After eliminating nodes, the system calculates the bids of the remaining nodes, and
appends the higher valued node to the solution list. Then, the system takes the selected node
as the starting point and regenerates the stack that includes all the adjacent nodes to the
starting point. This process goes on until the problem is solved or there are no more nodes. In

the next chapter, we will discuss the implementation of the structure.

21

3.3. ASIMPLE EXAMPLE OF ARCHITECTURE

For better understandability of the control architecture, let us give a simple but effective
example.
3.3.1. FLIGHT TICKETING PLAN

In this example, we will see how can we apply this structure to an application. The
example application finds the optimal flight plan for a customer.

What does this simple application do is:

e Takes all the flight info into memory
e Takes additional information for the flights (facts, methods, policies)
e Then takes the origin and the final destination from the user.

e Finally, finds a solution according to information given

3.3.2. THE SCENARIO

If we write a scenario for this application, it would be like this:
There is a small airline company that makes charter flights accros USA. The company has

eleven different flight routes to the most popular eight cities. The cities are :

e New York
e Chicago

e Denver

e Toronto

e Calgary

e Los angeles
e Dallas

e Houston

Each flight service have a distance between origin and the destination of the flight and
each route have its own price. The distance and the price are affecting to the selection of
service at the bidding mechanism in the program. As we said before, all knowledge sources
and policies act like human experts. So, each flight services act like a server, and the bidding

mechanism will act like a customer.

22

The flight routes are shown in Table 3.1:

Table 3.1 : Flight Services List of the Company

From To Distance(Miles) Price(USD)
New York Chicago 900 350
New York Toronto 500 350
New York Denver 1800 550
Chicago Denver 1000 400
Denver Dallas 1000 400
Denver Houston 1000 400
Denver Los Angeles 1000 400
Toronto Calgary 1700 500
Toronto Los Angeles 2500 850
Toronto Chicago 500 350
Houston Los Angeles 1500 475

If we draw a map of the flights, it would be seen like in Figure 3-2

1700

Calgary

Toronto f\SOO

1800 New York

2500
Chicago 4—/

1000 900

Denver

1000

1000
Los Angeles Dallas

1500 Houston

Figure 3-2 : Map of the Flights

And a customer want to go from New York to Los Angeles. Then, lets see what will

happen!

23

3.3.3. ELEMENTS, KNOWLEDGE SOURCES AND FACTS

= The elements of the program: Actually we have mentioned about the elements of
the architecture, however, there are some special things that we have to explain. First
of all, our class name is ControlBB again. However, we have changed the name of
Goals structure to FlightInfo since the scenario is about a flight planning program.
Also, we have changed its parameters name. Hence, it is easier to follow the program

steps in terms of program parameters. The new structure can be seen in the Figure 3-3.

struct Flightinfo {
string from; // departure city
string to; // destination city
int distance; // distance between from and to
int price; // price
bool skip; // used in backtracking
short key; // key field to select the best solution

Figure 3-3 : The FlightInfo Structure for KS in the blackboard

As is seen in Figure 3-3, the ‘source _node’ was named as ‘from’, the child node was
named ‘to’. ‘distance’ and ‘price’ are our ‘cost_parameters’. Remember that we can
add as many cost_parameters as we want into the proposed structure. skip and key

parameteres are the same. Then, all other parameter names were adjusted in this way.

= Knowledge Sources : In the example, each of the flight services are one knowledge
source. So we have eleven KSs in this scenario. Although we have six parameters in
FlightInfo structure, at the beginning of the program, we just need four of them. The
origin of the flight service, the destination, the distance between origin and
destination, and its cost to the customer. In the source code, we have used addflight

function to add the KSs into the memory. The code part can be seen in Figure 3-4.

= Facts : A fact is a data structure that includes two objects. And ‘facts’ is a list that
consists of one or more facts. For this example, a fact’s first object is the origin of the
flight and the second one is the flight’s destination. In the source code, SetFacts()

function is used to add some facts into memory.

24

// Add flight connections to database.
bb.addflight(*'"New York', "Chicago', 900, 350);
bb.addflight(**Chicago’, "Denver™, 1000, 400);
bb.addflight(*'New York', "Toronto', 500, 350);
bb.addflight(*'"New York', "Denver', 1800, 550);
bb.addflight(**Toronto", *"Calgary', 1700, 500);
bb.addflight(**'Toronto", "Los Angeles™, 2500, 850);
bb.addflight(*"Toronto*, "Chicago', 500, 350);
bb.addflight("'Denver", "Dallas", 1000, 400);
bb.addflight(*'Denver', "Houston', 1000, 400);
bb.addflight(*'Houston", "Los Angeles", 1500, 475);
bb.addflight(*'Denver’, "Los Angeles', 1000, 400);

Figure 3-4: Adding flight Information into the system

Like addflight function it is enough to write “bb.SetFacts(“New York”, “Denver”);”
to add a fact into the facts list. For our scenario, just one fact(from New York to
Denver) was added into memory to show how it affect to the solution. Later, we will

see how does this fact affect to the solution.

= Policies : There is one policy for all the flight connections in the system, however
we can add different policies for all the connections. The system will check if there is
a special policy for the current connection. If not, it will use the general policy to
evaluate the bids. For this scenario, three policy parameters were defined. These
parameters have all negative effects in the bidding mechanism, however, it may not to

be always negative. The policy parameters are :

1. The distance between origin and the destination,
2. The price between origin and the destination,

3. The number of transit flights of the plan.

As you see, these three parameters have negative effects on the customer. Because,
when one of these parameters increase, then the satisfaction of the customer will

decrease.
= Methods: For our scenario we will give just one method. By using the method, we

will exclude New York — Chicago connection. Then we will see how this would affect

to the performance of the system.

25

3.3.4. EXECUTION OF THE SYSTEM

To test the proposed architecture entirely, we will execute the program three times.

At the first time, we will not add any facts or methods to see how system searches the
general goal tree. Then we will add the method and rerun the program to see the effects of
methods. And thirdly, we will add the fact to the program (the method is also will be

included) to reach full performance control of the program. Also, we will analyze the traces of

these three iterations of the program to compare their performances.

Before go any further, it is good to know that, in all three iterations, the program inputs
will be the same. It means that, in all three cases, the origin will be New York and the

destination will be Los Angeles, and all the KSs will be the same. In this case the general goal

tree for New York will be like Figure 3-5.

New York
Chicago Toronto Denver
A
Denver Los Angeles Chicago Calgary Los Angeles
Los Angeles Houston Dallas
Los Angeles

Figure 3-5 : General Goal Tree for NewYork

26

= First Run

In the first run, we do not add nor any facts neither any methods to the system. Then the
system defines the general goal tree as the searching area. The control architecture makes a
search in the whole goal tree. The type of the search is depend on the strategy that we define
in the program. In this example a breadth-first search is made and all the solutions were
written in the solutions.txt file. Then the system makes the bids of the three solutions
according to policy. And selects the best solution between them. The output of the file is
shown in Figure 3-6. In solutions.txt file, as we can see there are three solutions found, and
the second was selected as the best solution. After the system finds three solutions, a bidding

mechanism also helps us to select the best.

New York to Toronto to Los Angeles

Distance is 3000

Price is 2850

New York to Denver to Los Angeles

Distance is 2800

Price is 1550

New York to Chicago to Denver to Houston to Los Angeles
Distance is 4400

Price is 2650

THE Selected Route is:

New York -> Denver -> Los Angeles
Distance :2800

Price :1550

Steps :2

BID :-10260

KEY :2

Figure 3-6 : The output of Solutions.txt file

= Second Run

In the second run, we just add the method to exclude the flight from New York to Los
Angeles. Hence the searching area was diminished very effectively. After exclusion of
destination Chicago the new goal tree will be like Figure 3-7. In this new goal tree, we are
seeing that the leftmost node in the first level of the search tree and all of its children were
deleted in the search area. Figure 3-8 shows the output file after the second run of the
program. Here also, we can see that the third solution of the first run was gone. And this
output proves that using a method can be an effective way to improve the performance and

quality to find solutions.

27

| T.0s Anoeles | | Chicaso | | Caloarv | | T.0s Angeles

Figure 3-7 : The new sub-goal tree after adding the methods

New York to Toronto to Los Angeles
Distance is 3000

Price is 2850

New York to Denver to Los Angeles
Distance is 2800

Price is 1550

THE Selected Route is:

New York -> Denver -> Los Angeles
Distance :2800

Price :1550
Steps :2
BID :--13356
KEY :2

Figure 3-8 : The output of solutions.txt file after second run

= Third Run

In the third run, we have added the fact New York -> Denver. By this way, we exclude all
other possible flights from the search tree. And we just guarantee that New York -> Denver is
the first leg for a flight plan to go from New York to Los Angeles. Then, there is no more
doubt that, it will search just two nodes to find a solution. In Figure 3-9 you can see the sub-
goal tree after the fact is found. And the system will just search the children of Denver node

after executing this KS. The output of the program is seen in Figure 3-10.

New York

\

Denver

N,

Los Angeles

Figure 3-9 : The new sub-goal tree after adding fact

28

New York to Denver to Los Angeles
Distance is 2800

Price is 1550

THE Selected Route is:

New York -> Denver -> Los Angeles
Distance :2800

Price :1550

Steps :2

BID :-13356

KEY :1

Figure 3-10 : The output of the solutions.txt after third run of the program

29

4. IMPLEMENTATION

The proposed architecture is implemented in C++ language. C++ is a language that
supports the concept of an “object”, and provides a uniform means for referring to the objects

in its universe. C++ provides an object-oriented model. [9]

The reason why the control architecture is implemented in an object-oriented language is
that the possibility to orientate programming to objects allows us to design applications from
a point of view more like a communication between objects rather than on a structured
sequence of code. Hence, we can use the same architecture in many different decision making

procedures.

4.1. GENERAL FLOW OF THE IMPLEMENTATION

The general flow of the proposed architecture is simple. As you can see in the Figure 4-1:
e Firstly, the system gets all the knowledge sources into memory from an outer
system or from a user.
e Secondly, the system gets the problem definition.
¢ In the third step, the system gets all the facts, policies and methods into memory.
e Then, the system executes the control loop to find a solution set about the problem.

¢ Finally, the system returns the solution set if it can find any

App epd all the / Define the Problem &
KSs into } lect a strat
Memory / select a stra igy
Find a solution set by Get the facts, policies
using the control loop < and methods

v

Return the solution set
to the outer world

Figure 4-1 : Flowchart of the proposed architecture

30

4.2. ARCHITECTURE ELEMENTS

The elements shown below are general elements for the architecture. And these can be

changed according to specified implementations.

First of all, lets define the data structures in the architecture:
e Struct Goals : This is the structure that defines a KS in the system. Its elements are:

O string source_node : this is a string that defines a goal in the blackboard

0 string child _node : this is a string that defines a child of the goal in the
blackboard.

O int _cost_parameterl : this is an integer parameter that you can define any
property of the service between source node and child node. For example, if
you are planning a daily touristic trip, it can define a quality of a restaurant. Or
it can define the cost of the restaurant. Also we can define as many
_cost_parameters as we want. It will affect the bidding mechanism.

0 bool skip : this flag is used for backtracking information

o0 int key : this field provides a relation between KSs and solutions. It is like a

key field in a database table.

e Struct facts : This structure defines a fact in the system. Its elements are:
O string source_node : this is the string that defines a goal in the blackboard
0 string child_node : this is the string that defines the child node of the goal
node in the blackboard.

e Struct Methods : This is the structure that defines a method in the blackboard system.

O string source_node : this is the string that defines a goal in the blackboard.

0 string child_node : this is the string that defines tha child node of the curent
goal node in the blackboard.

0 char option : this character can take just two values. ‘I’ or ‘E’. ‘I’ means
include the KS and ‘E’ means exclude the KS in the goal tree. During search
mechanism, this option is used to eliminate or to make an execution order the
KSs. By this way, we can improve the perfromance of the search mechanism.

O int Key : this integer is useful only if the option is ‘I’. As we said above, the
option ‘I’ means include the KS. And via using key integer, we can define an

execution order of the sub-goals.

31

e Struct Solutions : This structure defines a complete solution in the blackboard.

(0]

(o]

string source_node : this is the string that defines a goal in the blackboard.
string end_node : this is the string that defines the last node of the solution
list.

int cost_parameterl : this parameter defines the sum of the cost parameterl
in the solution list of the blackboard. We have to define one cost_parameter for
each cost_parameters in the goals structure.

int steps : this parameter defines the number of steps in the solution list. This
variable, is used to calculate the bid of the solution.

int bid : this parameter defines a total bid of the found solution. It is calculated
by using the policies and the cost parameters.

int key : this is the key to make a relation of the found solutions. This is the

second leg of the relation between KSs and solutions.

e Struct Policy : this structure defines a policy for the blackboard system. The policy

can be defined for all KSs and can be specialized for any of the KSs. What parameters

have this structure are :

(o]

string source_node : this is the string that defines a goal. Its value can be a
goal value or an asterisk(*) . It its value is star, then it means it is valid for all
KSs in the blackboard.

string child node : this string defines a child of the goal node. Like
source_node this parameter also can take an asterisk(*) value. If source node
contains a normal goal and child node contains an asterisk then, it would mean
the policy is valid for all child nodes for the goal defined in the KS.

int rulel : this parameter defines a coefficient to calculate the bid by
multiplying the first cost parameter of the KS. For each cost_parameter,

there must be a rule parameter.

e Struct key : this is the structure that defines a counter to make a relationship between

solutions and KSs.

(o]

int key : this integer defines a unique key identifying the number of the

solution, and its KSs.

32

Now lets define the Blackboard of the system. The blackboard is a class that defines all

the KS information, policies, facts, methods, search functions, and so on.

Here are the blackboard elements:

e Class ControlBB : The base class of the blackboard system is ControlBB.

(0]

O O O o

vector goals : this vector stores all KSs that were given to the system. It is
constructed from the structure Goals.

vector sub_goals : this vector stores the goals that are adjacent to the starting
point(i.e. children of the goal node). Like vector goals it is also constructed from
the structure Goals.

stack btStack : this stack includes backtracking information. It is constructed
from structure Goals. It includes executed KSs in the search space. We can call it
(b)ack(t)racting Stack.

stack slStack : this stack contains the solution queue with key information that is
used to sort and read at any point. The solution queue consists of all steps of the
problem solution. That means that, if a solution consists of five KSs then, slStack
includes five KSs. We can call it (s)o(l)ution stack.

stack solutions : this stack is used for bidding mechanism. It includes the problem
definition(the first and the last goals), and the total of cost parameters. And also, if
there is more than one solutions, then it includes all solutions for the defined
problem.

stack bids : this stack consists of all information in stack solutions. In addition to
this information, the bid parameter of the structure is also calculated. It has the
same structure as the stack solutions.

stack policy : this stack stores the policies. It is constructed from Policy structure.
vector methods : stores the methods for all the goals

vector facts : stores the fact about a starting point

bool match() : this function returns true if there is a direct connection between the
starting point and the final goal

Bool find_depth(string from, &sub_goals) :This function makes the depth_first
search to find a solution. And then, returns true if the problem was solved. During

this function is executed, the solution queue is filled.

33

O O O O O o

o O O O

Bool find breadth(string from, &sub goals) : This function makes the
breadth first search to find a solution. And then, returns true if the problem was
solved. During this function is executed, the solution queue is filled.

Bool find_least(string from, &sub_goals) : This function makes the depth_first
search to find a solution. And then, returns true if the problem was solved. During
this function is executed, the solution queue is filled.

void add_goal() : This function adds KSs to the memory.

void show_solution(): If there is a solution about the problem, then this function
shows the solution queue.

void select best(): After evaluating the bids of KSs, this function selects the
highest valued solution.

void set_policy(): This function sets the policies of the blackboard.

void get_policy(): this function gets the policy of the current service.

void evaluate bid(): This function calculates the bid of the service.

void set_facts(): This function sets the fact vector for all the goals.

bool is_a_fact: This function returns true if there is a fact for the current node.
void define_strategy(): This function defines the searching strategy of the
architecture such as depth_first, breadth_first etc.

void solve _depth(): Solves the problem using depth_first strategy

void solve_breadth(): Solves the problem using breadth_first strategy

void solve least(): solves the problem using least cost strategy

bool problem_solved(): returns true if there is a solution set in the memory.

34

4.3. THE CONTROL LOOP FLOWCHART

If we write the loop in terms of the architecture functions it seems like in figure(4-2).

Take the first goal

I Take the next goal <

is_a_fact() true

A
get_policy()

A 4

generate_sub_goals()

A 4

eliminate_sub_goals()

A 4
evaluate bid()

A A 4
select_best()

append_solution()

\ 4

Pending goals no

are finished

Return the Solution
Queue

Figure 4-2 : Flow chart of control loop

35

5. EXAMPLES

In this chapter, two examples will be given. The first example is about ticketing problem
on a flight schedule. And the second chapter is about routing planning in a factory on plastic

injection machines.

5.1. APPLICATION: ROUTING PLANNER IN A FACTORY

In the previous example, we saw that how can architecture handle the Al search basically.
But we can give another example to express its power. Consider, a factory produces several
types of vacuum cleaners and one of its workshops produces all the plastic parts of the
vacuum cleaners. The company uses an ERP program. Then, since the ERP program does not
have an efficient planning tool, according to the scenario, our program has to make a plan for
a plastic injection machine. There are several types of moulds in several colors. Setting-up the
injection machine takes a time, and we want to reduce this setup time. Our program will take
all information from a formatted file automatically (that would come from the ERP program),

and then will make a plan that the machine will produce the parts in optimal time.

5.1.1. THE SCENARIO

As the scenario, we will analyze Elektropak’s production process and then we will solve

the production planning issue by our architecture.

Let us give some information about Elektropak: Elektropak is a company that produces
vacuum cleaners, flat-irons and other small home appliances. Their products take Arzum,
Conti and Rowenta trademarks in the market. Elektropak uses SAP system [10] to manage all
its information in an integrated environment. All departments of Elektropak - such as

accounting, sales and distribution, production etc. - are connected each other in SAP system.
In Elektropak, we can define a production process in four main steps [11]:
e Design of a product: in this step, technical designs of the product are drawn in
R&D department. Then bills of materials (BOM) [12] are created and loaded into

SAP. A BOM includes all parts of a product. The elements of a BOM are raw

materials, semi-products, accessories and moulds. Also, semi-products have their

36

own BOMs. Other elements do not have their own BOM and generally they are

obtained from outer sources.

e Design of routing plans in SAP: in this step, for all new designed products, a
production scheme is constructed. This scheme shows all the following
information:

0 In which order, the elements of product in the BOM will be produced.

0 How much time would take the production of a unit product. (Also semi-
product)

0 What will be the quantity of a minimum party of the product?

0 How the capacity of machines will be affected.

0 After all, how much will be the cost of the product

Hence, Elektropak adds a new type of product to its product spectrum.

e Production Orders: According to customers’ purchase orders and material
resource planning (MRP) data, the system generates planned production orders for

the products/semi products.

e Production: The last step is production of products. After producing all semi-
products in the BOM, all the parts of the product is assembled in another workshop

in the company.

The biggest workshop of Elektropak is injection workshop. In this workshop, all the
plastic parts in the whole product spectrum of the company are produced. In SAP, there are 5
different types of injection machines. And the moulds of these machines differ from each
other. In Table 5-1 you see a list of injection machine types, their names and the numbers of
these machines in Elektropak. The number of machines is important because we want to

reduce the number of working machines to reduce the cost.

The plastic semi-products that were ordered to produce, are produced by these machines.
In a technical plan of a plastic semi-product, there are the following characteristics:
e The color code of the semi-product
e The plastic type of the semi-product

e The mould type that would be attached to the machine

37

e The production time for a unit semi-product

Table 5.1 : The list of injection machines

Machine Group Machine Names # of Machines
E1000G 1000 Gr. Injection Machines 9
E1600G 2000 & 1600 Gr. Injection Machines | 8
E200G 600-100 Gr. Injection Machines 21
E2400G 2400 Gr. Injection Machines 1
E750G 750 Gr. Injection Machines 7

An ABAP report was written in Elektropak’s SAP system to get a list of production orders
for the machines that we have seen Table 5-1. In this list, we can see the following elements:
¢ Finishing date of the planned product
e Machine code for the semi-product
e Mould (setup) code for the semi-product
e Setup-time of the mould
e Color code of the semi-product
e Production quantity
e (Current stock quantity of the semi-product

e Unit production time of the semi-product

The purpose in production planning is producing maximum quantity of products with a
minimum cost. Though we can see the semi-products list, within their mould types, setup
times, dead-lines for the production etc, it becomes more complicated to handle all the

production in the workshop manually. And at this point, our architecture will help us.

5.1.2. ABAP PROGRAM : ZPLANTEST

For SAP part of the example, a program was written in ABAP [13, 14] in the test system
of Elektropak system. The program’s name is ZPLANTEST. The general inputs of this
program are plant name, storage location, machine codes and planned finishing dates. Also
there are additional input parameters that define the type of the list. In Figure 5-1, we are
seeing all the input parameters of the ABAP program. In this program, we can take several

different lists either to see or to download into architecture. ALV tool (ABAP List Viewer) of

38

SAP was used to get the list. ALV is a special reporting tool in SAP [15] that will help us to

analyze the problem more specifically:

¢ Routing plans of semi-products: in this list, we are seeing routing plan information
of semi-products. The columns are material number, material explanation, routing plan
number, machine code(this is also calles work center in SAP system), setup (mould)
code, unit production speed and color code of the product. In Figure 5-2, we can see
the routing plan list.

e Production orders of semi-products: In this list, there are five columns: production
order number, material number, material description, order quantity and finishing date.
In Figure 5-3, we can see this list.

e Stock List: If there are some stocks in the warehouse, then we can see this
information in this list Figure 5-4.

e Machines List: Figure 5-5 shows the machines list. This is the list that we can see all
the machines and all of their compatible mould codes. Also, we can see setup times of
moulds in seconds.

e General List: This is the list that we all merged into one list. We also would
download this list to the local computer to use further in the architecture. In Figure 5-6

we can see the screenshot of this list.

39

Frogram Edit Goto &

termn Help
B dE @@ OEE & hE
Production Planning of Injection Machines

® &

General Selection Parameters

Plant puo1

Storage Location o001 to
Wark centar EZ00G to
Finish date to

Additional Selection Parameters

General List O
Prod. Plans List @
Prod. Orders List @]
Stock List @]
Machine List O

Display Yariant

| [| D83 ¢y 020y M 8RO INS y

Figure 5-1 : Selection parameters screen of ZTESTPLAN program

List Edit Goto Settings tern Help
Bl H @G CHE OHDhoa

Production Planning of Injection Machines
F &% T 8|8 TE Ty sec | B dE choose | &l save |[H | M >
Material|Plan No |Work ctr|Component|peed(3ec) |Clr.Code|Material description é
15000044 50001353 |EZ00G KaL1099 1l |® BOSCH SUP.3AF KAPAGI
15000045(50001354 |E200G KaLlloag 57 |® B3HG SUP.3API KIRMIZI
15000046| 50001355 |E200G KAL1O99 41 (X ESHG ASUP.SAF KAP.KIRMIZI
15000047 50001356 |E1000G KaLg74 g2 (X EOSCH UST KAPAK (MAVI)
15000045 50001357 |[E1000G KaLg74 1 | ESHG UST KAPAK EIRMIZT
15000049 50001358 |E200G KAaLg77 1 |X EOSCH ANAHT.EUT. (EEYAZ)
15000050| 50001359 |E200G KALE77 e (X ESHG ANAHT.EUT. (KEIRMIZI)
15000051 | 50001360 |E200G KAaLa75 0 (X EOSCH TST KAPAK DISKI
15000052| 50001361 |E750G KaL1l55 87 (X P99 DEKOR (KOBOLT MAVTI)
15000053 50001362 |E750G KaLlls4 47 (X P99 GORL FILTRE EAPAGT
15000054 50001363 |E7S0G KaLll9o 1 |® P99 FIS YUVASI (SIYAH)
15000055(50001364 |E24000G KaLlles 150 ([P99 ORTA GOVDE (KOEOLT MAWV
15000056(50001365 |E750G KAL1163 a0 |& P39 PANJUR SIVAH

[> |D83 (1) (020 SREVO | IME 4

Figure 5-2 : Output of production plans list

40

Production Planning of Injection Machines

@l&ﬁ?lglﬂgﬁﬁ%ﬂﬂc|@E§Chaase ﬁSavellliq

[=]

Jipariz|Material|Material description Miktar |Ord. finish Iil
159317 |15000051(EO3CH UST KAPAW DISKT 1.400 |[03.02.2003
159316 |15000051(EBOSCH UST KAPAK DISKI l.400 |[23.01.2003
1912585 |15000061(P99 DOLUM GOSTERGE SUBABT 2.000 |[22.03.2003
191254 |15000061(P99 DOLUM GOSTERGE SUBABT 2.000 |22.02.2003
159318 |15000066(STEMENS 3SUP.SAPT EETAZ 1.200 |[23.01.2003
159319 |15000067 | STEMENS 3SUP.SAP KATD.EEVAZE 1.200 [23.01.2003
1551580 |15000065(SIEMENS SUP.SAPI SEE-EEY. 597 |21.01.z2003
155151 |1500005%9| STIEMENS SUFP.SAP KAP.SEE. 597 |21.01.Zz2003
159321 |15000070(STEMENS KAPAK GRI-EEYAZ 00 |24.01.2003
159320 |15000070(STEMENS KAPAW GRI-EEVAZE S00 |23.01.z2003
186185 |15000071| STEMENS KAPAW SEE-EEVAZE E66 |21.01.2003
159322 |15000072| STEM. ANAH. KITT [TUREITVAZ) 425 |24.01.z2003
1551587 |15000073(STEM. ANAH. KUTUST(5014) 5630 |21.01.Zz2003
189326 |15000093(P4 DVNE SAL.LAS.ARAL PARCA 1.500 |04.02.2003
159325 |15000023(P4 DYNE 3AL.LAS.ARAL PARCAH 1.500 |[03.02.2003

189324 |15000093| P4 DVNE SAL.LAS.ARL PARCA 1.640 |292.01.2003 El

[~]

[ID53 1y (0207 SEWVO IMS %

Edit

Figure 5-3 : Production Orders List

Soto

Production Planning of Injection Machines

& | & T F | 2B | E T3 Gy aec | |BEH &E choose | & save | | EH || I
[~]

Material|Unrestricted Iil

15000021 0,000

15000023 1.335,000

15000028 I.500,000

15000027 2.000,000

15000025 S.000,000

15000029 0,000

15000030 6.744, . 000

15000031 17.s880,000

15000032 o,000

15000033 l1.050,000

15000035 o,000

15000035 1.825,000

15000035 400,000

[ale]l I [«][»]

[| OS2 (13 (020) SRYD

NS

i

Figure 5-4 : Stock list of products

41

Production Planning of Injection Machines

& | & F E | 2| 8 <= @& T Oy ssc | BH & choose

g Sawve

[=]
WMork ctr|Mach. Savis|Component |Kaliplar| Setup. time |Min. Partsy El
EzZO0G =21 FEAL1ZZ3 1 10.8500 00
EZOOG 21 EaLlzz"7 1 1l0.&00 400
EzZO0G =21 EalLll7a 1 10.8500 00
EZOOG 21 EaLlz235 1 loa.&00 400
EZO0G 21 EaLlO9a 1 10.s00 400
EzZO0G =21 EaALl1175 1 10.8500 00
EZOOG 21 EaLlOoos 1 1l0.&00 400
EzZO0G =21 EaLaal 1 10.8500 00
EZOOG 21 EaLlOz7? 1 la.&00 400
EZO00G 21 EarLool 1 10.800 400
EzZO0G =21 EALS00S 1 10.8500 00 |
EZOOG 21 EaLlzzs 1 1l0.&00 400 [|
Ez400G = FEaALl1Z39 1 1&.000 00
EzZ400G =2 EaLlZ&ga 1 14,400 400
EZ400G = EaLl1371 1 14. 400 400 | |
Ez400G = EAL7?SZE 1 1&.000 00 El
[~]
ER|I3]| I [«][»]

[| DS3 ¢1) (020 SRV

IS

3

Figure 5-5 : Machines List

List Edit Goto Setti Help
& 3 dH O DHE DL BER @M Ty
Production Planning of Injection Machines
@ EBERl&F F| B %mET|ETEH T e | B < chose & sae | B FacTs &2 METHODS | K <] | M
Ord. finish|Work ctr|Cowponent|Speed(iec)|Setup. tine Ttl.Time | Quantity |Material|Material description l;‘
(] z0.01.2003|E1000G |KALlO4S 2 14. 400 1.164 582 (15000653 CONTI ALT GOVDE TURKUVAZ
(] 20.01.2003|EL000G |EALLO76 1 14,400 643 643 (15000305 ¥C-192 UST KAPAK KIRMIZI [
(] 20.01.2003|EL000G |KALLO76 1 14,400 656 656 [15000311|WC192 UST KAPAK TURKUAZ
(] z0.01.2003|ELO0OG |KAL71Z 2 14. 400 1.300 650 [15000655|¥C-192 ALT GOVDE KIRMIZI
20.01.2003|E1000G 3.763 2.531
(] z0.01.2003|E1600G |KALIOGL 2 18.000 1.164 582 (15000652|¥-192 ORTA GOVDE TURKUAZ
(] 20.01.2003|E1600G |KALLOSL 2 18.000 1.300 650 [15000654|WC-192 ORTA GOV,KIRMIZI
* 20.0L.2003|E1600G 2,464 1.232
(1 zo.01.2003|E200G KaLlold 1 9.000 4.310 4.310 (15000613 SAMANDRA KAFEST PIMLI
(1 zo.01.z003|E200G KAL1037 1 9.000 670 670 |15000291|¥C-192 SAP KIRMIZI
(1 zo.01.zo0%|E200G KAL1089 1 9.000 740 740 (15000632|EITLE.KAZ.EMIS AGZI 7024
(] z0.01.2003|E200G KAL1171 58 9.000 232.000 4,000 |15003215|4x4 YONLEN.GOBEGI SIVAH(9005) (DI§ PARCA)
] 20.01.2003|E200G KAL1181 30 9.000 21.300 710 (15003072|4x4 ATAR DUGMESI EIRMIZI
(1 zo.01.2003|E200G KaL1419 20 9.000 £.000 300 (15003099 P5 NOZUL YESIL (RAL 5018&)
(1 zo.01.zo03|E200G KAL978 19 9.000 152. 000 5.000 |15001455)57 sUPUROCT IRI TEKERLEE
20.01.2003|E2006 417.020 | 18.730
[20.01.2003|E750G KAL1154 1 i 1.600 1.600 |15003084|4x4 DIS KAZAN KAP.GRI(RAL 7015)
* 20.0L.2003|E750G 1.600 1.600 E
| I | Da3 (1 020y PEl| SRVD | INg y.

Figure 5-6 : General list

42

5.1.3. ELEMENTS, KNOWLEDGE SOURCES AND FACTS

Above, we have introduced an ABAP program to feed a complex list of production
orders to our composed architecture. Now, we will analyze our control architecture and see

how it would make a plan for a specific machine for a specific finishing day.

A general goal tree actually includes the combination of production orders of the
product. For example, if we have three products (A,B,C) to be produced in the same date and
in the same machine, then the general goal tree for this machine would be seen like in the
Figure 5-7. In this figure, it is guaranteed that all these products will be produced in the same
date and in the same machine. However, their mould code and color code can differ from each
other. For example, A and B can have the same mould code with different colors while C has

the same color with A and different mould code from A and B.

Machine, Date

A B C
B C A C A B
A 4 A 4 A 4 A 4 A 4 A 4
C B C A B A

Figure 5-7 : Example for production combination tree for a machine

e Knowledge Sources: All KSs come from SAP system in a tabular formatted text
file. And they are read from the text file. A KS of this program includes these
parameters :

* Production date

= Machine Code

= Mould Code (Setup Code)
= Setup Time (in seconds)

= Color Code

= Product code

= Unit production time (in seconds)

43

= Number of products to be produced

All we have to do in the architecture is to generate a production order for these machines

to reduce the production cost and increase efficiency.

e Facts: For this example, a fact can be defined as a production priority of a product.

For example, consider we have two types of production on the same machine with the

same mould int the same day. Their planned order quantities also are same. The first

product will be yellow and the second one will be red. Then, if you need red products

first, you can give it as a fact. A fact has the following parameters in the system :

= Production date

= Machine Code

= Mould Code

= Color Code

= Previous production code (source node)

= Product to be produced (child node)

Hence, we can specify a production order with these parameters. In figure(24), if we

want to force the production of B after C, it will be enough to express with the

parameters written above.

e Methods: Within a method, we would exclude or include KSs in the same level of the

search. A method has the following elements :

Production date

Machine code

Mould code

Color code

Previous production code (source node)
Product to be produced (child node)
Option to exclude or include the KS

e Policies: The policy parameters must be set to reduce the cost of the productions. To

reduce the cost, we have to reduce the number of machines, the working time of the

machines, the number of the mould changes and the number of the color changes.

44

While these parameters are valid, also, we hae to produce as many products as we can

do.So let us define the parameters that effect to the cost of productions :

= Machine setup times : the most important time taking parameter is machine
mould setups. Because, changing a mould in a machine takes from 2 to 5
hours. If we consider this time interval as seconds, changing a mould of a
machine can vary from 7200 seconds to 18000 seconds. Stopping a machine
means increasing the cost. So we must maximize the number of productions
after changing a mould.

= Color setups : This is also an important parameter to reduce cost. It does not
take so much time as mould setup, however changing colors many times will
reduce effectiveness of the production. And it means to waste the raw-material
of the product. And be sure that it will have an extra cost for a unit production.
Also, we must maximize the number of productions after changing the color.

= The number of products to be produced : We have to select the bigger

production order first in terms of quantity.

According to these parameters we can define our policy with the following

parameters and their coefficients:

1. Date : This parameter is used to select policy by the program. It can take a
specific date value or take (*) asterisk character to validate the policy for
all entries.

2. Machine Code : This parameter is also used to select appropriate policy
for bidding mechanism. Also it can take a specific machine name or can
take (*) asterisk character.

3. Mould Code : This parameter also helps to identify the appropriate policy
for bidding mechanism.

4. Product to be Produced : It mostly takes (*) to define its validty to all
products to be produced in a specific day, machine and mould code. But if
you want to define an exact policy for a specific production, it may take the
value of production code also.

5. Setup Time : This is the first and most important coefficient. Because,

pluggin-in of a mould in a machine takes a lot of time and this is the most

45

effective wasting time parameter. We will give the biggest negative
coefficient in the program.

6. Total Production Time : This value has the multiplication of unit
production time and total number of products for a specific finishing date.
The importance of this coefficient is not so much like setup time.
Generally, its effect is negative and considered with the number of
products.

7. Number of products : As we said before, we want to maximize the nuber
of products in the minimum of time. So this coefficient will take a positive

value..

5.1.4. EXECUTION OF THE SYSTEM

In ABAP program, we can give more than one value for storage location, machine code
and finishing date as selection parameters. While you see the selection screen for
ZPLANTEST program in Figure 5-1, you can also see the multiple selection screen in Figure
5-8. In this screen, we can give a number range of single values for the selected variable in the

program. Also, we can choose include or exclude these values.

Multiple Selection far Work center

O 55ingle vals k O Ranges k @O Single vals k @0 Ranoes

E200G
ETS0G
E1000G
E1600G
EZ2400G

][]

Dl o

v oéEETIHEBE X

Figure 5-8 : Multiple Selection Screen for Machine Codes

For our example, we have chosen two storage locations and five machine codes to get the
production list. After execution of the ABAP program, a 711 lined list was generated. And

then we have downloaded to the computer where we run the architecture program.

46

After downloading to the local computer, the tabular formatted list is seen like in Figure
5-9. There are eight columns : the production finishing date, machine code, mould code, color
code, setup time of the machine, total production time, production amount and finally product

code. As we have seen before, every line of this list will be our KSs.

We will download the policies, facts and methods from SAP. However, I will try to
complete the policy to the presentation. This is why, the control mechanism was given

manually for right now.

4 test.dat - Notepad E]@
File Edit Format Wiew Help

09,04, 2002 E2003 kalr3l 10001062 Q000 o] 3450 00000000001 5000452 |aA
10,04, 2002 EZ200G kal1171 10001061 Qo0 232000 4000 QO0a0000001 50004451 |
10,04, 2002 EZ200G kal1172 10001055 Qo000 220000 4000 QO000000001 5000389
10,04, 2002 E200G fal 1181 10001042 Qo00 147500 2500 Q0000000001 50003590
18.04, 2002 E2005 kal1273 10001064 Q000 44000 4000 QO0a0000001 5000598
13.11. 2002 E2003 fal1102 100010559 Q000 204000 3000 QOOOC00000150004 21
15.11. 2002 EVS0G kal1551 100010559 0 198000 3600 QOOO0000001 5003193
08.01. 2003 EZ200G kAl 942 10004725 =Tagelu} 48000 =000 QO0O0000001L 5002505
13.01. 2003 EFS0G falLS7s 10001064 o] 1674 1674 Q0000000001 5000457
13.01. 2003 EF50G kAlL97S 10001064 0 1a74 1674 QOOO0000001 5000458
14.01.2003 E2003 kallz43 10001051 Q000 48000 1200 Q0000000001 50013598
16.01. 2003 EZ200G kal 73l 10001062 Qo00 o] 4000 QO0a0000001 5000452
16.01. 2003 EVS0G kalS75 10001064 0 2000 2000 QO0O00000015000457
16.01. 2003 EFS0G falSys 10001064 6] 2000 2000 Q0000000001 5000458
17.01. 2003 EZ2005 kal1478 10001082 Qo000 2B5000 5000 QO00C0000001 5003143
20,01, 2003 E1000G KALIOQ4S5 10002050 14400 1164 282 QO0000000015000653
20,01, 2003 E1000G KAL1O7S 10001044 14400 543 a4 3 Q0000000001 5000305
20,01, 2003 E1000G KALLO7S 10001040 14400 556 655 QOOOC000001 5000311
20,01, 2003 E1000G KALFLZ 10002015 14400 1300 Ga50 Q0000000001 5000555
20,01, 2003 E1600G KALIOE1 10002015 18000 1300 asg Q0000000001 5000654
20,01, 2003 ElaQos KALIOEL 10002050 18000 1184 82 QO000000001 5000552
20,01, 2003 E2005 kall0old 10001110 elaneles 4310 4310 QOOa0000001 500081 3
20,01, 2003 E2003 fal1037 10001044 Q000 570 a70 QOOO0000001 50002591
20,01, 2003 EZ200G kAl 1088 10001114 Qoga 740 F40 QOOaC0000001 5000532
20.01. 2003 EZ2005 kAal117] 10001061 Q000 232000 4000 Q0000000001 5003215
20,01, 2003 E2003 fal1181 10001044 Qoo 21300 Flo QOOOC000001 5003072
20,01, 2003 EZ200G fal141s 10004574 Qo00 5000 300 QO0a0000001 5003005
20,01, 2003 E2003 kalSys 10001087 Q000 152000 8000 QO0000000015001455
20,01, 2003 EFS0G kol 1184 10004573 0 1600 1600 QOOa0000001 5003084
21.01. 2003 E10005 KAL1I1ES 10001114 14400 465 155 QO000000001 5000524 =

Figure 5-9 : Downloaded production orders list

For policy, it is optimum to give a different policy to each machines on the list, because
since the energy needs, setup times of the machines vary, we may want to change the policy
coefficients for each machine. If we have given different policies for each machine, then the
policies would seen like this :

e Policy(*,E200G,*,*,-1,0.1,3)
e Policy(*,E750G,*,*,-1,0.1,3)
e Policy(*,E1000G,*,*,-1,0.1,3)
e Policy(*,E1600G,*,*,-1,0.1,3)
e Policy(*,E2400G,*,*,-1,0.1,3)

47

These policies mean, for all KSs, the setup time coefficient will be taken as ‘-1°, total
production time coefficient will be taken as ‘0.1’ and we will have to multiply production
order quantities by ‘3’ for the bidding mechanism. But now we just give a general policy for

the whole list. It is seen like this :

Policy(*,*,*,*-1,0.1,3)

In figure 5-10, we are seeing the lines of a list with boxes. To specify the facts, we just
click these leftmost boxes of the lines in the general list and then we click to FACT button
like in the Figure 5-11. By this way, SAP system will download the facts list to the
architecture. With the same way, if we want to specify methods, we select the lines and then,
download the list to the local computer. On the other side, we have to be aware that there
must be only one fact in a production level. If we want to set high priority for more than one

production orders, them we must select methods.

Ord. finish|Work ctr|Compc

Z20.01.2003|ELOO0G |KALLC
Z20.01.2003|ELOO0G |KALIC
Z20.01.2003|ELOO0G |KALLC
Z20.01.2003|ELOO0G |KAL71
Z0.01. 2003 ELOOOG
Z20.01.2003|Els00G |KALLC
Z20.01.2003|ElsO0G |KALIC
Z0.01. 2003 ELls00G
Z20.01. 2003 EZ00G KAL1c
Z20.01. 2003 EZ00G KAL1C

LOILE

+

0 LR

Figure 5-10 : Selection boxes on the general list

| save | [FacTs S METHODS || 4 » M | &

-

Material dezscription

(=)

CONTI ALT GOVDE TUREUVAZ
WC-19Z U3T EAPAE EIRMIZI
WC192 UST EAPAK TURETAZ

LS) |

Figure 5-11 : Download Buttons

48

After setting up the control parameters, we run the program that includes our control

architecture. The program first takes, methods, facts, knowledge sources into memory. Then it

starts to loop in the goals. For each pairs of the date and the machine codes, the program

generates new sub-goal trees. As a strategy, a breadth-first search would be enough. Because,

depth-first search does not have a meaning for this example.

After executing the application we get the output file our local computer. Since it is

tabular formatted text file, we can any program that supports this format. Also we can upload

to SAP system again if needed. In Figure 5-12 you can see MS Excel screenshot of the output

file.

Microsoft Excel - sol 1= =l
Dospa Diizen Goidnlim Ekle Bigim Araglar Weri Pencere Yardim ‘rardim igin som pazin - o @ X
DERA® SRY L BBR-<T v-o-@s-4i @ss -0,
3 7y} | = - sl Tur -10 - KT A 0 _-@)-é-v
D34 - A KALTE1
A B o | [} E F | & H | J K L oM H | o=~
[1 |DATE :10.04.2002, MACHINE, E200G =
[2 | 0 ##adddag E2000 KALA1T1 10004061 MAYLON 6 15000451 &ed VONLEM. GOBEG] (70240015 PARCA) Q000 232000 4000 26200
[2 | 1) #edddad E2005 KalL1172 | 10001035 ABS (NATL 15000389 44 YOMLENDIRICI (FO24XIC PARCA) Q000 220000 4000 25000
[4 | 2| deadddan | E2000 KaL1181 10001042 ABS GRIR 15000200 G4 AVAR DUGMESIZFO20) Q000 147500 2500 13280
| & |DATE :12.04.2002, MACHINE, E200G
| 8 | 0| ##adddad E200G KALA272 | 100010684 MAYLON 61 15000506 CONTI2000 SUPURUCU SEGMAN Q000 44000 4000 7400
| 7 |DATE :12.11.2002, MACHINE, E200G
= 0| ##adddad E200G KAL1102 | 10001059 POLYCARE 15000421 RB-96 KUCUK vIK.BAS.UST Q000 204000 2000 20400
| 9 |DATE 02.01.2002, MACHINE, E200G
[10 | 0| ##adddad E200G KALDAZ 10002532 MASTERB| 15002005 QUAD.DIS KAZ.DIRSEK YESILS5E5C) Q000 42000 2000 4200
[11 |DATE :14.01.2003, MACHINE, E200G
[12 | 0| #edddad 200G HAL1243 10001051 ABS K.MA' 15001396 WC-412D15 KAZAN SAPI LACIVERT (Q4M7L) Q000 42000 1200 -G00
| 13 |DATE :17.01.2003, MACHINE, E2003
[14 | 0| #edddad | E2000 KAL147S 10001082 CELANEX: 15003163 APPLICA MOTOR ALT YATAK Q000 285000 5000 34500
| 15 |DATE :20.01.2003, MACHINE, E2003
| 16 | 0 #eeddaas E200G KALBTS 10001087 | FF TALKL| 15001455 97 S0POR0C iRi TEKERLEK Q000 152000 S000 30200
[17 | 1 #eedadds E200G KAL1171 | 10001081 MAYLON &) 15003215 <3 VONLEN. 3 0BES] SivAHE005XD1S PARGA] Q000 232000 4000 26200
[15 | 2| #edddaan E200G KAL1014 10001110 MASTERB 15000613 SAMANDRA KAFESI FIMLI Q000 4310 4310 4361
[19 | 3 #edddsas EZ00G WKAL1151 10001044 ABS KIRMI 15003072 =4 AYAR DUGMES] KIRMIZI Q000 21300 710 -4740
| 20 | 4 #edddsan E2000 KALI0S9 10001114 MASTERB 15000632 KITLE KAZ.EMIS AGZI 7024 Q000 740 740 -5706
[21 | 5 ¥eeddsan E200G WALI037 10001049 ABS KIRMI 15000291 VWC-192 SAP KIRMIZI Q000 670 G670 -G5923
| 22 | G #eedasas 200G KAL1418 | 10004574 ABS PETR 15003098 PS NOZUL TESIL (RAL 5013) Q000 G000 300 -7500
| 23 |DATE :21.01.2003, MACHINE, EZ00%
| 24 | 0 #eedasan 200G KAL1181 | 10004575 ABS GRI R 15003073 9x3 ATAR DUGMES| GRI(RAL 7048) Q000 38100 1270 -1380
| 25 | 1 Re##sAAR E200G KAL1418 | 10004574 ABS PETR 15003098 PS NOZUL TESIL (RAL 5015) Q000 G000 S00 -5000
| 26 | 2 Reedasan E200G KAL1014 10001110 MASTERB 15000613 SAMANDRA KAFESI PIMLI [000 1200 1200 -5280
| 27 | 3 Redddsan E200G KALETT 10001056 ABS DUME 15000073 | SIEM ANAH.KUTUSUG014) [000 630 630 -7047
[28| 4| ##sggedd E2005 KAL1099 | 10001033 ABS SEB E 15000063 SIEMENS SUP.SAF KAF.SEB 9000 537 597 7143
[29] 5| #waggedd 2005 KAL1106 | 10001038 ABS SEB E 15000062 SIEMENS SUP.SAP| SEB-BEY. 9000 537 597 7143
| 30 |pATE :22.01.2002, MACHINE, E200G
[=21 | 0 ##adddag E20005 KAL1102 10001059 POLYCARE 15001130 RB-96 KUCUK YK BAS ALT Qoo 126000 3000 12600
[32 | 1) #dedddad E200G WALATE 10004087 PP TALKLI 15001455 97 S0POROCU IRi TEKERLEK Qoo FE000 4000 10600
| =2 | 2| deadddan E2000 KAL1014 10001110 MASTERB 15000612 SAMANDRA KAFESI PIMLI Q000 2400 2400 -1560
24 3| deadddag | E2000 IKAL?81 .I 10001042 ABS GRI R 15000164 QUADROMN SAP (FO20) Q000 1400 1400 -A5E0
| 25 |DATE :22.01.2002, MACHINE, E200G
| =6 | 0 ##adddag E2000 KaLOTE 100010287 PP TALKLI 15001455 07 SUPURUCU IRI TEKERLEK Q000 FE000 4000 10800
[37 | 1) #edddad E2005 WALETS 10001035 ABS (MATL 15000051 BOSCH UST KAPAK DISKI Q000 F0000 1400 2200
| =2 | 2| #eddddA E200G KALET1 10001040 ABS S[YvAH 15000540 | SIEMENE BORU TUTUCU Q000 54000 1200 1200
[=9 | 3| Aeddddad E200G KAL1014 10004110 MASTERB 15000513 SAMANDRA KAFESI PIMLI Q000 1200 1200 -5280
[40 | 4 #edddd E200G KALA10G 10001037 ABS GRIBE 15000066 SIEWMEMS SUP.SAPI BEYAZ Q000 1200 1200 -5280
[| G #eddddad E200G KALADOD 10001037 ABS GRIBE 15000067 SIEMEMS SUP.SAP KAP BEYAZ Q000 1200 1200 -5280
| g2 | 6 #eddddad E200G KAL1128 10001046 ABS SARI | 15002081 CONTIO7Y SAP KAPAS| SARI (RALI00Z) Q000 25200 260 -5400 -
M 4+ [solutions |« | LljJ

Hazir
iﬂstalll j m @ ﬁ @

S0 e

Gelan Kutuzu - Micr.. | @Yahon‘ I ail - burakt | thesiz_0709.doc - Ml @Seslisozluk.com ses\...l @ Tuirkge Sozlik Ingil...

@"mudahele" kelimesi. | A C:ADocuments and | & RoulingPlan - Micra... | .Micmsuﬂ Excel __.

Figure 5-12 : Excel screenshot of the output file after executing application

So these are the advantages of this application after using blackboard control architecture:

e By using collaboration specialties of a blackboard system, you can easily interact

with this application as a module of a bigger system.

49

e You can arrange the output type what type ever you want to get. For example, you
can automatically feed the interfaces of PLC machines by the output of this
application.

e This is a platform independent application, so you can compile this algorithm in
different OS’es.

e Two different planning examples about this architecture prove that the range of the
application area is wide. This is to say we can manage all scheduling problems in
the industry by using this architecture.

e Two phased high level knowledge provides an exact control over artificial

intelligence.

The only disadvantage is, there is always a risk about facts or methods that they may not

have the right values as you want. So, they are to be implemented wisely.

5.2. OTHER APPLICATIONS IN THE MARKET

These kind of scheduling applications are commonly used in the world. However in
Turkey, this is a new solution area and this is a good chance to get a better place on this topic.
There are two examples that would be explained in this thesis. The first one is Trigger and the
second one is Preactor. Trigger is a Turkish application and not released yet. Preactor is the
most popular scheduling program in the world. They are very different from each other, and

our application carries all advantages of these applications.

5.2.1. TRIGGER

Trigger is a scheduling program for plastic injection machines. It collects all the
information about operation processes, capacities of machines, production orders and other
data of the company. Then, it generates a schedule of production orders. This is new software
in the market, and it is specially being developed for BEKO. However, it will be delivered to

the market soon.

Trigger uses Simulated Annealing algorithm in the decision making process. Its purpose is

to find optimum solution according to characteristics of a plastic. Simulated annealing is a

50

generic probabilistic meta-algorithm for the global optimization problem, namely locating a
good approximation to the global optimum of a given function in a large search space [16].
The name and inspiration come from annealing in metallurgy, a technique involving heating
and controlled cooling of a material to increase the size of its crystals and reduce their defects.
The heat causes the atoms to become unstuck from their initial positions (a local minimum of
the internal energy) and wander randomly through states of higher energy; the slow cooling
gives them more chances of finding configurations with lower internal energy than the initial

one.

Hence, more plastic products would be developed with less energy. The pseudo code of

the simulated annealing algorithm can be seen in Figure 5-13 :

s :=50; e := E(s) // Initial state, energy.
sb:=s;eb:=¢ // Initial "best" solution
k:=0 // Energy evaluation count.
while k < kmax and e > emax //' While time remains & not good enough:
sn := neighbour(s) //Pick some neighbor.
en := E(sn) //Compute its energy.
if en <eb then //1s this a new best?
sb :=sn; eb :=en //Yes, save it.
if random() < P(e, en, temp(k/kmax)) then //Should we move to it?
S:=sn;e:=en //Yes, change state.
k:==k+1 //One more evaluation done
return sb //Return the best solution found.

Figure 5-13 : Pseudo Code of simulated annealing algorithm

As an advantage, we can say that Trigger would work very good for plastic and metal
products. However, this will not work for other scheduling needs of the industry. And this is a
big disadvantage in the software market. Because, this disadvantage restricts the application
range of the program. Another disadvantage is, incompatibility with any operating system

other than Microsoft Windows.

In Figure 5-14, Figure 5-15 and Figure 5-16, we are seeing some simple screenshots from

the first beta of Trigger.

51

% 02005¥1

Figure 5-14 : Trigger — min/max function parameters menu

% 02005v1

15000093 P4 DYNE SaL.LAS 2340 1010.2005

15000093 P4 DYNE SAL.LAS 1950 13102005

15000093 P4 DYHE SALLAS 350 18102005

15000093 P4 DYNE SALLAS 210 10112005

15000093 P4 DYHE SALLAS 350 1511.2005

15000093 P4 DYHE SALLAS 350 15122005

15000152 QUADRON SAP Kz 76 27102005
15000164 QUADROM SAF [71431 26.10.2005
15000165 QUADRON LIST ks 300 0510.2005
15000165 QUADRON LIST ks 575 06.10.2005
15000165 QUADRON LIST ks 525 26.10.2005
15000165 QUADRON LST 27102005
15000166 QUADRON ORTA 257 06.10.2005
15000166 QUADRON ORTA 525 26.10.2005
15000166 QUADRON ORTA 1182 27102005
15000167 QUADROMALT G 0510.2005
18000167 QUADRON ALT G 0. 10,2005
18000167 QUADRON ALT G 26.10.2005

18000167 QUADROM ALT G 27.10.2005

Figure 5-15 : Trigger — Production Orders Menu

52

{F} 02005+1
Aparlar Statik Veriler Dperasyonel Verler Transfer Cizelge

& 02005v1 _[o] x|

SAP Transfer Menusu

Operazyon Planlari |
akina Bilgiler |

Sorunlar. bt

Stok|Bitiz] external_docs

Stok(Baslangic)

feb_-_march...

Chex HaYDARP...

iﬂStalll :__1: @ ﬁ @ (L) Gelen Kutu...l erAP Logon...l Folm: Chan...l Form: D\sp\...l thesis_last. | @F:\ALL FIN...| at:\Docume...l qué@iﬁaﬁ . 22:20
2 5B © & || ElMicosore..| [EMicosot P || E10HMI ATA. | E1HEZAR co.. |[{y a2005v1 CLANE T

Figure 5-16 : Trigger - SAP Transfer Menu

5.2.2. PREACTOR

Preactor is the most popular scheduling solution in the world. Preactor is a software
package that provides a planner with an interactive decision support tool that balances
demand and capacity [17]. With Preactor, you can make production planning, production
scheduling and supply chain management. Preactor is also running PC based applications and
it is compatible with only Microsoft Operating systems. Before using Preactor, you have to
configure whole production system of the company into it. This configuration setup time can

take up to three months of a year.

Preactor have three main products: Preactor 200, Preactor 300 and Preactor APS [18].
Preactor 200 and Preactor 300 are ‘Finite Capacity Scheduling (FCS)’ software and Preactor
APS is ‘Advanced Planning and Scheduling’ software. While in FCS, you just can schedule

your production orders; in APS you can schedule your operations also. In Preactor, you use

53

Gannt chart to generate schedules. That means, user generates his own schedule via Preactor

manually. Not like Trigger or our application.

There is more than 5000 companies use Preactor to plan their production. Some of these

companies are, Cosworth Racing, Delphi, Imperial Tobacco, Pfizer, Philips and Vienna

Airport.

So what is the advantage and disadvantage of this software package? First of all, let us

mention about advantages :

Because the software is used widely, its technical support is very good.
User interactive menus are very good; you can easily drag and drop the elements
of a production order.

Supports very wide range of industrial applications.

Then let us see disadvantages of Preactor:

There is no automated decision tool in the package. The user must decide which
production would be produced first. By this way, user can make mistakes during
decision.

Manual decision increases working hour of a worker.

You have to enter all the raw data from your MRP or ERP system and configure
them wisely. And it takes a lot of time before using it.

Just Microsoft Windows compatible. You cannot use under Linux or Unix based

systems.

You can see two screenshots from Figure 5-17 and Figure 5-18.

54

€] Created by Camtasia Studio 3 - Microsoft Internet Explorer - ||O m}

File Edt View Favorites Todls Help

eBack - -\;) @ @ \{h pSearch ‘E‘:‘E‘Favorites @ 8' »i_% v |_J ﬂ -'ﬁ

Address @ http: ffiman preactor . comfonline-demo/data)englishystandard %2 0demofonline-demao. hkml M Go

2 Preactor, Sequencer : Schedule. prsch

File Edit View “Woarkspace ©Owerview Groups Ploks Sequence Repaorts Window Help
DEHER 2 R (OES 086 Ve 18Ted | -0Ro [@mdEs
S T b EDE DE R s AR PR R B

™ Unallocated Jobs - 38 Unallocated Operations

i Operations : Record 1 of 38

Showe | Customer = | Order Status = | Order Mo. | Part Mo, Product = | Due Date == | Priority |Guartity |Op. Mo, |Op s
All Rl hd Al bl b Al
%) A001 Sp 10 .
3 | Yes Unspecifie Anoz 234-GM Gearbox Mounting 10 18 10 Mol
x| Yes |41 Axles Unspecified ADOS AC1E9-A4 |Axle Casing 21-01-2000 10 7 10 Mol
< [Yes [Central Tubes Unzpecified A004 TT-136 Torgue Tube 21-01-2000 10 5 10 Mo
3 [ves | ABC Engineers Unzpecified A005 1-HF G Splined Shatt 21-01-2000 10 16 10 Mol
O [Yes [MDM Gearboxes Unzpecified A006 234-GM Gearbox Mounting 14-01-2000 10 12 10 M
O [Yes &1 Axles Unzpecified A0o7 AC189-A0 [Axle Casing 21-01-2000 10 14 10 M s
< i | >

0 - 11-01-2000 09:00)

Sequence Cwverview (10-01-2000 09:00 - 11-01-2000 09:00%
10-01-2000 10-01-2000 11-01-2000 11-01-2000
12500 12:00 0o:00 06 :00

Lathe h\ \I =
il [\ \Q
hiachining Centar lk \4 |
Dirill h ‘q

Grinder k w

alalal-~] v
(B[t Has@me wepra Hilon vee s 08 2x||RE & =06
Sets order selection mode ko by Schedule File Order Edit Jobs

&) Done 0 Internet

Figure 5-17 : Preactor — Main window screenshot

55

& Created by Camtasia Studio 3 - Microsoft Internet Explorer g@
:}r

File Edit ‘“iew Favarites Tools Help

eBack M > |£| @ l\l pi | Search ‘g_::/Favorites {‘} = | - _I ﬁ f‘
Address ﬂj hittp: ffwans preactor, comfonline-demofdataenglishystandar de:20demojonline-demo. html [V] Go

lal

File Edit Yew Workspace Overview Groupsp = Window Help - ax

== = = B@ = The process steps
— | and flow for each

S BB Bf EE T | ser are highighted.

oo 11-M1-2000 12-01-2000
oo:oo o000

18 | F@3 00 (2008
B of 0P P B

& - 19-01-2000 140270
16-01-2000 17-01-2000 18-01-2000 19-01-2000
i o000 oo:o0 oo

T 1N

cles |
s feois

hll

twtachining Center

" r 1
Dill | aE
o e] |
T [T T
Grinder

45 VY A LA
.
o
ul
i ELE

Sub Heat Treatment |

Sub Wielding

Sub Plating

Process Dalay

== 1 :

B S HATUET wem f7ojp veigh 68 &5 & B MR

Edit Jobs
i e ——————————— W e[z]] [y

&] Done Internet

Figure 5-18 : Preactor — A Sequence overview window

56

6. CONCLUSION AND EVALUATION

The control architecture introduced for goal-driven blackboard systems is based on
searching a general goal tree. The basic elements of the architecture are goals, policies,
strategies, KSs, methods, and facts. It employs a basic control loop that uses a bidding
mechanism in choosing the knowledge source to be executed at the current cycle. The bidding
mechanism is guided by a policy. The policy can be called local scheduling criteria for this
control architecture. A strategy on the other hand, is a global scheduling criterion such as
depth-first etc. Strategies and policies together determine how a partial solution is to be
extended in the control loop. Then the search space can be diminished by applying methods
and facts. The methods and facts are high level knowledge on how to solve a problem. And
they have to be well known before applying. Because they force to change the direction of the

solution.

We have used this control architecture in an industrial production planning application
and then, we compared our architecture with two applications. As a conclusion, we saw that
the control architecture can achieve other applications’ issues. Also our simple example flight
scheduling application proves that this control architecture can be used in most of all kind of

planning and scheduling applications.

Furthermore, high level knowledge over artificial intelligence provides us an exact and
flexible intervention over scheduling and planning. None of the present applications of the

market provide this special feature. And this is a big advantage of our application.

As a disadvantage, we can say that there is always a risk about facts or methods that they
may not have right values. This is why, when expressing these high level knowledge sources

we have to be careful.

In the future, some other search strategies may be implemented. Some standardized sort
algorithms can be applied to handle search in more effective way. Also, at each run of the
program, a system can record a list of solutions and can make some statistical work to use in

the architecture itself as methods and facts.

57

REFERENCES

1.

10.
1.

12.
13.
14.
15.
16.
17.
18.

Ferda Bek, A Goal-Driven Control Architecture for Blackboard Systems, Bogazigi

University, 1986
Daniel D. Corkill, Blackboard and Multi-Agent Systems & the future, Dept. of

Computer Science, University of Massachusetts, 2003

Daniel D. Corkill, Blackboard Systems, Al Expert, 6(9): 40-47, September, 1991

L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. The Hearsay-II speech-
understanding system: Integrating knowledge to resolve uncertainty. Computing
Surveys, 12(2):213-253, June 1980.

Alan H. Bond and Les Gasser, Readings in Distributed Artificial Intelligence, Morgan
Kaufmann, 1988.

V. R. Lesser, R. C. Whitehair, D. D. Corkill, and J. A. Hernandez. Goal relationships

and their use in a blackboard architecture. Academic Press, 1989.

V. R. Lesser and L. D. Erman., Distributed interpretation: A model and experiment.

IEEE Transactions on Computers, Dec. 1980.

V. Jagannathan, R. Dodhiawala, and L. S. Baum. Blackboard Architectures and

Applications. Academic Press, 1989.
Herbert Schildt, The Art of C++, McGraw Hill/Osborne © 2004

http://www.sap.com/turkey/index.epx

http://help.sap.com/saphelp _46c/helpdata/en/ba/df293581dc1£79¢10000009b38889/fr

ameset.htm, Production and Planning Control in SAP

MM Materials Management in SAP, Release 46C, SapPress, 2000

BC ABAP User’s Guide, Release 40B, SapPress, 1999

BC ABAP Dictionnary, Release 40B, SapPress, 1999

Serdar Simsekler, An Easy Reference for ALV Grid Control, SapPress, 2004

http://en.wikipedia.org/wiki/Simulated annealing

http://www.preactor.com/default.asp

http://www.uytes.com.tr/cizelgeleme/preactor.html

58

http://www.sap.com/turkey/index.epx
http://help.sap.com/saphelp_46c/helpdata/en/ba/df293581dc1f79e10000009b38f889/frameset.htm
http://help.sap.com/saphelp_46c/helpdata/en/ba/df293581dc1f79e10000009b38f889/frameset.htm
http://en.wikipedia.org/wiki/Simulated_annealing
http://www.preactor.com/default.asp
http://www.uytes.com.tr/cizelgeleme/preactor.html

APPENDIX A
All the program codes and the soft document of this thesis can be found in the attached CD.

59

