

A NEW PRIORITY BASED PACKET SCHEDULER WITH

DEADLINE CONSIDERATIONS

ORAL GÖKGÖL

IŞIK UNIVERSITY

2006

A NEW PRIORITY BASED PACKET SCHEDULER WITH DEADLINE

CONSIDERATIONS

A Thesis

Presented To The Institute Of Science And Engineering

of IŞIK University

In Partial Fulfillment Of The Requirements

For The Degree Of

Master Of Science

In

The Department Of Computer Engineering

by

ORAL GÖKGÖL

IŞIK UNIVERSITY

2006

 Approved for the University Committee on Graduate Studies.

..

Prof. Dr. Hüsnü A. Erbay

Director o

 I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

..

 Prof. Dr. Selahattin Kuru

 Head of the e
Computer Engineeringg

 Department t

 This is to certify that I have read this thesis and that, in my opinion, it is fully

adequate in scope and quality as a thesis for the degree of Master of Science.

..

Dr. Tamer Dağ ğ

Supervisor r

Examining Committee Members

..

...

...

 iii

ABSTRACT

A NEW PRIORITY BASED PACKET SCHEDULER WITH

DEADLINE CONSIDERATIONS

ORAL GÖKGÖL

 Quality of Services (QoS) issues have become a focus point of research on Next

Generation Networks (NGNs). In order to supply the various QoS requirements for

different kinds of applications, new packet scheduling policies need to be developed.

This thesis focuses on the packet scheduling policies in computer networks. An effort

to develop a packet scheduling algorithm that supplies QoS in computer networks is

an interesting topic. This thesis introduces two new packet schedulers which try to

integrate an important QoS parameter (the delay) with the classical schedulers. The

two sets of algorithms introduced; Static Priority with Deadline Considerations

(SPD) and Dynamic Priority with Deadline Considerations (DPD); not only simplify

the complexity and overhead of the classical Earliest Deadline First (EDF) or Static

Priority (SP) algorithms, but also provide a better level of QoS based on the

simulations conducted.

Key words: packet scheduling, QoS, Static Priority, Earliest Deadline First, packet

loss, deadline

 iv

ÖZET

PAKETLERİN ANLAMSIZ HALE GELME ZAMANLARI GÖZ

ÖNÜNDE BULUNDURULARAK DİZAYN EDİLEN YENİ BİR

ÖNCELİĞE DAYALI PAKET GÖNDERİM ALGORİTMASI

ORAL GÖKGÖL

 Servis kalitesi (QoS) konuları Next Generation networklerde araştırma yapmak için

önemli konulardır. QoS gereksinimlerini farlı tiplerdeki uygulamalarda sağlamak için

yeni Paket Gönderimi Algoritmaları geliştirilmesi gerekmektedir. Bu tezde bilgisayar

ağlarındaki kuyruklarda paket gönderimi algoritma uygulamaları üzerine

odaklanılmıştır. Paket gönderimi algoritmaları bilgisayar ağlarındaki performans

açısından büyük önem arz eder. Ağlardaki Servis Kalitesini (QOS) garanti etmek

için üretilen paket gönderimi algoritmaları günümüzde ilginçliğini kaybetmeyen bir

konudur. Bu tez kuyruklarda paket gönderimini kontrol eden yeni iki algoritma

üzerinedir. Bu algoritmalar bilinen paket kontrol algoritmalarına yeni bir QOS

parametresi olan gecikmeyi (delay) eklemektedir. Bu tezde iki yeni algoritma

tanıtılacak; Sabit öncelikli algoritma - paketlerin anlamsız hale gelmeden önce

gönderilmeleri düşünülerek (SPD) ve Değişken Öncelikli Algoritma - paketlerin

anlamsız hale gelmeden önce gönderilmeleri düşünülerek (DPD); bu algoritmalar

sadece algoritmaların karmaşıklığını azaltmakla kalmayıp ayrıca klasik

algoritmlardan; paketlerin anlamsız hale gelme zamanlarına göre gönderilmesi

(EDF) ve Sabit Öncelikli paketler (SP) algoritmalarına göre daha iyi sonuç veriyor.

Key words: kuyruklarda paket gönderimi sırası, QoS, Servis Kalitesi, Sabit Öncelikli

Paketler Algoritması, paketlerin son gönderilme zamanlarına göre işlenmesi

algoritması, paket kaybı

 v

ACKNOWLEDGEMENTS

 I would like to express my thanks to Dr. Tamer Dağ for his comments, help and

supervision on the topic, and for understanding my faults; and also I would like to

thank all people that support me by giving intelligent ideas, and physcological

support.

 vi

TABLE OF CONTENTS

ABSTRACT..iii

ÖZET .. iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS..vi

LIST OF FIGURES .. ix

LIST OF TABLES ...xii

CHAPTER

1. INTRODUCTION.. 1

2. QOS AND QOS PARAMETERS ... 3

2.1 QoS Overview.. 3

2.2 QoS Advantages... 5

2.3 QoS Parameters.. 5

2.3.1 Minimum Bandwidth ... 6

2.3.2 Latency (Delay).. 6

2.3.3 Jitter.. 7

2.3.4 Loss rate ... 7

2.4 QoS Requirements ... 7

2.5 QoS Architectures and Models .. 9

2.5.1 Integrated Services ... 9

2.5.2 Differentiated Services... 10

 vii

2.5.3 MPLS (Multiprotocol Label Switching) 11

3. PACKET SCHEDULING ... 12

3.1 Introduction.. 12

3.2 Design of Packet Schedulers.. 13

3.2.1 Work Conserving Schedulers... 13

3.2.2 Non-Work Conserving Schedulers .. 14

3.2.3 Priority ... 14

3.3 Packet Scheduling Algorithms... 15

3.3.1 EDF (Earliest Deadline First) Packet Scheduling Algorithm ..17

3.3.2 SP (Static Priority) ... 17

3.3.3 FIFO (First in First out) ... 19

3.3.4 Rotating Priority Queues (RPQ+) .. 20

3.3.5 Weight Fair Queue (WFQ) .. 21

3.3.6 Round-Robin .. 22

3.4 Summary .. 22

4. STATIC PRIORITY WITH DEADLINE CONSIDERATIONS 23

4.1 SPD Scheduling Algorithm Overview... 23

4.2 Experimental environment and SPD simulation design......................... 25

4.2.1 SPD simulation design ... 25

4.2.2 Experimental environment and program variables 28

4.3 SPD Simulation Results ... 29

5. DYNAMIC PRIORITY WITH DEADLINE CONSIDERATIONS 36

5.1 DPD Scheduling Algorithm Overview .. 36

 viii

5.2 Experimental environment and DPD simulation design........................ 39

5.2.1 DPD simulation design .. 39

5.2.2 Experimental environment and program variables 41

5.3 DPD Simulation Results .. 42

6. COMPARISON OF SPD, DPD AND RPQ ALGORITHMS................... 48

6.1 Comparison of SPD and DPD algorithms.. 49

6.2 Comparison of DPD and RPQ algorithms ... 51

7. CONCLUSIONS .. 54

REFERENCES ... 56

APPENDICIES

A. FINDING BEST T1 AND T2 VALUES FOR DPD ALGORITHMS 58

B. SPD AND DPD SIMULATIONS’ MATLAB CODES 72

 ix

LIST OF FIGURES

Figure 2.1 Datagram Model Approach ... 3

Figure 2.2 Integrated Services Model Example .. 10

Figure 3.1 Queue and Packet Scheduler Definition .. 12

Figure 3.2 EDF Scheduling Algorithm ... 18

Figure 3.3 SP Scheduling Algorithm .. 18

Figure 3.4 FIFO Scheduling Algorithm Flowchart... 19

Figure 3.5 RPQ+ Scheduling Algorithm Overview... 20

Figure 3.6 WFQ Packet Scheduling Algorithm .. 21

Figure 4.1 SPD-FULL packet scheduling example .. 24

Figure 4.2 SPD-2 packet scheduling example .. 24

Figure 4.3 SPD-4 packet scheduling example .. 25

Figure 4.4 The UML Diagram of SPD Simulation ... 26

Figure 4.5 Total Packet Loss Ratio Graph in SPD algorithms.................................. 30

Figure 4.6 Packet Losses Graph due to Buffer Overflows for SPD.......................... 31

Figure 4.7 Packet Losses Graph due to Deadline Violations for SPD...................... 32

Figure 4.8 Total Packet Losses According to Priorities in SPD algorithms 33

Figure 4.9 Avg.Waiting Times for SPD.. 34

Figure 4.10 Avg.Waiting Times for SPD for each priority....................................... 34

Figure 4.11 Simulation times for SPD algorithms .. 35

Figure 5.1 DPD-4 packet scheduling with 1Tt ≤ ... 37

 x

Figure 5.2 DPD-4 packet scheduling with 21 TtT ≤< .. 38

Figure 5.3 DPD-4 packet scheduling example 2Tt > .. 38

Figure 5.4 UML Diagram of DPD-k algorithms... 40

Figure 5.5 The effect of T1 on DPD-7 algorithm .. 43

Figure 5.6 The effect of T2 on DPD-2 .. 43

Figure 5.7 Total loss ratio for DPD for T1=0.2 and T2=1.. 44

Figure 5.8 Loss ratios due to Deadline in DPD for T1=0.2 and T2=1...................... 45

Figure 5.9 Loss ratios due to Overflow in DPD for T1=0.2 and T2=1..................... 46

Figure 5.10 Simulation time comparisons between DPD algorithms (Time
complexity of the algorithms) ... 47

Figure 6.1 Comparing SPD-7 and DPD-7 algorithms according to their loss ratios
due to deadline violations... 48

Figure 6.2 Comparing SPD-7 and DPD-7 algorithms according to their loss ratios
due to buffer overflow.. 49

Figure 6.3 Comparing SPD-7 and DPD-7 algorithms according to their average
waiting times on the queue... 50

Figure 6.4 Simulation time comparisons between SPD and DPD (Time complexity
of the algorithms) .. 51

Figure 6.5 Total packet loss ratios versus buffer size for RPQ................................. 52

Figure 6.6 Average waiting times for packets versus buffer size in RPQ 53

Figure 6.7 Packet lost values due to deadline violations... 53

Figure A.1 Total loss ratio for different T1 and T2 values when bnd_delay=4sec ..60

Figure A.2 Total loss ratio for different T1 and T2 values when bnd_delay=8sec ..62

Figure A.3 Total loss ratio for different T1 and T2 values when bnd_delay=16sec 63

Figure A.4 Total loss ratio for different T1 and T2 values when bnd_delay=24sec 64

Figure A.5 Total loss ratio for different T1 and T2 values when queue_size=25 67

Figure A.6 Total loss ratio for different T1 and T2 values when queue_size=50 69

 xi

Figure A.7 Total loss ratio for different T1 and T2 values when queue_size=75 71

 xii

LIST OF TABLES

Table 2.1 The stringent QoS requirements for different types.................................... 8

Table 4.1 Total Packet Loss Ratios in SPD algorithms .. 30

Table 4.2 Packet Losses due to Buffer Overflows for SPD 31

Table 4.3 Packet Losses due to Deadline Violations for SPD 32

Table 4.4 Average Waiting Times in queue for SPD.. 33

Table 5.1 The effect of T1 on DPD-7 algorithm... 42

Table 5.2 Total loss ratio for DPD for T1=0.2 and T2=1 ... 44

Table 5.3 Loss ratios due to Deadline in DPD for T1=0.2, T2=1 45

Table 5.4 Loss ratios due to Overflow in DPD for T1=0.2, T2=1 46

Table A.1 Total loss ratio for different T1 and T2 values when bnd_delay=4secs ..59

Table A.2 Total loss ratio for different T1 and T2 values when bnd_delay=8secs ..61

Table A.3 Total loss ratio for different T1 and T2 values when bnd_delay=16secs 61

Table A.4 Total loss ratio for different T1 and T2 values when bnd_delay=24secs 65

Table A.5 Total loss ratio for different T1 and T2 values when queue_size=25 66

Table A.6 Total loss ratio for different T1 and T2 values when queue_size=50 68

Table A.7 Total loss ratio for different T1 and T2 values when queue_size=75 70

 1

CHAPTER 1

INTRODUCTION

 With the increase of the Internet’s popularity, attention and research areas are

concentrating on emerging integrated services packet-switched networks to

simultaneously support applications with diverse performance and QoS requirements

and traffic characteristics. There has been a lot of research on designing new

scheduling algorithms which would support the requirements of such applications by

providing them different QoS levels [1, 2, and 3].

 The scheduling algorithms can be classified according to their complexity and

how they behave to different kinds of applications. Networks in which QoS

requirements are thoroughly satisfied can be best described as best-effort networks

[4]. Best effort network designs treat all packets coming from different applications

as equally important. Such networks work well if there is enough CPU, memory, and

bandwidth, as packets traversing through the network can be handled immediately

after their arrival. However, this is not always achievable due to the lack of

resources.

 In this thesis, two sets of priority based scheduling algorithms which consider the

remaining deadlines of the packets are introduced. The first algorithm, Static Priority

with Deadline Considerations (SPD) schedules the packets based on their assigned

priorities and reduces the overhead of sorting that can be seen in SP and EDF

algorithms. The second algorithm, Dynamic Priority with Deadline Considerations

(DPD) schedules the packets based on their assigned priorities, but at the same time

modifies the priorities based on the remaining deadlines. DPD also has a reduced

complexity like SPD by introducing the concept of degree sorting as will be

described in the following sections.

 2

 The rest of the thesis is organized as follows: Chapter two gives background

material on QoS Networks and QoS parameters. In this chapter, QoS definition and

why we need it, UDP and TCP protocols, QoS differentiation on multimedia

applications, QoS requirements and parameters for different applications are

described.

 Chapter three explains what a packet scheduler is and introduces different packet

scheduling algorithms used on networks. It gives background information on packet

scheduling and algorithms design, and some widely used packet scheduling

algorithms.

 Chapter four introduces the first proposed packet scheduling algorithm, Static

Priority with Deadline Considerations (SPD). In this chapter, SPD packet scheduling

algorithm is introduced with the experimental environment. SPD simulation design,

simulation results and various SPD algorithms’ simulation results comparisons are

presented.

 Chapter five introduces the next proposed packet scheduling algorithm, Dynamic

Priority with Deadline Considerations (DPD). In this chapter, DPD packet

scheduling algorithm is introduced with the experimental environment. DPD

simulation design, simulation results and various DPD algorithms’ simulation result

comparisons are presented.

 Chapter six compares the SPD and DPD algorithms in a simulation environment.

In this chapter, the DPD and SPD algorithms are compared with each other and with

classical algorithms based on their loss ratios and complexities. Finally, the thesis

concludes with the conclusions made in Chapter seven.

 3

CHAPTER 2

QOS AND QOS PARAMETERS

 The capabilities of a network to provide resource guarantees and service

differentiation are defined as the Quality of Service (QoS). In this chapter, QoS

overview, parameters and some approaches on how to provide QoS in the networks

will be discussed.

2.1 QoS Overview

 Initially, Internet has been designed by using the datagram model which is about

dividing the data into packets and transferring them over the network one by one. In

Figure 1.1, datagram model is introduced with its objectives. Datagram model is

good for file transfers, remote connections and e-mail packets. However, with the

increase of internet’s popularity and network needs such as multimedia application

flows, this model needs to be improved.

Figure 2.1 Datagram Model Approach

 TCP protocol supplies the packets the possibility of retransmit them, when they

are lost on the way. The important data flows use the TCP protocol. For example,

email and file transfer packets are transmitted using the TCP protocol because if

some of the packets are lost on the flow, it makes the information useless. UDP

 4

protocol is somewhat less secure and is used for multimedia applications. In UDP

protocol, there is no guarantee if a packet is successfully transmitted. Thus, if many

multimedia packets are lost on the flow, the sound or video will be useless.

 File transfer and e-mail packets require only arrival to destination without any

error. They are not sensitive to delay or jitter parameters. If the data that is flowing

on the network arrives without error, there would be no problem. However, web sites

now provide their users online videos and music by using the internet. Also, users

now can make phone calls by using the internet. With these developments on the

internet technology, a new topic has evolved which is service differentiation; to

differentiate the packets according to their special characteristics.

 For example, if someone is listening music from a web site, and if the arriving

music packets’ delay becomes larger, then the quality of the music will be low. In

other words, the music cannot be perceived correctly by the user. These difficulties

have evolved the definition of Quality of Service (QoS), which is controlling the

network flow by considering each application characteristics.

 QoS brings many advantages to both users and network administrators. By using

QoS, users can get more quality services according to their demands. Network

administrators can attract many users by supplying good quality services. QoS allows

network administrators to use their existing resources in efficient manner. By

considering QoS parameters, critical applications may receive high-quality service.

As a result, network providers can have better control over their networks and

improve customer satisfaction.

 There are no infinite network resources. If there are infinite resources on

networks, then we do not need to define the Quality of Services terms. Every

application may get the best desired resource within infinite resources. QoS allows

real-time programs such as VoIP applications to make the most efficient use of

network bandwidth. Because QoS provides some level of guarantee for available

 5

network resources, it gives a shared network a level of service similar to that of a

dedicated network1.

2.2 QoS Advantages

 As can be seen in the previous subsection, with the increase of demand on

networks, the QoS consideration is required for the applications.

 QoS has a key role to control the application flows on a network. Multimedia

applications require more bandwidth and less delay requirements than data

applications. Applying QoS requirements on a network can supply the required

bandwidth and worst-case delay for multimedia or other key applications. Thus, QoS

can help network administrators to manage the traffic flow.

 The decision which applications can get the better QoS is a critical problem.

Therefore every network needs changes from the other. If a network is using mostly

the multimedia applications, then QoS parameters will be controlled by packet

schedulers to get the best effort on multimedia flows on the network. Also with the

QoS, there are equipments on the network that are need to be developed and some

equipment that are newly designed and integrated into the networks such as some

components on routers to measure loss ratios or delays.

 QoS gives administrators control over their networks, improves the user

experience, and reduces costs by the efficient use of existing resources, which can

delay the need for expansion or make it less expensive.

2.3 QoS Parameters

 The QoS parameters are the QoS requirements of applications and are important

for understanding the QoS term. The bandwidth, delay, jitter and loss rate constitute

the QoS parameters.

1 Dedicated network is a private network that is used only by a single user. Shared network is the
network that is used by more than one users.

 6

2.3.1 Minimum Bandwidth

 The bandwidth is the required transfer rate for an application. Minimum

bandwidth is the minimum amount of bandwidth required by an application flow. For

example voice packets require at least 8 kbps, and video packets require at least 128

kbps to be transferred over the network.

 Bandwidth allocation is enforced by packet scheduling algorithms on the end

nodes. The Weighted Fair Queuing (WFQ) scheduler is able to provide minimum

bandwidth guarantee over small time intervals as can be seen in Chapter three.

2.3.2 Latency (Delay)

 Latency is the delay of a packet on the networks. In other words, it is the time to

transfer the packet across a network. Packets may be held up in queues, on slow

links, or because of congestion. In the networks that are congested, the delay will be

higher for packets. Although delays that are over 100 ms are disruptive to voice

packets, email packets are not sensitive to delay.

 The delay requirement can be speci ed as the average delay or worst-case delay.

Average delay is the mean value of delays that the packets on the flow experience.

Worst-case delay is the highest delay that a packet experiences in the flow. The

delay that a packet experiences has three components: propagation delay,

transmission delay and queuing delay.

 Propagation delay is caused because of the distance of the nodes. It is the time

required for data to travel from transmission point to destination. Transmission delay

is the time to send a packet into the link that is caused by the node that sends the

packets. Queuing delay is the delay for packets while waiting on the queue to be

served. It will be also called as the average waiting time on queue for packets.

Transmission and queuing delay can be converted to a bandwidth requirement

because they can be controlled on a network. Propagation delay cannot be controlled

or decreased because the speed of light is constant.

 7

2.3.3 Jitter

 Jitter is simply defined as the variance of delay. In other words, jitter is the

variance of delay between the same kinds of packets that flows on a network. A

delay-jitter requirement is the maximum difference between the largest and smallest

delays that packets experience.

 Higher levels of jitter are more likely to occur on slow or heavily congested

networks. Increasing use of QoS control mechanisms on higher speed links such as

100 Mbit Ethernet will decrease the jitter and reduce the jitter related problems.

2.3.4 Loss rate

 Loss rate is the percentage of lost packets to the total number of transmitted

packets. Packet losses on a network are often caused by congestion which can

happen when many different flows want to use network resources. These losses can

be prevented by allocating sufficient bandwidth to packets and queues for traffic

 ows. When a shared network resource is busy then the queues will be filled quickly

with the incoming packets on routers. This will increase the delays of packets on

queue and cause packet losses. Packet scheduling algorithms can guarantee a

minimum packet loss ratio by controlling the queues.

2.4 QoS Requirements

 Packets that are traveling on a network can be simply categorized in three groups

as data, voice and video packets. Table 2.1 shows the QoS requirements of these

packet types; email as a data application, VoIP as a real time voice application and

videoconference as a real time video application.

 In Table 2.1, the word high or low shows how much the application is sensitive to

the corresponding QoS parameter. For example, from the table we see that VoIP

 8

packets are susceptible to low loss ratios and their bandwidth usage is low. And,

email packets’ sensitiveness to loss ratios is high.

Table 2.1 The stringent QoS requirements for different types

Application Loss Rate Delay Jitter Bandwidth

Email High Low Low Low

VoIP Low High High Low

Videoconference Low High High High

 Data, Voice and Video are the some type of application flows on QoS networks.

Data applications like email or web access applications are smooth and burst. In real

life, data application flows on networks are much higher than video and voice

application flows. In other words, data application flow density is higher than other

applications because of the people needs. Data packets are sensitive to losses.

However, data packets use TCP protocol, so if they are lost on the way, then they can

be retransmitted. The delay is not an important parameter for data packets compared

to video and voice packets. The data packets in queues can be served with different

times and so jitter parameter may be high for data packets.

 Real time voice and video applications are much sensitive to the change on QoS

parameters compared to data applications. Video packets require more bandwidth

compared to voice packets. Both video and voice packets are jitter and delay

sensitive. Because of these requirements, the UDP protocol is used for video and

voice packets. UDP protocol is the fastest way to pass application flows across a

network. However, the disadvantage of this, if many packets are lost on the way,

then they could not be retransmitted and this brings lower quality voice or videos on

the network.

 9

2.5 QoS Architectures and Models

 There are some QoS technologies that are used in networks, Integrated Services,

Differentiated Services and Multiprotocol Label Switching architectures. These

models will be discussed in this section.

2.5.1 Integrated Services

 Integrated services model is based on the resource reservation system that is used

to provide QoS on the small networks and somehow on the Internet. Resource

reservation system is a protocol to request a reservation of a resource before using it

from the admission control. Admission control checks if sufficient resources are

available and assigns the resource to the application. Integrated services model is

designed by the Integrated Service Working Group (ISWG-IETF) of IETF (Internet

Engineering Task Force). To control the resource reservation step, IETF has

standardized the RSVP (Resource Reservation Setup Protocol).

 In this model, the applications which want to send their data over the network

must reserve the required resources and provide the required information such as

destination and needed resources. Consider an example in Figure 2.2. An ambulance

that will be sent from the hospital will take an injured patient and bring him back to

the hospital. Here the hospital is the application. The ambulance is the packet that

will be transferred on the network which is the road. The hospital first calls the

police to ask them clear the road for the ambulance. In other words, the hospital

wants to reserve the road. The police then reserve the road for the hospital’s

ambulance and then the ambulance is sent by the hospital to arrive to node that is the

injured man.

 Integrated Services model guarantee worst-case delay and jitter needs and thus is

applicable for video packets or real time applications that require high bandwidth and

small delay requirements. However it is not applicable for web access and e-mail

packets which do not require low delay.

 10

 ISWG-IETF defines two services for Integrated Services Model; guaranteed

service and controlled load service. The guaranteed service guarantees the worst case

Figure 2.2 Integrated Services Model Example

delay for the applications that define their exact delay bounds. Guaranteed Service

makes the reservation of resources for the worst case delay. However, it leads to a

less efficient utilization of the available bandwidth. Controlled load service agrees

only to carry a certain traffic volume in the lightly loaded network.

2.5.2 Differentiated Services

 While Integrated Services try to guarantee QoS requirements on small networks,

differentiated service is a method of trying to guarantee QoS requirements on larger

networks such as the Internet. Differentiated Services model allows network

providers to allocate their different levels of service to different users. Traffic

management or bandwidth control mechanisms that treat different users differently

range from simple Weighted Fair Queuing (WFQ) to RSVP.

 Differentiated Services Code Point (DSCP) is an integer value encoded in the IP

header to define the packet priorities. The packets’ priorities (DSCP) are attached by

the edge of the network service providers according to the service level agreement

between service provider and the customer. Therefore, more money given to the

network providers will result in better quality on the service.

 11

 Before packets enter one of the Differentiated Services routers, they are initially

classified by the sender. The sender sets the packet’s type of service field (DSCP), in

the IP header according to the class of the data, in such a way that the better classes

get higher priorities.

 The advantage of Differentiated Services is that all the policing and classifying is

done at the edges of the Differentiated Service routers. This means routers only deal

with their job of queuing and serving packets, and do not care about the complexities

of collecting payment or enforcing agreements.

 When there is not enough network resources Differentiated Services model

decides which packets to delay and which packets to drop. Therefore, the packets

that are sent by the users who give less money to the service provider will always be

lost, if there are higher priority packets on the network.

2.5.3 MPLS (Multiprotocol Label Switching)

 MPLS simply specifies mechanisms to manage traffic flows between different

machines, and flows between different applications. It is designed by the Internet

Engineering Task Force (IETF). It provides bandwidth management and QoS for

various protocols such as IP, ATM, and Frame Relay by increasing the speed of

network traffic flow by inserting information on the packets that is about a specific

destination path. This decreases the heavy tasks of routers. Because routers don’t

need to find the address for the next node that the packet is sent to.

 The most important benefit of MPLS is that it allows service providers to deliver

new services that cannot be supported by standard IP routing techniques. MPLS

maps IP addresses to simple, fixed-length labels used by different packet-forwarding

technologies. MPLS model is based on building label switched paths (LSPs) across

networks and then forwarding IP packets across the network by these paths. By

adding LSP labels to the packets’ structures, it is possible to remove the overhead of

checking packets at every network device on the link.

http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Internet_Protocol

 12

CHAPTER 3

PACKET SCHEDULING

 In this chapter, packet scheduling algorithms and their purpose will be introduced

in detail.

3.1 Introduction

 A packet scheduler is a running algorithm on a router which decides which packet

will be served next. Consider a router that is receiving packets from the network link

every t1 seconds, and routes the packets to their destinations every t2 seconds. The

situation when t1 < t2 results in some difficulties. In this situation, the packets arrive

at the router faster than the service time. As a result, many packets that arrive at the

router will be dropped or discarded. This problem has brought the idea queuing the

packets on routers.

Figure 3.1 Queue and Packet Scheduler Definition

 13

 In Figure 3.1, a queue and packet scheduler definition is introduced. A queue or

buffer is a part of the router storage that keeps the all incoming packets from the

network link temporarily not to loose them. Then, how can the packets are served

from the queue and in which order? A packet scheduler or a packet scheduling

algorithm manages the queue and sends the packets to their destinations by looking

up the packets’ characteristics and decides which packet will be served first.

 All Packet Schedulers should run by considering of QoS requirements of the

packets. However, the simplest packet scheduling algorithm FIFO (First in First Out)

only serves the packets according to their order of arrival into the queue. The FIFO is

the first algorithm and doesn’t supply QoS requirements for the network flow. The

types of packet scheduling algorithms will be discussed in section 3.3.

 Packet Scheduling is important step because it may guarantee resource

reservations in networks. With the definition of QoS, packet scheduling has become

a favorite topic in networks.

3.2 Design of Packet Schedulers

 There are many possibilities how to design scheduling algorithms. Before

describing packet scheduler algorithms’ characteristics, we will examine some key

issues that are important to design a packet scheduler in the following subsections.

3.2.1 Work Conserving Schedulers

 A work conserving scheduler is a simple approach to design a packet scheduling

algorithm. A scheduler is work conserving if it is idle only if the queue is empty. In a

detailed way, in work conserving schedulers, if there are no packets in the queue to

process, then there will be no job to do. Some of the simple packet scheduling

algorithms such as EDF and FIFO run based on this scheme.

 14

 Work Conserving Schedulers run in two states. If there is a packet on the queue

then the scheduler enters to “busy” state, and serves the packets on the queue one by

one. If there is no packet to process on the queue then the scheduler enters “idle”

state, and waits for a packet to come to the queue. Work Conserving Schedulers use

the network bandwidth with an efficient way and do not waste bandwidth.

3.2.2 Non-Work Conserving Schedulers

 The non-work conserving scheduling algorithms may be idle even though there

are packets to be served in the queue. The goal of non-work conserving schedulers is

to decrease the jitter for packets which is a parameter of QoS.

 For example, when there is only one packet (e.g. an email packet) in the queue,

non-work conserving scheduler waits for other packets to arrive the queue. It means

it changes its state to idle. It delays the email packet in the queue and doesn’t serve it.

When a high delay sensitive packet (e.g. a videoconference packet) arrives to the

queue the scheduler goes from idle state to busy state and processes that packet.

Lower jitter with non-work conserving schedulers is achieved using the fact that

packet becomes eligible for transmission only after a short period from the departure

of the previous packet from the same ow.

 The average waiting times (delay) on the queue will be increased in non-work

conserving schedulers because of the delayed packets on the queue. However, non-

work conserving schedulers reduce the jitter of packets. The other disadvantage is

bandwidth is wasted in non-work conserving schedulers.

3.2.3 Priority

 Priority is a number that will define the precedence of packets. The small numbers

like priority 1 or 2 will show the high precedence packets, and large numbers like

priority 9 or 10 will show the low precedence packets. Higher priority packets are

always more important than the lower priority packets.

 15

 The priority is an important parameter when designing a packet scheduler.

Without a priority definition, the service of packets will be a cumbersome. Many

scheduling algorithms are based on the priority scheme and they differ in how

priorities are assigned to the packets. A scheduler based on priority scheme always

serves packets with highest priorities from the queue. The lower priority packets will

be left waiting in the queue and this causes the starvation of packets. The delay

bounds for higher priority packets will be lower while for others it will be higher.

3.3 Packet Scheduling Algorithms

 A packet scheduler is the most important QoS functional component. A packet

scheduler takes packets from a queue and serves them in order and packet schedulers

differ in that way.

 There are many trade-offs, when a packet scheduling algorithm is designed. For

example, if the loss ratio is wanted to restrain with the low values, then the

complexity of the algorithm increases. If designer wants to decrease the delays of

some packets in the queue then the casualties for other packets will increase. This

causes the different packet scheduling algorithm designs that is specialized for

different kinds of networks.

 The efficiency of a packet scheduling algorithm can be calculated with many

formulas. We can define a simple formula as the following;

Algorithm theof Complexity*queue in the Times WaitingAvg.
Throughput alg.an of efficiency The =

In this formula, throughput is the amount of data successfully transferred in a

specific amount of time, average waiting time is the average delay of packets on the

queue, and complexity of the algorithm is the time and designing complexities of the

algorithm. When the throughput increases, the efficiency of the algorithm also

increases. If delay times of packets on the queue increases, then the efficiency of the

 16

algorithm decreases. Furthermore, if the complexity of the algorithm increases, this

will also lead to less efficient algorithm.

 Scheduling algorithms can be roughly divided into three categories: fair queuing,

deadline based and rate based scheduling. In the fair queuing approach, the share of

bandwidth by a packets’ ow is represented by a weight which is a real number. In

the fair queuing approach the bandwidth is allocated according to the weights of

flows. If a flow cannot use all of its allocated bandwidth, then the remaining

bandwidth is shared between other flows according to their weights. With fair

queuing, it is guaranteed for a ow to get its entitled bandwidth and maybe more if

there is any unused bandwidth left. Fair queuing is able to provide a delay bound and

is commonly used in QoS capable networks.

 The deadline based scheduling is based on the Earliest Deadline First algorithm

(EDF). In an EDF scheduler, each packet has a deadline time which denotes the

duration of time in which a packet needs to be transmitted to its destination. The

scheduler simply transmits the packets based on their deadline times. A packet with

the smallest deadline will be served first. The advantage of the algorithm is that delay

and bandwidth parameters are decoupled (delay bounds can be independent on

bandwidth allocation). For example, a ow reserving a small amount of bandwidth

can still obtain a small delay bound. However, the admission control is much more

complex. In general, two tests must be performed. First the total allocated bandwidth

must not exceed the link capacity. Second a schedulability test must be performed to

ensure that deadlines will not be exceeded.

 Rate based scheduling is a principle that is used for constructing different work

conserving and non-work conserving scheduling disciplines. This type of scheduler

has two components which are a regulator and a scheduler. The regulator determines

the eligibility time for each packet. Once a packet becomes eligible, the scheduler

may select this packet for transmission. Arriving traffic is shaped by the regulator

before coming to the scheduler. A packet may be delayed at the regulator. Different

number of regulators may be used such as token bucket regulators, peak rate

 17

regulators and jitter regulators. The scheduler can also be FCFS (FIFO), fair queuing

or EDF.

 The following subsection discusses various packet scheduling algorithms in

detail.

3.3.1 EDF (Earliest Deadline First) Packet Scheduling Algorithm

 In EDF packet scheduling algorithm, the packets leave the queue based on their

deadline times. In this approach, the packet that has the earliest deadline has the

highest priority in the queue. This algorithm can also be considered a static priority

algorithm with the deadline times determine the packet priorities.

 In Figure 3.2, EDF scheduling algorithm is introduced in details. In the figure, the

packets that came to the queue are sorted according to their deadline times and the

packet which has the least deadline time is served first. Because EDF requires a

sorting algorithm in queue according to packet deadlines, this function brings some

complexity on the algorithm which decreases the algorithm efficiency. EDF

algorithm can supply some of the QoS requirements. For example, because the voice

packets’ deadline times are usually lower than data packets, they will be processed

first, which as a result supplies lower delay and jitter for voice packets. However, it

also results in some disadvantages on data packets, that is data packets will always be

lost if there are some voice packets on the queue.

3.3.2 SP (Static Priority)

 In the SP algorithm, the packets in the queue have priorities that determine which

packet will be processed next. The higher priority packets always will be processed

first. As a result, higher priority packets’ average waiting times in the queue will be

smaller than lower priority packets.

 18

Figure 3.2 EDF Scheduling Algorithm

In Figure 3.3, there are four packets and they arrive to the queue in the order 3,1,4,5

by assigned priority values. Then, the packets are sorted based on their priorities and

the highest priority packet which is 1 will be served first.

Figure 3.3 SP Scheduling Algorithm

 19

 Because EDF and SP algorithms sort the packets on the queue, the complexity of

SP will be same as EDF. However, SP algorithm somewhat can supply QOS

requirements. For example, we can assign higher priorities to voice packets, so the

voice packets will wait for a short amount of time in the queue. As a result, lower

delay values will be supplied for voice packets in the queue.

3.3.3 FIFO (First in First out)

 FIFO is the simplest algorithm. There is no need to sort packets in the queue and

this cause low complexity on the algorithm. The only process is that a packet which

comes into the queue first will be processed and transmitted first. Consider an

example in Figure 3.4. Packets are settled in the queue based on their arrival times

and the first arrived packet pac1 is served first.

Figure 3.4 FIFO Scheduling Algorithm Flowchart

 However, the most important disadvantage of this algorithm is that it cannot

provide the QoS requirements. The algorithm cannot differentiate the packets and it

cannot decide if a packet is a voice, video or data packet. The algorithm only serves

the first packet in the queue. The algorithm cannot control jitter or delay for video

packets or real time applications.

 20

3.3.4 Rotating Priority Queues (RPQ+)

 As the complexity of the packet scheduling algorithm EDF is high, a new packet

scheduling algorithm RPQ+ has been designed which approximates to EDF

algorithm. In RPQ+ scheduling algorithm, there is not only one queue but some set

of queues that run in the FIFO scheme. Initially, queues are assigned with priorities.

And these priorities periodically change to reduce the number of waiting packets in

the queues. The goal of RPQ+ algorithm is to supply worst-case delay guarantees.

 RPQ scheduler has the following key characteristics:

• The operations of RPQ+ algorithm are independent from waiting packets on

the queues.

• This scheduler supplies worst-case delay guarantees like EDF.

• RPQ+ leads to the higher network utilization.

Figure 3.5 RPQ+ Scheduling Algorithm Overview

 In the RPQ+ scheduler there are 2P queues that are sorted according to their

priorities where P is the number of priorities assigned to each queue. Every packet

that comes to a router is stored at the end of Pth queue. In Figure 3.5, there are 6

queues ordered according to their priorities. For P = 3, the packets that come to

queue will be added to the end of the queue with priority 3. Every Δ t time interval,

 21

the queues will be processed in two steps; concatenation and promotion steps. In the

concatenation step, all P+ priority queue elements will be added at the end of P

priority queues (2+ 2 and 1+ 1). Then, in the promotion step all queues priorities

will be promoted, such as the priority queue 3 will be 2+, 2+ will be 2, and so on. The

packets are always served from the highest priority queue which is 0+.

 As a result, RPQ+ scheduling algorithm does not use the sorting of packets

technique as EDF does. This brings RPQ+ algorithm less complexity than EDF

algorithm.

3.3.5 Weight Fair Queue (WFQ)

 Weight Fair Queue (WFQ) packet scheduler is based on a set of queues that have

a weight ratio. WFQ scheduling algorithm is based on the QoS parameter bandwidth.

All queues are assigned a weight wi according to the used network policy. As can be

seen in Figure 3.6, there are three queues A, B, C having the weights w1, w2, and w3.

Queues A, B, and C receive the following ratios of available bandwidth: w1/TW,

w2/TW, and w3/TW respectively where TW is the sum of the queue weights.

Figure 3.6 WFQ Packet Scheduling Algorithm

 22

 If some queues waste their reserved bandwidth, this will not affect the other

queues. The queue that reserves the highest bandwidth will result in the best delay

bound for its packets. However, the bandwidth and delay parameters are not directly

related for packet types. Some applications may require low bandwidth and low

delay and some require higher bandwidth and does not require low delay. In the first

case WFQ will allocate high bandwidth to these applications in order to guarantee

the low delay bound. In the second case, WFQ still has to allocate high bandwidth to

supply application needs. In WFQ, applications will satisfy their delay needs but

sometimes they will get more than their needs. This mismatch can lead to low

bandwidth utilization. In real life, the goal of WFQ is to provide network link sharing

among the groups instead of concerning individual flows. It schedules packets which

belong to aggregated flows, groups, and classes. Delay is the less considered

parameter in this situation.

3.3.6 Round-Robin

 In this algorithm, it is considered there are N queues. Packets are classified

according to their priorities or types and sent to the corresponding queues that are

assigned a priority 0 to (n-1). Then, packets in higher priority queues get serviced

first. Then queues are serviced in order from priority 0 to (n-1). This algorithm can’t

offer bandwidth or delay guarantees. Packets can wait in a queue, while empty

queues are checked for servicing. Also, the algorithm is insensitive to packet size

(inherently unfair).

3.4 Summary

 Packet scheduling is a very important functionality which can provide the QoS

requirements for the networks. The algorithms differ according their complexity, and

supplying QoS parameters. There is no optimum algorithm for QoS networks. The

success of the algorithms changes according to the requirements and needs of the

networks.

 In the remaining chapters, the proposed scheduling algorithms will be discussed.

 23

CHAPTER 4

STATIC PRIORITY WITH DEADLINE CONSIDERATIONS

(SPD)

 In this chapter, our first proposed packet scheduling algorithm the Static Priority

with Deadline Considerations will be introduced.

4.1 SPD Scheduling Algorithm Overview

 The Static Priority with Deadline Considerations (SPD) resembles to the SP

algorithm. The packets are sorted according to their priorities. However, before a

packet is served, the remaining deadline of the packet is checked and the packet is

discarded if the packet has no remaining deadline line which is different from

classical SP algorithm. By this way, a packet without any use when it reaches its

destination is eliminated when its deadline expires. Discarding a packet with an

expired deadline also helps to reduce the unnecessary network traffic and allows

other applications to use the limited network resources.

 The major difference of SPD from SP is that, SPD introduces a new topic which

is degree sorting. Instead of sorting every element in the buffer, partial sorting is

done and the processing overhead of SP is reduced. The simulation results show that

by partial sorting, we can achieve the similar levels of packet losses.

 Consider a network buffer of size N and buffer occupancy of Q packets. Assume

that every packet is assigned a priority. The classical SP algorithm sorts all the

packets in the buffer and transmits the packet with the highest priority.

 24

 Figure 4.1 illustrates an example of serving a packet under the classical SP packet

scheduler. The packet whose priority is the highest, thus the packet with priority 1 is

taken in front of the buffer and then served.

Figure 4.1 SPD-FULL packet scheduling example

 In a degree k, SPD packet scheduler which will be denoted as SPD-k, only the

first k packets in the buffer are sorted, and the packet with the highest priority

among the first k packets is transmitted.

 Figure 4.2 illustrates an example of serving a packet under SPD-2, thus order 2

packet scheduling. The scheduler sorts only the first 2 packets in the buffer and

serves the packet whose priority is 5, as that packet has the highest priority among

the first 2 packets in the buffer.

 Figure 4.2 SPD-2 packet scheduling example

 In the same manner, Figure 4.3 illustrates an example of serving a packet under

SPD-4, thus order 4 packet scheduling. The scheduler sorts only the first 4 packets in

 25

the buffer and serves the packet whose priority is 2, as that packet has the highest

priority among the first 4 packets in the buffer.

Figure 4.3 SPD-4 packet scheduling example

 As a result, we can understand the differences between the classical SP algorithm

and SPD-k algorithms. The classical SP algorithm sorts all the queue elements

according to their priorities and serves the packet with the highest priority. However

SPD-k algorithms sort the first k elements of queue and serve the highest priority

packets between first k elements. This can result in many advantages which will be

described in section 4.3 in the simulation results.

4.2. Experimental environment and SPD simulation design

 In this section SPD simulation design, experimental environment and program

variables will be introduced.

4.2.1 SPD simulation design

 The UML diagram of algorithm in Figure 4.4 shows the designed simulation that

simulate SPD algorithm in MATLAB. The programming language MATLAB is used

for its easiness and graphical interface.

 Figure 4.4 shows the running simulation algorithm step by step. In the initial

stage, the program creates packets for different applications with different priorities

such as data, voice, video and other types of application packets.The program assigns

 26

Figure 4.4: The UML Diagram of SPD Simulation

their properties and adds them to the f_queue. f_queue is the queue to store the

created packets. Properties are the priorities of packets- which is randomly selected

between 1-10, the arrival and deadline times - which are selected by using Poisson

 27

Distribution values and packet types which is the initial priority of the packet. Packet

types are selected as the priorities of the packet. For example, if we create a packet

which has the priority 1, then the packet type is also 1 to differentiate it from the

other packets. Thus, because priorities are changing in the range 1-10 for a packet,

there are 10 types of packets in the simulation. After sorting the f_queue according to

arrival times, the first packet is selected from the f_queue. Then, the program selects

packet arrival as an event at the beginning and starts to the simulation.

 In packet arrival event, since the first packet is selected, the next incoming packet

is created and added to f_queue. Then, f_queue is sorted again. This operation is

done for next packet arrival steps which will be calculated further. After that, the first

selected packet from f_queue is added to the end of the real queue. f_queue is only

for keeping the generated packets; it is not a real queue on switch. It can be thought

as a source that produces packets that are needed in the simulation. It is required to

simulate the environment. Then, if there is enough space in the queue, queue size

will be incremented by one and the new packet will be added to the end of the queue.

Queue will not be sorted in the arrival process. And, the time for a new packet arrival

time is decided in arrival event of the simulation. Sorting the f_queue as explained

above, the second packet appears at the head of the f_queue array. By looking its

arrival time, the next packet arrival time is updated.

 When the program exits from the packet arrival event, it compares the next packet

arrival time and next packet serving time to decide which event will be done next.

The smallest value of next packet arrival time and next packet serving time is

selected as the next event. Consequently, the virtual clock is set to choose the next

event and program continues to process the selected event. The other type of event is

packet serving.

 In packet serving event; initially, the simulation takes the first packet in the queue

and checks if its deadline time is expired or not. If the packet’s deadline time is

expired, simulation discards it from the queue and increases the total lost packet

number. This is required not to deal with the expired packets. Then, if there is still a

 28

packet in queue, the queue will be sorted according to packet priorities. Here, an

important strategy is used about sorting the queue. The selected sorting degree here

which we call it “k” results in different algorithms like SPD-2, SPD-4, SPD 7, and

SPD-FULL. For example, if SPD-k algorithm will be used in which k=2, that means

SPD-2 algorithm will be simulated, the sorting is done between the first and second

packets on the queue only. Other packets are not considered. In the same manner for

k=4, in SPD-4 algorithm, only the first 4 packets are sorted on the queue based on

their priorities. Also in SPD-FULL algorithm, all of the queue elements are sorted

based on their priorities. Then, the first packet is taken from the queue and

simulation serves this packet by changing the simulation statistics. At the end, the

program checks other packet arrival times and adds the transmission time to calculate

next packet service time. By comparing next packet arrival time and service time, the

simulation continues. When the simulation is finished, a statistical view of the

program shows the results.

4.2.2 Experimental environment and program variables

 For the simulations, the buffer sizes capacities are selected as 10, 20, 30, 40 and

50 packets. That means that the queue can accept 10,20,30,40 or 50 packets by the

defined value queue_size. The arrival process is defined to be exponential and the

departure process is deterministic. It is assumed that all the packets have equal length

and 100 bits for simplicity. The packets are assigned priorities between 1 and 10

taken from a uniform distribution. The remaining deadlines of the packets are

assigned randomly taken from an exponential distribution with the average value 8.

 The deadline times’ exponential mean value that is the difference between service

and arrival times of packets is taken as 8 unit seconds(BND_DELAY). The time in the

simulation is not a real time. Unit seconds expresses the time according to the

simulation. The value 8 unit seconds is found experimentally. If the mean deadline

time is selected smaller than that value then the packet losses based on deadline will

extremely increase. If the mean deadline time is selected larger than that value then

the packet losses according to packets deadline will approach to zero.

 29

 In the simulation, the transmission rate is taken as 10 kbps and the packet size for

all packets is taken as 100 bits as expressed before. The packets in the simulation are

arriving to the queue every 0.0102 seconds on the average because the arrival rate λ

is selected 98 in the simulation and packets are served every 0.01 seconds on the

average because departure rate 100=μ is selected on the simulation. That means

every second, 48 packets may arrive to the queue and 50 packets may be served from

the queue in average (not all of them served some of them lost).

 Simulation time is selected as 20000 seconds. That is not a real time that is the

time in the simulation in other words it is a relative time. In 20000 seconds,

approximately 2 million packets are processed in the simulation.

 In the following section, the simulation results will be described according to

these environments and defined variables.

4.3 SPD Simulation Results

 In SPD algorithm simulations, the processing overhead of SPD-2 is observed

lower than the processing overhead of SPD-FULL as SPD-2 only checks and sorts

the first two packets in the router queue. Also, SPD-k algorithms can be thought in

the same manner.

 Figure 4.5 and Table 4.1 presents the total packet loss ratios for different order

SPD packet schedulers as a function of buffer sizes for SPD-2, SPD-4, SPD-7 and

SPD-FULL. It is observed that, the total induced packet losses for SPD-2 is the best.

As the order for SPD-k increases, the packet loss ratios increase as well. The reason

why SPD-2 has a better performance can be explained, when we differentiate the

packets losses into its two components; Packet losses due to buffer overflows and

packet losses due to deadline violations. While the packet losses due to buffer

overflows decrease as the buffer size increases, the packet losses due to deadline

violations might be inversely affected for increased buffer sizes.

 30

 Figure 4.6 and Table 4.2 presents the packet loss ratios due to buffer overflows as

a function of buffer size. As the buffer size increases, the packet losses decrease

significantly. For this kind of losses, full sort, thus SPD-FULL has the best

performance as expected and as the order of SPD decreases the induced packet losses

increase.

Figure 4.5 Total Packet Loss Ratio Graph in SPD algorithms

Table 4.1 Total Packet Loss Ratios in SPD algorithms

 When the buffer size is small, the majority of the packet losses depend on buffer

overflows. However, as the buffer size increases, the packet losses mainly depend on

losses due to deadline violations as can be seen in Figure 4.7 and Table 4.3. SPD-2

 31

has the best performance for cell losses due to deadline violations. Because SPD-2

only allows a packet at the head of the buffer move one step back, if its priority is

low. Thus, the reason of having better packet loss ratios for the overall performance

of SPD-2 is due to the fact that it performs better in terms of deadline violations.

Figure 4.6 Packet Losses Graph due to Buffer Overflows for SPD

Table 4.2 Packet Losses due to Buffer Overflows for SPD

 Figure 4.8 illustrates how SPD packet scheduler behaves to packets with different

priorities. For example for SPD-2 packet scheduler, the total packet loss ratio for

 32

packets with priority of 1 is 0.02%, and for SPD-FULL, it is about 0.007%. For SPD-

2 packet scheduler, the total loss ratio of packets with priority 10 is 0.31%, and for

SPD-FULL, it is about 0.91%. For SPD-FULL packet scheduler, 65% of the total

packets lost have priority 10. Thus, as the degree increases in an SPD algorithm, the

lower priority packets are neglected more.

Figure 4.7 Packet Losses Graph due to Deadline Violations for SPD

Table 4.3 Packet Losses due to Deadline Violations for SPD

 33

 Figure 4.9 represents the average waiting times (delay) of packets in the buffer as

a function of buffer size for various SPD-k packet schedulers. It is observed that

SPD-FULL has lower average waiting times, as SPD-FULL schedules high priority

packets as fast as possible.

 Figure 4.10 and Table 4.4 presents the average waiting times for packets for

different priorities. As the degree of the SPD packet scheduler increases, the waiting

times for higher priority packets decrease, and lower priority packets increase.

Figure 4.8 Total Packet Losses According to Priorities in SPD algorithms

Table 4.4 Average Waiting Times on the queue for SPD

 34

Figure 4.9 Avg.Waiting Times for SPD

Figure 4.10 Avg.Waiting Times for SPD for each priority

 35

 How does the algorithms’ complexity change? If the router makes more

operations to serve a packet that means if the running time of algorithm increases,

there may be more lost packets.

 Figure 4.11 shows which algorithms run how many minutes in the same

conditions for queue_size equal to 50. In the figure we see that SPD-FULL algorithm

finishes in 300 minutes while SPD-2 algorithm finishes in only 21 minutes. We can

see the how complexity of the full sort algorithm is. Because of for loops to sort the

queue, full sort algorithm gives worst time complexity. This can also lead packet

losses in SDP-FULL algorithm because of buffer overflow on real life which is not

considered in the simulations.

Figure 4.11 Simulation times for SPD algorithms

 As a result it is obviously seen that SPD-k algorithms give lower loss ratios

according to SP algorithm. Also, the time complexity of SPD-k algorithms is much

lower than SPD-FULL algorithm.

 36

CHAPTER 5

DYNAMIC PRIORITY WITH DEADLINE CONSIDERATIONS

(DPD)

 In this chapter the Dynamic Priority with Deadline Considerations (DPD) packet

scheduling algorithm is discussed in detail.

5.1 DPD Scheduling Algorithm Overview

 The Dynamic Priority with Deadline Considerations (DPD) explicitly takes into

account the deadlines and merges this information with the priorities. It is not always

correct to schedule the packets based entirely on their priorities or deadlines. The

DPD algorithm tries to combine both of these properties in order to provide

diversification of QoS requirements.

 Under the DPD packet scheduler, the packets at the buffer are also sorted based

on their priorities. However, these priorities do not stay constant. By applying a two-

level threshold on their remaining deadlines, the DPD algorithm can modify the

priority of the packets waiting in the buffer. The DPD packet scheduler also does

partial sorting as the SPD packet scheduler.

 In a degree k, DPD packet scheduler (DPD-k), only the first k packets in the

buffer are sorted, and the packet with the highest priority among the first k packets is

either transmitted or kept waiting.

 In a DPD-k algorithm, the packet at the head of the buffer is decided to be served

or not, based on its remaining deadline. Assume that the packet at the head of the

 37

buffer has a remaining deadline of t units. The deadline of this packet is compared to

two threshold levels (T1 and T2 where T1<T2) and the following actions are taken.

 If 1Tt ≤ , the packet is immediately served without considering its priority.

As the packet’s remaining deadline is at a very critical level, it needs to be

served immediately. Otherwise, the packet will have will have no remaining

deadline and be considered as lost.

 If 21 TtT ≤< , the packet is served based on the corresponding SPD-k

scheduling. Thus, the first k packets will be sorted and the packet with the

highest priority will be served. The packet which was at the head of the

buffer will be placed in its appropriate position by increasing its priority one

level as a way of compensation for removing it from the head of the buffer.

 If 2Tt > , the packet is served based on the corresponding SPD-k

scheduling. However, the priority of the packet at the head of the buffer will

not be changed as it already has a sufficient amount of remaining deadline.

 Figure 5.1 illustrates a DPD-4 packet scheduling example where the packet at the

head of the queue with priority 7 has a remaining deadline 1Tt ≤ . Since the packet’s

remaining deadline is at a critical level, it is immediately served although there are

higher priority packets.

Figure 5.1 DPD-4 packet scheduling with 1Tt ≤

 Figure 5.2 illustrates a DPD-4 packet scheduling example where the packet at the

head of the queue with priority 7 has a remaining deadline 21 TtT ≤< . In this case

DPD packet scheduler works like SPD packet scheduler. However, as the packet

 38

which was scheduled to be transmitted might go back in the queue after the sorting,

its priority is increased one level.

Figure 5.2 DPD-4 packet scheduling with 21 TtT ≤<

 Figure 5.3 illustrates the last case for a DPD-4 packet scheduler. Since the

remaining deadline for the packet at the head of the queue is large enough, the packet

is sorted based entirely on SPD-k packet scheduler. As, the packet is not in danger of

a deadline violation its priority is not changed as well.

Figure 5.3 DPD-4 packet scheduling example 2Tt >

 An important question is how to determine the levels of thresholds for the DPD

packet scheduler. Initially, we have determined some static values for these

thresholds based on the buffer occupancy. However, ongoing research proposes to

have dynamic values for the thresholds based on 3 parameters: the current queue

occupancy, the packet’s priority and the packet’s remaining deadline. If the queue

occupancy is high, then the packets wait more in the buffer which leads to choose

lower threshold values. Consider a packet with a low priority and has a small

 39

remaining deadline time. If the threshold levels are selected small values, then this

packet may be served immediately. If the threshold levels are selected large values,

then this packet will be sent to the somewhere else in the queue after sorting and

probably will be lost. These considerations will be discussed detailed in section

5.2.2.

5.2 Experimental environment and DPD simulation design

 In this section DPD simulation design, experimental environment and program

variables will be introduced.

5.2.1 DPD simulation design

 The UML diagram of DPD algorithm in Figure 5.4 shows the designed simulation

in MATLAB.

 Figure 5.4 shows the running simulation algorithm step by step. Again as we see

in section 4.2.1, f_queue is used for the same purposes and packet producing scheme

is the same as SPD simulation.

 In packet arrival event, since the first packet is selected, the next incoming packet

is created and added to f_queue. Then, f_queue is sorted. After that, the first selected

packet from f_queue is sent to the real queue. Then, if queue size allows that

transaction, queue size will be incremented by one and packet will be added to the

end of the queue. Queue will not be sorted in the arrival event again. It will be sorted

in serving event. Next, sorting the f_queue above, the second packet appears at the

head of the f_queue array. By looking its arrival time, the next packet arrival time is

updated.

In packet serving event; initially, the simulation takes the first packet in the queue

and checks if its deadline time is expired or not. If the packet’s deadline time is

expired, simulation discards it from the queue and increases total lost packet number.

 40

Figure 5.4 UML Diagram of DPD-k algorithms

 41

It is the same as in SPD simulation. Then, the queue will be sorted according to

packet types in other words packet base priorities. Here, our same strategy we used

in SPD simulation comes about sorting the queue. The chosen sorting degree here

which we call it “k” brings different algorithms like DPD-2, DPD-4, DPD 7, and

DPD-FULL. For example, if DPD-k algorithm is used in which k=4, that means

DPD-4 algorithm will be simulated, only the first 4 packets are sorted in the queue

based on their priorities. Also in DPD-FULL algorithm, all of the queue elements are

sorted based on their priorities.

 Before sorting there are some jobs to do in DPD algorithms. We defined two

threshold levels at the beginning of program which are T1 and T2. Initially, the first

packet is taken from queue. If the remaining deadline of the packet is smaller than T1

then the packet will be served immediately similar to FIFO algorithm. If deadline of

the packet is between T1 and T2 then the packet’s priority will be decreased by 1 and

the queue will be sorted by a degree k. If the packet’s deadline is larger than T2 then

the queue will be sorted by not changing the priority of the packet. Then DPD

simulation serves this packet by changing the simulation statistics. At the end, the

program checks other packet arrival times and adds the transmission time to calculate

current time.

 In order to evaluate the performance of DPD packet scheduler in terms of the

induced packet losses and waiting times, several simulations are conducted. The

following sections describe the experimental environment and present the simulation

results observed in DPD algorithm.

5.2.2 Experimental environment and program variables

 All of the simulation variables are same with SPD algorithm defined in Section

4.2.2 except two new threshold variables.

 T1 value is chosen in the simulation as 0.2 seconds. Considering that queue size

is equal to 50 and one packet serving time is 0.01 seconds, it may be selected as a

 42

critical value. T2 value is chosen in the simulation as 1 second. Then, it is considered

that for different queue sizes, two threshold values T1 and T2 should also change.

When the queue size increases, the T1 and T2 value should decrease and when the

average deadline times for packets (bnd_delay) increases, T1 and T2 values also

increases. The simulation results for determining the best T1 and T2 values are

included in Appendix A.

 In the following section, the DPD algorithms’ simulation results will be

discussed based on these environment and defined threshold levels.

5.3.3. DPD Simulation Results

 DPD packet scheduler is based on selecting the two threshold levels which would

determine, when and how the priorities of the packets will be modified. Figure 5.5

shows the impact of the lower threshold T1 on the total packet loss ratios when

queue size is equal to 50 (Table 5.1). As the value of the lower threshold increases,

the total packet loss ratios also increase. Because increasing the lower threshold too

much might cause high priority packets which are not at the head of the buffer wait

more and thus become more likely candidates for losses. As this threshold increases,

the algorithm behaves more like a FIFO algorithm and as this threshold decreases,

the algorithm behaves more like the SPD algorithm.

 Table 5.1 The effect of T1 on DPD-7 algorithm

 Another parameter is the higher threshold value T2 for the DPD algorithm.

Figure 5.6 presents the total packet losses when queue size is 50 for various values of

the upper threshold level, T2.

 43

Figure 5.5 The effect of T1 on DPD-7 algorithm

Figure 5.6 The effect of T2 on DPD-4

 44

 Figure 5.7 and Table 5.2 present the total packet losses induced for various DPD-

k packet schedulers as a function of the buffer size. Similar to SPD packet scheduler,

as the order of the packet scheduler increases, the packet loss ratios increase, due to

the packet losses induced from deadline violations.

Figure 5.7 Total loss ratio for DPD for T1=0.2 and T2=1

Table 5.2 Total loss ratio for DPD for T1=0.2 and T2=1

 As seen in Figure 5.8 and Table 5.3, DPD-2 has also the best performance for cell

losses due to deadline violations. Because DPD-2 only allows a packet at the head of

the buffer move one step back, if its priority is low. Thus, the reason of having better

 45

packet loss ratios for the overall performance of DPD-2 is due to the fact that it

performs better in terms of deadline violations.

Figure 5.8 Loss ratios due to Deadline in DPD for T1=0.2 and T2=1

Table 5.3 Loss ratios due to Deadline in DPD for T1=0.2 and T2=1

 In Figure 5.9 and Table 5.4, it is seen that loss ratios due to buffer overflows are

higher in DPD-2, DPD-4 and DPD-7 algorithms compared to DPD-FULL algorithm.

However, the effect of buffer overflow losses on the total loss ratios is smaller than

the effect of deadline based losses. The efficiency of DPD-k algorithms according to

their loss ratios are affected largely with the deadline based losses.

 46

Table 5.4 Loss ratios due to Overflow in DPD for T1=0.2 and T2=1

Figure 5.9 Loss ratios due to Overflow in DPD for T1=0.2 and T2=1

 DPD-k algorithms’ complexity change based on the degree k. Figure 5.16 shows

which algorithms run how many minutes in the same conditions for queue_size equal

to 50. In the figure we see that full sort algorithm finishes in 300 minutes while

degree-2 algorithm finishes in only 21 minutes. It is obviously seen that how

complexity of the DPD-FULL algorithm is in the figure.

 47

Figure 5.10 Simulation time (complexity) comparisons between DPD algorithms

 48

CHAPTER 6

COMPARISON OF SPD, DPD AND RPQ ALGORITHMS

6.1 Comparison of SPD and DPD Algorithms

 In this section, the observed results for SPD and DPD algorithms will be

compared based on packet loss ratios and delay in the queue.

 Figure 6.1 compares SPD and DPD packet loss ratios for deadline violations as a

function of buffer size for SPD-7 and DPD-7. As expected, with a chosen good T1

and T2 values, DPD-7 has a better performance compared to SPD-7. The impact of

modifying packet priorities can be best seen from deadline violation losses.

Figure 6.1 Comparing SPD-7 and DPD-7 algorithms according to their loss ratios

due to deadline violations

 49

 Figure 6.2 compares SPD-7 and DPD-7 algorithms based on their lost ratios as a

function of buffer size. Although, DPD-7 and SPD-7 have similar results for packet

losses due to buffer overflows. However, considering better performance in terms of

deadline violations, DPD total packet loss ratio is less than its corresponding SPD.

The value of the loss ratios can be seen from the previous two sections.

Figure 6.2 Comparing SPD-7 and DPD-7 algorithms according to their loss ratios

due to buffer overflow

 Based on the loss ratios, DPD-FULL algorithm approximates to EDF scheduling

algorithm because DPD-FULL changes packet priorities according to remaining

deadline times of packets and sorts all packets on the queue as EDF does. Also, the

DPD-FULL algorithm has the best effort according to its match SPD-FULL

algorithm based on their loss ratios.

 Figure 6.3 shows the average waiting times (delays) of different priority packets

in the queue. The packets for SPD algorithm is showed with gray bar, and the

packets for DPD algorithm is showed with black bar in the figure. In DPD algorithm

 50

Figure 6.3 Comparing SPD-7 and DPD-7 algorithms according to their average

waiting times on the queue

the priorities of packets which have small remaining deadline times are increased.

This process permits low priority packets to increase their priorities. Because of that,

low priority packets (e.g. priority-10 packets) generally wait less in the queue in

DPD algorithm compared to SPD algorithm. This can be seen in the figure. In the

above part of the graph, it is seen that e.g. priority-10 packets wait in the queue more

for SPD because gray bars exceed the black bars on the graph. As opposite, in the

same manner, higher priority packets (e.g. priority-2 packets) wait more in the queue

 51

for DPD algorithms. This can be seen from bottom part of the graph. In this time, the

black bars are exceeding the gray bars for higher priority packets.

 The time complexity of DPD-k algorithms is lower than their corresponding SPD-

k algorithms. Figure 6.4 shows which algorithms run how many minutes in the same

conditions for queue_size equal to 50. In the figure the DPD algorithms end shortly.

The simulation runs for 2 million packets. If the algorithms could be run 2 billion

packets, we can imagine how the difference is big. As a result, we can say that DPD-

k algorithms are less complex according to their corresponding SPD-k algorithms,

because they do not sort the queue every time as SPD-k algorithms do.

Figure 6.4 Simulation time comparisons between SPD and DPD (Time complexity

of the algorithms)

 In summary, it is obvious that DPD algorithms give better results in all

conditions. DPD algorithms are less complex than SPD algorithms, they guarantee

lower packet losses with a defined good T1 and T2 threshold values.

6.2 Comparison of DPD and RPQ Algorithms

 In this section, the observed results for DPD and RPQ algorithms will be

compared based on packet loss ratios and delay in the queue.

 52

 In the RPQ simulation design, there are 10 queues for 10 types of priority packets.

The other simulation environment variables are same within the DPD simulation

design.

 In Figure 6.5, the total packet loss ratios are seen for different queue sizes for

each used priority queue in RPQ algorithm. From the figure, it is observed that when

one queue size is equal to 21, that mean the total buffer capacity is 210, the loss ratio

will be 1.3104%. That is higher than the DPD-k algorithms which use queue size 50.

However, as seen in Figure 6.6, average waiting times for packets, observed in RPQ

packet scheduling algorithm, are lower than the DPD and SPD algorithms. When the

queue size for RPQ is 5 (totally 50), the observed average deadline time is 0.0439

seconds. That value is lower than the DPD algorithms. DPD-FULL algorithm gives

the best average waiting time between the DPD-k algorithms and it is 0.1220

seconds. Low delay parameters are the goal of RPQ that is also seen in the

simulation.

Figure 6.5 Total packet loss ratios versus buffer size for RPQ

 53

Figure 6.6 Average waiting times for packets versus buffer size in RPQ

 In RPQ algorithm, if queue size for each queue is taken 5 (totally 50), then packet

lost due to deadline violations can be examined. In Figure 6.7, it is observed that the

deadline violation loss value for RPQ algorithm is between the DPD-4 and DPD-7.

Figure 6.7 Packet lost values due to deadline violations

 54

CHAPTER 7

CONCLUSIONS

 Packet schedulers are used as a technique to provide the QoS requirement on

various kinds of applications. The induced delay over a connection is an important

QoS parameter as well as the ratio of packet losses. In this thesis, a new packet

scheduler with two different versions is introduced; The Static Priority with Deadline

Considerations (SPD) and Dynamic Priority with Deadline Considerations (DPD).

Different from classical packet schedulers, both of these packet schedulers try to

integrate the delay and loss parameters, since NGNs will be heavily dependent on

supplying QoS requirements of various applications.

 The SPD and DPD packet schedulers try to reduce the processing overhead of

sorting at a network buffer by introducing, order-k sorting, thus SPD-k and DPD-k.

Sorting a few elements at the buffer gives similar results of sorting all the elements at

the buffer. This results less complex algorithm, low loss ratios and low delay times

compared to classical full sort algorithms like EDF and SP.

 SPD packet scheduler differs from classical SP algorithm in a way that it

considers the packet deadline times and includes the expired deadline packets as lost

packets. Also the SPD-k algorithms have lower complexity compared to classical SP

algorithm because of the overhead of sorting all packets in SP. The SPD-k

algorithms give low total lost ratios in the order of SPD-2, SPD-4, SPD-7, and SPD-

FULL. SPD-2 algorithm has given the lowest total loss ratios in the simulation with

the lowest packet losses due to deadline violations. On the other hand, the delay of

packets in the queue is the highest in SPD-2 algorithm and lowest in SPD-FULL

algorithm. This causes also the highest buffer overflow losses in SPD-2 algorithm

and lowest buffer overflow losses in SPD-FULL algorithm.

 55

 On the other hand, DPD packet scheduler is based on the classical SP algorithm

with the improvement on changing priorities of packets in the queue. In the

simulation, two threshold levels selected; the lower one is T1 and higher one is T2.

When T1 and T2 are selected as too small values, the DPD algorithm approximates

to SPD algorithm. If the difference between T1 and T2 values is high then the

algorithm complexity increases because of the overhead of sorting. If T1 and T2

value is selected too high then the algorithm runs in FIFO scheme. It is observed

from the simulation that the algorithm gives the best results when T1=0.2 seconds

and T2=1 second.

 Again, in DPD-k algorithms the lowest loss ratios and highest delay times are

observed in DPD-2 simulation. The losses due to buffer overflow are similar for all

DPD-k algorithms, but the losses due to deadline expiration are lowest in DPD-2

algorithm.

 While the priorities are kept fixed for an SPD packet scheduler, DPD packet

scheduler modifies the priorities based on the remaining deadline. The simulation

results have shown that, DPD packet scheduler furthermore decreases the packet

losses due to deadline violations and gives low loss ratios compared to SPD

algorithm.

 The current ongoing and future work of SPD and DPD packet schedulers include

to increase the threshold levels for the DPD packet scheduler, with a possibility of

introducing dynamic thresholds based on the QoS requirements of the current packet

to be served. If the threshold levels are increased, e.g. not only T1 and T2 but also a

new threshold value T3, DPD algorithm complexity may be decreased more. Also,

the impact on jitter will be studied since jitter is another important QoS parameter.

 56

REFERENCES

[1] H. Zhang, “Service disciplines for guaranteed performance service in packet-
switching networks”, proceedings of the IEEE, 83(10):1374-1399, October 1995.

[2] Mehdi Karhagi and Ali Movaghar, “A Method for Performance Analysis of
Earliest-Deadline-First Scheduling Policy”, Proceedings of DSN ’04, Sep 2004.

[3] Nichael Menth and Ruediger Martin, “Service Differentiation with MEDF
scheduling in TCP/IP networks”, Journal of Computer Communications (article in
press), Sep. 2005.

[4] Yong Jiang, Jianping Wu, Xiaoxia Sun, “A Packet Scheduling Algorithm in High
Performance Routers”, proceedings of IEEE ICATM2001, Korea, pp 168-172.

[5] Cisco, “Internetworking Technologies Handbook”, Introduction to QOS, Chapter
49 URL http://www.cisco.com,

[6] Tim Szigeti, “End-to-End Qos Network Design”, Cisco Press, 2004.

[7] P.Goyal, H.M.Vi, and H.Chen, “Start-time Fair Queuing: A scheduling algorithm
for integrated services”, proceedings of the ACM-SIGCOMM '96, Palo Alto, CA,
August 1996, pp 157-168.

[8] Dallas E. Wrege, Jörg Liebeherr, “A Near-Optimal Packet Scheduler for QoS
Networks”, proceedings of IEEE Infocom '97, Kobe, Japan, April 1997, pp 577-583.

[9] J.C.R Bennett and H.Zhang, “WF'Q: Worst-case fair weighted fair queuing”,
proceedings of ACM SIGCOMM '96, Palo Alto, CA, August 1996, pp143-156.

[10] N.McKeown; V. Anantharam; J.Walrand, “Achieving 100% Throughput in an
input-queued switch”, IEEE Infocom '96.

[11] Andrew S. Tanenbaum, “Computer Networks, Fourth Edition”, 2003, Pearson
Education.

[12] Floyd, S., “Connections with Multiple Congested Gateways in Packet-Switched
Networks Part 1: One-way Traffic”. Computer Communications Review, Vol.21,
No.5, October 1991, pp. 30-47. URL http://ftp.ee.lbl.gov/floyd/.

[13] Gaynor, M., “Proactive Packet Dropping Methods for TCP Gateways”, October
1996, URL http://www.eecs.harvard.edu/~gaynor/final.ps.

 57

[14] T. V. Lakshman, Arnie Neidhardt, Teunis Ott, “The Drop From Front Strategy
in TCP Over ATM and Its Interworking with Other Control Features”, Infocom 96,
MA28.1.

[15] ® 2001 Tom Sheldon and Big Sur Multimedia - “Queuing”
URL www.linktionary.com/q/queuing.html

[16] Anton´ n Kr´al, “Scheduling Strategies in Routers”, MS Thesis, 2003

[17] Tom Sheldons Linktionary.com, “Tom Sheldon and Big Sur Multimedia” URL
http://www.linktionary.com/q/qos.html, 2001

[18] WIKIPEDIA,”Packet Scheduling Types”, The Free Encyclopedia, URL
http://en.wikipedia.org/

[19] Prof. Dr.-Ing. Adam Wolisz, “Packet Scheduling for Bandwidth Sharing and
Quality of Service Support in Wireless Local Area Networks”, Technische
Universität Berlin, URL www.et2.tu-harburg.de/Mitarbeiter/Wischhof/thesis.pdf

 58

APPENDIX A

FINDING BEST T1 AND T2 VALUES FOR DPD ALGORITHMS

 In this section, the effect of average deadline times for packets which is denoted

as bnd_delay, and the effect of buffer size which is denoted as queue_size on the

threshold values T1 and T2 will be examined.

A.1 The Effect of Average Deadline Times of Packets (BND_DELAY) on the

threshold values

 Bnd_delay is the average deadline times for the packets. If the selected value of

bnd_delay is small, then there will be more packet losses as expected. Because the

losses due to deadline violations will increase.

 In bnd_delay simulations, the queue_size is taken as 50 for different bnd_delay

values. Also the used algorithm to examine the effect of bnd_delay on T1 and T2 is

DPD-4.

 In Tables A.1, A.2, A.3, and A.4, the loss ratios table is presented when

bnd_delay is equal to 4,8,16 and 24 seconds in order. Also, Figures A.1, A.2, A.3,

and A.4 show the corresponding loss ratios for different T1 and T2 values with a

specific bnd_delay value with 3-d graphs. With the results of simulations, it is seen

that when bnd_delay value increases, the range for selecting T1 and T2 values also

increases.

 To explain the simulation results, a critical loss value, called loss ratio limit, is

defined for different simulations with different bnd_delay values. And then, the loss

 59

ratios that are lower than the loss ratio limit are circled on the table. Lastly, the tables

are commented with circled values.

 As observed from the figures and tables, if T1 and T2 value is selected as 0, then

there will be more packet losses. This proves that good selected T1 and T2 values in

DPD simulations decrease the total loss ratio.

Table A.1 Total loss ratios for different T1 and T2 values when bnd_delay = 4 secs

 In the simulations, it is observed that if T1 and T2 value increase, generally the

loss ratios also increase without the effect of bnd_delay value. Bnd_delay value only

determines the lower and upper limit of T1 and T2 value for low losses. Therefore,

after that limits, if T1 and T2 value increase, the loss ratio will also increase. If

bnd_delay increases the range to select best T1 and T2 values will be bigger.

 60

Figure A.1 Total loss ratios for different T1 and T2 values when bnd_delay = 4 secs

 61

Table A.2 Total loss ratios for different T1 and T2 values when bnd_delay = 8 secs

Table A.3 Total loss ratios for different T1 and T2 values when bnd_delay= 16 secs

 62

Figure A.2 Total loss ratios for different T1 and T2 values when bnd_delay = 8 secs

 63

Figure A.3 Total loss ratios for different T1 and T2 values when bnd_delay= 16 secs

 64

Figure A.4 Total loss ratios for different T1 and T2 values when bnd_delay= 24 secs

 65

Table A.4 Total loss ratios for different T1 and T2 values when bnd_delay= 24 secs

A.2 The Effect of Buffer Size (QUEUE_SIZE) on the threshold values

 Queue_size is the total capacity of the buffer. If the selected value of queue_size

is small, then there will be more packet losses as expected. Because the losses due to

buffer overflow will increase.

 In queue_size simulations, the bnd_delay is taken as 8 seconds for different

queue_size values. Also the used algorithm to examine the effect of queue_size on

T1 and T2 is DPD-4.

 In Tables A.5, A.6, and A.7, the loss ratios table is given when queue_size is

equal to 25, 50 and 75 in order. In each table, the best T1 and T2 values and range of

T1 and T2 values for best loss ratios are defined. With the results of simulations, it is

seen that when the queue_size increases, the range for selecting T1 and T2 values

decreases.

 The Figures A.5, A.6 and A.7 show the corresponding loss ratios for different T1

and T2 values with a specific queue_size value with 3-d graphs.

 66

Table A.5 Total loss ratios for different T1 and T2 values when queue_size = 25

 In the simulations, it is observed that queue_size value only determines the lower

and upper limit of T1 and T2 value for low losses. Therefore, after that limits, if T1

and T2 value increase, the loss ratio will also increase. Another important result is; if

queue_size increases the range to select best T1 and T2 values will be smaller.

 67

Figure A.5 Total loss ratios for different T1 and T2 values when queue_size = 25

 68

Table A.6 Total loss ratios for different T1 and T2 values when queue_size = 50

 69

Figure A.6 Total loss ratios for different T1 and T2 values when queue_size = 50

 70

Table A.7 Total loss ratios for different T1 and T2 values when queue_size = 75

 71

Figure A.7 Total loss ratios for different T1 and T2 values when queue_size = 75

 72

APPENDIX B

SPD AND DPD SIMULATIONS’ MATLAB CODES

 All other programming codes that are not included here can be found in the CD

that is included with the thesis.

SPD.m

%50000 sim time

% SP SIMULATION

clear all;

 TC = 10000;

 Avg_Pckt_Size = 100;

 ad=1;

 bnd_delay = 8;

 maxx=0;

 avgx=0;

 k=0;

 lambda = 98;

 mu = TC / Avg_Pckt_Size;

 Sim_time =50000;

 t1=clock;

 for ii=1:1:5

 n = 0 + ii*10 ; %Bu queue size limit

 for jj=1:4

 klmn=[2 4 7 n];

 sort2=klmn(jj);

 t0=clock;

% SIMULATION PARAMETERS

% Lambda -> packet arrival rate

% Mu -> Packet Service Rate

% n -> The Buffer Size

% The transmisson Capacity is 10 kbps

 73

 if(mu < lambda)

 disp('Packet Arrival Rate should not be greater than Packet Service Rate')

 return;

 end

% The information about the next packet will be kept in these parameters

 next_pckt_arrvl_time = 0;

 next_pckt_serv_time = 0;

% The current time is set to 0 @ the beginning

 curr_time = 0;

 queue_size = 0; %MAX n is the limit of the Buffer

 nbr_type_arr = zeros(10);

 nbr_type_loss = zeros(10);

 nbr_type=zeros(10);

 nbr_type_waiting=zeros(10);

 outofloss=0;

 deadlineloss=0;

 nbr_type1_waiting=0;

 nbr_type11=0;

 packetsize= 100;

 randvar=floor(rand(10,1)*10)+1;

 priorityofpacket=randvar(1);

 packet1 = struct('Size', packetsize, 'Arrival_Time', curr_time + exprnd(1 / (lambda/ad)), 'deadline', -1, 'type',

priorityofpacket, 'priority',priorityofpacket);

 packet1.deadline = packet1.Arrival_Time + exprnd(bnd_delay);

 f_queue(1) = packet1;

 f_queue_size=1;

 packet = f_queue(1);

 f_queue_size = f_queue_size - 1;

 next_pckt_arrvl_time = f_queue(1).Arrival_Time;

 next_pckt_serv_time = packet.Arrival_Time;

 curr_time = packet.Arrival_Time;

 74

 event = 'Packet_Arrival';

% Until the simulation finishes

while (curr_time < Sim_time)

 switch event

% The Packet Arrival event. When a packet arrives, enter to this case

 case 'Packet_Arrival'

 randvar=floor(rand(10,1)*10)+1;

 priorityofpacket=randvar(1);

 packet1 = struct('Size', packetsize, 'Arrival_Time', curr_time + exprnd(1 / (lambda/ad)), 'deadline', -1,

'type', priorityofpacket, 'priority', priorityofpacket);

 packet1.deadline = packet1.Arrival_Time + exprnd(bnd_delay);

 f_queue_size = f_queue_size + 1;

 f_queue(f_queue_size) = packet1;

 nbr_type_arr(packet1.type) = nbr_type_arr(packet1.type) + 1;

 %--------SORTING ALGORITHM according to arrival times

 %for f_queue

 if (f_queue_size > 2)

 for i=1:f_queue_size

 for j=1:f_queue_size-1

 if (f_queue(j).Arrival_Time > f_queue(j+1).Arrival_Time)

 hold = f_queue(j);

 f_queue(j) = f_queue(j+1);

 f_queue(j+1) = hold;

 end

 end

 end

 elseif (f_queue_size == 2)

 j=1;

 if(f_queue(j).Arrival_Time > f_queue(j+1).Arrival_Time)

 hold = f_queue(j);

 f_queue(j) = f_queue(j+1);

 f_queue(j+1) = hold;

 end

 end

 %--

 if (queue_size == 0)

 queue_size = 1;

 75

 queue(queue_size) = packet;

 if (packet.Arrival_Time > next_pckt_serv_time)

 next_pckt_serv_time = packet.Arrival_Time;

 end

 elseif (queue_size < n)

 queue_size = queue_size + 1;

 queue(queue_size) = packet;

 elseif (queue_size == n)

 queue_size = n;

 outofloss=outofloss+1;

 nbr_type_loss(packet.type)=nbr_type_loss(packet.type)+1;

 elseif (queue_size > n)

 disp('Error#1 -> Exceed the Buffer Size')

 return;

 end

% Set the next packet arrival times

 packet = f_queue(1);

 f_queue = f_queue(2:f_queue_size);

 f_queue_size = f_queue_size - 1;

 next_pckt_arrvl_time = packet.Arrival_Time;

% The Packet Serving event. When a packet will be served, enter to this case

 case 'Packet_Serving'

 i=1;

 % This section begins from the first element and goes up to the element

 % which is greater than the current time

 if queue_size > 0

 while(i <= queue_size & ((queue(i).deadline) < curr_time))

 deadlineloss=deadlineloss+1;

 nbr_type_loss(queue(i).type) = nbr_type_loss(queue(i).type) + 1;

 nbr_type_waiting(queue(i).type) = nbr_type_waiting(queue(i).type) + curr_time - queue(i).Arrival_Time;

 i = i + 1;

 end

 end

 % The queue will be shorten by eliminating the loss packets due to their deadlines

 76

 queue = queue(i:queue_size);

 queue_size = queue_size - (i - 1);

 if (queue_size >= 2)

 %--------SORTING ALGORITHM according to priorities

 if(sort2<=queue_size)

 kgt=sort2;

 else

 kgt=queue_size;

 end

 for i=1:kgt-1

 for j=1:kgt-1

 if (queue(j).priority > queue(j+1).priority)

 hold=queue(j);

 queue(j)=queue(j+1);

 queue(j+1)=hold;

 end

 end

 end

 %Dynamic Priority Changing

 pckt_served = queue(1); % Sort ettikten sonra ilk paketi al yoruz

end

 if (queue_size==1)

 pckt_served = queue(1);

 end

 % The control. It is may be impossible, but control is a must

 if (queue_size < 0)

 queue_size = 0;

 end

 % Number of lost elements has to be added to the queue

 if (queue_size > 0)

 queue = queue(2:queue_size);

 next_pckt_serv_time = curr_time + pckt_served.Size / TC;

 nbr_type_waiting(pckt_served.type) = nbr_type_waiting(pckt_served.type) + curr_time - pckt_served.Arrival_Time;

 nbr_type(pckt_served.type)=nbr_type(pckt_served.type)+1;

 queue_size = queue_size - 1;

 if (queue_size < 0)

 77

 queue_size = 0;

 end

 else

 next_pckt_serv_time = next_pckt_arrvl_time;

 end

 end %End of Switch

% To decide which Event will occur

curr_time = min([next_pckt_arrvl_time, next_pckt_serv_time]);

 if(curr_time == next_pckt_arrvl_time)

 event = 'Packet_Arrival';

 else

 event = 'Packet_Serving';

 end

end %End of While

%If any packet remains in f_queue, these are considered as loss packets%

while (f_queue_size > 0)

 i = 1;

 nbr_type_loss(f_queue(i).type) = nbr_type_loss(f_queue(i).type) + 1;

 i = i + 1;

 f_queue=f_queue(i:f_queue_size);

 f_queue_size = f_queue_size - 1;

end

disp(sprintf('------------SPD--------------'))

disp(sprintf('------------ SORT DEGREE= %d----------BUFFER SIZE= %d\n',sort2,n))

totalpacket1=sum(nbr_type_arr);

totalpacket=totalpacket1(1);

totallost1=sum(nbr_type_loss);

totallost=totallost1(1);

lost1=sum(nbr_type_loss);

lost=lost1(1);

waiting1=sum(nbr_type_waiting);

waiting=waiting1(1);

totalwaiting1=sum(nbr_type);

totalwaiting=totalwaiting1(1);

disp(sprintf(' Number Of All Sent Packets : %d', totalpacket))

disp(sprintf(' Number Of All Lost Packets : %d - %f \n', lost,(totallost/totalpacket)*100))

disp(sprintf(' Because of Queue Limit : %d ---- %f\n', outofloss,(outofloss/totallost)*100))

disp(sprintf(' Because of Deadline Limit : %d ---- %f\n', deadlineloss,(deadlineloss/totallost)*100))

disp(sprintf(' Percentage Of Loss ==> : %.2f\n',(totallost/totalpacket)*100))

lossratio(ii,jj)=(totallost/totalpacket)*100;

 78

deadlost(ii,jj)=(deadlineloss/totallost)*lossratio(ii,jj);

outlost(ii,jj)=(outofloss/totallost)*lossratio(ii,jj);

avgwaiting(ii,jj)=waiting/totalwaiting;

disp(sprintf(' Duration of Simulation : %d mins %.1f secs\n', floor(etime(clock, t0)/60), mod(etime(clock,t0),60)))

disp(sprintf(' Avg waiting for a packet in the queue: %f\n' ,waiting/totalwaiting))

for i=1:10

 l(ii,jj,i)=(nbr_type_loss(i)*100)/totalpacket;

 t(ii,jj,i)=nbr_type(i);

 w(ii,jj,i)=nbr_type_waiting(i)/nbr_type(i);

end

save 'SPD.mat'

end

end

disp(sprintf(' Duration of Simulation : %d mins %.1f secs\n', floor(etime(clock, t1)/60), mod(etime(clock,t1),60)))

DPD.m

%50000 sim time, T1=0.2

% DPD SIMULATION

clear all;

 TC = 10000;

 Avg_Pckt_Size = 100;

 ad=1;

 bnd_delay = 8;

 maxx=0;

 avgx=0;

 k=0;

 lambda = 98;

 mu = TC / Avg_Pckt_Size;

 Sim_time =50000;

 t1=clock;

%T1 and T2 are chosen as this.

 T2=1;

 for ii=1:1:5

 n = 0 + ii*10 ; %Bu queue size limit

 for jj=1:4

 T1=0.2;

 klmn=[2 4 7 n];

 sort2=klmn(jj);

 t0=clock;

% SIMULATION PARAMETERS

% Lambda -> packet arrival rate

% Mu -> Packet Service Rate

 79

% n -> The Buffer Size

% The transmisson Capacity is 10 kbps

 if(mu < lambda)

 disp('Packet Arrival Rate should not be greater than Packet Service Rate')

 return;

 end

% The information about the next packet will be kept in these parameters

 next_pckt_arrvl_time = 0;

 next_pckt_serv_time = 0;

% The current time is set to 0 @ the beginning

 curr_time = 0;

 queue_size = 0; %MAX n is the limit of the Buffer

 nbr_type_arr = zeros(10);

 nbr_type_loss = zeros(10);

 nbr_type=zeros(10);

 nbr_type_waiting=zeros(10);

 outofloss=0;

 deadlineloss=0;

 nbr_type1_waiting=0;

 nbr_type11=0;

 packetsize= 100;

 randvar=floor(rand(10,1)*10)+1;

 priorityofpacket=randvar(1);

 packet1 = struct('Size', packetsize, 'Arrival_Time', curr_time + exprnd(1 / (lambda/ad)), 'deadline', -1, 'type',

priorityofpacket, 'priority',priorityofpacket);

 packet1.deadline = packet1.Arrival_Time + exprnd(bnd_delay);

 f_queue(1) = packet1;

 f_queue_size=1;

 packet = f_queue(1);

 f_queue_size = f_queue_size - 1;

 next_pckt_arrvl_time = f_queue(1).Arrival_Time;

 next_pckt_serv_time = packet.Arrival_Time;

 curr_time = packet.Arrival_Time;

 80

 event = 'Packet_Arrival';

% Until the simulation finishes

while (curr_time < Sim_time)

 switch event

% The Packet Arrival event. When a packet arrives, enter to this case

 case 'Packet_Arrival'

 randvar=floor(rand(10,1)*10)+1;

 priorityofpacket=randvar(1);

 packet1 = struct('Size', packetsize, 'Arrival_Time', curr_time + exprnd(1 / (lambda/ad)), 'deadline', -1,

'type', priorityofpacket, 'priority', priorityofpacket);

 packet1.deadline = packet1.Arrival_Time + exprnd(bnd_delay);

 f_queue_size = f_queue_size + 1;

 f_queue(f_queue_size) = packet1;

 nbr_type_arr(packet1.type) = nbr_type_arr(packet1.type) + 1;

 %--------SORTING ALGORITHM according to arrival times

 %for f_queue

 if (f_queue_size > 2)

 for i=1:f_queue_size

 for j=1:f_queue_size-1

 if (f_queue(j).Arrival_Time > f_queue(j+1).Arrival_Time)

 hold = f_queue(j);

 f_queue(j) = f_queue(j+1);

 f_queue(j+1) = hold;

 end

 end

 end

 elseif (f_queue_size == 2)

 j=1;

 if(f_queue(j).Arrival_Time > f_queue(j+1).Arrival_Time)

 hold = f_queue(j);

 f_queue(j) = f_queue(j+1);

 f_queue(j+1) = hold;

 end

 end

 %--

 if (queue_size == 0)

 81

 queue_size = 1;

 queue(queue_size) = packet;

 if (packet.Arrival_Time > next_pckt_serv_time)

 next_pckt_serv_time = packet.Arrival_Time;

 end

 elseif (queue_size < n)

 queue_size = queue_size + 1;

 queue(queue_size) = packet;

 elseif (queue_size == n)

 queue_size = n;

 outofloss=outofloss+1;

 nbr_type_loss(packet.type)=nbr_type_loss(packet.type)+1;

 elseif (queue_size > n)

 disp('Error#1 -> Exceed the Buffer Size')

 return;

 end

% Set the next packet arrival times

 packet = f_queue(1);

 f_queue = f_queue(2:f_queue_size);

 f_queue_size = f_queue_size - 1;

 next_pckt_arrvl_time = packet.Arrival_Time;

% The Packet Serving event. When a packet will be served, enter to this case

 case 'Packet_Serving'

 i=1;

 % This section begins from the first element and goes up to the element

 % which is greater than the current time

 if queue_size > 0

 while(i <= queue_size & ((queue(i).deadline) < curr_time))

 deadlineloss=deadlineloss+1;

 nbr_type_loss(queue(i).type) = nbr_type_loss(queue(i).type) + 1;

 nbr_type_waiting(queue(i).type) = nbr_type_waiting(queue(i).type) + curr_time - queue(i).Arrival_Time;

 i = i + 1;

 end

 end

 % The queue will be shorten by eliminating the loss packets due to their deadlines

 82

 queue = queue(i:queue_size);

 queue_size = queue_size - (i - 1);

 if ((queue_size > 0) && (queue(1).deadline-curr_time <= T1))

 pckt_served = queue(1); % Sort etmeden direk paketi al yoruz

 elseif ((queue_size > 0) && (queue(1).deadline-curr_time <= T2))

 queue(1).priority=queue(1).priority-1;

 end

 if ((queue_size >= 2) && (queue(1).deadline-curr_time > T1))

 %--------SORTING ALGORITHM according to priorities

 if(sort2<=queue_size)

 kgt=sort2;

 else

 kgt=queue_size;

 end

 for i=1:kgt-1

 for j=1:kgt-1

 if (queue(j).priority > queue(j+1).priority)

 hold=queue(j);

 queue(j)=queue(j+1);

 queue(j+1)=hold;

 end

 end

 end

 %Dynamic Priority Changing

 pckt_served = queue(1); % Sort ettikten sonra ilk paketi al yoruz

end

 if (queue_size==1)

 pckt_served = queue(1);

 end

 % The control. It is may be impossible, but control is a must

 if (queue_size < 0)

 queue_size = 0;

 end

 % Number of lost elements has to be added to the queue

 if (queue_size > 0)

 queue = queue(2:queue_size);

 next_pckt_serv_time = curr_time + pckt_served.Size / TC;

 nbr_type_waiting(pckt_served.type) = nbr_type_waiting(pckt_served.type) + curr_time - pckt_served.Arrival_Time;

 83

 nbr_type(pckt_served.type)=nbr_type(pckt_served.type)+1;

 queue_size = queue_size - 1;

 if (queue_size < 0)

 queue_size = 0;

 end

 else

 next_pckt_serv_time = next_pckt_arrvl_time;

 end

 end %End of Switch

% To decide which Event will occur

curr_time = min([next_pckt_arrvl_time, next_pckt_serv_time]);

 if(curr_time == next_pckt_arrvl_time)

 event = 'Packet_Arrival';

 else

 event = 'Packet_Serving';

 end

end %End of While

%If any packet remains in f_queue, these are considered as loss packets%

while (f_queue_size > 0)

 i = 1;

 nbr_type_loss(f_queue(i).type) = nbr_type_loss(f_queue(i).type) + 1;

 i = i + 1;

 f_queue=f_queue(i:f_queue_size);

 f_queue_size = f_queue_size - 1;

end

disp(sprintf('------------DPD modified DYNAMIC--------------'))

disp(sprintf('--T1=%3.2f--------T2=%3.2f------- SORT DEGREE= %d----------BUFFER SIZE= %d\n',T1,T2,sort2,n))

totalpacket1=sum(nbr_type_arr);

totalpacket=totalpacket1(1);

totallost1=sum(nbr_type_loss);

totallost=totallost1(1);

lost1=sum(nbr_type_loss);

lost=lost1(1);

waiting1=sum(nbr_type_waiting);

waiting=waiting1(1);

totalwaiting1=sum(nbr_type);

totalwaiting=totalwaiting1(1);

disp(sprintf(' Number Of All Sent Packets : %d', totalpacket))

disp(sprintf(' Number Of All Lost Packets : %d - %f \n', lost,(totallost/totalpacket)*100))

 84

disp(sprintf(' Because of Queue Limit : %d ---- %f\n', outofloss,(outofloss/totallost)*100))

disp(sprintf(' Because of Deadline Limit : %d ---- %f\n', deadlineloss,(deadlineloss/totallost)*100))

disp(sprintf(' Percentage Of Loss ==> : %.2f\n',(totallost/totalpacket)*100))

lossratio(ii,jj)=(totallost/totalpacket)*100;

deadlost(ii,jj)=(deadlineloss/totallost)*lossratio(ii,jj);

outlost(ii,jj)=(outofloss/totallost)*lossratio(ii,jj);

avgwaiting(ii,jj)=waiting/totalwaiting;

disp(sprintf(' Duration of Simulation : %d mins %.1f secs\n', floor(etime(clock, t0)/60), mod(etime(clock,t0),60)))

disp(sprintf(' Avg waiting for a packet in the queue: %f\n' ,waiting/totalwaiting))

for i=1:10

 l(ii,jj,i)=(nbr_type_loss(i)*100)/totalpacket;

 t(ii,jj,i)=nbr_type(i);

 w(ii,jj,i)=nbr_type_waiting(i)/nbr_type(i);

end

save 'DPD.mat'

end

end

disp(sprintf(' Duration of Simulation : %d mins %.1f secs\n', floor(etime(clock, t1)/60), mod(etime(clock,t1),60)))

