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ABSTRACT

A NEW PRIORITY BASED PACKET SCHEDULER WITH
DEADLINE CONSIDERATIONS

ORAL GOKGOL

Quality of Services (QoS) issues have become a focus point of research on Next
Generation Networks (NGNs). In order to supply the various QoS requirements for
different kinds of applications, new packet scheduling policies need to be developed.

This thesis focuses on the packet scheduling policies in computer networks. An effort

to develop a packet scheduling algorithm that supplies QoS in computer networks is
an interesting topic. This thesis introduces two new packet schedulers which try to
integrate an important QoS parameter (the delay) with the classical schedulers. The
two sets of algorithms introduced; Static Priority with Deadline Considerations
(SPD) and Dynamic Priority with Deadline Considerations (DPD); not only simplify
the complexity and overhead of the classical Earliest Deadline First (EDF) or Static
Priority (SP) algorithms, but also provide a better level of QoS based on the

simulations conducted.

Key words: packet scheduling, QoS, Static Priority, Earliest Deadline First, packet

loss, deadline

il



OZET

PAKETLERIN ANLAMSIZ HALE GELME ZAMANLARI GOZ
ONUNDE BULUNDURULARAK DiZAYN EDIiLEN YENI BiR
ONCELIGE DAYALI PAKET GONDERIM ALGORITMASI

ORAL GOKGOL

Servis kalitesi (QoS) konular1 Next Generation networklerde arastirma yapmak igin
onemli konulardir. QoS gereksinimlerini farh tiplerdeki uygulamalarda saglamak icin
yeni Paket Gonderimi Algoritmalar1 gelistirilmesi gerekmektedir. Bu tezde bilgisayar
aglarindaki  kuyruklarda paket gonderimi algoritma uygulamalari iizerine
odaklanilmistir. Paket gonderimi algoritmalar1 bilgisayar aglarindaki performans
acisindan biiylik onem arz eder. Aglardaki Servis Kalitesini (QOS) garanti etmek
i¢in Uretilen paket gonderimi algoritmalar1 giiniimiizde ilgingligini kaybetmeyen bir
konudur. Bu tez kuyruklarda paket gonderimini kontrol eden yeni iki algoritma
izerinedir. Bu algoritmalar bilinen paket kontrol algoritmalarmma yeni bir QOS
parametresi olan gecikmeyi (delay) eklemektedir. Bu tezde iki yeni algoritma
tanitilacak; Sabit Oncelikli algoritma - paketlerin anlamsiz hale gelmeden once
gonderilmeleri  diisiiniilerek (SPD) ve Degisken Oncelikli Algoritma - paketlerin
anlamsiz hale gelmeden once gonderilmeleri diisliniilerek (DPD); bu algoritmalar
sadece algoritmalarin  karmagikligint  azaltmakla kalmayip ayrica klasik
algoritmlardan; paketlerin anlamsiz hale gelme zamanlarma gore gonderilmesi

(EDF) ve Sabit Oncelikli paketler (SP) algoritmalarina gore daha iyi sonug veriyor.
Key words: kuyruklarda paket gonderimi siras1, QoS, Servis Kalitesi, Sabit Oncelikli

Paketler Algoritmasi, paketlerin son gonderilme zamanlarina gore islenmesi

algoritmasi, paket kaybi1
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CHAPTER 1

INTRODUCTION

With the increase of the Internet’s popularity, attention and research areas are
concentrating on emerging integrated services packet-switched networks to
simultaneously support applications with diverse performance and QoS requirements
and traffic characteristics. There has been a lot of research on designing new
scheduling algorithms which would support the requirements of such applications by

providing them different QoS levels [1, 2, and 3].

The scheduling algorithms can be classified according to their complexity and
how they behave to different kinds of applications. Networks in which QoS
requirements are thoroughly satisfied can be best described as best-effort networks
[4]. Best effort network designs treat all packets coming from different applications
as equally important. Such networks work well if there is enough CPU, memory, and
bandwidth, as packets traversing through the network can be handled immediately
after their arrival. However, this is not always achievable due to the lack of

resources.

In this thesis, two sets of priority based scheduling algorithms which consider the
remaining deadlines of the packets are introduced. The first algorithm, Static Priority
with Deadline Considerations (SPD) schedules the packets based on their assigned
priorities and reduces the overhead of sorting that can be seen in SP and EDF
algorithms. The second algorithm, Dynamic Priority with Deadline Considerations
(DPD) schedules the packets based on their assigned priorities, but at the same time
modifies the priorities based on the remaining deadlines. DPD also has a reduced
complexity like SPD by introducing the concept of degree sorting as will be

described in the following sections.



The rest of the thesis is organized as follows: Chapter two gives background
material on QoS Networks and QoS parameters. In this chapter, QoS definition and
why we need it, UDP and TCP protocols, QoS differentiation on multimedia
applications, QoS requirements and parameters for different applications are

described.

Chapter three explains what a packet scheduler is and introduces different packet
scheduling algorithms used on networks. It gives background information on packet
scheduling and algorithms design, and some widely used packet scheduling

algorithms.

Chapter four introduces the first proposed packet scheduling algorithm, Static
Priority with Deadline Considerations (SPD). In this chapter, SPD packet scheduling
algorithm is introduced with the experimental environment. SPD simulation design,
simulation results and various SPD algorithms’ simulation results comparisons are

presented.

Chapter five introduces the next proposed packet scheduling algorithm, Dynamic
Priority with Deadline Considerations (DPD). In this chapter, DPD packet
scheduling algorithm is introduced with the experimental environment. DPD
simulation design, simulation results and various DPD algorithms’ simulation result

comparisons are presented.

Chapter six compares the SPD and DPD algorithms in a simulation environment.
In this chapter, the DPD and SPD algorithms are compared with each other and with
classical algorithms based on their loss ratios and complexities. Finally, the thesis

concludes with the conclusions made in Chapter seven.



CHAPTER 2

QOS AND QOS PARAMETERS

The capabilities of a network to provide resource guarantees and service
differentiation are defined as the Quality of Service (QoS). In this chapter, QoS

overview, parameters and some approaches on how to provide QoS in the networks

will be discussed.

2.1 QoS Overview

Initially, Internet has been designed by using the datagram model which is about
dividing the data into packets and transferring them over the network one by one. In
Figure 1.1, datagram model is introduced with its objectives. Datagram model is
good for file transfers, remote connections and e-mail packets. However, with the
increase of internet’s popularity and network needs such as multimedia application

flows, this model needs to be improved.

S file transfers Node B

ermail

rernote connection

Mo service differentiation,behave all serwmces same

Figure 2.1 Datagram Model Approach

TCP protocol supplies the packets the possibility of retransmit them, when they
are lost on the way. The important data flows use the TCP protocol. For example,
email and file transfer packets are transmitted using the TCP protocol because if

some of the packets are lost on the flow, it makes the information useless. UDP



protocol is somewhat less secure and is used for multimedia applications. In UDP
protocol, there is no guarantee if a packet is successfully transmitted. Thus, if many

multimedia packets are lost on the flow, the sound or video will be useless.

File transfer and e-mail packets require only arrival to destination without any
error. They are not sensitive to delay or jitter parameters. If the data that is flowing
on the network arrives without error, there would be no problem. However, web sites
now provide their users online videos and music by using the internet. Also, users
now can make phone calls by using the internet. With these developments on the
internet technology, a new topic has evolved which is service differentiation; to

differentiate the packets according to their special characteristics.

For example, if someone is listening music from a web site, and if the arriving
music packets’ delay becomes larger, then the quality of the music will be low. In
other words, the music cannot be perceived correctly by the user. These difficulties
have evolved the definition of Quality of Service (QoS), which is controlling the

network flow by considering each application characteristics.

QoS brings many advantages to both users and network administrators. By using
QoS, users can get more quality services according to their demands. Network
administrators can attract many users by supplying good quality services. QoS allows
network administrators to use their existing resources in efficient manner. By
considering QoS parameters, critical applications may receive high-quality service.
As a result, network providers can have better control over their networks and

improve customer satisfaction.

There are no infinite network resources. If there are infinite resources on
networks, then we do not need to define the Quality of Services terms. Every
application may get the best desired resource within infinite resources. QoS allows
real-time programs such as VoIP applications to make the most efficient use of

network bandwidth. Because QoS provides some level of guarantee for available



network resources, it gives a shared network a level of service similar to that of a

dedicated network .

2.2 QoS Advantages

As can be seen in the previous subsection, with the increase of demand on

networks, the QoS consideration is required for the applications.

QoS has a key role to control the application flows on a network. Multimedia
applications require more bandwidth and less delay requirements than data
applications. Applying QoS requirements on a network can supply the required
bandwidth and worst-case delay for multimedia or other key applications. Thus, QoS

can help network administrators to manage the traffic flow.

The decision which applications can get the better QoS is a critical problem.
Therefore every network needs changes from the other. If a network is using mostly
the multimedia applications, then QoS parameters will be controlled by packet
schedulers to get the best effort on multimedia flows on the network. Also with the
QoS, there are equipments on the network that are need to be developed and some
equipment that are newly designed and integrated into the networks such as some

components on routers to measure loss ratios or delays.

QoS gives administrators control over their networks, improves the user
experience, and reduces costs by the efficient use of existing resources, which can

delay the need for expansion or make it less expensive.
2.3 QoS Parameters
The QoS parameters are the QoS requirements of applications and are important

for understanding the QoS term. The bandwidth, delay, jitter and loss rate constitute

the QoS parameters.

' Dedicated network is a private network that is used only by a single user. Shared network is the
network that is used by more than one users.



2.3.1 Minimum Bandwidth

The bandwidth is the required transfer rate for an application. Minimum
bandwidth is the minimum amount of bandwidth required by an application flow. For
example voice packets require at least 8 kbps, and video packets require at least 128

kbps to be transferred over the network.

Bandwidth allocation is enforced by packet scheduling algorithms on the end
nodes. The Weighted Fair Queuing (WFQ) scheduler is able to provide minimum

bandwidth guarantee over small time intervals as can be seen in Chapter three.

2.3.2 Latency (Delay)

Latency is the delay of a packet on the networks. In other words, it is the time to
transfer the packet across a network. Packets may be held up in queues, on slow
links, or because of congestion. In the networks that are congested, the delay will be
higher for packets. Although delays that are over 100 ms are disruptive to voice

packets, email packets are not sensitive to delay.

The delay requirement can be speci ed as the average delay or worst-case delay.
Average delay is the mean value of delays that the packets on the flow experience.
Worst-case delay is the highest delay that a packet experiences in the flow. The
delay that a packet experiences has three components: propagation delay,

transmission delay and queuing delay.

Propagation delay is caused because of the distance of the nodes. It is the time
required for data to travel from transmission point to destination. Transmission delay
is the time to send a packet into the link that is caused by the node that sends the
packets. Queuing delay is the delay for packets while waiting on the queue to be
served. It will be also called as the average waiting time on queue for packets.
Transmission and queuing delay can be converted to a bandwidth requirement
because they can be controlled on a network. Propagation delay cannot be controlled

or decreased because the speed of light is constant.



2.3.3 Jitter

Jitter is simply defined as the variance of delay. In other words, jitter is the

variance of delay between the same kinds of packets that flows on a network. A
delay-jitter requirement is the maximum difference between the largest and smallest

delays that packets experience.

Higher levels of jitter are more likely to occur on slow or heavily congested
networks. Increasing use of QoS control mechanisms on higher speed links such as

100 Mbit Ethernet will decrease the jitter and reduce the jitter related problems.

2.3.4 Loss rate

Loss rate is the percentage of lost packets to the total number of transmitted
packets. Packet losses on a network are often caused by congestion which can
happen when many different flows want to use network resources. These losses can
be prevented by allocating sufficient bandwidth to packets and queues for traffic

ows. When a shared network resource is busy then the queues will be filled quickly
with the incoming packets on routers. This will increase the delays of packets on
queue and cause packet losses. Packet scheduling algorithms can guarantee a

minimum packet loss ratio by controlling the queues.

2.4 QoS Requirements

Packets that are traveling on a network can be simply categorized in three groups
as data, voice and video packets. Table 2.1 shows the QoS requirements of these
packet types; email as a data application, VoIP as a real time voice application and

videoconference as a real time video application.

In Table 2.1, the word high or low shows how much the application is sensitive to

the corresponding QoS parameter. For example, from the table we see that VoIP



packets are susceptible to low loss ratios and their bandwidth usage is low. And,

email packets’ sensitiveness to loss ratios is high.

Table 2.1 The stringent QoS requirements for different types

Application Loss Rate Delay Jitter | Bandwidth
Email High Low Low Low
VoIP Low High High Low

Videoconference Low High High High

Data, Voice and Video are the some type of application flows on QoS networks.
Data applications like email or web access applications are smooth and burst. In real
life, data application flows on networks are much higher than video and voice
application flows. In other words, data application flow density is higher than other
applications because of the people needs. Data packets are sensitive to losses.
However, data packets use TCP protocol, so if they are lost on the way, then they can
be retransmitted. The delay is not an important parameter for data packets compared
to video and voice packets. The data packets in queues can be served with different

times and so jitter parameter may be high for data packets.

Real time voice and video applications are much sensitive to the change on QoS
parameters compared to data applications. Video packets require more bandwidth
compared to voice packets. Both video and voice packets are jitter and delay
sensitive. Because of these requirements, the UDP protocol is used for video and
voice packets. UDP protocol is the fastest way to pass application flows across a
network. However, the disadvantage of this, if many packets are lost on the way,
then they could not be retransmitted and this brings lower quality voice or videos on

the network.



2.5 QoS Architectures and Models

There are some QoS technologies that are used in networks, Integrated Services,
Differentiated Services and Multiprotocol Label Switching architectures. These

models will be discussed in this section.

2.5.1 Integrated Services

Integrated services model is based on the resource reservation system that is used
to provide QoS on the small networks and somehow on the Internet. Resource
reservation system is a protocol to request a reservation of a resource before using it
from the admission control. Admission control checks if sufficient resources are
available and assigns the resource to the application. Integrated services model is
designed by the Integrated Service Working Group (ISWG-IETF) of IETF (Internet
Engineering Task Force). To control the resource reservation step, IETF has

standardized the RSVP (Resource Reservation Setup Protocol).

In this model, the applications which want to send their data over the network
must reserve the required resources and provide the required information such as
destination and needed resources. Consider an example in Figure 2.2. An ambulance
that will be sent from the hospital will take an injured patient and bring him back to
the hospital. Here the hospital is the application. The ambulance is the packet that
will be transferred on the network which is the road. The hospital first calls the
police to ask them clear the road for the ambulance. In other words, the hospital
wants to reserve the road. The police then reserve the road for the hospital’s
ambulance and then the ambulance is sent by the hospital to arrive to node that is the

injured man.

Integrated Services model guarantee worst-case delay and jitter needs and thus is
applicable for video packets or real time applications that require high bandwidth and
small delay requirements. However it is not applicable for web access and e-mail

packets which do not require low delay.



ISWG-IETF defines two services for Integrated Services Model; guaranteed

service and controlled load service. The guaranteed service guarantees the worst case

The road reserved by the Police for the

ambulance
Naode A Node B
(Hospital ) {The patient )
Andulance %
_
(0O

Figure 2.2 Integrated Services Model Example

delay for the applications that define their exact delay bounds. Guaranteed Service
makes the reservation of resources for the worst case delay. However, it leads to a
less efficient utilization of the available bandwidth. Controlled load service agrees

only to carry a certain traffic volume in the lightly loaded network.

2.5.2 Differentiated Services

While Integrated Services try to guarantee QoS requirements on small networks,
differentiated service is a method of trying to guarantee QoS requirements on larger
networks such as the Internet. Differentiated Services model allows network
providers to allocate their different levels of service to different users. Traffic
management or bandwidth control mechanisms that treat different users differently

range from simple Weighted Fair Queuing (WFQ) to RSVP.

Differentiated Services Code Point (DSCP) is an integer value encoded in the IP
header to define the packet priorities. The packets’ priorities (DSCP) are attached by
the edge of the network service providers according to the service level agreement
between service provider and the customer. Therefore, more money given to the

network providers will result in better quality on the service.

10



Before packets enter one of the Differentiated Services routers, they are initially
classified by the sender. The sender sets the packet’s type of service field (DSCP), in
the IP header according to the class of the data, in such a way that the better classes

get higher priorities.

The advantage of Differentiated Services is that all the policing and classifying is
done at the edges of the Differentiated Service routers. This means routers only deal
with their job of queuing and serving packets, and do not care about the complexities

of collecting payment or enforcing agreements.

When there is not enough network resources Differentiated Services model
decides which packets to delay and which packets to drop. Therefore, the packets
that are sent by the users who give less money to the service provider will always be

lost, if there are higher priority packets on the network.

2.5.3 MPLS (Multiprotocol Label Switching)

MPLS simply specifies mechanisms to manage traffic flows between different
machines, and flows between different applications. It is designed by the Internet
Engineering Task Force (IETF). It provides bandwidth management and QoS for
various protocols such as IP, ATM, and Frame Relay by increasing the speed of
network traffic flow by inserting information on the packets that is about a specific
destination path. This decreases the heavy tasks of routers. Because routers don’t

need to find the address for the next node that the packet is sent to.

The most important benefit of MPLS is that it allows service providers to deliver
new services that cannot be supported by standard IP routing techniques. MPLS
maps IP addresses to simple, fixed-length labels used by different packet-forwarding
technologies. MPLS model is based on building label switched paths (LSPs) across
networks and then forwarding IP packets across the network by these paths. By
adding LSP labels to the packets’ structures, it is possible to remove the overhead of

checking packets at every network device on the link.
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CHAPTER 3

PACKET SCHEDULING

In this chapter, packet scheduling algorithms and their purpose will be introduced

in detail.

3.1 Introduction

A packet scheduler is a running algorithm on a router which decides which packet
will be served next. Consider a router that is receiving packets from the network link
every tl seconds, and routes the packets to their destinations every t2 seconds. The
situation when t1 < t2 results in some difficulties. In this situation, the packets arrive
at the router faster than the service time. As a result, many packets that arrive at the
router will be dropped or discarded. This problem has brought the idea queuing the

packets on routers.

Different Type of Packets

|:| Packet Scheduler

[]

= |

[] QUEUE

] \DEDD —-"%) —— [
=N

Served Packet

O
]
]

Figure 3.1 Queue and Packet Scheduler Definition
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In Figure 3.1, a queue and packet scheduler definition is introduced. A queue or
buffer is a part of the router storage that keeps the all incoming packets from the
network link temporarily not to loose them. Then, how can the packets are served
from the queue and in which order? A packet scheduler or a packet scheduling
algorithm manages the queue and sends the packets to their destinations by looking

up the packets’ characteristics and decides which packet will be served first.

All Packet Schedulers should run by considering of QoS requirements of the
packets. However, the simplest packet scheduling algorithm FIFO (First in First Out)
only serves the packets according to their order of arrival into the queue. The FIFO is
the first algorithm and doesn’t supply QoS requirements for the network flow. The

types of packet scheduling algorithms will be discussed in section 3.3.

Packet Scheduling is important step because it may guarantee resource
reservations in networks. With the definition of QoS, packet scheduling has become

a favorite topic in networks.

3.2 Design of Packet Schedulers

There are many possibilities how to design scheduling algorithms. Before
describing packet scheduler algorithms’ characteristics, we will examine some key

issues that are important to design a packet scheduler in the following subsections.

3.2.1 Work Conserving Schedulers

A work conserving scheduler is a simple approach to design a packet scheduling
algorithm. A scheduler is work conserving if it is idle only if the queue is empty. In a
detailed way, in work conserving schedulers, if there are no packets in the queue to
process, then there will be no job to do. Some of the simple packet scheduling

algorithms such as EDF and FIFO run based on this scheme.
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Work Conserving Schedulers run in two states. If there is a packet on the queue
then the scheduler enters to “busy” state, and serves the packets on the queue one by
one. If there is no packet to process on the queue then the scheduler enters “idle”
state, and waits for a packet to come to the queue. Work Conserving Schedulers use

the network bandwidth with an efficient way and do not waste bandwidth.

3.2.2 Non-Work Conserving Schedulers

The non-work conserving scheduling algorithms may be idle even though there
are packets to be served in the queue. The goal of non-work conserving schedulers is

to decrease the jitter for packets which is a parameter of QoS.

For example, when there is only one packet (e.g. an email packet) in the queue,
non-work conserving scheduler waits for other packets to arrive the queue. It means
it changes its state to idle. It delays the email packet in the queue and doesn’t serve it.
When a high delay sensitive packet (e.g. a videoconference packet) arrives to the
queue the scheduler goes from idle state to busy state and processes that packet.
Lower jitter with non-work conserving schedulers is achieved using the fact that
packet becomes eligible for transmission only after a short period from the departure

of the previous packet from the same ow.

The average waiting times (delay) on the queue will be increased in non-work
conserving schedulers because of the delayed packets on the queue. However, non-
work conserving schedulers reduce the jitter of packets. The other disadvantage is

bandwidth is wasted in non-work conserving schedulers.
3.2.3 Priority

Priority is a number that will define the precedence of packets. The small numbers
like priority 1 or 2 will show the high precedence packets, and large numbers like

priority 9 or 10 will show the low precedence packets. Higher priority packets are

always more important than the lower priority packets.
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The priority is an important parameter when designing a packet scheduler.
Without a priority definition, the service of packets will be a cumbersome. Many
scheduling algorithms are based on the priority scheme and they differ in how
priorities are assigned to the packets. A scheduler based on priority scheme always
serves packets with highest priorities from the queue. The lower priority packets will
be left waiting in the queue and this causes the starvation of packets. The delay

bounds for higher priority packets will be lower while for others it will be higher.

3.3 Packet Scheduling Algorithms

A packet scheduler is the most important QoS functional component. A packet
scheduler takes packets from a queue and serves them in order and packet schedulers

differ in that way.

There are many trade-offs, when a packet scheduling algorithm is designed. For
example, if the loss ratio is wanted to restrain with the low values, then the
complexity of the algorithm increases. If designer wants to decrease the delays of
some packets in the queue then the casualties for other packets will increase. This
causes the different packet scheduling algorithm designs that is specialized for

different kinds of networks.

The efficiency of a packet scheduling algorithm can be calculated with many

formulas. We can define a simple formula as the following;

Throughput

The efficiency of an alg. = — - - - -
Avg. Waiting Times in the queue * Complexity of the Algorithm

In this formula, throughput is the amount of data successfully transferred in a
specific amount of time, average waiting time is the average delay of packets on the
queue, and complexity of the algorithm is the time and designing complexities of the
algorithm. When the throughput increases, the efficiency of the algorithm also

increases. If delay times of packets on the queue increases, then the efficiency of the
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algorithm decreases. Furthermore, if the complexity of the algorithm increases, this

will also lead to less efficient algorithm.

Scheduling algorithms can be roughly divided into three categories: fair queuing,
deadline based and rate based scheduling. In the fair queuing approach, the share of
bandwidth by a packets’ ow is represented by a weight which is a real number. In
the fair queuing approach the bandwidth is allocated according to the weights of
flows. If a flow cannot use all of its allocated bandwidth, then the remaining
bandwidth is shared between other flows according to their weights. With fair
queuing, it is guaranteed for a ow to get its entitled bandwidth and maybe more if
there is any unused bandwidth left. Fair queuing is able to provide a delay bound and

is commonly used in QoS capable networks.

The deadline based scheduling is based on the Earliest Deadline First algorithm
(EDF). In an EDF scheduler, each packet has a deadline time which denotes the
duration of time in which a packet needs to be transmitted to its destination. The
scheduler simply transmits the packets based on their deadline times. A packet with
the smallest deadline will be served first. The advantage of the algorithm is that delay
and bandwidth parameters are decoupled (delay bounds can be independent on
bandwidth allocation). For example, a ow reserving a small amount of bandwidth
can still obtain a small delay bound. However, the admission control is much more
complex. In general, two tests must be performed. First the total allocated bandwidth
must not exceed the link capacity. Second a schedulability test must be performed to

ensure that deadlines will not be exceeded.

Rate based scheduling is a principle that is used for constructing different work

conserving and non-work conserving scheduling disciplines. This type of scheduler
has two components which are a regulator and a scheduler. The regulator determines

the eligibility time for each packet. Once a packet becomes eligible, the scheduler
may select this packet for transmission. Arriving traffic is shaped by the regulator

before coming to the scheduler. A packet may be delayed at the regulator. Different

number of regulators may be used such as token bucket regulators, peak rate
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regulators and jitter regulators. The scheduler can also be FCFS (FIFO), fair queuing
or EDF.

The following subsection discusses various packet scheduling algorithms in

detail.

3.3.1 EDF (Earliest Deadline First) Packet Scheduling Algorithm

In EDF packet scheduling algorithm, the packets leave the queue based on their
deadline times. In this approach, the packet that has the earliest deadline has the
highest priority in the queue. This algorithm can also be considered a static priority

algorithm with the deadline times determine the packet priorities.

In Figure 3.2, EDF scheduling algorithm is introduced in details. In the figure, the
packets that came to the queue are sorted according to their deadline times and the
packet which has the least deadline time is served first. Because EDF requires a
sorting algorithm in queue according to packet deadlines, this function brings some
complexity on the algorithm which decreases the algorithm efficiency. EDF
algorithm can supply some of the QoS requirements. For example, because the voice
packets’ deadline times are usually lower than data packets, they will be processed
first, which as a result supplies lower delay and jitter for voice packets. However, it
also results in some disadvantages on data packets, that is data packets will always be

lost if there are some voice packets on the queue.

3.3.2 SP (Static Priority)

In the SP algorithm, the packets in the queue have priorities that determine which
packet will be processed next. The higher priority packets always will be processed
first. As a result, higher priority packets’ average waiting times in the queue will be

smaller than lower priority packets.
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Figure 3.2 EDF Scheduling Algorithm

In Figure 3.3, there are four packets and they arrive to the queue in the order 3,1,4,5
by assigned priority values. Then, the packets are sorted based on their priorities and

the highest priority packet which is 1 will be served first.
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Figure 3.3 SP Scheduling Algorithm
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Because EDF and SP algorithms sort the packets on the queue, the complexity of
SP will be same as EDF. However, SP algorithm somewhat can supply QOS
requirements. For example, we can assign higher priorities to voice packets, so the
voice packets will wait for a short amount of time in the queue. As a result, lower

delay values will be supplied for voice packets in the queue.

3.3.3 FIFO (First in First out)

FIFO is the simplest algorithm. There is no need to sort packets in the queue and
this cause low complexity on the algorithm. The only process is that a packet which
comes into the queue first will be processed and transmitted first. Consider an
example in Figure 3.4. Packets are settled in the queue based on their arrival times

and the first arrived packet pacl is served first.

Input  |fpac? | _ I
' pact) f[pacs pa.:3| pacy | [pac3 Output
I pac —

Figure 3.4 FIFO Scheduling Algorithm Flowchart

However, the most important disadvantage of this algorithm is that it cannot
provide the QoS requirements. The algorithm cannot differentiate the packets and it
cannot decide if a packet is a voice, video or data packet. The algorithm only serves
the first packet in the queue. The algorithm cannot control jitter or delay for video

packets or real time applications.
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3.3.4 Rotating Priority Queues (RPQ+)

As the complexity of the packet scheduling algorithm EDF is high, a new packet
scheduling algorithm RPQ-+ has been designed which approximates to EDF
algorithm. In RPQ+ scheduling algorithm, there is not only one queue but some set
of queues that run in the FIFO scheme. Initially, queues are assigned with priorities.
And these priorities periodically change to reduce the number of waiting packets in

the queues. The goal of RPQ+ algorithm is to supply worst-case delay guarantees.

RPQ scheduler has the following key characteristics:

e The operations of RPQ+ algorithm are independent from waiting packets on

the queues.
e This scheduler supplies worst-case delay guarantees like EDF.

e RPQ+ leads to the higher network utilization.
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[2] 1" 1" [3[2]2]z2] 17
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KX KX 110"
DI Concateation Sy FeomotinStep

Figure 3.5 RPQ" Scheduling Algorithm Overview

In the RPQ+ scheduler there are 2P queues that are sorted according to their
priorities where P is the number of priorities assigned to each queue. Every packet
that comes to a router is stored at the end of Pth queue. In Figure 3.5, there are 6
queues ordered according to their priorities. For P = 3, the packets that come to

queue will be added to the end of the queue with priority 3. Every At time interval,
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the queues will be processed in two steps; concatenation and promotion steps. In the
concatenation step, all P* priority queue elements will be added at the end of P
priority queues (2">2 and 17>1). Then, in the promotion step all queues priorities
will be promoted, such as the priority queue 3 will be 27, 2" will be 2, and so on. The

packets are always served from the highest priority queue which is 0".

As a result, RPQ+ scheduling algorithm does not use the sorting of packets
technique as EDF does. This brings RPQ+ algorithm less complexity than EDF

algorithm.

3.3.5 Weight Fair Queue (WFQ)

Weight Fair Queue (WFQ) packet scheduler is based on a set of queues that have
a weight ratio. WFQ scheduling algorithm is based on the QoS parameter bandwidth.
All queues are assigned a weight w; according to the used network policy. As can be
seen in Figure 3.6, there are three queues A, B, C having the weights w;, w», and wj.
Queues A, B, and C receive the following ratios of available bandwidth: w;/TW,

w2/TW, and w3/TW respectively where TW is the sum of the queue weights.

Wy, W, Wy Weight of quenes A, B, C

W W v W
1 2 | Total weight = TW= W+W,+W3

A B C
L =

Weighted Fair Queue
Packet Scheduler

|
L

O Packet Served

Figure 3.6 WFQ Packet Scheduling Algorithm
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If some queues waste their reserved bandwidth, this will not affect the other
queues. The queue that reserves the highest bandwidth will result in the best delay
bound for its packets. However, the bandwidth and delay parameters are not directly
related for packet types. Some applications may require low bandwidth and low
delay and some require higher bandwidth and does not require low delay. In the first
case WFQ will allocate high bandwidth to these applications in order to guarantee
the low delay bound. In the second case, WFQ still has to allocate high bandwidth to
supply application needs. In WFQ, applications will satisfy their delay needs but
sometimes they will get more than their needs. This mismatch can lead to low
bandwidth utilization. In real life, the goal of WFQ is to provide network link sharing
among the groups instead of concerning individual flows. It schedules packets which
belong to aggregated flows, groups, and classes. Delay is the less considered

parameter in this situation.

3.3.6 Round-Robin

In this algorithm, it is considered there are N queues. Packets are classified
according to their priorities or types and sent to the corresponding queues that are
assigned a priority 0 to (n-1). Then, packets in higher priority queues get serviced
first. Then queues are serviced in order from priority 0 to (n-1). This algorithm can’t
offer bandwidth or delay guarantees. Packets can wait in a queue, while empty
queues are checked for servicing. Also, the algorithm is insensitive to packet size

(inherently unfair).
3.4 Summary

Packet scheduling is a very important functionality which can provide the QoS
requirements for the networks. The algorithms differ according their complexity, and
supplying QoS parameters. There is no optimum algorithm for QoS networks. The
success of the algorithms changes according to the requirements and needs of the

networks.

In the remaining chapters, the proposed scheduling algorithms will be discussed.
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CHAPTER 4

STATIC PRIORITY WITH DEADLINE CONSIDERATIONS
(SPD)

In this chapter, our first proposed packet scheduling algorithm the Static Priority

with Deadline Considerations will be introduced.

4.1 SPD Scheduling Algorithm Overview

The Static Priority with Deadline Considerations (SPD) resembles to the SP
algorithm. The packets are sorted according to their priorities. However, before a
packet is served, the remaining deadline of the packet is checked and the packet is
discarded if the packet has no remaining deadline line which is different from
classical SP algorithm. By this way, a packet without any use when it reaches its
destination is eliminated when its deadline expires. Discarding a packet with an
expired deadline also helps to reduce the unnecessary network traffic and allows

other applications to use the limited network resources.

The major difference of SPD from SP is that, SPD introduces a new topic which
is degree sorting. Instead of sorting every element in the buffer, partial sorting is
done and the processing overhead of SP is reduced. The simulation results show that

by partial sorting, we can achieve the similar levels of packet losses.
Consider a network buffer of size N and buffer occupancy of Q packets. Assume

that every packet is assigned a priority. The classical SP algorithm sorts all the
packets in the buffer and transmits the packet with the highest priority.
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Figure 4.1 illustrates an example of serving a packet under the classical SP packet
scheduler. The packet whose priority is the highest, thus the packet with priority 1 is

taken in front of the buffer and then served.

«—T|s|2|6|a|1|7 je— Inialy

a——| 1| 2|58 |T| 7| % e—aAfersorting

«— (2|5 |6 |T|7]9 — After Serving

Figure 4.1 SPD-FULL packet scheduling example

In a degree k, SPD packet scheduler which will be denoted as SPD-k, only the
first k packets in the buffer are sorted, and the packet with the highest priority

among the first k packets is transmitted.

Figure 4.2 illustrates an example of serving a packet under SPD-2, thus order 2
packet scheduling. The scheduler sorts only the first 2 packets in the buffer and
serves the packet whose priority is 5, as that packet has the highest priority among

the first 2 packets in the buffer.

«— 7|5 |z2|6|a|1|7 e iy

«——| 3| T| 26| 9|17 —A~After sorting

«— | Tlz|el=]|1|7 — After Serving

Figure 4.2 SPD-2 packet scheduling example

In the same manner, Figure 4.3 illustrates an example of serving a packet under

SPD-4, thus order 4 packet scheduling. The scheduler sorts only the first 4 packets in

24



the buffer and serves the packet whose priority is 2, as that packet has the highest
priority among the first 4 packets in the buffer.

«— |7 |5|z2|6]|s|1]|7 pe—lnitaly

«— 25|18 |T] 21 7 — After sorting

a—| 5|86 | Tle|1]|7 — After Serving

Figure 4.3 SPD-4 packet scheduling example

As a result, we can understand the differences between the classical SP algorithm
and SPD-k algorithms. The classical SP algorithm sorts all the queue elements
according to their priorities and serves the packet with the highest priority. However
SPD-k algorithms sort the first k elements of queue and serve the highest priority
packets between first k elements. This can result in many advantages which will be

described in section 4.3 in the simulation results.

4.2. Experimental environment and SPD simulation design

In this section SPD simulation design, experimental environment and program

variables will be introduced.
4.2.1 SPD simulation design

The UML diagram of algorithm in Figure 4.4 shows the designed simulation that
simulate SPD algorithm in MATLAB. The programming language MATLAB is used
for its easiness and graphical interface.

Figure 4.4 shows the running simulation algorithm step by step. In the initial

stage, the program creates packets for different applications with different priorities

such as data, voice, video and other types of application packets.The program assigns

25



First packsts ars craa.t=c. and addad to
— ng

_i'['L—E'b-

| f queve is sortad aceording o arrival times
!

| 1zt paclezt sant in "guaps" |
¥

| Set event to "Amival" |
¥

| Bat "evrr tima" |

=

Arrival

Maw packsts arz crzated and addad to
nr qv oy

f_guena iz sorted acconding to arrival times

‘ increment pacloet losses ‘

4 EFROR

zortfirstk elements according to|
their priority

| . Take lst packet from "quens" |

‘ Set 1 H incr "quass siza" H Satn

¥ )

| Add packst to "guens" |

increment served packets

‘ increment packst lossss ‘
¥

| Take first pacleat from "f_guene”

| Bzt naxt packat arrival time l—ﬁ Szt naxt serving time

Sat puer_tima & avont
i
‘ DISPLAY RESULTS |

®

Figure 4.4: The UML Diagram of SPD Simulation
their properties and adds them to the f_queue. f_queue is the queue to store the

created packets. Properties are the priorities of packets- which is randomly selected

between 1-10, the arrival and deadline times - which are selected by using Poisson
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Distribution values and packet types which is the initial priority of the packet. Packet
types are selected as the priorities of the packet. For example, if we create a packet
which has the priority 1, then the packet type is also 1 to differentiate it from the
other packets. Thus, because priorities are changing in the range 1-10 for a packet,
there are 10 types of packets in the simulation. After sorting the f queue according to
arrival times, the first packet is selected from the f_queue. Then, the program selects

packet arrival as an event at the beginning and starts to the simulation.

In packet arrival event, since the first packet is selected, the next incoming packet
is created and added to f queue. Then, f queue is sorted again. This operation is
done for next packet arrival steps which will be calculated further. After that, the first
selected packet from f queue is added to the end of the real queue. f queue is only
for keeping the generated packets; it is not a real queue on switch. It can be thought
as a source that produces packets that are needed in the simulation. It is required to
simulate the environment. Then, if there is enough space in the queue, queue size
will be incremented by one and the new packet will be added to the end of the queue.
Queue will not be sorted in the arrival process. And, the time for a new packet arrival
time is decided in arrival event of the simulation. Sorting the f queue as explained
above, the second packet appears at the head of the f queue array. By looking its

arrival time, the next packet arrival time is updated.

When the program exits from the packet arrival event, it compares the next packet
arrival time and next packet serving time to decide which event will be done next.
The smallest value of next packet arrival time and next packet serving time is
selected as the next event. Consequently, the virtual clock is set to choose the next
event and program continues to process the selected event. The other type of event is

packet serving.

In packet serving event; initially, the simulation takes the first packet in the queue
and checks if its deadline time is expired or not. If the packet’s deadline time is
expired, simulation discards it from the queue and increases the total lost packet

number. This is required not to deal with the expired packets. Then, if there is still a
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packet in queue, the queue will be sorted according to packet priorities. Here, an
important strategy is used about sorting the queue. The selected sorting degree here
which we call it “k” results in different algorithms like SPD-2, SPD-4, SPD 7, and
SPD-FULL. For example, if SPD-k algorithm will be used in which k=2, that means
SPD-2 algorithm will be simulated, the sorting is done between the first and second
packets on the queue only. Other packets are not considered. In the same manner for
k=4, in SPD-4 algorithm, only the first 4 packets are sorted on the queue based on
their priorities. Also in SPD-FULL algorithm, all of the queue elements are sorted
based on their priorities. Then, the first packet is taken from the queue and
simulation serves this packet by changing the simulation statistics. At the end, the
program checks other packet arrival times and adds the transmission time to calculate
next packet service time. By comparing next packet arrival time and service time, the
simulation continues. When the simulation is finished, a statistical view of the

program shows the results.

4.2.2 Experimental environment and program variables

For the simulations, the buffer sizes capacities are selected as 10, 20, 30, 40 and
50 packets. That means that the queue can accept 10,20,30,40 or 50 packets by the
defined value queue_size. The arrival process is defined to be exponential and the
departure process is deterministic. It is assumed that all the packets have equal length
and 100 bits for simplicity. The packets are assigned priorities between 1 and 10
taken from a uniform distribution. The remaining deadlines of the packets are

assigned randomly taken from an exponential distribution with the average value 8.

The deadline times’ exponential mean value that is the difference between service
and arrival times of packets is taken as 8 unit seconds(BND_DELAY). The time in the
simulation is not a real time. Unit seconds expresses the time according to the
simulation. The value 8 unit seconds is found experimentally. If the mean deadline
time is selected smaller than that value then the packet losses based on deadline will
extremely increase. If the mean deadline time is selected larger than that value then

the packet losses according to packets deadline will approach to zero.
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In the simulation, the transmission rate is taken as 10 kbps and the packet size for
all packets is taken as 100 bits as expressed before. The packets in the simulation are
arriving to the queue every 0.0102 seconds on the average because the arrival rate A
is selected 98 in the simulation and packets are served every 0.01 seconds on the

average because departure rate g =100 is selected on the simulation. That means

every second, 48 packets may arrive to the queue and 50 packets may be served from

the queue in average (not all of them served some of them lost).

Simulation time is selected as 20000 seconds. That is not a real time that is the
time in the simulation in other words it is a relative time. In 20000 seconds,

approximately 2 million packets are processed in the simulation.

In the following section, the simulation results will be described according to

these environments and defined variables.

4.3 SPD Simulation Results

In SPD algorithm simulations, the processing overhead of SPD-2 is observed
lower than the processing overhead of SPD-FULL as SPD-2 only checks and sorts
the first two packets in the router queue. Also, SPD-k algorithms can be thought in

the same manner.

Figure 4.5 and Table 4.1 presents the total packet loss ratios for different order
SPD packet schedulers as a function of buffer sizes for SPD-2, SPD-4, SPD-7 and
SPD-FULL. It is observed that, the total induced packet losses for SPD-2 is the best.
As the order for SPD-k increases, the packet loss ratios increase as well. The reason
why SPD-2 has a better performance can be explained, when we differentiate the
packets losses into its two components; Packet losses due to buffer overflows and
packet losses due to deadline violations. While the packet losses due to buffer
overflows decrease as the buffer size increases, the packet losses due to deadline

violations might be inversely affected for increased buffer sizes.
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Figure 4.6 and Table 4.2 presents the packet loss ratios due to buffer overflows as
a function of buffer size. As the buffer size increases, the packet losses decrease
significantly. For this kind of losses, full sort, thus SPD-FULL has the best

performance as expected and as the order of SPD decreases the induced packet losses

increase.
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Figure 4.5 Total Packet Loss Ratio Graph in SPD algorithms

Table 4.1 Total Packet Loss Ratios in SPD algorithms

~., GUELE SIZE

ALGORITHM 10 20 3n 40 a0

SPO-2 | 38537 1.6804 0.8837 06745 0.5602
SPO-4 | 38064 18097 1.1140 08077 0.7134
spo-7 | 4.0102 1.8400 1.2797 1.0130 0.9063
SPD-FULL 40211 21091 1.6020 14273 1.36413

When the buffer size is small, the majority of the packet losses depend on buffer
overflows. However, as the buffer size increases, the packet losses mainly depend on

losses due to deadline violations as can be seen in Figure 4.7 and Table 4.3. SPD-2
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has the best performance for cell losses due to deadline violations. Because SPD-2
only allows a packet at the head of the buffer move one step back, if its priority is
low. Thus, the reason of having better packet loss ratios for the overall performance

of SPD-2 is due to the fact that it performs better in terms of deadline violations.
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Figure 4.6 Packet Losses Graph due to Buffer Overflows for SPD

Table 4.2 Packet Losses due to Buffer Overflows for SPD

. QLEUE SIFE
ALGORITHM 10 20 30 41 a0

SPD-2 | 36933 14635 077335 03879 0.2317
SPD-4 | 35947 14169 06717 03313 0.2004
SPD-7 | 35584 13445 06213 03123 01918
SPD-FULL| 35223 12185 04797 0.1854 0.0475

Figure 4.8 illustrates how SPD packet scheduler behaves to packets with different

priorities. For example for SPD-2 packet scheduler, the total packet loss ratio for

31



packets with priority of 1 is 0.02%, and for SPD-FULL, it is about 0.007%. For SPD-
2 packet scheduler, the total loss ratio of packets with priority 10 is 0.31%, and for
SPD-FULL, it is about 0.91%. For SPD-FULL packet scheduler, 65% of the total
packets lost have priority 10. Thus, as the degree increases in an SPD algorithm, the

lower priority packets are neglected more.
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Figure 4.7 Packet Losses Graph due to Deadline Violations for SPD

Table 4.3 Packet Losses due to Deadline Violations for SPD

. QUEUE SIZE
ALGORITHM 10 20 a0 40 50

SPD-2 | 0.1604 D0.2169 0.2599% 0.2890 0.3286

SPD-4 | 0.3117 03928 0.4423 04759 0.5130

SPD-7 | 04517 0.5955 0.6584 0.7008 0.7145

SPD-FULL  0.49%38 0.8904 1.1224 1.241% 13139
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Figure 4.9 represents the average waiting times (delay) of packets in the buffer as
a function of buffer size for various SPD-k packet schedulers. It is observed that
SPD-FULL has lower average waiting times, as SPD-FULL schedules high priority

packets as fast as possible.

Figure 4.10 and Table 4.4 presents the average waiting times for packets for
different priorities. As the degree of the SPD packet scheduler increases, the waiting
times for higher priority packets decrease, and lower priority packets increase.
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Figure 4.8 Total Packet Losses According to Priorities in SPD algorithms

Table 4.4 Average Waiting Times on the queue for SPD

=, GUELE SIZE
ALGORITHM 10 20 a0 40 a0

SPD-2 00551 00970 01460 01877 02325
SPD-4 00548 00956 01333 01809 02235
SPD-T 00543 00937 01361 01768 02131
SPD-FULL | 00543 00823 01132 01389 01425
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How does the algorithms’ complexity change? If the router makes more
operations to serve a packet that means if the running time of algorithm increases,

there may be more lost packets.

Figure 4.11 shows which algorithms run how many minutes in the same
conditions for queue_size equal to 50. In the figure we see that SPD-FULL algorithm
finishes in 300 minutes while SPD-2 algorithm finishes in only 21 minutes. We can
see the how complexity of the full sort algorithm is. Because of for loops to sort the
queue, full sort algorithm gives worst time complexity. This can also lead packet
losses in SDP-FULL algorithm because of buffer overflow on real life which is not

considered in the simulations.

SPD FULL 301

sPD 7 [ 46
sPD 4 [ 28]

sPD 2 [2]

ALGCORITHMS

0 100 200 300 400
SIMULATION TIME(MINUTE)

Figure 4.11 Simulation times for SPD algorithms
As a result it is obviously seen that SPD-k algorithms give lower loss ratios

according to SP algorithm. Also, the time complexity of SPD-k algorithms is much
lower than SPD-FULL algorithm.
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CHAPTER S5

DYNAMIC PRIORITY WITH DEADLINE CONSIDERATIONS
(DPD)

In this chapter the Dynamic Priority with Deadline Considerations (DPD) packet

scheduling algorithm is discussed in detail.

5.1 DPD Scheduling Algorithm Overview

The Dynamic Priority with Deadline Considerations (DPD) explicitly takes into
account the deadlines and merges this information with the priorities. It is not always
correct to schedule the packets based entirely on their priorities or deadlines. The
DPD algorithm tries to combine both of these properties in order to provide

diversification of QoS requirements.

Under the DPD packet scheduler, the packets at the buffer are also sorted based
on their priorities. However, these priorities do not stay constant. By applying a two-
level threshold on their remaining deadlines, the DPD algorithm can modify the
priority of the packets waiting in the buffer. The DPD packet scheduler also does
partial sorting as the SPD packet scheduler.

In a degree k, DPD packet scheduler (DPD-k), only the first k packets in the
buffer are sorted, and the packet with the highest priority among the first k packets is

either transmitted or kept waiting.

In a DPD-k algorithm, the packet at the head of the buffer is decided to be served

or not, based on its remaining deadline. Assume that the packet at the head of the
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buffer has a remaining deadline of t units. The deadline of this packet is compared to

two threshold levels (T1 and T2 where T1<T2) and the following actions are taken.

If t <T1, the packet is immediately served without considering its priority.
As the packet’s remaining deadline is at a very critical level, it needs to be
served immediately. Otherwise, the packet will have will have no remaining

deadline and be considered as lost.

If TI<t<T2, the packet is served based on the corresponding SPD-k
scheduling. Thus, the first k packets will be sorted and the packet with the
highest priority will be served. The packet which was at the head of the
buffer will be placed in its appropriate position by increasing its priority one

level as a way of compensation for removing it from the head of the buffer.

If t>T2, the packet is served based on the corresponding SPD-k
scheduling. However, the priority of the packet at the head of the buffer will

not be changed as it already has a sufficient amount of remaining deadline.

Figure 5.1 illustrates a DPD-4 packet scheduling example where the packet at the

head of the queue with priority 7 has a remaining deadlinet <T1. Since the packet’s

remaining deadline is at a critical level, it is immediately served although there are

higher priority packets.

.-_'J.F53.5917al—11ﬁtia]l5r

a— 15|36 al1]7 — After Serving

Figure 5.1 DPD-4 packet scheduling with t <T1

Figure 5.2 illustrates a DPD-4 packet scheduling example where the packet at the

head of the queue with priority 7 has a remaining deadlineT1 <t <T2. In this case

DPD packet scheduler works like SPD packet scheduler. However, as the packet
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which was scheduled to be transmitted might go back in the queue after the sorting,

its priority is increased one level.

— T|s5|3|6|a|1]|7 & Initily

+——— 35|66 9|17 |*«— Afterloting

+— | 56|62 |1]7 ¢ After Berving

Figure 5.2 DPD-4 packet scheduling with T1 <t <T2

Figure 5.3 illustrates the last case for a DPD-4 packet scheduler. Since the
remaining deadline for the packet at the head of the queue is large enough, the packet
is sorted based entirely on SPD-k packet scheduler. As, the packet is not in danger of

a deadline violation its priority is not changed as well.

— | T|5|3|86|a|1]|7 e lutialy

a3 s5|e|T|le]| 1|7 AfterSorting

«—— 5 |a|T|l2|1]7 — After Serving

Figure 5.3 DPD-4 packet scheduling example t >T?2

An important question is how to determine the levels of thresholds for the DPD
packet scheduler. Initially, we have determined some static values for these
thresholds based on the buffer occupancy. However, ongoing research proposes to
have dynamic values for the thresholds based on 3 parameters: the current queue
occupancy, the packet’s priority and the packet’s remaining deadline. If the queue
occupancy is high, then the packets wait more in the buffer which leads to choose

lower threshold values. Consider a packet with a low priority and has a small
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remaining deadline time. If the threshold levels are selected small values, then this
packet may be served immediately. If the threshold levels are selected large values,
then this packet will be sent to the somewhere else in the queue after sorting and
probably will be lost. These considerations will be discussed detailed in section

5.2.2.

5.2 Experimental environment and DPD simulation design

In this section DPD simulation design, experimental environment and program

variables will be introduced.

5.2.1 DPD simulation design

The UML diagram of DPD algorithm in Figure 5.4 shows the designed simulation
in MATLAB.

Figure 5.4 shows the running simulation algorithm step by step. Again as we see
in section 4.2.1, f queue is used for the same purposes and packet producing scheme

is the same as SPD simulation.

In packet arrival event, since the first packet is selected, the next incoming packet
is created and added to f queue. Then, f queue is sorted. After that, the first selected
packet from f queue is sent to the real queue. Then, if queue size allows that
transaction, queue size will be incremented by one and packet will be added to the
end of the queue. Queue will not be sorted in the arrival event again. It will be sorted
in serving event. Next, sorting the f queue above, the second packet appears at the
head of the f queue array. By looking its arrival time, the next packet arrival time is

updated.
In packet serving event; initially, the simulation takes the first packet in the queue

and checks if its deadline time is expired or not. If the packet’s deadline time is

expired, simulation discards it from the queue and increases total lost packet number.
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Figure 5.4 UML Diagram of DPD-k algorithms
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It is the same as in SPD simulation. Then, the queue will be sorted according to
packet types in other words packet base priorities. Here, our same strategy we used
in SPD simulation comes about sorting the queue. The chosen sorting degree here
which we call it “k” brings different algorithms like DPD-2, DPD-4, DPD 7, and
DPD-FULL. For example, if DPD-k algorithm is used in which k=4, that means
DPD-4 algorithm will be simulated, only the first 4 packets are sorted in the queue
based on their priorities. Also in DPD-FULL algorithm, all of the queue elements are

sorted based on their priorities.

Before sorting there are some jobs to do in DPD algorithms. We defined two
threshold levels at the beginning of program which are T1 and T2. Initially, the first
packet is taken from queue. If the remaining deadline of the packet is smaller than T1
then the packet will be served immediately similar to FIFO algorithm. If deadline of
the packet is between T1 and T2 then the packet’s priority will be decreased by 1 and
the queue will be sorted by a degree k. If the packet’s deadline is larger than T2 then
the queue will be sorted by not changing the priority of the packet. Then DPD
simulation serves this packet by changing the simulation statistics. At the end, the
program checks other packet arrival times and adds the transmission time to calculate

current time.

In order to evaluate the performance of DPD packet scheduler in terms of the
induced packet losses and waiting times, several simulations are conducted. The
following sections describe the experimental environment and present the simulation
results observed in DPD algorithm.

5.2.2 Experimental environment and program variables

All of the simulation variables are same with SPD algorithm defined in Section

4.2.2 except two new threshold variables.

T1 value is chosen in the simulation as 0.2 seconds. Considering that queue size

is equal to 50 and one packet serving time is 0.01 seconds, it may be selected as a
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critical value. T2 value is chosen in the simulation as 1 second. Then, it is considered
that for different queue sizes, two threshold values T1 and T2 should also change.
When the queue size increases, the T1 and T2 value should decrease and when the
average deadline times for packets (bnd delay) increases, T1 and T2 values also
increases. The simulation results for determining the best T1 and T2 values are

included in Appendix A.

In the following section, the DPD algorithms’ simulation results will be

discussed based on these environment and defined threshold levels.

5.3.3. DPD Simulation Results

DPD packet scheduler is based on selecting the two threshold levels which would
determine, when and how the priorities of the packets will be modified. Figure 5.5
shows the impact of the lower threshold T1 on the total packet loss ratios when
queue size is equal to 50 (Table 5.1). As the value of the lower threshold increases,
the total packet loss ratios also increase. Because increasing the lower threshold too
much might cause high priority packets which are not at the head of the buffer wait
more and thus become more likely candidates for losses. As this threshold increases,
the algorithm behaves more like a FIFO algorithm and as this threshold decreases,

the algorithm behaves more like the SPD algorithm.

Table 5.1 The effect of T1 on DPD-7 algorithm
TI

0 045 1 1.5 2 25 &) 348
LOSS RATIO 0,9091 0,5034 05261 08454 | 0,8891 0,8980 0,9342 0,9371

Another parameter is the higher threshold value T2 for the DPD algorithm.
Figure 5.6 presents the total packet losses when queue size is 50 for various values of

the upper threshold level, T2.
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Figure 5.7 and Table 5.2 present the total packet losses induced for various DPD-

k packet schedulers as a function of the buffer size. Similar to SPD packet scheduler,

as the order of the packet scheduler increases, the packet loss ratios increase, due to

the packet losses induced from deadline violations.
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Figure 5.7 Total loss ratio for DPD for T1=0.2 and T2=1
Table 5.2 Total loss ratio for DPD for T1=0.2 and T2=1
™. GLELE SIFE
ALGORITHM 10 20 30 40 a0
DPD-2 083 16403 09727 04655 0.5144
DPD-4 38832 17270 1.0524 07663 06177
OPD-7 393682 18792 12046 09362 08084
OPD-FULL 39717 20355 153071 1.361% 1.3072

As seen in Figure 5.8 and Table 5.3, DPD-2 has also the best performance for cell

losses due to deadline violations. Because DPD-2 only allows a packet at the head of

the buffer move one step back, if its priority is low. Thus, the reason of having better
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packet loss ratios for the overall performance of DPD-2 is due to the fact that it

performs better in terms of deadline violations.
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Figure 5.8 Loss ratios due to Deadline in DPD for T1=0.2 and T2=1

Table 5.3 Loss ratios due to Deadline in DPD for T1=0.2 and T2=1

™, BUELE SIZE

ALGORITHM 10 20 30 40 50

DPC-2 | 00866 01485 01990 02384 02722
DPD-4 | 02285 03083 03610 04045 04345

DPD-7 | 03471 04986 05695 08173 0.6477
DPD-FULL | 03913 077708 10155 11506 1.2231

In Figure 5.9 and Table 5.4, it is seen that loss ratios due to buffer overflows are
higher in DPD-2, DPD-4 and DPD-7 algorithms compared to DPD-FULL algorithm.
However, the effect of buffer overflow losses on the total loss ratios is smaller than
the effect of deadline based losses. The efficiency of DPD-k algorithms according to

their loss ratios are affected largely with the deadline based losses.
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Table 5.4 Loss ratios due to Overflow in DPD for T1=0.2 and T2=1

" GUELIE SIZE
ALGORITHM 10 20 a0 40 50

DPD-2 | 37217 14915 07737 04270 02423
DPD-4 | 36547 14177 04914 03419 01832
DPo-7 | 35891 1.3806 06351 0.318% 0.1404
DPD-FULL | 3.5804 1.2647 04516 0.2113 0.05841
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Figure 5.9 Loss ratios due to Overflow in DPD for T1=0.2 and T2=1

DPD-k algorithms’ complexity change based on the degree k. Figure 5.16 shows
which algorithms run how many minutes in the same conditions for queue size equal
to 50. In the figure we see that full sort algorithm finishes in 300 minutes while
degree-2 algorithm finishes in only 21 minutes. It is obviously seen that how

complexity of the DPD-FULL algorithm is in the figure.
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Figure 5.10 Simulation time (complexity) comparisons between DPD algorithms
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CHAPTER 6

COMPARISON OF SPD, DPD AND RPQ ALGORITHMS

6.1 Comparison of SPD and DPD Algorithms

In this section, the observed results for SPD and DPD algorithms will be

compared based on packet loss ratios and delay in the queue.

Figure 6.1 compares SPD and DPD packet loss ratios for deadline violations as a
function of buffer size for SPD-7 and DPD-7. As expected, with a chosen good T1
and T2 values, DPD-7 has a better performance compared to SPD-7. The impact of

modifying packet priorities can be best seen from deadline violation losses.
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Figure 6.1 Comparing SPD-7 and DPD-7 algorithms according to their loss ratios

due to deadline violations
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Figure 6.2 compares SPD-7 and DPD-7 algorithms based on their lost ratios as a
function of buffer size. Although, DPD-7 and SPD-7 have similar results for packet
losses due to buffer overflows. However, considering better performance in terms of
deadline violations, DPD total packet loss ratio is less than its corresponding SPD.

The value of the loss ratios can be seen from the previous two sections.

PACKET LOSSES DUE TO BUFFER OVERFLOW FOR SFD-7 AND DFD.T
"Il T T T T T T T
—- DPD-7
ERN — SPD-T | -

LOSS RATIO (%)

I:I 1
10 15 20 25 30 35 40 45 a0
BUFFER ZI7E

Figure 6.2 Comparing SPD-7 and DPD-7 algorithms according to their loss ratios

due to buffer overflow

Based on the loss ratios, DPD-FULL algorithm approximates to EDF scheduling
algorithm because DPD-FULL changes packet priorities according to remaining
deadline times of packets and sorts all packets on the queue as EDF does. Also, the

DPD-FULL algorithm has the best effort according to its match SPD-FULL

algorithm based on their loss ratios.
Figure 6.3 shows the average waiting times (delays) of different priority packets

in the queue. The packets for SPD algorithm is showed with gray bar, and the
packets for DPD algorithm is showed with black bar in the figure. In DPD algorithm
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Figure 6.3 Comparing SPD-7 and DPD-7 algorithms according to their average

waiting times on the queue

the priorities of packets which have small remaining deadline times are increased.
This process permits low priority packets to increase their priorities. Because of that,
low priority packets (e.g. priority-10 packets) generally wait less in the queue in
DPD algorithm compared to SPD algorithm. This can be seen in the figure. In the
above part of the graph, it is seen that e.g. priority-10 packets wait in the queue more
for SPD because gray bars exceed the black bars on the graph. As opposite, in the

same manner, higher priority packets (e.g. priority-2 packets) wait more in the queue
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for DPD algorithms. This can be seen from bottom part of the graph. In this time, the

black bars are exceeding the gray bars for higher priority packets.

The time complexity of DPD-k algorithms is lower than their corresponding SPD-
k algorithms. Figure 6.4 shows which algorithms run how many minutes in the same
conditions for queue size equal to 50. In the figure the DPD algorithms end shortly.
The simulation runs for 2 million packets. If the algorithms could be run 2 billion
packets, we can imagine how the difference is big. As a result, we can say that DPD-
k algorithms are less complex according to their corresponding SPD-k algorithms,

because they do not sort the queue every time as SPD-k algorithms do.
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Figure 6.4 Simulation time comparisons between SPD and DPD (Time complexity

of the algorithms)
In summary, it is obvious that DPD algorithms give better results in all
conditions. DPD algorithms are less complex than SPD algorithms, they guarantee
lower packet losses with a defined good T1 and T2 threshold values.

6.2 Comparison of DPD and RPQ Algorithms

In this section, the observed results for DPD and RPQ algorithms will be

compared based on packet loss ratios and delay in the queue.

51



In the RPQ simulation design, there are 10 queues for 10 types of priority packets.
The other simulation environment variables are same within the DPD simulation

design.

In Figure 6.5, the total packet loss ratios are seen for different queue sizes for
each used priority queue in RPQ algorithm. From the figure, it is observed that when
one queue size is equal to 21, that mean the total buffer capacity is 210, the loss ratio
will be 1.3104%. That is higher than the DPD-k algorithms which use queue size 50.
However, as seen in Figure 6.6, average waiting times for packets, observed in RPQ
packet scheduling algorithm, are lower than the DPD and SPD algorithms. When the
queue size for RPQ is 5 (totally 50), the observed average deadline time is 0.0439
seconds. That value is lower than the DPD algorithms. DPD-FULL algorithm gives
the best average waiting time between the DPD-k algorithms and it is 0.1220
seconds. Low delay parameters are the goal of RPQ that is also seen in the

simulation.
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Figure 6.6 Average waiting times for packets versus buffer size in RPQ

In RPQ algorithm, if queue size for each queue is taken 5 (totally 50), then packet
lost due to deadline violations can be examined. In Figure 6.7, it is observed that the

deadline violation loss value for RPQ algorithm is between the DPD-4 and DPD-7.
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Figure 6.7 Packet lost values due to deadline violations
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CHAPTER 7

CONCLUSIONS

Packet schedulers are used as a technique to provide the QoS requirement on
various kinds of applications. The induced delay over a connection is an important
QoS parameter as well as the ratio of packet losses. In this thesis, a new packet
scheduler with two different versions is introduced; The Static Priority with Deadline
Considerations (SPD) and Dynamic Priority with Deadline Considerations (DPD).
Different from classical packet schedulers, both of these packet schedulers try to
integrate the delay and loss parameters, since NGNs will be heavily dependent on

supplying QoS requirements of various applications.

The SPD and DPD packet schedulers try to reduce the processing overhead of
sorting at a network buffer by introducing, order-k sorting, thus SPD-k and DPD-k.
Sorting a few elements at the buffer gives similar results of sorting all the elements at
the buffer. This results less complex algorithm, low loss ratios and low delay times

compared to classical full sort algorithms like EDF and SP.

SPD packet scheduler differs from classical SP algorithm in a way that it
considers the packet deadline times and includes the expired deadline packets as lost
packets. Also the SPD-k algorithms have lower complexity compared to classical SP
algorithm because of the overhead of sorting all packets in SP. The SPD-k
algorithms give low total lost ratios in the order of SPD-2, SPD-4, SPD-7, and SPD-
FULL. SPD-2 algorithm has given the lowest total loss ratios in the simulation with
the lowest packet losses due to deadline violations. On the other hand, the delay of
packets in the queue is the highest in SPD-2 algorithm and lowest in SPD-FULL
algorithm. This causes also the highest buffer overflow losses in SPD-2 algorithm

and lowest buffer overflow losses in SPD-FULL algorithm.
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On the other hand, DPD packet scheduler is based on the classical SP algorithm
with the improvement on changing priorities of packets in the queue. In the
simulation, two threshold levels selected; the lower one is T1 and higher one is T2.
When T1 and T2 are selected as too small values, the DPD algorithm approximates
to SPD algorithm. If the difference between T1 and T2 values is high then the
algorithm complexity increases because of the overhead of sorting. If T1 and T2
value is selected too high then the algorithm runs in FIFO scheme. It is observed
from the simulation that the algorithm gives the best results when T1=0.2 seconds

and T2=1 second.

Again, in DPD-k algorithms the lowest loss ratios and highest delay times are
observed in DPD-2 simulation. The losses due to buffer overflow are similar for all
DPD-k algorithms, but the losses due to deadline expiration are lowest in DPD-2

algorithm.

While the priorities are kept fixed for an SPD packet scheduler, DPD packet
scheduler modifies the priorities based on the remaining deadline. The simulation
results have shown that, DPD packet scheduler furthermore decreases the packet
losses due to deadline violations and gives low loss ratios compared to SPD

algorithm.

The current ongoing and future work of SPD and DPD packet schedulers include
to increase the threshold levels for the DPD packet scheduler, with a possibility of
introducing dynamic thresholds based on the QoS requirements of the current packet
to be served. If the threshold levels are increased, e.g. not only T1 and T2 but also a
new threshold value T3, DPD algorithm complexity may be decreased more. Also,

the impact on jitter will be studied since jitter is another important QoS parameter.
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APPENDIX A

FINDING BEST T1 AND T2 VALUES FOR DPD ALGORITHMS

In this section, the effect of average deadline times for packets which is denoted
as bnd delay, and the effect of buffer size which is denoted as queue size on the

threshold values T1 and T2 will be examined.

A.1 The Effect of Average Deadline Times of Packets (BND_DELAY) on the

threshold values

Bnd delay is the average deadline times for the packets. If the selected value of
bnd_delay is small, then there will be more packet losses as expected. Because the

losses due to deadline violations will increase.

In bnd_delay simulations, the queue size is taken as 50 for different bnd_delay
values. Also the used algorithm to examine the effect of bnd delay on T1 and T2 is

DPD-4.

In Tables A.1, A2, A3, and A.4, the loss ratios table is presented when
bnd delay is equal to 4,8,16 and 24 seconds in order. Also, Figures A.1, A.2, A.3,
and A.4 show the corresponding loss ratios for different T1 and T2 values with a
specific bnd delay value with 3-d graphs. With the results of simulations, it is seen
that when bnd_delay value increases, the range for selecting T1 and T2 values also

increases.

To explain the simulation results, a critical loss value, called loss ratio limit, is

defined for different simulations with different bnd delay values. And then, the loss
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ratios that are lower than the loss ratio limit are circled on the table. Lastly, the tables

are commented with circled values.
As observed from the figures and tables, if T1 and T2 value is selected as 0, then
there will be more packet losses. This proves that good selected T1 and T2 values in

DPD simulations decrease the total loss ratio.

Table A.1 Total loss ratios for different T1 and T2 values when bnd_delay = 4 secs

HSRECRRS BND_DELAY=4
T2
T o s 1.0 15 20 25 30
0 |1.1079 1.0090 1.0321 1.1053 1.1519 1.2020 1. 2300
04 0 4L.9550>  1.0019 1.031% 1.0759 1.1344  1.1556
nz 0 QL9719 1.0103 1.04z21 1.0620 1.10688 1.1435
03 0 85290 1.0544  l.0766  1.10l8  1.1750
0.4 0 45, 9605 1.0178  1.0855  1.1293  1.1715
0s 0 <f.9536> 1.0031 1.0504  1.0780 1.1z08 1.1709
06 0 i 1.0282 1.0474  1.0650 1.1z88 1.1699
07 0 i 1.0140 1.0412 1.0941 1.1386 1.1657
08 0 i 1.0017 1.0638 1.0953 1.1537 1.1834
03 0 i 1. 0080 1.0343 1.0825 1.1z02 1.1733
10 0 i 1.0072 1.0662 1.0911 1.1z02 1.1935
Logs ratio limit T1 and T2 range The best case
1.00 % D1=T1 =05 T1=073
0&=<T2=10 T2=05

In the simulations, it is observed that if T1 and T2 value increase, generally the
loss ratios also increase without the effect of bnd_delay value. Bnd_delay value only
determines the lower and upper limit of T1 and T2 value for low losses. Therefore,
after that limits, if T1 and T2 value increase, the loss ratio will also increase. If

bnd_delay increases the range to select best T1 and T2 values will be bigger.
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Figure A.1 Total loss ratios for different T1 and T2 values when bnd_delay
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Table A.2 Total loss ratios for different T1 and T2 values when bnd delay = 8 secs

lozsratio = BND DELAY =8 SECONDS
T2
T ] 05 10 15 20 25 30 ¥
0 [0.6930  0.6403  0.6354  0.6689  0.6852  0.7202  0.6829  0.7015
01 o : 0.6574  0.6315  0.6864  0.6448  0.6774  0.6726
02 0 <O.e046%  0LG0930  0.6457 0.6804 0.6314 0.8877 0.g5999
03 0 0.6443 0.6252  0.68581  0.6768  0.6740  0.6856
0.4 0 0.5891  0.6278  0.6640  0.6604  0.6492  0.7005  0.6867
0s 0 0. 6322 0.6372  <.6l7E8r 0.6l57% 0.6499 0. 6443 0. 7046
06 ] 0 0.6260  0.6613%  0.6761  0.8651  0.7015  0.7014
07 ] 0 0.6273  0.631  0.6807  0.7000 0.6443  0.6769
0a ] 0 0.6373  0.6502  0.6575  0.6602  0.654%  0.70&85
04 ] 0 0.6346  0.6232  0.6371  0.6405  0.6637  0.6728
10 ] 0 0.6446  0.6394  0.6415  0.6635  0.6606  0.6695
11 ] ] 0 0.63l1  0.6564  0.6708  0.6877  0.6967
12 ] ] 0 0.6342  0.6755  0.6872  0.6700  0.6834
13 ] ] 0 0.673Z  0.6479  0.6549  0.6357  0.7287
14 ] ] 0  0.6504  0.6902  0.6633  0.6814  0.7177
15 ] ] 0  0.643%  0.6699  0.6702  0.7103  0.6728
16 ] ] ] 0  0.6683  0.668%  0.6856  0.6796
17 0 ] ] 0  0.6518  0.659%  0.6532  0.7012
18 ] ] ] 0 0.6571  0.6594  0.7004  0.7226
14 ] ] ] 0 0.6617  0.67086  0.6879  0.6814
20 0 ] ] 0  0.6516  0.6687  0.6836  0.6848
21 0 ] ] ] 0 0.6661  0.7205  0.7223
Logs ratio limit T1 and T2 range The hest case
0B2% 01=<Tl <05 T1=0.4
06=<T2<20 T2=0.5
Table A.3 Total loss ratios for different T1 and T2 values when bnd delay= 16 secs
. BND DELAY = 16 SECONDS
gje:
T1 a 05 1.0 15 20 25 30 35 4.0 45 5.0
1] 0.5115% 0. 5044 0.4522 0.4763 0.4547 0.4759 0.5034 0.4956 0.5059 0. 5236 0.4764
01 1] 0. 4646 0.4621 0.4917 0.4645 0.4761 0, 5007 0.5010 0. 4544 0. 4736 0. 4750
02 u] 0. 4694 0.4594 0.4552 0. 4543 0. 4786 0.4555 0.4720 0.4913 o, 5010
0.3 1] 0. 4707 0.4675 0.4601 0.4885 0. 4637 0.4588 0.4770 0. 4662 0. 4856
0.4 1] 0. 4965 0.4538 0.4555 0. 4554 0. 4859 0.4550 0.45590 0. 5070 0.4619
05 1] 0. 4722 0.4354 0.4667 0.4738 0, 4655 0.4915 0. 4541 0. 4320 0. 5106
0.5 u] u] ( 0.4715 0.4575 0. 4956 0. 4710 0.4321 0. 5080 0, 5075 0.4917
07 1] 1] 0.4506 0.4558 0.4787 ( 0,479z 0.4679 0.4945 0. 4877 0. 4648
05 1] 1] 0.4532 0.4728 0.45z7 0. 45351 0. 4504 0.4731 0.5013 0. 4758 0. 4547
0g 0 0 0.4614  0.4505  0.4700  0,4815 0.4961  0.4727  0.4971
1.0 u] u] n.47a5 0.4957 0.4714 0., 4776 0.4719 0.4955 0. 45580 0, 4955
14 1] 1] ul 0.4834 <0, 4421 0.4739 0. 47458 0.5054 0.4769 0. 43587 0.5145
12 1] 1] ul 0.4799 0.5018 0.4504 0.4744 0.4510 0.4752 0.49395 0.4314
13 1] 1] ul 0.4799 0.5018 0.4505 0, 4744 0.4511 0.4751 0. 4992 0.4315

Loss ratio limit

T1 and T2 range

The best case

0.45% 01 «T1 <141
05<TZ2<348

T1=06
T2=1.0
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Figure A.3 Total loss ratios for different T1 and T2 values when bnd_delay= 16 secs
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Figure A.4 Total loss ratios for different T1 and T2 values when bnd_delay= 24 secs
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Table A.4 Total loss ratios for different T1 and T2 values when bnd delay= 24 secs

1 tio =
e BND DELAY = 24 SECONDS
T2
T a 1.0 20 30 40 50 8.0 70 80 90 100
0 | 0.4604 0 1] i 0 0 ] i 0 0 0
0.2 0 0.4097 0.4078  0.4240  0.4050  0.427z  0.4115  0.448%  0.4270  0.4063
04 0 0. 4042 0.4377 0.3940 0.3891 0.4z207 0.4073 0.4307 0.4330 0.4110
0 0 0.4005  0.4169  0.4568  0.4175  0.4845  0.4174  0.4388  0.4083  0.4488  (D.396
Bip 0 0.4240 0.4033  0.4128  0.4005  0.4350  0.4324  0.4222  0.4140  0.4544  0.4573
10 0 0.4320 0.4330  0.4406  0.4036  0.4040  0.4356  0.413%  0.4185  0.4245  0.4231
12 0 0 0.4555  0.4261  0.4377  0.4232  0.4251  0.4024  0.4854  0.4444  0.4391
14 0 0 qI.3%24> 0.4254 0.4357  0.412%  0.4441  0.4419  0.4234  0.4399
16 0 0 0.4131  0.4488  0.4078  0.4423  0.4102  0.4396 0.4176  0.4400
18 0 0 0.4084  0.4292  0.4309 0.4215  0.4184  0,4172 0.4267
20 0 0 0.4458  0.4224  0.4433  0.4379  0.4057  0.4345 39250  0.4246  0.4376
Losgs ratio lirnit T1 and T2 range The hest case
0.40% 02<T1 <20 Ti=1.4
05 <T2 <100 T2=40

A.2 The Effect of Buffer Size (QUEUE_SIZE) on the threshold values

Queue_size is the total capacity of the buffer. If the selected value of queue size
is small, then there will be more packet losses as expected. Because the losses due to

buffer overflow will increase.

In queue size simulations, the bnd delay is taken as 8 seconds for different
queue_size values. Also the used algorithm to examine the effect of queue size on

T1 and T2 is DPD-4.

In Tables A.5, A.6, and A.7, the loss ratios table is given when queue_size is
equal to 25, 50 and 75 in order. In each table, the best T1 and T2 values and range of
T1 and T2 values for best loss ratios are defined. With the results of simulations, it is
seen that when the queue size increases, the range for selecting T1 and T2 values

decreases.

The Figures A.5, A.6 and A.7 show the corresponding loss ratios for different T1

and T2 values with a specific queue_size value with 3-d graphs.
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Table A.5 Total loss ratios for different T1 and T2 values when queue size = 25

logsratio =
QUEUE SIZE = 25
T2
T1 ] 05 1.0 1.4 2.0 245 30 35
o [1.3915  l.3901  1.3468  1.3790  1.3767  1.356L  1.4031  1.3920
0.1 0 1.3343  1.3378 1.3566  1.3427  1.3916  1.3577
0.2 0 1.3245  1.3492  1.3565  1.3360  1.3197  1.3505  1.3548
03 0 1.312z  1.3109  1.3505  1.3353  1.3504  1.3349
0.4 0 l.3304  1.3386  1.3338  1.3651  1.3250  1.3635  1.3571
05 0 1.3497 1.3231  1.3804  1.310%
06 0 0 1.3323  1.3766  1.3338  1.3654  1.3604  1.3401
07 0 0 1.3529  1.340z  1.3530  1.3547  1.3106  1.3746
08 0 0 1.3233  1.3719  1.3393  1.3482  1.3733  1.3794
03 0 0 1.3328  1.3771  1.3328  1.3650  1.3609  1.3414
10 0 0 1.3516  1.3380  1.3527  1.3541  1.3101  1.3745
14 0 0 0 1.3289  1.3782  1.3455  1.3535  1.3798
12 0 0 0 1.3566  1.3363  1.3196  1.3510  1.3573
13 0 0 0 1.3147  1.3851  1.3230  1.3642  1.3477
14 0 0 0 1.3346  1.3181  1.3529  1.3610  1.3571
15 0 0 0 1.3591  1.3201  1.3875  1.3519
16 0 0 0 0 1.3109  1.3644  1.3197  1.3352
17 0 0 0 0 1.3681 1.3657  1.3516
18 0 0 0 0 1.3585  1.3496  1.3453  1.3596
18 0 0 0 0 1.3489  1.4025  1.3732  1.4135
20 0 0 0 0 1.3444  1.3905  1.3463  1.3773
21 0 0 0 0 0 1.3580  1.3379  1.3814
22 0 0 0 0 0 1.3538  1.3651  1.3661
23 0 0 0 0 0 1.3686  1.3549
24 0 0 0 0 0 1.3843  1.3546  1.3623
Loss ratio limit T1 and T2 range The best case
1.31 % 01=T1 =24 T1=0.5
05<T2<34 T2=0.5

In the simulations, it is observed that queue size value only determines the lower
and upper limit of T1 and T2 value for low losses. Therefore, after that limits, if T1
and T2 value increase, the loss ratio will also increase. Another important result is; if

queue_size increases the range to select best T1 and T2 values will be smaller.
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Figure A.5 Total loss ratios for different T1 and T2 values when queue_size = 25
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Table A.6 Total loss ratios for different T1 and T2 values when queue_size = 50

lossratio =
QUEUE SIZE=50
T2
T1 o ns 1.0 15 20 25 3.0 35

0 | 0.6930 0.6403 0.6354 0.6689 0.6852 0.7202 0.6829 0.7015
K| 0 @) 0.6574 0.6315 0.6964 0. 6445 0.6774 0.6726
n2 0 <0.60480 0.6457 0.6504 0.6314 0.6677 0.6939
03 0 0. 6444 m 0.6252 0.6581 0.6768 0.6740 0.6856
04 0 0.5891 0.6278 0.6640 0.6604 0.6492 0.7005 0.6867
0s ] 0. 6322 0.6372 L6178 (D.6157% 0.6499 0. 6443 0. 7046
06 0 ] 0.6260 0.6613 0.6761 0.6651 0.7015 0.7014
n7 0 0 0.6273 0.6318 0.6807 0.7000 0.6443 0.6769
ns i ] 0.6373 0.6502 0.6575 0.6602 0.6542 0.7085
na 0 0 D.6346 0.6232 0.6371 0.6405 0.6637 0.6728
10 0 0 0.6446 0.6394 0.6415 0.6635 0.6606 0.6635
11 il il il 0.6311 0.6564 0.6705 0.6377 0.6967
12 0 0 0 0.6342 0.6755 0.6872 0.6700 0.6634
13 0 0 0 0.6732 D.5479 0.6549 0.6857 0.7287
1.4 0 0 0 0.6504 0.6902 0.6633 0.65314 0.7177
15 0 0 0 0.6435 0.6899 0.6702 0.7103 0.6729
16 0 0 0 0 0.6683 0.6669 0.6856 0.67356
17 n 0 0 0 0.6519 0.6599 0.6532 0.7012
148 1] 1] 1] 1] 0.6571 0.6594 0.7004 0.7226
14 0 n 0 0 0.6617 0.6705 0.6879 0.6514
20 0 0 0 0 0.6516 0.6667 0.6836 0.6348
21 1] 0 0 0 0 0.6661 0.7208 0.7223

0.62%

Loss ratio limit

T1 and T2 range

The best case

01=<T1 =05
05 «<T2=20

T1=0.4
T2=0.5
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Figure A.6 Total loss ratios for different T1 and T2 values when queue size = 50
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Table A.7 Total loss ratios for different T1 and T2 values when queue size = 75

lozsratio =
QUEUE_SIZE=T75
T2
T o 0.5 10 15 20 25 30 35
0 0.5835 0.5458 0.5227 0.5583 0.5314 0. 5868 0.61l66 0.6230
0.1 0 0.5018 0.5225 0.5143 0.5499 0.5569 0.5390 0.5341
0.2 0 0.5196 0.5454 0.5411 0.5547 0.5618 0.5964
0.3 u} 0.5159 0.5249 0.5533 0,574z 0.5613 0.53582
0.4 i} 0.5082 0.52z26 0. 5300 0. 5470 0.5556 0.5930 0. 5360
0.5 u} 0.5193 0.5292 0.55z0 0.5563 0.5358 0.5919
0.5 u} 0 0.5158 0.5405 0.5336 0. 5688 0.5744 0.6071
o7 u} 0 0.5087 0.5329 0.5571 0.579z2 0.5767 0.a080
0.5 0 0 0.5289 0.5524 0.5294 0. 5643 0.5861 0.5901
09 0 0 0.5244 0.5296 0.5516 0.5751 0.5678 0. 6006
1.0 0 0 0.5135 0.5417 0.5431 0.5659 0.58%96 0.6136
141 0 0 0 0.5309 0.5438 0.5548 0.5865 0.57938
1.2 0 0 0 0.5363 0.5478 0.5748 0.5936 0. 58346
1.3 0 0 0 0.5311 0.5620 0.5764 0.5846 0.e007
1.4 1} 0 0 0.5301 0.5663 0.5613 0.5651 0.58352
1.5 u} 0 0 0.5380 0.5366 0. 5640 0.5347 0.57&82
1.6 u} 0 0 0 0.5551 0.5588 0.5938 0.6026
1.7 u} 0 0 i} 0. 5490 0.5698 0.58583 0.6254
18 u} 0 0 0 0.5701 0. 5937 0.5703 0.&070
19 u} 0 0 0 0.5625 0.5665 0.5945 0.6018
20 0 0 0 0 0.5620 0.5317 0.5759 0.6097
21 0 0 0 0 0 0.5710 0.6043 0.6015

Loss ratio limit
0.50%

T1 and T2 range

The best case

02<T1 =04
05=T2=10

T1=03
T2=0.5
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Figure A.7 Total loss ratios for different T1 and T2 values when queue_size = 75
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APPENDIX B

SPD AND DPD SIMULATIONS” MATLAB CODES

All other programming codes that are not included here can be found in the CD

that is included with the thesis.

SPD.m

%50000 sim time

% SP SIMULATION

clear all;

TC =10000;

Avg Pckt_Size = 100;

ad=1;

bnd_delay = 8;

maxx=0;

avgx=0;

k=0;

lambda = 98;

mu=TC/Avg_Pckt Size;

Sim_time =50000;

tl=clock;

for ii=1:1:5
n=0+1ii*10 ; %Bu queue size limit
for jj=1:4
klmn=[2 4 7 n];
sort2=klmn(jj);
t0=clock;

% SIMULATION PARAMETERS

% Lambda -> packet arrival rate

% Mu -> Packet Service Rate

% n -> The Buffer Size

% The transmisson Capacity is 10 kbps
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if(mu < lambda)
disp('Packet Arrival Rate should not be greater than Packet Service Rate')
return;

end

% The information about the next packet will be kept in these parameters

next pckt arrvl_time = 0;

next_pckt serv_time = 0;

% The current time is set to 0 @ the beginning

curr_time = 0;

queue size=0; %MAX n is the limit of the Buffer

nbr_type_arr = zeros(10);
nbr_type loss = zeros(10);
nbr_type=zeros(10);

nbr_type waiting=zeros(10);

outofloss=0;

deadlineloss=0;

nbr_typel waiting=0;
nbr_typel1=0;
packetsize= 100;

randvar=floor(rand(10,1)*10)+1;

priorityofpacket=randvar(1);

packetl = struct('Size', packetsize, 'Arrival_Time', curr_time + exprnd(1 / (lambda/ad)), 'deadline', -1, 'type',
priorityofpacket, 'priority',priorityofpacket);

packetl.deadline = packetl.Arrival_Time + exprnd(bnd_delay);

f queue(l) = packetl;

f queue size=1;

packet =f queue(l);

f queue_size =f queue size - 1;

next_pckt arrvl time = f queue(1).Arrival_Time;

next_pckt_serv_time = packet.Arrival_Time;

curr_time = packet.Arrival_Time;
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event = 'Packet_Arrival';

% Until the simulation finishes

while (curr_time < Sim_time)

switch event

% The Packet Arrival event. When a packet arrives, enter to this case

case 'Packet_Arrival'

randvar=floor(rand(10,1)*10)+1;

priorityofpacket=randvar(1);

packetl = struct('Size', packetsize, 'Arrival Time', curr_time + exprnd(1 / (lambda/ad)), 'deadline’, -1,
'type', priorityofpacket, 'priority’, priorityofpacket);

packetl.deadline = packetl.Arrival Time + exprnd(bnd_delay);

f queue_size =f queue_size + 1;

f queue(f queue size) = packetl;

nbr_type arr(packetl.type) =nbr_type arr(packetl.type) + 1;

Yo-------- SORTING ALGORITHM according to arrival times
%for f queue
if (f_queue_size > 2)
for i=1:f queue_size
for j=1:f _queue_size-1
if (f_queue(j).Arrival_Time > f queue(j+1).Arrival Time)
hold = f_queue(j);
f queue(j) =f queue(j+1);
f queue(j+1) = hold;
end
end

end

elseif (f_queue size == 2)

=L

if(f_queue(j).Arrival_Time > f_queue(j+1).Arrival_Time)
hold = f queue(j);
f queue(j) =f queue(j+1);
f queue(j+1) = hold;
end
end

%

if (queue_size == 0)

queue_size =1;
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queue(queue_size) = packet;

if (packet.Arrival_Time > next_pckt_serv_time)
next_pckt serv_time = packet.Arrival_Time;

end

elseif (queue_size <n)
queue_size = queue_size + 1;

queue(queue_size) = packet;

elseif (queue_size ==n)
queue_size = n;
outofloss=outofloss+1;

nbr_type loss(packet.type)=nbr_type loss(packet.type)+1;

elseif (queue_size > n)
disp('Error#1 -> Exceed the Buffer Size')
return;

end
% Set the next packet arrival times
packet =f queue(1);
f queue =f queue(2:f queue_size);
f queue_size =f queue_size - 1;
next_pckt arrvl time = packet.Arrival Time;
% The Packet Serving event. When a packet will be served, enter to this case
case 'Packet Serving'
i=1;

% This section begins from the first element and goes up to the element

% which is greater than the current time

if queue_size > 0
while(i <= queue_size & ((queue(i).deadline) < curr_time))
deadlineloss=deadlineloss+1;
nbr_type loss(queue(i).type) = nbr_type loss(queue(i).type) + 1;
nbr_type waiting(queue(i).type) = nbr_type waiting(queue(i).type) + curr_time - queue(i).Arrival_Time;
i=it1;
end

end

% The queue will be shorten by eliminating the loss packets due to their deadlines
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queue = queue(i:queue_size);

queue_size = queue_size - (i - 1);

if ( queue_size >=2)

Yom------- SORTING ALGORITHM according to priorities
if(sort2<=queue_size)
kgt=sort2;
else
kgt=queue_size;

end

for i=1:kgt-1
for j=1:kgt-1
if (queue(j).priority > queue(j+1).priority)
hold=queue(j);
queue(j)=queue(j+1);
queue(j+1)=hold;
end
end
end

%Dynamic Priority Changing
pekt_served = queue(1); % Sort ettikten sonra ilk paketi al yoruz
end
if (queue_size==1)
pckt_served = queue(1);
end
% The control. It is may be impossible, but control is a must
if (queue_size < 0)
queue_size = 0;
end
% Number of lost elements has to be added to the queue
if (queue_size > 0)
queue = queue(2:queue_size);
next_pckt serv_time = curr_time + pckt served.Size / TC;
nbr_type waiting(pckt_served.type) = nbr_type waiting(pckt served.type) + curr_time - pckt_served.Arrival Time;
nbr_type(pckt_served.type)=nbr_type(pckt served.type)+1;

queue_size = queue_size - 1;

if (queue_size < 0)
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queue_size = 0;

end

else
next_pckt serv_time = next_pckt arrvl time;

end

end %End of Switch

% To decide which Event will occur

curr_time = min([next_pckt arrvl_time, next_pckt serv_time]);

if(curr_time == next_pckt arrvl_time)
event = 'Packet_Arrival';

else
event = 'Packet_Serving';

end

end %End of While

%If any packet remains in f_queue, these are considered as loss packets%
while (f_queue_size > 0)
i=1;
nbr_type loss(f_queue(i).type) =nbr_type loss(f queue(i).type) + 1;
i=i+1;
f queue=f queue(i:f queue_size);

f queue_size =f queue_size - 1;

end
disp(sprintf(’ SPD. ")
disp(sprintf('------------ SORT DEGREE= %d---------- BUFFER SIZE= %d\n',sort2,n))

totalpacketl=sum(nbr_type_arr);
totalpacket=totalpacket1(1);
totallost1=sum(nbr_type loss);
totallost=totallost1(1);
lostl=sum(nbr_type loss);
lost=lost1(1);
waitingl=sum(nbr_type waiting);
waiting=waiting1(1);
totalwaitingl=sum(nbr_type);

totalwaiting=totalwaiting1(1);

disp(sprintf(' Number Of All Sent Packets : %d', totalpacket))

disp(sprintf(' Number Of All Lost Packets : %d - %f \n', lost,(totallost/totalpacket)*100))
disp(sprintf(' Because of Queue Limit : %d ---- %f\n', outofloss,(outofloss/totallost)*100))
disp(sprintf(' Because of Deadline Limit : %d ---- %f\n', deadlineloss,(deadlineloss/totallost)*100))
disp(sprintf(' Percentage Of Loss ==>  : %.2f\n',(totallost/totalpacket)*100))
lossratio(ii,jj)=(totallost/totalpacket)*100;
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deadlost(ii,jj)=(deadlineloss/totallost)*lossratio(ii,jj);
outlost(ii,jj)=(outofloss/totallost) *lossratio(ii,jj);

avgwaiting(ii,jj)=waiting/totalwaiting;

disp(sprintf(' Duration of Simulation : %d mins %.1f secs\n', floor(etime(clock, t0)/60), mod(etime(clock,t0),60) ) )
disp(sprintf(' Avg waiting for a packet in the queue: %f\n' ,waiting/totalwaiting))

for i=1:10
1(i1,jj,1)=(nbr_type loss(i)*100)/totalpacket;
t(ii,jj,i)=nbr_type(i);
w(ii,jj,i)=nbr_type waiting(i)/nbr_type(i);
end
save 'SPD.mat'
end

end

disp(sprintf(' Duration of Simulation : %d mins %.1f secs\n', floor(etime(clock, t1)/60), mod(etime(clock,t1),60) ) )

DPD.m

%150000 sim time, T1=0.2
% DPD SIMULATION
clear all;
TC =10000;
Avg Pckt_Size = 100;
ad=1;
bnd_delay = 8;
maxx=0;
avgx=0;
k=0;
lambda = 98;
mu=TC/ Avg Pckt Size;
Sim_time =50000;
tl=clock;
%T]1 and T2 are chosen as this.
T2=1,;
for ii=1:1:5
n=0+1ii*10 ; %Bu queue size limit
for jj=1:4
T1=0.2;
klmn=[2 4 7 n];
sort2=klmn(jj);
t0=clock;
% SIMULATION PARAMETERS
% Lambda -> packet arrival rate

% Mu -> Packet Service Rate
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% n -> The Buffer Size
% The transmisson Capacity is 10 kbps

if(mu < lambda)
disp('Packet Arrival Rate should not be greater than Packet Service Rate')
return;

end

% The information about the next packet will be kept in these parameters

next_pckt arrvl_time = 0;

next_pckt serv_time = 0;

% The current time is set to 0 @ the beginning

curr_time = 0;

queue_size =0; %MAX n is the limit of the Buffer

nbr_type_arr = zeros(10);
nbr_type loss = zeros(10);
nbr_type=zeros(10);

nbr_type waiting=zeros(10);

outofloss=0;

deadlineloss=0;

nbr_typel waiting=0;
nbr_typel1=0;
packetsize= 100;

randvar=floor(rand(10,1)*10)+1;

priorityofpacket=randvar(1);

packetl = struct('Size', packetsize, 'Arrival_Time', curr_time + exprnd(1 / (lambda/ad)), 'deadline', -1, 'type',
priorityofpacket, 'priority',priorityofpacket);

packetl.deadline = packetl.Arrival_Time + exprnd(bnd_delay);

f queue(l) = packetl;

f queue_size=1;

packet =f queue(1);

f queue size =f queue_size - 1;

next_pckt arrvl_time =f queue(l).Arrival Time;

next_pckt serv_time = packet.Arrival_Time;

curr_time = packet.Arrival Time;
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event = 'Packet_Arrival';

% Until the simulation finishes

while (curr_time < Sim_time)

switch event

% The Packet Arrival event. When a packet arrives, enter to this case

case 'Packet_Arrival'

randvar=floor(rand(10,1)*10)+1;

priorityofpacket=randvar(1);

packetl = struct('Size', packetsize, 'Arrival_Time', curr_time + exprnd(1 / (lambda/ad)), 'deadline', -1,
'type', priorityofpacket, 'priority’, priorityofpacket);

packetl.deadline = packetl.Arrival Time + exprnd(bnd_delay);

f queue size =f queue size + 1;

f queue(f queue_size) = packetl;

nbr_type_arr(packetl.type) =nbr_type_arr(packetl.type) + 1;

Yom------- SORTING ALGORITHM according to arrival times
%for f_queue
if (f_queue_size > 2)
for i=1:f queue_size
for j=1:f queue_size-1
if (f_queue(j).Arrival Time > f queue(j+1).Arrival Time)
hold = f queue(j);
f queue(j) =f queue(j+1);
f queue(j+1) = hold;
end
end

end

elseif (f_queue_size ==2)

=L

if(f_queue(j).Arrival_Time > f queue(j+1).Arrival Time)
hold = f queue(j);
f queue(j) =f queue(j+1);
f queue(j+1) = hold;

end

end

if (queue_size == 0)
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queue_size = 1;

queue(queue_size) = packet;

if (packet.Arrival_Time > next_pckt _serv_time)
next_pckt serv_time = packet.Arrival Time;

end

elseif (queue_size <n)
queue_size = queue_size + 1;

queue(queue_size) = packet;

elseif (queue_size ==n)
queue_size = n;
outofloss=outofloss+1;

nbr_type loss(packet.type)=nbr type loss(packet.type)+1;

elseif (queue_size > n)
disp('Error#1 -> Exceed the Buffer Size')
return;

end

% Set the next packet arrival times

packet =f queue(l);

f queue =f queue(2:f queue_size);

f queue_size =f queue_size - 1;

next_pckt arrvl time = packet.Arrival Time;

% The Packet Serving event. When a packet will be served, enter to this case

case 'Packet Serving'

i=1;

% This section begins from the first element and goes up to the element

% which is greater than the current time

if queue_size > 0
while(i <= queue_size & ((queue(i).deadline) < curr_time))
deadlineloss=deadlineloss+1;
nbr_type loss(queue(i).type) = nbr_type loss(queue(i).type) + 1;
nbr_type waiting(queue(i).type) = nbr_type waiting(queue(i).type) + curr_time - queue(i).Arrival_Time;
i=i+1;
end

end

% The queue will be shorten by eliminating the loss packets due to their deadlines
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queue = queue(i:queue_size);

queue_size = queue_size - (i - 1);

if ( (queue_size > 0) && (queue(1).deadline-curr_time <= T1))
pckt_served = queue(1); % Sort etmeden direk paketi al yoruz
elseif ((queue_size > 0) && (queue(1).deadline-curr_time <= T2))
queue(1).priority=queue(1).priority-1;

end

if ( (queue_size >=2) && ( queue(l).deadline-curr_time > T1))

Yom------- SORTING ALGORITHM according to priorities
if(sort2<=queue_size)
kgt=sort2;
else
kgt=queue_size;

end

for i=1:kgt-1
for j=1:kgt-1
if (queue(j).priority > queue(j+1).priority)
hold=queue(j);
queue(j)=queue(j+1);
queue(j+1)=hold;
end
end
end

%Dynamic Priority Changing
pekt_served = queue(1); % Sort ettikten sonra ilk paketi al yoruz
end
if (queue_size==1)
pekt served = queue(1);
end
% The control. It is may be impossible, but control is a must
if (queue_size <0)
queue_size = 0;
end
% Number of lost elements has to be added to the queue
if (queue_size > 0)
queue = queue(2:queue_size);

next_pckt_serv_time = curr_time + pckt_served.Size / TC;

nbr_type waiting(pckt served.type) =nbr_type waiting(pckt served.type) + curr_time - pckt _served.Arrival _Time;
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nbr_type(pckt_served.type)=nbr_type(pckt served.type)+1;

queue_size = queue_size - 1;

if (queue_size < 0)
queue_size =0;

end

else
next_pckt serv_time = next_pckt arrvl time;
end

end %End of Switch

% To decide which Event will occur

curr_time = min([next_pckt arrvl time, next pckt serv_time]);

if(curr_time == next_pckt arrvl_time)
event = 'Packet_Arrival';

else
event = 'Packet_Serving';

end

end %End of While

%If any packet remains in f_queue, these are considered as loss packets%
while (f_queue_size > 0)
i=1;
nbr_type loss(f queue(i).type) =nbr_type loss(f queue(i).type) + 1;
i=i+1;
f queue=f queue(i:f queue_size);

f queue_size =f queue_size - 1;

end
disp(sprintf(’------------ DPD modified DYNAMIC------------- )
disp(sprintf('--T1=%3 2f--------T2=%3 2f------- SORT DEGREE= %d---------- BUFFER SIZE= %d\n',T1,T2,s0rt2,n))

totalpacketl=sum(nbr_type_arr);
totalpacket=totalpacket1(1);
totallostl=sum(nbr_type loss);
totallost=totallost1(1);
lostl=sum(nbr_type loss);
lost=lost1(1);
waitingl=sum(nbr_type waiting);
waiting=waiting1(1);
totalwaitingl=sum(nbr_type);

totalwaiting=totalwaiting1(1);

disp(sprintf(' Number Of All Sent Packets : %d', totalpacket))
disp(sprintf(" Number Of All Lost Packets : %d - %f \n', lost,(totallost/totalpacket)*100))
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disp(sprintf(" Because of Queue Limit : %d ---- %f\n', outofloss,(outofloss/totallost)*100))
disp(sprintf(" Because of Deadline Limit : %d ---- %f\n', deadlineloss,(deadlineloss/totallost)*100))
disp(sprintf(' Percentage Of Loss ==>  : %.2f\n',(totallost/totalpacket)*100))
lossratio(ii,jj)=(totallost/totalpacket)*100;

deadlost(ii,jj)=(deadlineloss/totallost)*lossratio(ii,jj);

outlost(ii,jj)=(outofloss/totallost) *lossratio(ii,jj);

avgwaiting(ii,jj)=waiting/totalwaiting;

disp(sprintf(' Duration of Simulation : %d mins %.1f secs\n', floor(etime(clock, t0)/60), mod(etime(clock,t0),60) ) )

disp(sprintf(' Avg waiting for a packet in the queue: %f\n' ,waiting/totalwaiting))

for i=1:10
1(ii,jj,i)=(nbr_type loss(i)*100)/totalpacket;
t(ii,jj,i)=nbr_type(i);
w(ii,jj,i)=nbr_type waiting(i)/nbr_type(i);
end
save 'DPD.mat'
end
end

disp(sprintf(' Duration of Simulation : %d mins %.1f secs\n', floor(etime(clock, t1)/60), mod(etime(clock,t1),60) ) )
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