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Driver Recognition and Driver Verification Using Data Mining Techniques 

 
 

Abstract 
 
 
 
In this thesis we present our research in driver recognition and driver verification. 

The goal of this study is to investigate the affect of different classifier fusion 

techniques on the performance of driver recognition and driver verification.  We are 

using five different driving behavior signals for identifying the driver identities. 

Driving features were extracted from these signals and Gaussian Mixture Models 

were used for modeling the driver behavior. Gaussian Mixture Model training was 

performed using the well-known EM algorithm. In recognition study posterior 

probabilities of identities called scores were obtained with the given test data. These 

scores were combined using different fixed and trainable (adaptive) combination 

methods. In verification study we compared posterior probabilities with fixed 

threshold values for each classifier. For different thresholds, false-accept rate versus 

false-reject rate was plotted using the receiver operating characteristics curve. We 

observed lower error rates when we used trainable combiners. We conclude that 

combined multi-modal signal or classifier methods are very successful in biometric 

recognition and verification of a person in a car environment. 
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Veri Madenciliği Teknikleri kullanılarak Sürücü Tanıma ve Sürücü Doğrulama  

 
 

Özet 
 
 
 
Bu tez sürücü tanıma ve sürücü onaylama çalışmalarını içermektedir. Bu çalışmalar 

için sürücülerden toplanan beş değişik davranış işaretleri kullanılmıştır. Bu işaretler 

yardımıyla sürücülerin öznitelikleri çıkarılmış ve Karma Gauss Dağılım Modelleri 

kullanılarak sürücü davranışları modellenmiştir.  Karma Gauss Dağılım Modellerinin 

eğitilmesi için Beklenti Enbüyütme algoritması kullanılmıştır. Sürücü tanıma 

çalışması için kimlikleri sınama verileri kullanılarak art olasılıklar elde edilmiş ve bu 

olasılıklar aynı zamanda her sınıf için puan olarak kabul edilmiştir. Bu puanların 

tümleştirilmesi için sabit kurallar ve eğitilebilir tümleştiriciler kullanılmıştır. Sürücü 

doğrulama çalışması için olabilirlik oranının bir eşikle karşılaştırılması yapılmıştır. 

Değişik eşik değerleri için yanlış kabul-yanlış red sıklıklarını grafiklemek için alıcı 

işletim eğrisi kullanılmıştır. Bu çalışmanın amacı değişik sınıflandırıcı tümleştirme 

yöntemlerinin sürücü tanıma ve sürücü doğrulama performanslarına etkilerinin 

incelenmesidir. Eğitilebilir tümleştirme yöntemleri ve sürücü davranış sinyalleri 

kullanılarak sürücü tanımasında ve doğrulamasında düşük hata oranları elde 

edilmiştir.  Sonuçlarımız çok modlu sürüş sinyallerinin sınıflandırıcı tümleştirme 

yöntemleri ile kullanıldığında sürücünün araba içi şartlarda tanınması ve 

onaylanmasında çok etkili olduklarını göstermiştir. 
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Chapter 1 

Introduction 

 

Identification of a person in a vehicle using solely behavioral signals is a new 

research area in which few scientific studies were made. This research field has 

many application areas such as authentication, access control, keyless entry, secure 

communications and automated personalization of vehicle controls. 

 

Person recognition within a vehicle provides the following benefits [1]:  

 

1. Vehicle safety: Require authorization before or during the driving of the 

vehicle to make sure that the current driver is an authorized driver. An 

unauthorized driver is denied the control of the vehicle. 

2. Vehicle personalization: Suit the vehicle according to the driver’s physical 

and behavioral characteristics. So, a safer, more comfortable and more 

efficient driving environment is obtained and the distraction is minimized. 

Consequently many accidents may be prevented.  

3. Secure mobile transaction opportunities: Mobile banking using biometric 

authentication may be an example of these opportunities. 

 

Human beings recognize each other using biological characteristics like face, voice 

or gait. One of the well-known characteristic of the person is the fingerprint which is 

used more than hundred years for person identification. Biometrics is the study of 

methods for recognizing people according to one or more real physical or behavioral 

properties. In this thesis biometrics-based driver identification and verification is 

done.  
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Some of the limitations inherent in unimodal biometric systems can be overcome by 

using multiple biometric modalities like face and fingerprint of a person or multiple 

fingers of a person. These systems are known as multimodal biometric systems and 

they are expected to be more reliable due to the presence of multiple, independent 

pieces of evidence [2]. 

 

A biometric system is a pattern recognition system which consists of six components. 

The first component is data acquisition in which biometric data of the subject is 

collected. In data collection process sensors such as microphone; video camera are 

used. So, the format of the data is digital [3]. 

 

Data compression and decompression are the second and third components of the 

system and they are optional. The fourth component is the feature extraction 

algorithm which produces a feature vector. The components of the feature vector are 

numerical characterization of the biometrics. So, collected data of one subject at 

different times are similar. Also, these data are dissimilar or different from the other 

subject’s data. The fifth component is the matcher. Matcher compares the feature 

vectors and obtains a similarity score. The similarity between two biometrics data is 

shown with this score. The final component of the system is decision maker and the 

result is the output of the system [3]. 

 

A biometric system may target either person recognition or person verification. The 

recognition process aims to find the answer of the question “Who is he/she?” In this 

process there exists biometric information of the subject in the database. At this time 

new information is taken from the subject and a comparison is done between this 

new biometric information and all the other stored biometric information. So, it is an 

example of 1-to-many comparison and this process is more difficult than the 

verification process [4]. 

 

The verification process aims to find the answer of the question “Is he/she the person 

he/she claims to be”. In this process the subject claims that he/she is a person whose 

biometric information already exists or stored in the database. In this case again new 

biometric information is taken from the subject and a comparison is done between 

this new biometric information and claimed biometric information. If the new 
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biometric information is matched with the stored biometric information, the 

verification process will end successfully and the subject is accepted otherwise 

he/she is rejected. So, it is an example of 1-to-1 comparison [4]. 

 

In this study we follow the steps of the biometric system which is explained in the 

above paragraphs. The first component of the system is the data acquisition. In our 

study we did not collect the data of the subjects. We use the CIAIR database of the 

Nagoya University for driver recognition and driver verification studies. So, our 

study did not involve the data acquisition stage. The second and the third 

components of a biometric system are data compression and decompression. These 

steps are optional also we skipped these steps. The fourth component is the feature 

extraction algorithm which is used for producing a feature vector. The components of 

the feature vector are numerical characterization of the biometrics. In this study 

Gaussian Mixture Model were used for modeling the driving behavior. The fifth 

component is the matcher which compares the feature vectors for obtaining a 

similarity score. In this step well-known Expectation Maximization algorithm is used 

for training the GMMs.  

 

The final component of the system is the decision maker. In our study we make 

decision fusion and use two different combination methods such as fixed methods 

and trainable methods. Fixed methods have simple fixed rules to combine 

information from a set of classifiers. In this study five fixed rules were used. These 

rules are maximum rule, minimum rule, median rule, mean rule and product rule. 

Trainable methods have some free parameters that can be trained on a separate part 

of the training data. In this study seven trainable combiners were used. These 

combiners are fisher, linear discriminant, nearest mean, naïve bayes, perl, parzen and 

k-nearest neighbor.  

 

In this thesis both recognition and verification experiments were carried out. The 

experiments were done with hundred subjects, fifty male and fifty female, and the 

results are reported. Also, a study was done for driver fatigue detection as a future 

work.  
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The goal of this study is to investigate the affect of different data mining techniques 

on the performance of driver recognition and verification. This thesis was done for 

detecting driver recognition and driver verification by using signal processing and 

data mining techniques. In this study the driving data of Center for Integrated 

Acoustic Information Research (CIAIR) and Automotive Technology Research and 

Development Center (OTAM) databases were used. Classifier fusion techniques 

were investigated for combining information from the different sources for 

improving the performance of a system.  

We will report the detailed stages of our study and results. In the first part of the 

report a brief introduction will be given in the research domain. In the second part of 

this report, biometric identification is explained including the applications 

recognition and verification. In the third part a detailed discussion of the data 

acquisition stage and the “Uyanık” vehicle will be given. In the fourth part the 

classifier theory is explained with Gaussian Mixture Model and Expectation-

Maximization Algorithm. In the fifth part fusion techniques are introduced and 

detailed descriptions are given for Fixed Rules and Trainable Combiners. In the sixth 

part brief an introduction to driver recognition and driver verification fields is given. 

In the seventh part the experiments are explained and the results are presented. 

Finally, a conclusion is done about the studies done in the context of this study, 

including future research directions.  



 

 5 

Chapter 2 
Biometric Identification 

 
 
In Latin, the word bios has the meaning of “life” and the word metric has the 

meaning of “measure”. So, Biometrics is the study of methods for recognizing 

people according to one or more real physical or behavioral traits.   

 

2.1 Why Biometrics 

 

The developments in the areas of networking, communication and mobility increased 

the need of reliable ways for verification of the identity of user. Identity verification 

is done in two ways such as possession-based and knowledge-based. 

 

• Possession-based: In this type of identity verification the user has a token 

like a credit card or a document and all the security measures are satisfied 

with this token. If the token is lost, somebody else can use it to assume the 

owner’s identity. 

 

• Knowledge-based: In this type of identity verification the security is 

satisfied with a password. In this case the property of the password becomes 

very important. If the password is too short, then it becomes very easy to 

guess it by making several attempts. On the other hand if it is too complex 

than remembering it will become very difficult so the user may be need to 

write the password somewhere. At this time the risk of lost or stolen 

password will occur. 

 

If the person’s “self” becomes the key, the disadvantages of the standard validation 

systems can be removed. It is generally accepted that biometrics adds complexity to 

the identification systems. If a comparison done with the biometrics and standard 
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systems, the following advantages of the biometrics can be listed.  

 

• Biometric property can not be forgotten or misled. It can be lost, if person 

undergoes a trauma. In such a situation the person could also forget the 

passwords and lost tokens. 

• It is difficult to copy, share and distribute biometric property of a person. 

• Biometric property is done at a “point of authentication” and the person must 

be present at the time of authentication. 

 

Biometric identification is generally not considered as a replacement to current 

systems. Used in combination, biometric and conventional security systems can be 

improved [4].  

 

2.2 Common Biometric Characteristics 

 

Biometric characteristics can be divided into two main category such as 

Physiological and Behavioral. 

 

• Physiological: This category is related to the shape of the body. One of the 

most well-known physiological properties of humans is fingerprints. 

Fingerprint identification technique is used for longer than 100 years. Other 

examples of this category are face recognition, hand geometry and iris 

recognition. 

 

• Behavioral: This category is related to the behavior of the person. The 

signature of a person was the first behavioral characteristic that was used. It is 

still used in many applications. The more modern examples are keystroke 

dynamics and voice. 

 

Voice is also a physiological property; every person has a different pitch depending 

on the vocal track. Since voice recognition is the study of the way of a person speaks, 

as a result it is generally classified under the behavioral category. 

 



 

 7 

Moreover there are many other examples of biometric identification such as gait, 

retina, hand veins, ear, facial thermogram, DNA, odor and palm prints [4]. 

 

 

 

 

 Face  
 
 Fingerprint        Signature   
   
 Hand         Keystroke  
  
 Iris          Voice   
 
 DNA      
 
 

Figure 2.1 – Classification of some biometric properties [4] 

 

2.3 Biometric Systems 

Figure 2.2 depicts the block diagram of common biometric systems. Two main 

operations in a biometric system are enrollment and test. In the enrollment operation 

biometric information of the person is processed and stored. In the test operation 

biometric information is extracted and compared with the other stored biometric 

samples. 

 

Biometrics 

Physiological Behavioral 
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Figure 2.2 – The Block diagram of biometric systems [4] 

In the first part of the block diagram, a sensor or a set of sensors is used for 

collecting all necessary data. It is the interface between the real world and the 

system. The property of the collected data can be changed according to the 

characteristics that are planned to consider.  

In the second part of the block diagram all pre-processing operations are done. 

During the pre-processing operation the artifacts of the sensor are removed, input is 

enhanced by removing some noise; some kind of normalization is done, etc. 

In the third part of the block diagram the needed features are extracted. The 

important questions are which features to extract and how to choose.   

In the fourth part of the block diagram a template is created by data. These data may 

be a vector of numbers or an image with particular properties. The template is the 

combination of the all characteristics which are extracted from the source. Template 

must be as short as possible but must not eliminate too much information. Behavior 

of the system is changed according to what is requested like recognition or 

verification. 

For performing the enrollment operation, the template must be stored somewhere 

like in a card or in a database. In the matching phase, obtained template is passed to a 

                         Enrollment                         Test 
                                            
                                           Test 
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matcher for making comparison between the obtained template and other existing 

templates. A number of algorithms can be used for estimating the distance between 

them [4]. Finally the matcher decision is sent as output, which can be used for 

recognition purpose. 

2.4 Functions 

 

A biometric system has two important functions such as verification and 

recognition/identification. 

 

2.4.1 Person Verification 

 

Verification is the process that aims to find the answer to the question “Is he/she the 

person who he/she claims to be?”. In this process the subject claims to be a person 

whose biometric information are already existent or known. This information may be 

stored in a database or on a card. During this process new biometric information is 

taken from the subject and a comparison is done between the new biometric 

information and the stored data. If the new information is matched with a stored 

template, the verification process will finish successfully. So, this type of check is 

called 1:1 match verification [4]. 

 

 

 

Figure 2.3 – Block diagram of verification task by using the four main modules of 

a biometric system such as sensor, feature extraction, matcher, and system  

database [2] 

 
                                                                   (Claimed Identity) 
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(1 match) 

System DB 
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2.4.2 Person  Recognition / Identification 

 

Identification is the process that aims to find the answer to the question “Who is 

he/she?”. In this process biometric information of the subject is taken then this 

information is compared with the other data which are stored in the database. This 

process is more difficult than the verification process. Since, the subjects’ 

information is compared with all the other subjects in the database [4].  

 

 

 

Figure 2.4 – Block diagram of identification task by using the four main modules of  

a biometric system such as sensor, feature extraction, matcher, and system  

database [2] 

 

2.5 Performance Measurement 

 

The performance of verification systems can be measured in the following 

dimensions: 

• False Accept Rate (FAR) or False Match Rate (FMR)  

False accept rate is the probability that the system incorrectly declares a 

successful match between the input pattern and a non-matching pattern in the 
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database. It gives the percent of invalid matches as an output. This type of error is 

very critical for security issues because these invalid users are accepted by the 

system. In secure systems these kinds of entries are forbidden to the non-allowed 

people.    

• False Reject Rate (FRR) or False Non-Match Rate (FNMR)  

False reject rate is the probability that the system incorrectly declares a failure of 

match between the input pattern and a non-matching pattern in the database. It 

gives the percent of valid users who are rejected as an output. 

• Receiver (or relative) Operating Characteristic (ROC)  

Generally, the matching algorithm makes a decision using some parameters such 

as a threshold. If we change these parameters, the false accept rate and false 

reject rate can typically be traded off against each other. ROC plot is obtained by 

graphing the values of false accept rate and false reject rate, also changing the 

variables implicitly. Detection error- trade off (DET) is a common variation and 

obtained using logarithmic scales on both axes. This more linear graph 

illuminates the differences for higher performances.  

• Equal Error Rate (EER) 

The equal rate is the rate where both accept and reject rates are equal. ROC or 

DET plot is used for showing the performance of a biometric system. These plots 

show how FAR and FRR can be changed. EER is used for making quick 

comparison between two systems. Also, EER can be obtained from the ROC plot 

by taking the point where FAR and FFR have the same value. If the EER is 

lower, the system considered to be more accurate. 

• Failure to Enroll Rate (FTE or FER) 

Failure to enroll rate shows the percentage of people who fail to enroll in the 

system. If the data which was obtained by the sensor is invalid, failure to enroll 

will happen. 
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• Failure to Capture Rate (FTC) 

Failure to capture rate is the probability that the system fails to detect a biometric 

characteristic if it is presented to it correctly.  

• Template Capacity  

Template capacity is the maximum number of people that is possible to 

discriminate. For example if we use a template of n bits and choose the features 

so that each individual generates a different template, then theoretically 2n 

individuals are discriminated. But such ideal features can not be found and the 

noise and a certain range of uncertainty have to be considered, so the capacity 

must be much smaller than 2n [4]. 
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Chapter 3 

Data Acquisition 

 

The State Planning Organization (DPT) supported Drive-Safe project which aims to 

increase driving safety and decrease the loss of manpower, wealth and death. A 

consortium of three universities, three automotive companies and a research center 

realize the Drive-Safe project. The objective of the study is to collect data from 

driver, passenger, car and road condition by using cameras, microphones and the 

other sensors. The next stages of the project aim to analyze these data and 

automatically determine dangerous situations such as driver fatigue. The ultimate 

target is to take precautions and make necessary warnings to improve the driving 

safety. 

 

The first stage of the project aims to realize an infrastructure to collect data, prepare 

data collection scenarios, design and implementation of database for using the data 

robustly and finally collect the data from the vehicle and simulator environment. 

 

3.1 Vehicle for Data Collection 

 

Ford and Renault Companies donated a car each for collecting data. In first step, 

Renault Company’s Megan car is used for the data collection, because Megan car has 

a CanBus.  

 

The first vehicle’s all sensors are completed and put into the car by the Renault 

Team, and this vehicle is named as “Uyanık”. Figure 3.1 shows the sensors of the 

vehicle and how they were mounted in the vehicle. In Table 3.1 detailed list and 

properties of the sensors are given. Figure 3.2 shows some of the sensors in the 

vehicle. 



 

 14 

 

Figure 3.1 - The sensors of the vehicle and their settlement into the vehicle. 
 

    
Laser Scanner     Sonar Sensors 

    
GPS           Cameras 

    
    EEG and Mouth Microphone        Data Collection Center 

    
                     Brake Pressure Sensor     3 Axis Angular Speed-Acceleration Measure 

 

Figure 3.2 - Some of the sensors in the vehicle ‘Uyanık’
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Table 3.1- Detailed list and properties of the sensors 

 

P
ro

d
uc

t 
# Sensor 

Product Code / 
Producer 

Supply 
Socket 

Power 
Usage 

(Watts) 
Total 

Interface 
Dimensions 

(HxBxT) 

1 High resolution camera Basler A601fc-2 Firewire 0 Firewire 0 

1-A Night vision camera Basler A601fc-HDR Firewire 0 Firewire 0 

2 High resolution camera Basler A601fc-2 Firewire 0 Firewire 0 

2-A Night vision camera Basler A601fc-HDR Firewire 0 Firewire 0 

3 High resolution camera Basler A601fc-2 Firewire 0 Firewire 0 

3-A Night vision camera Basler A601fc-HDR Firewire 0 Firewire 0 

4 Video Image Acquisition system 

NORPIX-StreamPix, digital 
video recording software version 
3.20.1, USB product key, 
Pentium 4 computer 

220/110V AC 250 

Inputs = 1 parallel, 1 optic, 1 
eSATA, 6 USB, 5 firewire, 1 
ethernet, 4 line out sound, 2 
line in sound, 1 VGA, 1 
Gamepad  

  

4-A Monitor + mouse + keyboard         

5 XYZ accelerometer IMU 400 Crossbow 9-25 V DC 3 
15 PinD Output Connector 
Male / 6 Digital Input or 
DB-9 Standard Com Port 

  

6 2D laser scanner LMS221-30206 24 V DC 20 
DB-9 Std. COM Port Output 
/ Input 

  

7 EEG 
GRASS TELEFACTOR 
AURA24 

Self Powered 0 RS232   

8 24 channel Data Acquisition Device Alesis ADAT HD24 110 / 220 VAC 60 
Audio inputs = 24 x 1/4" 
TRS jacks, Audio outputs= 
24 x 1/4 TRS jacks 

133mm x 483mm 
x 342 mm 

9 
8-channel Input Signal Mixer 
Amplifiers to convert 8 audio 
channels in Alesis 

Behringer/UltraGain Pro8 
Digital ADA8000 ADC/DAC 

110V AC 25 

MIC IN->XLR Female 
LINE IN->1/4" TRS  LINE 
OUT-> XLR Male DIGI IN-
> Toslink-Optical DIGI 
OUT-> Toslink-Optical 

44.5mm x 
482.6mm x 217 
mm 

10 
Driver headphone and mouth 
microphone 

Beyer Dynamic   Stereo Audio IN/OUT   

11 Visor Microphone Sony ECM-C115 
lithium batery 

CR2025 
0 L shape Male Stereo Jack   

12 Collar Microphone Sony ECM-C115 
lithium batery 

CR2025 
0 L shape Male Stereo Jack   

12-A Room Microphone Sony ECM-C115 
lithium batery 

CR2025 
0 L shape Male Stereo Jack   

13 Break Pedal Pressure Sensor 
Custom beak sensor made in 
Japan 

 0 Special Connector   

13-A 
Break Pedal Pressure Sensor 
Amplifier 

Custom amplifier made in Japan 12 DC 0 Special Connector   

14 GPS receiver 
Trimble Pathfinder Pro XRS + 
Omnistar VBR 1 year 
subscription 

10-32 V DC 7 
DB-9 Std. COM Port Output 
/ Input 

  

14-A GPS receiver         

15-20 
Megane Layout and Sensors for 
distance measurement 

SensComp 600 Pakage (2x4 
pcs) 

4,5-6,8 V DC 53.2 
JST Polaroid Coonector 
Output / 4 Digital Input 

  

21 Laptop 
Toshiba Tecra S3 Sonoma 
2Ghz/Alternative 

AC-DC      

22 
PCMCI serial transformer for 
Laptop 

Quatech QSP-100, 4 port RS-
232 serial PCMCIA Card 

   4 port RS-232   

23 Cellular Phone 
Sony Ericson W800i Walkman-
Phone 

Self Powered 0 
Handset microphone and 
headphone 

100mm x 46mm 
x 20.5mm 

24 12V DC - 220 AC Power Inverter 
Pure Sine Wave 1500 W S1500-
212E3 

12 DC 1500 W 
Special Cable to Megane 
Battery; 220 ground two exit 
socket  

390mm x 275mm 
x 105mm 

24-A Power distributor panel         

25 Panoramic and remote camera 

RPU C2512 FG Panoramic 
Camera + RPU SP Remote 
Control Camera + RPU K 3m 
Cable 
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3.2 Data Collection Studies with CAN Data Bus 

 

The data on the CAN data bus has an important role for modeling driver behavior, 

for security related recognition/verification and fatigue detection tasks. The 

following data were obtained from the CanBUS of the vehicle: 

 

• Steering Wheel Angle 

• Steering Wheel Angular Speed 

• Engine Period 

• Vehicle Speed 

• Every Wheel’s Angular Speed 

 

 

 
 

Figure 3.3 – Interface for CAN Data Bus 

 

A card Canalyzer is attached to the data collection computer’s PCMCI socket. Data 

can be observed and recorded at required intervals, with the help of this card and the 

program which is developed in Visual Studio platform and C++ language.  
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3.3 Synchronization of Sensors 

 

For the activity of data analysis, it is important to gather the data from vehicle’s 

instruments in a synchronous way. All sensor systems have different interfaces. For 

running these systems synchronously, it is first planned to send a trigger signal to the 

systems, as a result of this, trigger signal and different modules record starting time. 

However only marking the starting times during the records can cause some 

problems. Therefore, it is planned to send the trigger signals with certain time 

intervals at the record time. The systems, that are used to trigger signal, are different 

from each other and additional electronic circuit is needed for some of the systems. 

In this system, times of all systems in the vehicle are arranged according to a 

reference point. As a result of this, during the time marked voice, image, and other 

signals synchronization of each other is satisfied for required any time intervals. 

Graphical representation of the system is depicted in Figure 3.4. 

 

         Reference Time 

 
                             Common Time 1                                                   Common Time 2 

 

Figure 3.4 - Synchronization structure 

 

 
3.4 Determination of Data Collection Track 

 

Most of the fatigue-related experiments will be done in the simulator environment. 

For determining simulator experiments realities, a track is determined, 3 dimensional 

model of this track will be rendered to the simulator. According to the objective the 

following track is determined. The track is started from OTAM, which is a research 

center in ITU Ayazağa Campus, certain proportion main road, certain proportion city 

traffic. Also, this study is determined in coordination between Japanese partners as a 

Norpix 
Camera 
Record 
System 

 

Alesis : 
Sonar, Voice 

Laptop: IMU, 
CAN, 3D Laser, 

GPS 
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scope of the NEDO project. Figure 3.5 shows the Maslak track of the experiment. 

This track is planned to take about 40 minutes. 

 

 
 

Figure 3.5 - Track of experiment vehicle 
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Chapter 4 

Classifier Theory 

 

Classifier is an algorithm which takes features as input and interprets what it means 

according to the information. The information is encoded into the algorithm. At the 

end it may give a single output like a label or a range of confidence values. 

 

Knowledge of a classification task combines into a classifier by selecting a suitable 

classifier type such as neural network, a distance transform or Bayesian classifier. 

Also, knowledge is required for deciding an appropriate inner structure for the 

classifier such as the number of neurons and layers in a neural network classifier. In 

Bayesian classifier the probability density models or functions are selected. These 

choices are important for the determination of the classifier complexity. 

 

Classifier complexity is a trade off between representational power and generality for 

a task. A simple classifier may not be talented for learning or representing classes 

well which bring in poor accuracy. For example an over-fitted classifier may classify 

the training data 100 percent correct. However when a different data set for the same 

task is offered, the accuracy may be poor. Because of this the training data is usually 

divided into two disjoint set such as an actual training set and a test set for estimating 

the classifier performance objectively.  

 

A classifier may have numerous parameters that have to be adapted according to the 

task. This process is called training or learning. In the case of supervised learning 

the training samples are labeled and the aim is to minimize the classification error of 

the training set using training algorithm. In the case of unsupervised learning or 

clustering the training samples are not labeled however training algorithm aims to 

find clusters and form classes. Also, in the case of reinforcement learning the training 
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labels are not labeled however the training algorithm uses feedback such as it tells 

that it classifies a sample correctly or not [5]. 

 

4.1 Bayesian Classification 

 

A fundamental of the Bayesian classification and decision making is the probability 

theory. It aims to choose the most probable or the lowest risk option. Suppose that 

there is a classification task for classifying feature vectors to K different classes. A 

feature vector is represented as [ ]T

Dxxxx ,...,, 21= where D represents the dimension 

of a vector. The probability that a feature vector x belongs to class kω represented 

as )|( xP kω , and it is mentioned as a posteriori probability. According to the 

posterior probabilities the classification vector is done or decision risks are 

calculated. 

 

The posterior probabilities computed using Bayes rule 

 

)(

)()|(
)|(

xp

Pxp
xP kk

k

ωω
ω =              (4.1) 

 

where )|( kxp ω  represents the probability density function of class kω  in the feature 

space and )( kP ω  represents the a priori probability, that denotes the probability of 

the class before measuring any features. In the case of the unknown prior 

probabilities, they can be estimated by the class proportions in the training set. The 

divisor 
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1
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is only a scaling factor that guarantees that posterior probabilities are really 

probabilities such as their sum is equal to one. 

 

The class-conditional probability density function )|( kxp ω is the major problem for 

Bayesian classifier. The function describes the distribution of feature vectors in the 
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feature space inside a particular class. Generally it is always known except in some 

artificial classification tasks. The distribution evaluated from the training set using 

some methods [5]. 

 

4.2 Gaussian Mixture Probability Density Function 

 

In one dimension the Gaussian probability density function is a bell shaped curve 

described by two parameters such as mean µ and variance σ2. In D-dimensional 

space it is described in a matrix form as  

 


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1
exp

||)2(

1
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π
µ xxxN

T

D
           (4.3) 

 

where µ represents the mean vector, Σ represents the covariance matrix. 

 

The Gaussian distribution is usually a good approximation for a class model shape in 

an appropriate selected feature space. It is a mathematically sound function and 

extends to multiple dimensions. In the Gaussian distribution there is an assumption 

that the class model is a complete model of one basic class. It fails when the actual 

model, the actual probability density function, is multimodal. For example, assume 

that we are searching for different face parts from a picture and there are many basic 

types of eyes, because the people are from different races. Therefore single Gaussian 

approximation defines a wide mixture of all eye type also including the patterns 

which do not look like an eye. 

 

Gaussian Mixture Model (GMM) is a mixture of several Gaussian distributions. 

Therefore it can represent different subclasses inside a one class. The probability 

density function is represented as a weighted sum of Gaussians 

 

∑
=
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where cα  represents the weight of the component c, 10 pp cα  for all components, 

and 1
1

=∑ =

C

c cα . The parameter list 

 

{ }CCC ΣΣ= ,,,...,,, 111 µαµαθ              (4.5) 

 

describes a particular Gaussian mixture probability density function.  

 

Estimation of the Gaussian mixture parameters for one class is referred to as 

unsupervised learning. This is the case where the samples are generated by 

individual components of the mixture distribution and there is no knowledge about 

which sample was generated by which component. Clustering attempts to identify 

the exact components, but Gaussian mixtures can also used as approximation of an 

arbitrary distribution [5]. 

 

4.3 Maximum Likelihood Estimation 

 

The class-conditional probability density functions are determined for the 

construction of the Bayesian classifier. The initial model selection can be done by 

visualizing the training data. But the model parameters’ setting requires measure of 

goodness, like how well the distribution fits the observed data. So, data likelihood is 

an example of goodness value. 

 

Let us assume that },...,{ 1 NxxX =  is a set of independent samples and drawn from a 

single distribution which is described by a probability density function );( θxp =  

where θ  represents the PDF parameter list. The likelihood function 

 

L ∏
=

=
N

n

nxpX
1

);();( θθ                         (4.6) 

 

shows the likelihood of the data X given the distribution or given the distribution 

parametersθ . The aim is to find θ̂  which maximizes the likelihood. 
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θ

maxarg  L );( θX                       (4.7) 

 

This function is not maximized directly but the logarithm 

   ln);( =θXL L ∑
=

=
N

n

nxpX
1

);(ln);( θθ                       (4.8) 

 

called the log-likelihood function. Also, it is easy to handle. It is the same using L 

);( θX or );( θXL because the logarithm functions is monotone.  

 

According to );( θxp = it is possible to find the maximum analytically by setting the 

derivatives of the log-likelihood function to zero then solving forθ . This can be 

done for a Gaussian PDF, which leads to the estimates for a mean and variance. But 

the analytical approach is intractable. In practice an iterative method such as 

expectation maximization (EM) algorithm is used. In some cases maximizing the 

likelihood leads to singular estimates, this is the fundamental problem of maximum 

likelihood methods with Gaussian Mixture Models. 

 

Consider the task of classifying vectors into K classes. If the different classes can be 

seen as independent, the estimation problem of K class-conditional PDFs can be 

divided into K distinct estimation problems [5]. 

 

4.4 Basic EM Estimation 

 

The expectation maximization (EM) algorithm is an iterative method which is used 

for calculating maximum likelihood distribution parameter estimates from 

incomplete data. Also, it is used for handling the cases where an analytical approach 

for maximum likelihood estimation is feasible like Gaussian mixtures with unknown 

and unrestricted covariance matrices and means.  

 

Suppose that each training sample contains both known and missing features. Mark 

all good features of all samples with X and all missing features of all samples with 

Y. The expectation step (E-step) for the EM algorithm has the form 

 ˆ =θ
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    [ln);( Y

i
EQ ≡θθ L ]i X; |)Y;(X, θθ                        (4.9) 

 

where iθ represents the presents the previous estimate for the distribution parameters 

and θ  represents the variable for a new estimate describing the distribution. L 

represents the likelihood function which is described in equation (4.6). This function 

calculates the likelihood of the data, including the missing feature Y marginalized 

with respect to the current estimate of the distribution described by iθ . The 

maximization step (M-step) maximizes );( iQ θθ with respect toθ  and the set 

 

);(maxarg1 ii Q θθθ
θ

←+                                   (4.10) 

 

Repeat the steps until a convergence criterion is met. 

 

It is suggested for the convergence criterion that 

 

( ) ( ) TQQ iiii ≤− −+ 11 ;; θθθθ            (4.11) 

 

where suitably selected T and  

 

εθθ ≤−+ ii 1             (4.12) 

 

appropriately chosen vector norm and ε . It is common for both of the criteria that 

iterations are stopped when the change in the values falls below a threshold. More 

complicated criterion can be derived using equation (4.11) by using relative rate of 

change instead of absolute rate of change. 

 

EM algorithm starts with an initial guess 0θ for the distribution parameters. The log-

likelihood increase on each iteration until it converges. The convergence takes to a 

local or global maximum. But also it takes to singular estimates which are true 

especially for Gaussian mixture distributions with arbitrary covariance matrices. 
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One of the problems of EM algorithm is the initialization. The selection of 0θ  

decides where the algorithm converges the boundary of the parameter space 

producing singular results. Some solutions for initialization are multiple random 

starts or clustering algorithms. 

 

The application of the EM algorithm to Gaussian mixtures goes as follows. The 

known data X is interpreted as incomplete data. The missing part Y has the 

knowledge of which component produced each sample nx . For each nx there is a 

binary vector { }Cnnn yyy ,1, ,...,= , where 1, =Cny , if the sample produced by the 

component c, otherwise it is zero. The complete data log-likelihood is 

 

lnL ∑∑
= =

=
N

n

nc

C

c

cn cxpyYX
1 1

, ));|(ln();,( θαθ           (4.13) 

 

In the E-step the conditional expectation of the complete data log-likelihood is 

computed with the Q-function, given X and the current estimate iθ of the 

parameters. The complete data log-likelihood lnL (X,Y;θ) is linear with respect to 

the missing Y, the conditional expectation [ ]θ,| XYEW ≡  is computed and put it 

into L (X,Y;θ). For this reason 

 

  [ln),( EQ
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where the elements of W can be shown as 
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The probability calculated using Bayes Rule 
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where i

cα  presents the a priori probability (of estimate iθ ) and cnw ,  represents the a 

posteriori probability that 1, =cny  after observing nx . Also, cnw ,  represents the 

probability that nx  was produced by component c. 

 

Apply the M-step to the problem of estimating the distribution parameters for C-

component Gaussian mixture with arbitrary covariance matrices; the following 

iteration formula is obtained. 
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The new estimates are collected to 1+iθ  in equation (4.5). If the convergence 

criterion in equations (4.11) and (4.12) is not satisfied, 1+← ii  and the equations 

between (4.16) to (4.19) are evaluated with new estimates.  

 

The explanation of the equations (4.17) to (4.19) is intuitive. The weight cα  of a 

component represents the portion of samples belonging to that component. The 

computation is done by approximating the component-conditional PDF with the 

previous parameter estimates and taking the posterior probability of each sample 

point belonging to the component c in equation (4.16). 

 

Also, the component mean cµ  and the covariance matrix cΣ  are estimated in the 

same way. First the samples are weighted with their probabilities of belonging to the 

component, and then the computations of sample mean and covariance matrix are 

done. 
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Note that the number of components C assumed to be known. Clustering techniques 

aim to find true clusters and components from a training set. But training a classifier 

needs a good approximation of the distribution of each class. So, C does not need to 

be guessed definitely. It is a parameter and represents the complexity of the 

approximation distribution. If C is too small, it prevents the classifier from learning 

the sample distributions well enough. If C is too large, it leads to an over fitted 

classifier. Moreover large values of C will lead to singularities in case the training 

data becomes insufficient [5]. 
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Chapter 5 

Data Fusion Techniques 

 

Fusion has the meaning of combining information from different sources for 

improving the performance of a system. The most known example of fusion is the 

use of different sensors for detecting a target. In general, different inputs may be 

found from a single sensor at different times. Also, many experts make different 

processing from a single sensor at a given time. In this case, many experts may be 

“consulted” to come up with the decision with highest confidence. 

Fusion can be used for many purposes like detection, recognition, identification, 

tracking, change detection, decision making, etc. Fusion has application areas of 

Defense, Robotics, Medicine, Space, etc.  

The advantages of using an efficient fusion scheme are as follows [6]: 

 

• Improvement of the confidence of decision 

• Improvement of countermeasures performance (camouflage an object in all 

possible wave-bands) 

• Improvement of performance in existence of unsuitable environmental 

conditions. For example some weather conditions like fog and smoke cause 

bad visible contrast also some weather conditions like rain cause low thermal 

contrast, so by combining both types of sensors better overall performance is 

obtained. 

 

5.1 Types of Fusion Processes 

 

Fusion processes can be categorized into the three such as low, intermediate and high 

level fusion according to the processing stage where the fusion takes place.
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5.1.1 Low Level Fusion 

 

Low level fusion is also called as data fusion. It combines raw data from the several 

sources for producing new raw data which is expected to be more informative than 

the inputs. In image processing, images present several spectral bands of the same 

scene. So, images are fused for producing a new image. The new image contains in a 

single channel has most of the information that is available in the different spectral 

bands. This single image can be used by an operator or an image processing 

algorithm instead of the original images. If the number of available spectral bands 

becomes very large, looking at the images separately becomes impossible. A precise 

(pixel-level) registration of the available images is required in this kind of fusion. If 

the various bands come from the same sensor, the registration is intrinsic. But it is 

more complicated than the bands which use several different sensors like SAR, IR, 

scanner, camera, etc. The aim of this kind of fusion is fusing relevant information 

from the different images. The problem is defining that what the relevant information 

is. Human beings do not make the classification on the basis of local information. 

They rather use secondary information and trust their global interpretation 

capabilities. Relevant information is defined as local variations by the most of the 

fusion algorithms. This becomes a poor modeling of relevant information if the noisy 

spectral bands (SAR) are used [6]. 

 

5.1.2 Intermediate Level Fusion 

 

Intermediate level fusion is also called as feature level fusion. It combines several 

features like edges, corners, lines, texture parameters, etc into a feature map. Those 

features may come from several raw data sources like several sensors, different 

moments, etc. or come from the same raw data. Also, the objective is to find relevant 

features from between the available features. So, these features come from the 

several feature extraction methods. Moreover, limited number of relevant features 

must be obtained. The feature fusion methods are Principal Component Analysis 

(PCA), Diablo shaped Multi-layer Perceptions (MLP) for the non-linear counterpart, 

etc. In image processing, for segmentation or detection feature maps are computed as 

pre-processing. Several features like edges, corners, lines, texture parameters, etc are 

computed and then combined into a fused feature map. So, it can be used for 

segmentation or detection [6]. 
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5.1.3 High Level Fusion 

 

High level fusion is also called decision fusion. It combines decisions which come 

from several experts. In other words, if the experts return a confidence (score) 

instead of a decision, it is a decision fusion problem. For differentiating two cases, 

one of them is hard fusion and the other is soft fusion. Decision fusion methods are 

voting methods, statistical methods, fuzzy logic based methods, etc.  

 

The above categorization does not include all possible fusion paradigms. For 

example, input and output of the fusion process may denote different levels of 

processing.  

The fusion procedures are categorized into five categories according to their input 

and output characteristics like Data in-Data out, Data in-Feature out, Feature in-

Feature out, Feature in-Decision out, Decision in-Decision out. In majority, Data in-

Decision out may be considered as a sixth category. In spite of it is not the most 

promising approach but it is good practice for extracting relevant features from raw 

data before attacking a classifier.  

Also, there is a terminology like temporal fusion, spatial fusion or spectral fusion 

which can be found in the literature. But these are not considered as new fusion 

types. The last two ones are the examples of low or intermediate level fusions. The 

temporal fusion characterizes the type of the input used. Moreover, it may occur at 

any level. In the above part mentioned that, the input may come from the one or 

several sensors. In the temporal fusion, the inputs, which taken from the one sensor 

at different moments, are combined. If some kind of noise reduction is introduced, 

this type of fusion may improve the performance. In motion fusion case, the target 

may indicate many aspects or occlusion profile [6]. 

5.2 Fixed Rules 

 

Consider a pattern recognition problem where Z is a pattern and classes are (ω1,..., 

ωm). The goal is to assign Z to the one of the m possible classes. Assume that there 

are R classifiers each of which represents the given pattern by a distinct measurement 
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vector, where xi is the measurement vector that is used by the ith classifier. Each 

class ωk is modeled by the probability density function p(xi | ωk) and the priori 

probability of occurrence is determined by P(ωk). Consider that the models are 

mutually exclusive. It means that only one model is associated with each pattern. 

 

The given measurements are as follows:  

 

• xi, is the ith classifier, where i = 1,..., R 

• Z, is the pattern 

• ωj, is the class  

 

the pattern Z should be assigned to class ωj obtain the posteriori probability of that 

interpretation is maximum, i.e. 
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In the above equation the Bayesian decision rule shows that in order to use all 

available information correctly to obtain a decision, it is necessary to compute the 

probabilities of the different hypotheses by considering all measurements 

simultaneously. Posteriori probability functions computation depend on the 

knowledge of high-order measurement statistics which is described in terms of joint 

probability density functions p(x1,..., xR | ωk). In this case it is difficult to draw a 

conclusion. So, the above rule must be simplified. This rule will be determined in 

terms of decision support computations which are done by the individual classifiers 

and the information is expressed by the vector xi.  This procedure will make the 

above rule computationally useful and it will manage the combination rules. The 

computation rules are generally used in practice. Furthermore, this procedure will 

obtain an opportunity for the development of a range of efficient classifier 

combination strategies. 

 

According to the above rule, by using Bayes theorem, the posteriori probability  

P(ωk |  x1,..., xR) can be rewritten in the following form  
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In the above equation p(x1, ....., xR) is the unconditional measurement joint 

probability density. Also this expression can be written in terms of the conditional 

measurement distributions like 
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Because of this, in the next parts, we will deal with the numerator terms of the 

equation (5.2) [7]. 

 

5.2.1 Product Rule 

 

As already described in the above parts, p(x1, ... xR | ωk, ) shows the joint probability 

distribution of the measurements obtained by the classifiers. Assume that the 

representations used are conditionally statistically independent. As a result of this 

assumption the following expression can be written 
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where p(xi|ωk) is the measurement process model of the ith representation. By 

substituting equations (5.3) and (5.4) into the equation (5.2) the following equation is 

obtained  
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Also, by using equation (5.5) in equation (5.1), the following decision rule is 

obtained 
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or in terms of the a posteriori probabilities brought by the respective classifiers can 

written in the following form  
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The decision rule, which is shown in equation (5.7), considers the likelihood of a 

hypothesis by combining the a posteriori probabilities. The a posteriori probabilities 

are formed by the individual classifiers. So, it is called as product rule [7]. 

 

5.2.2 Sum Rule 

 

In some cases the decision rule, which is shown in equation (5.7), may be appropriate 

under the assumption that the a posteriori probabilities computed by the respective 

classifiers will not diverge dramatically from the prior probabilities. It is a strong 

assumption. When the available observational discriminatory information is 

undetermined due to high levels of noise, it can be satisfied. 

 

In this situation, assume that the a posteriori probabilities can be written as the 

following form. 
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where δ ki satisfies δ ki << 1. If the equation (5.8) for the a posteriori probabilities is 

substituted into the equation (5.7), the following result is obtained. 
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For approximating the equation (5.9) in the right-hand side, expand the product and 

neglect the second and higher order terms.  
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By substituting equations (5.10) and (5.8) into the equation (5.7), sum decision rule 

is obtained [7]. 
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The basic schemes for classifier combination are formed by the decision rules 

equations (5.7) and (5.11). Also, these rules are used for developing many commonly 

classifier combination strategies. Note that 
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The above expression determines that the product and sum combination rules can be 

approximated by the above upper or lower bounds. Moreover, producing binary 

valued functions ∆ki from the a posteriori probability P(ωk | xi ) is the following 

 







=

=∆ =

otherwise

xPxPif ij

m

j
ik

ki

0

)|(max)|(1
1

ωω
           (5.13) 

 

Binary valued functions are resulted in combining decision outcomes rather than 

combining a posteriori probabilities. Using these approximations we obtain the max, 

min and median rules [7]. 
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5.2.3 Max Rule 

 

Equation (5.14) is obtained from the equation (5.11). Equation (5.14) is 

approximating the sum by the maximum of the posterior probabilities. 
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under the assumption of equal priors simplifies to [7] 
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5.2.4 Min Rule 

 

For obtaining the equation (5.16), start from equation (5.7) and bound the product of 

posterior probabilities from above equation. 
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It simplifies under the assumption of equal priors into the following form [7] 
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5.2.5 Median Rule 

 

The sum rule in equation (5.11) can be interpreted as computing the average a 

posteriori probability for each class over all the classifier outputs, under the equal 

prior assumption. As an example,  
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So, the rule assigns a pattern to that class and the a posteriori probability of the class 

is maximum. If some of the classifiers output an a posteriori probability for some 

outlier class, it will influence the average. This results in an incorrect decision. It is 

known that a reliable estimate of the mean is the median. As a result of this, the 

combined decision is based on the median of the posteriori probabilities. Then it 

indicates the following equation [7] 
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5.3 Trainable Combiners 

 

5.3.1 Linear Discriminant Classifier 

 

A discriminant is a function which takes the vector x as an input and assigns it to the 

one of the K classes which is shown by Ck. The basic representation of the linear 

discriminant function is shown as  

 

0)( wxwxy T +=              (5.20) 

 

where w is represent weight vector and w0 is represent bias. Sometimes the negative 

of bias is called threshold. 

 

If y(x) ≥ 0 then the input vector is assigned to class C1 otherwise it is assigned to 

class C2.  

 

Therefore the decision boundary is defined by the relation y(x) = 0, which 

corresponds to a (D-1) - dimensional hyper plane within D-dimensional input space. 
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Take two points xA and xB which lie on the decision surface. Because y(xA) = y(xB) 

=0, the equation becomes wT (xA- xB) = 0. So, vector w is orthogonal to every vector 

which lies within the decision surface. Also, if point x is on the decision surface, then 

the equation becomes y(x) = 0. So, the normal distance from the origin to the 

decision surface is computed as 
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where w0, bias parameter, determines the location of the decision surface.  

 

Note that y(x) gives a signed measure of the perpendicular distance r of the point x 

from the decision surface. As an example, choose an arbitrary point x and x ┴ be its 

orthogonal projection onto the decision surface,  
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multiply both sides of the above equation with wT and add w0,  also use the following 

equations y(x) = wTx + w0  and y(x ┴) = wT x ┴ + w0 = 0, so equation is considered [8] 
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5.3.2 Fisher’s Discriminant (Minimum Least Square Linear Classifier) 

 

Fisher criterion can be obtained as a special case of Least Squares. Particularly, the 

targets for class C1 must be taken as N / N1, where N1 represents the number of 

patterns in class C1, and N represents the total number of patterns. The target value 

approximates to the reciprocal of the prior probability for class C1. In the case of 

class C2, the targets must be taken as - N / N2 , where N2 represents the number of 

patterns in class C2. So, the sum-of-squares error function can be defined as 
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The following equations can be obtained by setting the derivatives of E with respect 

to w0 and w to zero. 
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go back to the equation (5.25) and make use of the choice of target coding scheme 

for the tn, the following equation can be obtained  
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where the below equation is used 
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where m represent the mean of the total data set and it is shown as 
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After doing some algebraic operations and using the choice of tn, and the equation 

three the following equation is obtained, 
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where Sw represents total within- class covariance matrix  
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and SB represents between-class covariance matrix 
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by substituting the equations (5.27),(5.31) and (5.32) and ignoring irrelevant scale 

factors the following equation is obtained, 
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Note that SBw is always in the direction of (m2-m1). The weight vector matches with 

that found from Fisher Criterion. 

 

Also an expression found for bias value w0 
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which means that a new vector x should be classified as belonging to class C1 if  
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otherwise it belongs to class C2 [8]. 

 

5.3.3 Naive Bayes Classifier 

 

Naïve Bayse Classifier is a probabilistic classifier and it is based on Bayes’ Theorem 

with independence assumptions. Bayes’ Theorem is related to the Conditional and 

Marginal Probability distributions of random variables. The derivation of Bayes 

Theorem is the following:  

 

The Conditional Probability of event A given event B is 
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Also, the probability of event B given event A is  
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By combining these two equations we can get the following rule  
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This lemma is called the product rule for probabilities. By dividing both sides with 

Pr(B), we can get Bayes’ Theorem  
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5.3.3.1 Naive Bayes Probabilistic Model 

 

The probability model for a classifier has a conditional model of the form 
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where C represents a dependent class variable and F1 through Fn represent feature 

variables. 

 

If the feature take large number of values or the number of features n is large we can 

have problem. Then by using Bayes’ theorem we reformulate the model 
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The important part of the formula is the numerator part of the fraction, because the 

denominator part of the fraction is independent from C. Also, the values of features 

Fi are given, so the denominator part becomes constant. And the numerator part 

becomes Joint Probability model  
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Also, formula can be rewritten by using the definition of Conditional Probability 
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Assume that every feature Fi is conditionally independent from other feature Fj for 

ij ≠  so,  
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and joint model can be shown as 
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The conditional distribution over the class C can be shown as the following form: 
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Here the Z value is a scaling factor that depends on feature variables nFF ,...,1 . If the 

feature variables values are known, Z becomes constant [9]. 
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5.3.4 Kernel Density Estimator 

 

Let us assume that observations are done from p(x) which is unknown probability 

density in some D-dimensional Euclidean space and the aim is to estimate the value 

of p(x). Let us consider a small region R which contains x. So, the probability 

associated with this region becomes 
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where P represents probability, R represents region and p(x) represents probability 

density. 

 

Suppose that there is a data set which includes N observations from p(x). Every data 

point has a probability P of falling within the region R. According to the binomial 

distribution, total numbers of K points, which lie inside the R, are distributed. 
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where K represents the total number of points, N represents the number of 

observations and P represents the probability. 

 

According to the below equation,  
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the mean fraction of points falling inside the region is shown by 
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Also by using the below equation, 
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the variance around the mean becomes, 
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For large values of N the distribution has the form 

 

NPK ≅              (5.52) 

 

Assume that the region R is sufficiently small and the probability density is 

approximately constant over the region, then the equation becomes 
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where p(x) represents probability density and V represents volume over R. 

 

By combining the equations (5.52) and (5.53), the density estimation is obtained in 

the form of 
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For the validity of the above equation, assume that R region is sufficiently small and 

because of this the density is approximately constant over the region. Also, note that 

R region is sufficiently large that K points are falling inside the region is sufficient 

for the binomial distribution [8]. 

 

5.3.4.1 Parzen Classifier 

 

The region R is taken as a small hypercube which is centered on the point x. And the 

aim is to determine the probability density function. Instead of counting the K 



 

 44 

number of points that are falling within the region, the following function is defined 

as 
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where the function k(u) represents a unit cube centered on the origin. And, the 

function k(u) is an example of a kernel function, also it is called a Parzen Window. 

 

According to the equation (5.55), if the data point xn lies inside a cube of side h 

centered on x, the quantity k ((x-xn)/h) will be 1 and 0 otherwise. 

 

For this reason the total number of data points lying inside the cube will be shown as 
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Also, substituting the equation (5.56) into the equation (5.54), the following result is 

obtained for the estimated density at x,  
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where hD represents the volume of a hypercube of side h in D dimensions. Also, 

instead of computing the probability density of a single cube centered on x, compute 

the sum over N cubes centered on N data points xn. So, by using the symmetry of the 

function k(u), the equation (5.57) is re-interpreted.  

 

The kernel density estimator in equation 12 has a problem, namely the presence of 

artificial discontinuities in this case at the boundaries of the cube. A common choice 

is Gaussian, which gives us the following kernel density model, 
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where h is the standard deviation of the Gaussian components. In this model, a 

Gaussian over each data point is placed, then the contributions over the whole data 

set is adding up and finally the density is normalized by dividing N.  

 

Choose another kernel function k(u) in equation (5.57) with the following conditions, 
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which make definite that the resulting probability distribution is non negative 

everywhere and integrates to 1. 

 

The class of density model which is given in equation (5.57) is called a kernel 

density estimator or Parzen estimator. It has an advantage that no computation is 

involved in ‘training’ phase because this requires storage of the training set. But at 

the same time this is a disadvantage because the computational cost of evaluating 

density is linearly growing according to the size of the data set [8]. 

 

5.3.5 K-Nearest Neighbor Method 

 

In previous sections, the general result for local density estimation is found as  
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K
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Instead of fixing V and determining the value of K from the data, we do something 

different and this time fix the value of K and determine an appropriate value for V by 

using the data. For doing this, consider a small sphere centered on the point x at 

which the density p(x) will be estimate. Also, the radius of the sphere will grow until 

it contains exactly K data points. The estimate of the density p(x), which is given by 

in equation (5.54), with V is set to the volume of the resulting sphere. This technique 

is known as K nearest neighbors. 
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For extending K-nearest-neighbor technique to the problem of classification, first 

apply K-nearest-neighbor density estimation technique to each class separately and 

then use Bayes’ theorem. Assume that there is a data set contains Nk points in class 

Ck with N points in total, so NN
k k =∑ . If a new point x is to be classified, then 

draw a sphere centered on x containing exactly K points irrespective of their class. 

Assume that the sphere has volume V and contains Kk points from class Ck. Then the 

equation (5.54) obtains an estimate of the density of each class 
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Also, the unconditional density is the following 
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and the class priors are the following 
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So, for obtaining the posterior probability of class membership, combine the 

equations (5.61), (5.62) and (5.63) and use Bayes’ theorem [8]. 
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5.3.6 Nearest Mean Linear Classifier 

 

In a two-class problem, the normal density based linear classifier (NLC) built on the 

set R is shown as 
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and the normal density based quadratic classifier (NQC) is shown as 
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where C1 and C2 represent the estimated class covariance matrices and 

)(
2

1
21 CCC +=  represents the sample covariance matrix which determined in a 

dissimilarity space. The square Mahalanobis distance between D(x,R) and the class 

mean mi represented as  
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If the covariance matrix C or C1 or C2 is singular, then its inverse will not be 

computed. A solution is using the regularized version which is defined as 

ICCreg λλ +−= )1(  where I represents the identity matrix. The following 

regularization is used for choosing a proper λ .  

 

ICtr
n
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λ

λλλ ++−= , n = ||R||. So, the regulation term is expressed 

relatively to the variance.  

 

If the covariance matrix C is the identity matrix, NLC reduces to nearest mean 

classifier (NMC), assigning an object to the class of its nearest mean vector in the 

Euclidean sense. If C is a diagonal matrix, then the resulting decision rule is the 

weighted nearest mean classifier (WNMC). So, these are multi-class classifiers [10]. 

 

The nearest mean classifier stores only the mean of each class such as one prototype 

per class. It classifies the objects with the label of the nearest class prototype. The 

nearest mean classifier is very robust. It generally has a high error on the training 

data and on the test data, but the error on the training data is a good prediction of the 

error on the test data [11]. 
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5.3.7 Perl Classifier - Linear Classifier by Linear Perceptron 

 

The perceptron is a kind of binary classifier. In binary classification, the set of 

objects are classified into the two groups like the first group has some property and 

the second group does not have that property. So, the perceptron maps its input 

binary vector x to an output value f(x) according to the following expression 
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Where w represents a vector of real-valued weights and xw ⋅ represents the dot 

product. Here the dot product computes the weighted sum. Also, the term b 

represents the bias and it is constant. So, it does not depend on any input value. 

 

The output value of f(x) is either 0 or 1. Because of binary classification, these values 

are used for classifying the input x as either positive or negative instance. Here, the 

bias b can be used for offsetting the activation function or giving a base level activity 

to the output. So, if the value of b is negative, then the value of the dot product, 

which is the combination of weighted inputs, must be greater than the value of –b for 

producing a positive value. Also, the bias changes the position of the decision 

boundary. 

 

Since, the output is directly related with the inputs, the perceptron can be assumed as 

a simple form of feed-forward neural network [12]. 
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Chapter 6 

Driver Recognition and Verification/Approval 

 

This thesis aims to recognize/approve the driver by using driving signals. The results 

of driver recognition and approval can be used for the security purposes and also, 

vehicle’s some settings can be personalized automatically. In this study, both Drive-

Safe and Nagoya University’s driver data are used. The Center for Integrated 

Acoustic Information Research (CIAIR) at Nagoya University is recorded a multi-

model corpus inside a vehicle. In these experiments different driving behavior 

signals were collected from 5 analog channels, each sample except steering wheel 

angle was converted into 1 kHz with an unsigned 16-bit format. 

 

1- Break pedal pressure (kgf/cm2): 0-50 kgf/cm2 was mapped to 0-5.0 V and 

linearly digitized in the range 0 to 32767. 

2- Accelerator pedal pressure (kgf/cm2): 0-50 kgf/cm2 was mapped to 0-5.0 V 

and linearly digitized in the range 0 to 32767. 

3- Engine speed (period/minute): 0-8000 period/minute was mapped to 0-5.0 V 

and linearly digitized in the range 0 to 32767. 

4- Vehicle speed (km/h): 0-120 km/h was mapped to 0-5.0 V and linearly 

digitized in the range 0 to 32767. 

5- Steering wheel angle (degree): -1800 degrees to +1800 degrees and linearly 

digitized in the range -32769 to 32767. 

 

We will be using these five channels of driving data in our study. 

 

Driver recognition is the process of determining whether the person in question 

belongs to the driver subjects’ database. In the driver verification/approval process, 

the goal is to determine whether the identity of the driver is the same which he/she 
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claims. For example, if the driver sits in the driver seat and the vehicle determines 

the driver directly, this process is not a driver verification process. If the driver 

claims that he/she is a certain driver and the vehicle determines whether the driver is 

certain driver or not, then this process is a driver verification process. In this project, 

according to the scenario driver recognition or a driver verification/approval will be 

done. 

 

Other biometric features, which are generally used for recognition and verification 

tasks are the face, sound and driving behavior. In daily life, people use face and 

sound methods for recognize each other. So, these techniques are very natural and do 

not disturb the driver. Driving behavior is an important feature that the vehicle can 

recognize the driver easily during the driving. Driver recognition by using driving 

behavior is a very original research area. We will focus on driving behavior and not 

face or sound recognition in this thesis. 

 

6.1 Driver Recognition Using Driving Signals 

 

At the preprocessing stage, time domain signals are smoothed to remove noise and 

resample. First order differences are determined in the same time domain to extract 

new features from the data. No evidence is reported which show the existence of 

periodicity in driving signals. Consequently, in this study, the signals are used in the 

time domain directly. 

 

The signals and first order difference vectors are modeled using statistical methods. 

Most time series signals change slowly, so in the modeling stage quasi-stationary 

assumption can be done. As a result, time series data can be modeled using dynamic 

models like Hidden Markov Model. By using time series data in biometric 

identification studies, signal’s underlying state topology is usually unclear (except 

text dependent speaker recognition studies) and single-state probabilistic models 

have good performance. This is valid for using functions which have more than one 

distribution peak and parametric continuous distribution functions which comprise 

the changes of the time area. Gaussian Mixture Models can approximate any 

continuous differentiable curves even if they have multiple distribution peaks. Good 

statistical models can be obtained for time series data if GMM has enough number of 
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distributions. GMM is used for the first time for driving signals by Igarashi [3] and in 

this thesis also same methods are used for modeling the driver behavior. 

 

6.2 Classifier Fusion for Driver Recognition and Verification 

 

In recent years, studies in multi-biometric systems that depend on more than one 

biometric property have become more popular. The reason for this motivation to the 

multi-biometric system is, some restrictions occur in systems which use single-

biometric quality. By using multi-biometric system, these restrictions can be 

removed. At the end of this study, using driving behavior signals, a multi-biometric 

person recognition/approval system will be done.  

 

Combination methods can be divided into the two main categories as Fixed Rules 

and Trainable Combiners. 

 

Fixed Rules use simple and unchangeable rules for combining different classifiers 

data. Trainable combiner rules have free parameters which can be trained on a 

separate part of the study data. At the same time trainable combiners are typically 

classifiers. These combiners’ classification is done in the score space instead of 

feature space. 

 

A test data x, let us assume that S(i,j) be the score of person i in the modality j. We 

drop x from the notation for a basic representation. The goal is to get a score value 

S(i) for person i by using combination methods. As a summary of a previous chapter, 

the different classifier combination methods are defined in the below part. 

 

Fixed Rules: 

 

1. Maximum Rule : S(i) = maxj S(i,j) 

2. Minimum Rule : S(i) = minj S(i,j) 

3. Mean (Sum) Rule : S(i) = sumj S(i,j) 

4. Product Rule : S(i) = prodj S(i,j) 

5. Median Rule : S(i) = medianj S(i,j) 
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Trainable Combiners:  

 

1. Nearest Mean Combiner (NMC): Simple linear combiner that accepts nearest 

class mean as a classifier output. 

2. Fisher Classifier (Fisher): Linear classifier that uses the least squares method 

for matching features and class labels.  

3. Linear Discriminant Combiner (LDC): Linear classifier that is modeled every 

class as a Gauss distribution which owner of the same covariance matrix. 

4. Naïve Bayes Combiner (NB): A combiner which assumes that the feature 

vector’s conditional class probabilities, is statistically independent. Every 

vector is modeled as a distribution model which occurs from 10 non-

parametric bins. 

5. Parzen Combiner (Parzen): It uses Parzen density distribution function. 

6. K-Nearest Neighbour Classifier (KNN): A method for classifying objects 

based on closest training examples in the feature space.  

7. Perl Classifier (Perl):  Linear classifier by linear perceptron. The perceptron 

is a kind of binary classifier.  
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Chapter 7 

Experiments and Results 

 

7.1 Experiments 

 

In this study we carried out three experiments; driver recognition, driver verification 

and driver fatigue detection. Driver recognition and verification experiments were 

done with a 100 person subset of the Nagoya University CIAIR database whereas 

driver fatigue experiment was done with data Drive-Safe. This database consists of 

50 female drivers and 50 male drivers. During the experiments five different “driving 

behavior signal” were used. These signals were: 

 

1. Break pedal pressure 

2. Accelerator pedal pressure 

3. Engine speed 

4. Vehicle speed 

5. Steering wheel angle 

 

The driving behavior data was collected by 5 analog channels, each sample was 

converted into 1 kHz with an unsigned 16-bit format. These signals were used for 

identifying and verifying driver identities.  

 

In the first part of the experiment a noise removal operation was applied to the 

signals by using the filter function of the Matlab. The filter function filters a data 

sequence using a digital filter and it works for both real and complex inputs [13]. 

Figure 7.1 shows the implementation of filter function. 
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Figure 7.1 – Implementation of filter function [13] 

This step was followed by decimation procedure which was done with the decimate 

function of the Matlab. Decimation reduces the original sampling rate for a sequence 

to a lower rate, the opposite of interpolation. The decimation process filters the input 

data with a lowpass filter and then resamples the resulting smoothed signal at a lower 

rate [14]. Figure 7.2 shows graphical representation of decimation process. 

 

 

Figure 7.2 – Graphical representation of decimation process [14] 

 

After these operations the driving features were obtained. In the second part driving 

features of each driver were divided into the 20 equal length parts. First 17 parts 

were used for training, following 2 parts were used for held-out and the final part 

was used for testing. So, 20 sets of observations were available for each person. The 

held-out data is a part of available training data that is not used during training or 

testing, but it is used to regulate certain parameters of the recognition system. Held-

out data is also called validation data [1]. 

 

In the literature Gaussian Mixture Model is frequently used in text-independent 

speaker recognition. GMMs were first used by Igarashi for modeling the driving 
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signals [15]. In his study, it was used for modeling the driver behavior. During the 

experiments, eight mixture components of GMM were used for modeling the driving 

signals of every people. Also, background GMM models were trained for each 

modality. In background model, sixteen mixture (twice the number of mixtures) 

components of GMM were used. Background GMM was used for normalization in 

likelihood ratio testing for biometric recognition. Igarashi preferred to use well-

known Expectation-Maximization algorithm for training GMMs. Block diagram of 

the training procedure is shown in the below figure. 

 

 

 

Figure 7.3 – System block diagram for training the multimodal driver recognition 

system [1] 

 

 

Figure 7.4 – System block diagram for testing the multimodal driver recognition 

system [1] 
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Multi-modal driver recognition system is illustrated in the above figure. In the 

recognition study, the posterior probabilities of the identities were obtained by the 

given test data. The largest one was chosen as identity of the test segment. These 

probabilities are called scores. The similarity between biometrics data is shown with 

these scores [15]. The important part of the classifier combination at the score level 

is to normalize the scores from each modality before the combinations. Typical 

likelihood ranges for genuine and impostors can be differing among modalities. So, 

loglikelihood-ratio scores from different modalities cannot be directly added. 

Therefore, for making the scores compatible, it is needed to normalize the scores. 

The way that was used to normalize the scores is, to use the mean and standard 

deviation of likelihood scores which were obtained from held-out validation data. 

Normalization can be done using a sigmoid function which can map the scores to the 

(0,1) range [1]. 
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In the equation Sk represents the old log-likelihood-ratio score for the k
th modality 

and Sk’ represents the new score. Also, µ and σ represent mean and standard 

deviation of old scores obtained on the validation set.  In this study, we used top 3Nt 

scores for Nt validation instances for computing the mean and standard deviation of 

scores, otherwise the mismatch scores may have effected the statistics. After 

normalization these scores were combined by using fusion methods [1]. 

 

During the combination process two main types of strategies were used such as fixed 

and trainable. Fixed rules are simple and fixed. The rules that were used in the 

experiments are Max Rule, Min Rule, Mean Rule, Product Rule and Median Rule. 

Trainable combiners are also classifiers. Both fixed and trainable rules classify in the 

score space instead of the original feature space. The trainable combiners that were 

used in the experiments are Linear Discriminant Classifier, Fisher’s Least Square 

Linear Classifier, Naive Bayes Classifier, Parzen Classifier, K-Nearest Neighbour 

Classifier, Nearest Mean Classifier and Perl Classifier - Linear classifier by linear 

perceptron. During these experiments PRTools software library was used for 

evaluating the results and combining classifiers.  
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The verification study is formed as follows:  

 

Given an input feature vector XQ (extracted from the biometric data) and a claimed 

identity I, determine if (I,XQ) belongs to class w1 or w2, where w1 represents that the 

claim is true (a genuine user) and w2 represents that the claim is false (an impostor). 

Typically, XQ is matched against XI, the biometric template corresponding to user I, 

to determine its category [2]. So,  
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where S represents the function that measures the similarity between feature vectors 

XQ and XI, and t represents a predefined threshold. The value S(XQ, XI) is termed as a 

similarity or matching score between the biometric measurements of the user and the 

claimed identity. Therefore, every claimed identity can be classified into two classes 

like w1 or w2 based on the variables XQ, I, XI and t, and the function S. Also, 

biometric measurements of the same individual taken at different times are almost 

never identical. Because of this the threshold t is introduced [2]. The below figure 

shows the multi-biometric person verification system. 

 

 

          

Figure 7.5– Block diagram of multi-biometric person verification system 

 
In the verification experiment, false accept and false reject rates were used as the 
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this value and calculated the false accept and false reject rates. False accept rate 

shows the probability that the system incorrectly tells a successful match between the 

input pattern and non- matching pattern. This measurement gives the result of invalid 

matches. False reject rate shows the probability that the system incorrectly tells a 

failure of match between the input pattern and matching pattern. Therefore, this 

measurement gives the result of valid users who are rejected [4]. 

 

The results presented in the next sections show the error rates obtained in the 

experiments. 

 

7.2 Results 

 

7.2.1 Driver Recognition Results 

 

The tables in the below part show the driving recognition experiments results using 

the fixed rules and trainable combiners. Recognition is the process that aims to find 

the answer to the question “Who is he/she?”.  In this process biometric information 

of the subject is taken then this information is compared with the other data which 

are stored in the database.  

 

Driver recognition experiments were done with 100 subjects that are randomly 

chosen from the CIAIR database, 50 male and 50 female. In these experiments five 

different channel were used. These channels are break pedal pressure, accelerator 

pedal pressure, engine speed, vehicle speed and steering wheel angle. During these 

experiments two different combination methods were used. The first method is the 

fixed methods which have simple fixed rules to combine information from a set of 

classifiers. We used five fixed rules such as maximum rule, minimum rule, median 

rule, mean rule and product rule. The second method is the trainable combination 

methods. These methods have some free parameters that can be trained on a separate 

part of the training data. We used seven trainable combiners such as fisher, linear 

discriminant, nearest mean, naïve bayes, perl, parzen and k-nearest neighbor. Tables 

2 to 12 below present the results of driver recognition experiments. 
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7.2.1.1 Fixed Rules 

 

The following tables show the decision fusion results using the fixed rules. In the 

combine list, comma (,) shows the decision fusion where the posterior probabilities 

of classifier are combined. In the tables below Driving 1 through 5 are used as 

abbreviations for different channels. 

 

• Driving 1 - Break pedal pressure  

• Driving 2 - Accelerator pedal pressure  

• Driving 3 - Engine speed  

• Driving 4 - Vehicle speed  

• Driving 5 - Steering wheel angle  

 

The following table presents the individual performance results of break pedal 

pressure, accelerator pedal pressure, engine speed, vehicle speed and steering wheel 

angle. 

 

Table 7.1 – Individual performance results for different modalities 

 

Modality Percent Error (%) 

Driving 1 90.35 

Driving 2 86.15 

Driving 3 98.05 

Driving 4 97.35 

Driving 5 97.90 

 

The above table shows the individual performance results for each modality. The 

best experiment result was obtained with the accelerator pedal pressure. The highest 

error rate was obtained with engine speed. The results showed that individually, the 

driving signals are not appropriate for biometric identification. 

 

The following tables present the results of the fixed rules.  
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Table 7.2 – Error rates using fixed combination rules for combining the break pedal 

pressure and accelerator pedal pressure 

 

 Combine List = Driving1,Driving 2 
 COMBINE METHOD ERROR (%) 
1 1 maxc 85.95 
2 1 minc 81.40 
3 1 medianc 78.95 
4 1 meanc 78.95 
5 1 prodc 77.95 

 

The above table shows the error rates of the first experiment. In the first experiment, 

we combined the break pedal pressure and accelerator pedal pressure channels. Then 

we run five different fixed rules for getting the decision fusion. According to the 

results, the product rule showed the best performance. Median and Mean rules had 

the same performance. And the maximum rule had the worst performance.  

 

Table 7.3 – Error rates using fixed combination rules for combining the break pedal 

pressure, accelerator pedal pressure, engine speed, vehicle speed and steering wheel 

angle  

 

 Combine List = Driving 1,Driving 2,Driving 3, 
Driving 4,Driving 5 

 COMBINE METHOD ERROR (%) 
1 2 maxc 91.60 

2 2 minc 90.55 

3 2 medianc 87.70 

4 2 meanc 85.95 

5 2 prodc 84.85 
 

The above table showed the error rates of the second experiment. In the second 

experiment we combined five channels such as break pedal pressure, accelerator 

pedal pressure, engine speed, vehicle speed and steering wheel angle. Then we run 

five different fixed rules for getting the decision fusion. According to the results, the 

product rule showed the best performance and the maximum rule had the worst 

performance. In this experiment we increased the dimension for getting better and 
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more accurate results but we faced with the problems of high dimensional data, 

which called the curse of dimensionality. 

 

Table 7.4 – Error rates using fixed combination rules for combining the break pedal 

pressure, accelerator pedal pressure and steering wheel angle 

 

 Combine List = Driving 1,Driving 2,Driving 5 

 COMBINE METHOD ERROR (%) 

1 3 maxc 89.30 
2 3 minc 86.50 
3 3 medianc 86.45 
4 3 meanc 82.30 
5 3 prodc 81.20 

 

The above table shows the error rates of the third experiment. In the third experiment 

we combined three channels such as break pedal pressure, accelerator pedal pressure 

and steering wheel angle. Then we run five different fixed rules for getting the 

decision fusion. According to the results, the product rule showed the best 

performance. Also, mean rule had good performance and the results are very similar 

with product rule. Median and mean rules had nearly same performances. Finally, 

maximum rule had the worst performance. If we make a comparison between the 

results of Table 7.2 and Table 7.4, the results of Table 7.2 were better than the results 

of Table 7.4. 

 

Table 7.5 – Error rates using fixed combination rules for combining the break pedal 

pressure, accelerator pedal pressure, engine speed and vehicle speed 

 

 Combine List=Driving 1,Driving 2,Driving 3, 

Driving 4 

 COMBINE METHOD ERROR (%) 

1 4 maxc 90.75 

2 4 minc 90.50 

3 4 medianc 86.10 

4 4 meanc 85.35 

5 4 prodc 85.05 
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The above table showed the error rates of the fourth experiment. In the fourth 

experiment we combined four channels such as the break pedal pressure, accelerator 

pedal pressure, engine speed and vehicle speed. Then we run five different fixed 

rules for getting the decision fusion. According to the results, product and mean rules 

had similar results and showed the best performances. Also, median rule had good 

performance. Finally, maximum and minimum rules had the worst performances.  

 

Table 7.6 – Driver recognition using fixed rules 

 

Methods Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Maxc 85.95 91.60 89.30 90.75 

Minc 81.40 90.55 86.50 90.50 

Medianc 78.95 87.70 86.45 86.10 

Meanc 78.95 85.95 82.30 85.35 

Prodc 77.95 84.85 81.20 85.05 

 

As a summary of the four experiments results, according to the above table, fixed 

rules do not show good performances. Their error rates are very high. The lowest 

error rate was taken from the first experiment which was done with the break pedal 

pressure and accelerator pedal pressure channels. In this experiment product rule 

showed the best result and the error rate was 77.95 percent. Also, this error rate is the 

best error rate in all of the experiments results. Moreover, product rule shows the 

best performance in all experiments and has the lowest error rates. Mean rule follows 

the product rule with the secondary lowest error rates. We expected that the second 

experiment will show the best results. Because this experiment was done with the all 

channels such as break pedal pressure, accelerator pedal pressure, engine speed, 

vehicle speed and steering wheel angle. So, the combination of these channels can 

have lower error rates than the others and be the most reliable combination. But the 

results of this experiment were the worst ones because of the curse of dimensionality. 

In the third experiment three channels were combined. These channels are break 

pedal pressure, accelerator pedal pressure and steering wheel angle. The results of 

the minimum and median rule were approximately the same. In the last experiment 

we combine the four channels such as break pedal pressure, accelerator pedal 
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pressure, engine speed and vehicle speed. The error rates of this experiment were 

also high. The highest error rate was taken from the maximum rule. Moreover, 

maximum rule showed the worst performance in all experiments and had the highest 

error rates. In the next part we will present the experiment results of the trainable 

combiners. 

 

7.2.1.2 Trainable Combiners 

 

The following tables show the decision fusion when using the trainable combiners. In 

the combine list, comma (,) shows the decision fusion where the posterior 

probabilities of classifier are combined. In the tables below Driving 1 through 5 are 

used as abbreviations for different channels. 

 

• Driving 1 - Break pedal pressure  

• Driving 2 - Accelerator pedal pressure  

• Driving 3 - Engine speed  

• Driving 4 - Vehicle speed  

• Driving 5 - Steering wheel angle  

 

The following tables present the results of the trainable combiners.  

 

Table 7.7 – Error rates using Fisher trainable combination method for different 

modalities  

 

 

C
O

M
B

IN
E

 

COMBINE LIST 
ERROR 

(%) 
METHOD 

1 1 Driving 1,Driving 2 43.45 Fisherc 

2 2 
Driving 1, Driving 2, Driving 3, 
Driving 4, Driving 5 

16.10 Fisherc 

3 3 Driving 1, Driving 2, Driving 5 29.50 Fisherc 

4 4 
Driving 1, Driving 2, Driving 3, 
Driving 4 

24.55 Fisherc 
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The above table shows the error rates of Fisher trainable combination method. We 

constituted four different combination lists and run Fisher trainable combiner. The 

results showed that for all combination lists Fisher method reached lower error rates 

than all fixed rules. The best result of Fisher method was obtained in the second 

combination list where we combined all channels. Also, for this combination list we 

expected same good result from fixed rules but we did not reach. Fisher method had 

the worst result in the first experiment which was the 43.45 percent. This result was 

still better than the results of fixed rules. 

 

Table 7.8 – Error rates using LDC trainable combination method for different 

modalities  

 

 

C
O

M
B

IN
E

 

COMBINE LIST 
ERROR 

(%) 
METHOD 

1 1 Driving 1, Driving 2 35.50 LDC 

2 2 
Driving 1, Driving 2, Driving 3, 
Driving 4, Driving 5 

85.55 LDC 

3 3 Driving 1, Driving 2, Driving 5 48.00 LDC 

4 4 
Driving 1, Driving 2, Driving 3, 
Driving 4 

78.70 LDC 

 

The above table shows the error rates of LDC trainable combination method. In the 

first combination list, LDC method reached better error rates than all fixed rules and 

Fisher method. In the second combination list, LDC method obtained same error rate 

with mean rule and the result of product rule was better than LDC method but the 

best result was obtained by Fisher method. In the third combination list, LDC method 

had better error rates than all fixed rules but again the best result was obtained by 

Fisher method. In the last combination list, LDC method showed better error rates 

than all fixed rules however Fisher method reached the best result. 

 

As a summary LDC method had low error rates in the first and third combination list. 

But in the second combination list it showed worst performance than the product rule 

and Fisher Method. The best result of the LDC method was obtained in the first 
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combination list where we combined two channels. LDC method had the worst result 

in the second combination list which was the 85.55 percent.  

 

Table 7.9 – Error rates using NMC trainable combination method for different 

modalities  

 

 

C
O

M
B

IN
E

 

COMBINE LIST 
ERROR 

(%) 
METHOD 

1 1 Driving 1, Driving 2 66.65 NMC 

2 2 
Driving 1, Driving 2, Driving 3, 
Driving 4, Driving 5 

54.65 NMC 

3 3 Driving 1, Driving 2, Driving 5 61.40 NMC 

4 4 
Driving 1, Driving 2, Driving 3, 
Driving 4 

60.40 NMC 

 

The above table shows the error rates of NMC trainable combination method. In the 

first combination list, NMC method obtained better error rates than all fixed rules. 

However if we make a comparison between Fisher, LDC and NMC methods, NMC 

obtained the worst result. In the second combination list, NMC method showed 

better error rates than all fixed rules but Fisher method reached the lowest error rate. 

In the third combination list, NMC method had better error rates than all fixed rules 

but Fisher and LDC methods obtained lower error rates than NMC. In the last 

combination list, NMC method got better error rates than all fixed rules and LDC 

method however Fisher method obtained lower error rate than NMC.  

 

As a summary the best result of the NMC method was obtained in the second 

combination list where we combined all the channels. NMC method had the worst 

result in the first combination list which was 66.65 percent. Also this result was 

better than the results of the fixed rules.  
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Table 7.10 – Error rates using Naïve Bayes trainable combination method for 

different modalities  

 

 

C
O

M
B

IN
E

 
COMBINE LIST 

ERROR 
(%) 

METHOD 

1 1 Driving 1, Driving 2 43.70 Naivebc 

2 2 
Driving 1, Driving 2, Driving 3, 
Driving 4, Driving 5 

99.00 Naivebc 

3 3 Driving 1, Driving 2, Driving 5 33.85 Naivebc 

4 4 
Driving 1,Driving 2,Driving 3, 
Driving 4 

 91.80 Naivebc 

 

The above table shows the error rates of Naïve Bayes trainable combination method. 

In the first combination list, Naïve Bayes method had better error rates than all fixed 

rules. However LDC method obtained better error rate than the Naïve Bayes method. 

In the second combination list, Naïve Bayes method showed worse error rates than 

all fixed rules. Moreover Fisher, LDC and NMC methods reached better error rates 

than Naïve Bayes. In the third combination list, Naïve Bayes method obtained better 

error rates than the all fixed rules. Also, it is better than LDC and NMC methods. 

However for this combination list the best result was obtained from Fisher method. 

In the last combination list, Naïve Bayes method showed worse error rates than all 

fixed rules and trainable combiners.  

 

As a summary Naïve Bayes rule obtained very high error rates in second and fourth 

combination lists. In these lists fixed rules error rates became better. Especially in 

second experiment Naïve Bayes method showed the worst error rate of all the other 

combination lists with both fixed rules and trainable combiners. The best result of the 

Naïve Bayes method was obtained in the third combination list where we combined 

three channels.  
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Table 7.11 – Error rates using Perl trainable combination method for different 

modalities  

 

 

C
O

M
B

IN
E

 
COMBINE LIST 

ERROR 
(%) 

METHOD 

1 1 Driving 1, Driving 2 66.00 Perlc 

2 2 
Driving 1, Driving 2, Driving 3, 
Driving 4, Driving 5 

38.70 Perlc 

3 3 Driving 1, Driving 2, Driving 5 55.05 Perlc 

4 4 
Driving 1, Driving 2, Driving 3, 
Driving 4 

44.25 Perlc 

 

The above table shows the error rates of Perl trainable combination method. In the 

first combination list, Perl method showed better error rates than all fixed rules. 

However Fisher, LDC and Naïve Bayes methods reached better error rates than Perl 

method. In the second combination list, Perl method obtained better error rates than 

all fixed rules but in this experiment the best result was obtained from Fisher method. 

In the third combination list, Perl method had better error rates than all fixed rules. 

However for trainable combiners Fisher, LDC and Naïve Bayes methods obtained 

better results than Perl method. In the last combination list, Perl method got better 

error rates than all fixed rules. Also this result was better than the results of LDC, 

NMC and Naïve Bayes methods but for this list the best result was obtained from 

Fisher method.  

 

As a summary Perl rule had low error rates. The best result of the Perl method was 

obtained in the second combination list where we combined all the channels. Perl 

method showed the worst result in the first combination list which was the 66 

percent. Also this result was better than the results of fixed rules. 
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Table 7.12 – Error rates using Parzen trainable combination method for different 

modalities  

 

 

C
O

M
B

IN
E

 
COMBINE LIST 

ERROR 
(%) 

METHOD 

1 1 Driving 1, Driving 2 0.55 Parzenc 

2 2 
Driving 1, Driving 2, Driving 3, 
Driving 4, Driving 5 

0.35 Parzenc 

3 3 Driving 1, Driving 2, Driving 5 0.65 Parzenc 

4 4 
Driving 1, Driving 2, Driving 3, 
Driving 4 

0.80 Parzenc 

 

The above table shows the error rates of Parzen trainable combination method. We 

constituted four different combination lists and run the Parzen trainable combiner. 

The results showed that for all combination lists Parzen method reached lower error 

rates than fixed rules and trainable combiners. Parzen rule showed very low error 

rates. The best result of the Parzen method was obtained in the second experiment 

where we combined all the channels. Parzen method had the worst result in the 

fourth experiment which was the 0.8 percent.  

 

Table 7.13 – Error rates using K-NN trainable combination method for different 

modalities  

 

 

C
O

M
B

IN
E

 

COMBINE LIST 
ERROR 

(%) 
METHOD 

1 1 Driving 1, Driving 2 0.55 KNNc 

2 2 
Driving 1, Driving 2, Driving 3, 
Driving 4, Driving 5 

0.35 KNNc 

3 3 Driving 1, Driving 2, Driving 5 0.65 KNNc 

4 4 
Driving 1, Driving 2, Driving 3, 
Driving 4 

0.75 KNNc 
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The above table shows the error rates of K-NN trainable combination method. We 

constituted four different combination lists and run K-NN trainable combiner. The 

results showed that for all combination lists K-NN method reached lower error rates 

than fixed rules and trainable combiners except Parzen method. For first three 

combination list K-NN and Parzen reached same error rates. However in the last 

combination list K-NN rule showed the best performance and obtained better result 

than Parzen method.  

 

As a summary K-NN method reached very low error rates. The best result of the K-

NN method was obtained in the second combination list where we combined all the 

channels. K-NN method showed the worst result in the last combination list which 

was the 0.75 percent. Also this result was better than the results of all fixed rules and 

trainable combiners.  

 

Table 7.14 – Driver Recognition results using fixed rules and trainable combiner  

 

Combination 
Methods 

Combination 
List 1 

Combination 
List 2 

Combination 
List 3 

Combination 
List 4 

Maxc 85.95 91.60 89.30 90.75 

Minc 81.40 90.55 86.50 90.50 

Medianc 78.95 87.70 86.45 86.10 

Meanc 78.95 85.95 82.30 85.35 

Prodc 77.95 84.85 81.20 85.05 

Fisher 43.45 16.10 29.50 24.55 

LDC 35.50 85.55 48.00 78.70 

NMC 66.65 54.65 61.40 60.40 

Naive Bayes 43.70 99.00 33.85 91.80 

Perl 66.00 38.70 55.05 44.25 

Parzen 0.55 0.35 0.65 0.80 

KNN 0.55 0.35 0.65 0.75 

 

As a general summary, according to the above table, most cases trainable combiners 

showed better results than the fixed rules. In the first combination list we combined 

two channels, break pedal pressure and accelerator pedal pressure then we run seven 

different trainable combiners. The above results show that we obtained the best 

results from the Parzen and K-NN methods with the error rate of 0.55 percent. The 
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worst results were obtained from the NMC and Perl methods. But these results were 

better than the results of fixed rules. In the second combination list we combined all 

the channels, break pedal pressure, accelerator pedal pressure, engine speed, vehicle 

speed and steering wheel angle. The above results show that we reached the best 

results from the Parzen and K-NN methods with the error rate of 0.35 percent. Also, 

Fisher method showed the secondary good result. The worst results were obtained 

from the LDC and Naïve Bayes methods. In this experiment both of the LDC and 

Naïve Bayes showed their worst performances in all the other experiments. In the 

third combination list we combined three channels, break pedal pressure, accelerator 

pedal pressure and steering wheel angle then we run all trainable combiners. The 

above results show that we reached the best results from the Parzen and K-NN 

methods with the error rate of 0.65 percent. Also, Fisher method obtained the 

secondary good result. The worst results were obtained from the NMC method. In 

the last combination list we combine four channels, break pedal pressure, accelerator 

pedal pressure, engine speed, and vehicle speed then we run all trainable combiners. 

The above results show that we obtained the best results from the Parzen and K-NN 

methods with the error rates of 0.80 and 0.75 percent respectively. Also, Fisher 

method showed the secondary good result. The worst results were obtained from the 

Naïve Bayes method.  

 

The best experiment results were obtained from the Parzen and K-NN methods. 

These methods have very low error rates and best performances. The lowest error 

rate was obtained from the second combination list which was done with the all 

channels. In this experiment Parzen and K-NN methods showed the same best result 

and the error rate was the 0.35 percent. Also, this error rate was the best error rate in 

all of the experiments results. We expected that the second experiment will show the 

best results. Because this experiment was done with all channels and the combination 

of these channels can have lower error rates than the others also can be the most 

reliable combination. So, our expectation became fact for trainable combiners except 

LDC and Naïve Bayes. Moreover, Naïve Bayes rule showed very high error rates in 

second and fourth combination lists. In these combination lists the fixed rules error 

rates became better. Especially in second combination list Naïve Bayes method 

showed the worst error rate of the all the experiments both fixed rules and trainable 

combiners.  
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In the next part we will present the driver verification experiment results. 

 

7.2.2 Driver Verification Results 

 

The tables in the below part show the driving verification experiments results using 

the fixed rules and trainable combiners. Verification is the process that aims to find 

the answer to the question “Is he/she the person who he/she claims to be?”. In this 

process the subject claims to be a person whose biometric information are already 

existent or known. During this process new biometric information is taken from the 

subject and a comparison is done between the new biometric information and the 

stored data. If the new information is matched with a stored template, the verification 

process will finish successfully. 

The performance measurement criteria of these experiments are the false accept and 

false reject rates. The false accept rate is the probability that the system incorrectly 

declares a successful match between the input pattern and a non-matching pattern in 

the database. It gives the percent of invalid matches as an output. This type of error is 

very critical for security issues. Because these invalid users are accepted by the 

system. The false reject rate is the probability that the system incorrectly declares a 

failure of match between the input pattern and a non-matching pattern in the 

database. It gives the percent of valid users who are rejected as an output. During 

these experiments we determined a threshold value and according to this value we 

obtained the results of false acceptance and rejection. 

7.2.2.1 Fixed Rules 

 

The tables in the below part show the driving verification experiments results using 

the fixed rules.  
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Table 7.15 – False Accept and False Reject Rates using fixed rules 

 

Method 
False Accept  

(%) 
False Reject 

(%) 
   

Maxc 90.75 0 

Minc 90.50 2.30 

Medianc 86.10 0 

Meanc 85.35 0 

Prodc 85.05 5.65 

 

Before the experiment we determined a threshold value which is valid for all 

combiners, but all the methods did not obtain successful results with this threshold. If 

we applied different suitable threshold values for every combiner then we obtained 

results different than our results. So, these results were depended on the threshold.  

 

If we look at the fixed rules Product rule shows better performance than the others in 

the false acceptance. In false reject rate Maximum, Median and Mean rules show the 

best performance. So, they never reject a valid user.  

 

Maximum fixed rule got 90.75 percent false accept rate which is very high rate and it 

did not have false reject. Minimum fixed rule got 90.50 percent false accept rate 

which is very high rate and it got 2.30 percent false reject rate. Median fixed rule got 

86.10 percent false accept rate and it did not any have false reject. Mean fixed rule 

got 85.35 percent false reject rate which is very high rate and it did not have any 

false reject. Product fixed rule got 85.05 percent false accept rate and 5.65 percent 

false reject rate.  

 

7.2.2.2 Trainable Combiners 

 

The tables in the below part show the driving verification experiments results using 

the trainable combiners. 

 



 

 73 

Table 7.16 – False Accept and False Reject Rates using trainable combination 

methods  

 

Method 
False Accept 

(%) 

False Reject 

(%) 

Fisherc 24.55 0 

LDC 0 21.35 

NMC 60.40 0 

Naivebc 0 5.45 

Perlc 44.20 0.75 

Parzenc 0.4 6.25 

knnc 0.75 0 

 

Before the experiment we determined a threshold value which is valid for all 

combiners, but all the methods did not obtain successful results with this threshold. If 

we applied different suitable threshold values for every combiner then we obtained 

results different than our results. So, these results were depended on the threshold.  

 

According to our results, for the same threshold value K-NN trainable combiner 

shows the best performance. It has only 0.75 percent false accept which is very low 

rate because we were done the experiment with 100 subjects and it has not got false 

reject.  

 

Fisher trainable combiner got 24.55 percent false accept rate which is low rate and it 

did not have false reject. LDC trainable combiner got 21.35 percent false reject rate 

which is low rate and it did not have false accept. NMC trainable combiner got 60.40 

percent false accept rate and it did not have false reject. Naïve Bayes trainable 

combiner got 5.45 percent false reject rate which is low rate and it did not have false 

accept. Perl trainable combiner got 44.20 percent false accept rate and 0.75 percent 

false reject rate which is very low rate. Parzen trainable combiner got 0.4 percent 

false accept rate and 6.25 percent false reject rate which are very low error rates. 
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In the trainable combiners, LDC and Naïve Bayes show the best performance in false 

acceptance. So, they never accept an invalid user to the system. Also, Parzen and  

K-NN show secondary better performances. In false reject rate Fisher, NMC and  

K-NN rules show the best performances. So, they never reject a valid user to the 

system.  

 

In verification study a comparison done between the possibility ratios to a threshold 

value. For different thresholds, false-accept rate versus false-reject rate was plotted 

using the receiver operating characteristics curve. In figure 7.6 there are ROC curves 

for different combiners. 

 

   

 

   

 

Figure 7.6– ROC curves of Max Rule, Product Rule, NMC and KNN 
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Chapter 8 

Conclusion and Future Work 

 

The main goal of our research is to facilitate vehicle-person interaction. In this study 

using driver behavior signals we accomplished driver recognition and driver 

verification. During this study, we followed the basic steps of a multi-modal 

biometric system as explained in chapter 2.  

 

The first step of recognition/verificaion system is the data acquisition. In our study 

instead of collecting the driver data we used the CIAIR database of the Nagoya 

University for driver recognition and verification. So, our study did not involve the 

data acquisition step. We take five different driving behavior signals from the CIAIR 

database. These signals were: 

 

1. Break pedal pressure 

2. Accelerator pedal pressure 

3. Engine speed 

4. Vehicle speed 

5. Steering wheel angle 

 

Driver recognition and verification experiments were done with the 100 person 

subset of the CIAIR database. This database consists of 50 female drivers and 50 

male drivers.  

 

The second and the third parts of a biometric system are data compression and 

decompression. As our study did not involve data storage or transfer, we omitted 

these stages. The fourth step is the feature extraction algorithm which is used for 

producing a feature vector. 
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The components of the feature vector are numerical characterization of the 

biometrics. Gaussian Mixture Model is used for modeling the driver behavior. 

 

The fifth part of the system is the matcher which compares the feature vectors for 

obtaining a similarity score. In this step we used well-known Expectation 

Maximization algorithm for training the GMMs.  

 

The final step of the system is the decision maker. In our study we used decision 

fusion which combines decisions that come from several experts. In other words, if 

the experts return a confidence (score) instead of a decision, and we deal with a 

decision fusion problem. In this study we used two different combination methods, 

namely fixed methods and trainable combiners.  

 

Fixed methods have simple fixed rules to combine information from a set of 

classifiers. In this study five fixed rules were used. These are maximum, minimum, 

median, mean and product rules. Trainable methods have some free parameters that 

can be trained on a separate part of the training data. In this study seven trainable 

combiners were used. These combiners are fisher, linear discriminant, nearest mean, 

naïve bayes, perl, parzen and k-nearest neighbor.  

 

In this study we use biometric system for person recognition and verification. The 

recognition process aims to find the answer of the question “Who is he/she?” In this 

process there exists biometric information of the subject in the database or stored 

somewhere. At this time new information is taken from the subject and a comparison 

is done between this new biometric information and all the other stored biometric 

information.  

 

The verification process aims to find the answer of the question “Is he/she the person 

he/she claims to be”. In this process the subject claims that he/she is a person whose 

biometric information is already exists or stored in the database. In this case again 

new biometric information is taken from the subject and a comparison is done 

between this new biometric information and claimed biometric information. If the 

new biometric information is matched with the stored biometric information, the 
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verification process will finish successfully and the subject is accepted otherwise 

he/she is rejected.  

 

The first study is the driver recognition using the individual modalities. The 

individual performance results showed that, a single driving signal is not appropriate 

for biometric identification. GMMs trained independently on single modalities had 

very high error rates.  

 

The second study is the driver recognition using the fixed rules and trainable 

combiners. Four different driver recognition experiments were done using five 

different fixed rules. But fixed rules do not show good performances. Their error 

rates are very high. The lowest error rate was taken from the first experiment which 

was done with the break pedal pressure and accelerator pedal pressure channels. In 

this experiment product rule showed the best result and the error rate was 77.95 

percent. Also, this error rate is the best error rate in all of the fixed rules’ experiments 

results. Moreover, product rule shows the best performance in all the experiments 

and has the lowest error rates. Mean rule follows the product rule with the secondary 

lowest error rates.  

 

We expected that the second experiment will show the best results. Because this 

experiment was done with the all channels such as break pedal pressure, accelerator 

pedal pressure, engine speed, vehicle speed and steering wheel angle. So, the 

combination of these channels can have lower error rates than the others and be the 

most reliable combination. But the results of this experiment were the worst ones. In 

this experiment we increased the dimension for getting better and more accurate 

results but we faced with the problems of high dimensional data, which called the 

curse of dimensionality. 

 

In the third experiment three channels were combined. These channels are break 

pedal pressure, accelerator pedal pressure and steering wheel angle. The results of 

the minimum and median rule were approximately the same.  

 

In the last experiment we combine the four channels which are break pedal pressure, 

accelerator pedal pressure, engine speed and vehicle speed. The error rates of this 
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experiment were also high. The highest error rate was taken from the maximum rule. 

Moreover, maximum rule shows the worst performance in all experiments and has 

the highest error rates.  

In driver recognition with trainable combiners we constituted four different 

combination lists and run seven algorithms. In most cases trainable combiners 

showed better results than the fixed rules. In the first combination list we combined 

two channels which are break pedal pressure and accelerator pedal pressure and then 

ran seven different trainable combiners. We obtained the best results from the Parzen 

and K-NN methods with the error rate of 0.55 percent. The worst results were 

obtained from the NMC and Perl methods. But these results were better than the 

fixed rules results.  

 

In the second combination list we combined all the channels break pedal pressure, 

accelerator pedal pressure, engine speed, vehicle speed and steering wheel angle. We 

achieved the best results from the Parzen and K-NN methods with the error rate of 

0.35 percent. Also, Fisher method had the secondary good result. The worst results 

were obtained from the LDC and Naïve Bayes methods. In this list both of the LDC 

and Naïve Bayes showed their worst performances in all experiments.  

 

In the third experiment we combined three channels break pedal pressure, accelerator 

pedal pressure and steering wheel angle then we run all trainable combiners. We 

obtained the best results from the Parzen and K-NN methods with the error rate of 

0.65 percent. Also, Fisher method had the secondary good result. The worst results 

were obtained from the NMC method.  

 

In the last experiment we combined four channels break pedal pressure, accelerator 

pedal pressure, engine speed, and vehicle speed then we run all trainable combiners. 

We obtained the best results from the Parzen and K-NN methods with the error rate 

of 0.80 percent. Also, Fisher method had the secondary good result. The worst results 

were obtained from the Naïve Bayes method.  

 

Overall, the best experiment results were obtained from the Parzen and K-NN 

methods. These methods reached very low error rates and best performances. The 

lowest error rate was obtained from the second combination list which was done with 
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the all channels break pedal pressure, accelerator pedal pressure, engine speed, 

vehicle speed and steering wheel angle. In this experiment Parzen and K-NN 

methods had the same best result and the error rate was the 0.35 percent. Also, this 

error rate was the best error rate in all of the experiments results. We expected that 

the second experiment will show the best results. Because this experiment was done 

with the all channels and the combination of these channels can have lower error 

rates than the others also can be the most reliable combination. So, our expectation 

became fact for trainable combiners except LDC and Naïve Bayes. Moreover, Naïve 

Bayes rule had very high error rates in second and fourth combination lists. In these 

lists the fixed rules error rates became better. Especially in second combination list 

Naïve Bayes method showed the worst error rate of the all the experiments both 

fixed rules and trainable combiners.  

 

In the verification experiment we first determined a threshold value, but all the 

methods did not obtain successful results with this threshold. If we applied different 

suitable threshold values for every combiner then we obtained results different than 

our results. So, these results were depended on the threshold.  

 

According to our results, for the same threshold value K-NN trainable combiner 

shows the best performance. It has only 0.75 percent false acceptance which is very 

low rate because we were done the experiment with 100 subjects and it has not got 

false reject.  

 

In the trainable combiners, LDC and Naïve Bayes showed the best performance in 

false acceptance. So, they never accepted an invalid user to the system. Also, Parzen 

and K-NN obtained better performance. In false reject rate Fisher, NMC and K-NN 

rules showed the best performance. So, they never rejected a valid user to the system.  

 

If we look at the fixed rules Product rule obtained better performance than the others 

in the false acceptance. In false reject rate Maximum, Median and Mean rules 

showed the best performance. So, they never rejected a valid user to the system.  

 

In conclusion, in this study we accomplished driver recognition and driver 

verification. In driver recognition most cases trainable combiners showed better 
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results than the fixed rules. In the results of the fixed rules, the product rule showed 

the best performance. Also, the secondary good results were obtained from the mean 

rule. The most reliable combine list was the first one which was done with the break 

pedal pressure and accelerator pedal pressure. The combination of the all driving 

signals had the worst performance. In the results of the trainable combiners, the 

Parzen and K-NN showed the best performance. In Parzen and K-NN, the 

combination of the all driving signals had the best result. Also, in driver verification 

study trainable combiners showed better results than the fixed rules. K-NN trainable 

combiner showed the best performance. So, note that driver verification results were 

depended on the threshold.  

 

Finally after this thesis we planned to realize two more studies as future work. In the 

first study we will do driver recognition and driver verification with the all CIAIR 

database subjects (343). In this thesis we did not use all the database because of the 

insufficient memory of our computers. The future work will be on the 

implementation of these studies.  

 

The second study will be the detection of the driver fatigue. Traffic safety is very 

important issue and one of the important reasons of the accidents is the driver 

fatigue. If the fatigue of the driver is detected early, the drivers and passengers will 

be prevented from the accidents. Also, we started to work on this project and we 

obtained the primary results.  

 

In driver fatigue detection study we used the fatigue data of OTAM database. The 

experiment was done with 33 people, male and female. The data collected according 

to a track which was started from OTAM, which is a research center in ITU Ayazağa 

Campus, and then continues with the certain proportion of main road and certain 

proportion of city traffic (Figure 3.5). 

 

In the driver fatigue experiment, a cleaning or eliminating procedure was applied to 

the OTAM data. First two minutes and last two minutes of the data were eliminated. 

This elimination procedure was applied to the entirety of the data. The obtained 

results of these intervals can not give a correct or valid result to us. Because, these 

intervals were track dependent such as in the last two minutes of the driving the 
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driver can park his car and the driving signals can mislead us. So, after the 

elimination step the data were divided into the two parts. First minutes of the driving 

data grouped as not fatigued data and the last minutes of the driving data grouped as 

fatigued data. After this grouping some classification algorithms were run with these 

data. The classification algorithms that were used in the experiments are Ada_Boost, 

C 4_5, CART, EM, LMS, Nearest Neighbor and Parzen. This experiment was done 

with the 33 subject both male and female and Classification Toolbox was used [17]. 

The following table shows the result of one subject.  

 

Table 8.1 – Driving Fatigue detection of Subject 03-04-2007 IM1009 with different 

classification algorithms 

 

Ada_Boost Class 1 Class 2 

Test Set Errors   (%) 1.9 18 
Train Set Errors (%) 1.9 20 

 

C 4_5 Class 1 Class 2 
Test Set Errors   (%) 5.2 17 
Train Set Errors (%) 4.1 13 

 

CART Class 1 Class 2 
Test Set Errors   (%) 29 20 
Train Set Errors (%) 25 17 

 

EM Class 1 Class 2 
Test Set Errors   (%) 30 16 
Train Set Errors (%) 28 14 

 

LMS Class 1 Class 2 
Test Set Errors   (%) 0 100 
Train Set Errors (%) 0 100 

 

Nearest Neighbour Class 1 Class 2 
Test Set Errors   (%) 6.3 17 
Train Set Errors (%) 4 11 

 
Parzen Class 1 Class 2 

Test Set Errors   (%) 0 100 
Train Set Errors (%) 0 99 

 

After the experiment we obtained good results but observed that these data may be 

track dependent. If they are track dependent, our results will become incorrect. 

Because according to the results we said that this driver is tired or not and while we 
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are telling this we examine the driving behavior signals of the driver like steering 

wheel angle. For example if the driver has a large steering wheel angle value we can 

said that this driver is tired and he/she did not see the barrier early when driving the 

car then he/she suddenly see the barrier and make unexpected steering wheel 

movement for escape. It is a one option and it is very sensible. But there is another 

option such that the roads condition may be caused this type of movement. In this 

case the driver is not tired the movement is caused by the roads condition. This 

second option is also sensible. So, there is a trade off situation between two options. 

Therefore, we want to plan to study on this issue later on as a future work. 

 

 



 

 83 

References 

[1] H. Erdogan, A. Ercil, H.K. Ekenel, S.Y. Bilgin, I. Eden, M. Kirisci, H. Abut, 

“Multi-modal person recognition for vehicular applications,” N.C. Oza et al. 

(Eds.): MCS 2005, LNCS 3541, pp. 366 – 375, Monterey CA, Jun. 2005.  

[2]  A.K. Jain, A. Ross, and S. Prabhakar, “An Introduction to Biometric 

Recognition,” IEEE Transactions on Circuits and Systems for Video 

Technology, Special Issue on Image- and Video-BasedBiometrics, Vol. 14, 

No. 1, January 2004. 

 

[3]  W. Shen and T. Tan, “Automated biometrics-based personal identification,” 

Proc. Natl. Acad. Sci. USA Vol. 96, pp. 11065–11066, From the Academy 

September 1999 

 

[4] Wikipedia, the free encyclopedia : Biometrics 

http://en.wikipedia.org/wiki/Biometrics 

 

[5] P. Paalanen, “Bayesian Classification using Gaussian Mixture Model and EM 

Estimation : Implementations and Comparisons”  

 http://www.it.lut.fi/project/gmmbayes/downloads/doc/report04.pdf 

[6] “Introduction to Data Fusion” 

 http://www.sic.rma.ac.be/Research/Fusion/Intro/content.html 
 

 [7] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas 

“On Combining Classifiers, ” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, Vol: 20, No.3, MARCH 1998 

 

[8] C.M. BISHOP, Pattern Recognition and Machine Learning  



 

 84 

 [9] Wikipedia, the free encyclopedia : Naïve Bayes 

http://en.wikipedia.org/wiki/Naive_Bayes 

 

[10] R.P.W. Duin, E. Pękalska, “ The Dissimilarity Representation for Pattern 

Recognition: Foundations And Application”  

 

[11] C.J. Veenman and M.J.T. Reinders, “The Nearest Sub-class Classi_er: a 

Compromise between the Nearest Mean and Nearest Neighbor Classifer,” 

IEEE Transactions on PAMI, Vol. 27, No. 9, pp. 1417-1429, September 2005 

 

[12] Wikipedia, the free encyclopedia : Perceptron 

http://en.wikipedia.org/wiki/Perceptron 

 

[13] The MathWorks, Accelerating the pace of engineering and science : filter 

http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access

/helpdesk/help/techdoc/ref/filter.html&http://www.google.co.jp/search?hl=en

&q=filter+function+in+matlab 

 

[14]  The MathWorks, Accelerating the pace of engineering and science : decimate 

 http://www.mathworks.com/access/helpdesk/help/toolbox/signal/index.html?/

access/helpdesk/help/toolbox/signal/decimate.html&http://www.google.com.t

r/search?hl=tr&q=decimate+in+matlab&meta= 

 

[15] K. Igarashi, C. Miyajima, K. Itou, K. Takeda, H. Abut and F. Itakura, 

“Biometric Identification Using Driving Behavior,” Proceedings IEEE ICME 

2004, Taipei, Taiwan, June 27-30, 2004 

 

[16] General Directorate of Security Head of Traffic Services Traffic Research 

Center 

http://www.trafik.gov.tr/english/traffic_safety/traffic_safety_sleepless_and_ti

red_driving.asp 

 

[17] R.O. Duda, P.E. Hart, D.G. Stork , Pattern Classification 



 

 85 

Curriculum Vitae 
 
 
Kristin Surpuhi Benli was born on 18 May 1982, in Istanbul. She received her B.S. 

degree from Computer Engineering Department of Işık University, Istanbul, Turkey 

in 2005 with high honors and ranked 2nd in the department. She works as a teaching 

assistant at the Department of Computer Engineering of Işık University since 2005. 

She received a graduate scolarship from the scientific and technological research 

council of Turkey (TÜBİTAK). Her research interests include pattern recognition, 

biometric identification, data mining, bioinformatics, software enginerring and 

database systems. 

 

 
 
 
 
 
 
 
 


