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NEURAL NETWORK BASED FACE DETECTION 

 

Abstract 
 

 

One of the challenging problems in computer vision is face detection. The goal of 

face detection is to locate all regions that contain a face regardless of any three 

dimensional transformation and lighting condition. There are lots algorithms which 

were proposed for a solution of face detection problem. In this thesis, I have 

implemented a neural network based face detection approach. The system detects 

upright frontal faces in a given image. Some heuristics were used in order to reduce 

the number of false detections. Also more than one neural networks are used in order 

to improve the detection capability. There are lots of neural network based face 

detection systems in the literature. Since these proposed systems in the literature are 

complex they cannot be used for real time applications. First and the most important 

difference between the proposed system in this thesis and the systems in the literature 

is simplicity of a network. Another major difference is size of a window which is 

used for face detection. In this thesis 10×10 pixel size window which is the smallest 

window size in the literature is used for detection. Furthermore simple system and 

small size window gives a faster training and running. 
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YAPAY SĐNĐR AĞLARI ĐLE YÜZ BULMA 

 

Özet 
 

 

Yüz bulma problemi bilgisayarla görme konusunun en önemli problemlerinden 

biridir. Yüz bulmanın amacı verilen bir resimde yüz olup olmadığına yüzün 3 

boyutlu transformasyonuna ve ışık şartlarına bakmaksızın karar vermektir. Yüz 

bulma problemi ile ilgili birçok önerilmiş çözüm mevcuttur. Bu çalışmanın konusu 

yapay sinir ağları ile yüz bulmadır. Bu çalışmadaki sistemin amacı verilen resimdeki 

yüzleri yapay sinir ağlarını kullanarak bulmaktır. Hatalı bulunan yüz sayısını 

azaltmak için bazı algoritmalar geliştirildi. Ayrıca yüz bulma yüzdesini yükseltmek 

için birden fazla yapay sinir ağı kullanıldı. Literatürde yapay sinir ağları ile yüz 

bulma konusunda birçok çalışma mevcuttur. Fakat bu çalışmaların genel özelliği 

verilen önerilen sistemlerin karmaşık olmasından dolayı gerçek zamanlı 

uygulamalarda kullanılamamalarıdır. Bu çalışmada belirtilen sistemin en önemli ve 

de literatürdeki diğer çalışmalardan ayıran başlıca özelliği basit bir sistem olması ve 

bu basitlik sayesinde hızlı olmasıdır. Diğer bir özelliği de yüz bulma işlemi sırasında 

kullandığı işlem pencere boyutu. Bu çalışmadaki sistemin kullandığı pencerenin 

boyutları 10×10 dur. Buda be çalışmadaki sistemi literatürdeki en basit sistem yapar. 

Ayrıca küçük pencere boyutu ve sistemin basit olması sistemin eğitilmesi için ve 

çalıştırılması için daha az zaman almasını sağlar. 
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Chapter 1 

Introduction 
 

Computer Vision aims to enable computers see and interpret the world.  In 

other words Computer Vision is getting data from still image or image sequence 

describing a scene and making decisions depending on this description. Research on 

computer vision has been steadily growing in the last 30 years. This research front 

delivered many valuable implementations industry, security etc. 

Since we are visual creatures and have a highly complex vision system vision 

is not much of challenge for us. On the other hand, images are nothing but a grid of 

numbers for a computer system, which makes vision, is very difficult task for 

computers. Another important problem which makes computer vision difficult is, 

while humans use 3D information for detection and recognition objects, a computer 

with a single camera (monocular vision) has to derive same information through the 

use of 2D information. 

Despite these problems there have been significant advances in field such as 

face detection, recognition, facial expression recognition etc. Most applications that 

related to human face processing need face detection as a preprocessing step. The 

accuracy of face detection affects the outcomes of such computer vision applications. 

Face detection is a built in hard coded operation for humans, however detecting 

faces in an image is challenging task for computers because of variability of scale, 

location, orientation, pose, facial expression occlusion and lighting conditions. Face 

detection approaches can be classified as knowledge-based, feature based, template 

matching and appearance methods. 

In this thesis I represent a neural network based face detection algorithm for 

stationary, monocular images. Main differences between this system and previous 

systems which were used neural network for face detection is size (our system is 
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much more simple than previous systems) of a network and computational 

complexity (i.e., processing time). The aim of this thesis is to show that face 

detection can be done via small sized neural network by using the representational 

power of neural networks. 

This thesis organized as follows chapter 2 gives the general information about 

the face detection problem, chapter 3 gives the general information about the neural 

network, chapter 4 explains the neural network based face detection system; chapter 

5 introduces the “Neural Network Based Face Detection and Image Processing 

System”. 
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Chapter 2 

Face Detection 
 

Face detection is the necessary part of lots of computer vision applications such 

as face and facial expression recognition, human computer interaction etc. In other 

words, accurate face detection must be accomplished in order to realize these 

computer vision applications.  

The goal of face detection is to determine and locate all faces in a given image 

regardless of their orientation, size, location, poses, facial expression and lighting 

conditions. These factors make face detection as a challenging problem.  

The face detection problem may be defined as determining whether or not there 

are any faces in the image and, if present, return the locations and extent of each 

face. 

2.1 Challenges in Face Detection 
 

Challenges in face detection are the variability of pose, structural components, 

facial expressions, occlusion image orientation and lighting conditions. Below I 

describe these challenges briefly. 

• Pose: The images of a face vary due to the relative camera-face pose 

(frontal, 45 degree, profile, upside down), and some facial features such as an 

eye or the nose may become partially or wholly occluded. Figure 2.1 is an 

example of different face poses. 

 

 



4 

 

 

Figure 2.1: Samples of different poses of human face. 

 

• Presence or absence of structural components: Facial features such as 

beards, mustaches, and glasses may or may not be present and there is a great 

deal of variability among these components including shape, color, and size. 

Figure 2.2 is an example of presence or absence of structural components. 

 

 

Figure 2.2: Samples of beards, mustaches and glasses. 

 

• Facial expression: The appearance of a face is directly affected by a 

person’s facial expression. Figure 2.3 is an example of different facila 

expressions. 

 

 

Figure 2.3: Samples of facial expressions. 

• Occlusion: Faces may be partially occluded by other objects. In an 

image with a group of people, some faces may partially occlude other faces. 

Figure 2.4 is an example of occlusion. 
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Figure 2.4 Samples of occlusion. 

 

• Image orientation: Face images directly vary for different rotations 

around the optical axis of the camera. Figure 2.5 is an example of an image 

orientation problem.  

 

 

Figure 2.5: Image orientation. 

 

• Imaging conditions: When the image is formed, factors such as lighting 

(spectra, source distribution and intensity) and camera characteristics (sensor 

response, lenses) affect the appearance of a face. Resolution is another factor 

effecting face detection. Figure 2.6 is an example of an illumination.  

 

 

Figure 2.6: Illumination variations. 
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2.2 Face Detection Methods 
 

In this section I will summarize the state-of-the-art face detection techniques 

by means of a face detection survey which was published by Yang, Kriegman and 

Ahuja et al [1]. Face detection techniques can be classified as follows. 

- Knowledge – Based Top Down methods: These rule-based methods use 

the structural relationship between human facial features such as eyes, 

nose etc. These methods encode human knowledge of what constitutes a 

typical face. 

- Bottom-Up Feature-Based Methods: These methods try to find the 

structural features of human faces even when the pose, viewpoint, or 

lighting conditions vary. 

- Template Matching Methods: Different face patterns are stored in order 

to describe human face. 

- Appearance-based Methods: Face detection is implemented by learning 

from face samples. 

2.2.1 Knowledge – Based Top down Methods 
 

Researchers work on knowledge-based top down methods derived rules based 

on human knowledge of faces. Relationship between facial features can be easily 

derived from the human knowledge of faces. For example, an ordinary face contains 

two eyes that are symmetric to each other, a nose and a mouth. Relationship between 

facial features can be extracted for an average face by using the relative distances 

and positions of these features. Figure 2.7 is an example of a typical face used in 

knowledge based top down methods. 
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Figure 2.7: Typical face used in knowledge-based top-down methods [1]. 

First step of a knowledge-based top down method is extracting facial features, 

the next step is identifying the face candidates, and the final step is applying the 

verification process in order to reduce false detections. 

Main problem of this approach is defining well-defined rules in order to 

determine human faces. Defined rules should not be too much strict which may fail 

face detection. Also defined rules should not be too general which may cause too 

much false detections. 

Another problem is detecting faces in different poses because of challenges in 

specifying all possible cases. However, these methods work well in detecting frontal 

faces in plain background.  

The most well known hierarchical knowledge-based method is represented by 

Yang and Huang et al [2]. Their system consists of three levels of rules. At the 

highest level all face candidates are found by using window scanning method. The 

rules at this step are general description of what a face generally looks like. And the 

rules at the lower levels are related to details of facial features. Another important 

point in their research is, using multi resolution hierarchy for face detection. At the 

first step with the lowest resolution shown in Figure 2.8 d, face candidates are 

determined by the algorithm using the general shape of a face. At the second level, 

local histogram equalization is applied at the face candidates received from the 

previous level. At the final level set of rules related to facial features are applied.    
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a   b   c   d 

Figure 2.8: Multi resolution hierarchy, a = original image, b,c and d low level 
resolution images [2]. 

 

2.2.2 Bottom-Up Feature-Based Methods  
 

In knowledge based top-down approaches, derived rules are affected by pose, 

lighting conditions, occlusions etc. Therefore, researchers attempted to find stable 

rules for facial features which are not affected by lighting conditions, occlusions or 

pose. 

Since humans can detect faces effortlessly in different pose and lighting 

conditions, one would be inclined to think that, there should be features or properties 

which are invariant over these variables. 

There are lots of methods which firstly detect invariant facial features and then 

infer the presence of a face. By using edge detectors facial features such as 

eyebrows, eyes, nose and mouth can be extracted. Then a statistical model is built to 

describe a relationship between them in order to verify the existence of a face. 

One problem with these method is images may be corrupted because of lots of 

factors such as illumination, occlusion etc. 

2.2.2.1 Facial Features 

 

There are many facial features based face detection algorithms and 

implementations in the literature. Below are the selected facial feature based face 

detection algorithms.  

Localization method for segmentation of faces from a complex background for 

face detection is proposed by Sirohey et al [3]. In proposed algorithm canny edge 
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detector was used in order to detect edges as shown in Figure 2.9. After edge 

detection operation a heuristic was applied in order to get edges related to face shape. 

Then an ellipse is fit to the boundary between the head region and the background. 

This algorithm achieves 80 percent accuracy on a database of 48 images with 

complex backgrounds. 

                              
(a)                                                                 (b) 

Figure 2.9: Intensity image (a) and edge map from Canny`s edge detector (b) 
[3]. 

In order o locate facial features, band pass filtering and morphological 

operations are applied to gray scale images to enhance regions with intensity by Graf 

et al [4]. Typically, there is a significant peak in processed image. Using this peak 

value and its width, adaptive threshold values are selected in order to generate two 

binarized images. Connected components are identified in both binarized images to 

identify the areas of candidate facial features. Final step of the proposed algorithm is, 

combination of facial features and applying a classifier in order to establish 

successful face detection. 

Another facial features based face detection algorithm was proposed by Han et 

al [5]. Since eyebrows and eyes are the most stable features of human face, they 

thought that they must be the most important facial features for face detection. First 

step of the proposed algorithm is applying morphological operators such as closing, 

clipped difference and thresholding in order to get the pixels at which the intensity 

values change significantly. Then a labeling process is applied in order to generate 

the eye- resembling segments. Final step of the algorithm analyses these segments 

through the geometrical relationships between these facial features. 
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2.2.2.2 Texture 

 

Since human faces have a distinct texture, it can be used for differentiation of 

faces from nonface objects. An algorithm related to texture and face detection is 

proposed by Augusteijn and Skufca et al [6]. In their proposed algorithm first step is 

computing the texture using second order statistical features on subimages of 16X16 

pixels. They used a cascade correlation neural network for classification of textures. 

To detect faces they suggest using votes of the occurrence of hair and skin textures. 

However they did not report the results of the face detection process. 

2.2.2.3 Skin Color 

 

 Although human skin color differs from person to person, and race to race, it 

has been used by many face detection applications. Main reason of why human skin 

color can be used by these applications is the difference lies largely between their 

intensity rather than their chrominance. Several color space such as RGB, normalized 

RGB, HSV, HSI, VCrCb, YIQ, YES and CIE etc. are used for face detection. 

   Color information can be an efficient tool if the skin color model can be 

properly adapted for different lighting conditions. Most of the skin color models fail 

if the lighting conditions are not stable. 

One of the applications of human skin color is proposed by Seow, Valaparla 

and Asari et al [7]. They proposed a method for face detection that eliminates the 

limitations pertaining to the skin color variations among people. They proposed a 

skin color model in the three dimensional RGB space. They reported that their 

system can detect faces in different lighting conditions. Figure 2.10 shows the input 

image and its corresponding result image. 
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(a)                                                                   (b) 

Figure 2.10: (a) Test Image, (b) Result Image [7]. 

 

2.2.2.4 Multiple Features 

 

 Recently, combining multiple facial features for face detection has become 

popular. These methods use global features such as skin color and shape for 

detecting face candidates. Then, these methods use detailed features such as 

eyebrows, nose and hair for detecting faces. In these methods, skin like pixels are 

grouped together in order to find the elliptic oval shapes which may be a face region. 

Finally local features used for verification of face detection. 

Using shape and color for face detection is proposed by Sobottka and Pitas et 

al [8]. First step of this proposed algorithm is color segmentation in HSV space for 

detecting skin-like regions. Next step is determining the connected components for 

on each skin-like region. For each connected component the best fit ellipse is 

computed using geometric moments. Then these elliptic regions are determined as 

face candidates. Figure 2.11 is an example of this algorithm. Then facial features are 

searched on these regions in order to verify face detection. Their experiment shows a 

detection rate of 85 percent based on a test set of 100 images. 
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(a)                             (b)                            (c)                                   (d) 

Figure 2.11: (a) original color image, (b) skin segmentation, (c) connected 
components, (d) best-fit ellipses [8]. 

The symmetry of facial features has also been used for face detection. Skin-

nonskin classification is done in YES color space by means of the class-conditional 

density function. Then an elliptic face template is used to determine the similarity of 

the skin color regions. At the last step the eye centers are localized using several cost 

functions, and the nose and the mouth centers are localized using the distance from 

the eye centers. This method works well in the single frontal-view face and when 

both eyes are visible.     

 2.2.3 Template Matching 
 

In the template matching method, a standard face is manually predefined or 

parameterized by a function. Correlation values for eyes, nose and mouth are 

computed independently. The verification of face region is done by correlation 

values between these features. This approach is easy to implement. However it does 

not deal with the variation of scale, pose and shape. In order to deal with these 

problems, there have been new proposed methods such as multiresolution, multiscale 

and deformable templates. 

2.2.3.1 Predefined Templates 

 

An early attempt for face detection is reported by Sakai et al [9].There are 

many subtemplates for nose, mouth and eyes in order to create a generic model for a 

face. At the first step, to detect face candidates, correlation between subtemplates and 

given image is calculated. Then other subtemplates are applied to these face 

candidate regions to detect faces. 
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Another algorithm that uses two steps for face detection is presented by 

Govindarafu et al [10]. First of all, face model is extracted based on edges. These 

extracted edges are used for defining left side, the hair-line and the right side of the 

frontal face. To obtain edge map of a given image the Marr-Hildreth edge operator is 

applied. Then a filter is applied to remove edges that are not related to face. Corners 

are detected to segment contour into feature curves. These features are then labeled 

as their geometrical shapes and distances. The ratios of the feature pairs performing 

an edge are compared with the golden ratio and cost is assigned to the edge. If the 

cost of a group of three feature curves is low, the group becomes a hypothesis. Their 

system reports a detection rate of approximately 70 percent based on a test set of 50 

photographs. 

2.2.3.2 Deformable Templates 

 

In order to model facial features deformable templates were used by Yuille et 

al [11].  In this proposed algorithm facial features are described by parameterized 

templates. Energy function is used for linking edges, peaks and valleys in the input 

image and corresponding template. Their algorithm shows good performance on 

tracking the grid features. 

Another implementation related to deformable templates which uses both face 

and intensity information for face representation is proposed by Lanitis et al [12]. At 

the training part of the proposed algorithm sampled contours such as the eye 

boundary and nose are manually labeled and a vector of sample points is used to 

represent shape. They used point distribution model to characterize the shape vectors 

over an ensemble of individuals. A face shape point distribution model can be used 

to locate face in new images by using active shape models search to estimate the face 

location. Then the face region is deformed to the average face shape and intensity 

parameters are extracted. The shape and intensity parameters are used for face 

detection. 
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2.2.4 Appearance-Based Methods 
 

Templates in appearance-based methods are not defined by experts. They are 

learned from examples in images. Techniques used in appearance based methods are 

related to statistical analysis and machine learning. The learned characteristics are in 

the form of distribution models or discriminant functions that are consequently used 

for face detection. 

Many appearance based methods can be understood in a probabilistic 

framework. An image can be viewed as random variable x, and this random variable 

is characterized for faces and nonfaces by the class conditional density functions 

(p(x|face) and p(x|nonface)). Classification of face and nonface objects can be done 

by Bayesian classifier or maximum likelihood. Since x is high dimensional,  

p(x|face) and p(x|nonface) are multimodal and it is not yet understood if there are 

natural parameterized forms for p(x|face) and p(x|nonface) classes, straight forward 

implementation of Bayesian classifier is impossible.  

Another approach in appearance based methods is finding a discriminant 

function between face and nonface samples. Also neural networks, support vector 

machines and other kernel methods are proposed. 

2.2.4.1 Eigenfaces 

 

Eigenfaces are firstly demonstrated in the research of Kohonen et al [13]. In his 

research a simple neural network is demonstrated to perform face detection for 

aligned and normalized face images. 

Images of faces can be linearly encoded using modest number of basis images 

as demonstrated by Kirby and Sirowich et al [14]. Karhunen-Loeve transform which 

is also known as Principal Component Analysis is based on this derivation. Given a 

collection of n by m pixel training images represented as a vector of size m×n, basis 

vectors spanning an optimal subspace are determined such that the mean square error 

between the projection of the training images onto this subspace and the original 

image is minimized. Experiments with a set of 100 images show that a face image of 
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91 × 50 pixels can be effectively encoded using only 50 eigenpictures. Figure 2.12 is 

an example of eigenfaces. 

Many works on face detection, recognition and feature extractions such as Turk 

and Pentland et al [15] have adopted the idea of eigenvector decomposition and 

clustering.  

 

Figure 2.12: Eigenfaces. 

2.2.4.2 Distribution-Based Methods 

 

Distribution based system for face detection which demonstrated how the 

distributions of image patterns from one object class can be learned from positive 

and negative examples of that class is demonstrated by Sung and Poggio et al [16]. 

The proposed system consists of two parts, distribution-based models for face 

nonface patterns and a multilayer perceptron classifier. First of all, all training 

samples are normalized and processed to a 19×19 pixel image and treated as a 361 

dimensional pattern. Then patterns are grouped into six face and nonface clusters 

using a modified k-means algorithm. Each cluster is represented as a 

multidimensional Gaussian function with a mean image and a covariance matrix. 

They used two distance matrices. First one is the normalized Mahalanobis distance 

between the test pattern and the cluster centroid, and the second one is the Euclidean 

distance between the test pattern and its projection. The last step is the proposed 

algorithm is multilayer perceptron network to discriminate face windows from 

nonface windows. 
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Recently, the Fisherface method which is an another implementation of 

distribution based methods, based on linear discriminant analysis have been shown 

the outperform the widely used Eigenface method in face detection on several data 

sets, including the Yale face database where face images are taken under varying 

lighting conditions. 

2.2.4.3 �eural �etworks 

 

Neural networks are being successfully applied across an extraordinary range 

of problems such as optical character recognition, object recognition, and 

autonomous robot driving. Many neural network architectures have been proposed 

for the face detection problem due to its suitability as a  two class pattern recognition 

problem. The advantage of using neural networks for face detection problem is the 

applicability of training a system to detect face and nonface classes. However, the 

disadvantage that the network architecture is to be widely tuned (number of layers, 

number of nodes, learning rates, etc.) to get exceptional, and sometimes acceptable 

performance. 

Agui et al [17] presented a hierarchical neural network in his research. The first 

stage of the proposed algorithm consists of two parallel subnetworks. Inputs are 

intensity values from an original image and intensity values from filtered image The 

inputs to the second stage network consist of the outputs from the subnetworks and 

extracted feature values. An output value at the second stage indicates the presence 

of a face in the input region. Experimental results show that this method is able to 

detect faces if all faces in the test images have the same size. 

Another method which is developed by Propp and Samal is proposed as neural 

network base face detection system [18]. Their proposed network consists of four 

layers with 1,024 input units, 256 units in the first hidden layer, eight units in the 

second hidden layer, and two output units. 

Another similar hierarchical neural network for face detection is later proposed 

by Soulie et al. [19]. In the proposed neural network input image is scanned with a 

time-delay neural network in order to detect faces. To cope with size variation, the 
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input image is decomposed using wavelet transforms. They reported a false negative 

rate of 2.7 percent and false positive rate of 0.5 percent from a test of 120 images. 

The most significant work among all face detection methods which is using 

neural network for face detection is done by Rowley et al [20]. A multilayer neural 

network is used to learn the face and nonface classes from face/nonface images. The 

first component of this proposed method is a neural network that receives a 20 ×20 

pixel region of an image and outputs ranging from -1 to 1. -1 for nonface samples 

and 1 for face samples. They used scan window method  for detecting faces in all 

locations Also faces which are larger than 20×20 pixels  can be detected by resizing 

the image and applying neural network at all locations. Nearly 1,050 face samples of 

various sizes, orientations, positions, and intensities are used to train the network.  

The second component of this method is to merge overlapping detection and arbitrate 

between the outputs of multiple networks. Simple arbitration schemes such as logic 

operators (AND/OR) and voting are used to improve performance. Figure 2.13 is the 

architecture of this proposed algorithm 

 

 
 

Figure 2.13: Architecture of Rowley et al [20]. 

2.2.4.4 Support Vector Machines 

 

The first application of Support Vector Machines for face detection is 

presented by Osuna et al [13]. Support Vector Machines can be considered as a new 

paradigm to train polynomial function, neural networks, or radial basis function 
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classifiers. Support Vector Machines try to minimize an upper bound on the expected 

generalization error whereas neural networks target to minimize the training error. A 

Support Vector Machine classifier is a linear classifier where the separating 

hyperplane is chosen to minimize the expected classification error of the unseen test 

patterns. This optimal hyperplane is defined by a weighted combination of a small 

subset of the training vectors, called support vectors. Estimating the optimal 

hyperplane is equivalent to solving a linearly constrained quadratic programming 

problem. However, the computation is both time and memory intensive.  

An efficient method for Support Vector Machines and face detection is 

proposed by Osuna et al [21]. Osuna developed an efficient way to train an Support 

Vector Machines and applied it to face detection. Based on two test sets of 

10,000,000 test patterns of 19×19 pixels, the proposed system has lower error rates  

2.2.4.5 Sparse �etwork of Winnows 

 

In order to detect faces with different features and expressions, in different 

poses, and under different lighting conditions a new method that uses SNoW  

learning architecture is proposed by Yang et al [22]. SNoW (Sparse Network of 

Winnows) is a sparse network of linear functions that utilizes the Winnow update 

rule . It is specifically tailored for learning in domains in which the potential number 

of features taking part in decisions is very large, but may be unknown a priori. Some 

of the characteristics of this learning architecture are its sparsely connected units, the 

allocation of features and links in a data driven way, the decision mechanism, and the 

utilization of an efficient update rule. 

In training the SNoW-based face detector, 1,681 face images from Olivetti, 

UMIST , Harvard , Yale , and FERET databases are used to capture the variations in 

face patterns. To compare with other methods, they report results with two readily 

available data sets which contain 225 images with 619 faces . With an error rate of 

5.9 percent, this technique performs as well as or, better than the other methods that 

are evaluated on the data set. 
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2.2.4.6 �aïve Bayes Classifier 

 

Schneiderman and Kanade et al  proposed a method that estimates the  Joint 

probability of local features at multiple resolutions using a naive Bayes 

classifier[23]. They emphasize local features because some local features of a face 

are more unique than others; e.g. the intensity patterns around the eyes are much 

more distinctive than the pattern found around the cheeks. First reason why they used 

naive bayes classifier is that, it provides better estimation of the conditional density 

functions of these subregions. Furthermore, a naive Bayes classifier provides a 

functional form of the posterior probability to capture the joint statistics of local 

appearance and position on the face. At each scale, a face image is decomposed into 

four rectangular subregions. These subregions are then projected to a lower 

dimensional space using PCA and quantized into a finite set of patterns, and the 

statistics of each projected subregion are estimated from the projected samples to 

encode local appearance. Under this formulation, their method decides that a face is 

present when the likelihood ratio is larger than the ratio of prior probabilities  

Another method related to joint statistical models of local features was 

developed by Rickert et al. [24]. In order to extract local features multiscale and 

multiresolution filters are applied to the input image. The distribution of the features 

vectors is estimated by clustering the data and then forming a mixture of Gaussians. 

After the model is learned and further refined, test images are classified by 

computing the likelihood of their feature vectors with respect to the model. Their 

experimental results on face and car detection show interesting and good results 

2.2.4.7 Hidden Markov Model 

 

Hidden Markov Model (HMM) is based on the following assumption. Patterns 

can be characterized as a parametric random process and that the parameters of this 

process can be estimated in a perfect, well-defined manner. First step of using HMM 

for face detection problem is forming a HMM model. In order to form a HMM 

model, number of hidden states need to be decided .Then, HMM can be trained in 

order to learn the transitional probability between states from the examples where 

each example is represented as a sequence of observations. After the HMM has been 
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trained, the output probability of an observation determines the class to which it 

belongs. 

A face region can be divided into several subregions such as the forehead, 

eyes, nose, mouth, and chin. A face region can then be recognized by a process in 

which these subregions are observed in an appropriate order (from top to bottom and 

left to right). Instead of relying on accurate alignment as in template matching or 

appearance based methods, this approach aims to associate facial subregions with the 

states of a continuous density  

During training and testing, an image is scanned in some order (usually from 

top to bottom) and an observation is taken as a block of pixels. For face regions, the 

boundaries between strips of pixels are represented by probabilistic transitions 

between states, and the image data within a region is modeled by a multivariate 

Gaussian distribution. An observation sequence consists of all intensity values from 

each block. The output states correspond to the classes to which the observations 

belong. After the HMM has been trained, the output probability of an observation 

determines the class to which it belongs. 

 One state is responsible for characterizing the observation vectors of human 

foreheads, and another state is responsible for characterizing the observation vectors 

of human eyes. For face localization, an HMM is trained for a generic model of 

human faces from a large collection of face images. If the face likelihood obtained 

for each rectangular pattern in the image is above a threshold, a face is located. 
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Chapter 3 

�eural �etworks 
 

3.1 Introduction to �eural �etworks 
 

Artificial Intelligence is one of the topics of Computer Science that attempts to 

give computers a humanlike intelligence. Inspired from the human brain Neural 

Networks (NN) are one of the most important tools which enable computers to make 

decisions as humans do. The human brain consists of a network of over a billion 

interconnected neurons. Neurons are individual cells that can process small amounts 

of information and then activate other neurons to continue the process.  

Essentially a NN is a simplified model of human brain. A NN transforms 

inputs into outputs to the best of its ability.  

 

 

Figure 3.1: Neural network transforms inputs into outputs [25]. 

 

Neural networks are being successfully applied to variety of problem domains 

such as computer science, finance, medicine, engineering, geology and physics. 

Also, anywhere that there are problems of prediction, classification or control, NNs 
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can be considered as a candidate solution. The success of neural networks is 

dependent on the following factors: 

• Power. Since neural networks are very advanced modeling techniques, 

they are capable of modeling extremely complex functions. In 

particular, neural networks are nonlinear. For many years linear 

modeling has been the commonly used technique in most of the 

problem domains. Where the linear approximation was not valid the 

proposed models produced unsuccessful results. Neural Networks are 

capable of simulating nonlinear problems. 

• Ease of use. Neural Networks learn by example. A neural network 

user gathers representative data, and then invokes training algorithm 

to automatically learn the structure of the data. The user does need to 

have some heuristic knowledge of how to select and prepare data, how 

to select an appropriate neural network, and how to interpret the 

results; the neural network can derive the discriminating features from 

the data. In other words, the level of user knowledge needed to 

successfully apply neural networks is much lower than would be the 

case using some more traditional nonlinear statistical methods. 

3.2 Biological �euron 
 

To construct “human like thought” computer researchers try to simulate the 

human brain. Since human brain is so complex, researcher avoid considering the 

human brain as a whole.  Individual cells that make up the human brain are studied. 

Human brain is composed of neuron cells. A neuron cell, as seen in Figure 3.2 

is the basic building block of the human brain. A neuron accepts signals from the 

dendrites. When a neuron accepts a signal, that neuron may fire. When a neuron 

fires, a signal is transmitted over the neuron's axon. Ultimately the signal will leave 

the neuron as it travels to the axon terminals. The signal is then transmitted to other 

neurons or nerves. 
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Figure 3.2: A Neuron Cell [25]. 

 

Neurons transmitted the analog signal. However, modern computers are digital 

machines, they require a digital signal. A digital computer processes information as 

either on or off. This is the basis of the binary digits zero and one. The presence of an 

electric signal represents a value of one, whereas the absence of an electrical signal 

represents a value of zero. Figure 3.3 shows a representative digital signal 

 

 

 

Figure 3.3: A Digital Signal [25]. 

 

Biological neural networks are analog. Simulating analog neural networks on a 

digital computer can present some challenges. Neurons accept an analog signal 
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through their dendrites. Because this signal is analog the voltage of this signal will 

vary. If the voltage is within a certain range, the neuron will fire. When a neuron 

fires, a new analog signal is transmitted from the firing neuron to other neurons. This 

signal is conducted over the firing neuron's axon and fed to other neurons through 

synapses. Synapses are the input/output interfaces of neurons.  

Firing or not firing a neuron corresponds to making a decision. These are 

extremely low level decisions. It takes firing of much higher numbers of such 

neurons to read this sentence. Higher level decisions are the result of the collective 

input and output of many neurons. Biological neurons are capable of making basic 

decisions. This model is what artificial neural networks are based on.  

3.3 Simulating the Biological �euron 
 

A computer can be used to simulate a biological neural network. This computer 

simulated neural network is called an artificial neural network. Artificial neural 

networks are almost always referred to simply as neural networks. 

In order to simulate biological neural systems, an artificial neuron is defined as 

follows: 

It receives a number of inputs (either from original data, or from the output of 

other neurons in the neural network). Each input comes via a connection that has a 

weight; these weights correspond to synaptic efficacy in a biological neuron. Each 

neuron also has a single threshold value. The weighted sum of the inputs is 

calculated, and the threshold subtracted. Then the activation of the neuron is 

composed. 

The activation signal is passed through an activation function (transfer 

function) to produce the output of the neuron. 

If the step activation function is used then the neuron acts just like the 

biological neuron. Actually, the step function is rarely used in artificial neural 

networks. Also weights can be negative or positive,  

If a neural network is used, there must be inputs and outputs. Inputs and 

outputs correspond to sensory and motor nerves such as those coming from the eyes 
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and leading to the hands. However, there also can be hidden neurons that play an 

internal role in the network. The input, hidden and output neurons need to be 

connected together. 

 A simple network has a feedforward structure: signals flow from inputs, 

forwards through any hidden units, in order to reach the output units. Such a 

structure has stable behavior. However, if the network is recurrent it can be unstable, 

and has very complex dynamics. Recurrent networks are very interesting to 

researchers in neural networks, but so far it is the feedforward structures that have 

proved most useful in solving real problems. 

A typical feedforward network has neurons arranged in a distinct layered 

topology. The input layer is not really neural at all: these units simply serve to 

introduce the values of the input variables. The hidden and output layer neurons are 

each connected to all of the units in the preceding layer. Again, it is possible to 

define networks that are partially-connected to only some units in the preceding 

layer; however, for most applications fully-connected networks are better. 

When the network is executed, the input variable values are placed in the input 

units, and then the hidden and output layer units are progressively executed. Each of 

them calculates its activation value by taking the weighted sum of the outputs of the 

units in the preceding layer, and subtracting the threshold. The activation value is 

passed through the activation function to produce the output of the neuron. When the 

entire network has been executed, the outputs of the output layer act as the output of 

the entire network. 

3.4 History of �eural �etworks 
 

Although human brain have been working for thousands of years, only with the 

advent of modern electronics that people have started to try for the human brain and 

the processes of thinking. The modern period of neural network research is started 

with the work done by neuro-physiologist, Warren McCulloch and Walter Pitts in 

1943. They wrote a paper on how neurons might work, and they designed and built a 

primitive artificial neural network using simple electric circuits.  
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The book "The Organization of Behavior" which is written by Donald Hebb in 

1949 is the next major development in neural network system the book supported 

and further reinforced McCulloch-Pitts's theory about neurons and how they work. A 

major point bought forward in the book described how neural pathways are 

strengthened each time they were used.  

Since traditional computing which slow down the development of neural 

Networks began in 1950s. However certain individuals continued research into 

neural networks. In 1954 Marvin Minsky wrote a doctorate thesis, "Theory of 

Neural-Analog Reinforcement Systems and its Application to the Brain-Model 

Problem", which was concerned with the research into neural networks. He also 

published a scientific paper entitled, "Steps Towards Artificial Intelligence" which 

was one of the first papers to discuss AI in detail. In 1956 the Dartmouth Summer 

Research Project on Artificial Intelligence began researching AI, what was to be the 

primitive beginnings of neural network research.  

 A neuro-biologist at Cornell University who is called Frank Rosenblatt began 

working on the Perceptron in 1958.The perceptron was the first "practical" artificial 

neural network. One major downfall of the perceptron was that it had limited 

capabilities and this was proven by Marvin Minsky and Seymour Papert's book of 

1969 entitled, "Perceptrons".  

ADALINE (ADAptive LINear Elements) and MADELINE (Multiple 

ADAptive LINear Elements) models are developed by the researchers Bernard 

Wildrow and Marcian Hoff between 1959 and 1960. These were the first neural 

networks that could be applied to real problems.  

In 1982 John Hopfield of Caltech presented a paper to the scientific community 

in which he stated that the approach to AI should not be to purely imitate the human 

brain but instead to use its concepts to build machines that could solve dynamic 

problems. He showed what such networks were capable of and how they would 

work.  

Rumelhart, Hinton and Williams reported back on the developments of the 

back-propagation algorithm in 1986. The paper discussed how back-propagation 
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learning had emerged as the most popular learning set for the training of multi-layer 

perceptrons.  

With the dawn of the 1990's and the technological era, many advances into the 

research and development of artificial neural networks are occurring all over the 

world. Nature itself is living proof that neural networks do in actual fact work. The 

challenge today lies in finding ways to electronically implement the principals of 

neural network technology. Electronics companies are working on three types of 

neuro-chips namely, digital, analog, and optical. With the prospect that these chips 

may be implemented in neural network design, the future of neural network 

technology looks very promising. 

3.5 �eural �etwork Types 
 

There are many different kinds of neural networks. The most common used 

are single-layer feedforward, multilayer, and recurrent network. 

3.5.1 Single-Layer Feedforward �eural �etwork 
 

Single-layer feedforward neural network is the earliest kind of neural network. 

It consists of a single layer of output nodes; the inputs are fed directly to the outputs 

via a series of weights. It is the simplest kind of feed-forward network. 

 

Figure 3.4: Single layer feed forward neural network 
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3.5.2 Multilayer �eural �etwork 
 

Multilayer Neural Network consists of multiple layers of computational units. 

They are interconnected in a feed-forward way. Each neuron in one layer has 

directed connections to the neurons of the subsequent layer. 

 

Figure 3.5: Multilayer feedforward neural network 

3.5.3. Recurrent �eural �etwork  
 

A recurrent neural network contains connections between units form a directed 

cycle. This creates an internal state of the network which allows it to exhibit dynamic 

temporal behavior. 

Recurrent neural networks must be approached differently from feedforward 

neural networks, both when analyzing their behavior and training them. Recurrent 

neural networks can also behave chaotically. Usually, dynamical systems theory is 

used to model and analyze them. While a feedforward network propagates data 

linearly from input to output, recurrent networks also propagate data from later 

processing stages to earlier stages 
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Figure 3.6: Recurrent Neural Network 

3.6 Solving Problem with �eural �etworks 
 

Most important thing for most computer technologies is when to use the 

technology and when not to. Neural Networks are no different. In order to apply 

neural Networks technology to problem neural network user should knows what 

neural network structure, which is most applicable to a given problem.  

3.6.1 Problems Can �ot Be Solved by �eural �etwork 
 

Most programs do not require a neural network. If a program which is easily 

written out as a flowchart, does not need a neural network. If a program consists of 

well defined steps, normal programming techniques will enough.  

Since neural networks can learn, program which has an unchanged logic will 

not suitable to use neural networks. 

Finally, neural networks are often not suitable for problems where someone 

knows exactly how the solution was derived. A neural network can become very 

adept at solving the problem for which the neural network was trained. But the neural 

network cannot explain its reasoning. The neural network knows because it was 
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trained to know. The neural network cannot explain how it followed a series of steps 

to derive the answer. 

3.6.2 Problems Can Be Solved by �eural �etwork 
 

Although there are many problems that neural networks are not suited towards 

there are also many problems that a neural network is quite adept at solving. Neural 

networks can often solve problems with fewer lines of code than a traditional 

programming algorithm. It is important to understand what these problems are. 

Neural networks are particularly adept at solving problems that cannot be expressed 

as a series of steps. Neural networks are particularly useful for recognizing patterns, 

classification into groups, series prediction and data mining. Pattern recognition is 

perhaps the most common use for neural networks. The neural network is presented a 

pattern. This could be an image, a sound, or any other sort of data. The neural 

network then attempts to determine if the input data matches a pattern that the neural 

network has memorized.  

Classification is a process that is closely related to pattern recognition. A 

neural network trained for classification is designed to take input samples and 

classify them into groups. These groups may be fuzzy, without clearly defined 

boundaries. These groups may also have quite rigid boundaries. 

Series prediction uses neural networks to predict future events. The neural 

network is presented a chronological listing of data that stops at some point. The 

neural network is expected to learn the trend and predict future values.  

3.7 Structure of �eural �etwork 
 

A neural network is composed of several different elements. Neurons which 

are the most basic unit are interconnected to each other. These connections are not 

equal, as each connection has a connection weight. Groups of networks come 

together to form layers. 
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3.7.1 The �euron 
 

The neuron which is the basic building block of the neural network is a 

communication conduit. The neuron both accepts input and produces output. The 

neuron receives its input either from other neurons or the user program. Similarly the 

neuron sends its output to other neurons or the user program. 

When a neuron produces output, that neuron is said to activate, or fire. A 

neuron will activate when the sum if its inputs satisfies the neuron’s activation 

function. Consider a neuron that is connected to k other neurons. The variable w 

represents the weights between this neuron and the other k neurons. The variable x 

represents the input to this neuron from each of the other neurons. Therefore we must 

calculate the sum of every input x multiplied by the corresponding weight w. This is 

shown in the following equation 

 

 

. 

This sum must be given to the neurons activation function.  The net value as 

expressed by the basis function,  , will be immediately transformed by a nonlinear 

activation function of the neuron. For example, the most common activation 

functions are step, ramp, sigmoid. and Gaussian function.  

- Sigmoid Function 

 

 

- Gaussian function  

 

 

- Hyperbolic Tangent 
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The hyperbolic tangent threshold method will return values according to Figure 

3.7 TANH activation method will be useful when user needs output greater than and 

less than zero. If only positive numbers are needed, then the Sigmoid threshold 

method will be used.  

 

Figure 3.7: TanH activation Function 

 

3.7.2 �euron Connection Weights 
 

Neurons are usually connected together. These connections are not equal, and 

can be assigned individual weights. These weights give the neural network the ability 

to recognize certain patterns. Adjust the weights and the neural network will 

recognize a different pattern. Adjustment of these weights is a very important 

operation. The process of training is adjusting the individual weights between each of 

the individual neurons. 

3.7.3 �euron Layers 
 

Neurons are often grouped into layers. Layers are groups of neurons that 

perform similar functions. There are three types of layers.  
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Input Layer: The input layer is the layer of neurons that receive input from the 

user program. The layer of neurons that send data to the user program is the 

output layer. 

Hidden Layer: The hidden layer is in between the input layer and output layer. 

Hidden layer neurons are only connected to other neurons and never directly 

interact with the user program. The input layer presents pattern to the hidden 

layer. Then the hidden layer presents information on to the output layer. Finally 

the user program collects the pattern generated by the output layer.  

Output Layer: Displays the results of the network to user.  

The input and output layers are not just there as interface points. Every neuron 

in a neural network has the opportunity to affect processing. Processing can occur at 

any layer in the neural network. 

Not every neural network has many layers. The hidden layer is optional. The 

input and output layers are required, but it is possible to have one layer act as both an 

input and output layer. Figure 3.8 is an example of Neural Network Layers. 

 

Figure 3.8: Neural Network Layers [25]. 
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3.8 Training the �eural �etwork 
 

Neural network consists of neurons which are connected to each other via 

synapses These connections allow the neurons to signal each other as information is 

processed. Not all connections are equal. Each connection is assigned a connection 

weight. These weights are what determine the output of the neural network. 

Therefore it can be said that the connection weights form the memory of the neural 

network. Training is the process by which these connection weights are assigned. 

Most training algorithms begin by assigning random numbers to the weight matrix. 

Then the validity of the neural network is examined. Next the weights are adjusted 

based on how valid the neural network performed. This process is repeated until the 

validation error is within an acceptable limit. There are many ways to train Neural 

Networks such as supervised, unsupervised and various hybrid approaches. 

Supervised training is accomplished by giving the neural network a set of 

sample data along with the anticipated outputs from each of these samples. 

Supervised training is the most common form of neural network training. As 

supervised training proceeds the neural network is taken through several iterations, 

or epochs, until the actual output of the neural network matches the anticipated 

output, with a reasonably small error. Figure 3.9 is schematic diagram of supervised 

learning.  

 

 

Figure 3.9: Schematic diagram of supervised Learning 

 

 

Unsupervised training is similar to supervised training except that no 

anticipated outputs are provided. Unsupervised training usually occurs when the 
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neural network is to classify the inputs into several groups. The training progresses 

through many epochs, just as in supervised training. As training progresses the 

classification groups are “discovered” by the neural network. Figure 3.10 is 

schematic diagram of unsupervised learning. 

 

 

Figure 3.10: Schematic diagram of unsupervised learning 

 

There are several hybrid methods that combine several of the aspects of 

supervised and unsupervised training. One such method is called reinforcement 

training. In this method the neural network is provided with sample data that does not 

contain anticipated outputs, as is done with unsupervised training. However, for each 

output, the neural network is told whether the output was right or wrong given the 

input. It is very important to understand how to properly train a neural network.  

3.9 Backpropogation Algorithm 
 

The Backpropagation algorithm was first proposed by Paul Werbos in the 

1970's. However, it wasn't widely used until rediscoved in 1986 by Rumelhart and 

McClelland. 

Backpropagation is a very common method for training multilayer feed 

forward networks. Backpropagation can be used with any feed-forward network that 

uses a threshold function which is differentiable. It is this derivative function that we 

will use during training.  

To train the neural network a method must be determined to calculate the error. 

As the neural network is trained, the net is presented with samples from the training 
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set. The result obtained from the neural network is then compared with the 

anticipated result that is part of the training set. The degree to which the output from 

the neural network matches this anticipated output is the error. 

To train the neural network, we must try to minimize this error. To minimize 

the error the neuron connection weights and biases must be modified. We must 

define a function that will calculate the error of the neural network. This error 

function must be differentiable. Because the network uses a differential threshold 

function the activations of the output neurons can be thought of as differentiable 

functions of the input, weights and bias. If the error function is also differentiable 

error, such as the "sum of square" error function the error function itself is a 

differentiable function of the these weights. This allows us to evaluate the derivative 

of the error using the weights. Then using these derivatives we can find weights and 

bias that will minimize the error function. 

There are several ways that weights that minimize the error function can be 

found. The most popular is by using the gradient descent method. The algorithm that 

evaluates the derivative of the error function is known as backpropagation, because it 

propagates the errors backward through the network.  

  

Backpropagation algorithm can be summarized as follow: 

1- Present a training sample to the neural network.  

2- Compare the network's output to the desired output from that sample. Calculate 

the error in each output neuron.  

3- For each neuron, calculate what the output should have been, and a scaling factor, 

how much lower or higher the output must be adjusted to match the desired output. 

This is the local error.  

4- Adjust the weights of each neuron to lower the local error.  

5- Assign "blame" for the local error to neurons at the previous level, giving greater 

responsibility to neurons connected by stronger weights.  

6- Repeat from step 3 on the neurons at the previous level, using each one's "blame" 

as its error. 
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3.11 Validating the �eural �etwork 
 

After training the neural network it must be evaluated to see if it is ready for 

actual use. This final step is important so that it can be determined if additional 

training is required. To correctly validate a neural network validation data must be 

set aside that is completely separate from the training data. 

Once the network was properly trained the second group data would be used to 

validate the neural network. It is very important that a separate group always be 

maintained for validation. First training a neural network with a given sample set and 

also using this same set to predict the anticipated error of the neural network a new 

arbitrary set will surely lead to bad results. The error achieved using the training set 

will almost always be substantially lower than the error on a new set of sample data. 

The integrity of the validation data must always be maintained. 

This brings up an important question. What exactly does happen if the neural 

network that is just trained performs poorly on the validation set? If this is the case it 

could mean that the initial random weights were not good. Rerunning the training 

with new initial weights could correct this. While an improper set of initial random 

weights could be the cause, a more likely possibility is that the training data was not 

properly chosen. If the validation is performing badly this most likely means that 

there was data present in the validation set that was not available in the training data. 

The way that this situation should be solved is by trying a different, more random, 

way of separating the data into training and validation sets.   
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Chapter 4 

�eural �etwork Based Face Detection 
 

4.1 Background 
 

Face detection is a problem related to face processing and machine learning. In 

face detection problem space, there are two classes, face and non face, which make 

face detection a classification problem. Distribution of these classes can be learned 

via machine learning and statistical methods.  

Although structures of faces are similar and facial features are arranged in 

roughly the same spatial configuration, even among images of the same person’s face 

have significant differences because of illumination, facial expressions, pose etc. 

Therefore template matching and facial features based face detection methods fail to 

detect faces. 

Since face and nonface spaces are very complex, linear discriminant functions 

cannot separate these two classes linearly. Face detection problem can be solved by 

using the power of neural networks because face detection is a nonlinear problem 

and neural networks can generalize the face space using the training set.  

Neural detectors have been proposed recently and the experiments give 

extremely satisfactory results which mean that neural networks can be used as face 

detector. In particular, advanced training methods have been used to incorporate the 

wide distribution of the frontal view of face patterns in neural network knowledge. 

An efficient solution to the selection problem of non-face images has already been 

presented aiming at minimizing the false acceptance error. This technique reduces 

the number of falsely recognized faces in arbitrary images, a critical factor for 

developing practical face recognizers.  
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The most successful neural network based face detector was developed by 

Rowley, Baluja and Kanade et al [20]. They presented a neural network-based 

algorithm to detect upright, frontal views of faces in gray-scale images. The 

algorithm works by applying one or more neural networks directly to portions of the 

input image, and arbitrating their results. Each network is trained to output the 

presence or absence of a face. The algorithms and training methods are designed to 

be general, with little customization for faces. Training a neural network for the face 

detection task is challenging because of the difficulty in characterizing prototypical 

“nonface” images. They avoid the problem of using a huge training set for nonfaces 

by selectively adding images to the training set as training progresses. This 

“bootstrap” method reduces the size of the training set needed. The use of arbitration 

between multiple networks and heuristics to clean up the results significantly 

improves the accuracy of the detector. The size of a window used by their system is 

20×20 pixels. They found that the system is able to detect 90.5% of the faces over a 

test set of 130 complex images, with an acceptable number of false positives 

 

 

Figure 4.1: Algorithm used by Rowley for face detection [20]. 

 

Another implementation of neural networks on face detection problem is done 

by Anifantis, Dermatos and Kokkinakis et al [26].They presented a neural detector of 

frontal faces in gray scale images under arbitrary face size, orientation, facial 

expression, skin color, lighting conditions and background environment. In a two-

level process, a window normalization module reduces the variability of the features 

and a neural classifier generates multiple face position hypotheses. Extended 

experiments carried out in a test-bed of 6406 face images, have shown that the face 
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detection accuracy is increased significantly when non-linear and probabilistic 

illumination equalizers pre-process the sub-images. Moreover, better results can be 

achieved in case of training the neural detector using positional and orientation 

normalized face examples. In this case the neural face detector has the capability to 

locate both position and orientation of a face. The size of a window used by their 

system is 30×30 pixels.In the multiple face position hypotheses generated by the 

proposed neural method, 98.3% detection accuracy, the highest reported in the 

literature, was measured 

 

Figure 4.2: Filtering process using by Anifantis for face detection [26]. 
 

 Another implementation of neural networks for face detection problem is 

submitted by Garcia and Delakis et al into the literature [27].They  presented a 

connectionist approach for detecting and precisely localizing semi-frontal human 

faces in complex images, making no assumption about the content or the lighting 

conditions of the scene, or about the size or the appearance of the faces. They 

proposed a convolutional neural network architecture designed to recognize strongly 

variable face patterns directly from pixel images with no preprocessing, by 

automatically synthesizing its own set of feature extractors from a large training set 

of faces. The size of a window used by their system is 32×36 pixels. Their system 

detection rate is changed between 85% and 97% according to variables that are using 

during the training and running, and datasets. 
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Figure 4.3: Convolutional Neural Network structure used by Garcia and Delakis for 

face detection [27]. 
 

Also neural network based face detector which combined with other face 

detection methods is proposed by FeÂraud, Bernier, Viallet and Collobert et al [28].  

The proposed system used skin color information in order to reduce the number of 

false detections. The size of a window used by their system is 15×20 pixels. Their 

approach first implements simple processes, based on standard image processing and 

then more sophisticated processes based on statistical analysis. They described the 

different components of the face detector are described: a motion filter, a color filter, 

a prenetwork filter, and a large neural network filter based on a new model of neural 

network. A combination of neural networks is used to extend the face detection 

ability in orientation. They presented a fast search algorithm for face detection . It 

speeds up the detection process by a factor of 25. The reported detection rate in that 

paper vary between 74% and 87% depends on the database and the model. 
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4.2 Description of the our System 
 

The purpose of this thesis is to detect faces by using the power of neural 

networks. We have developed a neural network based face detector which detects 

upright frontal faces. The proposed system consists of 3 stages. The first step is 

preprocess step in which image is prepared for the usage of a neural network. In the 

second step we apply a neural network to all locations of the image with several 

sizes. The final step is just combining the multiple detections and removing the false 

detections. In this section these 3 stages will be explained. 

4.2.1 Preprocess Step 
 

The first step in our system is preprocessing. The preprocessing operation 

during training the network has differences from the preprocessing operation during 

running the network.  

- For Training 

o Histogram Equalization is applied to all training samples (both face 

and nonface samples). 

o All training samples resized to 10×10 pixel size 

o Mask is applied to image in order to ignore the background 

o Pixel values are stored to txt file which will be used by the network 

during the training. 

- For Running 

o Histogram Equalization is applied to given image 

o Image pyramid is built from the histogram equalized image. 

o 10×10 window is applied to all locations of images at all scales 

o Mask is applied to all of 10×10 windows. 

  

Histogram equalization which is the first operation for both running and 

training is applied at this step. This normalization operation expands the range of 

brightness intensities in the masked window. This compensates for differences in 

camera response curves and improves contrast in some cases. 
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Histogram equalization is a non-linear process reassigning the brightness 

values of pixels on the basis of the image histogram. Individual pixels retain their 

brightness order (each pixel remains brighter or darker than other pixels) but the 

values are shifted, so that an equal number of pixels have each possible brightness 

value. In many cases, this spreads out the values in areas where different regions 

meet, showing details in areas with a high brightness gradient. This process is quite 

simple and consists of four steps:  

1. the running sum of the histogram values is estimated,  

2. the sum acquired from the previous step is normalized with the total 

number of pixel 

3. the normalized sum is multiplied by the maximum gray level value and 

rounded, 

4. the original gray level values are mapped to the results from Step (3) 

using one-to-one  correspondence 

 

Figure 4.4 is an example of histogram equalization.  

 

 

(a)             (b) 
Figure 4.4: (a) Original Image, (b) Histogram equalized image 

 

Second operation for running part of the preprocessing operation is creating the 

Image pyramid from the histogram equalized image. Image pyramid is used to detect 

faces in multiscale. Resizing starts with the original image size and then continues up 

to size of 10×10 pixel size. At each resizing operation image’s size is decreased by a 

factor of 1.2. Figure 4.6 shows the image pyramid of the histogram equalized image. 
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Next step is applying the oval mask to image in order to ignore the background 

pixels. Figure 4.5 shows the oval mask that is used by our system. 

 

Figure 4.5: Oval mask used by the system 

 

The last step for the training part is, writing pixel values to a text file. Neural 

network which is developed by us is using pixel values of the image for both training 

and running. Therefore, in order to use neural network as a classifier pixel values 

should be presented to a neural network. We have developed a command based 

system which is called “Neural Network Based Detector” is used for translating 

image to a txt file. This command based system will be explained in the next section 

with more details. Figure 4.7 is an example of image scanning. 
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Figure 4.6: Image pyramid of the histogram equalized image. 

 

The last operation for the running part of the neural network during the 

preprocess operation is applying a 10×10 pixel size window to all locations of the 

given image. All these subwindows are extracted from the given image. Then mask 

is applied and pixel values are generated which can be used by the neural network. 

This is known as image scanning. 
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Figure 4.7: Image Scanning 

4.2.2 �eural �etwork Stage 
 

The second component of our system is applying a neural network based filter 

that receives as input of 10x10 pixel regions of the given image, and generates an 

output ranging from 1 for faces and 0 for nonfaces. In order to detect faces anywhere 

in the input image, image pyramid is created and image scanning method is used as I 

mentioned in the previous section. 

After the preprocessing step we have a 10x10 pixel size of image. We passed 

this window to neural network. Since our neural network works on the pixel values,  

we have to translate given image to pixel values which will be used by a neural 

network. This translation is done by the “Neural Network Based Face Detector 

System” which will be explained in the next section.  

4.2.2.1 �eural �etwork Structure Used for Face Detection. 

 

We used 3 layers feed forward neural network for this system. Neural network 

is implemented with the consideration of our needs. For example before training and 
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running we add a translator system which converts given image to txt file. This txt 

file consists of pixel values of the given image. 

The network has 100(10×10) input nodes, and varying size hidden units (some 

tests were implemented, each network has different size of hidden nodes), and 1 

output node which indicates whether or not the window contains a face. The network 

topology is shown in the Figure 4.8. 

 

Figure 4.8: Structure of the network 

 

Some faces are detected multiple times as shown in Figure 4.9. Also there are 

some false detections. Both multiple detections and false detection can be eliminated 

by the method which will be described in the third step of our system. 

 



48 

 

 

Figure 4.9: Multiple detections 

4.2.2.2 Training the �eural �etwork 

 

Training a neural network for face detection is really a challenging because of 

the variety of face and nonface classes. Large numbers of face and nonface images 

are needed for training neural network for face detection. 

Nearly 7000 face examples are used for training the neural network. These face 

samples are collected from the face databases such as CMU, Yale etc. and World 

Wide Web. 

These images contained faces of various sizes, orientations, positions, and 

intensities. A few example images are shown in Figure 4.10. Faces should be 

extracted from these images in order to use them for training. This extraction 

operation is done by our system which will be explained in the next section. 

Since images of nonface samples is much larger than the space of face images, 

preparing representative nonface samples for neural network is much more difficult 

than the preparing the representative face samples. 

Instead of collecting the images before training is started, the images are 

collected during training, in the following manner, adapted from [19]: 

1. Create an initial set of nonface images by generating random images. Apply the 

preprocessing steps to each of these images. 
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2. Train a neural network to produce an output of 1 for the face examples, and 0 for 

the nonface examples. The training algorithm is standard error backpropagation. On 

the first iteration of this loop, the network’s weights are initialized randomly. After 

the first iteration, we use the weights computed by training in the previous iteration 

as the starting point. 

3. Run the system on an image of scenery which contains no faces. Collect 

subimages in which the network incorrectly identifies a face (an output activation > 

0.5). 

4. Select subimages at random, apply the preprocessing steps, and add them into the 

training set as negative examples. Go to step 2. 

At the end I have 20000 nonface images. Entirely new network was trained 

with the examples on which the previous networks had made mistakes 

 

 

 

Figure 4.10: Face samples used during training 
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Figure 4.11: Nonface samples used during training 

4.2.2 Postprocess 
 

The last stage of our system is postprocessing unit. The raw output from a 

single network will contain a number of false detections and a face can be detected 

more than one times as shown in the Fig. 4.12.  At the postprocessing step I used two 

methods in order to reduce the number of false detections and merging overlapping 

detections 

 

 

Figure 4.12: Multiple detections with false detections. 
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4.2.2.1 Merging Overlapping Detections 

 

Since faces are detected at multiple nearby positions or scales and false 

detections often occur with less consistency as seen in Figure 4.12, false detections 

can be eliminated by creating a heuristic. The heuristic is that for each location the 

number of detections within a specified neighborhood of that location can be 

counted. If the number is above a threshold, then that location is classified as a face. 

By using this heuristic multiple face detections can be merged and number of false 

detections decreases.  

If a particular location is correctly identified as a face, then all other detection 

locations which overlap it are likely to be errors, and can therefore be eliminated. 

Based on the above heuristic regarding nearby detections, we preserve the location 

with the higher number of detections within a small neighborhood, and eliminate 

locations with less detection.  

 

The implementation of this heuristic is that explained above in more details. 

-  Each detection at a particular location and scale is marked in an image 

pyramid, labeled the “output” pyramid.  

- Then, each location in the pyramid is replaced by the number of 

detections in a specified neighborhood of that location.  

- A threshold is applied to these values, and the centroids of all above 

threshold regions are computed. All detections contributing to a centroid 

are collapsed down to a single point.  

- Each centroid is then examined in order, starting from the ones which had 

the highest number of detections within the specified neighborhood. If 

any other centroid locations represent a face overlapping with the current 

centroid, they are removed from the output pyramid. 

-  All remaining centroid locations constitute the final detection result.  
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4.2.2.2 Arbitration among Multiple �etworks 

 

In order to reduce number of false positives, and increase the number face 

detection rate we can apply multiple networks, and arbitrate between their outputs to 

produce the final decision. Each network is trained in a similar manner, but with 

random initial weights, as will be seen in the “Experiment” section, the detection and 

false positive rates of the individual networks will be quite close. However, because 

of different training conditions and because of self-selection of negative training 

examples, the networks will make different errors. 

 The implementation of this method is explained below. 

- Firstly an empty table is created with the size of the input image. 

- All the Networks run on the input image. 

- All Detections are signed in the empty table. 

- After running the network, we have a table which consists of all detection 

locations. 

- Final operation is running a heuristic which is explained in the previous section 

in order to detect false positives and increases the number of detections. 

 

This method not only increases the detection rate but also decreases the number 

of false detections. Results can be seen in the “Experiment” section. 

4.2.2.3 Differences between our System and Previously Proposed System 

 

There are lots of different neural based face detection methods which were 

previously proposed. They have some differences at preprocessing, neural network 

and postprocessing steps. Most of these applications differ from each other based on 

their proposed neural network structure. Some of them used multi hidden layers, 

some of them use only one hidden layer. Also their network size differs from each 

other. Moreover proposed algorithms had different number of input nodes varying 

from 225 to 900.  Since proposed networks have huge sizes, they cannot be used for 

real time applications. 
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Main difference between our proposed system and other systems is the number 

of input nodes. The smallest network has 15×15 input nodes. In order to use this 

neural network for real time applications, the size and the complexity of the network 

should be decreased. To do this firstly, we created a network which has 3 layers (one 

input which has 10×10 input nodes, one hidden layer which has 40 hidden layers and 

one output layer which has just one output node). Since our network has small size 

running time of our algorithm is decreased significantly. 

 

Another main difference between our system and the previously proposed 

systems is the number of hidden layers. Most of the previously proposed systems 

have more than three layers. Proposed systems manually designed the first hidden 

layer for detecting facial features which may be important for face detection. Since 

neural networks are really powerful tools, they automatically detect these features 

and use them for face detection. We thought that there is no need to design a hidden 

layer just for facial features; it must be done automatically by neural networks just 

using their capability of solving nonlinear problems.   

 

As a result, our system is the simplest system among all neural network based 

face detection systems. Using this simplicity our system gained speed however it lost 

some of face detection capability. More samples will be given in the “Experiment 

Section”. 
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Chapter 5 

�eural �etwork Based Face Detection and Image Processing System 
 

5.1 Introduction to �eural �etwork Based Face Detection and Image Processing    

       System 

 

Neural Network Based Face Detector and Image Processing System which is a 

command based system, is developed by me in order to use neural network and 

image processing operations. It is developed in C++ programming language and has 

more than 5000 lines of code. System is object oriented. In other words, different 

parts(image processing, file processing, neural network etc) come together in order to 

create a “Neural Network Based Face Detection and Image Processing System”. This 

system mainly consists of two parts neural network and image processing. Figure 5.1 

is the main screen of the program. 

 

 

Figure 5.1: Command based, “Neural Network Based Face Detection and Image 
Processing System”. 
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5.1.1 �eural �etwork Part 
 

The first part of the system is designed for neural network implementation. In 

this module a feedforward neural network can be created, trained and used. During 

the training backpropogation algorithm is used. All the codes in this section were 

written by me. 

Following commands are related to neural network can be used in the system. 

- CREATE: By using this command user can create a neural network with any 

size. The syntax of the command is shown below 

o create <# of input nodes> <# of hidden nodes> <# of output nodes>  

Figure 5.2 is the output of the create command. 

 

Figure 5.2: Using of create command 
 

- TRAI�:  After creating a network with random weights, this created network 

can be trained using the train command. The syntax of the train command is 

shown below. 

o train <name of the train file> 

Figure 5.3 is the output of the train command. 

 

Figure 5.3: Using of train command 
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- RU�: After training the network we want to run this network with given input 

file or image. RUN command contains subcommands. Run command can be 

used with a image, images under a specific folder or a file. 

o In order to use neural network on a file the following syntax should be 

used. 

� run file <name of the file> 

    Figure 5.4 is the output of the run from a specific file. 

 

Figure 5.4: Using the run command with a file 

 

o In order to use neural network with a single image following syntax 

should be used 

� run image s <name of the image>  

    Figure 5.5 is the output of the run command from an image. 

 

Figure 5.5: Using run command with single image 

 

o In order to use neural network with images under a specific folder 

following command syntax should be used. 

� run image m <name of the folder> 
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Figure 5.6 is the output of the run command from a specific directory. 

 

Figure 5.6: Using run command with images under a specific folder 

 

- SAVE:  The network which is trained can be used later by using the save 

command. The syntax of the save command is shown below. 

o save <desired name for the network> 

Figure 5.7 is the output of the save command. 

 

Figure 5.7: Using the save command. 

 

- LOAD: The previously saved network can be used by using the load 

command. The syntax of this command is shown below. 

o load <name of the previously saved network> 

Figure 5.8 is the output of the load command. 

 

Figure 5.8: Using the load command. 

 

- Also there are some commands which are using for setting and getting the 

values of variables used by the network. They are: 

o epoch 

o learning rate 
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o accuracy 

o threshold 

5.1.2 Image Processing Part 
 

The second part of the Neural Network Based Face Detection and Image 

Processing System is image processing part. In this part there are lots of image 

processing algorithms such as histogram equalization; morphological gradient, 

thresholding etc. are implemented.  

Some of the image processing related commands are shown below. 

- HISTOGRAM: By using this command user can apply histogram equalization 

algorithm to the given image. The syntax of the histogram command is shown 

below. 

o histogram <name of the image> 

Figures 5.9 and 5.10 are the output of the histogram command 

 

Figure 5.9: Using the histogram command. 

 

 

 (a)       (b) 
Figure 5.10: Result of the histogram command. (a) original, (b) histogram equalized 

image 
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- GAMMA: Gamma correction on a given image can be applied by using the 

gamma command. The syntax of this command is shown below. 

o gamma <name of the input image> 

Figures 5.11 and 5.12 are output of the gamma commands. 

 

Figure 5.11: Using the gamma command. 

 

 

  (a)      (b) 
Figure 5.12: Result of the gamma command. (a) original image, (b) gamma corrected 

image 
 

- GRADIE�T: Morphological gradient operation is applied to the given image 

via gradient command. The syntax of this given image is shown below. 

o Gradient <name of the image> 

Figures 5.13 and 5.14 are output of the gradient command. 
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Figure 5.13: Usage of the gradient command. 

 

 

  (a)      (b) 
Figure 5.14: Result of the gradient command. (a) original image, (b) result image 

 

Also there are another commands such as preprocess, debug, print, show, 

rename, dir, cd etc which are not described here. There are 34 commands which are 

defined in this system. 
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Chapter 6 

Experimental Results 
 

A number of experiments were performed to test the system. The system was 

tested on two large sets of images. Test Set 1 consists of 39 images, including images 

from the World Wide Web, scanned from photographs and newspaper pictures, and 

digitized from broadcast television. The images contain a total of 203 frontal faces, 

and require the networks to examine 10,511,877 10×10 pixel windows. Test Set 2 

consists of 25 images from the different face databases. The images contain 190 

frontal faces, and require the networks to examine 6,106,484 10×10 pixel windows. 

 

The outputs from our face detection networks are not binary. The neural 

network produces real values between 1 and 0, indicating whether or not the input 

contains a face. A threshold value of 0.5 is used during training to select the negative 

examples (if the network outputs a value of greater than zero for any input from a 

scenery image, it is considered a mistake). Although this value is intuitively 

reasonable, by changing this value during testing, we can vary how conservative the 

system is. To examine the effect of this threshold value during testing, we measured 

the detection and false positive rates as the threshold was varied from 0.5 to 1. At a 

threshold of 1, the false detection rate is zero, but no faces are detected. As the 

threshold is decreased, the number of correct detections will increase, but so will the 

number of false detections. This tradeoff is presented in the following tables and 

charts. 

Also we used three different networks during the experiments. These networks 

have different number of hidden layers and they have different accuracies. Also their 

training sets are almost different from each other. Table 6.1 shows these three 

networks. 
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Name of the Network # of Hidden Nodes Accuracy 

Network 1 39 0,001142 

Network 2 40 0,001391 

Network 3 39 0,001548 

 

Table 6.1: Network used during the experiment section 

 

In the next section I will give the experimental results of these three networks on two 
different datasets. 

6.1 Face Threshold 
 

Face threshold is using in order to indicate whether the output of the neural 

network is a face or nonface. I have conducted several experiments on two datasets 

with 3 different networks while the face threshold value varied from 0.5 to 1.0. 

Below tables and charts represent the experimental results.  

- �etwork 1 on Dataset 1 

NETWORK 1 

Threshold Face Detection Rate False Detection Rate 

0.5 49 0,00006336 

0.6 37 0,00003586 

0.7 28 0,00002283 

0.8 19 0,00001113 

0.9 9 0,00000171 

1.0 0 0 

 

Table 6.2: Face Detection and False Detection Rates as the threshold varied 
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Figure 6.1: Face Detection Rate aganist the threshold value. 

 

 

Figure 6.2: False Detection Rate aganist threshold value 
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- �etwork 1 on Dataset 2 

 

NETWORK 1 

Threshold Face Detection Rate False Detection Rate 

0.5 50 0,007287336 

0.6 36,8 0,003406215 

0.7 30,5 0,002096133 

0.8 21,6 0,00103169 

0.9 11,6 0,00004912811 

1.0 0 0 

 

     Table 6.3: Face Detection and False Detection Rates as the threshold varied 

 

 

Figure 6.3: Face Detection Rate aganist the threshold value. 
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Figure 6.4: False Detection Rate aganist threshold value 

 

- �etwork 2 on Dataset 1 

 

NETWORK 2 

Threshold Face Detection Rate False Detection Rate 

0.5 50 0,00003548 

0.6 44 0,00002483 

0.7 39 0,00002102 

0.8 35 0,00001313 

0.9 27 0,00000504000 

1.0 0 0 

 

Table 6.4: Face Detection and False Detection Rates as the threshold varied 
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Figure 6.5: Face Detection Rate aganist the threshold value. 

 

 

Figure 6.6: False Detection Rate aganist threshold value 
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- �etwork 2 on Dataset 2 

NETWORK 2 

Threshold Face Detection Rate False Detection Rate 

0.5 50.8 0,007287336 

0.6 45 0,001932372 

0.7 44 0,001129946 

0.8 33.5 0,000605913 

0.9 22,5 0,00011463225 

1.0 0 0 

 

Table 6.5: Face Detection and False Detection Rates as the threshold varied 

 

 

Figure 6.7: Face Detection Rate aganist the threshold value. 



68 

 

 

Figure 6.8: False Detection Rate aganist threshold value 

6.2 Multiple �etworks 
 

I have implemented OR operation on the result of more than one neural 

network in order to increase face detection rate. Experiments show that face 

detection rate increased after the arbitrating among multiple networks. However , 

number of false detection rate also increased. 

- 2 �etworks on Dataset 1 

2 NETWORKS 

Threshold Face Detection Rate # of False Detections 

0.5 63 0,00010426 

0.6 46 0,00004186 

0.7 34 0,00002435 

0.8 22 0,00001161 

0.9 8 0,00000143 

1.0 0 0 

 

Table 6.6: Face Detection and False Detection Rates as the threshold varied 
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Figure 6.9: Face Detection Rate aganist the threshold value 

 

 

Figure 6.10: False Detection Rate aganist the threshold value 
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- 2 �etworks on Dataset 2 

2 NETWORKS 

Threshold Face Detection Rate # of False Detections 

0.5 61,6 0,006026381 

0.6 45,9 0,002882182 

0.7 37,9 0,001686732 

0.8 25,80 0,000736922 

0.9 12,80 0,0000327521 

1.0 0,00 0 

 

Table 6.7: Face Detection and False Detection Rates as the threshold varied 

 

 

Figure 6.11: Face Detection Rate aganist the threshold value 
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Figure 6.12: False Detection Rate aganist the threshold value 
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Figure 6.13: Obtained outputs 
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Conclusion 
 

In this thesis neural network based face detection method which was the 

simplest neural network based method in the literature was proposed. I made lots of 

experiments related to variables during the running and training of the neural 

network. These variables have different affects on results. The most affective 

variable on the result of the detection rate is threshold value which is used for 

deciding whether a output of a neural network is a face or nonface. Expreriements 

show that if the threshold value set to high value, the false detection rate decreases. 

At the same time face detection rate also decreases. If the threshold value is set to 

low value, number of false detections increases. Also the face detection rate 

increases. 

During the testing part of the algorithm I used more than 3 networks. Their 

results were different from each other. Also I applied OR operation to the results of 

two and three neural networks. Result of this operation shows that, both face 

detection rate number of false detection rates increases. 

All in all, result of this algorithm is as good as the previously proposed 

algorithms. One of the reasons of this failure is that the capability of the simple 

system is not enough to detect complex faces. Also further training will increase the 

face detection rate and decreases the false detection rate. Moreover more heuristics 

will decrease the number of false detections.  
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