
UNSUPERVISED MORPHOLOGICAL ANALYSIS USING TRIES

Koray AK

B.S., Computer Engineering, Işık University, 2008

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Graduate Program in Computer Engineering

Işık University

2011

IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

UNSUPERVISED MORPHOLOGICAL ANALYSIS USING TRIES

Koray AK

APPROVED BY:

Assist. Prof. Olcay Taner YILDIZ Işık University

(Thesis Supervisor)

Assist. Prof. Taner ESKİL Işık University

Assist. Prof. Ümit GÜZ Işık University

DATE OF APPROVAL: 29/04/2011

Acknowledgements

I am honored to present my special thanks and deepest gratitude to my supervisor

Assist. Prof. Olcay Taner YILDIZ for his guidance in this thesis. Without his endless

patience and support I would not finish this work. I am feeling lucky to share his vision

and knowledge throughout this thesis.

I am also grateful to my family for their support. They have always been by my

side whenever I needed.

I have been partially funded by the Turkish Scientific and Technical Council

(TÜBİTAK) BİDEB 2210 National Graduate Scholarship Programme.

ii

UNSUPERVISED MORPHOLOGICAL ANALYSIS USING TRIES

Abstract

Morphological analysis or decomposition studies the structure, formation, func-

tion of words, identifies the morphemes (smallest meaning-bearing elements) of the

language and attempts to formulate rules that model the language. It is widely used in

different areas such as speech recognition, machine translation, information retrieval,

text understanding, and statistical language modeling. Considering that the natural

language processing applications are dealing with large amounts of data, it is not fea-

sible to use linguists to analyze text corpus by hand, the complexity and real time

processing requirements leads to automated morphological analysis. As an alternative

to the hand-made systems, there exist algorithms that work unsupervised manner and

autonomously do morphological analysis for the words in an unannotated text corpus.

In this thesis, an unsupervised learning algorithm is proposed to extract infor-

mation about the text corpus and the model of the language. The proposed algorithm

constructs a trie that consists of characters and the occurrences of the words as nodes.

The algorithm then detects roots of the given words by examining the occurrences in

the path of the word. When the root is revealed, the algorithm creates a new trie from

the affix parts, left after the root for each word. The algorithm continues recursively

until there is no affix left to process. Experimental results on three languages (Finnish,

English and Turkish) show that our novel algorithm performs better than most of the

previous algorithms in the field.

iii

AĞAÇ YAPISI KULLANARAK GÖZETİMSİZ BİÇİMBİRİM ANALİZİ

Özet

Biçimbirim analizi ya da ayrıştırması, kelimelerin yapısını, dizilimini ve fonksi-

yonlarını inceler, kelimeler içindeki en küçük anlam taşıyan morfemleri belirler ve

dilin modelini çıkarmaya çalışır. Konuşma işleme, bilgisayarlı çeviri, bilgi bulgetir,

metin anlama ve istatiksel dil modelleme gibi alanlarda kullanılır. Biçimbirim analizi,

metin içinde bir çok sözcük formu olduğundan çoğu dil için hem zor hem de gerek-

lidir. Çekimli dillerde aynı köke ait binlerce değişik sözcük formu olabilir, bu da

çekimlenmiş sözcük dizilerini oluşturmayı zor kılar. Doğal dil işleme uygulamalarının

büyük verilerle çalıştığı düşünülürse bu işin dilbilimciler tarafından el ile yapılması

karmaşıklık ve gerçek zamanlı işleme açısından mümkün değildir. Bu nedenle bu

işlemin otomatikleşmiş biçimbirim algoritmaları tarafından yapılması gerekmektedir.

Bu bağlamda öğreticisiz biçimbirim çözümleyicilerin kullanıldığı sistemlerle işlenmemiş

metin bütünceleri işlenebilir.

Bu çalışmada metin bütünceleri ve dilin modeli hakkında bilgi çıkarımı yapacak

bir gözetimsiz öğrenme algoritması önerilmiştir. Tasarlanan algoritma, metin bütünce-

sinde geçen kelimelerden oluşturduğu ağaçlar ile verilen kelimelerin kök ve eklerini ke-

limelerin geçme sıklığına göre bulmaya çalışmaktadır. Kelimelerin kökleri çıkarıldıktan

sonra algoritma geri kalan sözcük kısımları ile ek ağaçları oluşturup özyineli bir şekilde

tüm ekleri bulur. Algoritma Fince, İngilizce ve Türkçe dillerinde denenip önceki

çalışmaların çoğundan iyi sonuçlar vermiştir.

iv

Table of Contents

Acknowledgements . ii

Abstract . iii

Özet . iv

List of Figures . vii

List of Tables . viii

1. Introduction . 1

2. Morphology . 4

2.1. Morphology . 4

2.2. Lexemes and Word Forms . 5

2.3. Inflection and Word Formation . 6

2.4. Allomorphy . 7

2.5. Morphological Approaches . 7

3. Morpho Challenge . 9

3.1. Morpho Challenge . 9

3.1.1. Morpho Challenge 2005 . 10

3.1.2. Morpho Challenge 2007 . 13

3.1.3. Morpho Challenge 2008 . 15

3.1.4. Morpho Challenge 2009 . 16

4. Proposed Approach . 22

5. Experiments and Results . 28

6. Conclusions . 34

Appendix A: FILES . 35

v

A.1. Files Attached . 35

A.1.1. Codes of the Algorithms . 35

A.1.2. Datasets . 35

A.1.3. Evaluation Files . 35

References . 36

vi

List of Figures

Figure 2.1. Language types. 5

Figure 4.1. Sample wordlist from Turkish dataset. 23

Figure 4.2. Part of a Trie constructed with Turkish dataset. 23

Figure 4.3. The Pseudocode of REC-TRIE. 24

Figure 4.4. Sample run from REC-TRIE. 25

Figure 4.5. Sample reverse trie constructed for second approach. 26

Figure 4.6. Pseudo code for REVERSE-TRIE. 27

vii

List of Tables

Table 5.1. Precision, Recall, and F-Measure of REC-TRIE & REVERSE-TRIE

compared with other algorithms in Morpho Challenge 2009 for En-

glish. 31

Table 5.2. Precision, Recall, and F-Measure of REC-TRIE & REVERSE-TRIE

compared with other algorithms in Morpho Challenge 2009 for Finnish. 32

Table 5.3. Precision, Recall, and F-Measure of REC-TRIE & REVERSE-TRIE

compared with other algorithms in Morpho Challenge 2009 for Turk-

ish. 33

viii

Chapter 1

Introduction

Morphological analysis is widely used in different areas such as speech recog-

nition, machine translation, information retrieval, text understanding, and statistical

language modeling. In many languages this task is both difficult and necessary, due to

the large number of different word forms found in the text corpus. Highly inflecting

languages may have thousands of different word forms of the same root, which makes

the construction of a fixed lexicon hardly feasible. Also in compounding languages,

word forms can be expressed in one single word. Considering that the natural lan-

guage processing applications are dealing with large amounts of data, it is not feasible

for linguists to analyze text corpus by hand, the complexity and real time processing

requirements leads to automated morphological analysis.

Some morphological analyzers are designed for languages separately. But to use

and maintain this kind of applications requires expert knowledge and new words should

be supplied continuously whenever any change occurred in the language. As an alterna-

tive to the hand-made systems, there exist algorithms that work unsupervised manner

and autonomously do morphological analysis for the words in unannotated text corpus.

These algorithms are mostly using machine learning approaches.

Machine learning is a widely used methodology that allows computers to solve

problems by evolving strategies from experience through example datasets [1] . Mac-

hine learning simply gathers information from the empirical training data about the

1

phenomena and makes intelligent decisions based its training. It also gives advantages

when the problem depends on the particular environment, instead of writing multiple

applications for different cases we can teach algorithm by using different training data

and solve the problem in generalized manner. For example, in morphological analysis,

languages that differ in morphological transformation rules can be analyzed with the

same algorithm that is trained with the training data of each language.

In this thesis we will use unsupervised learning to gather information about the

text corpus and the model of the language. In supervised learning input and output

couple is given by a supervisor, the algorithm constructs a function that map each

input to the desired output in the training data. It is obvious that training data

can not cover all of the input-output possibilities. The algorithm should generalize

the training data and map even unseen input to a possible correct output via set of

assumptions. This set of assumptions is called inductive bias. On the other hand, in

unsupervised learning there is no such supervisor and the algorithm only has input

data. The algorithm models the input by examining patterns in the data and learns

what to map in an input according to the relationship and properties in the data.

In this thesis we propose two unsupervised learning algorithms to extract infor-

mation about the text corpus and the model of the language. The proposed algorithms

construct tries that consist of characters and the occurrences of the words as nodes.

In the first algorithm, roots of the given words are detected by examining the occur-

rences in the path of the word. When the root is revealed, the algorithm creates a new

trie from the affix parts, left after the root for each word. The algorithm continues

recursively until there is no affix left to process. Second algorithm constructs reverse

tries to find affixes by examining the occurrences in the path and state the root word

of each word in the last step.

2

This thesis is organized as follows: In Chapter 2, we give some basic concepts and

background information about morphology. We also state detailed information about

morphological approaches. In Chapter 3, we introduce morpho challenge and present

previous work in the field. In Chapter 4, we describe proposed algorithms in detail. In

Chapter 5, we give the experimental setup and results. In Chapter 6, we conclude the

thesis and give the future work.

3

Chapter 2

Morphology

2.1. Morphology

In linguistic, morphological analysis or decomposition studies the structure of

the words and identifies the morphemes (smallest meaning-bearing elements) of the

language. Any word form can be expressed as a combination of morphemes. For in-

stance, the English word “enumeration” can be decomposed as e+number+ate+ion

and “interchangeable” as inter+change+able, and the Turkish word “isteyenlerle” as

iste+yen+ler+le. Generally words are known as the basic units of the language but

morphemes are the smallest syntactic unit and they reveal the relationship between

word forms. In this respect, morphological analysis investigates the structure, forma-

tion and function of words, and attempts to formulate rules that model the languages.

There are two kinds of languages, polysynthetic and analytic (isolating) languages

(Figure 2.1). In polysynthetic languages, words are mostly made up by connecting

morphemes. Polysynthetic languages have two sub categories; fusional (inflectual) lan-

guages where morphemes are squeezed together and changed during the composition.

English, French are good examples of the languages in this type. For example, the

English word “sing” becomes “sang” or “sung” according to tense. Modern English

is less fusional since languages tend to become less inflected over time due to the in-

tercultural communications. Second type of polysynthetic languages is agglutinative

languages in which morphemes do not change in the composition process. Turkish

4

(Altaic languages generally) and German are two examples of agglutinative languages

where morpheme analysis of these type of languages are fairly easier than the fusional

ones. Example for this category is the Turkish word “marmaradaki” is decomposed as

marmara+da+ki. Analytic languages have stand alone morphemes that remain as in-

dependent words. Mandarin, Chinese are good examples of isolating languages. They

use free morphemes which depend on tone and word order. Morphology studies all of

these different languages and the relationship between them.

Figure 2.1. Language types

2.2. Lexemes and Word Forms

Morphological analysis basically investigates the word forms and finds out mor-

phemes in a given word. Each word in the language may not refer a different object.

For example, in English, words can change form with respect to subject-verb agree-

ment and compound tense rules. For example, verb “try” changes to “tries”, “tried”,

“trying” etc. according to the grammar rules of the sentence. These words mean the

same but are presented as different word forms.

A lexeme is an abstract unit that corresponds to a set of word forms taken by

a single word which is generally the one written in the dictionary. For example, the

5

English word “drive” is a lexeme. Lexemes either can change form by inflectional

rules, or relate to other lexemes by derivational rules. “drive” becomes “drives” with

respect to the tense or becomes “driver” and relate to another lexeme. In polysynthetic

languages lexemes and word forms can be decomposed into smaller morphemes. Each

word form has at least one root morpheme that expresses the main semantic content.

There may also derivational or inflectional morphemes in the word that gives additional

semantic or syntactic meanings to the word. Words that consist of root morphemes

and derivational morphemes are called stem.

Compounding is another word formation type that combines two different word

forms into a new word form. “Football” is an example of compounding where word

formation is combined as foot+ball. Word forms that are involved in the compounding

process may also have different affixes. In the decomposition of compounds, first two

different lexemes are separated and then each lexeme is examined for affixes. In some

languages affixes can precede the word called prefix, or can be added after the lexeme

body called suffix.

2.3. Inflection and Word Formation

Although rules of constructing word forms are clear, it is not that simple to de-

cide which rules to use during the decomposition process. For some examples even

the linguists fail to agree whether a given rule is inflection or word formation. Word

formation creates a new word form from two word forms where the grammatical cate-

gory of the new word form differs from the grammatical category of the original word

form. Inflection only changes the forms of the lexeme by adding suffixes with respect

to subject verb agreement and tense rules i.e “sing” and “sang”. Moreover, word forms

of a lexeme can be categorized into paradigms by conjugations of verbs, declensions of

nouns and other inflectual categories. These inflectual categories should be suitable to

the syntactic rules of the language. On the other hand, word formation is not restricted

6

by the syntactic rules of the language.

2.4. Allomorphy

Allomorph is a term for a inflectional change in the morpheme when the meaning

stays same but word form is changed phonetically. Allomorphy is one of the complex

conditions for morpheme analysis since it is not regular in each word of the language.

For example, In English, plural affix -s changes according to last character of the

word and become -es by adding one more vowel, on the other hand, some words like

ox, goose, and sheep become oxen, geese, and sheep unlike the basic plural pattern.

Another example is the change caused by the tense of the sentence. For the past tense in

English language -d suffix become -ed according to words but irregular verbs such as go

becomes went, gone. Most of the time, if this situation is not considered morphological

rules omitted the phonological rules of the language and violate phonotactics.

2.5. Morphological Approaches

There are three principal approaches to morphology,

1. Morpheme-based morphology: Item-and-arrangement approach where words are

constructed by adding morphemes repeatedly. Morphemes are smallest meaning-

ful units. Each word is constructed as a collection of morphemes. It has three

basics axioms:

• Baudoin’s single morpheme hypothesis: Roots and affixes have the same

status in the theory, they are morphemes.

• Bloomfield’s sign base morpheme hypothesis: As morphemes, they are du-

alistic signs, since they have both (phonological) form and meaning.

• Bloomfield’s lexical morpheme hypothesis: The morphemes, affixes and

roots alike, are stored in the lexicon.

7

2. Lexeme-based morphology: Item-and-process approach that analyzes word forms

according to the relations in between. Any word form or stem is produced from

another stem by applying a derivational rule and creating a new stem or inflec-

tional rule and changes the word form or a compounding rule that compounds

two stems and create a new word formation.

3. Word-based morphology: Word-and-paradigm approach that uses inflectional

paradigms to determine the word decomposition. Word-based morphology is

generally used for fusional languages. Words can be categorized based on the

paradigm they suited. This applies both to existing words and to new ones.

Word forms that does not suit any category can create new paradigms.

Generally, for agglutinative languages like Turkish, item and arrangement ap-

proach is the preferred one. Fusional languages are more suitable for working with

item and process, and word and paradigm approaches. Considering the intercultural

effect between languages it is more accurate not to classify approaches and languages

one to one. Some languages can be mapped to multiple approaches and complex

methodologies can be used to analyze those languages.

8

Chapter 3

Morpho Challenge

3.1. Morpho Challenge

Morpho challenge is a competition, part of the EU Network of Excellence PAS-

CAL2 Challenge Program. It is organized by Mikko Kurimo, Krista Lagus, Sami

Virpioja, and Ville Turunen from Adaptive Informatics Research Centre, Aalto Uni-

versity School of Science and Technology. The challenge was started in 2005 and is

arranged in each year except 2006. The objective of the challenge is to design a sta-

tistical machine learning algorithm that discovers which morphemes words consist of.

Ideally, these are basic vocabulary units suitable for different tasks, such as text under-

standing, machine translation, information retrieval, and statistical language modeling.

The scientific goals are:

• To learn the phenomena underlying word construction in natural languages,

• To discover approaches suitable for a wide range of languages,

• To advance machine learning methodology.

The evaluation of the algorithms are based on the F-measure, which is the harmonic

mean of precision and recall. These metrics are calculated by

• Hit (H): A valid cut that means word is cut at the right place.

• Insertion (I): A wrong cut that means word is cut at the wrong place.

9

• Deletion (D): A missed cut that means a valid cut is ignored.

Based on these possible cuts; precision is the number of hits divided by the sum of the

number of hits and insertions, recall is the number of hits divided by the sum of the

number of hits and deletions.

In the next part, we will give the brief summary of each algorithm proposed in

the morpho challenge year by year.

3.1.1. Morpho Challenge 2005

Creutz and Lagus [2] propose an unsupervised morpheme analysis algorithm

‘Morfessor’. The three tested versions of the Morfessor model described throughout

the paper are Morfessor Baseline, Morfessor Categories-ML, and Morfessor Categories-

MAP respectively. Morfessor Baseline is a context independent splitting algorithm

based on minimum description length (MDL) method. The algorithm tries to maximize

the product of lexicon probability (product of probability of each letter in the lexicon)

and with the probability of each morph token in the corpus string of morphs. Here

morphs are the segments found by the algorithm as morpheme candidates. Morfessor

Categories-ML introduces morpho categories and corpus segmentations are modeled

by Hidden Markov Model. Four categories (prefix, suffix, stem, and non-morpheme

(noise)) are used to distinguish morphs. If a morpheme is preceding large number of

morphs, it is a prefix. If a morpheme is following large number of morphs, then it is a

suffix. If a morpheme is not very short it is likely to be a stem. Morfessor Categories-

MAP is a maximum a posteriori algorithm an explicit probability is calculated for

both lexicon and corpus. Submorphs are processed until a submorph found in the

non-morpheme category, i.e., hierarchical word forms are taken into account. The first

algorithm is entirely unsupervised and does not require any initialization parameters.

Morfessor categories algorithms need perplexity value to be set for optimal solution.

10

Bernhard [3], segments words into labeled segments by identifying prefix, suffix,

and stem boundaries with segment predictability. Method relies on transitional proba-

bilities of each substring of the word in the lexicon, and distinguishes stems and affixes

by examining the differences in lengths and frequencies of words. First the segmentation

points are found by looking local minimas of transition probabilities. The segmented

morphemes are then categorized according to their length and frequency properties.

Longest and less frequent words are treated as stems and shorter and more frequent

segments are separated as Suffix or Prefix with respect to their places upon stem. In

the segmentation process, words that have the same stem are examined together to

find best segmentation. Beyond the classic morpheme categories, Bernhard [3] used a

linking element category to overcome non-morpheme segments in the word forms.

Bordag’s approach [4], consists of two steps. It is based on letter successor variety

method (LSV). The letter successor variety has been introduced as splitting words if the

number of distinct letters after a given substring rises significantly or above a certain

threshold. LSV method used in the paper is modified in two perspective, first weights

are used to decrease noisy result, second related words found to calculate LSV value

for each position within the word. Related words are found by looking the contextual

similarity and edit distance. After calculating modified LSV values algorithm finds

the possible segmentation points, in the next step, a trie-based classificator “Pat-

ricia compact tree” (PCT) is used to make generalizations. Segment boundaries are

input two classificator with respect to their positions; a prefix classificator and a suffix

classificator are trained and final segmentations are done by the results from PCT

trees.

Keshava [5] use a simple approach to gather morphemes based on finding sub-

string words and transitional probabilities. The algorithm constructs two trees; a for-

ward tree where each node from top to the leaf corresponds a word in the corpus which

words that are substring of other words and a backward tree to find suffix probabilities

11

easily. In the next step, lists of morphemes are obtained by scoring word fragments

on the paths. This list contains all possible morphemes with their score. Morphemes

that can be constructed with smaller morphemes are eliminated from the list. In the

segmentation part, starting from the last letter each morpheme is splitted until there

exist no more morphemes. If there are multiple ways of segmenting word, the one with

the lowest transitional probability is used.

Johnsen [6], propose a novel method that assumes each stem has a meaning. The

algorithm calculates beta(a, b) density function to find segment boundaries. Here a

represents the number of positive i.e. meaningful words if word is segmented from a

boundary, and b is the number of negative cases of this segmentation. This study shows

that the concept of meaning can be used in the evaluation of morphological analysis.

All languages that has enough stem in their corpus permit to use of this approach.

Atwell et al [7], propose a majority voting algorithm to get the highest F-measure

and Recall from the work done by other algorithms. The algorithm employs different

unsupervised morpheme analysis algorithms and decides each segmentation by majority

voting.

Swordfish [8] is an n-gram based algorithm for unsupervised morpheme analysis.

First of all, the algorithm inputs word list instead of corpus, and calculates n-gram

frequencies of each word. These n-grams are considered as the morpheme lexicon

and by using this n-gram list, n-gram probabilities are calculated using the maximum

likelihood approach. The probabilities are then used to decide on splitting points. The

algorithm examines the word and calculates the probability of the term if it is in the

n-gram lexicon, if the term can be split into two subterms with higher probability,

subterms are chosen to segment word. These procedure runs recursively to segment

each word.

12

SUMAA [9], like the approach in [4] is based on a modified LSV method. The

algorithm examines predecessor variety as well as successor variety with this approach

the words that can not be segmented via successor variety are easily segmented. This

hybrid approach increase the efficiency of the LSV method. However using peak/plateu

values of LSV is not giving all the morphemes instead the concatenation of the mor-

phemes, to overcome this situation word that are substring of others split first and

recursively put on LSV based algorithm. This modification increased the efficiency

further.

Rehman and Hussain [10] basically focused on English. The algorithm assumes

that any root morpheme is between 5 to 13 characters and any affix morpheme is at

most 3 characters. The first and last 13 characters are potential segments. Each sub-

string from these 13 character lists are examined whether they are in the word list and

their frequencies are calculated. Same procedure is done for the trailing 13 characters

and the frequencies of the same substrings added. The list of affixes are constructed

with the frequencies and the weight of each affix is calculated. For segmentation, the

algorithm first tries to split prefixes starting from first character to the last until a

prefix found and both segments are valid according to the list. If both segments are

valid and less than three characters the trailing part is the suffix. If it is more than

three then algorithm starts splitting suffixes according to list until no segmentation

found or the stem is less than 5 characters.

3.1.2. Morpho Challenge 2007

Bernhard [11] uses the same algorithm in the morpho challenge 2005 with slight

differences. Only the representation of the results are changed since it is required to

give the type of the morphemes in the challenge for 2007. Segmented morphemes are

flagged as ‘B’ for stems or bases, ‘P’ for prefixes, ‘S’ for suffixes, and ‘L’ for linking

elements. For example, the segmentation of sulking is sulk B ing S.

13

Bordag [12], propose a revised version of [4], i.e. the precision and recall cons-

traints are taken into account. First of all, a compound splitter is added to the al-

gorithm to detect and split compounds in order to gather more accurate LSV values.

Also LSV method is employed more than once. According to the results, in each ite-

ration recall of the algorithm is increased whereas precision is slightly decreased. Some

modifications are done in the trie clustering part by adding thresholds. A morpheme

signature is implemented to show morphemic analysis of the segmented morphs.

Mcnamee and Mayfield [13] propose a method based on n-grams, and 3, 4 or

5-gram with the lowest collection frequency morphemes are reported as the result of

the segmentation.

Paramor [14], is another algorithm participated in the challenge for English and

German languages. The algorithm examines words and extracts all possible candidate

inflectional suffixes. These suffixes are used to construct partial paradigms. Partial

paradigms are then merged according to the correlation between. The algorithm filters

paradigms with respect to the number of words covered. After clustering paradigms,

words are segmented according to the suffixes in the paradigms one by one, and the

algorithm gives several results for every possible segmentation.

Zeman [15] proposed a paradigm based approach. All possible suffix-stem pairs

are grouped into paradigms. A paradigm consists of a group of suffixes and stems that

are suffixed by the suffixes in the paradigm. Since all possible segmentation points are

considered, the number of paradigms are huge and need to be filtered. The paradigms

that have more suffixes than stems, the paradigms whose border character is same in all

suffixes, and the paradigms which have one suffix is filtered. Also the paradigms that

are subset of a bigger paradigm is merged with its superset. The segmentation proce-

dure is as follows; each possible segmentation of the word is examined and searched in

the paradigms. If the stem and suffix pair are both in the paradigm, the segmentation

14

is ok. If both of the stem and suffix is not found in any of the paradigms, segmentation

is done according to paradigms includes stem or suffix of the pair. If no stem or suffix

is found in any paradigms then word is not segmented and algorithm outputs the word

as itself.

3.1.3. Morpho Challenge 2008

Goodman [16] propose an algorithm based on linguistic productivity. In first

stage, the algorithm finds seed affixes by segmenting each word from all possible par-

titions. Then affix set is cut down to a subset with respect to the root patterns it

is applicable. The algorithm assumed that valid roots take a partially overlapping

affix-set, and develops this sets into groups for both feature-set generation and binary

clustering. After clustering these sets, the algorithm yields two sets of affixes; a set

of possibly valid affixes and a set of spurious affixes. Membership of the affixes are

updated one more time by considering quality of shared root distributions. Once affix

list is acquired, stemming of word is started from the longest common affix.

Allomorfessor [17], is a modified version of morfessor [2] to solve problems caused

by allomorphy. MAP is done by modeling a lexicon of the words in the corpus instead

of modeling the original corpus. A new notion mutation is added to morfessor to solve

allomorphic relations. The mutations are generally occurring in the end of the base

form, same mutations should express common orthographical rules, and mutations

should be efficient to compute from a pair of strings. The algorithm both inspects the

cases with and wihout mutation. Words that has same prefix are examined to detect

any allomorphy.

Paramor [18] is a revised version of [14]. Each word is examined by segment-

ing from every character boundary. When two or more corpus types end in the same

word-final string, ParaMor constructs a paradigm seed. Paradigms are then expanded

15

to full candidate paradigms by adding additional suffixes. Algorithm merges candi-

date paradigms which likely model the same underlying paradigm of a language with

clustering. Finally paradigms filtered to eliminate spurious ones. In the segmentation,

word-final strings are searched across the suffixes in the paradigms. When a match

found, algorithm controls whether the word is defined in the paradigm and segments

word with respect to the boundaries stated in paradigm.

Zeman [19], (a revised version of [15]) propose methods to include prefix iden-

tification. Words are reversed to detect prefixes, using rules over all possible prefixes

simply yields the prefix candidates. In the segmentation part, stems segmented with

a prefix is not taken into account. Segmentations that consist of stem+suffix are exa-

mined and if stem has a match in the prefix list is segmented.

3.1.4. Morpho Challenge 2009

Bernhard [20] propose unsupervised morphological analysis relying on community

detection algorithms on lexical networks. Unlike the other approaches, the algorithm

uses morphological transformation rules to state the relationships between words. For

each word w in the list L, the algorithm finds related words from the list by calculating

the distance by Ratcliff-Obershelp (computes the similarity of two strings as the do-

ubled number of matching characters divided by the total number of characters in the

two strings) algorithm. Then extracts the rule for every word and match pair. Every

rule that occurs at least twice is added to the rule list. After transformation rules are

acquired, a lexical network is constructed. A lexical network can be represented as a

graph G (V,E) where V is a set of vertices and E is a set of edges. Each word w1

in the list is a vertex and if there is a rule R such that R(w1) = w2 there exist and

edge connecting w1 to w2. As a next the algorithm finds word families by employing

modified Newman’s community detection algorithm. The next phase is the morpheme

analyses by examining the word families and the transformation rules. Each word in

16

the family is segmented by selecting the family representative as a root and applying

the rules that are connecting the representative to the word. The representative of the

family is the smallest word of the family, where there is a tie the most frequent one.

Can and Manandhar [21] propose an algorithm relying on syntactic categories

of words. Syntactic categories are gathered by using part-of-speech (PoS) tags that

are extracting from an unsupervised PoS tagging algorithm. Each word in the list is

clustered with Clark’s distributional clustering approach where its context is defined as

the previous and next words of the processed word. The number of clusters K should

be given beforehand; also there is a spare cluster contains unclustered words. In each

step one word in the spare cluster which has minimum KL divergence with the K

clusters is chosen to process. After each step clusters which have low KL divergence

than the threshold are merged. After constructing syntactic categories, the conditional

probability of each morpheme x given its PoS cluster c, p(x|c), is computed. Morphemes

are found by splitting each word from all splitting points in each PoS cluster. Found

morphemes are ranked with respect to their maximum likelihood estimates. Ranking

aids to removing low probability morphemes. Morphemes are chosen for merging if they

have common stems in different PoS clusters. Words that are related with the merged

morphemes are removed from their PoS clusters and assigned to new paradigms. Words

are segmented as stated in their paradigm.

Spiegler et al [22], employs minimum description length (MDL) and graph-based

unsupervised sequence segmentation (GBUSS) algorithms for finding segmentation

points of a given word. It assumes that words are consisting of prefixes, stem and

suffixes, where no limitation for number of prefix or suffix exist. In the first step of

the algorithm, pseudo stems are found by a window based MDL method. In the ini-

tialization of the algorithm window is set as the middle character of the word and

extended to right and/or left side according to the MDL window score until the best

window is found. After detecting pseudo stems, the algorithm extracts prefixes from

17

the left side of the stem and suffixes from the right side by an extended version of

GBUSS algorithm. The original version of GBUSS extracts the suffix sequences of a

given corpus but in the algorithm prefix and suffix sequences are treated as morpheme

sequences. The list of morphemes that are residing in the left part of the pseudo stem

is called L-corpus and the part residing in the right side is called R-corpus. In an

independent manner M-corpus is used to refer these morpheme corpuses in the graph.

Position independent n-gram statistics are used to merge letters to morphemes until

the stopping criterion is met. Morphemes are represented as nodes in the graph and

each directed edge is the concatenation of two morphemes labeled with the frequencies

in the M-corpus. In the initialization, each node is a character from M-corpus, then

nodes are merged according to an evaluation function based on frequencies. After this

step each segment prefixes, stem and suffixes are segmented from the word. The last

step of the algorithm is aggregating these results.

Lavalle and Langlais [23] propose an approach based on the notion of formal

analogy. The algorithm assumes that, related word pairs according to formal analogy

can be segmented using the rules generated from gathered analogies. Paper gives

definition of the formal analogy as, a relation between four items noted [x : y = z : t]

which reads as “x is to y as z is to t”. With a morphological example [cordially :

cordial = appreciatively : appreciative]. Since computation is very time consuming

and not all the analogies are gathered in the paper, as a proof of concept, two families of

systems are proposed. In the first family, two sub cofactor-based systems are explained;

COF-GAPH and COF-FIRST. The sparsity of the processed analogies is surpassed by

using c-rules as cofactors. C-rules are extracted from analogies, to make generalization

over the lexicon. The low frequency ones are filtered and to reduce erroneous c-rules,

each c-rule R is scored with respect to its productivity, P defined as the ratio P (R) =

V/A of the number of time it’s application leads to a valid result V over the number

of times it could be applied A.Words are placed as nodes into the Word-relation Trees

and connected by c-rules as edges from child node to its father so that morphological

18

complexity is increasing as going down the tree. Placing nodes into the three is depends

on an S(I) value which is differs in COF-FIRST and COF-GRAPH systems. Basically

a node is connected to a node if S(I) value is more than a threshold. In COF-FIRST

S(I) is the productivity of the rule that connects nodes each other, and there can be

only one connection from one node to another. In COF-GRAPH there is no limitation

and one node can be connected the other with multiple c-rules so the value of S(I)

from one not the another is the sum of the productivity of each c-rule that connects

nodes. Extraction of morphemes from tree is as follows, if the word is a root node

then whole word is the output, if word is somewhere in the middle of the tree than

segmentation is union of the morphemes of its father and the morpheme extracted with

the c-rule with the highest count that connects node to its father. Second family of

systems proposed by the paper is pure analogical systems; ana-seg and ana-pair. These

systems use directly analogies and decide segmentation points of the words. Ana-seg

calculates the factorizations of words in analogies and selects the one with highest

frequency. For example word abolishing is found in 21 different analogies which yields

6 different factorizations. Ana-pair is more complex. In this variant, the analogies are

checked for related words. Algorithm checks whether the first and second words or the

first and the third one are related in the analogies. Two related pairs are identified by

comparing the factors of each word. Then for each pair of words (a, b), the “morpheme”

a+ b is added in the entries.

Lignos et al [24], propose a base and transforms model for morpheme analysis.

Three set of words defined in the paper; base set, unmodeled set, and derived set. In

the beginning, all words are in unmodeled set and affixes count. Each processed word

then put into base set if they are not derived from any other word and affix. Algorithm

constructs transforms from base set and derived set relationships. In the learning

process, algorithm eliminates all words including a hyphen, but uses the hyphenated

segments. Affixes are ranked with respect to their length and the number of types they

occurred. Also the words with low frequency are filtered against foreign words. In

19

the next step, transforms are ranked with respect to the base-derived word count that

they occurred and the number of characters they add to the base word. For example,

if (s, ing) is occurred in 50 pairs the score would be 50 ∗ (3 − 1) = 100. Transforms

that has segmentation precision less than %1 of the corpus are rejected. Segmentation

precision is determined by examining each word from unmodeled set has affix S2 is

exist in the corpus after segmenting the affix. After learning model is stopped, paper

deals with the compound words that are in the base or unmodeled set. 4-gram model

is used to segment a word with respect to the largest drop in forward transitional

probabilities between characters of a word, and if the substrings of that split point are

words observed in the corpus, the word is splitted. This process is done recursively

to segment the substrings. After all, there are three set of words base, derived and

unmodeled and transformations between the words forms that forms set. Words are

segmented according to the transforms until a word found in the base set.

Monson et al [25] propose an improved version of paramor [14] and [18]. In the

previous papers, paramor does not assign a numeric score to its segmentation decisions.

A natural language tagger is trained to score each character boundary in each word.

Using paramor as a source of labeled data, finite-stage tagger is trained to identify, for

each character, c, in a given word, whether or not paramor would place a morpheme

boundary immediately before c. The probabilities calculated by the mimic tagger is

used to maximize f-measure by adjusting precision and recall values. Threshold for

probabilities calculated by the tagger is set to 0.5, the number of probabilities over this

threshold found in a word is simply the number of morpheme boundaries proposed by

mimic tagger. To adjust recall and precision, a positive factor α is used to decrease

or increase the number of morpheme boundaries proposed by the tagger. Then a

segmentation score is calculated by consulting a list of sorted probabilities that lie in

αk probabilities where k is the number of probabilities over the threshold 0.5. Word

is segmented with respect to a segmentation score threshold S. Like [18], [2] is used

along with the paramor and propose a single analysis.

20

Spiegler et al [26] present Promodes; a probabilistic generative model approach

for unsupervised morphological analysis. The model considers segment boundaries as

hidden variables and includes probabilities for letter transitions within segments. Three

unsupervised versions is suggested. The first one uses a simple segmenting algorithm

which is based on letter succession probabilities in substrings and then estimates the

model parameters using a maximum likelihood approach. The second version estimates

its parameters through expectation maximization. A third method is a committee of

unsupervised learners where each learner corresponds to different initializations of the

expectation maximization method. Then a majority vote algorithm is employed which

decides where to segment word.

Tchoukalov et al propose a Metamorph algorithm [27], utilizing multiple sequence

alignments (MSA). First an ordered list of similar words with respect to Levinstein

distance is obtained from the language corpus. Then using a linear gap scoring method

words from the list are alignd to the probability distribution of MSA. Then alignment

procedure is repeated until MSA remains unchanged or when MSA’s end-of-cycle sum

of column probability distribution entropy scores increases from the previous cycle’s

sum. After the realignment finished, some columns of MSA are chosen to segment the

alignment where each chunk represents a distinct morpheme of the word in each row.

In this step, the segmentation of the words that are in the MSA is done with respect to

alignment segmentation. The remaining words of the corpus are individually aligned

to the MSA to produce their analyses based on the morpheme boundaries generated

by the alignment’s existing segmentation.

Virpioja and Kohonen [28] propose a revised version of [17] in morpho challenge

2009. The algorithm present in the paper is almost same with the previous version

but Viterbi segmentation is used in training. Unlikely the previous version, the results

achieved in this version is closer the Morfessor Baseline [2].

21

Chapter 4

Proposed Approach

After investigating previous work and the problem, we suggested 2 different ap-

proaches for unsupervised morphological analysis. First of all we analyzed the data

provided by the Morpho Challenge. The datasets supplied by the challenge includes

a wordlist with word frequencies (See Figure 4.1 for an example) and a corpus gat-

hered from different sources. Since character encodings differ in the datasets, some

modifications are done. English dataset consists of standard text and all words are

lower-cased. Finnish dataset uses ISO Latin 1 (ISO8859-1). The Scandinavian spe-

cial letters å, ä, ö are rendered as one-byte characters. Turkish dataset is standard

text and all words except the letters specific to Turkish are lower-cased. The let-

ters specific to the Turkish language are replaced by capital letters of the standard

Latin alphabet, e.g., “açıkgörüşlülügünü” is converted to “aCIkgOrUSlUlUGUnU”.

As the first step of our approach, we use the wordlist to construct trie (See Figure

4.2). Since the number of the characters differs in each language, the number of child

nodes is set dynamically with respect to the language. Non-alphabet characters such

as hypen is omitted in the procedure. As we state in previous chapters, one of the

problems in unsupervised morphological analysis is the data sparsity. We observed

that given enough large dataset, most of the root words appear in the corpus. For

example, in the datasets of the challenge, there exist 15545 root words among 617298

words where total root count for Turkish is 23470 [29], that is %66 of the roots appeared

22

Figure 4.1. Sample wordlist from Turkish dataset, words are preceeding with the

occurrences in the corpus.

in the dataset. Given a larger set root extraction would be more efficient for our first

approach.

Figure 4.2. Part of a Trie constructed with Turkish dataset.

The pseudo code of our proposed algorithm (REC-TRIE) is given in Figure 4.3.

We simply populate word trie with words from the list that are occurred more than 5

times and store the corresponding character, the number of occurrence in the corpus

and the number of times that character is used in this path in this depth (Line 3).

With the fact explained above, we assume the smallest most occurred word in a path

is the root of the words in the path.

23

1 Read words from Wordlist W

2 i = 1

3 Construct word Triei

4 Construct word Table

5 Do until no unsegmented words remain

6 For each word in the Table

7 Find boundary for unsegmented part with Triei and update Table

8 If the word is not fully segmented

9 Add unsegmented part to Triei+1

10 End If

11 End For

12 i = i+ 1

13 End Do

Figure 4.3. The Pseudocode of REC-TRIE.

Once the algorithm finds root morphemes in each word, it saves the corresponding

segmentation into a table and continues to the next iteration (Line 7). In each iteration,

the rest part of the word is put on a new trie (Line 9) and affix boundaries are found

recursively with the same method applied for root extraction. The algorithm continues

until no affix candidate is left.

In Figure 4.4 a sample run of REC-TRIE is presented. After initializing word

trie the algorithm traverses each path and chooses the most occurred smallest word as

root. The word “ada” is segmented as ad+a since the most occurred character is d

with 944 occurrence in the path. However the words “adI”, “adIn”, “adIna”, “adInI”,

and “adInIz” are segmented from adI since the most occurred character in these paths

are I with 5293 occurrence (b). Next REC-TRIE constructs affix tries to find affix

boundaries. In (c), affixes are inserted in a new trie. Note that “a” is merged from

24

ab+a and ad+a and occurrence is summed. Again first affixes are found by selecting

the most occurred character. This procedure continues until there is no affix candidate

left. The final affix is found in (d) and REC-TRIE finish segmentation.

Figure 4.4. Sample run from REC-TRIE (a) A sample trie initialized, (b) After first

iteration root words detected, (c) First affix trie is constructed with the extracted

affix parts left from roots and first affixes are found, (d) Second iteration REC-TRIE

created new affix tree and found the last affix.

The second approach, REVERSE-TRIE is a modified version of the first one. The

procedure for finding root and affixes are same but the algorithm finds segmentation

boundaries in bottom up fashion by constructing reverse word tries (See Figure 4.5)

from the word list. The algorithm tries to exploit common affixes at first and determines

the root boundaries at the end of the segmentation.

25

Figure 4.5. Sample reverse trie constructed for second approach.

The pseudo code of the second approach can be seen in the Figure 4.6. Words

are reversed before constructing the reverse trie and word table (line 2). The rest of the

procedure is the same as the first algorithm. The results of the algorithm are reversed

in line 15 to get actual segmentation of the words.

26

1 Read words from Wordlist W

2 Reverse word

3 i = 1

4 Construct word Triei

5 Construct word Table

6 Do until no unsegmented words remain

7 For each word in the Table

8 Find boundary for unsegmented part with Triei and update Table

9 If the word is not fully segmented

10 Add unsegmented part to Triei+1

11 End If

12 End For

13 i = i+ 1

14 End Do

15 Reverse results

Figure 4.6. Pseudo code of REVERSE-TRIE.

27

Chapter 5

Experiments and Results

Morpho Challenge gives two perl scripts to evaluate algorithms. These scripts

simply compare the results against a linguistic gold standard. In the evaluation, only

a subset of all words in the corpus is included. For each language, a random subset

was picked, and the segmentations of these words were compared to the reference

segmentations in the gold standard. The evaluation of an algorithm is based on the

F-measure, which is the harmonic mean of precision and recall.

As we mentioned before, these metrics are calculated by

• Hit (H): A valid cut that means word is cut at the right place.

• Insertion (I): A wrong cut that means word is cut at the wrong place.

• Deletion (D): A missed cut that means a valid cut is ignored.

Based on these metrics; precision is the number of hits divided by the sum of the

number of hits and insertions, and recall is the number of hits divided by the sum of

the number of hits and deletions. So the measures are given as

Precision =
H

(H + I)

Recall =
H

(H +D)

F −Measure =
2H

(2H + I +D)

(5.1)

28

We have used the dataset of the Morpho Challenge 2009 and evaluate results with

the perl scripts provided. Tables 5.1, 5.2, and 5.3 show the results of REC-TRIE and

REVERSE-TRIE compared with other algorithms for English, Finnish, and Turkish

respectively. REC-TRIE has better F-Measure in Turkish and English than Finnish.

This is due to fact that our algorithm finds roots and suffixes by traversing the trie one

character at a time so found roots and suffixes are generally short. However, Finnish

root words are rather long in the average due to the conservativeness of the language.

Especially deletions are fairly more in Finnish since the algorithm oversegments the

words. As a result, recall values for Finnish is low and pulls down the F-Measure

dramatically.

On the other hand, REVERSE-TRIE has better F-Measure for Finnish than

REC-TRIE because REVERSE-TRIE tries to find affixes first and then finds root

morphemes. English results for REVERSE-TRIE ranks at the end of the other com-

petitors, this is most probably English is an inflectional language and REVERSE-TRIE

works well for agglutinative languages.

As a conclusion, REC-TRIE ranked 9th for English, 11th for Finnish, and 4th for

Turkish datasets. The main reason for having low recall values in REC-TRIE is that the

algorithm oversegments affixes. Recall values for affixes in the results for all languages

has the lowest score with respect to recall values of non-affixes. The algorithm starts

to divide affixes character by character if it can not find a valid boundary when there

exists less than 3 characters in the last part of the word. This causes algorithm to have

more deletions but also precision is rising for languages with small affixes. REVERSE-

TRIE on the other hand, ranked last for English, 9th for Finnish, and 13th for Turkish

datasets. REVERSE-TRIE unlikely starts with segmenting affixes and in the last step

identifies roots of the words. As we mentioned above, the last segments of the words

(roots in this case) are again segmented character by character. In REVERSE-TRIE

the precision is decreased whereas recall values are increased. Since REVERSE-TRIE

29

finds affixes with better hits than roots, English and Turkish rankings are worse than

REC-TRIE. However, Finnish long affixes are found better than REC-TRIE so that

REVERSE-TRIE is above in the Finnish rankings.

30

Table 5.1. Precision, Recall, and F-Measure of REC-TRIE & REVERSE-TRIE

compared with other algorithms in Morpho Challenge 2009 for English.

Author Method Precision Recall F-Measure

Virpioja &Kohonen Allomorfessor 68.98% 56.82% 62.31%

- Morfessor Baseline 74.93% 49.81% 59.84%

Monson et al ParaMor-Morfessor Union 55.68% 62.33% 58.82%

Lignos et al - 83.49% 45.00% 58.48%

Monson et al Paramor-Morfessor Mimic 54.80% 60.17% 57.36%

Monson et al Paramor Mimic 53.13% 59.01% 55.91%

Bernhard MorphoNet 65.08% 47.82% 55.13%

Lavallée &Langlais RALI-COF 68.32% 46.45% 55.30%

Our Algorithm REC-TRIE 50.80% 53.86% 52.29%

Can & Manandhar - 58.52% 44.82% 50.76%

- Morfessor CatMAP 84.75% 35.97% 50.50%

Spiegler et al PROMODES 36.20% 64.81% 46.46%

Lavallée &Langlais RALI-ANA 64.61% 33.48% 44.10%

Spiegler et al PROMODES 2 32.24% 61.10% 42.21%

Spiegler et al PROMODES committee 32.24% 61.10% 42.21%

Tchoukalov et al MetaMorph 68.41% 27.55% 39.29%

Golénia et al UNGRADE 28.29% 51.74% 36.58%

Our Algorithm REVERSE-TRIE 12.62% 82.27% 21.89%

- Letters 3.82% 99.88% 7.35%

31

Table 5.2. Precision, Recall, and F-Measure of REC-TRIE & REVERSE-TRIE

compared with other algorithms in Morpho Challenge 2009 for Finnish.

Author Method Precision Recall F-Measure

Monson et al ParaMor-Morfessor Union 47.89% 50.98% 49.39%

Monson et al Paramor-Morfessor Mimic 51.75% 45.42% 48.38%

- Morfessor CatMAP 79.01% 31.08% 44.61%

Spiegler et al PROMODES committee 41.20% 48.22% 44.44%

Monson et al Paramor Mimic 47.15% 40.50% 43.57%

Spiegler et al PROMODES 2 33.51% 61.32% 43.34%

Spiegler et al PROMODES 33.86% 51.41% 42.25%

Lavallée &Langlais RALI-COF 74.76% 26.20% 38.81%

Our Algorithm REVERSE-TRIE 25.13% 74.49% 37.58%

Golénia et al UNGRADE 40.78% 33.02% 36.49%

Our Algorithm REC-TRIE 45.09% 27.05% 33.81%

Bernhard MorphoNet 63.35% 22.62% 33.34%

Virpioja &Kohonen Allomorfessor 86.51% 19.96% 32.44%

- Morfessor Baseline 89.41% 15.73% 26.75%

Tchoukalov et al MetaMorph 37.17% 15.15% 21.53%

Lavallée &Langlais RALI-ANA 60.06% 10.33% 17.63%

- Letters 5.17% 99.89% 9.83%

32

Table 5.3. Precision, Recall, and F-Measure of REC-TRIE & REVERSE-TRIE

compared with other algorithms in Morpho Challenge 2009 for Turkish.

Author Method Precision Recall F-Measure

Monson et al Paramor-Morfessor Mimic 48.07% 60.39% 53.53%

Monson et al ParaMor-Morfessor Union 47.25% 60.01% 52.88%

Monson et al Paramor Mimic 49.54% 54.77% 52.02%

Our Algorithm REC-TRIE 53.40% 43.06% 47.68%

Lavallée &Langlais RALI-COF 48.43% 44.54% 46.40%

- Morfessor CatMAP 79.38% 31.88% 45.49%

Spiegler et al PROMODES 2 35.36% 58.70% 44.14%

Spiegler et al PROMODES 32.22% 66.42% 43.39%

Bernhard MorphoNet 61.75% 30.90% 41.19

Can & Manandhar 2 41.39% 38.13% 39.70%

Spiegler et al PROMODES committee 55.30% 28.35% 37.48%

Golénia et al UNGRADE 46.67% 30.16% 36.64%

Our Algorithm REVERSE-TRIE 22.61% 72.90% 34.51%

Virpioja &Kohonen Allomorfessor 85.89% 19.53% 31.82%

- Morfessor Baseline 89.68% 17.78% 29.67%

Lavallée &Langlais RALI-ANA 69.52% 12.85% 21.69%

- Letters 8.66% 99.13% 15.93%

Can & Manandhar 1 73.03% 8.89% 15.86%

33

Chapter 6

Conclusions

We propose a novel approach for unsupervised morphological analysis, based on

trie data structure and word occurrences. The first algorithm (REC-TRIE) proposed

constructs a forward word trie and finds root words according to the occurrences of

characters in the path. After root detection is completed, remaining affix parts are used

to construct affix tries. In each iteration, affix boundaries are detected and results are

updated. Similarly, the second algorithm (REVERSE-TRIE) constructs a reverse trie

and finds affix boundaries at first and the last morpheme found considered as the root

morpheme.

Although our proposed algorithms are simple, the results are encouraging with

respect to the other algorithms proposed previously. REC-TRIE ranks 4th in Turkish,

REVERSE-TRIE ranks 9th in Finnish when compared with other competitors. The

recall values state that we have missed some of the boundaries especially for Finnish

in REC-TRIE. Using a bottom up agglutinative approach in REVERSE-TRIE causes

to find missegmented boundaries for inflectional languages like English.

These algorithms do not have any methods for prefix detection and there is no

control for the irregular changes of the words or umlauts, so we should develop some

strategies to cope with these situations. Also merging these two approaches may bring

higher hits and increase F-Measure more than the current situation.

34

Appendix A:

FILES

A.1. Files Attached

A.1.1. Codes of the Algorithms

Code of the REC-TRIE and REVERSE-TRIE are included on the CD attached.

Algorithms are implemented in Java and can be run on any java compiler by providing

the necessary input files listed below.

A.1.2. Datasets

• Wordlists from the Morpho Challenge are provided in three languages (Finnish,

English, and Turkish) in the Dataset folder on the CD attached.

• Although we did not use corpus data in the algorithms we provide them in three

languages (Finnish, English, and Turkish).

A.1.3. Evaluation Files

• Evaluation scripts are included on the CD in Evaluation folder. Results gathered

from the algorithms can be evaluated by using these scripts. Instructions on how

to evaluate scripts is written in the readme.txt file in the same folder.

• Gold standart segmentations to use in the evaluation process are provided in the

Evaluation folder.

35

References

1. Alpaydın, E., Introduction to Machine Learning (Adaptive Computation and Ma-

chine Learning), MIT Press, 2004.

2. Creutz, M. and K. Lagus, “Morfessor in the Morpho Challenge”, Proceedings of

the PASCAL Challenge Workshop on Unsupervised Segmentation of Words into

Morphemes , 2006.

3. Bernhard, D., “Unsupervised Morphological Segmentation Based on Segment Pre-

dictability and Word Segments Alignment”, Proceedings of the PASCAL Challenge

Workshop on Unsupervised Segmentation of Words into Morphemes , 2006.

4. Bordag, S., “Two-step Approach to Unsupervised Morpheme Segmentation”, Pro-

ceedings of the PASCAL Challenge Workshop on Unsupervised Segmentation of

Words into Morphemes , 2006.

5. Keshava, S., “A simpler, intuitive approach to morpheme induction”, Proceedings

of the PASCAL Challenge Workshop on Unsupervised Segmentation of Words into

Morphemes , 2006.

6. Johnsen, L., “Morphological learning as principled argument”, Proceedings of the

PASCAL Challenge Workshop on Unsupervised Segmentation of Words into Mor-

phemes , 2006.

7. Atwell, E., A. Roberts, P. Longman, and H. C. Je, “Combinatory Hybrid Elemen-

tary Analysis of Text (CHEAT”, Proceedings of the PASCAL Challenge Workshop

36

on Unsupervised Segmentation of Words into Morphemes , 2006.

8. Jordan, C., J. Healy, and V. Keselj, “Swordfish: an unsupervised Ngram based

approach to morphological analysis”, Proceedings of the 29th annual international

ACM SIGIR conference on Research and development in information retrieval , pp.

657–658, New York, 2006.

9. Dang, M. T., “Simple Unsupervised Morphology Analysis Algorithm (SUMAA)”,

Proceedings of the PASCAL Challenge Workshop on Unsupervised Segmentation

of Words into Morphemes , 2006.

10. ur Rehman, K. and I. Hussain, “Unsupervised Morphemes Segmentation”, Pro-

ceedings of the PASCAL Challenge Workshop on Unsupervised Segmentation of

Words into Morphemes , 2006.

11. Bernhard, D., Simple Morpheme Labelling in Unsupervised Morpheme Analysis ,

pp. 873–880, 2008.

12. Bordag, S., Unsupervised and Knowledge-Free Morpheme Segmentation and Anal-

ysis , pp. 881–891, 2008.

13. McNamee, P. and J. Mayfield, “N-Gram Morphemes for Retrieval”, Proceedings

of the 9th Cross-language evaluation forum conference on Evaluating systems for

multilingual and multimodal information access , Cross-Language Evaluation Fo-

rum’08, 2009.

14. Monson, C., J. G. Carbonell, A. Lavie, and L. S. Levin, “ParaMor: Finding

Paradigms across Morphology”, Cross-Language Evaluation Forum, pp. 900–907,

2007.

37

15. Zeman, D., “Unsupervised Acquiring of Morphological Paradigms from Tokenized

Text”, Advances in Multilingual and Multimodal Information Retrieval , Vol. 5152,

pp. 892–899, 2008.

16. Goodman, S. A., “Morphological Induction Through Linguistic Productivity”, Pro-

ceedings of the 9th Cross-language evaluation forum conference on Evaluating sys-

tems for multilingual and multimodal information access , Cross-Language Evalua-

tion Forum’08, 2009.

17. Kohonen, O., S. Virpioja, and M. Klami, “Allomorfessor: Towards Unsupervised

Morpheme Analysis”, Evaluating Systems for Multilingual and Multimodal Infor-

mation Access , Vol. 5706, pp. 975–982, 2009.

18. Monson, C., J. Carbonell, A. Lavie, and L. Levin, “ParaMor and Morpho Chal-

lenge 2008”, Proceedings of the 9th Cross-language evaluation forum conference

on Evaluating systems for multilingual and multimodal information access , Cross-

Language Evaluation Forum’08, pp. 967–974, 2009.

19. Zeman, D., “Using Unsupervised Paradigm Acquisition for Prefixes”, Evaluating

Systems for Multilingual and Multimodal Information Access , Vol. 5706, pp. 983–

990, 2009.

20. Bernhard, D., “MorphoNet: Exploring the Use of Community Structure for Un-

supervised Morpheme Analysis”, Cross-Language Evaluation Forum (1), pp. 598–

608, 2009.

21. Can, B. and S. Manandhar, “Unsupervised Learning of Morphology by Using Syn-

tactic Categories”, Working Notes for the CLEF 2009 Workshop, Corfu, Greece,

September 2009.

38

22. Golenia, B., S. Spiegler, and P. Flach, “UNGRADE: UNsupervised GRAph

DEcomposition”, Working Notes for the CLEF 2009 Workshop, Corfu, Greece,

September 2009.

23. Lavallée, J.-F. and P. Langlais, “Morphological acquisition by formal analogy”,

Morpho Challenge 2009 , Corfu, Greece, October 2009.

24. Constantine Lignos, M. P. M., Erwin Chanz and C. Yang, “A Rule-Based Unsu-

pervised Morphology Learning Framework”, Working Notes for the CLEF 2009

Workshop, Corfu, Greece, September 2009.

25. Christian Monson, K. H. and B. Roark, “Probabilistic ParaMor”, Morpho Chal-

lenge 2009 , Corfu, Greece, October 2009.

26. Spiegler, S., B. Golenia, and P. Flach, “Promodes: A probabilistic generative model

for word decompositions”, Working Notes for the CLEF 2009 Workshop, Corfu,

Greece, September 2009.

27. Tzvetan Tchoukalov, C. M. and B. Roark, “Multiple Sequence Alignment for Mor-

phology Induction”, Morpho Challenge 2009 , Corfu, Greece, October 2009.

28. Virpioja, S. and O. Kohonen, “Unsupervised Morpheme Discovery with Allomor-

fessor”, Morpho Challenge 2009 , Corfu, Greece, October 2009.

29. Solak, A. and K. Oflazer, “Design and Implementation of a Spelling Checker for

Turkish”, Literary and Linguistic Computing , Vol. 8, 1993.

39

Curriculum Vitae

Koray Ak was born on 9 September 1985, in İstanbul. He received his B.S. de-

gree in Computer Science & Engineering in 2008 from Işık University. He worked as a

research assistant at the department of Computer Engineering of Işık University from

2008. During this time firstly he has been affiliated with the Informatics Research and

Development Center. He also worked on the student information and registration sys-

tems; Campus-Online and Course-Online as a lead programmer. His research interests

include artificial intelligence, machine learning and software engineering.

40

