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STATISTICAL ANALYSIS OF BUS TRANSPORTATION NETWORKS FOR 

FOUR LARGEST CITIES IN TURKEY 

 

Abstract  

 

Network properties for public bus transportation networks (BTNs) of four largest 

cities (İstanbul, İzmir, Ankara, Bursa) in Turkey have been analyzed under C-, L- 

and P-Space topologies. Node degree distributions are shown to follow power-law 

distribution indicating scale-free nature of the networks. Furthermore, the networks 

have been growing preferentially with the exception of Bursa. Degree-degree 

correlations of nodes were studied in assortativity. The networks have small shortest-

path values. For example, in İstanbul the maximum shortest path was found to be 4 

in C-Space meaning that one needs at most 4 transfers to reach any point in the 

network. Correlation between mean shortest path lengths and nodes of given degrees 

of single end nodes are shown to follow power-law in L-Space. Degree, eigenvector, 

closeness, and betweenness centralities of nodes were calculated, and correlation 

between mean centrality values and degree were well described by power-law. Thus, 

in summary, BTNs show small-world and scale-free properties. We also investigated 

the impacts of two recent projects, Metrobüs and the Third Bosphorus Bridge, on bus 

network properties in İstanbul.       
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TÜRKİYE‟NİN DÖRT BÜYÜK ŞEHRİNİN OTOBÜSLÜ ULAŞIM HATTININ 

İSTATİSTİKSEL ANALİZİ 

 

Özet 

 

Türkiye‟nin dört büyük şehrinin (İstanbul, İzmir, Ankara, Bursa) otobüs ulaşım 

ağlarının özellikleri C-, L-, ve P- Uzay topolojileri altında incelendi. Düğüm derece 

dağılımlarının kuvvet yasası dağılımını takip ettiği ve ağın ölçeksiz (scale-free) bir 

yapıya sahip olduğu gösterildi. Ayrıca Bursa hariç diğer üç şehrin otobüs ulaşım 

ağlarındaki büyümenin rassal değil tercihli olduğu gözlendi. Düğümlerin dereceleri 

üzerinden bağlanma eğilimleri derece-derece ilişkilendirme (assortativity) başlığı 

altında incelendi. Dört büyük şehirde de herhangi iki nokta arasındaki en kısa ulaşım 

mesafelerinin düşük değerler olduğu ölçüldü. Örneğin, İstanbul C-Uzay topolojisi 

incelendiğinde bulunan en büyük kısa mesafenin dört olması şehir içinde en fazla 

dört vesait kullanarak seyahat edilebileceği anlamına gelmektedir. L-Uzay 

topolojisinde tek düğümlerin ortalama en kısa ulaşım değerleri ve dereceleri 

ilintilenmiş ve dağılımın kuvvet yasasına uyduğu gösterilmiştir. Düğümlerin derece, 

özvektör, yakınlık ve arada bulunma merkezilikleri hesaplanmış ve düğüm dereceleri 

ile olan ilitilenme kuvvet yasası ile tanımlanmıştır. Özetle, Türkiye‟nin dört büyük 

şehrinin otobüs ağlarının küçük dünya (small-world) ve ölçeksiz ağ özelliklerini 

yansıttığı gösterilmiştir. Ayrıca, Metrobüs hatlarının ve Üçüncü Boğaz Köprüsü‟nün 

İstanbul otobüs ulaşım ağının özelliklerine olan etkileri de istatiksel olarak 

incelenmiştir.    
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Chapter1 

Network History 

1.1 Introduction to Networks 

 
A network (graph) is a set of points (nodes, vertices) that are connected by 

communication paths (edges, arcs) (Figure 1.1).  Points in a network can be of 

different nature. For example, in social networks they can represent nationality, 

income, gender, locations, or ages. Moreover, the edges of a network can have 

different types and they can have different properties (Table 1.1). Edges can be 

weighted, unweighted, directed (pointing in only one direction -directed graphs 

(digraphs)), and undirected.  

 

                      

                                 a                                                 b 

 

Figure 1.1 Undirected and directed network samples. (a) Undirected network and 

(b) directed network. 

 
Networks are real-life webs (social, information, technology, biological, 

physical science, etc.) and their complex structure and the behavior of their points 

can be analyzed within different fields as mathematics, physics, computer science, 

sociology, and biology. Networks can be further classified as natural and man-made. 

Natural networks are without a spider meaning that there isn‟t a central point that 

regulates the growth of the network (Figure 1.2). Rather they self-organize, and grow 

in a decentralized manner. The analysis of these special structures of complex real-

world networks created a new research field –network science- and similar 

architectures were revealed in many real-world networks that differ from random 
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world idea.
1
 Network science is a field trying to develop and understand the 

theoretical and practical structure of natural and artificial networks [1].  

 

Table 1.1 Complex real-world networks categories and examples with their vertices 

and edges. 

NETWORKS SAMPLES 

Social 

 Friendship (people - friendship relation) 

 Business (companies - business dealings) 

 Movies (actors - collaboration) 

 Science (scientist - research) 

 Phone calls (number - cells) 

 Spread of disease (people - sick) 

Information 

 Citation (paper - cited) 

 WWW (html pages – URL links) 

Biological 

 Food (predator - prey) 

 Neural (neurons - axons) 

 Genetic (proteins - dependence) 

Technology 

 Power grid (power station - lines) 

 Internet (routers – physical links) 

Transportation 

 Airline (airports - flight) 

 Railway (stations - railways) 

 Public transport (stations - roads) 

 

 

Figure 1.2 Complex real world network samples (a) food web (b) science and social 

science citation network (c) internet (d) literature network. 

                                                 
1
 “God may not play dice with the universe, but something strange is going on with the prime 

numbers.” Paul Erdős 

   "God does not play dice with the universe."  Albert Einstein 
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The study of networks has a long history in mathematics and the sciences 

going back as far as 1736 when Leonard Euler worked on the infamous “Königsberg 

Bridge Mathematical Problem” that asks “Are there any way that could be walk 

across all seven bridges and never cross the same one twice?”  

Recent developments in graph theory brought a new perspective on the 

complex networks and helped to clarify, simplify their analysis and take applications 

into engineering, computer science, operation research, and sociology. Some 

research aims are to;  

 Identify and measure the statistical properties of network (path lengths and 

degree distributions) in order to characterize the structure and behavior of 

network, 

 Model the networks in order to understand the meaning of statistical 

properties and behaviors of network elements, 

 Predict the behavior of networked systems that are based on measured 

structural and individual properties. 

Empirical studies of real-world graphs created new terminology such as path 

length, clique (clustering), centrality, and connected components.   

Moreover, helped by computers, large size real-network databases like WWW, 

citation network, internet, and social networks could be analyzed. Such studies of 

real-world networks yielded new and important contributions such as the revelation 

of the “small-world model” by Watts and Strogatz [2] and power-law degree 

distribution in networks and preferential attachment model of a growing network by 

Barabási and Albert [3].  

 

1.2 Network Models 
 
In this section, several theoretical models for network structure will be discussed. 

 

1.2.1 Regular Graph Model 
 
A network where each vertex has the same number of neighbors (the same degree) is 

called a “regular network”. A regular graph whose vertices have k degree is called a 

k-regular graph or regular graph of degree k (Figure 1.3). 
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Figure 1.3 Sample regular networks and node degree distribution. 

 
Regular networks have an artificial structure. They have a fixed node degree 

and high average degree, high clustering and high average path length. 

 

1.2.2 Random Graph Model (Erdös-Rényi)  

 

1.2.2.1 Introduction to Random Graphs 

 
Simplest and oldest network model is random graph (Figure 1.4) which was 

firstly studied in [4, 5] and extended by the Hungarian mathematicians Paul Erdös 

and Alfréd Rényi within serial papers. Solomonoff and Rapoport [5] and Paul Erdös 

and Alfréd Rényi [6] independently described the simplest network model as N 

vertices that are connected as a pair with probability p (      ). Erdös and Rényi 

random graph model is also named as “Bernoulli graph” or “Poisson random graph” 

due to its node degree distribution structure. Erdös and Rényi also utilized another 

model that uses edges (      ) in their papers. 

       graphs start with N vertices and exactly m undirected edges. A fixed 

number of unconnected vertices are connected with undirected m edges where 

vertices are chosen randomly from a uniform distribution. Degree distributions of 

random graphs are binomial and Poisson (for large size networks).  

Another Erdös-Rényi random graph model is a        that starts with   

isolated vertices and their pairs are connected with probability p. In this model a 

graph has maximum possible    
 
  

      

 
 undirected edges (when p=1), the 

probability of appearance m edges is         
 

 
         

 within   
 
  
 
  different 

possible edges. Number of edges is defined in       
 
  and expected (average) 

number of edges is      
      

 
 for random graph models. Also, number of edges 
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in unconnected random graph is     and     
 
  for complete random graph 

(fully connected). 

 
Procedure of building         graph; 

 Start with   isolated vertices, 

 Connect each of the   
 
  unconnected vertex pairs with probability p 

(randomly chosen vertex pairs different from each other). 

 

    a                                  b                                   c 

Figure 1.4 Sample random networks. 

 

1.2.2.2 Degree Distribution  

 
Degree distribution of the random graph        is a binomial which gives the 

connection probability of a randomly chosen vertex being connected with k other 

vertices and also “  ” reflects the degree of a selected vertex i. 

Binomial degree distribution (Figure 1.5): 

 

                
 
                                       (1.1) 

 

 

Figure 1.5 Binomial degree distribution of sample random graphs with given   

values. 

 
Probability of randomly selected vertex in network will have k neighbors 

(connected with different k other vertices) in one step. If   goes infinity and   goes 
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to zero degree distribution transform from binomial distribution to Poisson 

distribution. Poisson degree distribution (Figure 1.6): 

  

                                                  
 
 
                                               (1.2) 

 

                                               
  

        
                      

 

                                               
         

  
                                                             (1.3) 

 

                                                        (1.4) 

 

Mean node degree (   ) of a large graph size   is     
  

 
           

constant,     is also expected number of first neighbors of a random selected vertex 

(       ) and number of second neighbors is defined as       
 
. 

 

 

Figure 1.6 Poisson degree distributions of sample random graphs. 

 
When probability distributions of random networks are observed, most of the 

vertices have approximately the same degree and the probability of very highly and 

little connected vertices are very small.  

Binomial and Poisson distributions are sharply peaked and have tails that decay 

rapidly with k (1/k!) that is very high decay value than any exponential (Figure 1.5 – 

Figure 1.6). This behavior shows that appearance of well connected nodes isn‟t very 

possible. This property separates them from power-law distributions where some 

high-degree nodes exist. Random graphs‟ degree properties do not always follow 

binomial and Poisson distributions but other distributions such as exponential and 

power-law.  
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1.2.2.3 Path Length 

 
Average degree of a random network is approximately calculated as        

and the number of nodes a distance d (path length) from any node is approximately 

   
 
.When d is equal to   (maximum distance between any two vertices)    

 
 is the 

total number of vertices in network. Estimated maximum distance is, 

 

     
            

    

      
                                         (1.5) 

 

Logarithmic growing of   with   from equation show that ER graphs has 

“small-world” property and also many real-world networks exhibit same property. 

 

1.2.2.4 Clustering Coefficient 

 
In a random graph, the edges are created independently and distributed 

randomly  so the clustering coefficient is      
   

 
  that is much smaller than 

comparable  real networks with same number of nodes, and edges and go to zero 

with     in the limit of large system size (   ) (Table 1.2). There is no local 

clustering coefficient in random graphs. 

 

Table 1.2 Real-world network study results on mean degree, real clustering 

coefficient, and clustering value of random networks with same network size [7]. 

        
  

                
    

            
          

Internet  6,374 3.8 0.24 0.00060 

WWW  153,127 35.2 0.11 0.00023 

Power grid  4,941 2.7 0.080 0.00054 

Neural network  282 14.0 0.28 0.049 

Biology collaborations  1,520,251 15.5 0.081 0.000010 

Mathematics collaborations  253,339 3.9 0.15 0.000015 

Film actor collaborations  449,913 113.4 0.20 0.00025 

Company directors  7,673 14.4 0.59 0.0019 

Word co-occurrence  460,902 70.1 0.44 0.00015 

Metabolic network  315 28.3 0.59 0.090 

Food web  134 8.7 0.22 0.065 
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All studies in network research revealed that the random networks are different 

from real-world networks with very small clustering coefficient (<<1) which tends to 

zero with     and binomial or Poisson degree distribution that imply to any linking 

between nodes can occur with equal probability, and have similarity with small 

average path length (highly connected   log(N)) between vertices pairs. Also the 

average distance and clustering coefficient only depend on the number of nodes and 

edges in the network. 

 

1.2.3 The Small-World Model (Watts-Strogatz) 

 
Small-world models were introduced as a simple model of social networks by 

Duncan Watts and Steven Strogatz [2] but the name comes from Stanley Milgram‟s 

experiment of letter sending [8]. Watts and Strogatz [2] started with a regular 

network (p=0, ring-like) and reconnected independently each edge with increasing 

probability p that causes randomness until p=1 (Erdös-Rényi random graph). In these 

rewired networks, they observed high clustering coefficients, long path lengths for 

regular structure (p=0); low clustering coefficients, low path lengths for random 

structure (p=1); and high clustering coefficients, low path lengths for  a range of p 

(small-world structure) compatible with real-world networks (Figure 1.7). 

 

 

Figure 1.7 Results by Watts and Strogatz [2]. (a) Random rewiring Procedure :   is 

increased the model moves from a regular graph, through intermediate graphs, to a 

random graph at       (b) Description of characteristic path length      and 

clustering coefficient      within randomly rewired procedure: There is a large 

intermediate region which shows “small-world” behavior: small   (like random 

graphs) but large   (like regular graph) (c) Empirical examples of small-world 

networks: Characteristic path length   and clustering coefficient    for three 

networks were compared to random graphs with same number of vertices ( ) and 

average number of edges per vertex (k). Actors: N=225,226  =61. Power-grid: 

N=4941,  =2.67.Celegans: N= 282,  =14. Networks were defined as undirected and 

unweighted structure. Sample real-world network reflected the small-world 

phenomenon with           and           properties. 
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Table 1.3 Comparison of networks on path length and clustering properties. 

 GRAPHS 
 

 Regular Small-World Random 

Path Length Long 

Short 

          

 

Short 

Clustering High 

High 

          

 

Low 

 

In rewiring process, average degree ( k ) is not changed but the degree 

distributions change with different rewiring parameters p. Degree distribution is 

similar to the random graph degree distribution as binomial or Poisson that are 

centered on average degree  k  and with exponentially small probability for very high 

connected nodes. Also, changes are observed and compared for path length and 

clustering structures in rewiring process (Figure 1.7, Table 1.3). This model provided 

a new explanation of real-world networks which have two important properties. 

 

The small-world effect: The pairs of vertices in most networks are connected with 

shortest path in the network and the mean or maximum vertex-vertex distance in the 

network (except unconnected vertex pairs) increase logarithmically (      or more 

slowly) with the all vertices in the network. The first important explanation of small 

world was made by the social psychologist Stanley Milgram [8] with his famous 

letter experiment and the experiment was resulted reached their targeted person via 

about six (    ) acquaintances and hence „„six degrees of separation‟‟. Different 

field experiments showed similar results such as the actors are connected via three 

co-stars with each other in Hollywood and chemicals in a cell are separated by three 

reactions. [9] and [7] reveal empirical evidences in order to show the logarithmic 

increase of path length. To measure “small-world effect”, one finds the shortest 

distance between all pairs of vertices in the network and computes their averages. 

Mean shortest path length between vertex pairs for an undirected network is as 

follows. 

 

    
 

 

 
      

    
                                                       (1.6) 

 

     represents the shortest path length from vertex i to vertex j and there is no 

contribution of the infinite values (
 

   
 

 

 
  ) to the sum. Also, observations on 

experiments showed that mean shortest path distances increase as log N and the 
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number of vertices within a distance   of a central vertex grows exponentially with 

      . The result of l (mean shortest path=          
    

      
) scales 

logarithmically or grows slower with network size (N) for fixed mean degree in real-

world networks. This is a special property of “small-world” networks.  

 

High clustering: There is a high probability that two vertices will be connected 

directly to each other if they have a common neighboring vertex. For example, in 

social networks one encounters “cliques” -circles of friends or acquaintances in 

which every member knows every other member. In a social network, two people are 

much more likely to be acquainted with one another if they have another common 

acquaintance or the friend of your friend is likely also to be your friend. “Clustering 

coefficient” can be defined as the density of triangles in a network. 

 

1.2.4 Scale-Free Network Model (Barabási -Albert)  

 
Price‟s studies on network of citations between scientific papers in [10] 

confirmed a power–law degree distribution and its exponent values were found 2.5-3. 

The next works on degree distribution of real-world networks (citation networks, 

WWW, Internet, metabolic networks, telephone call graphs, network of human 

sexual contacts) produced an important “power law” property. Power-law degree 

distribution was seen a characteristic property for real-world networks and these 

networks are defined as “scale-free networks” by Barabási and Albert in [3]. 

 

 

Figure 1.8 Sample power-law degree distribution and log-log fit to decay for a 

network of size is 20 and exponent value ( ) 1.5. 
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Power-law distributions are called as “Pareto Distribution” in statistics. Power-

law distribution has the following form.  

  
                                                                 (1.7) 

 

Decaying of power-law distribution (Figure 1.8) is much slower than Poisson 

distribution that can be seen on large k, 

 

      
 

  
   (                         

   
      

  
)                 (1.8) 

 

Power-law exponent (    and usually between 1 and 3) values have special 

reflections about networks:  

              : requirement for normalizability 

       : both the average degree and standard deviation are infinite, a total 

number of edges may grow faster than a linear function of a total number of vertices 

that this is true for many real networks  

       : average degree is finite, but standard deviation is infinite that mean 

fluctuations in systems are unbounded and depend only on the system size, network 

doesn‟t have  percolation threshold with respect to a dilution of its nodes, typical for 

real networks 

       : both the average degree and standard deviation are finite 

            : power-law distribution and its properties look like exponential decaying 

distributions, network closes to random graph structure. 

 

Previous random graph and small-world models didn‟t uncover power-law 

degree distribution, so this property opened a new investigation field about networks. 

While Barabási and Albert were revealing power-law degree distribution property in 

their paper [3], they also reached three important results. 

 Power-law degree distribution is not only a special property of WWW that is 

a general property of many real-world networks 

 Rather than being static structures, networks grow dynamically via 

attachment of new vertices that is referred to with different descriptors such as 

“cumulative advantage”, “rich-get-richer”, and “preferential attachment”. Vertices 

are connected with new edges to the existing vertices according to their degrees 

 Specific models of growing networks can be generated which show power-

law degree distributions. 
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Figure 1.9 Barabási and Albert‟s real-world network analysis in [3] and 

observed distribution function of connectivity (average degree distributions) 

for (a) actor collaboration graph with             vertices, average 

degree            , and  
     

 = 2.3, (b) WWW                

     , and  
   

 = 2.1, (c) and Power grid,                     and 

 
         

 = 4. 

 
Barabási and Albert‟s [3] findings are supported with studies on different real-

world networks such as WWW, film actor collaborations, and citation networks 

(Figure 1.9).  

We can observe and compare all network models with same size in Figure 1.10 

and classify real-world networks on network model in Table 1.4.    

 

Table 1.4 Different real-world networks and description of their vertices, edges, and 

models. 
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                    a              b      c             d  

Figure 1.10 Networks are of same size (30 vertices). (a) Regular network model, 

each vertex is linked to its four nearest neighbors (b) Random network model, 

vertices are linked randomly and vertices have three and four edges (c) Small-world 

network model, most vertices are linked only to their nearest neighbors (d) Scale-

free network model, a few vertices are linked many other vertices. 
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Chapter2 

Network Analysis 

2.1 Node Degree Distribution 

 
Node degree of vertex i (  ) is the total number of connected edges of vertex i 

to other vertices (nearest neighbors) in an undirected network. All nodes in a network 

do not have the same number of degree whose spread is characterized by a 

distribution function p(k) that gives the probability of a randomly chosen node 

having exactly k edges in an undirected network. Histogram of the degree probability 

of vertices p(k)  versus node degrees is named degree distribution for the network. 

Average degree for the whole network        

 

    
 

 
             

  

 
    

 
                                       (2.1) 

 

where E represents the total number of edges and N is the total number of nodes in 

network.  

In an Erdös-Rényi random graph the edges are placed randomly and equal 

probability. The largest of nodes have approximately the same degree that closes to 

the average degree     of the network. The degree distribution of a random graph is a 

binomial distribution with a peak at p(   ). 

 

       
 
                                              (2.2) 

 

The mean number of neighbors of a chosen vertex i in a random graph with 

degree distribution (Figure 2.1)     is found as follows. 

 

                                                           (2.3) 

 

In the limit where N becomes large the degree distribution of a random graph 

follows Poisson distribution. 

   
         

  
                                                   (2.4) 



15 

 

 
 

Figure 2.1 Sample binomial degree distributions. 

 

Both binomial and Poisson distributions are strongly peaked about the mean 

 k , and have a large-k tail that decays rapidly with 1/k!. Such networks are defined 

as ”homogeneous networks”. But binomial and Poisson degree distributions do not 

represent real-world network properties that decay slowly in large degree ranges. In 

real-world networks most nodes have low degrees and a few numbers of nodes 

(hubs) have high degrees (heterogeneous connectivity) and high clustering. This 

behavior can be modeled with exponential or power-law distributions. 

Exponential degree distribution, 

                                                              (2.5) 

 

Cumulative exponential distribution (Figure 2.2) with same exponent, 

 

      
 
           

   
                                      (2.6) 

 

 

Figure 2.2 Cumulative exponential degree distribution of power grid [11]. 
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Also experiments on large real-world networks (WWW, internet, metabolic 

networks) showed that their degree distributions significantly different from binomial 

and Poisson distributions and follow the power-law degree distribution. In power-law 

distribution (2.7) for networks vertices with small degrees are most frequent and the 

fraction of highly connected vertices decreases, but is not zero within a logarithmic 

plot (Figure 2.3). These kinds of networks are called as a “scale-free networks” in 

[3].  

    
                                                           (2.7) 

 

 

Figure 2.3 Sample power-law degree distributions in linear-linear, semi-log, and 

log-log forms. 

 
The scale-free degree distribution has a heterogeneous structure whereas 

random and small-world networks follow a homogeneous topology. Both 

exponential and power-law degree distributions show a non-equilibrium growth of 

the network when new vertices and edges are added to the existing network in time. 

In power-law degree distribution, connections of newly added vertices to existing 

vertices occur with “preferential attachments” which means that new connection 

probability to existing node is proportional to the degree of existing vertices. In this 

way popular nodes become more popular and “hubs” are created, in other words rich 

get richer.  

Investigation of power-law degree distribution is made on cumulative 

distribution function or probability distribution function and the plot is shown in a 

log-log scale in order to investigate the linearity of the relationship and to estimate 

the exponent. Use of cumulative distribution allows removal of the fluctuations in 

large degree regions and makes fluctuations less pronounced. The probability that the 

degree is greater than or equal to k is, 

         
    

    
                                              (2.8) 
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Studies in real-world networks also showed no fluctuations and revealed right-

skewed distributions that follow power law with a constant exponent   [12, 13].  

As a result, power-law and exponential distributions can be observed when 

corresponding cumulative distributions are plotted in logarithmic scales (for power 

laws) or semi-logarithmic scales (for exponentials) in real-network studies. 

Analysis of linearity fit is made by calculating the Pearson product-moment 

correlation coefficient (r) that is a measure of the correlation (strength of the linear 

dependence) between two variables. It is a value between +1 and −1 where 1 implies 

the perfect relationship between X and Y (Y increases as X increases), −1 implies the 

inverse relationship between X and Y (Y decreases as X increases), and 0 implies the 

no linear correlation between the variables. 

 

  
              

     
       

      
       

 
                                        (2.9) 

2.2 Centrality 

 
Centrality is an important analysis method in network studies. It indicates the 

importance or popularity of a vertex and edge within a network and has different 

forms: degree centrality (on node degree), closeness centrality (on geodesic path), 

and betweenness centrality (on geodesic path) that are described by Freeman [14], 

and eigenvector centrality by Bonacich [15]. 

 

2.2.1 Degree Centrality  

 
Degree centrality is measured on the number of edges attached to given vertex 

i that also represents the degree of a vertex    ) like the number of people that knows 

the given person. Degree centrality shows the potential influence of a vertex in 

network. For example, if a person who has more connection in an epidemic network 

gets sick, disease can spread in the network quickly.        

          Degree centrality of vertex i: 

    (i) =     (degree of a vertex i)                       (2.10) 

 

          The elements of the adjacency matrix (A) of an undirected graph are     

      if there is an edge between i and j in the graph and       otherwise. Then, 

the degree of a vertex i can be found by 
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                                                                    (2.11) 

 
High degree vertices are called “hubs” that have a high role in the network. 

 

2.2.2 Eigenvector Centrality 

 
Eigenvector centrality of vertex i is the sum of its connections to other nodes 

that are weighted with their centrality and is also referred as the principal eigenvector 

of the adjacency matrix. The equation of an eigenvector is; 

 

   
 

 
      

 
                                                   (2.12) 

                            

 

   : centrality of vertex i, 

A : adjacency matrix of the network, 

   : the eigenvalue (constant - must be the largest eigenvalue of the adjacency 

matrix), 

 x : the eigenvector of a adjacency matrix, 

 

xi is proportional to the sum of the scores of all nodes which are connected to i. 

The eigenvector centrality shows the importance of a vertex in the network.  

 

2.2.3 Closeness Centrality  

 
Closeness centrality is the total shortest path distance to all other vertices in the 

network. A low closeness centrality value (highly central) implies closeness and easy 

access to other vertices. We can say that vertices are more central if they reach other 

vertices easily. Closeness provides a centrality measure for a vertex and measures the 

spread time (its inverse shows the spreading speed) of an effect from a given vertex 

to other reachable vertices in the network. 

 

           Closeness centrality of a vertex i:                                                   (2.13) 

                                           

2.2.4 Betweenness Centrality  

 
The most widely used kind of centrality is “betweenness centrality” that is the 

number of shortest paths on a network that run through the vertex of interest [16]. 
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Measuring of betweenness of a vertex i is the number of shortest path vertex pairs 

that pass through between all vertex pairs in network. It also refers the importance of 

a vertex in traffic on a network. 

          Betweenness centrality of a vertex i:        
      

   
                              (2.14) 

   

           : total number of the shortest path between vertices j and k (>0) 

         : number of the shortest path between vertices i and j that pass through a 

vertex i [16]. 

 

Betweenness shows the importance of vertex i for connecting vertice pairs. A 

vertex with a high betweenness centrality value represents a hub (controller) of the 

network and its value is strongly related to its degree. In a road network, high 

betweenness could indicate where alternate routes are needed. Betweenness also 

measures the resilience of a network since removal of high betweenness nodes can 

cause connectivity in network to be lost. 

 

2.3 Clustering  

 
Widely used measuring of “clustering coefficient” is defined by Watts and 

Strogatz [2] on local values as, 

 

   
                                         

                                      
                           (2.15) 

 

Node has    edges. There are  
          

 
 possible edges between node i and its 

next nearest neighbors. The ratio between the actually exist number of edges (  ) to 

the possible total number of connection (
          

 
) gives the local clustering 

coefficient (Figure 2.4, Figure 2.5) of node    

 

   
  

          
 

   

        
                                        (2.16) 

           

             denotes the edges among first neighbors of node  .  
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    a                        b  

Figure 2.4 Local clustering coefficient example. (a) Central vertex i has 8 

neighborhood in same network and there are              possible edges 

between them. But there is only 7 actual edges and local clustering coefficient of 

central vertex      ) is 7 by 28         (b) If a vertex i has a small number 

neighborhood like     , there will be 10 possible neighborhood between its 

neighbors and its clustering coefficient will increase to            

 

Clustering coefficient of whole network is the average of all individual local 

clustering coefficients. 

    
 

 
   

 
    

 

 
 

                                    
 

 
        

 
                  (2.17) 

          

 

This definition has problems as it is heavily biased in favor of low degree 

vertices because of the factor          in the denominator. Differences in the value 

of clustering coefficients can become very high. For instance, take two vertices in the 

same network; one having two neighbors that are connected and the other having a 

hundred with none of them connected. Local clustering coefficients are         

  and average probability is      , but there is 4951(1 from vertex 1(2(2-1)/2=1)  

and (100*99)/2=4950 from vertex 2) possible total pairs in all network and only one 

is connected. As a result average probability of a pair being connected is not 0.5, but 

1/4951=0.0002. Correct way to calculate the average probability of a pair of 

neighbors being connected was expressed by Newman [9] (Figure 2.5) as; 

 

  
                                 

                                       
                       (2.18) 

 

 triangles: three vertices that are each connected to both of the others. If 

vertices i1, i2, and i3 are connected to each other, there is a triangle 
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 connected triple: a vertex that is connected to a pair of other vertices which 

may or may not be connected to each other. There is a triple between vertices 

i1, i2, and i3 around i1 if i1 is connected to i2 and i3 

 the factor of 3 in the numerator: each triangle contributes three separate 

connected triples. 

Method is also called the “fraction of transitive (closed) triples” by social 

network analysts and easier to calculate analytically. In 2003 Newman proposed an 

alternative and numerically equal clustering coefficient definition as: 

 

  
                                 

                          
                              (2.19) 

 

This definition shows that C is also the mean probability that the friend of your 

friend is also your friend. (Number of paths of length 2: number of friends of friends) 

 

 

Figure 2.5 Newman‟s [9] clustering coefficient equation show (Eq. 2.15) that graph 

has one triangle and 8 connected triples therefore clustering coefficient is   

               Local clustering coefficients are 1,1, 1/6, 0, 0 and mean value 

        on Watts –Strogatz equation (Eq. 2.17) for same graph. 

  

In a random graph, connected probability of two vertices is   
   

 
 for all 

vertex pairs where     is the mean degree of a vertex. Clustering coefficient of a 

random graph is found as 

 

      
   

 
 

  

  
                                                      (2.20) 

 

The clustering coefficient is quite small for random graphs in comparison with 

same size real-world networks with vertices (N) and mean degree values (k)    

     as shown in Table 2.1 [2]. 
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Table 2.1 Clustering coefficients of real-world networks and comparison with 

clustering coefficients of random networks on same network sizes.   

 

 

2.4 Assortativity 

 
Networks consist of different types of vertices, properties and connections such 

as races, gender, ages, income, education etc. for social networks. Sample 

observations in social networks [17, 18] show that connections are realized based on 

the properties of vertices like race and content of Web links. This property of 

networks and measurement method of connection tendency for the vertices according 

to their degrees is called as “assortative mixing”. If high-degree vertices have a 

tendency to connect with other high-degree vertices, we can say that the network 

shows “assortativity (homophily)”. On the other hand the connection tendency of 

low-degree vertices to high-degree vertices is called “disassortativity (disassortative 

mixing)” [19]. 

Degree assortativity is also used to show the preferential attachment of the 

high-degree vertices with other high or low degree vertices. Calculation of the 

assortativity mixing is done with “assortativity coefficient” and it measures in terms 

of the mean Pearson correlation coefficient (r) of degree between pairs of linked 

nodes in [19, 20].  

 

  
           

   
 

  
        

 
 

    
 

 
   

    
        

 

 
           

                            (2.21) 

 

   and    refers the connected vertices by edge i within total M edges in 

network. In this equation    and    represent the the nearest vertex degrees and the 

equation is recalled as “degree assortativity   ”. Values (      ) represent as; 
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        : a correlation between nodes of similar degree (assortative) 

        : a correlation between nodes of different degree (disassortative) 

        : the network is perfect assortative 

      : the network is completely disassortative  

        :  the network is randomly mixed. 

Observation on real-world studies showed that social networks are assortative, 

while technological and biological networks are disassortative. 

 

2.5 Shortest Path Length 

 
The path length is the total number of edges to travel from a starting vertex to a 

target vertex (Figure 2.6) and the shortest value between these path lengths that 

connects two vertices within minimum travelling steps in a network is called a 

“shortest path length” or “geodesic distance”. Shortest path length between vertex 

pairs       is denoted as         in undirected networks. If there is no path between 

two vertices, the distance is assumed to be infinite (undefined). The shortest path 

length between vertex pair i and j is equal to minimum power of the  adjacency 

matrix (A) that will reach a non-zero value for that vertex pair (   ). 

 

Figure 2.6 Shortest path lengths in sample network. 

 

Diameter of a network is a maximum geodesic distance between vertex pairs 

                          . Mean shortest path length between vertex pairs (including 

loops –
      

 
) for an undirected network is calculated as follows. 

 

  
 

 

 
      

                                                      (2.22) 
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Previously mentioned condition that if there is any unconnected vertex pairs in 

a network their shortest path length is defined as infinite causes a problem in mean 

shortest path calculations. This problem is overcome with “harmonic mean” that 

removes this infinite value by equating it to zero (
 

 
  ). The “harmonic mean” 

shortest path length distance between all connected pairs is the reverse of the average 

of the reverses. 

 

    
 

 

 
      

    
                                              (2.23) 

 

Table 2.2 Statistical analyzed networks that were published. The properties 

measured are: network types: directed or undirected; network size: N; total number 

of edges m; mean node degree  k ; mean  shortest path length    ; power-law 

exponent  ;clustering coefficients      ; and degree correlation coefficient r [21]. 

 

 

We can summarize real-world network properties (Table 2.2) as follows. 

 Low average path length (small-world phenomenon) 

 High clustering 

 Degree distributions follow Power-law (many networks) and they called as 

“Scale-free Networks” 

 Betweenness centrality distribution is a decreasing function (usually power-

law). Decreasing function properties of degree and betweenness centrality 

distribution indicate heterogeneity and existence of hubs. 
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 The distances are proportional to the logarithm of network size  

 

  
    

      
    (Small-world property) 

 
 The clustering coefficient is independent of network size and is proportional to 

average degree (which is larger than comparable random networks) 

 
      

 
In the next chapter, we will study bus transportation networks of four largest 

Turkish cities - İstanbul, İzmir, Ankara, and Bursa. This study involves the statistical 

analysis and comparison of network properties of bus transportation networks for 

these cities. We will also try to relate our findings with network topologies of cities 

and other geographical, historical, and economical factors. 
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Chapter3 

Bus Transportation Network Study on Four Largest Cities of 

Turkey 
 

3.1 Introduction 

 
Transportation networks are complex structural real-world networks and they 

have been of interest within statistical physics during the past decade. First 

transportation network analyses were made on power grids [22, 23] with 

transformers and transmissions that were defined as nodes and edges respectively. 

Researchers investigated railway networks [24], airport networks (India [25], China 

[26]), and public transportation networks (bus and tram networks of Poland [27, 28] 

and China [29, 30, 31], railway, subway, seaway networks of fourteen cities in the 

world [32]). In these studies, network efficiency, degree distributions, clustering 

coefficients, centralities, and assortativity properties were observed. Exponential and 

power-law distributions were revealed showing correlation between degree and other 

network properties. 

In this study, we investigated bus transportation networks (BTNs) of four 

largest cities (İstanbul, İzmir, Ankara, Bursa) covering 42% of the population in 

Turkey. These cities are located in different geographical locations (Figure 3.1) and 

they have different economical, historical, and cultural backgrounds.  

 

  
İstanbul                                                 
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Ankara                                          

 

  
İzmir                  

 

  
Bursa 

Figure 3.1 Topographic appearances of four largest cities of Turkey. 

 

The specific properties of these resulted in public transportation networks with 

different characteristics. We only deal with BTNs. While availability of data was the 

main reason for this, one could also say that bus transport is still a very dominant 

transportation mode in Turkey in general. Table 3.1 gives a comparison of some 

route statistics for the cities in Turkey and other cities in the world taken from [32]. 

Sample routes can be observed in Figure 3.2. 

 

  
                                     a                                                         b 
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                                     c                                                       d 

Figure 3.2 Sample routes and stations of bus transportation networks that are taken 

from (a) İETT, (b) ESHOT, (c) EGO, and (d) BURULAŞ – respective 

transportation departments of municipality in İstanbul, İzmir, Ankara, and Bursa. 

 

Table 3.1 N: number of bus stops; R: number of bus routes; F: mean number of bus 

stations per route; P: population of cities. 

City N R F P 

İstanbul 4726 529 8.9 13.120.596 

İzmir 5489 295 18.61 3.606.326 

Ankara 4249 376 11.3 4.641.256 

Bursa 3914 206 19.0 2.308.574 

Sydney 1978 596 3.3 4,575,532 

Hong Kong 2024 321 6.3 7,055,071 

Taipei 5311 389 13.7 6,900,273 

Dallas 5366 117 45.9 6,477,315 

Sao Paolo 7215 997 7.2 19.672.582 

Los Angeles 44629 1881 23.7 15,250,000 

 

Before going into the details of our analysis, we introduce different network 

topologies that will be used in this study.  

3.2 Bus Network Topology and Representations 

 
Connections on different parts of a network produce differences in topological 

representation of the network. Bus networks consist of bus stations (or routes) that 

are defined as vertices. The connections of the vertices are defined via route-route 

and station-station relations and they are embedded in two-dimensional space. 

If routes of a bus network are defined as vertices and linked when they 

intersect on a common bus station, this topology is called C-Space. Other bus 

network topologies can be obtained by using the bus stops as vertices. In L-Space, 

bus stops are only connected when they follow each other on a route. However, in 

P-Space bus stops are connected if they can be reached via a route regardless of 

their actual location. Thus in P-space there will be many more connections (edges) 

than in L-space (Figure 3.3).  
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Figure 3.3 (a) Sample bus transportation network is defined on 3 routes and 6 bus 

stations.  (b) Relation representation of routes and bus stations are showed in C-

Space, (c) L-Space, and (d) P-Space respectively. 

  

An adjacency matrix can be used to represent and mathematically analyze a 

network. It is a square, symmetric matrix that is defined as       if there is any 

connection between pairs of vertices i and j; otherwise      . Vertices of networks 

don‟t have loops (     ) and multiple connections, and their edges are undirected 

(Figure 3.4). 

 

 

Figure 3.4 Sample adjacency matrices of L-Space, P- Space, and C- Space for 

networks in Figure 3.3. 

 

In following parts we will use these representations in order to calculate and 

analyze the properties of bus networks of four largest cities (Table 3.2). All network 

properties have been defined on their “space” structures and used specific abstracts. 

Topological representations of networks were used as exponents or subscripts in 

network property notations. For example, maximum shortest path length in an L-

Space representation is shown as   
    and defined as the maximum number of stops 

to travel between any two stations. 
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Table 3.2 Bus network properties for C-, L-, and P-Spaces.    : average node degree of nearest neighbors for whole network;    : average node 

degree of next nearest neighbors for whole network;    rate between     and     (          );     : maximum node degree in space;     mean 

(global) clustering coefficient of whole network;   : assortativity mixing of nearest neighbor;     : average  shortest path length;      : maximum 

shortest path length in network. 

 

 

 
  C-Space L-Space P-Space 

City        
                    

                   
                    

                   
                    

            

İstanbul 88.96 258 0.709 0.210 2.068 4 318.33 3.58 3.367 50 0.087 0.146 10.29 53 15.62 4.64 121.043 1064 0.779 -0.097 2.86 5 1387.619 

 

11.464 

 

İzmir 48.68 133 0.726 0.211 2.253 8 150.66 3.10 2.405 27 0.026 0.108 46.44 212 4.13 1.72 154.576 1696 0.821 -0.016 3.25 9 1353.301 

 

8.755 

 

Ankara 54.40 143 0.698 0.434 2.365 6 156.78 2.88 3.159 49 0.101 0.105 9.629 55 12.97 4.11 78.691 1287 0.833 -0.055 2.94 7 1170.532 

 

14.875 

 

Bursa 70.94 148 0.737 0.204 1.813 6 107.99 1.52 2.472 13 0.015 0.295 29.00 126 4.16 1.68 221.67 1764 0.768 -0.022 2.46 7 2118.699 

 

9.558 
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3.3 Network Properties 
 

3.3.1 Node Degree Analysis 

 

Node degree and cumulative node degree distributions are investigated using 

linear-linear, log-linear, and log-log plots for each topology. 

 

 

Figure 3.5 Node degree and cumulative node degree distributions in C-Space for 

four cities. Plots show the distributions in linear-linear, log-linear, and log-log scales 

respectively. 

 

Degree of a node (route) in C-Space gives the total number of connections to 

other routes via common bus stations.  Figure 3.5 shows the node and cumulative 

node degree distributions in C-Space whose cumulative log-linear (e) and log-log (f) 

plots show exponential decay fit for four cities. An exponential fit in C-Space 

indicates a random route structure and growth. All cities have the same growth 

structure. Exponent parameters of distributions in C-Space give no special 

information about the corresponding network so they have not been calculated (Table 

3.3).     

Table 3.3 Exponent values of exponential (  ) and power-law ( ) degree 

distributions and Pearson correlation coefficients (R) for L- and P-Spaces. 

 
L-Space P-Space 

City       
         

 
       

         
 
 

İstanbul  6.67 0.705 2.660 0.995 153.639 0.968 1.873 0.998 (%92) 

İzmir 3.12 0.799 3.46 0.997 179.479 0.983 1.973 0.991 (%91) 

Ankara 5.80 0.708 2.73 0.991 101.688 0.978 2.535 0.998 (%90) 

Bursa 1.32 0.975 4.44 0.995 239.914 0.989 1.661 0.985 (%93) 
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Figure 3.6 Node degree and cumulative node degree distributions in L-Space for 

four cities. Plots show the distributions in linear-linear, log-linear, and log-log scales 

respectively. 

 

In Figure 3.6 upper plots (a-b-c) show the node degree distributions and lower 

plots (d-e-f) represent cumulative node degree distributions in linear-linear, log-

linear, and log-log scales for L-Space. Degree     has maximum observed 

probability. Number of nodes with degree     is smaller than the number of nodes 

with degree     nodes and probabilities of node degree observations      

decrease with   increasing. Maximum node degrees reach 50, 27, 49, and 13 in 

İstanbul, İzmir, Ankara, and Bursa respectively. Nodes with high degrees are called 

hubs in L-Space. Fitting parameters and Pearson correlation coefficients are given in 

Table 3.3. Figure 3.6.b is a log-linear plot in order to observe exponential decay 

behavior. Exponential decay is observed for four cities but Bursa has the highest 

Pearson correlation coefficient with         and with   
              while  

  
            ,   

            , and    
              . Figure 3.6.c shows node 

degree distribution in log-log scale in order to observe power-law decay. All four 

cities reflected high power –law fitting with different exponent values and their 

Pearson correlation coefficients exceeded   
 
     . Power-law exponent 

parameters show that nodes in İstanbul and Ankara (     3) are robustly 

connected and random removal of their nodes will not damage unity and high 

connectivity up to a point. Also values close to 3 mean that in İstanbul and Ankara 

the transportation network has grown preferentially. In İzmir, nodes are added faster 

than edges. Such network growth can weaken network unity and tends to random 

growth and exponential degree decay. Although Bursa has a high correlation 

coefficient   
 
       which indicates power-law decay, its power-law exponent 
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parameter          and fit to an exponential decay shows that Bursa bus 

network is also growing randomly. 

Good fits of node degree distribution to power-law in L-Space for four cities 

indicate highly connected bus stops and random connection between routes that was 

shown in C-Space results. Fitting parameters of similar works for bus transportation 

networks in L-Space are in line with our study and range from 0.78 to 1.88 for 

exponential and from 2.72 to 5.49 for power-law [27]. 

Good fits of node degree distribution to power-law in L-Space for four cities 

indicates highly connected bus stops. Fitting parameters of similar works for bus 

transportation networks in L-Space are in line with our study and range from 0.78 to 

1.88 for exponential and from 2.72 to 5.49 for power-law [32]. 

 

 

Figure 3.7 Node degree and cumulative node degree distributions in P-Space for 

four cities. Plots show the distributions in linear-linear, log-linear, and log-log scales 

respectively. 

 

Node degree and cumulative node degree distributions in P-Space of four cities 

are plotted in Figure 3.7. Node degree analysis for P-Space is made on semi-log and 

log-log plots of cumulative node degree distributions. The fitted parameters are 

shown in Table 3.3. Results show that for all cities networks decay exponentially 

decay and Bursa has the highest fit in L-Space with   
          (Table 3.3). A 

similar study [27] on bus transportation network of six cities from different countries 

also observed similar results where their power-law parameter range is 3.92-5.66 and 

exponent parameter range is 38.7-225.0. 

But we have to consider that P-Space does not reflect the original network 

structure since node connections are not consecutive links like in L-Space. So 

network structure and evolving behavior must be primarily observed in L-Space and 
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then they should be confirmed with subsequent network analysis such as analysis of 

clustering coefficient in P-Space.     

 

 
Figure 3.8 Hill plots of maximum likelihood estimates     as a function of   for 

İstanbul, İzmir, Ankara, and Bursa in P-Space. 

 

Credibility of power-law in networks is also measured wit Hill plots where one 

checks for areas where the plot „settles down‟ to some stable values of maximum 

likelihood estimates (  ) away from small to large values on range  . Hill estimator    

is defined as follows. 

 

    
 

 
    

      

      

   
    (a)                        

  
 (b)                  (3.1) 

 

where degrees of vertices are sorted as           . Hill estimators are 

measured for chosen   values and plot is drawn with maximum likelihood estimator 

   versus degrees. 

Hill plots show that decay in İstanbul and Bursa is much more sharper in small 

range of values   (    and       ) than in İzmir and Ankara whose plots decay 

slightly from 5 to 2. Relation between degree distribution in L-Space (Figure 3.8.c) 

and hill plots of in P-Space confirm that power-law fits for all cities in L-Space is 

credible but power-law model has less relevance in Bursa than in the other cities.             

In conclusion, İstanbul, İzmir, and Ankara have a scale-free network structure 

with power-law exponents            whereas Bursa is closer to a random 

network structure with a good fit to exponential node degree distribution and  a high 

(   ) power-law fitting parameter (      ). Hill plots showed power-law 

credibility for İstanbul, İzmir, and Ankara and less credible results for Bursa 

corresponding with earlier degree distribution results.   
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3.3.2 Clustering Coefficient 

 
Clustering coefficients were first calculated locally (Eq. 2.15) and then network 

clustering coefficients were found on mean local clustering coefficients (Eq. 2.17). 

Also we compared whole network clustering coefficients of random networks (Eq. 

2.20) that have the same network size with our results and showed that Turkish 

BTNs in this study are not random networks. 

 

Table 3.4 Mean (global) clustering coefficients of bus networks (   ), comparative 

mean clustering coefficient (     ) of Erdös-Rényi random network that same size 

nodes and edges with bus networks, clustering coefficient-degree correlation 

exponent ( ) for bus networks from power-law distribution, and ratio        
          between mean clustering coefficient and Erdös-Rényi random graph of 

equal size in C-, L-, and P-Spaces. 

 

 
C-Space L- Space P- Space 

City                  
                      

                      
     

İstanbul  0.709 0.168 0.255 4.2 0.087 0.000712 0.614 122.2 0.779 0.026 0.639 30.0 

İzmir 0.726 0.165 0.155 4.4 0.026 0.000438 1.346 59.4 0.821 0.028 0.609 29.3 

Ankara 0.698 0.145 0.072 4.8 0.101 0.000743 0.604 135.9 0.833 0.019 0.647 43.8 

Bursa 0.737 0.344 0.150 2.1 0.015 0.000631 0.067 23.8 0.768 0.057 0.533 13.5 

  

Table 3.4 shows the mean (global) clustering coefficient in C-, L-, P-Spaces for 

real-world bus networks, and Erdös-Rényi random graph, clustering coefficient-

degree correlation exponent parameters ( ), and normalized clustering coefficients. 

BTNs in P-Space have the highest mean clustering coefficient. This result is 

expected because of all bus-stops on the same route are fully connected with other 

bus-stops on that route in P-Space representation. The lowest clustering coefficients 

and the highest differences between clustering coefficient of an Erdös-Rényi random 

graph and real-world bus transportation networks (     ) are observed in L-Space. 

High and approximate clustering coefficient values and the lowest differences 

between normalized rates are observed in C-Spaces because of their lower node 

degree. This also shows that the routes are highly connected in all cities. 
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a  

 
b 

 
c 

Figure 3.9 Average clustering coefficients of same degree nodes - degree k 

correlations for four cities in (a) C-, (b) L-, and (c) P-Spaces. 
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Strong correlations are observed between clustering coefficients and degree in 

P-Space while other topologies don‟t show a meaningful correlation (Figure 3.9). 

Correlation in P-Space is deduced when average clustering coefficient of all nodes 

with given degree   decays as a function of   and the decay distribution follows 

power-law. Correlation equation 3.2 reveals the inverse ratio where increasing node 

degree decreases mean clustering coefficient values. 

 

                                                                   (3.2) 

 

Fitted power-law exponent parameters are shown in Table 3.4 and a similar 

study [27] found exponent ranges in 0.65-0.96. Only Bursa is not in this range 

(0.533). Bursa‟s weak clustering behavior reflects its irregular network structure and 

agrees with the previous node degree analysis where its log-linear plot in L-Space 

indicated an exponential decay.  

 

3.3.3 Assortative Mixing 

 

Connectivity tendency of vertices in BTNs was measured with assortativity 

values (Eq. 2.21) and degree-degree correlations for each city were computed.  

 

Table 3.5 Assortativity mixing values of whole networks in C-, L-, and P-Spaces 

are showed within nearest (  ) and next nearest neighbor (  ) connections. 

 

 
C-Space L- Space P- Space 

City   
    

    
    

    
    

  

İstanbul  0.210 -0.139 0.146 0.124 -0.097 -0.008 

İzmir 0.211 0.009 0.108 0.778 -0.016 0.072 

Ankara 0.434 0.004 0.105 0.226 -0.055 0.284 

Bursa 0.204 -0.205 0.295 0.597 -0.022 -0.014 

 

Table 3.5 shows that nearest neighbor assortativity (  ) in C- and L-Spaces 

reflects the correlations between nodes of similar degree (assortative) and in P-Space 

the correlation between nodes of different degree (disassortative). In C-Space 

nearest assortativity values   
           with values shown in previous studies 

           [27].   
  shows similarity in İstanbul, İzmir, and Bursa but Ankara 

value is double of values in Table 3.5 that indicates a high number of similar (high) 

degree nodes (routes) in Ankara. In L-Space   
  values are similar in İstanbul, İzmir, 

and Ankara but in Bursa they are almost three times bigger than values in Table 3.5 
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that also shows density of similar (low) degree nodes. Degree assortativity values, 

  
         , are similar to [32] and these small assortative values also indicate a 

finite preference for assortative mixing. This and former studies demonstrate that 

assortativity values in L-Space are independent from network size and they are 

always positive. This can be explained as appearance of a few number of nodes with 

high degrees (hubs) and they are linked among themselves, and the majority of  

remaining nodes with small degrees are connected among themselves in networks.  

Disassortativity in P-Space is observed with very small   
  values between -0.016 

and -0.097 that show no preference linkage based on node degree. This also shows 

an existence of very high degree nodes (hubs) and tendency of small degree nodes 

toward these hubs in the network. We observed the highest nearest absolute 

assortativity values in C-Space and the lowest values in P-Space.   

Next nearest neighbors‟ state enlarges connected nodes and degree number of 

each node. In this state for all topologies, assortativity values did not reveal a 

uniform structure; there are increases, decreases, and state changes in degree-degree 

correlations that are shown in Table 3.5. In C-Space assortativity values decrease and 

İstanbul and Bursa turned to disassortativity from assortativity. Next nearest 

assortativity in Ankara and İzmir decreased and indicated a randomly mixed state. In 

L-Space, İzmir remained assortative but İzmir, Ankara, and Bursa increased their 

assortativity while İstanbul‟s value decreased. Next nearest assortativity in P-Space 

indicates randomly mixed structure for İstanbul and Bursa but İzmir and Ankara   
  

values show a state change from disasortativity to assortativity. Ankara does not 

show a linkage preference based on node degree.  

 

3.3.4 Shortest Path  

 

Average and maximum shortest path values are shown in Table 3.6 for all 

topologies whereas Table 3.7 gives the proportions of certain path lengths in C- and 

P-Space. 

Maximum shortest path length values change in 4-8 range in C-Space and 5-9 

range in P-Space. These characteristic values can be read as the length of travelling 

between two different points. Minimum of maximum shortest path length values are 

observed in İstanbul and maximum values are observed in İzmir for C- and P-Spaces. 

These values show that one can travel between any two points with maximum 5 steps 

for İstanbul and 9, 7, and 7 steps for İzmir, Ankara, and Bursa respectively. 
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Table 3.6 Average and maximum shortest path length in C-, L-, and P-Spaces for 

BTNs of four cities; N: number of bus stops; R: number of bus routes;  : number of 

bus stop per a route (route density). 

 Average Shortest Path Length(   ) Maximum Shortest Path Length(    ) 

City N R    C-Space L- Space P- Space C-Space L- Space P- Space 

İstanbul 4726 529 8.9  2.068 10.294 2.858 4 53 5 

İzmir 5489 295 18.6  2.253 46.436 3.246 8 212 9 

Ankara 4249 376 11.3  2.365 9.629 2.940 6 55 7 

Bursa 3914 206 19  1.813 29.001 2.456 6 126 7 

 

In L-Space we observed very high values for average and maximum shortest 

path length than in C- and L-Spaces. Maximum shortest path length values in 

İstanbul and Ankara with 53 and 55 steps are relatively low compared to values in 

İzmir and Bursa with 212 and 126 respectively. Small average shortest path distances 

and high clustering coefficients in C-, L-, and P-Spaces signal the small-world 

network structure for BTNs of our cities.    

 

Table 3.7 Shortest path lengths and proportions in C- and P-Spaces for BTNs of 

four cities. 

                                Cities 

 C-Space Proportions P-Space Proportions 

Shortest Path Lengths İstanbul İzmir Ankara  Bursa İstanbul İzmir Ankara  Bursa 

1 0.168 0.16784 0.14508 0.34606 0.026 0.0293 0.018524 0.05665 

2 0.603 0.51948 0.41809 0.52678 0.294 0.2562 0.275549 0.541451 

3 0.221 0.23196 0.36767 0.10064 0.483 0.3511 0.474157 0.317161 

4 0.008 0.05975 0.06553 0.02070 0.193 0.2352 0.211443 0.060463 

5  0.01470 0.00359 0.00578 0.005 0.0815 0.019485 0.022754 

6  0.00559 0.00004 0.00005  0.0294 0.000834 0.001515 

7  0.00066    0.0137 0.000007 0.000006 

8  0.00002    0.0036   

9      0.0003   

 

There is no evidence to show a relation between average  and maximum 

shortest path length (    ) and number of bus stations, bus routes, and route density 

in network. Although Bursa has high route density ( ) with low number of routes, its 

average shortest path length is the lowest and reaching each node is easier. Efficient 

usage of routes to connect the bus stations caused easier linkage in Bursa whereas 

İzmir shows an ineffective design of routes with high route density and high average 
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shortest path length. Greater values in L-Space for İzmir and Bursa show an 

existence of several non-overlapping connections between routes. Bus stations 

spread over a wide area because of new settlements and geographic limitations on 

growth due to nearby mountains. 

Mean shortest path lengths between vertex pairs were also obtained using Eq. 

2.23 and results are shown in Figure 3.10.    

 

  a                                                         b 

Figure 3.10 (a) Mean shortest path length distributions of BTNs in L-Space for 

İstanbul, İzmir, Ankara, and Bursa. (b) Second local maximum in Bursa. 

 

Plots show peak values around the average shortest path lengths of networks 

and p(l) values decrease with increasing path values. Bursa and İzmir have a second 

local maximum. Second local maximum in path length distribution points to separate 

communities. In the map of İzmir (Figure 3.1) one can see that two communities are 

divided geographically by a cove. In Bursa, new settlements created a separate 

community from dense and old settlements in the center. We expected to see more 

than one community in İstanbul that is geographically divided into European and 

Asian sides via Bosphorus, but there is no evidence for this. One can say that there is 

unity in the BTN of İstanbul despite the two sides of Bosphorus are separated by sea. 

Plots in Figure 3.10 show an asymmetric and bimodal (Bursa and İzmir) 

structure that is in line with the Lavenberg-Marquardt method with its function as; 

 

           
                                                      (3.3) 

 
where A, B, and C are fitted parameters. Lavenberg-Marquardt method doesn‟t show 

any correlation between degree and shortest path length distribution and is used to 

define fitted curves. 
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Figure 3.11 Mean shortest path (       ) - degree product (  ) of two end nodes in 

BTNs of four cities. 

Through shortest path length studies one can also relate node degree and 

shortest path length of vertex pairs. Relation between mean shortest path and node 

degrees (k-q) can be approximated by, 

 

                                                    (3.4) 

 

Equation 3.4 says that mean shortest path length of two different end nodes 

with degrees k and q is proportional to the logarithm of their degree product. In 

Figure 3.11, we do not observe a clear linear correlation between average shortest 

path lengths on degree product of end nodes k-q in L-Space. Equation (3.4) cannot 

be used to show correlation in C- and P-Spaces because of small values of shortest 

path length (                 ). 

 

 

Figure 3.12 Average path length      on the degree of a single end node  . 
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Also we can define mean shortest path on degree k of a single end node (    ) 

in L-Space and fits to power law as, 

                                                       (3.5) 

Within our study we observed approximate fitting between average shortest 

path on node degree with exponents İstanbul=0.136, İzmir = 0.166, Ankara = 0.215, 

and Bursa = 0.141. Exponents of previous studies were also measured in the range 

from 0.17 to 0.27 [32]. These approximate relation results (especially in İstanbul and 

Ankara) are indicative of a scale-free network. We also did not find any linear 

relation between node degree and path lengths. Separated points in Figure 3.12     

and     denote the other communities in BTNs of İzmir and Bursa that we also 

described under assortativity. We could not investigate the relation between mean 

shortest path and node degree for two- and one-sided end nodes and see whether 

scale-free and exponential decay behavior were present in C- and P-Spaces due to 

narrow shortest path ranges which give only a very limited number of points to draw 

these relationships from.   

As a result we uncovered scale-free relation between average lengths of 

shortest paths of end node degrees for four cities in L-Space that indicates 

preferentially growing networks. Also, results don‟t yield linear path length-degree 

correlations as            that shows a random network structure and confirm 

previous results.   

3.3.5 Centrality 
 

Centrality study in BTNs of cities was aimed to show the degree-mean 

centrality correlation and demonstrate the validity of real-world network properties 

on betweeness centrality for all cities.       

Eigenvector centralities of vertices in networks were measured on Eq. 2.12 and 

observed correlation between average eigenvector centrality and node degree as, 

 
                                                           (3.6) 

 
Mean eigenvector centrality on degree –degree correlation can be seen in C-, 

L-, and P-Spaces (Figure 3.13, Table 3.8) where BTNs of İzmir and Bursa show the 

highest fitting. Fitting parameters in all space don‟t show the high differences that 

they change in 1.05-2.22 intervals. These correlations in all spaces also extend to 

high degree nodes have high statues or importance in network description for 

eigenvector centrality.  
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Figure 3.13 Mean eigenvector centrality – degree correlations for four cities in (a) 

C-, (b) L-, and (c) P-Spaces respectively. 



44 

 

Table 3.8 Fitting parameters of the mean eigenvector centrality-degree on power 

law for each city in C-, L-, and P-Spaces. 

                     Eigenvector Centrality Exponents 

City C-Space L- Space P- Space 

İstanbul  1.523 1.309 1.054 

İzmir 1.530 1.522 1.185 

Ankara 1.472 1.393 1.064 

Bursa 1.423 2.223 1.090 

 

Closeness centralities were calculated using Eq. 2.13 and Figure 3.14 and 

values in Table 3.9 show degree-mean closeness correlations. Correlation between 

average closeness centrality and node degree can be expressed as an inverse 

relationship via a power-law distribution. 

                                                                 (3.7) 
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Figure 3.14 Mean closeness centrality – degree correlations for four cities in (a) C-, 

(b) L-, and (c) P-Spaces respectively. 

 
Table 3.9 Fitting parameters of the mean closeness centrality-degree on power law 

for each city in C-, L-, and P-Space. 

                        Closeness Centrality Exponents 

City C-Space L- Space P- Space 

İstanbul  0.157 0.132 0.108 

İzmir 0.223 0.119 0.091 

Ankara 0.147 0.135 0.105 

Bursa 0.208 0.138 0.136 

 

In general, all topologies (P-Space is highest) conform to the expected inverse 

relation between degree and mean closeness centrality. High degree nodes have 

many contacts within shortest path length and they are quickly reachable. İzmir 

differs from other cities with a stable mean closeness for high degrees that shows the 

independence of closeness from node degree and a highly connected network with 

similar path lengths.    

Betweenness centrality calculations were made with Eq. 2.14 and correlations 

can be seen in Figure 3.15 and Table 3.10. Correlation between average betweenness 

centrality and node degree was again fit to a power-law distribution. 

 

                                                           (3.8) 

Bursa does not have a good power-law fit in L-Space and shows a random 

distribution. The indication is that there is no central point where traffic intersects. 

Thus, Bursa has the highest resilience against removing bus stations.   
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Figure 3.15 Mean betweenness centrality – degree correlations for four cities in (a) 

C-, (b) L-, and (c) P-Spaces respectively. 
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Table 3.10 Fitting parameters of the mean betwenness centrality-degree on power 

law for each city in C-, L-, and P-Space. 

                           Betweenness Centrality Exponents 

City C-Space L- Space P- Space 

İstanbul  2.69 1.53 3.31 

İzmir 1.02 0.78 3.03 

Ankara 1.30 1.56 2.59 

Bursa 1.58 0.17 2.83 

 

In summary, centrality-degree plots and calculations provided good-fits to 

power-law distribution showing the importance of high degree nodes in the 

networks. Nodes in Figure 3.13, 3.14, and 3.15 of C- and P-Space that are further off 

from fitted lines show existence of sub-networks (communities). These visual 

observations also conform to assortativity mixing and shortest path length 

distribution results.     

3.4 Further Studies for İstanbul 

 

İstanbul is the most populous (13 million – 18% of Turkey‟s population) and 

economically most important city of Turkey. It is the world's 34th largest economy 

and also Europe's most populous city taking into account the municipal boundaries. 

İstanbul is a transcontinental city divided into European (Rumeli) and Asian 

(Anatolia) sides via Bosphorus Channel. There are 39 districts (14 on Asian side and 

25 on European side) within the municipal boundaries. 

Public transportation in Istanbul comprises of a bus network (bus, metrobus), 

rail systems (light rail, metro, trams, suburban trains), funiculars, maritime services 

(ferryboats, sea bus), and cable cars. 3.5 million people are transported daily with 

4,891 bus and metrobuses on around 529 routes and 10,272 bus stops. With 29.13% 

of all transportation, bus transportation has an important role in public transportation 

with high transportation capacity, bus fleet, route and bus stop numbers. 

In this section, we analyze network effects of some new and proposed projects 

in İstanbul that caught a lot of media attention. Metrobus is a recent project that 

crosses Bosphorus using the Bosphorus Bridge and reaches the Western boundaries 

of the city with newly built dedicated lanes. The project dramatically cut down the 

travel times between Asia and Europe in both directions. The approved third bridge 

on Bosphorus has long been a much-debated topic. We compared statistical results of 
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the old bus network, currently existing network with metrobus, and a hypothetical 

network with a third bridge between Garipçe and Poyrazköy (Figure 3.16). Metrobus 

fleet comprises of 848 busses servicing Avcılar-Zincirlikuyu (route 34), Avcılar-

Topkapı (route 34T), and Söğütlüçeşme-Edirnekapı (route 34A) with 98 bus stops 

(Table 3.11). Third bridge that will be built between Galipçe and Poyrazköy will 

connect northern districts of İstanbul on both sides. We defined several new 

connections between routes and bus-stops of the existing structure for C- and P-

Space. In L-Space, a new network could not be formed due to the absence of detailed 

bus-stop and route information that can only be available when the bridge is built and 

bus transportation starts. Changes in the statistical values of three networks were 

observed for node degree distribution, clustering coefficient, degree-degree 

correlation, path length distributions, and centralities.      

 

 
a 

 
b 

 
c 

Figure 3.16 (a) İstanbul and Bosphorus and (b) existing bridge traffic and (c) 

metrobus and third bridge routes. 
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Table 3.11 N: number of bus stops; R: number of bus routes; F: mean number of 

bus stations per route. 

City N R F 

İstanbul Metrobus 4726 529 8.9 

İstanbul Non-Metrobus 4716 526 9.0 

İstanbul Third Bridge 4726 530 8.9 

 

Table 3.12 shows changes in number of routes and bus-stops. For metrobus, we 

added three new routes and ten new bus-stops and some existing bus-stops on main 

lines were also adapted to new routes. For third-bridge analysis, we defined one new 

route that is described in Figure 3.16 (c) and added some new bus stops towards both 

ends of the route connecting them to existing bus-stops.    

 

Table 3.12 Comparison of exponent values of exponential (  ) and power-law ( ) 

degree distributions and Pearson correlation coefficients (R) for L- and P-Spaces for 

three İstanbul BTNs. 

 
L-Space P-Space 

City       
         

 
       

         
 
 

İstanbul Metrobus 6.671 0.705 2.660 0.995 153.639 0.968 1.873 0.998 (%92) 

İstanbul Non-Metrobus 6.663 0.706 2.661 0.995 153.671 0.968 1.883 0.998 (%91) 

İstanbul Third Bridge - - - - 206.488 0.961 1.509 0.978 (%92) 

 

Table 3.12 shows fitted parameters and Pearson correlation coefficients for 

node degree distributions. Metrobus has no significant effect on log-linear plot that is 

observed exponential decay behavior. There is no change in the decay of node degree 

distribution with a good exponential fit in log-linear scale. In log-log scale, good 

power–law fit with similar exponent values were again observed and Pearson 

correlation coefficient exceeded     
 
      . Power-law exponent parameters 

   2.66 (     3) indicates existence of robustly connected nodes and high 

resilience against random removal of nodes. Furthermore, values close to 3 reflect 

preferential network growth. 

Cumulative node degree distributions in P-Space are plotted in semi-log and 

log-log scales. Fitted distribution parameters are shown in Table 3.12. Results are 

similar in that they all show exponential decay while İstanbul Third Bridge does not 

have a good fit.  
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Table 3.13 Bus network properties for C-, L-, and P-Spaces.    : average node degree of nearest neighbors for whole network;    : average node 

degree of next nearest neighbors for whole network;    rate between     and     (         );     : maximum node degree in space;     mean 

(global) clustering coefficient of whole network;   : assortativity mixing of nearest neighbor;     : average  shortest path length ;      :maximum 

shortest path length in network. 

 

 

 
  C-Space L-Space P-Space 

City        
                    

                   
                    

                   
                    

            

İstanbul Metrobus 88.96 258 0.709 0.210 2.068 4 318.33 3.58 3.367 50 0.087 0.146 10.29 53 15.62 4.64 121.043 1064 0.779 -0.097 2.86 5 
1387.619 

 

11.464 

 

İstanbul Non- Metrobus 87.31 242 0.71 0.23 2.084 4 310.42 3.56 3.360 50 0.087 0.145 10.81 55 15.51 4.62 121.210 1051 0.779 -0.097 2.86 5 1377.877 11.368 

İstanbul 3 89.18 258 0.70 0.210 2.060 4 321.41 3.60 - - - - - - - - 186.496 1511 0.796 0.287 2.64 5 1826.782 9.795 
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Table 3.14 Mean (global) clustering coefficients of bus networks (   ), comparative 

mean clustering coefficient (     ) of Erdös-Rényi random network that same size 

nodes and edges with bus networks, and clustering coefficient-degree correlation 

exponent ( ) for bus networks from power-law distribution in C-, L-, and P-Spaces. 

 

 
C-Space 

L- Space P- Space 

City                  
                      

                      
     

İstanbul Metrobus 0.709 0.168 0.255 4.2 0.087 0.000712 0.614 122.2 0.779 0.026 0.639 30.0 

İstanbul Non-Metrobus 0.709 0.166 0.260 4.3 0.087 0.000712 0.616 122.2 0.779 0.026 0.640 30.0 

İstanbul Third Bridge 0.701 0.169 0.260 4.1 - - -  0.796 0.039 0.370 20.4 

 

Clustering analysis is conducted in C- and P-Space for three İstanbul networks 

and in L-Space for İstanbul Current and Non-Metrobus systems. We don‟t observe 

meaningful differences in C-, L-, and P-Space analyses due to metrobus addition. As 

path length and clustering values remain the same system unity of BTN does not 

increase. Third bridge results are only given for C- and P-Space because currently 

future locations of the bus-stops are not known. We observed weakness in C-Space 

clustering due to the distance of the defined third bridge route with existing routes. 

But weak route connection increased transportation between far and disconnected 

bus-stops in north districts of two sides (Asian-European) and increased global 

clustering in P-Space. 

 

 

Figure 3.17 Average clustering coefficients of same degree nodes - degree k 

correlations for İstanbul in C-, L-, and P-Space. 
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Clustering coefficient – degree correlation plot for İstanbul third bridge 

network in P-Space emphasizes the distant third bridge route (Figure 3.17c).   

 

Table 3.15 Assortativity mixing values of whole networks in C-, L-, and P-Spaces 

are showed within nearest (  ) and next nearest neighbor (  ) connections. 

 
C-Space L- Space P- Space 

City   
    

    
    

    
    

  

İstanbul Metrobus 0.210 -0.139 0.146 0.124 -0.097 -0.008 

İstanbul Non-Metrobus 0.229 -0.137 0.145 0.128 -0.097 -0.006 

İstanbul Third Bridge 0.214 -0.129 - - 0.287 -0.050 

 

Table 3.15 gives a comparison of assortativity mixing values in C- and P-Space 

for three İstanbul networks and in L-Space for current and Non-Metrobus networks. 

In L-Space metrobus does not make any change and the network stayed assortative 

which is also true for P-Space. But assortativity status is changed from disassortative 

to assortative with the third bridge (Table 3.15). Third bridge increases connections 

between all bus-stops as nodes with high degrees on both sides get connected. 

Assortativity in C-Space did not change since adding only one distant route does not 

impact the network much. However, metrobus route created new high degree routes 

and decreasing assortativity values of same state.       

 

Table 3.16 Average and maximum shortest path length in C-, L-, and P-Spaces for 

BTNs of four cities; N: number of bus stops; R: number of bus routes;  : number of 

bus stop per a route (route density). 

                                                            

City  C-Space L- Space P- Space C-Space L- Space P- Space 

İstanbul Metrobus  2.068 10.29 2.86 4 53 5 

İstanbul Non- Metrobus  2.084 10.81 2.86 4 55 5 

İstanbul Third Bridge  2.060 - 2.64 4 - 5 

 

Effects on path lengths are shown in Table 3.16. Adding the new routes for 

metrobus and third bridge increased connections and decreased number of transits 

between routes in C-Space. Thus average path lengths between routes decreased. A 

greater decrease is observed in the third bridge network. The third bridge route 

connects routes on both sides that were not connected in the old BTN while metrobus 
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connects routes that were also connected in the former network. Comparison of 

İstanbul Current and Non-Metrobus networks for average shortest path length in L-

Space shows a decrease in average shortest path length with metrobus. In P-Space 

there are no differences between the two networks. However, a decrease in is 

observed with the construction of the third bridge. Via the third bridge distant points 

of both sides get connected which decreases mean shortest path. Maximum path 

values in Table 3.16 show that there are no differences in C- and P-Space but a 

decrease in L-Space. From P-Space results we observe that one can reach any point 

in İstanbul with maximum 5 transits.   
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Chapter4 

Conclusion 

 

In this study we conducted a thorough statistical analysis for bus transportation 

networks (BTNs) of four largest cities (İstanbul, İzmir, Ankara, Bursa) in Turkey in 

C-, L-, and P-Space. In L- and P-Space network sizes are dictated by the number of 

bus stops which were 4726, 5489, 4249, and 3914 respectively. In C-Space defined 

by route-route relations, the numbers of bus routes were 529, 295, 376, and 206 

respectively. Node degree distributions of all cities in L-Space showed a good fit to 

power law distribution with exponents   ranging from 2.66 to 4.44. In P-Space, 

cumulative degree distributions show exponential decay with               . 

Node degree analysis in L- and P-Space shows that BTNs of İstanbul, İzmir, and 

Ankara are scale-free. While Bursa‟s growth seems to be random, new nodes are 

added preferentially in the other three cities. Global (mean) clustering coefficient 

analysis gave the highest values in P-Space as                while L- and C-

Space ranges were                 and                  . Results show bus 

network unity for all four cities. Also power-law distribution models correlation 

between average clustering coefficient for all nodes with given degree   well with 

exponent values            in P-Space. Assortativity analysis showed that the 

networks were assortative in C- and L-Space but disassortative in P-Space.  We 

observed no relation of assortativity with other network properties. Shortest path 

length distribution in L-Space is described in Lavenberg-Marquardt method with  

           
    . Small shortest path length values that reflect small-world 

behavior were observed in all topologies and they were more apparent in P-Space. 

No correlations between mean shortest path length and the end node degrees 

(         ) were found. L-Space studies revealed correlation between mean 

shortest path lengths for single end nodes. Degree, closeness, eigenvector, and 

betweenness centralities were also analyzed. We observed that average centralities 

among nodes with degree   and node degree correlations fit power-law distributions.  
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Further studies for İstanbul looked at the effects of metrobus and third bridge 

construction on existing BTN of İstanbul. Metrobus does not result in significant 

changes on local and global network characteristics. These results show that the main 

purpose of metrobus was not to increase connection between routes and bus-stops 

but it aimed to increase the number of people carried on Avcılar-Zincirlikuyu, 

Avcılar-Topkapı, and Söğütlüçeşme-Edirnekapı routes, decrease transport times and 

save fuel. The third bridge to be built between Poyrazköy (in Asia) and Garipçe (in 

Europe) will create a new route(s) that will connect very distant points of the 

northern  districts on both sides of İstanbul. BTN with the third bridge route added 

revealed important differences in local and global characteristic of system in C- and 

P-Space. Connections between routes and bus-stops on two sides increased. Node 

degrees and global clustering coefficients also increased. Moreover, assortativity 

mixing changed state from disassortative to assortative, and travelling steps (path 

length) decreased with additional linkage of northern districts. Eventually third 

bridge construction will increase network unity and decrease travel times in İstanbul.         

Overall, BTNs of all four cities are real-world networks which show good 

degree fits to power-law distribution (“scale-free”), high clustering (“small world”), 

low average path length (“small world”), good fits of betweenness centrality-degree 

correlations to power-law distributions (“scale-free”).   

Statistical analysis of networks enables us to analyze several network 

properties for BTNs of cities. It also helps us to measure the impacts of newly added 

routes and bus-stops to a certain degree. However, in public projects several 

interesting questions can arise such as how to add routes while minimizing cost, 

reducing greenhouse effects, or reducing travel time. Using statistical analysis results 

of public transportation systems to answer questions about economical and 

environmental problems of municipalities and governments is an interesting topic for 

future research.            
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Appendix A Dictionary 

 

Bipartite graph: Vertices are divided into 2 subsets, and they don‟t have any edges 

linking them in their set. 

Circuit: A path that starts and ends at the same vertex in network. 

Clique (clustering): Highly connected networks where each vertex connect to every 

other node in other word connection between any node pairs occur in a single step 

and each node connects to every other nodes. For social network model, a group of 

people who all know each other. 

Complete graph: The total number of vertices in the set of G(V,E) is called the size 

of the graph     and the total number of edges in the set of     . Maximum 

number of edges in graph equal to         , if all possible edges are in 

connection, graph is called as “complete graph”. 

Component: A subset of vertices in the graph that they can be reachable from the 

other vertices on some path through the network. 

Connected graph: Each vertex of a network has a path to all other vertices 

(reachable) in network that any two vertices are attached by a path(no matter how 

long).If there is more than 1 connected components network is defined as 

“disconnected network”. 

Cycle:  A path that starts and ends at the same vertex but does not revisit vertices in 

network. 

Degree: The number of edges connected to a vertex that its minimum value is 0 and 

maximum value is N-1(N total number of vertices in network). A directed graph has 

an in-degree and an out-degree for each vertex, which are the numbers of in-coming 

and out-going edges. 

Degree of node i:          

Average degree of a network: =       
 

 
   

 
    

  

 
 

(N is number of nodes in the graph) 

Diameter: Maximum shortest path value in network                    ). 
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Directed graphs: A directed graph D (digraph) consists of a non-empty set of nodes 

(V) and a set of one direction (arrow) connection between pairs of different vertices 

(Directed Edges). Edges directions are represented as       that mean an edge from 

vertex i to vertex j. 

Distance (                               ): The number of edges along the shortest 

path connecting two nodes. The mean number of neighbors in a distance “l” is 

defined as    and for a diameter “d” total number of vertices in a graph 

approximately equal to    (N   ). This equation follows the approximate diameter 

of a graph as   
    

    
 .Distance of disconnected two vertices is infinity. 

Edge: The line connecting two vertices, also called a bond (physics), a link 

(computer science), or a tie (sociology). 

Graph representation: Mathematical representation of graph is made on      

adjacency matrix (sociomatrix in social networks) x = {   } that are defined as 

      if there is any connection between pairs of vertices i and j           and 

otherwise is referred as               . In undirected graphs the adjacency 

matrix is symmetric        . 

Geodesic distance: Minimum path value within path lengths also called as shortest 

path. 

Path Length: Path is a sequence of nodes in which each node is attached to the next 

one and total number of edges between any two vertices is defined as “path length”. 

Shortest path is the minimum path value within path lengths also called as “geodesic 

distance”. If there isn‟t any path between vertex pairs, geodesic distance is defined as 

“infinite” for this vertex pairs.  

Pearson correlation coefficient: A measure of the correlation (linear dependence) 

between two variables X and Y, giving a value between +1 and −1. 

  
              

            
             

 

 

Simple graph: Graph does not have loops (self-edges) and multiple edges. 

Undirected graph: An undirected graph G= (V, E) consists of non-empty set of 

vertices and connections between pairs of different nodes (E) are both direction. 

Vertex: The fundamental elements of a network, also called a site (physics), a node 

(computer science), or an actor (sociology). 
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