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STATISTICAL ANALYSIS OF BUS TRANSPORTATION NETWORKS FOR
FOUR LARGEST CITIES IN TURKEY

Abstract

Network properties for public bus transportation networks (BTNs) of four largest
cities (Istanbul, Izmir, Ankara, Bursa) in Turkey have been analyzed under C-, L-
and P-Space topologies. Node degree distributions are shown to follow power-law
distribution indicating scale-free nature of the networks. Furthermore, the networks
have been growing preferentially with the exception of Bursa. Degree-degree
correlations of nodes were studied in assortativity. The networks have small shortest-
path values. For example, in Istanbul the maximum shortest path was found to be 4
in C-Space meaning that one needs at most 4 transfers to reach any point in the
network. Correlation between mean shortest path lengths and nodes of given degrees
of single end nodes are shown to follow power-law in L-Space. Degree, eigenvector,
closeness, and betweenness centralities of nodes were calculated, and correlation
between mean centrality values and degree were well described by power-law. Thus,
in summary, BTNs show small-world and scale-free properties. We also investigated
the impacts of two recent projects, Metrobiis and the Third Bosphorus Bridge, on bus

network properties in Istanbul.



TURKIYE’NIN DORT BUYUK SEHRININ OTOBUSLU ULASIM HATTININ
ISTATISTIKSEL ANALIZI

Ozet

Tiirkiye’nin dort biiyiik sehrinin (Istanbul, Izmir, Ankara, Bursa) otobiis ulasim
aglarinin ozellikleri C-, L-, ve P- Uzay topolojileri altinda incelendi. Diigiim derece
dagilimlariin kuvvet yasas1 dagilimini takip ettigi ve agin 6l¢eksiz (scale-free) bir
yaptya sahip oldugu gosterildi. Ayrica Bursa hari¢ diger li¢ sehrin otobiis ulasim
aglarindaki biiylimenin rassal degil tercihli oldugu gozlendi. Diigiimlerin dereceleri
tizerinden baglanma egilimleri derece-derece iliskilendirme (assortativity) basligi
altinda incelendi. Dort biiytlik sehirde de herhangi iki nokta arasindaki en kisa ulagim
mesafelerinin diisiik degerler oldugu &lgiildii. Ornegin, Istanbul C-Uzay topolojisi
incelendiginde bulunan en biiyiik kisa mesafenin dort olmasi sehir i¢inde en fazla
dort vesait kullanarak seyahat edilebilecegi anlamina gelmektedir. L-Uzay
topolojisinde tek diiglimlerin ortalama en kisa ulasim degerleri ve dereceleri
ilintilenmis ve dagilimin kuvvet yasasina uydugu gosterilmistir. Diiglimlerin derece,
0zvektor, yakinlik ve arada bulunma merkezilikleri hesaplanmis ve diigiim dereceleri
ile olan ilitilenme kuvvet yasasi ile tanimlanmigtir. Ozetle, Tiirkiye’nin dort biiyiik
sehrinin otobiis aglarmin kiigiik diinya (small-world) ve 6lceksiz ag ozelliklerini
yansittig1 gosterilmistir. Ayrica, Metrobiis hatlarinin ve Ugiincii Bogaz Kpriisiiniin
Istanbul otobiis ulasim agmin ozelliklerine olan etkileri de istatiksel olarak

incelenmistir.



Table of Contents

Abstract i
Ozet i
Table of Contents 1\
List of Tables Vi
List of Figures vii
List of Symbols iX
R 1= 1Y o] o N [ 151 (0] V2SS 1
1.1 Introduction t0 NETWOIKS ......cceiiiiiiiiiieieiese s 1

1.2 NetWOrk MOEIS........couviieiieece e 3
1.2.1 Regular Graph Model.........ccooiiiiiiiii 3

1.2.2 Random Graph Model (Erd6s-Reényi).......ccccoevviiiiiiiniininniiiiinen, 4

1.2.2.1 Introduction to Random Graphs..........ccccceverininencinnnnn. 4

1.2.2.2 Degree Distribution..........ccccooeiiiiniiiiiice e 5

1.2.2.3 Path Length ......ccooveiiiiiceeece e 7

1.2.2.4 Clustering COeffiCIENt .........ccooeiiiiiiiieicee e 7

1.2.3 The Small-World Model (Watts-Strogatz) ..........c.ccccvrereneresinnnnnn 8

1.2.4 Scale-Free Network Model (Barabasi -Albert) .........c.cccocoovvvvnnnns 10

2 NEtWOIrK ANAIYSIS ....ooiieiiiece e 14
2.1 Node Degree DIStribDULION ..........ccooiiiiiiiieicssesee e 14
2.2 CeNTAILY ..o s 17
2.2.1 Degree Centrality ........cccceeviieiiiiiie i 17

2.2.2 Eigenvector Centrality .........ccocevereieneniniiieeeese e 18

2.2.3  Closeness Centrality........cccccvviiieiieiieesie e 18

2.2.4 Betweenness Centrality..........ccccooveiiieiiiiiiic i 18

2.3 CIUSTEIING .ttt bbbt bbb 19
2.4 ASSOITALIVITY ..ottt sre b 22
2.5 Shortest Path Length .........cccoiiiiiiiiiei e 23

3 Bus Transportation Network Study on Four Largest Cities of Turkey....... 26
3L INTrOAUCTION ..o bbb 26



3.2 Bus Network Topology and Representations...........c.cccveveevvevveresieeseennnns 28

3.3 NEtWOIK PrOPEITIES ....c.ooiiiiiiiiesiieeseeeee e 31
3.3.1 Node Degree ANalysiS........cceiiiiriieiiiinesieee e 31

3.3.2 Clustering CoeffiCIENt .........cceviiiiiiere e 35

3.3.3  ASSOItative IMIXING......cceieeriieieiieiieie et 37

3.3.4  Shortest Path ........ccoiieiiiieiiee s 38

3.3.5  CeNtrality.....cceeceecieceece e s 42

3.4 Further Studies for IStanbul............ccccovviviviiieiccceeeee e, 47

O O] (o] [V 1] o] TSRO RPTTPRTRPRRIN 54
APPENIX A DICHIONAIY ...ttt 56
RS (=] =] o0 OSSP 58



List of Tables

Table 1.1 Complex real-world networks categories and examples............ccccceevennene 2
Table 1.2 Real-world network study reSults ...........cccocieiininineeeee e 7
Table 1.3 Comparison of networks on path length and clustering properties........... 9
Table 1.4 Different real-world NETWOIKS. .......c.coviiiiiiiiiiriseeee e 12
Table 2.1 Clustering coefficients of real-world networks..............cccccovveviviieinenne. 22
Table 2.2 Statistical analyzed NetWOrKS...........cccooviiiiiiiiiice 24
Table 3.1 Number of bus stops, bus routes, and population of four cities.............. 28
Table 3.2 Bus network properties for C-, L-, and P-Spaces in four cities. ............. 30
Table 3.3 Exponent values of exponential and power-law for cities. .................... 31
Table 3.4 Mean clustering coefficients of bus networks in four cities. .................. 35
Table 3.5 Assortativity mixing values of whole networks for four cities............... 37
Table 3.6 Average and maximum shortest path length in four cities ................... 39
Table 3.7 Shortest path lengths and proportions in C- and P-Spaces ..................... 39
Table 3.8 Fitting parameters of the mean eigenvector centrality-degree................ 44
Table 3.9 Fitting parameters of the mean closeness centrality-degree ................... 45
Table 3.10 Fitting parameters of the mean betwenness centrality-degree................ 47
Table 3.11 Number of bus stops,bus routes, and bus stations per route. .................. 48

Table 3.12 Exponent values of exponential and power-law for Istanbul BTNs........ 49

Table 3.13 Bus network properties for C-, L-, and P-Spaces in Istanbul. ................ 50
Table 3.14 Mean clustering coefficients of bus networks in Istanbul....................... 51
Table 3.15 Assortativity mixing values of whole networks for Istanbul. .................. 52
Table 3.16 Average and maximum shortest path length in Istanbul......................... 52

Vi



List of Figures

Figure 1.1 Undirected and directed network samples..........c.ccoovvveiiiineninnnnnnns 1
Figure 1.2 Complex real world network samples ..........ccccocoiiiniiiiiiinccses 2
Figure 1.3 Sample regular networks and node degree distribution........................... 4
Figure 1.4 Sample random NEIWOIKS. .........c.coveiiiiiieiieic e 5
Figure 1.5 Binomial degree distribution of sample random graphs.............cc.ccceveeeee 5
Figure 1.6 Poisson degree distribution of sample random graphs. ...........cccccocvvvnene 6
Figure 1.7 Results by Watts and Strogatz. ............cccccvveveiieieeie i 8
Figure 1.8 Sample power-law degree distribution ............c.ccccovveiiiiiiecie e, 10
Figure 1.9 Barabasi and Albert’s real-world network analysis.............ccccocevvnenne. 12
Figure 1.10 Network models are of SAme SIZe........cccooeviiiiiniiiicee e 13
Figure 2.1 Sample binomial degree distribution. .............ccccooevieiiiieiiicii e 15
Figure 2.2 Cumulative exponential degree distribution of power grid.................... 15
Figure 2.3 Sample power-law degree diStributions.............ccocvevvvreiineicncienenen 16
Figure 2.4 Local clustering coefficient example.........c.ccocviriiiiiiinineee 20
Figure 2.5 Newman’s clustering coefficient sample...........ccoovviiiiiiiiiiiinciene, 21
Figure 2.6 Shortest path lengths in sample NetwWork. ........c.ccoevveveiiiii e 23
Figure 3.1 Topographic appearances of four largest cities of Turkey .................... 27
Figure 3.2 Sample routes and stations of bus transportation networks................... 28
Figure 3.3 Sample bus transportation network and relation representation............ 29
Figure 3.4 Sample adjacenCy MatriCeS.......cccvuveriieiiierie et 29

Figure 3.5 Node degree and cumulative node degree distributions in C-Space ..... 31
Figure 3.6 Node degree and cumulative node degree distributions in L-Space...... 32

Figure 3.7 Node degree and cumulative node degree distributions in P-Space...... 33

Figure 3.8 Hill plots of maximum likelihood estimates in P-Space. ..........cc.coc.... 34
Figure 3.9 Average clustering coefficients for four Cities...........cccooviiieiiiinniennns 36
Figure 3.10 Mean shortest path length distributions of BTNs in L-Space................ 40
Figure 3.11 Mean shortest path - degree product of two end nodes in BTNs........... 41

Figure 3.12 Average path length on the degree of a single end node............cccce.... 41

VII



Figure 3.13 Mean eigenvector centrality — degree correlations for four cities.......... 43

Figure 3.14 Mean closeness centrality — degree correlations for four cities............. 45
Figure 3.15 Mean betweenness centrality — degree correlations for four cities........ 46
Figure 3.16 Istanbul and BoSphOIuS Maps ...........ccceveueveriveiereriseresissesesese s, 48
Figure 3.17 Average clustering coefficients for Istanbul..........c..ccoeovvecrerriereiicnennn. 51

viii



C. or Cgg

>

CTlOTm

m

* = T m

<

lmax

List of Symbols

Adjacency matrix

Elements of adjacency matrix - there is an edge between i and j in the
graph a;; = 1, a;; = 0 otherwise

Centrality - importance or popularity of a vertex and edge in a
network

Local clustering coefficient of node i

Clustering value of random networks

Mean clustering coefficient - mean probability that two vertices are
connected indirectly via one common neighbor vertex for all vertices
Ratio between mean clustering coefficient and Erdés-Rényi random
graph of equal size — C™°™™ = «C>/<«Cgg>

Distance of a network - maximum shortest path length between any
two vertices

Total number of edges in network

Edges among first neighbors of node i

Mean number of bus stations per route

Node degree — number of edges connected to a vertex

Degree of a selected vertex i

Mean node degree — average number of edges connected to a vertex

Maximum node degree — maximal node degree in network
Exponent value of exponential distribution - p(k)~ek/®

Shortest path length from vertex i to vertex j

Average shortest path length - average number of stops to travel from
one vertex to another

Maximum shortest path length - maximum number of stops to travel
between any two stations

Number of vertices in network

iX



Pearson correlation coefficient — correlation measure of the strength of
linear dependence between two variables (-1 < R < +1)
Assortativity mixing of nearest neighbor - connectivity tendency
between vertices according to their degrees

Assortativity mixing of next nearest neighbor

Population of cities

Number of bus routes

Number of next nearest neighbors of a vertex — mean value denotes as
(Z)

Rate between (z» and (k> (6 = «z»/<k»)

Exponent value of power-law distribution - p(k)~k™

Maximum likelihood estimate of Hill plot



Chapterl
Network History

1.1 Introduction to Networks

A network (graph) is a set of points (nodes, vertices) that are connected by
communication paths (edges, arcs) (Figure 1.1). Points in a network can be of
different nature. For example, in social networks they can represent nationality,
income, gender, locations, or ages. Moreover, the edges of a network can have
different types and they can have different properties (Table 1.1). Edges can be
weighted, unweighted, directed (pointing in only one direction -directed graphs

(digraphs)), and undirected.

JVLSEERVAN
/ —

a b

Figure 1.1 Undirected and directed network samples. (a) Undirected network and
(b) directed network.

Networks are real-life webs (social, information, technology, biological,
physical science, etc.) and their complex structure and the behavior of their points
can be analyzed within different fields as mathematics, physics, computer science,
sociology, and biology. Networks can be further classified as natural and man-made.
Natural networks are without a spider meaning that there isn’t a central point that
regulates the growth of the network (Figure 1.2). Rather they self-organize, and grow
in a decentralized manner. The analysis of these special structures of complex real-
world networks created a new research field —network science- and similar

architectures were revealed in many real-world networks that differ from random

1



world idea.! Network science is a field trying to develop and understand the

theoretical and practical structure of natural and artificial networks [1].

Table 1.1 Complex real-world networks categories and examples with their vertices
and edges.

NETWORKS SAMPLES

e  Friendship (people - friendship relation)
e  Business (companies - business dealings)
e  Movies (actors - collaboration)

Social e  Science (scientist - research)

e  Phone calls (number - cells)

e  Spread of disease (people - sick)

e  (Citation (paper - cited)
Information e WWW (html pages — URL links)

e  Food (predator - prey)
e  Neural (neurons - axons)

Biological
e  Genetic (proteins - dependence)
e  Power grid (power station - lines)
Technology e Internet (routers — physical links)

e  Airline (airports - flight)

. e  Railway (stations - railways
Transportation . v ) vs)
e  Public transport (stations - roads)

It Tropic Level
Mos®y Phytopianston 2nd Trophic Level
Many Zooplankton

Figure 1.2 Complex real world network samples (a) food web (b) science and social
science citation network (c) internet (d) literature network.

! “God may not play dice with the universe, but something strange is going on with the prime
numbers.” Paul Erdés
"God does not play dice with the universe.” Albert Einstein



The study of networks has a long history in mathematics and the sciences
going back as far as 1736 when Leonard Euler worked on the infamous “Konigsberg
Bridge Mathematical Problem” that asks “Are there any way that could be walk
across all seven bridges and never cross the same one twice?”

Recent developments in graph theory brought a new perspective on the
complex networks and helped to clarify, simplify their analysis and take applications
into engineering, computer science, operation research, and sociology. Some
research aims are to;

e Identify and measure the statistical properties of network (path lengths and
degree distributions) in order to characterize the structure and behavior of
network,

e Model the networks in order to understand the meaning of statistical
properties and behaviors of network elements,

e Predict the behavior of networked systems that are based on measured
structural and individual properties.

Empirical studies of real-world graphs created new terminology such as path
length, clique (clustering), centrality, and connected components.

Moreover, helped by computers, large size real-network databases like WWW,
citation network, internet, and social networks could be analyzed. Such studies of
real-world networks yielded new and important contributions such as the revelation
of the “small-world model” by Watts and Strogatz [2] and power-law degree
distribution in networks and preferential attachment model of a growing network by
Barabasi and Albert [3].

1.2 Network Models

In this section, several theoretical models for network structure will be discussed.

1.2.1 Regular Graph Model
A network where each vertex has the same number of neighbors (the same degree) is
called a “regular network”. A regular graph whose vertices have k degree is called a

k-regular graph or regular graph of degree k (Figure 1.3).
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Figure 1.3 Sample regular networks and node degree distribution.

Regular networks have an artificial structure. They have a fixed node degree
and high average degree, high clustering and high average path length.

1.2.2 Random Graph Model (Erdoés-Rényi)

1.2.2.1 Introduction to Random Graphs

Simplest and oldest network model is random graph (Figure 1.4) which was
firstly studied in [4, 5] and extended by the Hungarian mathematicians Paul Erdos
and Alfréd Rényi within serial papers. Solomonoff and Rapoport [5] and Paul Erdos
and Alfréd Rényi [6] independently described the simplest network model as N
vertices that are connected as a pair with probability p (G(N, p)). Erdés and Rényi
random graph model is also named as “Bernoulli graph” or “Poisson random graph”
due to its node degree distribution structure. Erdds and Rényi also utilized another
model that uses edges (G(N, m)) in their papers.

G(N, m) graphs start with N vertices and exactly m undirected edges. A fixed
number of unconnected vertices are connected with undirected m edges where
vertices are chosen randomly from a uniform distribution. Degree distributions of
random graphs are binomial and Poisson (for large size networks).

Another Erdés-Rényi random graph model is a G(N,p) that starts with N

isolated vertices and their pairs are connected with probability p. In this model a

graph has maximum possible (I;) =¥ undirected edges (when p=1), the

probability of appearance m edges is p™ (1 — p)GN(N‘U)’m within ((El)) different

possible edges. Number of edges is defined in 1 < m « (1;) and expected (average)

N(N-1)
2

number of edges is <m> = p for random graph models. Also, number of edges

4



in unconnected random graph is m =0 and m = (1;) for complete random graph

(fully connected).

Procedure of building G (N, p) graph;
e Start with N isolated vertices,
o Connect each of the (%) unconnected vertex pairs with probability p

(randomly chosen vertex pairs different from each other).

a b c

Figure 1.4 Sample random networks.

1.2.2.2 Degree Distribution

Degree distribution of the random graph G(N, p) is a binomial which gives the
connection probability of a randomly chosen vertex being connected with k other
vertices and also “k;” reflects the degree of a selected vertex 1.

Binomial degree distribution (Figure 1.5):

N-1 —1—
P(sp,N) = pr = (" )pH(1 —p)N 1 7* (1.)
Bnomal Distnbution(n=2) )
035 -
N-1) e
2 =( La B i o)
03 k ) ‘
025 K‘C's“
L 02
%oxs»
a
|
01
0.05
e R e e
Degree k

Figure 1.5 Binomial degree distribution of sample random graphs with given p
values.

Probability of randomly selected vertex in network will have k neighbors
(connected with different k other vertices) in one step. If N goes infinity and p goes
5



to zero degree distribution transform from binomial distribution to Poisson

distribution. Poisson degree distribution (Figure 1.6):
limy o, prc = limy (3 )PF(1 = pINK (12)
. N! —
= limy_,4 N (oo /NYK(1 — <k» /N)N-K

kke=d

Pk = —, (1.3)

<k» = p(N — 1) = pN(for large N) (1.4)

Mean node degree (<k») of a large graph size N is k) = % =p(N—-1) = pN

constant, <k, is also expected number of first neighbors of a random selected vertex

(N = <k») and number of second neighbors is defined as N2 = <k*.
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Figure 1.6 Poisson degree distributions of sample random graphs.

When probability distributions of random networks are observed, most of the
vertices have approximately the same degree and the probability of very highly and
little connected vertices are very small.

Binomial and Poisson distributions are sharply peaked and have tails that decay
rapidly with k (1/k?!) that is very high decay value than any exponential (Figure 1.5 —
Figure 1.6). This behavior shows that appearance of well connected nodes isn’t very
possible. This property separates them from power-law distributions where some
high-degree nodes exist. Random graphs’ degree properties do not always follow
binomial and Poisson distributions but other distributions such as exponential and

power-law.



1.2.2.3 Path Length
Average degree of a random network is approximately calculated as <k» = Np
and the number of nodes a distance d (path length) from any node is approximately

dod When d is equal to [ (maximum distance between any two vertices) o' is the

total number of vertices in network. Estimated maximum distance is,

1 logN
&> =N —>dmax=1zm°gi<b (1.5)

Logarithmic growing of £ with N from equation show that ER graphs has

“small-world” property and also many real-world networks exhibit same property.

1.2.2.4 Clustering Coefficient

In a random graph, the edges are created independently and distributed
randomly so the clustering coefficient is C = p(= ‘Nﬁ) that is much smaller than

comparable real networks with same number of nodes, and edges and go to zero
with N~ in the limit of large system size (N — o) (Table 1.2). There is no local

clustering coefficient in random graphs.

Table 1.2 Real-world network study results on mean degree, real clustering
coefficient, and clustering value of random networks with same network size [7].

Network (# of vl:rtices) meand({i)egree c Crandom
Internet 6,374 3.8 0.24 0.00060
Www 153,127 35.2 0.11 | 0.00023
Power grid 4,941 2.7 0.080 | 0.00054
Neural network 282 14.0 0.28 0.049
Biology collaborations 1,520,251 155 0.081 | 0.000010
Mathematics collaborations 253,339 3.9 0.15 0.000015
Film actor collaborations 449,913 113.4 0.20 0.00025
Company directors 7,673 144 0.59 0.0019
Word co-occurrence 460,902 70.1 0.44 | 0.00015
Metabolic network 315 28.3 0.59 0.090
Food web 134 8.7 0.22 | 0.065




All studies in network research revealed that the random networks are different
from real-world networks with very small clustering coefficient (<<1) which tends to
zero with N~ and binomial or Poisson degree distribution that imply to any linking
between nodes can occur with equal probability, and have similarity with small
average path length (highly connected ~log(N)) between vertices pairs. Also the
average distance and clustering coefficient only depend on the number of nodes and

edges in the network.

1.2.3 The Small-World Model (Watts-Strogatz)

Small-world models were introduced as a simple model of social networks by
Duncan Watts and Steven Strogatz [2] but the name comes from Stanley Milgram’s
experiment of letter sending [8]. Watts and Strogatz [2] started with a regular
network (p=0, ring-like) and reconnected independently each edge with increasing
probability p that causes randomness until p=1 (Erdds-Rényi random graph). In these
rewired networks, they observed high clustering coefficients, long path lengths for
regular structure (p=0); low clustering coefficients, low path lengths for random
structure (p=1); and high clustering coefficients, low path lengths for a range of p

(small-world structure) compatible with real-world networks (Figure 1.7).

a Regular Small-world .y r— —
[ : b 1
8 Qp) ! C0) i
6} {
04| ]
L(p)7 L(O) |
p=0 » p=1 o 1
Increasing randomness I SR !
c 0.0001 0.001 0 1
L e Lonsem Cocem Crancem p
Film actors 365 299 0.79 0.00027
Power grid 187 124 0.080 0005 :
C. slogans 205 2% 028 005 lattice small world random

Figure 1.7 Results by Watts and Strogatz [2]. (a) Random rewiring Procedure : p is
increased the model moves from a regular graph, through intermediate graphs, to a
random graph at p = 1 (b) Description of characteristic path length L(p) and
clustering coefficient C(p) within randomly rewired procedure: There is a large
intermediate region which shows “small-world” behavior: small [ (like random
graphs) but large C (like regular graph) (c) Empirical examples of small-world
networks: Characteristic path length L and clustering coefficient C for three
networks were compared to random graphs with same number of vertices (N) and
average number of edges per vertex (k). Actors: N=225,226, k=61. Power-grid:
N=4941, k=2.67.Celegans: N= 282, k=14. Networks were defined as undirected and
unweighted structure. Sample real-world network reflected the small-world
phenomenon with L > Liandom @nd C > Crandom Properties.
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Table 1.3 Comparison of networks on path length and clustering properties.

GRAPHS
Regular Small-World Random
Short
Path Length Long Lws = Lrand Short
High
Clustering High Cws > Crand Low

In rewiring process, average degree (<k») is not changed but the degree
distributions change with different rewiring parameters p. Degree distribution is
similar to the random graph degree distribution as binomial or Poisson that are
centered on average degree <k» and with exponentially small probability for very high
connected nodes. Also, changes are observed and compared for path length and
clustering structures in rewiring process (Figure 1.7, Table 1.3). This model provided

a new explanation of real-world networks which have two important properties.

The small-world effect: The pairs of vertices in most networks are connected with
shortest path in the network and the mean or maximum vertex-vertex distance in the
network (except unconnected vertex pairs) increase logarithmically (= logN or more
slowly) with the all vertices in the network. The first important explanation of small
world was made by the social psychologist Stanley Milgram [8] with his famous
letter experiment and the experiment was resulted reached their targeted person via
about six (~6.5) acquaintances and hence ‘‘six degrees of separation’’. Different
field experiments showed similar results such as the actors are connected via three
co-stars with each other in Hollywood and chemicals in a cell are separated by three
reactions. [9] and [7] reveal empirical evidences in order to show the logarithmic
increase of path length. To measure “small-world effect”, one finds the shortest
distance between all pairs of vertices in the network and computes their averages.
Mean shortest path length between vertex pairs for an undirected network is as
follows.

-1__ 1 ¢y -1
1 - %N(N+1) 212] l1] (16)

li; represents the shortest path length from vertex i to vertex j and there is no

contribution of the infinite values (]% =1= 0) to the sum. Also, observations on
ij o0

experiments showed that mean shortest path distances increase as log N and the
9




number of vertices within a distance d of a central vertex grows exponentially with

logN

(o®). The result of | (mean shortest path=&' =N — 1 = Tog &

) scales

logarithmically or grows slower with network size (N) for fixed mean degree in real-

world networks. This is a special property of “small-world” networks.

High clustering: There is a high probability that two vertices will be connected
directly to each other if they have a common neighboring vertex. For example, in
social networks one encounters “cliques” -circles of friends or acquaintances in
which every member knows every other member. In a social network, two people are
much more likely to be acquainted with one another if they have another common
acquaintance or the friend of your friend is likely also to be your friend. “Clustering

coefficient” can be defined as the density of triangles in a network.

1.2.4 Scale-Free Network Model (Barabasi -Albert)

Price’s studies on network of citations between scientific papers in [10]
confirmed a power—law degree distribution and its exponent values were found 2.5-3.
The next works on degree distribution of real-world networks (citation networks,
WWW, Internet, metabolic networks, telephone call graphs, network of human
sexual contacts) produced an important “power law” property. Power-law degree
distribution was seen a characteristic property for real-world networks and these

networks are defined as “scale-free networks” by Barabasi and Albert in [3].

Power-Law Distribution(N=20 v=1.5) o Log-Log Distribution(N=20 y=1.5 }
1 T T T 10 T

09|
08|
07|
06|
<05} 12 10"}
04|
03|
02|

0.1

20 10° 10
k

Figure 1.8 Sample power-law degree distribution and log-log fit to decay for a
network of size is 20 and exponent value (y) 1.5.
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Power-law distributions are called as “Pareto Distribution” in statistics. Power-

law distribution has the following form.
p(k)~k™ (1.7)
Decaying of power-law distribution (Figure 1.8) is much slower than Poisson
distribution that can be seen on large k,

doKe—®
)

_ 1 : e
k™" > o (Poisson distribution — py = (1.8)

Power-law exponent (y > 0 and usually between 1 and 3) values have special
reflections about networks:
1<y : requirement for normalizability
1 <y<2 : both the average degree and standard deviation are infinite, a total
number of edges may grow faster than a linear function of a total number of vertices
that this is true for many real networks
2 <y <3 : average degree is finite, but standard deviation is infinite that mean
fluctuations in systems are unbounded and depend only on the system size, network
doesn’t have percolation threshold with respect to a dilution of its nodes, typical for
real networks
3 <y < 4 :both the average degree and standard deviation are finite
4<y : power-law distribution and its properties look like exponential decaying

distributions, network closes to random graph structure.

Previous random graph and small-world models didn’t uncover power-law
degree distribution, so this property opened a new investigation field about networks.
While Barabasi and Albert were revealing power-law degree distribution property in
their paper [3], they also reached three important results.

e Power-law degree distribution is not only a special property of WWW that is
a general property of many real-world networks

e Rather than being static structures, networks grow dynamically via
attachment of new vertices that is referred to with different descriptors such as
“cumulative advantage”, “rich-get-richer”, and “preferential attachment”. Vertices
are connected with new edges to the existing vertices according to their degrees

e Specific models of growing networks can be generated which show power-

law degree distributions.
11
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Figure 1.9 Barabasi and Albert’s real-world network analysis in [3] and
observed distribution function of connectivity (average degree distributions)
for (a) actor collaboration graph with N = 212,250 vertices, average
degree o = 28.78,and y_ . = 2.3, (b)) WWW N = 325,729,k =

5.46, and y,w = 2.1, () and Power grid, N = 4941, < = 2.67, and

ypowergrid =

Barabési and Albert’s [3] findings are supported with studies on different real-

world networks such as WWW, film actor collaborations, and citation networks

(Figure 1.9).
We can observe and compare all network models with same size in Figure 1.10

and classify real-world networks on network model in Table 1.4.

Table 1.4 Different real-world networks and description of their vertices, edges, and

models.
Networks Vertices Edges Models
Electronic Circuit E%ectrom.c components Wires Small world
(resistors,diodes,capacitors) Scale-free
South California Transformers,substations, High-voltage transmission Small world
Power Grid generators lines Not Scale-free
Airport Network . . Single scale
of World Airmports Non-stop connections network
Metabolic . Substra.tes:enzymes: Biochemical reactions Scale-free
Networks intermediate,complexes
Conceptual Appearance in the same entry )
Network of Words of a thesaurus of English Small world
Scale-free
Language language
. . . Small world
WWW Sites(pages) Hyperlinks Seale-free
Internet Routers Wires Scale-free
Co-authorship Authors of scientific articles Co-authorship Scale-free
Network

12



a b c d

Figure 1.10 Networks are of same size (30 vertices). (a) Regular network model,
each vertex is linked to its four nearest neighbors (b) Random network model,
vertices are linked randomly and vertices have three and four edges (c) Small-world
network model, most vertices are linked only to their nearest neighbors (d) Scale-
free network model, a few vertices are linked many other vertices.
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Chapter2
Network Analysis

2.1 Node Degree Distribution

Node degree of vertex i (k;) is the total number of connected edges of vertex i
to other vertices (nearest neighbors) in an undirected network. All nodes in a network
do not have the same number of degree whose spread is characterized by a
distribution function p(k) that gives the probability of a randomly chosen node
having exactly k edges in an undirected network. Histogram of the degree probability
of vertices p(k) versus node degrees is named degree distribution for the network.

Average degree for the whole network (¢k»);
do = <3Nk = Yickp(k) = % 2.1)

where E represents the total number of edges and N is the total number of nodes in
network.

In an Erdos-Rényi random graph the edges are placed randomly and equal
probability. The largest of nodes have approximately the same degree that closes to
the average degree <k> of the network. The degree distribution of a random graph is a

binomial distribution with a peak at p(<k»).

p = (N (L — p)N1K (2.2)

The mean number of neighbors of a chosen vertex i in a random graph with

degree distribution (Figure 2.1) py is found as follows.

k) = Zk kpk (23)

In the limit where N becomes large the degree distribution of a random graph
follows Poisson distribution.

(k)ke—(k)
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] 27132
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9 92378
10 92378
11 75582
12 50388
13 27132
14 11628
15 3876
16 969
17 171
18 19
19 1

Both binomial and Poisson distributions are strongly peaked about the mean
<>, and have a large-k tail that decays rapidly with 1/k!. Such networks are defined
as ”homogeneous networks”. But binomial and Poisson degree distributions do not
represent real-world network properties that decay slowly in large degree ranges. In
real-world networks most nodes have low degrees and a few numbers of nodes

(hubs) have high degrees (heterogeneous connectivity) and high clustering. This
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Figure 2.1 Sample binomial degree distributions.

behavior can be modeled with exponential or power-law distributions.

Exponential degree distribution,

p (k) ~e(—k/(k))

Cumulative exponential distribution (Figure 2.2) with same exponent,

Figure 2.2 Cumulative exponential degree distribution of power grid [11].

Pe = YpkPk ~ Xk €
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Also experiments on large real-world networks (WWW, internet, metabolic
networks) showed that their degree distributions significantly different from binomial
and Poisson distributions and follow the power-law degree distribution. In power-law
distribution (2.7) for networks vertices with small degrees are most frequent and the
fraction of highly connected vertices decreases, but is not zero within a logarithmic
plot (Figure 2.3). These kinds of networks are called as a “scale-free networks” in
[3].

pr~k™Y (2.7)

Pawer Law Distribution(N=50) . Powsr Law DistributionfLog-Linesr N=50) . Powsr Law DistributioniLog-Log N=50)
10

g, T . X . i X
(] 0 £ 30 40 50 ] 0 2 E 40 50 i 10" 10

Figure 2.3 Sample power-law degree distributions in linear-linear, semi-log, and
log-log forms.

The scale-free degree distribution has a heterogeneous structure whereas
random and small-world networks follow a homogeneous topology. Both
exponential and power-law degree distributions show a non-equilibrium growth of
the network when new vertices and edges are added to the existing network in time.
In power-law degree distribution, connections of newly added vertices to existing
vertices occur with “preferential attachments” which means that new connection
probability to existing node is proportional to the degree of existing vertices. In this
way popular nodes become more popular and “hubs” are created, in other words rich
get richer.

Investigation of power-law degree distribution is made on cumulative
distribution function or probability distribution function and the plot is shown in a
log-log scale in order to investigate the linearity of the relationship and to estimate
the exponent. Use of cumulative distribution allows removal of the fluctuations in
large degree regions and makes fluctuations less pronounced. The probability that the

degree is greater than or equal to k is,

Kmax !
Pk = Lk p(k) (28)
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Studies in real-world networks also showed no fluctuations and revealed right-
skewed distributions that follow power law with a constant exponent y [12, 13].

As a result, power-law and exponential distributions can be observed when
corresponding cumulative distributions are plotted in logarithmic scales (for power
laws) or semi-logarithmic scales (for exponentials) in real-network studies.

Analysis of linearity fit is made by calculating the Pearson product-moment
correlation coefficient (r) that is a measure of the correlation (strength of the linear
dependence) between two variables. It is a value between +1 and —1 where 1 implies
the perfect relationship between X and Y (Y increases as X increases), —1 implies the
inverse relationship between X and Y (Y decreases as X increases), and 0 implies the

no linear correlation between the variables.

N Y Xiyi— XXi X Vi (2 9)

r=
JNExiZ—@xi)z\/NZin—@yi)z

2.2 Centrality

Centrality is an important analysis method in network studies. It indicates the
importance or popularity of a vertex and edge within a network and has different
forms: degree centrality (on node degree), closeness centrality (on geodesic path),
and betweenness centrality (on geodesic path) that are described by Freeman [14],

and eigenvector centrality by Bonacich [15].

2.2.1 Degree Centrality

Degree centrality is measured on the number of edges attached to given vertex
I that also represents the degree of a vertex (k;) like the number of people that knows
the given person. Degree centrality shows the potential influence of a vertex in
network. For example, if a person who has more connection in an epidemic network
gets sick, disease can spread in the network quickly.
Degree centrality of vertex i:
CP(i) = k; (degree of a vertex i) (2.10)

The elements of the adjacency matrix (A) of an undirected graph are aj; =
aj; = 1if there is an edge between i and j in the graph and a;; = 0 otherwise. Then,

the degree of a vertex i can be found by

17



High degree vertices are called “hubs” that have a high role in the network.

2.2.2 Eigenvector Centrality

Eigenvector centrality of vertex i is the sum of its connections to other nodes
that are weighted with their centrality and is also referred as the principal eigenvector
of the adjacency matrix. The equation of an eigenvector is;

1
X = IZ]N=1 ai]'X]' X =X1,X3, ... XN (212)

Ax = Ax (vector centralities)

x; . centrality of vertex i,

A : adjacency matrix of the network,

A : the eigenvalue (constant - must be the largest eigenvalue of the adjacency
matrix),

X : the eigenvector of a adjacency matrix,

Xi is proportional to the sum of the scores of all nodes which are connected to i.
The eigenvector centrality shows the importance of a vertex in the network.

2.2.3 Closeness Centrality

Closeness centrality is the total shortest path distance to all other vertices in the
network. A low closeness centrality value (highly central) implies closeness and easy
access to other vertices. We can say that vertices are more central if they reach other
vertices easily. Closeness provides a centrality measure for a vertex and measures the
spread time (its inverse shows the spreading speed) of an effect from a given vertex

to other reachable vertices in the network.

Closeness centrality of a vertex i: C¢(i) = % dij (2.13)

2.2.4 Betweenness Centrality

The most widely used kind of centrality is “betweenness centrality” that is the

number of shortest paths on a network that run through the vertex of interest [16].
18



Measuring of betweenness of a vertex i is the number of shortest path vertex pairs
that pass through between all vertex pairs in network. It also refers the importance of

a vertex in traffic on a network.

Betweenness centrality of a vertex i: CB(i) = ¥jixk Sk (D (2.14)

G]k

ojx . total number of the shortest path between vertices j and k (>0)
ojk (i) : number of the shortest path between vertices i and j that pass through a

vertex i [16].

Betweenness shows the importance of vertex i for connecting vertice pairs. A
vertex with a high betweenness centrality value represents a hub (controller) of the
network and its value is strongly related to its degree. In a road network, high
betweenness could indicate where alternate routes are needed. Betweenness also
measures the resilience of a network since removal of high betweenness nodes can

cause connectivity in network to be lost.

2.3 Clustering

Widely used measuring of “clustering coefficient” is defined by Watts and

Strogatz [2] on local values as,

number of triangles connected to vertex i
C; = : (2.15)

number of triples centered on vertex i

Node has k; edges. There are <&—2)

possible edges between node i and its
next nearest neighbors. The ratio between the actually exist number of edges (E;) to
the possible total number of connection (@) gives the local clustering

coefficient (Figure 2.4, Figure 2.5) of node i,

Ej _ 2E; _
G = ki(ki—1)/2  kj(kj—1) (ki #0,1) (2.16)

E; denotes the edges among first neighbors of node i.
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Figure 2.4 Local clustering coefficient example. (a) Central vertex i has 8
neighborhood in same network and there are 28(8(8 — 1)/2) possible edges
between them. But there is only 7 actual edges and local clustering coefficient of
central vertex i (C;) is 7 by 28 (0.25). (b) If a vertex i has a small number
neighborhood like k; = 5, there will be 10 possible neighborhood between its
neighbors and its clustering coefficient will increase to 7/10(0.7).

Clustering coefficient of whole network is the average of all individual local

clustering coefficients.

_ 1N __ 1 oN (number of connected neighbor pairs)
CWS - g &i=1 Ci - _Zizl 1
N N Ski(ki—1)

(2.17)

(1= Cys = 0)

This definition has problems as it is heavily biased in favor of low degree
vertices because of the factor k;(k; — 1) in the denominator. Differences in the value
of clustering coefficients can become very high. For instance, take two vertices in the
same network; one having two neighbors that are connected and the other having a
hundred with none of them connected. Local clustering coefficients are C; = 1,C, =
0 and average probability is C = 0.5, but there is 4951(1 from vertex 1(2(2-1)/2=1)
and (100*99)/2=4950 from vertex 2) possible total pairs in all network and only one
is connected. As a result average probability of a pair being connected is not 0.5, but
1/4951=0.0002. Correct way to calculate the average probability of a pair of

neighbors being connected was expressed by Newman [9] (Figure 2.5) as;

3(number of triangles on a graph)

(1=C=0) (2.18)

" number of connected triples of vertices

e triangles: three vertices that are each connected to both of the others. If

vertices i1, i2, and i3 are connected to each other, there is a triangle
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e connected triple: a vertex that is connected to a pair of other vertices which
may or may not be connected to each other. There is a triple between vertices
11,12, and i3 around i1 if i1 is connected to i2 and i3

e the factor of 3 in the numerator: each triangle contributes three separate
connected triples.

Method is also called the “fraction of transitive (closed) triples” by social
network analysts and easier to calculate analytically. In 2003 Newman proposed an

alternative and numerically equal clustering coefficient definition as:

__ 6(number of triangles on a graph)

C (1>C=0) (2.19)

number of path of length 2

This definition shows that C is also the mean probability that the friend of your

friend is also your friend. (Number of paths of length 2: number of friends of friends)
Q L
N
o N\

Figure 2.5 Newman’s [9] clustering coefficient equation show (Eq. 2.15) that graph
has one triangle and 8 connected triples therefore clustering coefficient is ¢ =
(3+1)/8 =3/8. Local clustering coefficients are 1,1, 1/6, 0, 0 and mean value
C = 13/30 on Watts —Strogatz equation (Eq. 2.17) for same graph.

In a random graph, connected probability of two vertices is p = %’ for all

vertex pairs where <k> is the mean degree of a vertex. Clustering coefficient of a

random graph is found as
Cpp = — == (2.20)

The clustering coefficient is quite small for random graphs in comparison with
same size real-world networks with vertices (N) and mean degree values (k) (C >
Crg) as shown in Table 2.1 [2].



Table 2.1 Clustering coefficients of real-world networks and comparison with
clustering coefficients of random networks on same network sizes.

) Measured Random
Networks N k= Clustering Coefficient | Clustering Coefficient
Internet 6374 3.8 0.24 0.0006
WWW 153127 | 35.2 0.11 0.00023
Power grid 4941 2.7 0.08 0.00054
Biology collaborations 1520251 | 15.5 0.081 0.00001
Mathematics collaborations | 253339 3.9 0.15 0.000015
Film actor collaborations 449913 | 113.4 0.2 0.00025
Company directors 7673 14.4 0.59 0.0019
Word cooccurrence 460902 | 70.1 0.44 0.00015
Neural network 282 14.0 0.28 0.049
Metabolic network 315 28.3 0.59 0.09
Food web 134 8.7 0.22 0.065
2.4 Assortativity

Networks consist of different types of vertices, properties and connections such
as races, gender, ages, income, education etc. for social networks. Sample
observations in social networks [17, 18] show that connections are realized based on
the properties of vertices like race and content of Web links. This property of
networks and measurement method of connection tendency for the vertices according
to their degrees is called as “assortative mixing”. If high-degree vertices have a
tendency to connect with other high-degree vertices, we can say that the network
shows “assortativity (homophily)”. On the other hand the connection tendency of
low-degree vertices to high-degree vertices is called “disassortativity (disassortative
mixing)” [19].

Degree assortativity is also used to show the preferential attachment of the
high-degree vertices with other high or low degree vertices. Calculation of the
assortativity mixing is done with “assortativity coefficient” and it measures in terms
of the mean Pearson correlation coefficient (r) of degree between pairs of linked
nodes in [19, 20].

O MTIEXY - (ML +Y)))
M () M S (X YD)

r (2.21)
X; and Y; refers the connected vertices by edge i within total M edges in
network. In this equation X; and Y; represent the the nearest vertex degrees and the

equation is recalled as “degree assortativity r'”. Values (—1 < r < 1) represent as;
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e r> 0 :acorrelation between nodes of similar degree (assortative)

e r <0 :acorrelation between nodes of different degree (disassortative)
o = : the network is perfect assortative

e r = —1:the network is completely disassortative

e r=0 : the network is randomly mixed.

Observation on real-world studies showed that social networks are assortative,

while technological and biological networks are disassortative.

2.5 Shortest Path Length

The path length is the total number of edges to travel from a starting vertex to a
target vertex (Figure 2.6) and the shortest value between these path lengths that
connects two vertices within minimum travelling steps in a network is called a
“shortest path length” or “geodesic distance”. Shortest path length between vertex
pairs(i —j) is denoted as l;; = l;; in undirected networks. If there is no path between
two vertices, the distance is assumed to be infinite (undefined). The shortest path
length between vertex pair i and j is equal to minimum power of the adjacency

matrix (A) that will reach a non-zero value for that vertex pair (a;;).

3
L)

Geodesic Distances
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Figure 2.6 Shortest path lengths in sample network.

Diameter of a network is a maximum geodesic distance between vertex pairs

(max(l;) for alli and j). Mean shortest path length between vertex pairs (including

loops —W) for an undirected network is calculated as follows.

1
1= D Dizj li (2.22)

23



Previously mentioned condition that if there is any unconnected vertex pairs in
a network their shortest path length is defined as infinite causes a problem in mean

shortest path calculations. This problem is overcome with “harmonic mean” that
removes this infinite value by equating it to zero (é = 0). The “harmonic mean”

shortest path length distance between all connected pairs is the reverse of the average

of the reverses.

— 1 -1
| 1= mZiEj lij (223)
2

Table 2.2 Statistical analyzed networks that were published. The properties
measured are: network types: directed or undirected; network size: N; total number
of edges m; mean node degree <k»; mean shortest path length «1»; power-law
exponent y;clustering coefficients C1, C?; and degree correlation coefficient r [21].

Networks Type N m & | D 4 ¢ | e r

film actors undirected 149913 25516482 113.43 3.48 23 | 0.20 0.78 0.208

company directors undirected 7673 55302 144 4.60 0.59 0.88 0.276

math conuthorship undirected 253339 196 489 3.92 7.57 0.15 0.34 0.120

physics coauthorship | undirected 52000 245300 927 6.19 0.45 0.56 0.363
= biology coauthorship | undirected 1520251 11803 064 15.53 4.92 0.088 | 0.60 0.127
5 telephone call graph undirected 47000 000 80000 000 3.16 21

email messages directed 59912 86 300 1.44 1.95 1.5/20 0.16

email address books directed 16881 57020 338 522 0.17 0.13 0.002

student relationships | undirected 573 477 1.66 | 16.01 0.005 | 0.001 0.020

sexual contacts undirected 2810 32
2| WWW nd.edu directed 269 504 1497135 5.55 11.27 21724 0.11 0.29 -0.067
% WWW Altavista directed 203549046 | 2130000000 1046 | 1618 | 21727
| citation network directed 783330 6716108 8.57 10
-: Roget’s Thesaurus directed 1022 5103 499 | 487 013 | 015 0.157
™| word co-occurrence undirected 460902 17 000 000 70.13 2.7 0.44

Internet undirected 10697 31992 598 331 25 | 0.035 | 039 0.189
| power grid undirected 1041 6504 267 18.99 0.10 0.080 -0.003
'%‘. train routes undirected 587 19603 66.79 2,16 0.69 0.033
'§ software packages directed 1439 1723 1.20 242 1.6/14 0.070 0.082 -0.016
8| software classes directed 1377 2213 1.61 1.51 0.033 | 0.012 0.119
i: electronic circuits undirected 24007 53248 134 1105 3.0 | 0.010 | 0.030 -0.154

peer-to-peer network | undirected 880 1296 147 1.28 2.1 | 0012 | 0011 0.366
| metabolic network undirected 765 3686 0964 2,56 22 | 0.000 | 067 -0.240
; protein interactions undirected 2115 2240 212 6.80 24 0.072 0.071 0.156
& marine food web directed 135 s08 [ 443 | 205 016 | 023 | -0.263
g freshwater food web directed 92 0997 10.84 1.90 0.20 0.087 0.326

neural network directed 307 2359 7.68 397 0.18 0.28 0.226

We can summarize real-world network properties (Table 2.2) as follows.
e Low average path length (small-world phenomenon)
e High clustering
o Degree distributions follow Power-law (many networks) and they called as
“Scale-free Networks”
e Betweenness centrality distribution is a decreasing function (usually power-
law). Decreasing function properties of degree and betweenness centrality

distribution indicate heterogeneity and existence of hubs.
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e The distances are proportional to the logarithm of network size

_ logN _
~ s (Small-world property)

e The clustering coefficient is independent of network size and is proportional to
average degree (which is larger than comparable random networks)

C « (k)

In the next chapter, we will study bus transportation networks of four largest
Turkish cities - Istanbul, izmir, Ankara, and Bursa. This study involves the statistical
analysis and comparison of network properties of bus transportation networks for
these cities. We will also try to relate our findings with network topologies of cities

and other geographical, historical, and economical factors.
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Chapter3

Bus Transportation Network Study on Four Largest Cities of
Turkey

3.1 Introduction

Transportation networks are complex structural real-world networks and they
have been of interest within statistical physics during the past decade. First
transportation network analyses were made on power grids [22, 23] with
transformers and transmissions that were defined as nodes and edges respectively.
Researchers investigated railway networks [24], airport networks (India [25], China
[26]), and public transportation networks (bus and tram networks of Poland [27, 28]
and China [29, 30, 31], railway, subway, seaway networks of fourteen cities in the
world [32]). In these studies, network efficiency, degree distributions, clustering
coefficients, centralities, and assortativity properties were observed. Exponential and
power-law distributions were revealed showing correlation between degree and other
network properties.

In this study, we investigated bus transportation networks (BTNs) of four
largest cities (Istanbul, Izmir, Ankara, Bursa) covering 42% of the population in
Turkey. These cities are located in different geographical locations (Figure 3.1) and

they have different economical, historical, and cultural backgrounds.

Istanbul
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Figure 3.1 Topographic appearances of four largest cities of Turkey.

The specific properties of these resulted in public transportation networks with
different characteristics. We only deal with BTNs. While availability of data was the
main reason for this, one could also say that bus transport is still a very dominant
transportation mode in Turkey in general. Table 3.1 gives a comparison of some
route statistics for the cities in Turkey and other cities in the world taken from [32].

Sample routes can be observed in Figure 3.2.
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Figure 3.2 Sample routes and stations of bus transportation networks that are taken
from (a) IETT, (b) ESHOT, (c) EGO, and (d) BURULAS - respective
transportation departments of municipality in Istanbul, izmir, Ankara, and Bursa.

Table 3.1 N: number of bus stops; R: number of bus routes; F: mean number of bus
stations per route; P: population of cities.

City N R F P

Istanbul 4726 529 8.9 13.120.596
[zmir 5489 295 18.61  3.606.326
Ankara 4249 376 11.3 4.641.256
Bursa 3914 206 19.0 2.308.574
Sydney 1978 596 3.3 4,575,532
Hong Kong 2024 321 6.3 7,055,071
Taipei 5311 389 13.7 6,900,273
Dallas 5366 117 45.9 6,477,315
Sao Paolo 7215 997 7.2 19.672.582
Los Angeles 44629 1881 23.7 15,250,000

Before going into the details of our analysis, we introduce different network
topologies that will be used in this study.

3.2 Bus Network Topology and Representations

Connections on different parts of a network produce differences in topological
representation of the network. Bus networks consist of bus stations (or routes) that
are defined as vertices. The connections of the vertices are defined via route-route
and station-station relations and they are embedded in two-dimensional space.

If routes of a bus network are defined as vertices and linked when they
intersect on a common bus station, this topology is called C-Space. Other bus
network topologies can be obtained by using the bus stops as vertices. In L-Space,
bus stops are only connected when they follow each other on a route. However, in
P-Space bus stops are connected if they can be reached via a route regardless of
their actual location. Thus in P-space there will be many more connections (edges)
than in L-space (Figure 3.3).
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Figure 3.3 (a) Sample bus transportation network is defined on 3 routes and 6 bus
stations. (b) Relation representation of routes and bus stations are showed in C-
Space, (c) L-Space, and (d) P-Space respectively.

An adjacency matrix can be used to represent and mathematically analyze a

network. It is a square, symmetric matrix that is defined as a;; = 1 if there is any
connection between pairs of vertices i and j; otherwise a;; = 0. Vertices of networks

don’t have loops (a;; = 0) and multiple connections, and their edges are undirected
(Figure 3.4).

L-Space [1(2|3|4|5(6 PSpace| 1/ 2(3|4|5]6 C-Space | Route-1 | Route2 | Route-3
1 Dlrjo(oj1fo 1 D1y 1f1 Route-1 0 1 1
2 11010 1]0 2 1{0j1]1(1]1 Route-2 1 0 1
3 olrjo|oj1f{o 3 1f1|jo(1)1]1 Route-3 1 1 0
4 Dlojo(oj1fo 4 (1|1 (o)1]1
5 1]1]1(1]0]1 5 1{1(1]|1]0]1
6 olojo|oj1fo 6 1(1)1(1)1]0

Figure 3.4 Sample adjacency matrices of L-Space, P- Space, and C- Space for
networks in Figure 3.3.

In following parts we will use these representations in order to calculate and
analyze the properties of bus networks of four largest cities (Table 3.2). All network
properties have been defined on their “space” structures and used specific abstracts.
Topological representations of networks were used as exponents or subscripts in
network property notations. For example, maximum shortest path length in an L-
Space representation is shown as [[*** and defined as the maximum number of stops
to travel between any two stations.
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Table 3.2 Bus network properties for C-, L-, and P-Spaces. <k>: average node degree of nearest neighbors for whole network; <z>: average node
degree of next nearest neighbors for whole network; §: rate between <z> and <k> ( § = «z>/<k>); k™**: maximum node degree in space; «C> mean
(global) clustering coefficient of whole network; r!: assortativity mixing of nearest neighbor; <> : average shortest path length; 1™%*: maximum
shortest path length in network.

C-Space

L-Space

P-Space

; 1
City ke gmax o, rle (g, pmex

(Z)c 6C

1
k) gmax o, T, Mz, S
L L IR L O

ckp) k7' «cp»

1
p dpy 11X

(Z)p Sp

Istanbul 88.96

[zmir  48.68

Ankara 54.40

Bursa 70.94

258 0.709 0.210 2.068 4

133 0.726 0.211 2.253 8

143 0.698 0.434 2.365 6

148 0.737 0.204 1.813 6

318.33 3.58

150.66 3.10

156.78 2.88

107.99 1.52

3.367

2.405

3.159

2472

50

27

49

13

0.087 0.146 10.29 53 15.62 4.64

0.026 0.108 46.44 212 4.13 1.72

0.101 0.105 9.629 55 12.97 4.11

0.015 0.295 29.00 126 4.16 1.68

121.043 1064 0.779

154.576 1696 0.821

78.691 1287 0.833

221.67 1764 0.768

-0.097 2.86 5

-0.016 3.25 9

-0.055 2.94 7

-0.022 246 7

1387.619 11.464

1353.301 8.755

1170.532 14.875

2118.699 9.558
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3.3 Network Properties

3.3.1 Node Degree Analysis

Node degree and cumulative node degree distributions are investigated using

linear-linear, log-linear, and log-log plots for each topology.

NOD in C-space . NDDin C-spacefLog-Linear) . NDDin C-space(Log-Log)
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Figure 3.5 Node degree and cumulative node degree distributions in C-Space for
four cities. Plots show the distributions in linear-linear, log-linear, and log-log scales
respectively.

Degree of a node (route) in C-Space gives the total number of connections to
other routes via common bus stations. Figure 3.5 shows the node and cumulative
node degree distributions in C-Space whose cumulative log-linear (e) and log-log (f)
plots show exponential decay fit for four cities. An exponential fit in C-Space
indicates a random route structure and growth. All cities have the same growth
structure. Exponent parameters of distributions in C-Space give no special
information about the corresponding network so they have not been calculated (Table
3.3).

Table 3.3 Exponent values of exponential (k) and power-law (y) degree
distributions and Pearson correlation coefficients (R) for L- and P-Spaces.

L-Space P-Space
City ky R YL Ry kp Ry Yp R}
Istanbul 6.67 0.705 2.660 0.995 153.639 0.968 1.873 0.998 (%92)
[zmir 312 0.799 3.46 0.997 179.479 0.983 1.973 0.991 (%91)
Ankara 580 0.708 2.73 0.991 101.688 0978 2535 0.998 (%90)
Bursa 132 0975 444 0.995 239914 0989 1.661 0.985 (%93)
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Figure 3.6 Node degree and cumulative node degree distributions in L-Space for
four cities. Plots show the distributions in linear-linear, log-linear, and log-log scales
respectively.

In Figure 3.6 upper plots (a-b-c) show the node degree distributions and lower
plots (d-e-f) represent cumulative node degree distributions in linear-linear, log-
linear, and log-log scales for L-Space. Degree k =2 has maximum observed
probability. Number of nodes with degree k = 1 is smaller than the number of nodes
with degree k =2 nodes and probabilities of node degree observations p(k)
decrease with k increasing. Maximum node degrees reach 50, 27, 49, and 13 in
Istanbul, izmir, Ankara, and Bursa respectively. Nodes with high degrees are called
hubs in L-Space. Fitting parameters and Pearson correlation coefficients are given in
Table 3.3. Figure 3.6.b is a log-linear plot in order to observe exponential decay
behavior. Exponential decay is observed for four cities but Bursa has the highest

Pearson correlation coefficient with k; = 1.32and with RE¥"S% = 0.975  while

Rlzmir — 0799 | RAnkara — (708, and RIStanbul = 0.705. Figure 3.6.c shows node
degree distribution in log-log scale in order to observe power-law decay. All four
cities reflected high power —law fitting with different exponent values and their
Pearson correlation coefficients exceeded R} = 0.99. Power-law exponent
parameters show that nodes in Istanbul and Ankara (2 <y, <3) are robustly
connected and random removal of their nodes will not damage unity and high
connectivity up to a point. Also values close to 3 mean that in Istanbul and Ankara
the transportation network has grown preferentially. In Izmir, nodes are added faster
than edges. Such network growth can weaken network unity and tends to random
growth and exponential degree decay. Although Bursa has a high correlation

coefficient R} = 0.995 which indicates power-law decay, its power-law exponent
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parameter y = 4.44 > 4 and fit to an exponential decay shows that Bursa bus
network is also growing randomly.

Good fits of node degree distribution to power-law in L-Space for four cities
indicate highly connected bus stops and random connection between routes that was
shown in C-Space results. Fitting parameters of similar works for bus transportation
networks in L-Space are in line with our study and range from 0.78 to 1.88 for
exponential and from 2.72 to 5.49 for power-law [27].

Good fits of node degree distribution to power-law in L-Space for four cities
indicates highly connected bus stops. Fitting parameters of similar works for bus
transportation networks in L-Space are in line with our study and range from 0.78 to
1.88 for exponential and from 2.72 to 5.49 for power-law [32].

,  NDD in P-space(Log-Linea) ., NDDinP-space(LogLog)
1 10
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(1] 500 1000 1500 2000 0 500 1000 1500 2000 “o 1 2 3
3 Kk

Figure 3.7 Node degree and cumulative node degree distributions in P-Space for
four cities. Plots show the distributions in linear-linear, log-linear, and log-log scales
respectively.

Node degree and cumulative node degree distributions in P-Space of four cities
are plotted in Figure 3.7. Node degree analysis for P-Space is made on semi-log and
log-log plots of cumulative node degree distributions. The fitted parameters are
shown in Table 3.3. Results show that for all cities networks decay exponentially
decay and Bursa has the highest fit in L-Space with R{® = 0.975 (Table 3.3). A
similar study [27] on bus transportation network of six cities from different countries
also observed similar results where their power-law parameter range is 3.92-5.66 and
exponent parameter range is 38.7-225.0.

But we have to consider that P-Space does not reflect the original network
structure since node connections are not consecutive links like in L-Space. So

network structure and evolving behavior must be primarily observed in L-Space and
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then they should be confirmed with subsequent network analysis such as analysis of

clustering coefficient in P-Space.

. c = ) d
Figure 3.8 Hill plots of maximum likelihood estimates @, as a function of k for
Istanbul, Izmir, Ankara, and Bursa in P-Space.

Credibility of power-law in networks is also measured wit Hill plots where one
checks for areas where the plot ‘settles down’ to some stable values of maximum
likelihood estimates (@) away from small to large values on range k. Hill estimator y

is defined as follows.
P | - dN-i —~ ~ =
Vo= 2 log 782 () => @m=1+7""(0b) (3.)
(N-k)

where degrees of vertices are sorted as d; < d; < --- < dy. Hill estimators are
measured for chosen k values and plot is drawn with maximum likelihood estimator
a versus degrees.

Hill plots show that decay in Istanbul and Bursa is much more sharper in small
range of values k (8 - 2 and 20 — 2 ) than in Izmir and Ankara whose plots decay
slightly from 5 to 2. Relation between degree distribution in L-Space (Figure 3.8.c)
and hill plots of in P-Space confirm that power-law fits for all cities in L-Space is
credible but power-law model has less relevance in Bursa than in the other cities.

In conclusion, Istanbul, Izmir, and Ankara have a scale-free network structure
with power-law exponents y = 2.66 — 3.46whereas Bursa is closer to a random
network structure with a good fit to exponential node degree distribution and a high
(y > 4) power-law fitting parameter (y = 4.44). Hill plots showed power-law
credibility for Istanbul, izmir, and Ankara and less credible results for Bursa

corresponding with earlier degree distribution results.
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3.3.2 Clustering Coefficient

Clustering coefficients were first calculated locally (Eq. 2.15) and then network

clustering coefficients were found on mean local clustering coefficients (Eq. 2.17).

Also we compared whole network clustering coefficients of random networks (Eq.

2.20) that have the same network size with our results and showed that Turkish

BTNs in this study are not random networks.

Table 3.4 Mean (global) clustering coefficients of bus networks («C>), comparative
mean clustering coefficient («Cgg>) of Erdos-Rényi random network that same size

nodes and edges with bus networks, clustering coefficient-degree correlation

exponent (B) for bus networks from power-law distribution, and ratio (C™°™™ =
<C>/<«Cgg> between mean clustering coefficient and Erdds-Rényi random graph of
equal size in C-, L-, and P-Spaces.

C-Space L- Space P- Space
City ¢ Cppre P CCTT| Oy CepoL Bu CM| «Op Cgpp Pp CFOTT
Istanbul 0709 0.168 0.255 4.2 | 0.087 0.000712 0.614 1222 | 0.779 0.026 0.639 30.0
[zmir 0.726 0.165 0.155 4.4 | 0.026 0.000438 1.346 59.4 | 0.821 0.028 0.609 29.3
Ankara  0.698 0.145 0.072 4.8 | 0.101 0.000743 0.604 1359 | 0.833 0.019 0.647 4338
Bursa 0.737 0.344 0150 2.1 | 0.015 0.000631 0.067 23.8 | 0.768 0.057 0.533 135

Table 3.4 shows the mean (global) clustering coefficient in C-, L-, P-Spaces for

real-world bus networks, and Erdos-Rényi random graph, clustering coefficient-

degree correlation exponent parameters (£), and normalized clustering coefficients.

BTNs in P-Space have the highest mean clustering coefficient. This result is

expected because of all bus-stops on the same route are fully connected with other

bus-stops on that route in P-Space representation. The lowest clustering coefficients

and the highest differences between clustering coefficient of an Erdds-Rényi random

graph and real-world bus transportation networks (C™°"™™) are observed in L-Space.

High and approximate clustering coefficient values and the lowest differences

between normalized rates are observed in C-Spaces because of their lower node

degree. This also shows that the routes are highly connected in all cities.
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Figure 3.9 Average clustering coefficients of same degree nodes - degree k
correlations for four cities in (a) C-, (b) L-, and (c) P-Spaces.
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Strong correlations are observed between clustering coefficients and degree in
P-Space while other topologies don’t show a meaningful correlation (Figure 3.9).
Correlation in P-Space is deduced when average clustering coefficient of all nodes
with given degree k decays as a function of k and the decay distribution follows
power-law. Correlation equation 3.2 reveals the inverse ratio where increasing node

degree decreases mean clustering coefficient values.
(k) ~k™P (3.2)

Fitted power-law exponent parameters are shown in Table 3.4 and a similar
study [27] found exponent ranges in 0.65-0.96. Only Bursa is not in this range
(0.533). Bursa’s weak clustering behavior reflects its irregular network structure and
agrees with the previous node degree analysis where its log-linear plot in L-Space

indicated an exponential decay.

3.3.3 Assortative Mixing
Connectivity tendency of vertices in BTNs was measured with assortativity

values (Eq. 2.21) and degree-degree correlations for each city were computed.

Table 3.5 Assortativity mixing values of whole networks in C-, L-, and P-Spaces
are showed within nearest (r!) and next nearest neighbor (r?) connections.

C-Space L- Space P- Space
City ¢ 8 it 2 T8 3
Istanbul 0.210 -0.139 0.146 0.124 -0.097 -0.008
[zmir 0.211 0.009 0.108 0.778 -0.016 0.072
Ankara 0.434 0.004 0.105 0.226 -0.055 0.284
Bursa 0.204 -0.205 0.295 0.597 -0.022 -0.014

Table 3.5 shows that nearest neighbor assortativity (r!) in C- and L-Spaces
reflects the correlations between nodes of similar degree (assortative) and in P-Space
the correlation between nodes of different degree (disassortative). In C-Space
nearest assortativity values r} = 0.2 — 0.4 with values shown in previous studies
7c = 0.1 — 0.5 [27]. r} shows similarity in Istanbul, Izmir, and Bursa but Ankara
value is double of values in Table 3.5 that indicates a high number of similar (high)
degree nodes (routes) in Ankara. In L-Space 7} values are similar in Istanbul, Izmir,

and Ankara but in Bursa they are almost three times bigger than values in Table 3.5
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that also shows density of similar (low) degree nodes. Degree assortativity values,
r} = 0.1 — 0.3, are similar to [32] and these small assortative values also indicate a
finite preference for assortative mixing. This and former studies demonstrate that
assortativity values in L-Space are independent from network size and they are
always positive. This can be explained as appearance of a few number of nodes with
high degrees (hubs) and they are linked among themselves, and the majority of
remaining nodes with small degrees are connected among themselves in networks.
Disassortativity in P-Space is observed with very small r3 values between -0.016
and -0.097 that show no preference linkage based on node degree. This also shows
an existence of very high degree nodes (hubs) and tendency of small degree nodes
toward these hubs in the network. We observed the highest nearest absolute
assortativity values in C-Space and the lowest values in P-Space.

Next nearest neighbors’ state enlarges connected nodes and degree number of
each node. In this state for all topologies, assortativity values did not reveal a
uniform structure; there are increases, decreases, and state changes in degree-degree
correlations that are shown in Table 3.5. In C-Space assortativity values decrease and
Istanbul and Bursa turned to disassortativity from assortativity. Next nearest
assortativity in Ankara and Izmir decreased and indicated a randomly mixed state. In
L-Space, izmir remained assortative but Izmir, Ankara, and Bursa increased their
assortativity while Istanbul’s value decreased. Next nearest assortativity in P-Space
indicates randomly mixed structure for Istanbul and Bursa but Izmir and Ankara 72
values show a state change from disasortativity to assortativity. Ankara does not

show a linkage preference based on node degree.

3.3.4 Shortest Path

Average and maximum shortest path values are shown in Table 3.6 for all
topologies whereas Table 3.7 gives the proportions of certain path lengths in C- and
P-Space.

Maximum shortest path length values change in 4-8 range in C-Space and 5-9
range in P-Space. These characteristic values can be read as the length of travelling
between two different points. Minimum of maximum shortest path length values are
observed in Istanbul and maximum values are observed in izmir for C- and P-Spaces.
These values show that one can travel between any two points with maximum 5 steps

for Istanbul and 9, 7, and 7 steps for Izmir, Ankara, and Bursa respectively.
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Table 3.6 Average and maximum shortest path length in C-, L-, and P-Spaces for
BTNs of four cities; N: number of bus stops; R: number of bus routes; F: number of

bus stop per a route (route density).

Average Shortest Path Length(«}>)

Maximum Shortest Path Length(I™%*)

City N R F C-Space L- Space P- Space C-Space L- Space P- Space
Istanbul | 4726 | 529| 8.9 2.068 10.294 2.858 4 53 5
[zmir 5489 | 295| 18.6 2.253 46.436 3.246 8 212 9
Ankara | 4249| 376| 11.3 2.365 9.629 2.940 6 55 7
Bursa 3914| 206| 19 1.813 29.001 2.456 6 126 7

In L-Space we observed very high values for average and maximum shortest

path length than in C- and L-Spaces. Maximum shortest path length values in

Istanbul and Ankara with 53 and 55 steps are relatively low compared to values in

[zmir and Bursa with 212 and 126 respectively. Small average shortest path distances

and high clustering coefficients in C-, L-, and P-Spaces signal the small-world

network structure for BTNSs of our cities.

Table 3.7 Shortest path lengths and proportions in C- and P-Spaces for BTNs of

four cities.
Cities
C-Space Proportions P-Space Proportions
Shortest Path Lengths | Istanbul | Izmir | Ankara | Bursa | Istanbul| Izmir | Ankara | Bursa
1 0.168| 0.16784 | 0.14508 | 0.34606 0.026 | 0.0293| 0.018524| 0.05665
2 0.603| 0.51948| 0.41809| 0.52678 0.294 | 0.2562| 0.275549| 0.541451
3 0.221| 0.23196 | 0.36767 | 0.10064 0.483| 0.3511| 0.474157| 0.317161
4 0.008 | 0.05975| 0.06553| 0.02070 0.193| 0.2352| 0.211443| 0.060463
5 0.01470| 0.00359| 0.00578 0.005| 0.0815| 0.019485| 0.022754
6 0.00559 | 0.00004 | 0.00005 0.0294 | 0.000834 | 0.001515
7 0.00066 0.0137| 0.000007 | 0.000006
8 0.00002 0.0036
9 0.0003

There is no evidence to show a relation between average and maximum

shortest path length (I™%*) and number of bus stations, bus routes, and route density

in network. Although Bursa has high route density (F) with low number of routes, its

average shortest path length is the lowest and reaching each node is easier. Efficient

usage of routes to connect the bus stations caused easier linkage in Bursa whereas

Izmir shows an ineffective design of routes with high route density and high average
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shortest path length. Greater values in L-Space for Izmir and Bursa show an
existence of several non-overlapping connections between routes. Bus stations
spread over a wide area because of new settlements and geographic limitations on
growth due to nearby mountains.

Mean shortest path lengths between vertex pairs were also obtained using Eq.
2.23 and results are shown in Figure 3.10.
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Figure 3.10 (a) Mean shortest path length distributions of BTNs in L-Space for
Istanbul, izmir, Ankara, and Bursa. (b) Second local maximum in Bursa.

Plots show peak values around the average shortest path lengths of networks
and p(l) values decrease with increasing path values. Bursa and Izmir have a second
local maximum. Second local maximum in path length distribution points to separate
communities. In the map of Izmir (Figure 3.1) one can see that two communities are
divided geographically by a cove. In Bursa, new settlements created a separate
community from dense and old settlements in the center. We expected to see more
than one community in Istanbul that is geographically divided into European and
Asian sides via Bosphorus, but there is no evidence for this. One can say that there is
unity in the BTN of Istanbul despite the two sides of Bosphorus are separated by sea.

Plots in Figure 3.10 show an asymmetric and bimodal (Bursa and Izmir)

structure that is in line with the Lavenberg-Marquardt method with its function as;
p(l) = Ale~ B+l (3.3)

where A, B, and C are fitted parameters. Lavenberg-Marquardt method doesn’t show
any correlation between degree and shortest path length distribution and is used to

define fitted curves.
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Figure 3.11 Mean shortest path (I, (k, q)) - degree product (kq) of two end nodes in
BTNs of four cities.

Through shortest path length studies one can also relate node degree and
shortest path length of vertex pairs. Relation between mean shortest path and node
degrees (k-q) can be approximated by,

I(k,q) = A — Blog(kq) (3.4)

Equation 3.4 says that mean shortest path length of two different end nodes
with degrees k and q is proportional to the logarithm of their degree product. In
Figure 3.11, we do not observe a clear linear correlation between average shortest
path lengths on degree product of end nodes k-g in L-Space. Equation (3.4) cannot
be used to show correlation in C- and P-Spaces because of small values of shortest
path length (<l.» =4 — 8, dp) =5 —9).
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Figure 3.12 Average path length (k) on the degree of a single end node k.
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Also we can define mean shortest path on degree k of a single end node (I(k))

in L-Space and fits to power law as,
l(k)~k™« (3.5)

Within our study we observed approximate fitting between average shortest
path on node degree with exponents Istanbul=0.136, Izmir = 0.166, Ankara = 0.215,
and Bursa = 0.141. Exponents of previous studies were also measured in the range
from 0.17 to 0.27 [32]. These approximate relation results (especially in Istanbul and
Ankara) are indicative of a scale-free network. We also did not find any linear
relation between node degree and path lengths. Separated points in Figure 3.12 (b)
and (d) denote the other communities in BTNs of izmir and Bursa that we also
described under assortativity. We could not investigate the relation between mean
shortest path and node degree for two- and one-sided end nodes and see whether
scale-free and exponential decay behavior were present in C- and P-Spaces due to
narrow shortest path ranges which give only a very limited number of points to draw
these relationships from.

As a result we uncovered scale-free relation between average lengths of
shortest paths of end node degrees for four cities in L-Space that indicates
preferentially growing networks. Also, results don’t yield linear path length-degree
correlations as l[(k)~a — bk that shows a random network structure and confirm

previous results.

3.3.5 Centrality

Centrality study in BTNs of cities was aimed to show the degree-mean
centrality correlation and demonstrate the validity of real-world network properties
on betweeness centrality for all cities.

Eigenvector centralities of vertices in networks were measured on Eqg. 2.12 and

observed correlation between average eigenvector centrality and node degree as,
«Ce(k)»~k? (3.6)

Mean eigenvector centrality on degree —degree correlation can be seen in C-,
L-, and P-Spaces (Figure 3.13, Table 3.8) where BTNs of izmir and Bursa show the
highest fitting. Fitting parameters in all space don’t show the high differences that
they change in 1.05-2.22 intervals. These correlations in all spaces also extend to
high degree nodes have high statues or importance in network description for

eigenvector centrality.
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Figure 3.13 Mean eigenvector centrality — degree correlations for four cities in (a)
C-, (b) L-, and (c) P-Spaces respectively.
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Table 3.8 Fitting parameters of the mean eigenvector centrality-degree on power

law for each city in C-, L-, and P-Spaces.

Eigenvector Centrality Exponents

City C-Space L- Space P- Space
Istanbul 1.523 1.309 1.054
[zmir 1.530 1.522 1.185
Ankara 1.472 1.393 1.064
Bursa 1.423 2.223 1.090

Closeness centralities were calculated using Eq. 2.13 and Figure 3.14 and

values in Table 3.9 show degree-mean closeness correlations. Correlation between

average closeness centrality and node degree can be expressed as an inverse

relationship via a power-law distribution.
«C(k))~k=?
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Figure 3.14 Mean closeness centrality — degree correlations for four cities in (a) C-,
(b) L-, and (c) P-Spaces respectively.

Table 3.9 Fitting parameters of the mean closeness centrality-degree on power law
for each city in C-, L-, and P-Space.

Closeness Centrality Exponents

City C-Space L- Space P- Space
Istanbul 0.157 0.132 0.108
Izmir 0.223 0.119 0.091
Ankara 0.147 0.135 0.105
Bursa 0.208 0.138 0.136

In general, all topologies (P-Space is highest) conform to the expected inverse
relation between degree and mean closeness centrality. High degree nodes have
many contacts within shortest path length and they are quickly reachable. izmir
differs from other cities with a stable mean closeness for high degrees that shows the
independence of closeness from node degree and a highly connected network with
similar path lengths.

Betweenness centrality calculations were made with Eqg. 2.14 and correlations
can be seen in Figure 3.15 and Table 3.10. Correlation between average betweenness

centrality and node degree was again fit to a power-law distribution.

«CP(k)»~k? (3.8)
Bursa does not have a good power-law fit in L-Space and shows a random
distribution. The indication is that there is no central point where traffic intersects.

Thus, Bursa has the highest resilience against removing bus stations.
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Figure 3.15 Mean betweenness centrality — degree correlations for four cities in (a)
C-, (b) L-, and (c) P-Spaces respectively.
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Table 3.10 Fitting parameters of the mean betwenness centrality-degree on power
law for each city in C-, L-, and P-Space.

Betweenness Centrality Exponents

City C-Space L- Space P- Space
Istanbul 2.69 1.53 3.31
Izmir 1.02 0.78 3.03
Ankara 1.30 1.56 2.59
Bursa 1.58 0.17 2.83

In summary, centrality-degree plots and calculations provided good-fits to
power-law distribution showing the importance of high degree nodes in the
networks. Nodes in Figure 3.13, 3.14, and 3.15 of C- and P-Space that are further off
from fitted lines show existence of sub-networks (communities). These visual
observations also conform to assortativity mixing and shortest path length

distribution results.

3.4 Further Studies for istanbul

Istanbul is the most populous (13 million — 18% of Turkey’s population) and
economically most important city of Turkey. It is the world's 34th largest economy
and also Europe's most populous city taking into account the municipal boundaries.
Istanbul is a transcontinental city divided into European (Rumeli) and Asian
(Anatolia) sides via Bosphorus Channel. There are 39 districts (14 on Asian side and
25 on European side) within the municipal boundaries.

Public transportation in Istanbul comprises of a bus network (bus, metrobus),
rail systems (light rail, metro, trams, suburban trains), funiculars, maritime services
(ferryboats, sea bus), and cable cars. 3.5 million people are transported daily with
4,891 bus and metrobuses on around 529 routes and 10,272 bus stops. With 29.13%
of all transportation, bus transportation has an important role in public transportation
with high transportation capacity, bus fleet, route and bus stop numbers.

In this section, we analyze network effects of some new and proposed projects
in Istanbul that caught a lot of media attention. Metrobus is a recent project that
crosses Bosphorus using the Bosphorus Bridge and reaches the Western boundaries
of the city with newly built dedicated lanes. The project dramatically cut down the
travel times between Asia and Europe in both directions. The approved third bridge

on Bosphorus has long been a much-debated topic. We compared statistical results of
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the old bus network, currently existing network with metrobus, and a hypothetical
network with a third bridge between Garipge and Poyrazkoy (Figure 3.16). Metrobus
fleet comprises of 848 busses servicing Avcilar-Zincirlikuyu (route 34), Avcilar-
Topkap1 (route 34T), and Sogiitlicesme-Edirnekap1 (route 34A) with 98 bus stops
(Table 3.11). Third bridge that will be built between Galipce and Poyrazkoy will
connect northern districts of Istanbul on both sides. We defined several new
connections between routes and bus-stops of the existing structure for C- and P-
Space. In L-Space, a new network could not be formed due to the absence of detailed
bus-stop and route information that can only be available when the bridge is built and
bus transportation starts. Changes in the statistical values of three networks were
observed for node degree distribution, clustering coefficient, degree-degree

correlation, path length distributions, and centralities.

e ISTANBUL-IZMIR OTOYOLU
— D-100 (Eski E-5)
TEM OTOYOLU

Figure 3.16 (a) istanbul and Bosphorus and (b) existing bridge traffic and (c)
metrobus and third bridge routes.
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Table 3.11 N: number of bus stops; R: number of bus routes; F: mean number of
bus stations per route.

City N R F
Istanbul Metrobus 4726 529 8.9
Istanbul Non-Metrobus 4716 526 9.0
Istanbul Third Bridge 4726 530 8.9

Table 3.12 shows changes in number of routes and bus-stops. For metrobus, we
added three new routes and ten new bus-stops and some existing bus-stops on main
lines were also adapted to new routes. For third-bridge analysis, we defined one new
route that is described in Figure 3.16 (c) and added some new bus stops towards both

ends of the route connecting them to existing bus-stops.

Table 3.12 Comparison of exponent values of exponential (k) and power-law (y)
degree distributions and Pearson correlation coefficients (R) for L- and P-Spaces for

three Istanbul BTNs.
L-Space P-Space
City k, R¥ 7w R} Kp R vp R}

istanbul Metrobus 6.671 0.705 2.660 0.995| 153.630 0.968 1.873 0.998 (%92)

istanbul Non-Metrobus  6-663 0.706 2.661 0.995(153.671 0.968 1.883 0.998 (%91)

istanbul Third Bridge - - - |206.483 0961 1509 0.978 (%92)

Table 3.12 shows fitted parameters and Pearson correlation coefficients for
node degree distributions. Metrobus has no significant effect on log-linear plot that is
observed exponential decay behavior. There is no change in the decay of node degree
distribution with a good exponential fit in log-linear scale. In log-log scale, good
power—law fit with similar exponent values were again observed and Pearson
correlation coefficient exceeded R} = 0.995. Power-law exponent parameters
y.=2.66 (2 <y, <3) indicates existence of robustly connected nodes and high
resilience against random removal of nodes. Furthermore, values close to 3 reflect
preferential network growth.

Cumulative node degree distributions in P-Space are plotted in semi-log and
log-log scales. Fitted distribution parameters are shown in Table 3.12. Results are
similar in that they all show exponential decay while Istanbul Third Bridge does not

have a good fit.
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Table 3.13 Bus network properties for C-, L-, and P-Spaces. <k»: average node degree of nearest neighbors for whole network; <z>: average node
degree of next nearest neighbors for whole network; §: rate between «z> and <k> (6 = 2> /<k>); k™*: maximum node degree in space; <«C> mean
(global) clustering coefficient of whole network; r': assortativity mixing of nearest neighbor; «l> : average shortest path length ; [™%*:maximum
shortest path length in network.

C-Space

L-Space

P-Space

City

1
(kc) kglax (Cc) I'c (lc) lglax (Z)c 6C

kp pmax ¢,

1
rodpy M oz 6y

1
kp> kR cpy TP ddpy B 2p ép

Istanbul Metrobus

88.96 258 0.709 0.210 2.068 4 318.33 3.58

Istanbul Non- Metrobus 87.31 242 0.71 0.23 2.084 4 310.42 3.56

Istanbul 3

89.18 258 0.70 0.210 2.060 4 321.41 3.60

3.367 50 0.087 0.146 10.29 53 15.62 4.64

3.360 50 0.087 0.145 10.81 55 15.51 4.62

121.043 1064 0.779 -0.097 2.86

121.210 1051 0.779 -0.097 2.86

186.496 1511 0.796 0.287 2.64

5 1387.619 11.464

5 1377.877 11.368

5 1826.782 9.795
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Table 3.14 Mean (global) clustering coefficients of bus networks (<C>), comparative
mean clustering coefficient («Cgg>) of Erdos-Rényi random network that same size
nodes and edges with bus networks, and clustering coefficient-degree correlation
exponent (B) for bus networks from power-law distribution in C-, L-, and P-Spaces.

C-Space

L- Space

P- Space

City Bc

norm
¢ <Cgpoe C¢

By

norm
&> «Cgpry C/

Be

norm
p  «Cgpop Cyp

Istanbul Metrobus 0.709 0.168 0.255 4.2
Istanbul Non-Metrobus 0.709 0.166 0.260 4.3

Istanbul Third Bridge 0.701 0.169 0.260 4.1

0.087 0.000712 0.614 122.2

0.087 0.000712 0.616 122.2

0.779 0.026 0.639 30.0

0.779 0.026 0.640 30.0

0.796 0.039 0.370 20.4

Clustering analysis is conducted in C- and P-Space for three Istanbul networks

and in L-Space for Istanbul Current and Non-Metrobus systems. We don’t observe

meaningful differences in C-, L-, and P-Space analyses due to metrobus addition. As

path length and clustering values remain the same system unity of BTN does not

increase. Third bridge results are only given for C- and P-Space because currently

future locations of the bus-stops are not known. We observed weakness in C-Space

clustering due to the distance of the defined third bridge route with existing routes.

But weak route connection increased transportation between far and disconnected

bus-stops in north districts of two sides (Asian-European) and increased global

clustering in P-Space.

Average Clustering Coefficient-Degree Distribution P-Space [stanbul(Log-Log)

0.6

Istanbul Metrobus

04
02p

<CP(k)>

02t
04F
06
08¢

wlk

5 L
05 1

0.6

04
02p

ok
02t

<Cplk)=

045
N6}
a8t

Istanbul Non-Metrobus l_

i L
s 1

|
25 3l

Istanbul 3. Bridge

L L
2 25
ke

=)

Figure 3.17 Average clustering coefficients of same degree nodes - degree k
correlations for Istanbul in C-, L-, and P-Space.
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Clustering coefficient — degree correlation plot for Istanbul third bridge
network in P-Space emphasizes the distant third bridge route (Figure 3.17c¢).

Table 3.15 Assortativity mixing values of whole networks in C-, L-, and P-Spaces
are showed within nearest (r!) and next nearest neighbor (r?) connections.

C-Space L- Space P- Space
City % 8 it 2 T 3
Istanbul Metrobus 0.210 -0.139 0.146 0.124 | -0.097 -0.008
[stanbul Non-Metrobus 0.229 -0.137 0.145 0.128 | -0.097 -0.006
Istanbul Third Bridge 0.214 -0.129 - - 0.287 -0.050

Table 3.15 gives a comparison of assortativity mixing values in C- and P-Space
for three Istanbul networks and in L-Space for current and Non-Metrobus networks.
In L-Space metrobus does not make any change and the network stayed assortative
which is also true for P-Space. But assortativity status is changed from disassortative
to assortative with the third bridge (Table 3.15). Third bridge increases connections
between all bus-stops as nodes with high degrees on both sides get connected.
Assortativity in C-Space did not change since adding only one distant route does not
impact the network much. However, metrobus route created new high degree routes

and decreasing assortativity values of same state.

Table 3.16 Average and maximum shortest path length in C-, L-, and P-Spaces for
BTNs of four cities; N: number of bus stops; R: number of bus routes; F: number of
bus stop per a route (route density).

<l> lmax
City C-Space L-Space P-Space | C-Space L-Space P- Space
Istanbul Metrobus 2.068 10.29 2.86 4 53 5
Istanbul Non- Metrobus 2.084 10.81 2.86 4 55 5
Istanbul Third Bridge 2.060 - 2.64 4 - 5

Effects on path lengths are shown in Table 3.16. Adding the new routes for
metrobus and third bridge increased connections and decreased number of transits
between routes in C-Space. Thus average path lengths between routes decreased. A
greater decrease is observed in the third bridge network. The third bridge route

connects routes on both sides that were not connected in the old BTN while metrobus
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connects routes that were also connected in the former network. Comparison of
Istanbul Current and Non-Metrobus networks for average shortest path length in L-
Space shows a decrease in average shortest path length with metrobus. In P-Space
there are no differences between the two networks. However, a decrease in is
observed with the construction of the third bridge. Via the third bridge distant points
of both sides get connected which decreases mean shortest path. Maximum path
values in Table 3.16 show that there are no differences in C- and P-Space but a
decrease in L-Space. From P-Space results we observe that one can reach any point

in Istanbul with maximum 5 transits.
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Chapter4

Conclusion

In this study we conducted a thorough statistical analysis for bus transportation
networks (BTNs) of four largest cities (istanbul, izmir, Ankara, Bursa) in Turkey in
C-, L-, and P-Space. In L- and P-Space network sizes are dictated by the number of
bus stops which were 4726, 5489, 4249, and 3914 respectively. In C-Space defined
by route-route relations, the numbers of bus routes were 529, 295, 376, and 206
respectively. Node degree distributions of all cities in L-Space showed a good fit to
power law distribution with exponents y ranging from 2.66 to 4.44. In P-Space,
cumulative degree distributions show exponential decay with k = 101.7 — 239.9.
Node degree analysis in L- and P-Space shows that BTNs of Istanbul, izmir, and
Ankara are scale-free. While Bursa’s growth seems to be random, new nodes are
added preferentially in the other three cities. Global (mean) clustering coefficient
analysis gave the highest values in P-Space as «C>p = 0.78 — 0.83 while L- and C-
Space ranges were «C>; = 0.08 — 0.10 and <«C>, = 0.70 — 0.74 . Results show bus
network unity for all four cities. Also power-law distribution models correlation
between average clustering coefficient for all nodes with given degree k well with
exponent values 8 = 0.53 — 0.65in P-Space. Assortativity analysis showed that the
networks were assortative in C- and L-Space but disassortative in P-Space. We
observed no relation of assortativity with other network properties. Shortest path
length distribution in L-Space is described in Lavenberg-Marquardt method with
p(l) = Ale™BP+CL small shortest path length values that reflect small-world
behavior were observed in all topologies and they were more apparent in P-Space.
No correlations between mean shortest path length and the end node degrees
(L(k,q) — kq) were found. L-Space studies revealed correlation between mean
shortest path lengths for single end nodes. Degree, closeness, eigenvector, and
betweenness centralities were also analyzed. We observed that average centralities

among nodes with degree k and node degree correlations fit power-law distributions.
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Further studies for Istanbul looked at the effects of metrobus and third bridge
construction on existing BTN of Istanbul. Metrobus does not result in significant
changes on local and global network characteristics. These results show that the main
purpose of metrobus was not to increase connection between routes and bus-stops
but it aimed to increase the number of people carried on Avcilar-Zincirlikuyu,
Avcilar-Topkapi, and Sogiitliigesme-Edirnekap: routes, decrease transport times and
save fuel. The third bridge to be built between Poyrazkdy (in Asia) and Garipge (in
Europe) will create a new route(s) that will connect very distant points of the
northern districts on both sides of Istanbul. BTN with the third bridge route added
revealed important differences in local and global characteristic of system in C- and
P-Space. Connections between routes and bus-stops on two sides increased. Node
degrees and global clustering coefficients also increased. Moreover, assortativity
mixing changed state from disassortative to assortative, and travelling steps (path
length) decreased with additional linkage of northern districts. Eventually third
bridge construction will increase network unity and decrease travel times in Istanbul.

Overall, BTNs of all four cities are real-world networks which show good
degree fits to power-law distribution (“scale-free”), high clustering (“small world”),
low average path length (“small world”), good fits of betweenness centrality-degree
correlations to power-law distributions (“scale-free”).

Statistical analysis of networks enables us to analyze several network
properties for BTNs of cities. It also helps us to measure the impacts of newly added
routes and bus-stops to a certain degree. However, in public projects several
interesting questions can arise such as how to add routes while minimizing cost,
reducing greenhouse effects, or reducing travel time. Using statistical analysis results
of public transportation systems to answer questions about economical and
environmental problems of municipalities and governments is an interesting topic for

future research.
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Appendix A Dictionary

Bipartite graph: Vertices are divided into 2 subsets, and they don’t have any edges
linking them in their set.

Circuit: A path that starts and ends at the same vertex in network.

Clique (clustering): Highly connected networks where each vertex connect to every
other node in other word connection between any node pairs occur in a single step
and each node connects to every other nodes. For social network model, a group of
people who all know each other.

Complete graph: The total number of vertices in the set of G(V,E) is called the size
of the graph (N) and the total number of edges in the set of E(M). Maximum
number of edges in graph equal to N(N —1)/2, if all possible edges are in
connection, graph is called as “complete graph”.

Component: A subset of vertices in the graph that they can be reachable from the
other vertices on some path through the network.

Connected graph: Each vertex of a network has a path to all other vertices
(reachable) in network that any two vertices are attached by a path(no matter how
long).If there is more than 1 connected components network is defined as
“disconnected network™.

Cycle: A path that starts and ends at the same vertex but does not revisit vertices in
network.

Degree: The number of edges connected to a vertex that its minimum value is 0 and
maximum value is N-1(N total number of vertices in network). A directed graph has
an in-degree and an out-degree for each vertex, which are the numbers of in-coming
and out-going edges.

Degree of node i: k; = ¥ kj
Average degree of a network: = < k > = % N, k= %

(N is number of nodes in the graph)

Diameter: Maximum shortest path value in network (diam(G) — d = max;;d;).
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Directed graphs: A directed graph D (digraph) consists of a non-empty set of nodes
(V) and a set of one direction (arrow) connection between pairs of different vertices
(Directed Edges). Edges directions are represented as i < j that mean an edge from
vertex i to vertex j.

Distance (l;; — distance from vertex i to j): The number of edges along the shortest
path connecting two nodes. The mean number of neighbors in a distance “1” is

1

defined as z' and for a diameter “d” total number of vertices in a graph

approximately equal to z¢ (N~ z9). This equation follows the approximate diameter
ofagraphasd = lli’)iglz .Distance of disconnected two vertices is infinity.

Edge: The line connecting two vertices, also called a bond (physics), a link
(computer science), or a tie (sociology).

Graph representation: Mathematical representation of graph is made on N X N
adjacency matrix (sociomatrix in social networks) x = {x;;} that are defined as
x;; = 1 if there is any connection between pairs of vertices i and j ((i,j) € E) and
otherwise is referred as x;; = 0((i,j) € E). In undirected graphs the adjacency
matrix is symmetric x;; = x;;.
Geodesic distance: Minimum path value within path lengths also called as shortest
path.

Path Length: Path is a sequence of nodes in which each node is attached to the next
one and total number of edges between any two vertices is defined as “path length”.
Shortest path is the minimum path value within path lengths also called as “geodesic
distance”. If there isn’t any path between vertex pairs, geodesic distance is defined as
“infinite” for this vertex pairs.

Pearson correlation coefficient: A measure of the correlation (linear dependence)
between two variables X and Y, giving a value between +1 and —1.

NYxiyi — XXXV
JNinZ - (2xi)2JN2yi2 -y’

Simple graph: Graph does not have loops (self-edges) and multiple edges.

r =

Undirected graph: An undirected graph G= (V, E) consists of non-empty set of
vertices and connections between pairs of different nodes (E) are both direction.
Vertex: The fundamental elements of a network, also called a site (physics), a node

(computer science), or an actor (sociology).
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