
Navigation of Autonomous Vehicle in Indoor Environment

HAKAN YILMAZ

B.S., Computer Engineering, Işık University, 2008

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

IŞIK UNIVERSITY

2011

IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

NAVIGATION OF AUTONOMOUS VEHICLE IN INDOOR ENVIRONMENT

HAKAN YILMAZ

APPROVED BY:

Assist. Prof. Emine Ekin Işık University

(Thesis Supervisor)

Prof. Yorgo İstefanopulos Işık University

Assist. Prof. F. Boray Tek Işık University

APPROVAL DATE:/..../....

Navigation of Autonomous Vehicle in Indoor Environment

Abstract

This study investigates transforming a remote controlled vehicle into an au-

tonomous vehicle which explores the environment and is able to find its own

location in this unknown static indoor environment. It also constructs the map

of this environment simultaneously. The study consists of mainly three parts

which are (i) the hardware of autonomous vehicle; (ii) while exploring the envi-

ronment furnished with landmarks to detect the landmarks, and to control the

vehicle so that it can move towards these landmarks and/or it can avoid them;

(iii) once having the ability of moving in the environment safely, locating it-

self and constructing the map of environment. The hardware of the vehicle has

mostly designed and installed by Robotics and Autonomous Vehicles Laboratory

(RAVLAB) members as it is a part of one of the RAVLAB’s projects1. Moving

safely in an unknown environment is a requirement for the car to locate itself and

to extract the map of the environment, which are known as localization and map-

ping problems respectively. While traveling, at every time step, the car estimates

its new position by computing the displacement using its instantaneous speed

value. The positions of landmarks in its visible area are also estimated. However,

real positions of both the car and the landmarks are usually different then the

estimated ones because of several factors including sensor noises, car’s voltage

regulations etc. We have performed a series of experiments in laboratory2. The

first set of experiments focused on making the vehicle to navigate towards the

closest object. Second set of experiments focused on making the vehicle to stop

in the presence of an object in front of the car. Finally, simultaneous localiza-

tion and mapping the environment of the car has been tested. The experiments

have revealed encouraging results in the sense that the vehicle can traverse the

running environment safely. Although, localization and mapping results of the

vehicle were not free of error, we were able to get the expected results at the end.

1TOTAY:Tekerlekli Otonom Araba Yarışları. Supported by the Işık University Scientific
Research Projects Fund, BAP...

2Robotic and Autonomous Vehicles Laboratory of Işık University

ii

OTONOM ARACIN KAPALI ALANDA DOLAŞMASI

Özet

Bu çalışma, uzaktan kumandalı bir aracın, çevresini araştıran ve bu bilinmeyen

kapalı çevrede kendi yerini tayin edebilen otonom bir araca dönüşümünü in-

celemektedir. Çalışma aynı zamanda bu çevrenin haritasını oluşturmaktadır.

Çalışma, üç temel bölümden oluşmaktadır: (i) otonom aracın donanımı, (ii)

işaretleri bulmak için işaretlerle donatılmış ortamı araştırırken, ve bu işaretlere

doǧru hareket etmesi ve/veya onlara çarpmaması için aracı kontrol etme, (iii)

ortamda güvenli şekilde hareket kabiliyetini edindikten sonra, ortamdaki yerini

tayin etmesi ve haritasını çıkarması. Otonom aracın tasarımı ve kurulumu Robot-

bilim ve Otonom Araçlar Laboratuarında (RAVLAB) ve RAVLAB çalışanları

tarafından yapılmıştır. Bilinmeyen bir ortamda güvenli bir şekilde haraket et-

mek, sırasıyla yer bulma ve harita çıkarma problemleri olarak bilinen arabanın

kendi yerini bulma ve ortamın haritasını çıkarma işlemidir. Otonom araç seyir

halindeyken, bir sonraki pozisyonunu tahmin etmek için, anlık hızı ile geçen za-

manın hesaplanması sonucunda aracın yeni yeri tahmin edilir. Aynı zamanda

kameradan görülen işaretlerinde yeri tahmin edilir. Ama genellikle aracın gerçek

pozisyonuyla, aracın tahmin pozisyonları farklı çıkar. Farklı çıkmasının birçok ne-

deni vardır örneǧin ortamdaki gürültü, sensor gürültüsü, aracın gerilim regülasyonu,

v.b.. Laboratuvarda birçok deney gerçekleştirdik. Birinci deney grubu, aracın

en yakın objeye ilerlemesi üzerinde yoǧunlaştı. Sonraki deney grubu, önünde

bir obje bulunması durumunda aracın durmasına odaklandı. Son olarak, araç

ortamının eş zamanlı olarak yer tayin edilip haritasının çıkarılması test edildi.

Deneyler, aracın çalıştıǧımız ortam içinde güvenli bir şekilde her yöne haraket

etmesi açısından cesaretlendirici sonuçlar verdi. Otonom aracın yer bulma ve

harita çıkarma sonuçlarının hatasız olmamasına raǧmen, sonunda beklediǧimiz

sonuçları elde edebildik.

iii

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my thesis

advisor Assist. Prof. Dr. Emine Ekin without whose guidance and support

I would never have been able to write this thesis. Her constant contribution,

understanding and patience enabled me to complete this work successfully. She

listened to my half-cooked ideas and helped me to develop them. I am indebted

to her for all.

I would like to thank Assist. Prof. Dr. Boray Tek for sharing his time and

knowledge with me. His constructive criticism and useful comments have been

an invaluable contribution to this study. I also wish to thank Prof. Dr. Yorgo

Istefanopulos for sharing his valuable time with me to improve this study and for

his helpful comments.

Many thanks to my friends Koray Ak, Mehmet Güneş, Doǧan Kırcalı, Îbrahim

Îyidir, Pasindu Abeysundera and Mehmet Alkan for their friendship, support and

confidence in me.

I am also grateful to one special person, Yasemin Kesen, whose patience and

support have been a great contribution to this study. She listened to me patiently

and cheered me up when I am down. Also she was always there when I got stuck.

Finally, I would like to express my deepest gratitude to my family for their endless

love, support and belief. My parents, Erdem Yılmaz and Vicdan Yılmaz, my

sisters Tuǧba Yılmaz, and Seda Yılmaz were very supportive when I needed them.

I am very lucky to have such a family. This thesis is dedicated to them.

iv

Table of Contents

Abstract ii

Özet iii

Acknowledgements iv

List of Tables vii

List of Figures viii

List of Symbols x

List of Abbreviations xi

1 Introduction 1

1.1 Simultaneous Localization and Mapping (SLAM) 2

1.2 Thesis Outline . 3

2 Background Information 5

2.1 Early Work on Autonomous Robot Vehicles 5

2.2 Designing an Autonomous Vehicle 7

2.2.1 Fit-PC . 7

2.2.1.1 Why Fit-PC? . 8

2.2.2 Arduino . 8

2.2.2.1 Why Arduino? 9

2.2.2.2 Features of Arduino 9

2.2.2.3 Software of Arduino 10

2.2.3 Ultrasonic Sensor . 11

2.2.3.1 Features of Ultrasonic Sensor 12

2.2.4 Digital Video Camera (Webcam) 12

2.2.5 Global Positioning System (GPS) 12

2.2.6 Compass . 13

2.2.7 Vehicle (Traxxas) . 14

2.2.8 Li-Po (Lithium-ion Polymer) 15

2.3 Running Environment . 16

2.3.1 Landmark . 17

3 Moving in the Environment 18

3.1 Landmark Detection . 18

3.1.1 Digital Image . 19

3.1.1.1 Binary Image . 19

3.1.1.2 Grayscale Image 21

3.1.1.3 3 Channel Color Image (RGB) 22

3.1.1.4 Conversion From 3 Channel Color Image (RGB)
to graylevel Image 23

3.1.2 Pixel Detection Algorithm 24

3.1.3 Filtering . 24

3.1.3.1 Mean Filter . 25

3.1.3.2 Gaussian Filter 25

3.1.4 Grayscale Morphological Operations 26

3.1.4.1 Pixel Neighborhood 27

3.1.4.2 Opening Operation 27

3.2 Finding the Closest Object . 29

3.2.1 Connected Component Labeling 30

3.2.2 Center of Mass . 32

3.3 Controlling the Vehicle . 33

3.3.1 Servo and Speed Control 33

4 Simultaneous Localization and Mapping 38

4.1 Odometry Data . 40

4.2 Distance Measurement . 42

4.2.1 Flood Fill Algorithm . 42

4.2.2 Laser Rangefinder . 44

4.2.3 Finding the Distance Depending on the Size of the Object 45

4.3 Kalman Filter (KF) . 47

4.3.1 The Kalman Gain . 48

5 Experiments and Results 50

5.1 Experiments and Results for Distance Measurement 50

5.2 Experiments and Results for SLAM 51

Conclusion 55

References 56

Curriculum Vitae 60

List of Tables

3.1 Calibration of Servo Value and Angle 34

3.2 Calibration of vehicle speed value, speed (m/sec), and velocity . . 37

4.1 Odometer Data . 40

4.2 Calibration between all object pixels and exact distance 46

5.1 SLAM Table without Rotation . 51

5.2 SLAM Table with Rotation . 53

5.3 SLAM Table Error Rate without Rotation 54

5.4 SLAM Table Error Rate with Rotation 54

vii

List of Figures

2.1 Autonomous Car . 7

2.2 Fit-PC . 8

2.3 Arduino . 9

2.4 Arduino Interface . 10

2.5 Ultrasonic Sensor . 11

2.6 GPS . 13

2.7 Compass . 14

2.8 Traxxas . 14

2.9 Lithium-ion Polymer Battery . 15

2.10 Autonomous Car . 16

2.11 Running Environment . 16

2.12 Landmarks . 17

3.1 Input Image (Original mage) - Binary Image for red 20

3.2 Input Image (Original mage) - Binary Image for green 20

3.3 Input Image (Original mage) - Binary Image for blue 20

3.4 Input Image (Original Image) - Grayscale Image 21

3.5 RGB channels for the input image 22

3.6 RGB Color Cube [24] . 23

3.7 Mean Filter . 25

3.8 Gaussian Filter . 26

3.9 Pixel Neighborhood[28] . 27

3.10 Opening Morphological Operation 29

3.11 Pseudo code for Connected Component Labeling Algorithm . . . 31

3.12 Connected Components Labeling 31

3.13 The Nearest Object . 32

3.14 Pseudo code for Center of Mass Algorithm 33

3.15 Turning Angle of the car . 35

3.16 The graph of calibration from Servo value to Angle(degree) 35

3.17 Locations of Vehicle and Object 36

3.18 The graph of calibration from car speed value to speed(m/sec) . . 37

4.1 Outline of SLAM . 39

4.2 Odometer Data Error . 41

4.3 Outlook of Camera [33] . 43

viii

4.4 Vision Measurement [34] . 44

4.5 Laser Rangefinder . 45

4.6 Vision Measurement . 47

5.1 Vision Measurement vs. Actual Distance (cm) Graph 51

5.2 The paths followed by the car (without rotation) 52

5.3 The paths followed by the car (with rotation) 53

List of Symbols

B Control matrix

F State transition matrix

GB Gigabayt

H Measurement matrix

i, j Pixel index

K Kalman Gain

n The index of landmark

MHz Mega Hertz

MM MilliMeter

P State variance matrix

Q Process variance matrix

R Measurement variance matrix

s State

t Time

x, y The coordinate of x,y in the plane

u Controls of vehicle

V Volt

v Vector

z Measurement range

θ All Landmarks

β Angle between two vectors

⊕ Dilation Operation

	 Erosion Operation

x̂ Estimated state

µ Mean value of a block

σ Standard deviation of a block

σ2 Variance of a block

x

List of Abbreviations

A Amper

AGVs Autonomously Guided Vehicles

DARPA Defense Advanced Research Projects Agency

EEPROM Electrically Erasable Programmable Read Only Memory

EGNOS European Geostationary Navigation Overlay Service

EMI Electro Magnetic Interference

GPS Global Positioning System

HDMI High Definition MultimediaInterface

KF Kalman Filter

KG Kalman Gain

LCC Leadless Ceramic Carrier

Li-Po Lithium-ion Polymer

ME Motion Estimation

MHz Mega Hertz

MSAS Multi-functional Satellite Augmentation System

Ni-Cd Nickel Cddmium

Ni-MH Nickel Metal Hydride

OEM Original Equipment Manufacturer

OS Operating System

PC Personal Computer

PCBs Poly Chlorinated Biphenyls

PCI Peripheral Component Interconnect

PWM Pulse Width Modulation

RGB Red Green Blue

xi

SBAS Satellite Based Augmentation System

SD Secure Digital

SDMC Secure Digital Memory Card

SLAM Simultaneous Localization And Mapping

SMAL Simultaneous Mapping And Localization

SRAM Static Random Access Memory

Thr Threshold

TTFF Time To First Fix

US United States

WAAS Wide Area Augmentation System

WiFi Wireless Fidelity

3-D 3 Dimension

xii

Chapter 1

Introduction

Autonomy is the ability of making decisions on your own to achieve a goal. An

autonomous vehicle must make decisions to increase its expected gain to maxi-

mum level, so it needs to make rational decision. To achieve that, there has to

be an agent who has a description of its world, a set of sensors to get information

about its present condition, and a set of actuators to execute its decisions.

The description of the world is called an environment model which gives the agent

a basis to make rational decisions. To decide on the best order of actions to take

place, a rational agent may stimulate its environment model to do an analysis

of ’what would happen if’, or it may do a backward analysis from the target to

the current state. There are two different ways for a rational agent to learn its

environment: it may have a built-in model or it may explore its surroundings.

Autonomous vehicles are driverless, so they have to be rational agents in terms

of sensing their environment, using their internal model of the environment so as

to make rational decisions and using actuators (i.e. gas, brake, steering wheel,

turn signals) to execute their decisions.

In this thesis, a small sized autonomous vehicle has been designed and con-

structed. What this vehicle is supposed to do is to locate itself and to construct

the map of its running environment, which are known as robotic localization and

mapping problems respectively.

1

1.1 Simultaneous Localization and Mapping (SLAM)

SLAM is known to be the set of algorithms to solve robotics localization and/or

mapping problem. Localization means that the robot estimates its own position in

the environment during its movement, where mapping means either constructing

the map of an unknown environment or updating a known map.

Though the hardware of the robots might be vastly different, as well as the

algorithms to solve both problems of localization and mapping; there are mainly

two different data sets required: the odometry data which estimates the robots

position using the instructions sent to robot’s actuators, and distances to the

visible objects. Then, basically, what SLAM techniques achieve can be given as:

Being in a position p, and knowing distances to each object d[i]

At each time step t:

1. Move robot

2. Estimate robot’s and objects new positions using odometry data

3. Measure the distance to the objects

4. Using the real and estimated distances to the objects, update the robot’s

position

The last step in above algorithm is the heart of SLAM process, where mostly

either Kalman Filter or Extended Kalman Filter [1, 2] is being employed.

The solutions offered for localization and mapping problem strongly depends on

environment, i.e., whether or not the robot has priori knowledge about the envi-

ronment; whether or not the positions of the objects are changing, appearing or

disappearing in time.

We have worked in laboratory, that is indoor, environment which is furnished with

a number of landmarks. Thus, the environment of the car is described as static

2

environment. As it is aimed to construct the map of the environment, no priori

information has provided to the car, which means that the running environment

for the car is unknown, static, and indoor.

1.2 Thesis Outline

The first part in this thesis investigates how autonomous car navigates towards

a target object in indoor environment. After determining random start and end

points for the vehicle, it has seen that it arrived at the end point by avoiding

obstacles. Later, the vehicle has aimed to going to the nearest object. After

a series of experiments, it has been observed that it succeeded in going to the

nearest object.

In the second part of this thesis, simultaneous localization and mapping of the

environment were done.

The applications have been developed on Windows environment with Visual Stu-

dio 2008, C++ with OpenCV computer vision library installed. The sensor data

has been collected, and the instructions have been sent to the car via Arduino soft-

ware. Furthermore, the connection between Arduino software and Visual C++

software is completed via Serial communication library. Matlab has been used in

distance measurement task.

In Chapter 2, some background information was provided on autonomous vehicles.

The background information comprises the concepts of the domain of intelligent

vehicles, their history, and information on construction of an autonomous ground

vehicle. The background information also includes the list of components that

are used in autonomous vehicle.

Chapter 3 explains two subgoals of this thesis, avoiding the obstacles and moving

to the closest object, which requires identifying the closest object first. Both

objectives are achieved using image data taken via web cam, and distance data

3

measured with ultrasonic sensors. Thus, the chapter mainly contains image pro-

cessing algorithms employed. According to the decision made, how the motor

control is achieved has also been included in the chapter.

Chapter 4 presents SLAM algorithms. It further introduces distance measurement

techniques which we have used to extract the positions of the landmarks . Then,

this chapter provides a summary of the studies concerning Kalman Filtering.

This thesis finally discusses the construction of an autonomous vehicle and SLAM

[3] being used for indoor navigation.

4

Chapter 2

Background Information

This chapter investigates previous studies on autonomous robot vehicle projects

and materials that are used in this project.

2.1 Early Work on Autonomous Robot Vehicles

An intelligent autonomous vehicle should navigate by itself while sensing its envi-

ronment and internal states. It is further expected to avoid obstacles by interpret-

ing the information that comes from sensors. Guiding and controlling commands

depending on spatial and temporal variations in the environment are final duties

of this vehicle [4].

In the past, there have been many attempts for autonomous vehicles includ-

ing the prominent ones EUREKA Prometheus Project [5] and the Defense Ad-

vanced Research Projects Agency (DARPA) Grand Challenge [6]. The EUREKA

Prometheus Project is considered as the largest research development undertaken

in the area of driverless cars so far. The DARPA Grand Challenge is also regarded

as the most recent major advancement in the field of autonomous vehicles.

There are a number of research programs on autonomously guided vehicles (AGVs)

those had been initiated for several years before 1992 [4].These research programs

focused on sensor management, multi-sensor data fusion and machine perception

5

[7, 8], goal specification and planning [9, 10], navigation [11, 12], guidance and

motion control [13–15], which also cover the programs being worked on nowadays.

Lorfield and Harris [16] argue that autonomous vehicles have the ability of de-

creasing the robot complexity, widening the market for subsystems by using con-

trol protocols, supplying portability, inter-operability, and modularity in software,

minimizing time, cost, risk and initial investment, and yielding technology trans-

fer between application areas. There are levels and sublevels of sensory acquisition

and processing, world modeling, and task decomposition in the architecture of the

vehicle.

World modeling, landmark recognition, and learning the landmarks are require-

ments needed in this thesis for navigation. In Harris and Channley’s [4] study,

two stages are argued for the path planning problem. These stages are developing

a global strategy in terms of immediate goals and generating commands at a low

level for the achievement of these goals. At the lowest level, which is the servo

level, vehicle dynamics needs to be handled by the motion controller.

In recent years, path planning algorithms, which are responsible for maintaining

many essential aspects of plausible agent behavior, including collision avoidance

and goal satisfaction, are observed to be more efficient. The problem of path

planning is studied for the case of a mobile robot moving in an environment

filled with obstacles whose shape and positions are not known [17]. The A*

algorithm is a path planing algorithm that uses Dijkstra algorithm [18] to obtain

the optimum result for the robot. The disadvantage of the A* is that A* uses

uniformed grids representation which must allocate large amounts of memory [19].

The D* algorithm is another path planing algorithm.The D* algorithm helps the

robot to find the optimal path in a dynamic environment in which fixed obstacles

in the environment are changed to moving obstacles.

6

Figure 2.1: Autonomous Car

2.2 Designing an Autonomous Vehicle

An autonomous car is expected to navigate in the absence of an outside control

by avoiding the obstacles in the environment. The autonomous car in Figure 2.1

is designed for this thesis with five sensors, one fit-PC, one camera, one arduino,

one GPS device and one compass.

2.2.1 Fit-PC

Fit-PC is a computer that has 1.6GHz Atom Z530 processor, 1GB ram, 160GB

hard disk, HDMI output which provides 1920x1080 resolution support. Both

Gigabit Ethernet and 802.11g Wi-Fi are present in Fit-PC shown in Figure 2.2.

It further supplies six USB 2.0 port, a mini PCI Express slot and a microSD card.

7

2.2.1.1 Why Fit-PC?

The reason why Fit-PC is used in this thesis is that it is small. Not only Fit-PC

is one of the smallest computer in the world but also it is very light. Another

reason for using it is that it saves energy compared to other notebooks.

Figure 2.2: Fit-PC

2.2.2 Arduino

Arduino, shown in Figure 2.3, is a general purpose device which enables com-

puters to control the physical world from the desktop computers. It consists of a

microcontroller board and provides an open source environment for software de-

velopment. Arduino is used to develop interactive objects by taking inputs from

various switches or sensors, and it controls motors and physical outputs. Arduino

projects can be used alone or with a software program (i.e. C, C++, Matlab and

Java) which is already running in the computer.

8

Figure 2.3: Arduino

2.2.2.1 Why Arduino?

First reason why the arduino used is that sensors and some other device controls

such as GPS and compass cannot be directly connected to the computer and

arduino serves as a bridge between these parts and the computer. Another reason

is that its an open source development environment and also the community

working with arduino is quite big.

Although there are many other microcontrollers and microcontroller platforms for

physical computing, arduino differs from others in terms of simplifying the process

of working with microcontrollers. This tool is practical so it is easy-to-use both by

professionals and beginners. It is also relatively inexpensive and compatible with

a number of operating systems such as Windows, Linux and Macintosh OSX.

2.2.2.2 Features of Arduino

• Microcontroller ATmega168

• Operating Voltage 5V

• Input Voltage (recommended) 7-12V

• Input Voltage (limits) 6-20V

• Digital I/O Pins 14 (of which 6 provide PWM output)

9

• Analog Input Pins 6

• DC Current per I/O Pin 40 mA

• DC Current for 3.3V Pin 50 mA

• Flash Memory 16 KB (ATmega168) or 32 KB (ATmega328) of which 2 KB

used by bootloader

• SRAM 1 KB (ATmega168) or 2 KB (ATmega328)

• EEPROM 512 bytes (ATmega168) or 1 KB (ATmega328)

• Clock Speed 16 MHz

2.2.2.3 Software of Arduino

Arduino software runs on Windows on which Java Virtual Machine(JVM) is in-

stalled. And also arduino software is compatible with Windows, Macintosh OSX

and Linux.

Figure 2.4: Arduino Interface

Figure 2.4 illustrates Arduino software Interface.

10

2.2.3 Ultrasonic Sensor

Ultrasonic sensors, given in Figure 2.5, can detect object using high frequency

waves without actually contacting with the objects. The Parallax Ping))) sensor,

that is what we use in this project, measures distance using sonar, in which an

ultrasonic pulse is transmitted from the unit and distance-to-target is determined

by measuring the time necessary for the echo return. It provides low-cost and it

is practical for measuring the distance from any object whether it is moving or

stationary. In this project, five Parallax Ping))) sensors are used.

Parallax Ping))) sensors are not affected by the color and brightness of objects

and they are better than other sensors in terms of being affected by the surface

and material of objects. Furthermore, they do not require maintenance and it

can identify small objects from long distance. The last advantage of an ultrasonic

sensor is that it is resistant to vibration, noise and EMI radiation.

On the other hand, there are a few disadvantages of ultrasonic sensors that needs

to be presented at this point. To begin with, ultrasonic sensors can not give an

exact value of the distance between the object and the car because of the noise

around. This can be listed as the biggest disadvantage of the ultrasonic sensors.

Secondly, as we worked in real time, it takes some time for ultrasonic sensor to

measure the distance between the vehicle and the object.

Figure 2.5: Ultrasonic Sensor

11

2.2.3.1 Features of Ultrasonic Sensor

• Provides precise, non-contact distance measurements within a 2 cm to 3 m

range

• Simple pulse in/pulse out communication

• Burst indicator LED shows measurement in progress

• 20 mA power consumption

• Narrow acceptance angle

• 3-pin header makes it easy to connect using a servo extension cable, no

soldering required

2.2.4 Restricted Digital Video Camera (Webcam)

Digital Video Camera is connected to a computer, and gathers a series of images.

In this study, webcam is used to observe the environment. The reason why it is

preferred is that it is inexpensive.

2.2.5 Global Positioning System (GPS)

Global Positioning System, as seen in Figure 2.6, is a satellite web which sends

regularly coded information, and makes it possible to find and detect a spot on

earth by measuring the distance between the satellites and us.This system consists

of 24 satellites which belong to US defense department and revolve around the

orbit continuously [20].These satellites give off very low level radio signals. The

GPS receiver on earth receives these signals. Thus, position detection can be

done. In other words, GPS device makes it possible to sign our position and

returns that position. GPS is able to work in every place except for closed areas

and underwater where it is hard to get signals. In this project, we work in indoor

environment, therefore GPS device is not used in our project.

12

Figure 2.6: GPS

2.2.6 Compass

This magnetic compass, in Figure 2.7, has many advantages including heading

information. It is the only device which can provide absolute heading information

without any other outside reference for calibration. Today’s electronic compass

can connect with micro-controls easily, and involve some features such as power

save and calibration. However, compass has their own uncertainties and problems.

Therefore, one needs to understand how electronic compasses work and the effect

of environment conditions on them so as to use this technology in its best way

in projects. It is also important to set the appropriate experiment environment

for digital compasses as they are sensitive to magnetic areas. For these reasons,

compass is integrated in the autonomous vehicle; however, we have not used in

this thesis.

13

Figure 2.7: Compass

2.2.7 Vehicle (Traxxas)

In this project, we have chosen Traxxas, in Figure 2.8, model which works with

electricity. Needless to say, any model car can be used. The reasons why we

have chosen Traxxas are that it has a very good suspension, and it comes already

installed. The most important reason that it is cheap and spare parts are easy to

find. Also note that it carries heavy load which enables us to use some devices

such as battery, netbook, arduino and camera on this vehicle.

Figure 2.8: Traxxas

14

2.2.8 Li-Po (Lithium-ion Polymer)

Model car that is chosen for this project works with Li-Po (Lithium-ion polymer)

batteries which provide long trial drives. Besides, it is charged in a short amount

of time and it works Fit-pc and car for 6 hours without charging. In addition,

while other batteries (Ni-Cd, Ni-Mh, etc) are charged in 16 hours, Li-Po battery,

in Figure 2.9 is charged only in an hour, which is time saving. We have chosen

3 cells series connecting Li-Po batteries as the operating voltage of the Fit-pc is

between 9V-15V. 3 cells series connected Li-Po battery gives 9.9V as the minimum

voltage and 12.4V as the peak voltage. 4.0 Ah is chosen for this project since

Fit-pc draws approximately 0.5A. Therefore 4000 mAh gives us 8 hours of Fit-pc

operating time. On the other hand, Li-Po batteries have a disadvantage; battery

tends to die below 9.0 V. Hence, a simple hardware implemented critical level

battery alarm is used. Battery alarm gives warning, if it bellows 9.9V.

Figure 2.9: Lithium-ion Polymer Battery

All equipments of the car, mentioned above, are put together neatly. As shown in

Figure 2.10, 3 ultrasound are fixed onto the car while two ultrasound are fixed on

the corners which will be explained in detail. As mentioned before, since we work

in indoor environment, we did not use GPS and compass but GPS and compass

15

devices are connected to the autonomous car. By the help of arduino, all sensors,

GPS and compass were tied to the Fit-pc.

Figure 2.10: Autonomous Car

2.3 Running Environment

Figure 2.11 illustrates the running environment which is covered with a green

carpet. Tenpins are placed on the corner of the green carpet. These tenpins are

used as landmarks.

Figure 2.11: Running Environment

16

2.3.1 Landmark

Landmarks are features which can easily be re-observable and distinguished from

the environment. The car uses them to find out its location. It is crucial for the

landmarks to be re-observable as they should be detected from different positions

and angles. Moreover, they should be unique in the sense that they are identified

easily without being mixed. The key points of suitable landmarks are:

• Landmarks should be re-observable easily.

• Individual landmarks should be distinguishable from each other so that they

are not mixed.

• Landmarks should be plentiful in the environment.

• Landmarks should be stationary.

In this project, tenpins with different colors are used as landmarks. As shown in

Figure 2.12, unique tenpins are placed in selected locations of the environment.

Landmarks are characterized by their location in Qk for k = 1,....,number of

landmarks. Landmark is as points x,y in the plane therefore locations are specified

by two numerical values which are stored in a landmark array.

Figure 2.12: Landmarks

17

Chapter 3

Moving in the Environment

Before dealing with SLAM, the vehicle is required to be safely moving in the

environment. As the environment is decorated with a number of landmarks,

which are later used in SLAM as well, it is necessary to identify those landmarks,

to move towards one of them. It is aimed that the autonomous vehicle finds the

closest landmark, which is assumed to be the biggest object in the image taken

by web cam. Then the car is commanded to move towards it. The vehicle should

also be prevented to crash into the landmarks. The chapter explains how the

vehicle has gained these abilities.

3.1 Landmark Detection

Since there are predefined landmarks in the environment, an application has been

developed for the vehicle to detect which landmark it encounters. From the image

taken with web cam, to extract and identify the landmarks, some image processing

algorithms have been employed, which are;

• Pixel Detection Algorithm

• Filtering Algorithm

• Grayscale Morphological Operations

18

Following subsections introduce what a digital image is, and informal definitions

of above algorithms.

3.1.1 Digital Image

Image processing is any form of signal processing for which the input is an image,

such as a photograph or video frame; the output of image processing may be

either an image or, a set of characteristics or parameters related to the image

[21]. Image processing utilizes computer algorithms to perform processing on

digital images.

Digital image is a numeric representation of a two-dimensional image. A digital

image consists of pixels which stand for picture elements. As the image size gets

bigger the number of pixels increases. A digital image can be represented as a

matrix which contains these pixels where the values of pixels represent intensity

values. For example, a common grey level image pixel values are in the range of

0 - 255. The value shows the intensity of pixels. 0 denotes darkest pixel and 255

denotes the brightest pixel [22].

In this project, three types of images are used. These are:

• Binary Image

• Greyscale Image

• 3 Channel RGB Color Image

3.1.1.1 Binary Image

In binary images, pixel values can be either 0 or 1. 0 value shows the black

pixels and 1 value shows the white pixels. The binary image has been used

to find landmarks on the environment. The binary images in Figure 3.1, 3.2

19

and 3.3 are obtained by applying, red pixel, green pixel and blue pixel detection

algorithms (see section 3.1.2) to the input image, respectively.

Figure 3.1: Input Image (Original mage) - Binary Image for red

Figure 3.2: Input Image (Original mage) - Binary Image for green

Figure 3.3: Input Image (Original mage) - Binary Image for blue

20

3.1.1.2 Grayscale Image

In a grayscale (or gray level) image in Figure 3.4, there are only colors and shades

of gray. The reason for differentiating such images from any other sort of color

image is that less information needs to be provided for each pixel. In fact a ‘gray’

color is one in which the red, green and blue components all have equal intensity

in RGB space, and so it is only necessary to specify a single intensity value for

each pixel, as opposed to the three intensities needed to specify each pixel in a

full color image.

Often, the grayscale intensity is stored as an 8-bit integer giving 256 possible

different shades of gray from black to white. If the levels are evenly spaced then

the difference between successive gray level is significantly better than the gray

level resolving power of the human eye.

Grayscale images are entirely sufficient for many tasks and so there is no need to

use more complicated and harder-to-process color images. Grayscale images have

been used to find the biggest object.

Figure 3.4: Input Image (Original Image) - Grayscale Image

21

3.1.1.3 3 Channel Color Image (RGB)

An RGB image has three channels which are red, green, and blue. RGB channels

roughly follow the color receptors in the human eye, and are used in computer

displays. If the RGB image is 24-bit which it is used in this project, each channel

has 8 bits, for red, green, and blue. In other words, the image is composed of

three images (one for each channel), where each image can store discrete pixels

brightness intensities between 0 and 255 [23]. Figure 3.5 shows the RGB channels

of the color image.

Figure 3.5: RGB channels for the input image

It is possible to find all other colors by the mixture of red, green and blue channels.

Figure 3.6 illustrates how other colors are found. For instance, if we are looking

for black color, this means that we are detecting the color in which all three

channels have 0 value (0, 0, 0). Accordingly, if we are looking for cyan color, this

22

means that we are detecting the color in which blue and green have 255 value

and red has 0 value (Figure 3.6).

Figure 3.6: RGB Color Cube [24]

3.1.1.4 Conversion From 3 Channel Color Image (RGB) to graylevel

Image

It requires a considerable amount of process load to proceed with a three channel

image such as biggest component. To decrease computation power, first, the color

image is converted to grayscale image. Then some operations (morphological op-

erations, connected component labeling, filtering) are applied to the input image.

Under the condition that there is a three channel color image and it is required

to convert it to grayscale image in an equal weighted way, each pixel value is

recalculated by:

grayscale pixel value =
RED +GREEN +BLUE

3
(3.1)

RED : Red channel pixel value.

GREEN : Green channel pixel value.

23

BLUE : Blue channel pixel value.

3.1.2 Pixel Detection Algorithm

Pixel detection algorithm has been used to explore the color of a particular pixel.

As mentioned before, there exists three channels in RGB image and other colors

are made by using red, green and blue channels (See Section 3.1.3). In brief, pixel

detection algorithm works in this way. The values in three channels are checked

and each of these three channels are filtered one by one. The threshold value,

which changes depending on the light condition, is compared to the value in each

pixel. If a pixel value, is higher than the threshold value, that pixel is labeled as

the one that is being asked for. An example of blue pixel detection algorithm is;

if (2× blue[i]− (red[i] + green[i]) > thr) This pixel is blue (3.2)

thr : Threshold value

blue[i]: i’th pixel’s blue channel value

red[i] : i’th pixel’s red channel value

green[i] : i’th pixel’s green channel value

3.1.3 Filtering

Filtering is used to reduce the noise in the image. Pixel detection can be used as

a filtering operation. There are two criteria for choosing the threshold value: the

color histogram of the image, and the lighting conditions of the environment.

Besides the simple pixel detection method, there are some more sophisticated

filters as well. Among many others, we have used two filters:

• Mean Filter

24

• Gausssian Filter

3.1.3.1 Mean Filter

The mean filter is a simple sliding-window spatial filter that replaces the center

value in the window with the average (mean) of all the pixel values in the window.

Mean filter is used to reduce noise. In other words, mean filter filters the images

that are coming from the camera and minimizes the noise. Mean filtering circuits

all pixels of an image with a 3x3 sliding window. Then, the average of 9 values

is taken and written at the center of window. This applies to all pixels of the

image except for first and last pixels. In Figure 3.7, mean filter is applied to

input image.

Figure 3.7: Mean Filter

3.1.3.2 Gaussian Filter

The Gaussian filter is a filter that is used to blur images to remove details and

noises by calculating weighted averages in a filter box [25]. The equation of

Gaussian filter is;

25

h(x, y) =
1

2πσ2
e−

x2+y2

σ2 (3.3)

σ : Standard deviation of the Gaussian 2-D distribution x : Distance from the

origin in the horizontal axis y: Distance from the origin in the vertical axis

In Figure 3.8 Gaussian filter is applied to input image.

Figure 3.8: Gaussian Filter

3.1.4 Grayscale Morphological Operations

Morphological Operations (MM operation) are based on set theory. As such,

morphology offers a unified and powerful approach to numerous image processing

problems. Sets in mathematical morphology represent objects in an image. For

example, the set of all white pixels in binary image is a complete morphological

description of the image [26].

26

3.1.4.1 Pixel Neighborhood

When dealing with images and applying image morphology functions, not only a

single pixel is considered but also the surrounding pixels are taken into account.

The pixels which are adjacent to the current pixels are called neighbors of a pixel.

There are two common types of neighborhood which are 4 neighborhoods and 8

neighborhoods [27].

Figure 3.9 shows the two types of neighborhood. The letters in the boxes denote

the directions (north, east, south, west, northwest, southwest, and northeast,

southeast) and the empty box in the middle denotes the current (center) pixel.

In this project, 8 neighborhood version is used to get more accurate results.

Figure 3.9: Pixel Neighborhood[28]

3.1.4.2 Opening Operation

The opening operator tends to remove some of the foreground (bright) pixels from

the edges of regions of foreground pixels [29]. It is derived from the fundamental

operators erosion and dilation. Like those operators opening operator is normally

applied to binary or graylevel images.

The opening of image f by structuring element b, denoted f ◦ b, is

27

f ◦ b = (f 	 b)⊕ b (3.4)

Erosion Operation: The basic effect of the operation on a binary image is to

erode away the boundaries of regions of foreground pixels (i.e. white pixels,

typically). Thus areas of foreground pixels shrink in size, and holes within

those areas become larger.

Morphological Erosion Operation is that, the erosion of binary image A by struc-

turing element B is denoted by A 	 B and defined by

A	B = {z|(B)z ⊆ A} (3.5)

The structuring element is swept over the image. At each position where every

1-pixel of structuring element covers a 1-pixel of the binary image, the binary

image pixel corresponding to the origin of the structuring element is ORed to the

input image [30].

Dilation Operation: The basic effect of the operation on a binary image is to

gradually enlarge the boundaries of regions of foreground pixels (i.e. white

pixels, typically). Thus areas of foreground pixels grow in size while holes

within those regions become smaller.

Dilation Morphological Operation is that the dilation of binary image A by struc-

turing element B is denoted by A ⊕ B and defined by

A⊕B = {z|(B)z ∩ A 6= ∅} (3.6)

As mentioned before, the structuring element is swept over the image. Each time

the origin of the structuring element touches a binary 1-pixel.

28

Figure 3.10: Opening Morphological Operation

Opening operation means carrying out dilation operation after erosion operation.

Since they are binary operations, erosion and dilation operations are applied to

three channels separately in a three channel input image. Afterwards, these three

channels are combined. Figure 3.10 is an example of opening operation to the

input image.

As mentioned before, opening morphological operation is used in this project. In

opening morphological operation, first image erosion and then dilation morpho-

logical image is applied. The main reason why it is used is that image erosion

operation deletes all noises and dilation operation widens the wanted regions.

This makes it easy to find the wanted object.

3.2 Finding the Closest Object

In the image taken by web cam, the closest object is identified as largest object

where all the objects are of the same size. As mentioned before, landmarks have

been used as standard sized objects.

29

To find the nearest landmark to the vehicle, the images taken from camera have

been filtered to minimize the noise, and opening morphological operator has been

applied. The resulting image is a binary image containing only the regions we

are interested in. The difficulty here, there might be some objects in the image,

which do not correspond to anything in the scene, that is noise in a sense. To

overcome this difficulty, connected component labeling has been applied and the

regions of image which are supposed to be the landmarks have been marked.

The last step in finding the nearest landmark is to choose the one of the connected

components having the biggest pixel count (number of pixel).

Then the center of mass of this object is computed, so that the vehicle can

calculate the turning angle and speed to move towards it.

3.2.1 Connected Component Labeling

Connected component labeling is an algorithmic application of graph theory,

where subsets of connected components are uniquely labeled. It scans an im-

age, pixel-by-pixel (from first pixel to last pixel). In an image, there may be more

than one wanted images. Thus, it labels all objects one by one to find the nearest

object. Connected component labeling works on binary or graylevel images, so

it converts the image that we get from the camera to binary image (See Section

3.1.4), then it gives values starting from 0 to the wanted pixel and look at its 8

neighbors. If the neighbors have the wanted value, the same value is also given

to them. If not, counter increases the value only one and proceeds till the end of

the image. For instance; in Figure 3.12, blue objects are detected and found by

doing connected component labeling. The pseudocode of connected component

labeling algorithm is;

30

1 label=0
2 for i=1 to height-1
3 for j=1 to width-1
4 if image[i,j] or one of the 8 neighborhoods is labeled which is
small labeled to the connectedimage[i,j]
5 temp=label
6 label= connectedimage[i,j]
7 end
8 else
9 label++
10 end
11 if image[i,j] and its 8 neighborhoods are equal to 1
12 connectedimage[i,j]=label
13 end
14 label=temp
15 end
16 end
17 Again this code to start from last pixel to first pixel

Figure 3.11: Pseudo code for Connected Component Labeling Algorithm

Figure 3.12: Connected Components Labeling

After the application of connected component labeling to the image in figure 3.12,

the nearest object is found in Figure 3.13.

31

Figure 3.13: The Nearest Object

3.2.2 Center of Mass

The center of mass is found for the biggest connected component. The center of

mass equation is in equation 3.7 and equation 3.8.

center of mass x =
∑

rowindex÷ allindex (3.7)

center of mass y =
∑

columnindex÷ allindex (3.8)

rowindex : Row index value of each 1 columnindex : Column index value of each

1 allindex : Number of total active pixels (1’s)

In these equations, the center of mass x coordinate finds the angle between the

object and autonomous vehicle(see section 3.3); while, center of mass y coordinate

gives the nearest object(see section 3.2).

To find the center of mass coordinates, algorithm is

32

1 total=0
2 massx=0
3 massy=0
4 for x =1:height-1
5 for y =1:width-1

6 if(connectedimage[x,y] =labelnumber)
7 massx+= x
8 massy+=y
9 total++
10 end
11 end
12 end

Figure 3.14: Pseudo code for Center of Mass Algorithm

3.3 Controlling the Vehicle

As mentioned before, there are five ultrasound sensors, 4 on the corners and one

in front of the car, and also one camera is in front of the car. After the car

runs, data are gathered through sensors and camera. There is no need to do

extra work as the camera is directly connected to the fit-pc; however, data from

sensors first come to arduino before fit-pc as sensors are connected to arduino.

Therefore, there is more amount of process load when the data is gathered from

the sensors than from the camera. Using the data coming from ultrasound sensors

and camera the speed and direction of the vehicle are adjusted.

3.3.1 Servo and Speed Control

Servos are small devices which have smart and programmable miles. It is possible

to change the mile’s position in any angle that we want by sending specific codes to

the servo. The angular position of the mile changes as the codes change. That is

to say, servo is responsible for the vehicle to gravitate to the asked direction. The

servo values are calibrated to the angle (degree). Table 3.1 illustrates the angle

(degree) which corresponds to the servo value. In this project, it is determined

33

as 100 value for the car to be straight, which means that the wheels will have

the same direction with the car if 100 value is sent to the servo. If the servo

value is increased, for instance 110, the vehicle gravitates to the left. Similarly,

it gravitates to the right side if the degree is decreased. It is assumed that the

degree for maximum left direction is 145 value. While it is 55 value for maximum

right direction. Figure 3.15 represents the turning angle of the car. 100 value

is the neutral position for the car. The maximum turning angles are 55 and 145

values. Moreover Figure 3.16 illustrates the calibration from servo values to angle

(degree) for all servo values.

Table 3.1: Calibration of Servo Value and Angle

Servo (value) Turning Angle (degree)

55 45

60 40

65 35

70 30

75 25

80 20

85 15

90 10

95 5

100 0

105 5

110 10

115 15

120 20

125 25

130 30

135 35

140 40

145 45

34

Figure 3.15: Turning Angle of the car

Figure 3.16: The graph of calibration from Servo value to Angle(degree)

35

This is how the car follows an object. The car is asked to find to go the nearest

object which is blue. First, the location of the nearest blue object is identified by

using the camera. Later, the center of gravity is found for the object in Figure

3.17. As the turning angle of the car and the angle of the object in the image to

the car are different, these two angles are scaled to each other. The formula of

this scaling is:

β = k +

(
diff(resolx− x)

resolx

)
(3.9)

k : minimum servo turning value which is 55

Diff : The space between initial and last servo value which is 90

Resolx : The resolution of x coordinate which is 640

β : The turning angle of the car

x : The x coordinate of the center of gravity of the object.

In Figure 3.17, in which there is 640x480 resolution, the x and y coordinates

of the vehicle are assumed the center of an image which is 320,480. Taking

the formula into consideration, if the mass center coordinates of the object are

400,200, turning value of the servo will be 88. The coordinate of y shows how the

vehicle is close to the object.

Figure 3.17: Locations of Vehicle and Object

36

The speed of the car changes according to the data coming from sensors. The

vehicle slows down and stops in case of an obstacle. If there is no obstacle, it

gathers speed in every ’t’ time. The value of 90 is given to the vehicle when it is

in stop position. A value more than 90 is given to make it gain speed, and 135

value is given to make it go the correct direction with maximum speed. Similarly,

a value smaller than 90 is given so that it goes backwards. The value of is sent to

the motor to make it go backwards with maximum speed. Table 3.2 illustrates

the speed value which corresponds to speed(m/sec) and velocity(v).

Table 3.2: Calibration of vehicle speed value, speed (m/sec), and velocity

Motor Speed (value) Speed (m/sec) Velocity (V)

75 10.8 -10.8

80 4.5 4.5

85 1.1 1.1

90 0 0

95 0.9 0.9

100 4.2 4.2

105 10.6 10.6

In Figure 3.18, the graphic shows the car speed value which corresponds to speed

(m/sec).

Figure 3.18: The graph of calibration from car speed value to speed(m/sec)

37

Chapter 4

Simultaneous Localization and Mapping

Hugh Durrant-Whyte and John J. Leonard developed Simultaneous Localization

and Mapping (SLAM) inspiring by the work of Smith [31, 32]. While Durrant-

Whyte and Leonard originally named it as SMAL, it was later changed so as to

entail a positive effect. SLAM is a technique which is a related to the concern

of developing a map of an unknown environment by using a mobile robot and

navigating the environment using that map.

While SLAM localizes the positions of the landmarks by using vision measurement

and ultrasonic sensor, it also computes how much the vehicle moved by using

odometry data. Then SLAM computes where the landmarks are supposed to be

by looking at the odometry data and it re-extracts the landmarks. Finally, using

Kalman filtering, odometry data and landmark positions are filtered, and the

position of the vehicle is computed. SLAM consists several subsystems such as

odometry data association, state estimation, state update and landmark position

update. The outline of the SLAM is shown in Figure 4.1.

SLAM is more like a concept than a single algorithm. There are many steps

involved in SLAM and these different steps can be implemented using a number

of different algorithms. In this thesis, camera and sensors are used to find the

localization and mapping simultaneously of the autonomous car.

38

Figure 4.1: Outline of SLAM

The autonomous vehicle states s is referred to as the motion model, and given as

the following probability distribution.

p(st|ut, st−1) (4.1)

st : The autonomous vehicle state s at time t

st−1 : Previous state

ut : The control of the vehicle at time t

The SLAM process, which handles the (4.1) can be summarized as:

Being in a position p, and knowing distances to each landmark d[i]

At each time step t:

1. Move robot

2. Estimate robot’s and landmarks’ new positions using odometry data

3. Measure the distance to the landmarks

39

4. Using the real and estimated distances to the landmarks, update the robot’s

position

Car’s movement has been explained in Chapter3. Before going into explaining the

rest of the process, it is worth to mention here that; once moving the car, it may

not be possible to observe the landmark which has seen in previous time step, or

vice versa. For instance, assume that at time step t, there are k landmarks in

the scene; and at t+1, there are k-2 landmarks. Or, there are still k landmarks,

but some are different then the previous one. This problem is known as data

association problem.

In order to overcome the problem, we have removed the landmark from the envi-

ronment that is already visited.

4.1 Odometry Data

The odometry data is basically car’s instantaneous speed, and rotation of the

wheels and is an important aspect of SLAM as it is used to estimate the car

position. What is difficult for the odometry data is getting the timing right.

Table 4.1 illustrates the example of odometry data.

Table 4.1: Odometer Data
Time (sec.) Speed (Traxxas Speed Value) Turning Angle (Servo Value)

0.0 90 100

0.112 97 100

0.534 97 120

1.234 90 120

1.379 83 120

1.912 83 77

2.112 90 77

2.244 97 77

2.489 97 100

40

To determine the next state in the mapping process the distance traveled is cal-

culated using the following basic formula 4.2.

Displacement = V elocity × time (4.2)

However this is not as simple as it seems due to the role played by time in the

calculation process. The measurement errors are statistically dependent since

errors in control accumulate over time. Figure 4.2 illustrates an example of the

odometry data error. A robot’s path, as obtained by its odometry is relative to

a given map. The thick line represents the path followed, where the thin one is

odometry data. Small odometry errors can have large effects on later position

estimates.Also as the voltage drops the distance traveled decreases due to the

lesser power produced by the battery.

Decreasing this error is the task of Kalman Filtering.

Figure 4.2: Odometer Data Error

41

4.2 Distance Measurement

In this project,sensors and a camera have been employed as the distance mea-

surement device. Sensors are used that the car does not crash anywhere while

navigating in indoor environment (see section 2.2.3). In other words Sensors are

employed in detection of obstacles and to determine the location of the vehicle.

The map is updated when there is an obstacle in front of it. The output coming

from the sensor tells the range from any object in terms of meters. However, all

ultrasonic sensors are subject to errors, often referred to as measurement noise.

These sensors have strict range limitations (see section 2.2.3.1). Sensors does not

provide the distance for a particular region hence it can not be exploited acquiring

the distance to a certain landmark location. Therefore vision measurement has

been exploited by means of a camera to determine the distance. Three methods

are tested for vision measurement which are:

1. Flood Fill algorithm

2. Laser rangefinder

3. Finding the distance depending on the size of the object

4.2.1 Flood Fill Algorithm

After the color image is smoothed using average filtering, equations are calcu-

lated on the image. Distance measurement can be calculated with the following

equations [33].

α + β + δ = 90o (4.3)

tan(β) =
b

h
(4.4)

tan(α + β) =
b+ d

h
(4.5)

42

tan(γ) =
w

b+ d
(4.6)

y = h× tan(β +
2α(n− 1− v)

n− 1
) (4.7)

x = y × tan(
γ(2u−m+ 1)

m− 1
) (4.8)

α : One-half of the vertical field of view

γ : One-half of the horizontal

δ : Tilt angle of the camera

β : Angle of blind area

b : Blind area

h : Height of the camera from the floor

d : Distance the visible area

w : Visible area of the horizontal image

The values of b, d, h and w are calculated only once. In Figure 4.3 perpendicular

and side view of the camera located in the robot is shown.

Figure 4.3: Outlook of Camera [33]

43

4.2.2 Laser Rangefinder

Figure 4.4: Vision Measurement [34]

A laser-beam in figure 4.6 is projected onto an object in the field of view of a

camera [34]. This laser beam is ideally parallel to the optical axis of the camera.

The dot from the laser is captured along with the rest of the scene by the camera.

The dots position in the image frame is known. Then the range to the object

is calculated based on where along the y axis of the image this laser dot falls.

Distance is calculated with this equation.

D =
h

tanΘ
(4.9)

D =
h

tan(pfc ∗ rpc ∗ ro)
(4.10)

pfc : Number of pixels from center of plane

rpc : Radians per pixels pitch

ro : Radian offset

44

In this thesis, laser rangefinder has been tried but it can not be succeeded. The

laser pointer is red but according to the camera view, it is very bright. The pixel

where the laser dot in the image seems like white pixel. For running environment

has lots of white color, the vision measurements with laser rangefinder have lots

of errors.

Figure 4.5: Laser Rangefinder

4.2.3 Finding the Distance Depending on the Size of the Object

The distance between the vehicle and object is computed depending on the size

of the object. Firstly, the object is detected in an image which is taken from

the camera. Then, the object’s center of mass is calculated. This is followed by

the calculation of the number of pixels stating from the object’s center of mass

to the top and bottom of the object. As shown in Table 4.2, the exact distance

corresponds to this pixel count.

45

Table 4.2: Calibration between all object pixels and exact distance

Pixel Exact Measurement(cm)

263 45

250 50

239 55

227 60

217 65

207 70

201 75

194 80

188 85

183 90

136 180

131 200

126 220

121 250

After finding the distances, Matlab Curve Fitting tool the following equation has

been obtained. The distance is calculated with the equation of which has been

found,

distance = 1.662 + 004 ∗ e(−0.04082∗pixels) + 326.5 ∗ e(−0.007601∗pixels) (4.11)

distance : distance between the car and object

pixels : Pixel count of the object.

While using this algorithm, the most important point to consider is that the

height of the camera needs to be longer than the length of the object. Another

important point is that all object must be in the same size and color. Furthermore

objects must have the same shape from all the way around. As we have used fixed

landmarks, we haven’t met any difficulties.

46

In this project, this algorithm is used because it gives the closest result to the

exact-measured- distances. Figure 4.6 illustrates the process of range measure-

ment algorithm.

Figure 4.6: Vision Measurement

4.3 Kalman Filter (KF)

A Kalman Filter [1, 2] is simply an optimal data processing algorithm. The

Kalman Filter is used to estimate the position of the robot from odometry data

and landmark observations, there are three steps in the SLAM process:

1. Update the current state estimate using the odometry data.

2. Update the estimated state from re-observing landmarks.

3. Kalman Gain.

The Kalman filter uses the history of measurements to build a model of the state

of the system that maximizes the probability for the position of the target based

on the past measurements. First, recall the time discrete Kalman Filter equations

and the predict-update equations as below:

47

Predict:

x̂t|t−1 = Ftx̂t−1|t−1 +Bt + ut (4.12)

Pt|t−1 = FtPt−1|t−1F
T
t +Qt (4.13)

Update:

xt|t = x̂t|t−1 +Kt(yt −Htx̂t|t−1) (4.14)

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)

−1 (4.15)

Pt|t = (I −Kt +Ht)Pt|t−1 (4.16)

x̂ : Estimated state

F : State transition matrix

u : Control variables

B : Control matrix

P : State variance matrix

Q : Process variance matrix

y : Measurement variables

H : Measurement matrix

K : Kalman gain

R : Measurement variance matrix

4.3.1 The Kalman Gain

The Kalman gain (KG) is computed to detect the degree of reliability of the

observed landmarks and the new knowledge that we get from them. Under the

48

condition that the robot should be moved 2 cm to the right, the Kalman Gain is

used to learn how much we actually correct the position according to the land-

marks. We do not trust the landmarks completely but instead find a compromise

between the odometer and the landmark correction. This is done by employ-

ing the uncertainty of the observed landmarks accompanied by a measure of the

quality of the vision measurement and the odometer data of the car.

49

Chapter 5

Experiments and Results

The following passage describes the experiments carried out to determine the

closest object. This was done under vastly different conditions.

• Three landmarks, all having the same colors

• Three landmarks, each having different colors

• Three objects of any shape and color

For the first two cases, as long as the objects are within the visible range, the car

has successfully identified the closest landmark, or object in general and moved

towards it. However, for the last case, as the algorithm we have used requires

all objects to be of the same size, we could neither detected the closest object

nor measured the distance to any object. If the objects are out of scene, the car

performs a random walk until there is an object in the visible area.

5.1 Experiments and Results for Distance Measurement

The following graph shows the calibration of the camera, and is used while com-

puting the distances to the landmarks (See Section 4.2.3).

50

Figure 5.1: Vision Measurement vs. Actual Distance (cm) Graph

5.2 Experiments and Results for SLAM

Tables 5.1 and 5.2 illustrates the results of our study. The results in Table 5.1

shows that there is no rotation of the car. It includes the position of the au-

tonomous vehicle with respect to odometer data and landmark measurement. It

also includes the position of the autonomous vehicle after Kalman filtering is

applied with its real position.

Table 5.1: SLAM Table without Rotation
Time C. P. Velocity L. M. L. Pre. R. M. R. P. K. Pre.

(milis) (y,x) (m/sec,degree) (cm) (cm) (cm) (y,x) (y,x)

0 (0,0) 0,0 336.54 336 336 (0,0) (0,0)

187 (19,0) 1.02,0 320.62 317 313 (23,0) (16.9,0)

391 (59,0) 1.02,0 280.37 277 290 (46,0) (41.4,0)

390 (99,0) 1.02,0 258.08 237 266 (70,0) (65.5,0)

390 (139,0) 1.02,0 223.45 197 230 (106,0) (102.2,0)

375 (177,0) 1.02,0 204.05 159 196 (140,0) (134,0)

375 (215,0) 1.02,0 136.26 121 153 (183,0) (178.5,0)

391 (262,0) 97,0 77.04 89 107 (229,0) (224.7,0)

...

51

C. P. : Car Position

L. M. : Landmark Measurement

L. Pre. : Landmark Prediction

R. M. : Real Measurement

R. P. : Real Position

K. Pre. : Kalman Prediction

Figure 5.2 and 5.3 shows the position of the autonomous vehicle with respect to

odometer data, its real position and the position of the autonomous vehicle after

Kalman filtering is applied by simulating.

Figure 5.2: The paths followed by the car (without rotation)

In Table 5.2, the car rotates the nearest of the landmark. While the autonomous

vehicle is moving towards the nearest landmark, it shows the position of the

autonomous vehicle with respect to odometer data and landmark measurement.

It also shows the position of the autonomous vehicle after Kalman filtering is

applied with its real position.

52

Table 5.2: SLAM Table with Rotation
Time C. P. Velocity L. M. L. Pre. R. M. R. P. K. Pre.

(milis) (y,x) (m/sec,deg) (y,x) (y,x) (y,x) (y,x) (y,x)

0 (0,0) 0,0 340,28 340,28 340,28 (0,0) (0,0)

187 (19,1) 1.02,3 318,25 321,27 326,24 (14,4) (16.9,1.2)

391 (55,17) 1.02,24 293,22 285,11 299,16 (41,12) (45.2,7.9)

190 (74,20) 1.02,9 274,21 266,8 277,16 (63,12) (66.7, 8.4)

240 (98,23) 1.02,9 249,16 242,5 256,14 (84,14) (86.2,9.14)

375 (134,36) 1.02,20 182,7 206,-8 220,9 (120,19) (123.8,20.1)

495 (175,36) 1.02,0 169,5 165,-8 172,6 (168,22) (172,23.4)

391 (215,36) 1.02,0 131,2 125,-8 112,4 (228,24) (225.9,26.1)

...

Figure 5.3: The paths followed by the car (with rotation)

Table 5.3 shows the error rate between the real position and the position accord-

ing to odometer data and the position of the autonomous vehicle after Kalman

filtering is applied and its real position.

53

Table 5.3: SLAM Table Error Rate without Rotation
C. P. R. P. K. P. Error P.o.C and R.P. Error R.P. and K. Pre.

(y,x) (y,x) (y,x) (cm) (cm)

0,0 0,0 0,0 0 0

19,0 23,0 16.9,0 4.0 6.1

59,0 46,0 41.4,0 13.0 4.6

99,0 70,0 65.5,0 29.0 4.5

139,0 106,0 102.2,0 33.0 3.8

177,0 140,0 134,0 37.0 6.0

215,0 183,0 178.5,0 32.0 4.5

262,0 229,0 224.7,0 33.0 4.3

...

Table 5.4 shows the error rate between the real position and the position accord-

ing to odometer data and the position of the autonomous vehicle after Kalman

filtering is applied and its real position when the autonomous car moves towards

to the closest object.

Table 5.4: SLAM Table Error Rate with Rotation
C. P. R. P. K. P. Error P.o.C and R.P. Error R.P. and K. Pre.

(y,x) (y,x) (y,x) (cm) (cm)

0,0 0,0 0,0 0 0

19,1 14,4 16.9,1.2 4 4.0311

55,17 41,12 45.2,7.9 13 5.8694

74,20 63,12 66.7, 8.4 29 5.5624

98,23 84,14 86.2,9.14 33 5.3348

134,36 120,19 124.8,20.1 37 4.9244

175,36 168,22 172,23.4 32 4.5352

215,36 228,24 225.9,26.1 33 2.9698

...

After ten or more step, the error of the ratio will decrease; it means that, the

Kalman predicted values get closer to the real measurement.

54

Conclusion

This study investigates transforming a remote controlled RC car into an au-

tonomous car that is able to find its own location and mapping at the same time.

The first part of the thesis explores how autonomous car navigates towards a

target object in indoor environment. Setting a start and end point for the ve-

hicle, it is observed to reach at the end point. As the next step, it is aimed to

make the vehicle to go to the nearest object. After a number of experiments, it

is seen the vehicle could fulfill the task in terms of going to the nearest object.

While performing both tasks, if the car perceives an object in front, it goes to

the nearest object. Then it reaches at the end point. These encouraging results

show that the vehicle in our study could navigate safely in a rough unstructured

environment.

One significant issue that needs to be studied in the future is whether the al-

gorithm that is presented in this thesis to find the nearest object can be imple-

mented to the shortest path algorithm. Another issue for further study is to find

out whether it would yield more reliable measurements if laser sensor was used

instead of ultrasonic sensor.

Concerning the main aim of the study, which was stated as constructing an au-

tonomous vehicle which is able to locate itself and build the map of its unknown

indoor environment. It can be concluded that using SLAM techniques we have

succeeded in limited lab environment.

The experiment results show the inadequacy of odometer data and landmark

measurement while the position of the autonomous vehicle was attempted to be

found. Error rate of the calculations made by odometer is increasing in each step

since calculations are prepared with respect to the previous erroneous position.

55

Although Odometer data has lots of noise, Kalman filtering minimize these noises.

Therefore, as seen in the experiment results, we could gather very close results to

real measurement by using Kalman Filter.

It is seen that the sensors were not sufficient to perceive all environmental features.

If they were so, we could have gathered better results. Therefore, laser scan sensor

can serve for more efficient and generic algorithms.

For future studies, as image processing filtering algorithms takes a considerable

amount of time, there appears a difference between estimated and real distance.

To eliminate this problem, laser scan can be used. Moreover, finding nearest

object algorithm can be improved to find the shortest path. Finally, the quality

of the camera would help us to yield more precise results.

56

References

[1] Kalman, R., “A New Approach to Linear Filtering and Prediction Problems”,

Transactions of the ASME Journal of Basic Engineering , , No. 82 (Series

D), pp. 35–45,, 1960.

[2] Maybeck, P., Stochastic Models, Estimation and Control. Volume I., 1979.

[3] Shangming, W., “Smooth Path Planning and Control for Mobile Robots”,

2005.

[4] Harris, C. and D. Charnley, “Intelligent Autonomous Vehicles Recent

Progress and Central Research Issues”, Computing & Control Engineering

Journal , pp. 164—171, July 1992.

[5] Dickmanns, E. D., “Vision for Ground Vehicles History and Prospects”, In-

ternational Journal of Vehicle Autonomous Systems , August 2003.

[6] DARPA, “What is the Urban Challenge”, june 2008.

[7] Hugh, F. and W. Durrant, “Sensor Models and Multisensor Integration”, I.

J. Robotic Res,.

[8] Brady, M., “Special Issue on Sensor Data Fusion”, I. J. Robotic Res., De-

cember.

[9] Micha, S., “Algorithmic Motion Planning in Robotics”, Computer , Vol. 22,

pp. 9–20,, 1989.

[10] Leonard, A. and J. Ingemar, “Dynamic Map Building for an Autonomous

Mobile Robot”, Int. J. Rob. Res., pp. 286–298, 1992.

57

[11] Elfes, A., “Sonar-Based Real-World Mapping and Navigation”, 1990.

[12] Cox, I., “Autonomous Robot Vehicles”, Springer-Verlag Inc., 1990.

[13] Dickmanns, E. and A. Zapp, “Guiding Land Vehicles along Roadways by

Computer Vision”, AFCET Conference, p. 244, October 1985.

[14] Moore, C. G. and C. J. Harris, “Intelligent identification and control for

AGV’s Using Adaptive Fuzzy Based Algorithms”, Int. J. of Eng. Applica-

tions of AI , Vol. 2, pp. 267–285, 1992.

[15] Brooks, R. A., “A robust Layered Control System for a Mobile Robot”,

International Conference on Robotics and Automation, 1985.

[16] S. Corfield, R. F. and C. Harris, “Architecture for Real-time Intelligent Con-

trol of Autonomous Vehicles”, Computing and Control Engineering Journal ,

pp. 254–262, November 1991.

[17] Stentz, A., “Optimal and Efficient Path Planning for Partially-Known Envi-

ronments”, International Conference on Robotics and Automation, pp. 3310–

3317, 1994.

[18] Fuhao, Z. and L. Jiping, “An Algorithm of Shortest Path Based on Dijkstra

for Huge Data”, Proceedings of the 6th International Conference on Fuzzy

Systems and Knowledge Discovery - Volume 4 , pp. 244–247, IEEE Press,

2009.

[19] Dolgov, D. and J. Diebel, “Practical Search Techniques in Path Planning for

Autonomous Driving”, November 2007.

[20] Imielinski, T. and C. Navas, “GPS-Based Addressing and Routing”, Techni-

cal report, 1996.

[21] Pitas, I., Digital Image Processing Algorithms and Applications , John Wiley

& Sons, Inc., New York, NY, USA, 1st edition, 2000.

58

[22] Wang, M., Concise Introduction to Image Processing Using C++, crc press

edition, 2009.

[23] Gonzalez, R. and R. Woods, Digital Image Processing (3rd Edition),

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[24] Tek, B., “CSE 487 Computer Vision Lecture Notes,2”, Technical report, Işık

University, 2010.

[25] Julier, S. and K. Uhlmann, “A General Method for Approximating Nonlinear

Transformations of Probability Distributions”, Technical report, 1996.

[26] Gonzalez, R. and R. Woods, Digital Image Processing , Prentice-Hall, Inc.,

2006.

[27] Shapiro, L. and G. Stockman, Computer Vision, Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 2001.

[28] Tek, B., “CSE 487 Computer Vision Lecture Notes,3”, Technical report, Işık

University, 2010.

[29] Comer, M. and E. Delp, “Morphological Operations for Color Image Pro-

cessing”, Journal of Electronic Imaging , , No. 3, pp. 279–289, July 1999.

[30] Aksoy, S., Computer Vision, Bilkent University, 2010.

[31] Leonard, J. and W. Durrant, “Mobile Robot Localization by Tracking Ge-

ometric Beacons”, IEEE Transactions on Robotics and Automation, Vol. 7,

No. 3, pp. 376–382, 1991.

[32] R. Smith, P. C., Estimating Uncertain Spatial Relationships in Robotics , pp.

167–193, Springer-Verlag New York, Inc.,, New York, NY, USA,, 1990.

[33] Taylor, T. and W. Boles, “Monocular Vision as a Range Sensor”, CIMCA

2004 Proc, pp. 566–575, 2004.

[34] Danko, T., “Webcam Based DIY Laser Rangfinder”, 2004.

59

Curriculum Vitae

Hakan Yılmaz was born on 29 March 1985, in Adana. He received his B.S. degree

in Computer Science and Engineering in 2008 from Işık University. He interned at

Işık University Information Processing Center and SESTEK (Voice Recognition

Center) for three months. He worked as a research assistant at the department

of Computer Engineering of Işık University. The courses, which he assisted,

include Introduction to Programming, Object Oriented Programming, Java Pro-

gramming, Analysis of Algorithms, Programming Workshop, Data Structures and

Algorithms, Computer Graphics and Software Engineering.

60

	Abstract
	Özet
	Acknowledgements
	List of Tables
	List of Figures
	List of Symbols
	List of Abbreviations
	1 Introduction
	1.1 Simultaneous Localization and Mapping (SLAM)
	1.2 Thesis Outline

	2 Background Information
	2.1 Early Work on Autonomous Robot Vehicles
	2.2 Designing an Autonomous Vehicle
	2.2.1 Fit-PC
	2.2.1.1 Why Fit-PC?

	2.2.2 Arduino
	2.2.2.1 Why Arduino?
	2.2.2.2 Features of Arduino
	2.2.2.3 Software of Arduino

	2.2.3 Ultrasonic Sensor
	2.2.3.1 Features of Ultrasonic Sensor

	2.2.4 Digital Video Camera (Webcam)
	2.2.5 Global Positioning System (GPS)
	2.2.6 Compass
	2.2.7 Vehicle (Traxxas)
	2.2.8 Li-Po (Lithium-ion Polymer)

	2.3 Running Environment
	2.3.1 Landmark

	3 Moving in the Environment
	3.1 Landmark Detection
	3.1.1 Digital Image
	3.1.1.1 Binary Image
	3.1.1.2 Grayscale Image
	3.1.1.3 3 Channel Color Image (RGB)
	3.1.1.4 Conversion From 3 Channel Color Image (RGB) to graylevel Image

	3.1.2 Pixel Detection Algorithm
	3.1.3 Filtering
	3.1.3.1 Mean Filter
	3.1.3.2 Gaussian Filter

	3.1.4 Grayscale Morphological Operations
	3.1.4.1 Pixel Neighborhood
	3.1.4.2 Opening Operation

	3.2 Finding the Closest Object
	3.2.1 Connected Component Labeling
	3.2.2 Center of Mass

	3.3 Controlling the Vehicle
	3.3.1 Servo and Speed Control

	4 Simultaneous Localization and Mapping
	4.1 Odometry Data
	4.2 Distance Measurement
	4.2.1 Flood Fill Algorithm
	4.2.2 Laser Rangefinder
	4.2.3 Finding the Distance Depending on the Size of the Object

	4.3 Kalman Filter (KF)
	4.3.1 The Kalman Gain

	5 Experiments and Results
	5.1 Experiments and Results for Distance Measurement
	5.2 Experiments and Results for SLAM

	Conclusion
	References
	Curriculum Vitae

