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SOFTWARE DEFECT PREDICTION USING BAYESIAN NETWORKS AND

KERNEL METHODS

Abstract

There are lots of different software metrics discovered and used for defect pre-

diction in the literature. Instead of dealing with so many metrics, it would be practical

and easy if we could determine the set of metrics that are most important and focus

on them more to predict defectiveness. We use Bayesian modeling to determine the

influential relationships among software metrics and defect proneness. In addition to

the metrics used in Promise data repository, we define two more metrics, i.e. NOD for

the number of developers and LOCQ for the source code quality. We extract these met-

rics by inspecting the source code repositories of the selected Promise data repository

data sets. At the end of our modeling, we learn both the marginal defect proneness

probability of the whole software system and the set of most effective metrics. Our

experiments on nine open source Promise data repository data sets show that response

for class (RFC), lines of code (LOC), and lack of coding quality (LOCQ) are the most

effective metrics whereas coupling between objects (CBO), weighted method per class

(WMC), and lack of cohesion of methods (LCOM) are less effective metrics on de-

fect proneness. Furthermore, number of children (NOC) and depth of inheritance tree

(DIT) have very limited effect and are untrustworthy. On the other hand, based on the

experiments on Poi, Tomcat, and Xalan data sets, we observe that there is a positive

correlation between the number of developers (NOD) and the level of defectiveness.

However, further investigation involving a greater number of projects, is needed to

confirm our findings.

Furthermore, we propose a novel technique for defect prediction that uses pla-

giarism detection tools. Although the defect prediction problem has been researched

for a long time, the results achieved are not so bright. We use kernel programming to

model the relationship between source code similarity and defectiveness. Each value in

the kernel matrix shows how much parallelism exist between the corresponding files in

the software system chosen. Our experiments on 10 real world datasets indicate that

support vector machines (SVM) with a precalculated kernel matrix performs better
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than the SVM with the usual linear and RBF kernels and generates comparable results

with the famous defect prediction methods like linear logistic regression and J48 in

terms of the area under the curve (AUC). Furthermore, we observed that when the

amount of similarity among the files of a software system is high, then the AUC found

by the SVM with a precalculated kernel matrix is also high. Furthermore, we show

that SVM with precomputed kernel can be used to predict the number of defects in the

files or classes of a software system, because we observe a relationship between source

code similarity and the number of defects. Based on the results of our analysis, the

developers can focus on more defective modules rather than on less or non defective

ones during testing activities. The experiments on 10 Promise datasets indicate that

while predicting the number of defects, SVM with a precomputed kernel performs as

good as the SVM with the usual linear and RBF kernels, in terms of the root mean

square error (RMSE). The method proposed is also comparable with other regression

methods like linear regression and IBK. The results of these experiments suggest that

source code similarity is a good means of predicting both defectiveness and the number

of defects in software modules.
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BAYESIAN AĞLARI VE ÇEKİRDEK YONTEMLERİ İLE YAZILIM HATA

TAHMİNİ

Özet

Literatürde kullanılan çok çeşitli yazılım ölçütleri mevcuttur. Çok sayıda ölçütle

hata tahmini yapmak yerine, en önemli ölçüt kümesini belirleyip bu kümedeki ölçütleri

hata tahmininde kullanmak daha pratik ve kolay olacaktır. Bu tezde yazılım ölçütleri

ile hataya yatkınlık arasındaki etkileşimi ortaya çıkarmak için Bayesian modelleme

yöntemi kullanılmıştır. Promise veri deposundaki yazılım ölçütlerine ek olarak, yazılım

geliştiricisi sayısı (NOD) ve kaynak kodu kalitesi (LOCQ) adlı 2 yeni ölçüt tanımlanmıştır.

Bu ölçütleri çıkarmak için Promise veri deposundaki veri kümelerinin açık kaynak kod-

ları kullanılmıştır. Yapılan modelleme sonucunda, hem sınanan sistemin hatalı olma ih-

timali, hem de en etkili ölçüt kümesi bulunmaktadır. 9 Promise veri kümesi üzerindeki

deneyler, RFC, LOC ve LOCQ ölçütlerinin en etkili ölçütler olduğunu, CBO, WMC

ve LCOM ölçütlerinin ise daha az etkili olduğunu ortaya koymuştur. Ayrıca, NOC ve

DIT ölçütlerinin sınırlı bir etkiye sahip olduğu ve güvenilir olmadığı gözlemlenmiştir.

Öte yandan, Poi, Tomcat ve Xalan veri kümeleri üzerinde yapılan deneyler sonucunda,

yazılım geliştirici sayısı (NOD) ile hata seviyesi arasında doğru orantı olduğu sonucuna

varılmıştır. Bununla birlikte, tespitlerimizi doğrulamak için daha fazla veri kümesi

üzerinde deney yapmaya ihtiyaç vardır.

Ayrıca bu tezde, hata tahmini için intihal tespit araçlarını kullanan yeni bir

yöntem önerilmiştir. Hata tahmin problemi çok uzun zamandan beri araştırılmaktadır,

fakat ortaya çıkan sonuçlar çok parlak değildir. Farklı bir bakış açısı getirmek üzere,

kaynak kod benzerliği ve hataya yatkınlık arasındaki ilişkiyi modelleyen çekirdek metodu

yöntemi kullanılmıştır. Bu yöntemde, üretilen çekirdek matrisindeki her bir değer, ma-

trisin satır ve sütununda bulunan kaynak kodu dosyaları arasındaki paralelliği göstermek-

tedir. 10 veri kümesi üzerindeki deneyler, önceden hesaplanmış çekirdek matrisi kul-

lanan SVM yönteminin, doğrusal veya RBF çekirdek kullanan SVM yöntemlerine göre

daha başarılı olduğunu ayrıca mevcut hata tahmin yöntemleri doğrusal lojistik re-

gresyon ve J48 ile benzer sonuçlar ürettiğini göstermiştir. Ayrıca, bir yazılım sistemi

içerisinde bulunan dosyalar arasındaki kod benzerliğinin daha fazla olduğu durum-
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larda, ROC eğrisi altındaki alan (AUC) ölçütünün de daha yüksek olduğu görülmüştür.

Ayrıca, önceden hesaplanmış çekirdek matris kullanan SVM yönteminin, hata sayısı ile

kaynak kodu benzerliği arasında gözlemlenen ilişkiden ötürü, bir yazılım sistemindeki

hata sayısının tahmin edilmesinde de kullanılabileceği gösterilmiştir. Yapılan analiz

sonucunda, yazılım geliştiriciler hatasız veya daha az hatalı modüllere odaklanmak

yerine, daha fazla hata içeren modüllere odaklanabilirler. 10 Promise veri kümesi

üzerinde yapılan deneyler, hata sayısını tahmin ederken, önceden hesaplanan çekirdek

matris kullanan SVM yönteminin ortalama karesel hata (RMSE) açısından doğrusal ve

RBF çekirdek kullanan SVM yöntemi kadar başarılı olduğunu göstermiştir. Uygulanan

yöntem, doğrusal regresyon ve IBK gibi diğer regresyon yöntemleri ile benzer sonuçlar

üretmiştir. Yapılan deneylerin sonuçları, kaynak kodu benzerliğinin hataya yatkınlık

ve hata sayısını tahmin etmede iyi bir araç olduğunu ortaya koymuştur.
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Chapter 1

Introduction

Many software engineering projects run out of budget and schedule. This is one

of the biggest problems that the software development industry has met so far and so

many attempts have been made to increase the success rate of software projects. It

has been observed that as the project budget gets larger that is the project becomes

more complex, the success rate decreases very fast. Humphrey explores the reasons for

the project failures and reviews the issues to consider to improve the performance of

large-scale software projects [9]. He observes that when the project budget is below

$750,000, the success rate is around 55 percent, but as the project size increases the

success rate decreases very fast as it is shown in Figure 1.1. When the size becomes

more than $10,000,000 the success rate becomes almost zero [9]. This is a fascinating

reality and a big obstacle in front of the software development companies to handle.

Figure 1.1. Success rate vs. project size.

Technical, financial or social reasons of software project failures have been dis-

cussed and several preventive measures were proposed by many researchers so far

[10, 11, 12, 13, 14, 15, 16, 17, 18]. According to the Standish Group 31.1% of projects

are canceled before they ever get completed and 52.7% of projects cost 189% of their
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original cost estimation [10]. Jones focuses on the factors that differentiate success-

ful projects from the unsuccessful ones and observes that large software systems are

also more likely to be canceled or to experience schedule delays compared to the small

projects [11]. Brooks discusses several factors that affect scheduling failures and ob-

serves that adding man power to a late software project makes it later [12]. Verner et

al. analyze the most frequent factors for project failures on 70 projects and observe

that in 93% of the failed projects the delivery date impacted the development process,

in 81% of the failed projects the project was underestimated and in 76% of the failed

projects risks were not re-assessed, controlled, or managed through the project [13].

In this thesis we focus on the prediction of the defect proneness of a software sys-

tem to decrease the project failures and lessen the total cost during the development

and maintenance phases. Software Engineering is providing engineers with necessary

means to standardize the development process and to increase productivity. But unfor-

tunately the implementation of the same software design may produce software systems

with different quality, depending on how much the defined processes applied and how

experienced or creative the project team is.

Developing a defect free software system is very difficult and most of the time

there are some unknown bugs or unforeseen deficiencies even in software projects where

the principles of the software development methodologies were applied carefully. Due

to some defective software modules, the maintenance phase of software projects could

become really painful for the users and costly for the enterprises.

Therefore, it is very important and critical to predict the defectiveness of software

modules (or files), to plan and manage the testing and maintenance phases of a project

better. Defect prediction will give one more chance to the development team to retest

the modules or files for which the defectiveness probability is high. First, in testing

period, it will be possible to focus more on the defect prone modules or modules

where there are more errors comparatively. As a result of a well-advised testing, the

probability of fixing the residual defects would increase and more qualified software

products would be delivered to the end users. Second, since more defects would be
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fixed during the test period, the maintenance cost of the project will decrease and this

will cause a decrease in the total cost of the project automatically.

When we talk about defect prediction one can ask the question how? From

engineering point of view, it is very clear that the prediction must depend on some

measurements about the software. In the literature, many different types of software

engineering metrics exist and they can be used to evaluate or measure the worth of a

software system. According to the Daskalantonakis, software metrics can be categorized

as product, process and project metrics [19]:

• Product metrics are related to the software product itself measuring the product

features like line of code metric for instance.

• Process metrics are based on the software development processes and measure

them. For example, design or testing efficiency of a project or its budget can be

used as process metrics.

• Project metrics are focusing on the productivity of software project life cycle.

The number of developers or the effort spent per phase can be regarded as a

project metric.

Other than these three types of metrics, especially in recent years, developer

metrics are also taken into consideration by some researchers. These type of metrics

measure the education, experience or productivity level of the software development

team. So far, most of the research is done on product metrics rather than process and

developer metrics. In Chapter 2, we give a detailed overview of product (software),

process and developer metrics.

In defect prediction literature, there are many defect prediction algorithms stud-

ied like regression [20, 21, 22], rule induction [22], decision tree approaches like C4.5

[23], case-based reasoning (CBR) [24, 25, 22], artificial neural networks [26, 27, 28, 22],

linear discriminant analysis [29], K-nearest neighbor [30], K-star [31], Bayesian net-

works [32, 1, 33] and support vector machine based classifiers [34, 35, 2, 3]. According

to Shepperd et al. the accuracy of a specific defect prediction method is very much
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dependent on the attributes of the data set like its size, number of attributes and

distribution [22].

In the literature, defect prediction methods are proposed either to classify the

software modules as defective or non defective or guess the number of defects in the

software classes or modules. In classification based studies, the aim is to determine

whether a software module is defective or not, whereas in regression studies, the number

of unexplored bugs are predicted. In this dissertation, we propose a novel technique

which is based on SVM with a precomputed kernel, to predict both the defectiveness

and the number of resident bugs in the classes or files of a software system.

Menzies et al. show that, how the code metrics are used to build predictors is

much more important than which particular metrics are used. Furthermore, they also

suggest that McCabe [36] and Halstead [37] metrics are intra module metrics and new

metrics showing the interactions among different modules (inter module metrics) shall

be used that yield better defect predictors [38]. Similarly, Zimmermann and Nagappan

suggest that, understanding of the dependencies that exist between different pieces of

the code is very important to predict the defect-proneness of software systems [39].

Machine learning based techniques are used more compared to other methods in

defect prediction studies. Shepperd et al. compare regression, rule induction, nearest

neighbor (a form of case-based reasoning), and neural nets and suggest that there

are significant differences among the performance of these techniques based on the

characteristics of their underlying data set. That is why, they propose to ask the

question of which method is the best in a particular context, rather than which method

is the best in general [22]. Ekanayake et al. use four open source data sets to understand

why the quality of defect prediction methods fluctuate across data sets. They suggest

that as the number of different developers editing a file and the number of defects

fixed by them change, the defect prediction quality is influenced. So, the benefit of

bug prediction in general must be seen as volatile over time and, therefore, should be

used cautiously [21]. Khoshgoftaar et al. use case-based reasoning (CBR) [24, 25] to

predict defectiveness and state that a software module currently under development is
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probably fault prone if a similar module in a previous release was fault-prone. They

show that CBR is a preferable technique compared to the nonparametric discriminant

analysis in terms of Type-1 and Type-2 errors [24]. In another defect prediction study,

Qinbao et al. propose association rule mining to predict software defect associations

and defect correction effort, using NASA SEL defect data set. They conclude that

for defect correction effort prediction, the method they propose performs relatively

better than machine learning methods, like PART, C4.5, and Naive Bayes in terms of

accuracy [23].

In this thesis, we use source code metrics together with some process and devel-

oper metrics to predict defect proneness. By learning from the data sets, we model

the interactions among the metrics and determine the most important metrics using

Bayesian networks. As a result of our modeling, we not only reveal the influential

relationships among the metrics, but also the set of most important metrics that are

relatively more effective on defectiveness. Furthermore, it is possible to make proba-

bilistic reasoning about the dependencies between the metrics and defect proneness.

Furthermore, we focus on the similarities of code patterns among different classes

(or files) of a software system, to predict the defect proneness and the number of

defects. We wonder if the extent of similarity between two source codes is related with

the extent of similarity in their defectiveness where the similarity is measured in terms

of both syntactic and semantic features. We generate a kernel matrix representing

the similarities among the files or classes of the software system and give this kernel

matrix as input to support vector machine learning algorithm. To extract similarities

among the files or classes, we use the outputs of the plagiarism detection tool MOSS.

At the end of our experiments, we show that support vector machines (SVM) with

a precalculated kernel matrix performs better than the SVM with the usual linear

and RBF kernels and generates comparable results with the famous defect prediction

methods like linear logistic regression and J48 in terms of the area under the curve

(AUC).

This thesis is organized as follows: In Chapter 2, we give an overview of software
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metrics that are used in the literature so far. In Chapter 3, we discuss defect prediction

studies in general, why they are needed and what they bring? In Chapters 4 and 5, we

explain Bayesian networks and support vector machines respectively. In Chapter 6, we

briefly explain the methods we propose to determine the set of the most effective metrics

and to explore the probabilistic relationships among the metrics and the defectiveness.

Furthermore, we explain how we generate the source code similarity based kernel matrix

and use it as a precomputed kernel for SVM to predict defect proneness and the number

of defects. In Chapter 7, we present our experiments and their results. In Chapter 8,

we conclude our work and show the main contributions of our research.
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Chapter 2

Software Metrics

In order to predict defectiveness of a software system, we need to be able to

measure it. A software metric can be defined as a measure of some property of a piece

of software that can be used for defect prediction. There are numerous different types

of metrics studied so far and we explain these metrics in detail below.

2.1. Static Code Metrics

Static code metrics are directly calculated from the source code and give an idea

about the complexity and the size of the source code. For example, the number of

branches or boolean statements or the size of the source code itself is important while

calculating these type of metrics. Menzies et al. are classifying static code metrics as

line of code (LOC) metrics, McCabe metrics, Halstead metrics in general [38]. (See

Figure 2.1)

Compared to other types of metrics, static code metrics are easy to understand

and help us to see how much complex a software system is. For the purpose of defect

prediction, these metrics are just inputs to the defect prediction algorithms.

2.1.1. McCabe Metrics

McCabe metrics were first developed by Thomas J. McCabe to measure the com-

plexity of the source code. McCabes’s main argument is that loops and branches make

the source code more complex. Three types of McCabe metrics exist:

• Cyclomatic Complexity: Cyclomatic complexity measures the decision logic in a
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Figure 2.1. McCabe, LOC, and Halstead metrics studied by Menzies et al.

Figure 2.2. Sample source code to illustrate McCabe metrics.

software program [40]. In order to extract cyclomatic complexity attributes of a

source code, we need to extract its flow graph first. We generate the flow graph
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Figure 2.3. Flow graph of the sample source code given in Figure 2.2.

by traversing the source code. All statements are regarded as nodes and there

is an edge between two nodes if they are successive in the program. Let say we

generate a graph G with n nodes and e edges. Then the cyclomatic complexity

of the source code is

v(G) = e− n+ 2. (2.1)

Figure 2.3 shows the flow graph of the sample source code given Figure 2.2.

There are 6 nodes and 6 edges, so the cyclomatic complexity would be V (G) =

6− 6 + 2 = 2.

• Design Complexity: In order to calculate design complexity, the flow graph gen-

erated for cyclomatic complexity is reduced to include a node if it calls another

module and to remove all other nodes together with their edge connections. For

example, in addition to entry node Node1 and exit node Node6, only Node2 is
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included to generate the flow graph for design complexity (See Figure 2.4). Ac-

cording to McCabe and Butler [41], the design complexity of a graph G is shown

with iv(G) and is the cyclomatic complexity of its reduced graph.

Figure 2.4. Reduced flow graph for design complexity of the sample source code given

in Figure 2.2.

• Essential Complexity: According to McCabe [36], essential complexity indicates

the extent to which a flow graph can be reduced. In order to calculate the essential

complexity, the flow graph is reduced to remove all nodes in a structure. A

structure is defined either as a loop or a sequence of nodes such that all incoming

edges are to the first node and all outgoing edges are to the last node. For

example, part of the flow graph between Node3 and Node6 in Figure 2.3 is a

structure and was removed together with the node Node2, to generate the flow

graph shown in Figure 2.5. Essential complexity is represented by ev(G) and

equals to the cyclomatic complexity of the reduced graph.

2.1.2. Line of Code Metrics

Line of code metrics are directly related to the number of source code lines. These

metrics are:

• loc total: Number of lines in the source code.

• loc blank: Number of blank lines in the source code.
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Figure 2.5. Reduced flow graph for essential complexity of the sample source code

given in Figure 2.2.

• loc code and comment: Number of source code lines and comment lines.

• loc comments: Number of lines of comment in the source code.

• loc executable: Number of lines of executable source. (Not including declara-

tions)

2.1.3. Halstead Metrics

Halstead complexity metrics were proposed by Maurice Howard Halstead [37]. He

define four key attributes and derive new metrics from them where the key attributes

are:

1. N1: Number of operators.

2. N2: Number of operands.

3. n1: Number of unique operators.

4. n2: Number of unique operands.

He derive the following attributes from these key attributes:

1. Program length (N):

N = N1 +N2 (2.2)
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2. Program vocabulary (n):

n = n1 + n2 (2.3)

3. Volume (V ):

V = Nlog2(n) (2.4)

4. Difficulty (D) :

D =
n1

2

N2

n2

(2.5)

5. Effort (E):

E = DV (2.6)

2.1.4. Object Oriented Metrics

With the introduction of the object oriented design methodology, new metrics

proposed by Chidamber and Kemerer [42] to measure the quality of software systems

that are developed using object oriented programming languages.

Similar to the traditional metrics explained above, these metrics model both inner

module complexity and the interactions among the classes of the system ([42, 43]) and

are extensively used in the defect prediction literature [44]. These metrics are:

• Weighted methods per class (WMC): The number of methods and operators

defined in each class excluding inherited ones.

• Depth of inheritance tree (DIT): The number of ancestors of a class.

• Response for a class (RFC): The number of functions (or methods) executed when

a method or operator of that class is invoked. It is expected that when the value

of RFC metric is higher, the class is more complex.
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• Number of children (NOC): The number of direct descendants of class excluding

grandchildren classes.

• Coupling between object classes (CBO): The number of coupled classes in a

software system. A class is coupled with another class if it uses operators or

methods of that class.

• Lack of cohesion on methods (LCOM): The number of methods in a class that

use a variable shared with other classes minus the number of methods that uses

variables that are not shared with any other class [43]. When LCOM is negative

it is set to zero.

• Lines of code (LOC): The number of executable source code lines in a class. Note

that comment and blank lines are excluded.

2.2. Developer Metrics

Contrary to the software product metrics, developer metrics have not been consid-

ered that much in the literature. Recently researchers have started to study developer

metrics. Developer metrics focus on the experience, education and quality of the soft-

ware developers. Matsumoto et al. [45] use the eclipse project dataset and conclude

that if a software module is touched by more than one developer that module is more

defect prone compared to the modules developed by just one developer.

He propose the following metrics:

• The number of code churns made by each developer.

• The number of commitments made by each developer.

• The number of developers for each module.

2.3. Process Metrics

Besides static code measurements, most of the time it is also important to measure

and model the software development process. Arisholm et al. believe that if process

metrics are used together with source code metrics, the prediction performance could
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be improved significantly [46]. For example the answers of the following questions

which are not related with static code, are important to measure the quality or the

worth of a software system:

• What kind of software development methodology is used? Is it followed effi-

ciently?

• What is the average experience of the developer team?

• What is the development cost for each process and the total development cost of

the project itself?

• Are the processes well documented?

According to Mills, process metrics measure the software development process,

such as overall development time, type of methodology used, or the average level of

experience of the programming staff [47]. Furthermore, Daskalantonakis defines process

metrics as those that can be used to improve the software development and maintenance

processes such as the efficiency of these processes, and their corresponding costs [19].
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Chapter 3

Defect Prediction

A software system is regarded defective if it does not meet the expectation of

its customers i.e. it does not behave as it is specified in its requirement analysis

document. This situation might be due to a miscalculation in a formula, lack of some

features or a bug. All of these deficiencies can be accepted as defects. In these cases,

the development team should take action and make some corrections. That is why, we

can define a defective software as a system where further development involvement is

needed.

There are two very essential points that we should emphasize to decide the level

of defectiveness. First, not all defects have the same priority considering their effect in

the maintenance phase. For example, a bug in an accounting software is very critical

and has a high priority, because it causes wrong payments. On the other hand, the

caption of a button or the tool tip text of some screen control is a deficiency with low

priority. Second, the number of defects in a software system is important to decide how

much defective a software is. A software system with one non-critical bug is much more

preferable to a system with too many bugs. In brief, the number of bugs together with

their severity are two very important parameters to decide the extent of defectiveness.

3.1. Defect Prediction Data

The metrics of a software system must be ready prior to applying any defect

prediction method. Since it is hard to measure a software system, extracting its metrics

is not a straight forward task. Most of the time, companies do not spend time for

metrics collection and analysis, due to the famous fact i.e. rush for market. Although

analyzing software metrics saves time and provides more efficient project management,
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it is generally very difficult to make managers believe in this. Furthermore, even if the

managers are convinced, most of the time metrics are not shared because metrics data

are regarded confidential and sharing is not desired.

On the other hand, there are some open data sets shared by NASA [48] and

Promise data repository [49] and the number of data sets in such repositories is in-

creasing day by day. It is possible to make comparative analysis using these public

data sets. Several defect prediction methods could be compared using these open data

sets and there are examples of such benchmarking studies in literature [34]. During

our literature review, we observed that most of the defect prediction papers use private

data sets (around 55 %) whereas around 38 % of them use public data sets from either

NASA metric data repository [48] or Promise data repository [49].

3.2. Performance Measure

Considering defect prediction as a binary classification problem, let S = {(xi, yi)}

be a set of N examples where xi represents software metrics and yi represents the

target class i.e. whether the software is defective or not. Let us assume that defective

modules (positive instances) are represented with + and not defective modules (nega-

tive instances) are represented with -, so we have yi ∈ {+,−}. Then defect predictor

is a function f(x) : {xi → {+,−}}. Depending on the outcome of the defect predictor,

there are four possible cases:

• True positive (TP): If a software module is defective and is classified as defective.

• False negative (FN): If a module is defective and is classified as nondefective.

• True negative (TN): If a module is nondefective and is classified as nondefective.

• False positive (FP): If a module is nondefective and is classified as defective

A sample confusion matrix using metrics defined above is shown in Table 3.1.

It is desirable for a defect predictor to be able to mark as many defective modules as

possible while avoiding false classifications FN and FP.
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Table 3.1. A Sample Confusion Matrix.

Target class Defective Non defective

Defective TP FN

Non defective FP TN

Some classifiers are evaluated using their TP Rate (also called sensitivity)

TPRate =
TP

TP + FN
(3.1)

or FP rate (also called false alarm rate)

FPRate =
FP

FP + TN
(3.2)

It is a common way to look at the error rates of classifiers while making compar-

isons. But, this is not true in real life, because first, the proportions of classes are not

equal. For instance, in defect prediction, the proportion of defective modules are much

more smaller compared to the nondefective ones. Furthermore, the cost of FP and FN

are not the same i.e. FN is more costly than FP. Considering a defective module as

not defective is more costly than considering a not defective module as defective. As a

result, instead of making comparisons using sensitivity or false alarm rate, it is a better

and convenient way to consider them together.

ROC analysis is used in the literature and considers TP rate (sensitivity) and FP

rate (hit) together [44]. ROC curve is a two dimensional graphical representation where

sensitivity (TP) is the y-axis and false alarm rate (FP) is the x-axis. It is desirable to

have high sensitivity and small false alarm rate. So, as the area under the ROC curve

gets larger, the classifier gets better. Consider the ROC curves in Figure 3.1, where f2

is better classifier than f1 since the area under the curve of f2 is larger.

We use precision measure besides ROC curves, but specificity and accuracy is not

used in our thesis. Although accuracy and specificity are used as performance measure
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Figure 3.1. A sample ROC Curve.

in some studies, accuracy is not preferred in general since similar accuracy values have

been found for different defect predictors although they had different precisions [51]. In

addition to the ROC curves, several other performance indicators exist in the literature:

• Specificity:

TN

TN + FP
(3.3)

• Accuracy:

TP + TN

TP + FN + TN + FP
(3.4)

• Precision:

TP

TP + FP
(3.5)
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3.3. An Overview of the Defect Prediction Studies

Software defect prediction studies are grouped into two main categories namely

classification and regression. In the classification case, at the end of the analysis,

the software modules (classes or files) are marked as defective or not, that is, a binary

classification problem is solved. The focus is on defect proneness rather than its extent.

However in the regression case, at the end of the analysis, the number of faults in

each module is found and the emphasis is on the number of faults rather than defect

proneness. In terms of the type of the defect predictors used, classification methods

can be grouped into three categories as statistical methods, machine learning methods

and mixed ones where statistical and machine learning methods are used together.

3.3.1. Defect Prediction Using Statistical Methods

There are studies where a specific statistical method is researched or the per-

formance of several statistical methods are compared. For example, Pickard et al.

[52] compare the efficiency of residual analysis, multivariate regression and classifica-

tion and regression trees (CART) for the analysis of the software data. Succi and

Stefanovic [53] compare Poisson regression model with binomial regression models to

deal with software defect data that is not distributed normally. They observe that

the zero-inflated negative binomial regression model, designed to explicitly model the

occurrence of zero counts in the dataset, shows the best ability to describe the high

variability in the dependent variable.

Schneidewind [54] show that logistic regression method is not very successful

alone. But when used together with Boolean discriminant functions (BDF) it gives

more accurate results. Basili et al. use logistic regression method to explore the

relationships between object oriented metrics and the defect proneness and observe

that object oriented metrics are better predictors than traditional static code metrics,

since they can be collected at earlier phases of the software development process [55].

Munson and Khoshgoftaar use the statistical technique of discriminant analysis to

predict detect prone software and observe that the technique is successful in classifying
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programs with a relatively low error rate [29].

3.3.2. Defect Prediction Using Machine Learning Methods

Machine learning is a discipline that deals with the development of algorithms

to make computers exhibit intelligent behavior. Its focus is to make computers learn

from the training data and to behave intelligently when a new data set is given. Ma-

chine learning accomplishes this by modeling the complex relationships among the data

entries in the training set.

Defect prediction is a very appropriate area to apply machine learning algorithms.

There are some automated tools in the industry that extracts software metrics like

Prest [50]. Furthermore, based on the maintenance experience of users, if there is a

bug database, it would also be possible to say whether a software module is defective

or not or even how many defects it has. Then, using the extracted metrics together

with the defectiveness information, machine learning algorithms can model the complex

relationships between the metrics and the defectiveness.

In recent years, compared to other methods, the amount of research done on

defect prediction using machine learning algorithms has increased significantly. Many

algorithms have been studied and as a consequence, some of these algorithms have been

marked to be superior to others. According to the No Free Lunch theorem [56], there

is no algorithm which is better than other algorithms on all data sets. That is why,

most of the time it is difficult to generalize the results. According to Myrtveit et al.,

“we need to develop more reliable research procedures before we can have confidence

in the conclusion of comparative studies of software prediction models” [57].

Rule induction [22], regression [22, 21], case-based reasoning (CBR) [24, 25, 22],

decision tree approaches like C4.5 [23], random forest [58, 59], linear discriminant

analysis [29], artificial neural networks [26, 27, 28, 22], K-nearest neighbor [30], K-

star [31], Bayesian networks [32, 1, 33] and support vector machine based classifiers

[34, 35, 2, 3, 60] are machine learning algorithms that are used in the fault prediction
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literature. For the purpose of this thesis, our focus is on Bayesian networks and support

vector machines based defect prediction methods.

3.4. Previous Work on Defect Prediction

When we look at the publications about defect prediction, we see that in early

studies static code features were used more. But afterwards, it was shown that together

with static code metrics, other measures like process metrics are also effective on defect

prediction and should be investigated. For example, Fenton and Neil [4] argue that

static code measures alone are not able to predict software defects accurately. To

support this idea we argue that, if a software is defective this might be related to one

of the following:

• The specification of the project may be wrong either due to contradictory re-

quirements or missing features. It may be too complex to realize or even not very

well documented.

• The design might be poor, it may not consider all requirements or it may reflect

some requirements wrongly.

• Developers are not qualified enough for the project.

• There might be a project management problem and the software life cycle method-

ologies might not be followed very well.

• The software may not be tested enough, so some defects might not be fixed during

the test period.

None of the above factors are related to code metrics and all of them may very

well affect defect proneness. So, the question is which factors or metrics are effective on

defectiveness and how can we measure their effect? Looking at the defect prediction

problem from the perspective that all or an effective subset of software or process

metrics must be considered together besides static code measures, it is crystal clear

that Bayesian network model is a very good candidate for taking into consideration

several process and product metrics at the same time.
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3.4.1. Critics About Studies

While making a critique of the software defect prediction studies, Fenton and

Neil argue that although there are so many studies in the literature, defect prediction

problem is far from solution [4]. There are some wrong assumptions about how defects

are defined or observed and this has caused misleading results. Their claim can be

understood better when we notice that some papers define defects as observed defi-

ciencies while some others define them as residual ones. Fenton and Neil also state that

the Goldilocks principle is a false claim. Goldilocks principle states that there is an

optimum software module size that is not too big or too small. Hatton [61] claims that

“compelling empirical evidence from disparate sources suggests that in any software

system, larger components are proportionally more reliable than smaller components”.

To be able to better interpret the claim of Fenton and Neil, we show how Goldilocks

principle supported or not supported by different authors. In studies by Gaffney [62]

and Basili and Perricome [63], it is accepted that defect density decreases as module

size increase (See Figure 3.2.A). On the other hand, in studies by Hatton [61] and

Moller and Paulish [64], one sees that there is an optimum module size that is “not

too big or too small” (See Figure 3.2.B). Lastly, Neil [65] and Fenton and Ohlsson [66]

observe that there is no apparent relationship between the defect density and module

size as shown in Figure 3.2.C.

Figure 3.2. Defect densities reported in different studies [4].

Fenton and Neil claim that if the Goldilocks principle was correct then the pro-

gram decomposition as a solution method would not work. We also think that it can

not be the case that a reliable software can have less reliable or more defective sub

modules. As a result, they conclude that the relationship between defect density and
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module size is too complex to model, and in general, it is difficult to use straightforward

curve fitting models [4].

Gyimothy et al. use regression and machine learning methods (decision tree and

neural networks) to see the importance of object oriented metrics for fault proneness

prediction [43]. They formulate a hypothesis for each object oriented metric and test

the correctness of these hypotheses using open source web and email tool Mozilla. For

comparison they use precision, correctness and completeness. It was found that CBO is

the best predictor and LOC is the second. On the other hand, the prediction capability

of WMC and RFC is less than CBO and LOC but much better than LCOM, DIT, and

NOC. According to the results, DIT is untrustworthy and NOC can not be used for

fault proneness prediction. Furthermore, the correctness of LCOM is good although it

has a low completeness value.

Menzies and Shepperd explain the possible reasons behind the conclusion insta-

bility problem [67]. In their analysis, they state that there are two main sources of

conclusion instability, (i) bias showing the distance between the predicted and actual

values and (ii) variance measuring the distance between different prediction methods.

The bias can be decreased by using separate training and validation data sets and the

variance can be decreased by repeating the validation many times.

In another research, Menzies et al. show what appears to be useful in a global

context is often irrelevant for particular local contexts in effort estimation or defect

prediction studies. They suggest to test if the global conclusions found are valid for

the subsets of the data sets used [68].

Posnett et al. explains the ecological inference risk which arises when one builds

a statistical model at an aggregated level (e.g., packages), and infers that the results

of the aggregated level are also valid for the disaggregated level (e.g., classes), without

testing the model in the disaggregated level [69]. They show that modeling defect

prediction in two different aggregation levels can lead to different conclusions.
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3.4.2. Benchmarking Studies

Although there are many defect predictors in the literature, there are not so many

extensive benchmarking studies. Comparing the accuracy of the defect predictors is

very important since most of the time the results of one method is not consistent across

different data sets [34]. There are a couple of reasons for this. First of all, especially

early studies in defect prediction used only a small number of data sets. Furthermore,

the performance indicators used across studies were different, so making a comparison

was really difficult. That is why, good benchmarking studies are always welcome to

see which defect prediction methods produce more accurate results.

Lessmann et al. compare the performance of 22 defect prediction methods across

10 data sets from the NASA metric data repository and Promise data repository.

Methods used in this study are grouped into six categories, namely statistical methods,

nearest neighbour methods, neural networks methods, SVM based methods, decision

tree methods, and ensemble methods. Then methods that belong to each of these

categories (See Table 3.2) were benchmarked.

The prediction methods are analyzed using 10 data sets and the results for each

data set are compared according to the area under ROC curve (AUC). The last column

(AR) shows the average ranking of the method over all defect prediction methods.

When we look at the AUC and AR in Table 3.2, we see that LS-SVM, RndFor

and Bayes Net are one of the most accurate methods in defect prediction. However, we

also see that the difference among the AUC values are not so significant. To check the

significance of differences, post-hoc Nemenyi’s test was applied to pairwise compare

the 22 methods. Nemenyi’s test is used to check the null hypothesis that the mean

ranks of a set of classifiers are equal. The classifiers are pairwise tested and if the

difference among their mean ranks exceeds a critical value, then the null hypothesis is

rejected. In Figure 3.3, all classifiers are sorted according to their mean ranks where

the line segment on the right of a classifier shows the amount of its critical difference.

For instance, for LS-SVM, it’s line segment is on the left of RBF, VP, CART and this
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Table 3.2. The AUC values and the average ranking (AR) of the 22 defect prediction

methods on 10 data sets.

Algorithms Data Sets

CM1 KC1 KC3 KC4 MW1 JM1 PC1 PC2 PC3 PC4 AR

LDA 0.77 0.78 0.62 0.73 0.82 0.73 0.82 0.87 0.82 0.88 9.7

QDA 0.7 0.78 0.74 0.8 0.83 0.7 0.7 0.8 0.78 0.86 13.1

LogReg 0.8 0.76 0.61 0.74 0.82 0.73 0.82 0.86 0.82 0.89 10

NB 0.72 0.76 0.83 0.68 0.8 0.69 0.79 0.85 0.81 0.85 12.9

Bayes Net 0.79 0.75 0.83 0.8 0.82 0.73 0.84 0.85 0.8 0.9 8.7

LARS 0.84 0.75 0.8 0.76 0.74 0.72 0.7 0.3 0.79 0.9 13.3

RVM 0.82 0.76 0.74 0.74 0.75 0.72 0.84 0.91 0.82 0.89 10.4

K-NN 0.7 0.7 0.82 0.79 0.75 0.71 0.82 0.77 0.77 0.87 14.5

K* 0.76 0.68 0.71 0.81 0.71 0.69 0.72 0.62 0.74 0.83 17.1

MLP-1 0.76 0.77 0.79 0.8 0.77 0.73 0.89 0.93 0.78 0.95 6.9

MLP-2 0.82 0.77 0.83 0.76 0.76 0.73 0.91 0.84 0.81 0.94 6.9

RBF net 0.58 0.76 0.68 0.73 0.65 0.69 0.64 0.79 0.78 0.79 17.8

SVM 0.7 0.76 0.86 0.77 0.65 0.72 0.8 0.85 0.77 0.92 13

L-SVM 0.8 0.76 0.82 0.76 0.76 0.73 0.86 0.83 0.84 0.92 7.7

LS-SVM 0.75 0.77 0.83 0.81 0.6 0.74 0.9 0.85 0.83 0.94 6.8

LP 0.9 0.75 0.74 0.83 0.74 0.72 0.73 0.88 0.82 0.92 9.3

VP 0.72 0.76 0.74 0.73 0.73 0.54 0.75 0.5 0.74 0.83 18.2

C4.5 0.57 0.71 0.81 0.76 0.78 0.72 0.9 0.84 0.78 0.93 11.6

CART 0.74 0.67 0.62 0.79 0.67 0.61 0.7 0.68 0.63 0.79 19.3

ADT 0.78 0.69 0.74 0.81 0.76 0.73 0.85 0.7 0.76 0.94 11.8

RndFor 0.81 0.78 0.86 0.85 0.81 0.76 0.9 0.82 0.82 0.97 4

LMT 0.81 0.76 0.78 0.8 0.71 0.72 0.86 0.83 0.8 0.92 10.4
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Figure 3.3. Results of the pairwise comparisons of all classifiers using Nemenyi’s post

hoc test with α = 0.05.

shows that LS-SVM is significantly different from these three classifiers. Interpreting

the results from this point of view, it is clear that excluding a couple of classifiers

like RndFor, LS-SVM, and Bayes Net, there is not a significant difference among the

22 methods. Almost all of them are able to model the linear dependency among the

software metrics and the defectiveness. This might be due to the fact that MDP data

sets are not accurate enough to model the nonlinear relationship among the metrics

and the defectiveness. One can also interpret this result as the discriminative attribute

of the data sets is more important than the classifier chosen in the defect prediction.

Qinbao et al. propose a general software defect-proneness prediction framework

that includes unbiased and comprehensive comparison of competing prediction systems

and conclude that one should choose different learning techniques for different data sets

which means that no method can dominate in all data sets since small details changed

during experiment design may generate different results [70]. We believe that this

approach is more realistic as the nature of the data, for instance whether it is balanced

or not, may affect the performance of the learning method. If the data is skewed i.e.

there are not enough defective instances to learn, one technique may perform poor,

although it performs well on a balanced data set.

Hall et al. make a literature review comprising 208 fault prediction studies pub-

lished from January 2000 to December 2010 and suggest that simple, and easy to use
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modeling techniques like Naive Bayes or Logistic Regression perform well. On the

other hand, more complex modeling techniques, such as Support Vector Machines per-

form relatively less well [71]. Regarding to the two conflicting results on SVM, one

by Lessmann et al. [34] (SVM performs well) and the other by Hall et al. [71] (the

performance of SVM is not well) we can say that:

• The performance of SVM depends on the type of the kernel used. Linear kernels

are simple and usually perform well on easy data sets, but they may underfit on

non-linear data sets. On the other hand, RBF kernels are more complex and can

learn non-linear relationships better, but they may overfit on linear and easy data

sets.

• If the data is skewed, RBF kernels might not perform well although they can

generate bright results with balanced data sets.

• The number of studies reviewed is 33 for Naive Bayes and 56 for Logistic Regres-

sion, whereas it is only 4 for SVM and we believe that it may not be safe to make

a generalization with such a small number of cases.

Arisholm et al. use a Java middle-ware system from a telecommunication com-

pany to compare several data mining and machine learning techniques like SVM, Neural

network, Logistic regression, C4.5, and Boost based on different evaluation criteria like

accuracy, precision/recall, AUC, and cost-effectiveness measure (CE). They use process

metrics like change or fault history besides structural source code metrics [46]. Their

results suggest that the effect of different prediction techniques on the classification

accuracy is limited, however if process metrics are included together with source code

metrics, the prediction performance is significantly improved, compared to the case

when only structural source code metrics are used. However, we believe that there are

two points that one can question about the findings in this study. First the experiments

were carried out using several releases of one data set, so it is difficult to generalize the

results for all data sets. Second, all the techniques were run with default parameter

sets and no tuning was done. If the default parameters of the prediction methods were

tuned, the performance of the techniques could change.
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Gondra [72] consider defect proneness prediction as a binary classification problem

and compare the performance of Artificial Neural Network (ANN) and SVM using a

data set from NASA metrics data repository. He concludes that SVM is a better

defect prediction technique when compared with ANN wince its accuracy is higher.

(The accuracy of SVM was 87.4% whereas ANN had an accuracy of 72.6%) Elish

and Elish [73] compare the performance of SVM with eight statistical and machine

learning methods in terms of accuracy, precision, recall and the F-measure using four

data sets from NASA metrics data repository. They suggest that the performance of

SVM is better than or at least competitive with other statistical and machine learning

methods. Arisholm et al. [74] compare the performance of SVM with eight data

mining techniques like C4.5, neural networks, and logistic regression in terms of defect

classification accuracy (precision, recall, and ROC) using an industrial Java system.

Although they suggest that C4.5 classification tree method performs better than other

techniques in general, the results are comparable in terms of AUC and the AUC for

SVM is 83.7% which is better than the AUC of the six out of eight techniques.

As a summary of the literature review, we can say that there are really so many

studies about defect prediction but the results are not so bright. That is, the defect

prediction problem is still unsolved or we can say it is far from solution. There are some

misleading or contradictory findings in the literature most of which are related to the

wrong assumptions and data set special issues. However in recent years, the research

direction is towards some novel approaches rather than older statistical methods. Using

Bayesian networks, it is possible to take into consideration the broad possible reasons

of defect prediction. Furthermore, using kernel methods, it is possible to model the

interaction between the source code similarity and defectiveness. We base our research

on these two approaches and propose novel methods that we believe make the solution

of the defect prediction problem easier.
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Chapter 4

Bayesian Networks

In this chapter we first provide the necessary technical background on Bayesian

networks and then explain how they are used in defect prediction. Afterwards, we

present a literature review and give examples of previous studies about Bayesian net-

works.

4.1. Background on Bayesian Networks

Bayesian network is a graphical representation that shows the probabilistic causal

or influential relationships among a set of variables that we are interested in. There are

a couple of practical factors for using Bayesian networks. First, Bayesian networks are

able to model probabilistic causal influence of a set of variables on another variable in

the network. Given the probability of parents, the probability of their children can be

calculated. Second, Bayesian networks can cope with the missing data problem. This

aspect of Bayesian networks is very important for defect prediction since some metrics

might be missing for some modules in defect prediction data sets.

A Bayesian network is a directed acyclic graph (DAG), composed of edges E and

vertices V which represent the joint probability distribution of a set of variables. In

this notation, each vertex represents a variable and each edge represents the causal or

associational influence of one variable to its successor in the network.

Let X = {X1, X2, ...Xn} be n variables taking continuous or discrete values. The

probability distribution of Xi is shown as P (Xi|axi) where axi ’s represent parents of

Xi if any. When there are no parents of Xi, then it is a prior probability distribution

and can be shown as P (Xi).
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The joint probability distribution of X can be calculated using chain rule. That

is,

P (X) = P (X1|X2, X3, ..., Xn)P (X2, X3, ..., Xn)

= P (X1|X2, ..., Xn)P (X2|X3, ..., Xn)P (X3, ..., Xn)

= P (X1|X2, ..., Xn)P (X2|X3, ..., Xn)...P (Xn−1|Xn)P (Xn)

=
n∏
i=1

P (Xi|Xi+1, ..., Xn) (4.1)

Given the parents of Xi, other variables are independent from Xi, so we can write the

joint probability distribution as

P (X) =
n∏
i=1

P (Xi|axi) (4.2)

On the other hand, Bayes’ rule is used to calculate the posterior probability of

Xi in a Bayesian network based on the evidence information present. We can calculate

probabilities either towards from causes to effects (P (Xi|E)) or from effects to causes

(P (E|Xi)). Calculating probability of effects from causes is called causal inference

whereas calculating probability of causes from effects is called diagnostic inference [5].

A sample Bayesian network and the conditional probability table are shown in Figure

4.1 to illustrate the causal and diagnostic inference. Assume that we would like to

investigate the effect of using experienced developers (ED) and applying unit testing

methodology (UT) on defectiveness (FP). Furthermore, each variable can take discrete

values of ON/OFF, that is developers are experienced or not, unit testing is used or not

used. Suppose we would like to make a causal inference and calculate the probability

of having a fault prone software if we know that the developers working on the project

are experienced. We shall calculate

P (FP |ED) = P (FP |ED,UT )P (UT |ED) +

P (FP |ED,∼ UT )P (∼ UT |ED)
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Figure 4.1. A sample Bayesian network to illustrate Bayesian inference.

We can write P (UT |ED) = P (UT ) and P (∼ UT |ED) = P (∼ UT ) since the variables

ED and UT are independent. Then we have,

P (FP |ED) = P (FP |ED,UT )P (UT )

+ P (FP |ED,∼ UT )P (∼ UT )

Feeding up the values in the conditional probability table, P (FP |ED) is calculated

as 0.34. Assume that we are asked to calculate the probability of having experienced

developers given the software is fault prone. So, now we shall calculate P (ED|FP ).

Using Bayes’ rule we write

P (ED|FP ) =
P (FP |ED)P (ED)

P (FP )
(4.3)

We can also write

P (FP ) = P (FP |UT,ED)P (UT )P (ED)

+ P (FP |UT,∼ ED)P (UT )P (∼ ED)

+ P (FP | ∼ UT,ED)P (∼ UT )P (ED)

+ P (FP | ∼ UT,∼ ED)P (∼ UT )P (∼ ED) (4.4)
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Since P (FP |UT,ED), P (FP |UT,∼ ED), P (FP | ∼ UT,ED), and P (FP | ∼ UT,∼

ED) can be read from the conditional table, the diagnosis probability P (ED|FP ) can

also be calculated.

As it can be seen in these examples of causal and diagnostic inferences, it is

possible to propagate the effect of states of variables (nodes) to calculate posterior

probabilities. Propagating the effects of variables to the successors, or analyzing the

probability of some predecessor variable based on the probability of its successor is

very important in defect prediction since software metrics are related to each other

and that is why the effect of a metric might be dependent on another metric based on

some relationship.

4.1.1. K2 Algorithm

In Bayesian network structure learning, the search space is composed of all of

the possible structures of directed acyclic graphs based on the given variables (nodes).

Normally, it is very difficult to enumerate all of these possible directed acyclic graphs

without a heuristic method. Because, when the number of nodes increases, the search

space grows exponentially and it is almost impossible to search the whole space. Given

a data set, the K2 algorithm proposed by Cooper and Herskovits, heuristically searches

for the most probable Bayesian network structure [75]. Based on the ordering of the

nodes, the algorithm looks for parents for each node whose addition increases the score

of the Bayesian network. If addition of a certain node Xj to the set of parents of node

Xi does not increase the score of the Bayesian network, K2 stops looking for parents

of node Xi further. Since the ordering of the nodes in the Bayesian network is known,

the search space is much more smaller compared to the entire space that needs to be

searched without a heuristic method. Furthermore, a known ordering ensures that

there will be no cycles in the Bayesian network, so there is no need to check for cycles

too.

K2 algorithm takes a set of n nodes, an initial ordering of the n nodes, the

maximum number of parents of any node denoted by u and a database D of m cases
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for i← 1 to n do

πi := 0;

Pold := f(i, πi) (See Equation 4.5);

OKToProceed := true;

while OKToProceed and |πi| < u do

let z be the node in Pred(xi)− πi that maximizes f(i, πi ∪ {z});

Pnew := f(i, πi ∪ {z});

if Pnew > Pold then

Pold := Pnew;

πi := πi ∪ {z}
else

OKToProceed := false

end

end

write(Node: xi, Parent of xi : πi)

end

Algorithm 1: The K2 algorithm [75].

as input and outputs a list of parent nodes for every node in the network. The pseudo

code of the K2 algorithm is given in Algorithm 1. For every node in the network, the

algorithm finds the set of parents with the highest probability taking into consideration

the upper bound u for the maximum number of parents a node can have. During each

iteration, the function Pred(xi) is used to determine the set of nodes that precede xi

in the node ordering. The algorithm calculates the probability that the parents of xi

are πi using the following equation:

f(i, πi) =

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk! (4.5)

where πi is the set of parents of xi, qi = |φi| where φi is the set of all possible instances

of the parents of xi for database D. Furthermore, ri = |Vi| where Vi is the set of all

possible values of xi. On the other hand, Nijk is the number of instances in database

D for which xi is instantiated with its kth value, and the parents of xi in the set πi are

33



Table 4.1. Correlational analysis of KC1 metrics [1].

METRIC CBO LCOM NOC RFC WMC DIT SLOC DC

CBO 1.000

LCOM 0.041 1.000

NOC -0.129 0.119 1.000

RFC 0.542 0.383 -0.032 1.000

WMC 0.388 0.378 0.101 0.666 1.000

DIT 0.470 0.249 -0.112 0.718 0.215 1.000

SLOC 0.818 0.010 -0.136 0.523 0.496 0.385 1.000

DC 0.520 -0.006 -0.156 0.245 0.352 0.036 0.560 1.000

instantiated with the jth instantiation in the set φi. And lastly,

Nij =

ri∑
k=1

Nijk

gives the number of instances in D where the parents of xi are instantiated with the

jth instantiation in φi.

4.2. Previous Work on Bayesian Networks

Pai and Dugan use Bayesian network to analyze the effect of object oriented

metrics [42] on the number of defects (fault content) and defect proneness using KC1

project from the NASA metrics data repository [1]. They build a Bayesian network

where parent nodes are the object oriented metrics (also called C-K metrics) and child

nodes are the random variables fault content and fault proneness.

They make a Spearman correlation analysis to check whether the variables of the

model (metrics) are independent or not. They show that almost all metrics have a

correlation at a moderate level. On the other hand, almost all metrics are related with

the size metric whereas only CBO, RFC, WMC, and SLOC metrics are highly related

to the fault content (See Table 4.1). Having determined that CBO, RFC, WMC, and
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Table 4.2. Prediction performance of variable set v2 is higher [1].

Predictor Specificity Sensitivity Precision FN Rate FP Rate

v1 0.630 0.526 0.676 0.400 0.284

v2 0.852 0.597 0.752 0.277 0.235

SLOC metrics are highly correlated with defectiveness (both fault content and fault

proneness), they have defined two sets of variables so that the first set (v1) includes

these variables and the second set (v2) includes these variables plus an additional

variable LCOM. They use multiple linear regression to compare the predictive power

of these two variable sets v1 and v2. Since results for fault content and fault proneness

are similar, for simplicity we consider the results for fault proneness only. As it is seen

in Table 4.2, the predictive power of v2 is higher since v2 achieves greater precision

while having small false positive and false negative rates.

Assuming that adding LCOM to the variable set improves the performance of

Bayesian network model, they use the Bayesian network model in Figure 4.2 that

includes LCOM and observe that when a class is picked up randomly from the KC1

system, with 37.2 percent it has at least one or more defects. Although the findings

found are related to the data set chosen to some extent, they claim that using Bayesian

network modeling that relates product metrics to defectiveness is applicable across

different software systems.

According to Zhang [33], Bayesian networks provide a very suitable and useful

method for software defect prediction. He suggests to build a Bayesian network that

reflects all software development activities like specification, design, implementation,

testing and considers Bayesian network generation in three steps. His suggestion is very

straightforward and explains the use of Bayesian network in defect prediction very well.

Bayesian network generation steps defined by Zhang are:

1. Define Bayesian network variables. There are three different types of variables in

the Bayesian network.

• Information variables: These variables reflect the states that are observable
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Figure 4.2. Bayesian network model for fault proneness analysis [1].

in the Bayesian network.

• Hypothesis variables: These are target variables for which we would like to

calculate the probability distribution.

• Mediating variables: These are introduced for several purposes like reflecting

the independence either between any information variables or information

variables and the target variable.

2. Define the causal relationships among the network variables. These relationships

are the arcs of the Bayesian network.

3. Generate the probability distribution of each variable in the network and calculate

the joint probability distribution of the hypothesis variables.

Fenton et al. [32] suggest to use Bayesian network for defect, quality and risk

prediction of software systems. They use the Bayesian network shown in Figure 4.3

to model the causal relationships among target variable “defects detected” (DD) and

the information variables “test effectiveness” (TE) and “defects present” (DP). In this

network, DP models the number of bugs/defects found during testing. TE gives the

efficiency of testing activities and DD gives the number of defects delivered to the

maintenance phase. For discretization, they assign two very simple states to each
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Figure 4.3. Bayesian network suggested by Fenton et al.

variable namely low and high. Using the Bayes’ rule we have,

P (E|C) =
P (C|E)P (E)

P (C)
(4.6)

where E represents the evident variable and C the class variable we are interested in.

To calculate P (TE = High|DD = High), using Bayes’ rule we have,

P (TE = High|DD = High) =
P (DD = High|TE = High)P (TE = High)

P (DD = High)
(4.7)

From this equation it can be seen how a high DD rate affected by Test Effectiveness

(TE) although not by a dramatic amount.

Using the Bayesian network model above, Fenton et al. show how Bayesian

network is providing accurate results for software quality and risk management in a

range of real world projects. They conclude that Bayesian networks can be used to

model the causal influences in a software development project and the network model

can be used to ask “What if?” questions under circumstances when some process

underperforms [32].

In another study by Fenton and Neil, it is claimed that the proportion of defects

introduced are influenced by many factors other than static code or design metrics [4].

Examples of such factors are:

• The complexity of the problem itself.

• The complexity of the software designed.
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Figure 4.4. Bayesian network topology proposed by Fenton and Neil for defect

prediction [4].

• The experience of the development team.

• Methods used in the software life cycle.

These factors are also effective on defect proneness and should be modeled. They

propose the Bayesian networks shown in the Figure 4.4 to model the effect of these

factors.

It is claimed that if the problem is complex, then more defects are introduced and

that is why the size of the design is larger. At the same time, design effort affect the

size of the design and the number of introduced defects. On the other hand, introduced

defects are the sum of detected and residual defects. Moreover, testing effort affects

the number of defects detected and detected defects influence the density of defects

during testing [4].

On the other hand, Zhou and Leung use logistic regression and machine learning
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methods (naive Bayes network, random forest, and nearest neighbor with generaliza-

tion) to determine the importance of object oriented metrics for determining fault

severity [76]. They state a hypothesis for each object oriented metric and test them

on open source NASA data set KC1 [48]. For ungraded severity, it was found that

SLOC, CBO, WMC and RFC are significant in fault proneness prediction. Further-

more, LCOM is also significant but when tested with machine learning methods the

usefulness of NOC is poor and the result is similar for DIT.

Bibi et al. use iterative Bayesian networks for effort estimation by modeling the

sequence of the software development processes and their interactions. They state that

Bayesian networks provide a highly visual interface to explain the relationships of the

software processes and provide a probabilistic model to represent the uncertainty in

their nature. They conclude that Bayesian networks could be used for software effort

estimation effectively [77]. Furthermore, Minana and Gras use Bayesian networks to

predict the level of fault injection during the phases of a software development process.

They show that Bayesian networks provide a successful fault prediction model [78].

Amasaki et al. propose to use Bayesian networks to predict the quality of a

software system. To generate a Bayesian network they use certain metrics collected

during the software development phase like product size, effort, detected faults, test

items, and residual faults. They conclude that the proposed model can estimate the

residual faults that the software reliability growth model can not handle [79].

Fenton et al. review different techniques for software defect prediction and con-

clude that traditional statistical approaches like regression alone is not enough. Instead

they believe that causal models are needed for more accurate predictions. They de-

scribe a Bayesian network, to model the relationship of different software life cycles

and conclude that there is a good fit between predicted and actual defect counts [80].

In another study, Fenton et al. propose to use Bayesian networks to predict software

defects and software reliability and conclude that using dynamic discretization algo-

rithms while generating Bayesian networks leads to significantly improved accuracy for

defects and reliability prediction [81].
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In another research, Dejaeger et al. compare 15 different Bayesian network clas-

sifiers with famous defect prediction methods on 11 Data sets in terms of the AUC

and H-measure. They observe that simple and comprehensible Bayesian networks can

be constructed other than the simple Naive Bayes model and recommend to use aug-

mented Bayesian network classifiers when the cost of not detecting a defective or non

defective module is not higher than the additional testing effort [82]. Furthermore, as

future work, they propose to discover the effects of different information sources with

Bayesian networks which is something we consider by defining two extra metrics i.e.

LOCQ and NOD and measuring their relationship with other metrics and defectiveness.

Regarding the effects of the number of developers on defect proneness there are

contradictory findings in the literature. For example Norick et al. use 11 open source

software projects, to determine if the number of committing developers affects the

quality of a software system. As a result, they could not find significant evidence

to claim that the number of committing developers affects the quality of software

[83]. Furthermore, Pendharkar and Rodger investigate the impact of team size on the

software development effort using over 200 software projects and conclude that when

the size of the team increases, no significant software effort improvements are seen [84].

On the other hand, Nagappan et al. define a metric scheme that includes metrics

like number of engineers, number of ex-engineers, edit frequency, depth of master own-

ership, percentage of organization contributing to development, level of organizational

code ownership, overall organization ownership, and organization intersection factor

to quantify organizational complexity. They use data from Windows Vista operat-

ing system and conclude that the organizational metrics predict failure-proneness with

significant precision, recall, and sensitivity. Furthermore, they also show that organi-

zational metrics are better predictors of failure-proneness than the traditional metrics

used so far like code churn, code complexity, code coverage, code dependencies, and

pre-release defect measures [85].

Furthermore Mockus et al. use two open source projects, the Apache web server

and the Mozilla browser to define several hypotheses that are related to the developer
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count and the team size. They test and refine some of these based on an the analysis

of Mozilla data set. They believe that when several people work on the same code,

there are many potential dependencies among their work items. So, they suggest that

regarding to the team size, around an upper limit of 10-15 people, coordination of the

work for the team becomes inadequate [86].
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Chapter 5

Kernel Machines

In general, defect prediction studies use so many metrics together to analyze the

defect proneness of software system. Most of the time, it is not so easy to extract

all metrics needed for the analysis. That is why it is very important to be able to

achieve defect prediction with limited number of software metrics. At this point kernel

methods can be used since they allow prediction of defects with limited number of

metrics compared to other alternatives. This leads to spending less computing power

and time which is very important for the purpose of defect prediction studies.

5.1. Background on Kernel Machines

In this section, we provide the technical background of support vector machines

and kernel functions.

5.1.1. Support Vector Machines

Support vector machines generate the optimal hyperplane (or hypersphere, de-

pending on the kernel) that can be used for classification or regression [87]. The optimal

hyperplane is found by maximizing the margin which is defined as the distance between

two nearest instances from either side of the hyperplane. As it is shown in the Figure

5.1, the hyperplane is 1
‖w‖ away from each class and it has a margin of 2

‖w‖ .

Let’s assume that we have a training set

S =
{

(xi, yi),xi ∈ Rt, yi ∈ {−1, 1}
}n
i=1

(5.1)
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Figure 5.1. An optimal separating hyperplane [5].

where yi’s are either +1 (positive class) or -1 (negative class) and each xi vector (with

t entries) belongs to one of these classes. Based on this assumption, an hyperplane is

defined as

g(x) = wTx− b (5.2)

where w shows the vector normal to the optimal hyperplane and b/ ‖w‖ is the offset

of the hyperplane from the origin on the direction of w. In order to calculate the

margin of the optimum hyperplane, we need to find the boundaries of the two classes

as hyperplanes first and then take the distance among these two hyperplanes. The

boundary hyperplane of the positive class can be written as g(x) = 1 whereas the

boundary hyperplane of the negative class is g(x) = −1.

Assuming that we have a linearly separable data set, the distance to the origin is

(b+ 1)/ ‖w‖ for the first hyperplane and (b−1)/ ‖w‖ for the second one. The distance

between these two hyperplanes is 2/ ‖w‖. The optimum hyperplane separating these

two classes maximizes this margin or minimizes ‖w‖.

For positive instances we have

wTxi − b ≥ 1 (5.3)
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and for negative instances we have

wTxi − b ≤ −1 (5.4)

These two constraints can be combined as yi(wTxi−b) ≥ 1. Now our problem becomes

an optimization problem of

Minimize ‖w‖2

s. t. yi(wTxi − b) ≥ 1 (5.5)

To control the sensitivity of SVM and tolerate possible outliers, slack variables

(ξ) are introduced. Then the problem changes slightly and becomes an optimization

problem of

Minimize ‖w‖2 + C
∑

ξi

s. t. yi(wTxi − b) ≥ 1− ξi (5.6)

where the constant C > 0 determines the relative importance of maximizing the margin

and minimizing the amount of slack.

Compared to the hard constraint defined in Equation 5.5, here some amount of

slackness is allowed and it is represented by ξi’s. In this new representation, we observe

that if 0 < ξi ≤ 1, the data point lies between the margin and the correct side of the

hyper plane. On the other hand if ξi > 1, then the data point is misclassified. Data

points that lie on the margin are called support vectors and regarded as the most

important data points in the training set. In Figure 5.2, support vectors are shown on

a diagram where a hyperplane is separating two types of instances.

So far, we have assumed that the data points are linearly separable. What about

the case when the data points are not linearly separable where we would not be able
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Figure 5.2. A binary classification toy problem: separate dots from triangles. The

solid line shows the optimal hyperplane. The dashed lines parallel to the solid one

show how much one can move the decision hyperplane without misclassification [6].

to define a hyperplane or hyperspehere to separate different classes? Consider the data

points in Figure 5.3. In the first graph on the left hand side, the points are not linearly

separable i.e. one can not draw a line or hyperplane to separate the classes given. But,

when a transformation is applied and the graph on the right hand side is generated,

then it is possible to achieve linear separation. The solution is to use a suitable trans-

formation function to carry the data points to a high dimension where linear separation

is possible. This is called kernel trick in the literature. The classification is based on the

dot product of two vectors as K(xi,xj) = (xi)Txj. Assuming that the transformation

function θ is defined as θ : x → Φ(x), our new dot product in the high dimensional

space becomes K(xi,xj) =
〈
Φ(xi)T ,Φ(xj)

〉
. So, the kernel function can be defined as

a function that returns the inner product between the images of two inputs in a feature

space where the image function is shown with Φ in our representation.

Assume that we have two dimensional data, i.e. x is in the form of [x1, x2]. Let’s

also assume that our kernel function is K(xi,xj) = (1 + (xi)Txj)2. We need to show

that K(xi,xj) is the inner product of some function Φ(x). Expanding K(xi,xj) =
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Figure 5.3. Transforming data points to higher dimensional space [7].

(1 + (xi)Txj)2 we have,

K(xi,xj) = (1 + ((xi)1(xj)1 + (xi)2(xj)2))2

= 1 + 2(xi)1(xj)1 + 2(xi)2(xj)2 + (xi)2
1(xj)2

1 + 2(xi)1(xj)1(xi)2(xj)2 + (xi)2
2(xj)2

2

Now we can write K(xi,xj) as the inner product of two vectors,

K(xi,xj) =
[
1,
√

2(xi)1,
√

2(xi)2, (x
i)2

1,
√

2(xi)1(xi)2, (x
i)2

2

]
[
1,
√

2(xj)1,
√

2(xj)2, (x
j)2

1,
√

2(xj)1(xj)2, (x
j)2

2

]

Interpreting this result in the form of K(xi,xj) = Φ(xi)TΦ(xj) as we defined

above, we have

Φ(x) =
[
1,
√

2x1,
√

2x2, x
2
1,
√

2x1x2, x
2
2

]
(5.7)

We have shown that there exist a kernel function K(xi,xj) for a transformation from

1 to 2 dimensional space.
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Checking whether any function constitutes a valid kernel, K(xi,xj) =
〈
Φ(xi)T ,Φ(xj)

〉
is a difficult task. Mercer’s theorem states that every semi-positive definite symmetric

function is a kernel. Checking semi-positive definiteness for a function corresponds to

checking semi-positive definiteness of the matrix in the form of

K =


K(x1,x1) K(x1,x2) ... K(x1,xN)

K(x2,x1) K(x2,x2) ... K(x2,xN)

... ... ... ...

K(xN ,x1) K(xN ,x2) ... K(xN ,xN)

 (5.8)

The kernel matrices satisfy the semi-positive definiteness property, because a

matrix K with real entries is said to be semi-positive definite if for any vector v with

real components, the dot product of Kv and v is nonnegative, that is 〈Kv,v〉 ≥ 0.

Considering the definition of the kernel matrix, letKij = K(xi,xj) = 〈Φ(xi),Φ(xj)〉

for i, j = 1, 2, ...,m, where m is the size of the kernel matrix. For any vector v we can

write

vKv =
m∑

i,j=1

vivjKij

=
m∑

i,j=1

vivj
〈
Φ(xi)T ,Φ(xj)

〉
=

〈
m∑
i=1

viΦ(xi),
m∑
j=1

vjΦ(xj)

〉

=

∥∥∥∥∥
m∑
i=1

viΦ(xi)

∥∥∥∥∥
2

≥ 0 (5.9)

Furthermore, if we apply the positive semi definiteness test and see that a matrix

K is not a valid kernel matrix, then we can produce K2 = KTK which is guaranteed
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to be a valid kernel, since for any vector v

vK2v = vKKv

= ‖Kv‖2 ≥ 0 (5.10)

There are other alternative ways of converting any symmetric but non semi-positive

matrix to a valid kernel matrix. Some of these transformation methods are denoise,

flip, diffusion, and shift and their effect on classification using kernel machines are given

by Wu et al. [88].

5.1.2. Support Vector Machines for Regression

Let’s assume that we have a training set where yt’s are output values correspond-

ing to each xt input vector.

In SVM regression proposed by Vapnik et al. [87] the goal is to find a function

g(x) that has at most ε deviation from the actually obtained target yt values for all of

the training data, and at the same time is as flat as possible. It means that the error

e introduced by the function g(x) must be less than ε for all possible x inputs. If the

function g(x) is defined as:

g(xt) = wTxt + b (5.11)

the ε-sensitive error function can be defined as:

eε(y
t, g(xt)) =

 0 if |yt − g(xt)| < ε

|yt − g(xt)| − ε otherwise

 (5.12)

where for the function to be flat, w should be small. To ensure a small w, we can

minimize ‖w‖2 = (wTw). Then, we can write this problem as a convex optimization

problem of:
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Minimize
1

2
‖w‖2

s. t.


yt − (wTxt + b) ≤ ε

wTxt + b− yt ≤ ε

 (5.13)

To control the sensitivity of SVM and tolerate possible outliers, slack variables

(ξ+, ξ−) are introduced. Then the problem changes slightly and becomes an optimiza-

tion problem of

Minimize
1

2
‖w‖2 + C

∑
t

(ξt+ + ξt−)

s. t.



yt − (wTxt + b) ≤ ε+ ξt+

wTxt + b− yt ≤ ε+ ξt−

ξt+, ξ
t
− ≥ 0


(5.14)

where the constant C > 0 determines the trade-off between the flatness of g(x) and

the amount up to which deviations larger than ε are tolerated and two types of slack

variables (ξ+, ξ−) are used, for positive and negative deviations, to keep them positive.

This formulation also corresponds to the ε-sensitive error function given in Equation

5.12. The Lagrangian is:

Lp =
1

2
‖w‖2 + C

∑
t

(ξt+ + ξt−)−
∑
t

αt+(ε+ ξt+ − yt + wTxt + b)

−
∑
t

αt−(ε+ ξt− + yt −wTxt − b)−
∑
t

(µt+ξ
t
+ + µt−ξ

t
−) (5.15)

Taking the partial derivatives of the Lagrangian and substituting the results we get
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the dual:

Ld =− 1

2

∑
t

∑
s

(αt+ − αt−)(αs+ − αs−)(xt)Txs

− ε
∑
t

(αt+ + αt−)−
∑
t

yt(αt+ − αt−) (5.16)

subject to

0 ≤ αt+ ≤ C, 0 ≤ αt− ≤ C,
∑
t

(αt+ − αt−) = 0

When we solve this, we see that all instances that fall in the regression tube have

αt+ = αt− = 0 where these are instances that are fitted with enough precision. On the

other hand, the support vectors are either αt+ > 0 or αt− > 0 and are of two types.

They can either be the instances on the boundary of the regression tube and can be

used to calculate b in g(x). Instances that fall outside of the regression tube are of the

second type and we do not have a good fit for them (αt+ = C).

The dot product (xt)Txs in Equation 5.16 can be replaced with a suitable kernel

function K(xt,xs) to have a nonlinear fit. For example, when we use a polynomial

kernel we can fit to a polynomial or when we use a Gaussian kernel we can have a

nonparametric smoothing model.

5.1.3. Kernel Functions

Kernel methods are used to extract and model the similarities in a set of data

points. This way, kernel methods make it possible to classify a set of data points that

are not linearly related.

There are many types of kernel functions used in the literature. The function

used is very much dependent on the type of the problem. For example a polynomial

kernel allow us to model the feature conjunctions up to the order of the polynomial.
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On the other hand, radial basis functions allow us to generate hyperspheres or circles

whereas linear kernel generates hyperplanes or lines. Some kernel functions used in the

literature are:

1. Linear kernel: Linear kernel is the simplest kernel function and it is the dot

product of two vectors xi and xj plus a constant vector c. Compared to other

kernel functions it is used less in defect prediction studies [39].

K(xi,xj) = (xi)Txj + c. (5.17)

2. Gaussian kernel: Gaussian kernel is a type of radial basis function and used

in the literature for the purpose of defect prediction successfully [6]. It models

the similarities among data points by exponentiating the square of the distance

among vectors xi and xj.

K(xi,xj) = exp(−γ(‖xi − xj‖)2) (5.18)

where γ value must be tuned very carefully, not to cause any overestimation or

underestimation. Furthermore Gaussian kernel has some advantages compared

to other types of kernel functions, since it is suitable for nonlinear modeling, uses

less parameters, and requires less computing power especially when compared

with polynomial kernels [89].

3. Exponential kernel: It is also a radial basis function and also very much similar

to the Gaussian kernel except that it uses just the distance of the vectors xi, xj

rather than its square.

K(xi,xj) = exp(−‖x
i − xj‖
2σ2

). (5.19)
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5.1.4. String Kernels

String kernels are used in areas like software plagiarism detection, document

classification and filtering, information retrieval, and DNA analysis [90]. In all of these

areas, the key point is to extract and measure similarities of text passages or strings.

Below we list and briefly explain the most important and widely used string kernels in

the literature.

1. Levenshtein distance (edit-distance) kernel: The edit distance kernel gives the

distance between two strings s and t, by taking into account the number of

insertions, deletions or substitutions needed to convert s to t. Assuming the

string s has length m and t has length n, then E(m + 1, n + 1) entry of the

edit distance matrix gives the edit distance between strings s and t. Let f be a

function where c1 and c2 are two characters.

f(c1, c2) =

0 if c1 = c2

1 otherwise


The edit distance matrix is filled in an iterative manner by first setting E(i, 0) = i

for i = 1, 2, ...,m and E(0, j) = j for j = 1, 2, ..., n. Then, each entry of the matrix

is computed by

E(i, j) = min
{
E(i− 1, j) + 1;E(i, j − 1) + 1;E(i− 1, j − 1) + f(s(i), t(j)

}

where s(i) is the ith character of string s and t(j) is the jth character of string t.

2. Bag of words kernel: In document categorization or similarity extraction the

collection of available documents is called a ‘corpus’ and the set of words in

the dictionary are called ‘terms’. A term is a sequence of letters and is used

synonymously with word. A document is represented as a vector where each

dimension is associated with a term in the dictionary. Since the order of the

words in the document is not important in this representation, the model is
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called ‘Bag of Words’. The mapping θ is given by:

θ : d→ Φ(d) = (tf(t1, d), tf(t2, d), ....tf(tN , d))

where tf(ti, d) is the frequency of the ith term in the document d and N is the

size of the dictionary [91]. Two documents d1 and d2 can be compared using the

kernel:

K(d1, d2) = 〈Φ(d1),Φ(d2)〉 =
N∑
j=1

tf(tj, d1)tf(tj, d2)

where documents d1 and d2 have N dimensions [91].

3. P-gram kernel: In this type of kernel, an alphabet is defined as a finite set symbols

Σ and a string is defined as a finite sequence of symbols taken from alphabet Σ.

Σn is the set of all strings with length n and Σ∗ is the collection of all available

strings where we can write:

Σ∗ =
∞⋃
n=0

Σn

Furthermore, st represents the concatenation of strings s and t. If string s and

its substrings u, v1, v2 are related as

s = v1uv2

then, if v1 is empty string then u is called a prefix of s, and if v2 is empty then u

is called a suffix of s. A feature map Φ can be defined as:

Φn
u(s) = |{(v1, v2) : s = v1uv2|} , u ∈ Σn

and the associated kernel matrix between strings s and t is defined as [91]:

Kn(s, t) = 〈Φn(s),Φn(t)〉 =
∑
u∈Σn

Φn
u(s)Φn

u(t)
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5.2. Previous Work on Kernel Machines

5.2.1. Plagiarism Tools

According to Mozgovoy [92], plagiarism tools mainly use two methods namely

fingerprint based techniques and content comparison techniques to detect plagiarism.

In fingerprint based methods, a fingerprint is generated for each file or class

in the software system. During fingerprint generation, some statistical metrics (e.g.

the number of operators or operands, the number of unique keywords) are used. A

mathematical distance function is defined to compare the fingerprints of each file. If

the fingerprints are similar (the mathematical distance among them are small) then

the corresponding files are similar.

Content comparison techniques (structure metric systems) take into consideration

the continuous matching strings in files inspected. Each file (or class) is converted into

tokens and similar substrings are searched in these tokens. The percentage of similarity

between the tokens shows the extent of plagiarism between their corresponding files

(or classes).

5.2.2. Similarity Detection

Given a sentence s and a document d, Barrón-Cedeño and Rosso [93] try to

answer the question ‘is s plagiarized from d?’ by using p-gram kernel. They show that

as the size of the p-gram increases, the probability of finding common p-gram decreases

and bigrams and trigrams are the best comparison sequences for automatic plagiarism

detection based on p-grams.

Martins [94] review kernel methods like the bag-of-words kernel, the p-spectrum

kernel and the weighted all-substrings kernel to measure string similarity for text au-
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thorship attribution, language detection, and cross-language document matching. He

show that for the first two text categorization issues, all kernel methods yield accuracies

close to 100 percent provided that the kernel parameters are properly fine-tuned.

While checking the similarity of source code, some code clone and plagiarism

tools like JPlag uses greedy-string-tiling algorithm in comparing strings and generating

similarity matrix. On the other hand, local alignment (Smith-Waterman) algorithm

was developed to find similarities between nucleotide or protein sequences [95]. Local

alignment finds similar contiguous subsequences of two strings and generates similarity

matrix among subsequences. Ji et al. [96] use an adaptive version of local alignment

where they took into consideration the frequencies of the subsequences while generating

the kernel matrix. They show that the adaptive local alignment algorithm used is more

robust compared to the greedy-string-tiling algorithm used in JPlag [97].

Roy et al. [98] classify the clone detection techniques based on their clone detec-

tion logic and compared their performance. They define four clone types i.e. type-1,

type-2, type-3, and type-4 clones and classified clone detection tools and techniques

according to which clone type they are able to detect. A type-1 clone is defined as iden-

tical code fragments where only layout, comments and white spaces might be changed.

A type-2 clone is viewed as identical code fragments except identifiers, literals, white

spaces or comments might be changed. In type-3 clones, besides literal or identifier vari-

ations, there might be some changes, additions or deletions in the statements. Lastly,

type-4 clone implies functional similarity where two programs carry out the same task

but with different source codes. The first three clone types (type-1 to type-3) consider

syntactic similarities whereas type-4 clone considers functional or semantic similarities

between code fragments. Roy et al. [98] show that graph based clone techniques (where

functional similarity is detected) and metric based clone detection techniques are more

successful compared to other text, tree or token based techniques.
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5.2.3. Kernel Methods for Defect Prediction

Xing et al. state that support vector machines can model nonlinear relationships

among the data points that are difficult to model with other techniques. With SVM,

it is possible to predict the quality or defect proneness of a software system even when

there are small number of software metrics [60].

The defect prediction models in the literature use many software metrics and that

is why it is very difficult to generalize the results of a prediction model. It was shown

that the results achieved in a study for one data set might not be valid for other data

sets [38, 39].

Shin et al. use radial basis function with Gaussian kernel since its approximation

capability is high compared to other kernels. Using Gaussian kernel with two software

metrics ( that is line of code (L) and cyclomatic complexity (V)), they show that defect

proneness prediction is possible even with just these two metrics [8]. They use MDP

data sets KC1 and KC2 for their study. They show that defectiveness is high when

both L and V are high. When L and V are low, no defect proneness observed. This

interesting observation for KC1 is shown in Figure 5.4. Note that class labels that

are greater than zero (defect proneness) is observed when L is around 1000 and V is

around 140.

Beside defect prediction, software risk prediction is another area that researchers

focus on. A software system is regarded risky when it is defect prone. Hu et al. [35]

compare ANN with SVM for software risk prediction. They find that, since SVM is

capable of giving good results even with small training data, it is more successful than

ANN in predicting software risks. The results show that ANN is capable of achieving

prediction accuracy of 75 % whereas SVM is achieving 85 %.

Software defect prediction is very much related to the quality, risk and mainte-

nance cost of a software system. A system with small number of defects or no defects

at all, can be accepted as qualified and riskless (or low risk). Furthermore, the mainte-
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Figure 5.4. Class label versus (L, V ) for KC1 [8].

Table 5.1. Object oriented metrics studied by Jin and Liu [2].

WMC Weighted Methods per Class

RFC Response for a Class

DAC Data Abstraction Coupling

MPC Message Passing Coupling

NOM Number of Methods per Class

nance cost of such a system is low compared to systems with high number of defects.

Jin and Liu [2] study the effort that will be spent in maintenance phase of a software

system using 5 object oriented metrics shown in Table 5.1. The maintenance effort

is defined by the number of lines changed per class where a line change could be an

addition or a deletion. They conclude that support vector machines method using just

5 object oriented metrics is more successful to measure maintenance effort compared

to unsupervised learning algorithms.

Dealing with so many software metrics is not easy both in terms of computing
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Table 5.2. Average classifier performance of SVM and Naive Bayes observed by

Shivaji et al. [3].

Technique Features Percentage Accuracy Precision Recall F-measure

Bayes F-measure 6.83 0.91 0.96 0.67 0.79

SVM F-measure 7.49 0.81 0.82 0.54 0.62

Bayes accuracy 6.92 0.86 0.92 0.53 0.65

SVM accuracy 7.83 0.86 0.96 0.51 0.65

power and time. That is why, it is very crucial and desirable to work with less metrics

if possible. Shivaji et al. [3] use feature selection to decrease the number of attributes

while measuring defect proneness. They decrease the number of attributes 10 % each

time and try to see at which stage the best results are obtained. They find that between

4.1% and 12.52 % of the total feature set, an optimal classification is achieved. As

classification techniques, they focus on the use of SVM and naive Bayes methods and

observe that SVM with feature selection performs considerably better than naive Bayes

(See Table 5.2).
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Chapter 6

Proposed Method

In this section we explain the novel techniques we propose for defect prediction

using Bayesian networks and kernel methods. First, we explain how do we use Bayesian

networks, in order to model the influential relationships of software metrics and measure

their effect on defect proneness. Second, we explain the kernel method we propose

that makes defect prediction possible without using any software metrics but just the

available source codes.

6.1. Bayesian networks

Bayesian network is one of the most successful defect prediction models tried

so far and can be used to model the inherent uncertainties in the nature of software

development [34, 1, 33, 32, 4]. Bayesian networks allow to take into consideration a

broad range of metrics at the same time like process, product, and developer metrics.

Meanwhile they can model the influential relationships among different defect causes.

In this section we explain our proposed method for defect prediction using Bayesian

network model.

6.1.1. Bayesian network of Metrics and Defect Proneness

It is very important to model the associational relationships among the metrics

and defect proneness. We first generate a Bayesian network among software metrics

and defect proneness and then using this network, we calculate an overall marginal

defectiveness probability of the software system. This network provides us two very

important results:
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Table 6.1. List of software metrics used to generate the Bayesian networks in

Experiment I (During Experiment II, two more metrics LOCQ and NOD are added).

Metric Metric full name

WMC Weighted method per class [42]

DIT Depth of inheritance tree [42]

NOC Number of children [42]

CBO Coupling between objects [42]

RFC Response for class [42]

LCOM Lack of cohesion of methods [42]

LCOM3 Lack of cohesion in methods [99]

LOC Lines of code

• The dependencies among the metrics we choose. Which metrics are affected by

other metrics and which ones are the most effective on defect proneness.

• The defect proneness probability of the software system itself. By learning from

the data set, the Bayesian network tells us the marginal defectiveness probability

of the whole system and one can interpret this as the probability of having at

least one or more defects in a software module that is selected randomly.

In defect prediction studies, using static code metrics alone may ignore some very

crucial causes of defects like poor requirement analysis or design, lack of quality of de-

sign or coding, unexperienced developers, bad documentation, managerial or financial

problems. Although all of these factors could lead to an increase in defect proneness,

static code metrics do not consider them effectively. Using Bayesian networks might

be much more meaningful when additional data on causal, explanatory variables are

available and included in the model. Unfortunately, it is not too easy to measure these

causal and explanatory variables when there is no information regarding the software

development processes. By inspecting project repositories of some data sets, we add

two metrics i.e. LOCQ and NOD to our Bayesian model, in order to measure the effect

of lack of coding quality and the number of developers.
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Besides the object oriented metrics and line of code metric listed in Table 6.1,

we introduce a new metric we call lack of coding quality (LOCQ) that measures the

quality of the source code. We run PMD source code analyzer plugin in Netbeans, to

generate the LOCQ values for each class of the open source Apache projects listed in

Table 7.4. PMD inspects the given source code and looks for potential problems like

possible bugs, dead code, suboptimal code, overcomplicated expressions, and duplicate

code. It counts the number of detected problems for each class and package in the

software system. We believe that this measurement gives an idea about the quality

of the source code and has a relationship with defectiveness. That is why, we include

the LOCQ metric in our experiments and try to understand how it is related with the

defect proneness and other well known static code metrics in the literature.

We ask if for a specific class or file, the number of developers is positively related

with the extent of defectiveness or not? Receiving inspiration from famous idiom “too

many cooks spoil the broth” we wonder if a higher number of developers for a certain

class or file, leads to a more defective or messed up source code? For some of the data

sets listed in Table 7.4 that have developer information in the source code files, we

generate the number of developers (NOD) metric, which shows the number of distinct

developers per each class in the software system. Then we learn a Bayesian network

from each of these data sets and extract the relationship of the NOD metric with

defectiveness.

One problem to reach a clear conclusion on this issue is the conclusion instability

problem. We think that conclusion instability comes from an inherent property of

software engineering data sets; i.e. real world data is noisy. To remove noise from the

data sets and draw more accurate conclusions, we cross check our results on 10 subsets

of each data set. While generating the subsets, we stratify the data with different

seeds and include 67 percent of the data each time. For the remaining data sets like

Ant, Lucene, and Synapse, there was no developer information in the source code

repositories, so we could not generate the NOD metric for them. Since the developer

information is not available for all data sets but just for a subset of them, we present

the experiments carried out with the NOD metric separately in Section 7.2.5.
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Figure 6.1. Proposed Bayesian network to model the relationships among metrics.

While we model the influential relationships among different product and process

metrics, we learn the Bayesian network from the data set. Figure 6.1 shows the general

form of our model. In this Bayesian network, we see the interactions among different

product, process or developer metrics. We may see that a metric is not affected by any

other metric whereas some metrics may be affected by one or more product metrics

(like Metric5). According to this Bayesian network Metric5, Metric6, and Metric7 are

the most important metrics since they affect defectiveness directly. On the other hand,

Metric1, Metric2, Metric3, and Metric4 are less important since they are indirectly

related with defectiveness.

As a summary, our Bayesian network is a graph G of E edges and V vertices

where each Vi represents a metric and each Ej represents the dependency between two

metrics or between a metric and defectiveness. If an edge E is present from metric

m2 towards metric m1, then this would mean metric m1 is effective on metric m2.

Similarly, if there is an edge from defectiveness to metric m1, then it would mean that

metric m1 is effective on defectiveness. This way, we determine the metrics that affect

defectiveness directly or indirectly.

6.1.2. Ordering Metrics for Bayesian Network Construction

In order to learn a Bayesian network with K2 algorithm, it is necessary to specify

the order of the nodes. That is why, we decide to order the software metrics considering

their effect on defectiveness, prior to the generation of Bayesian networks.

We believe that as the size of a software system gets larger, the probability

of having fault prone classes increases, since more effort would be needed to ensure a
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Table 6.2. The order of software metrics used during Bayesian network construction.

Metric Groups Order (left to right)

Group1 LOC CBO LOCQ

Group2 WMC RFC

Group3 LCOM - LCOM3 DIT NOC

defect free software. We also believe that besides size, complexity of the software is also

very important because as the design gets more complex, it would be more difficult

for developers to ensure non-defectiveness. That is why, for the initial ordering the

metrics, we decide to give LOC and CBO as the first metrics since LOC is the best

indicator of software size and CBO shows how much complex a software system is by

counting the number of couples for a certain class where coupling means using methods

or instance variables of other classes. As one would easily accept, as coupling increases,

the complexity of the software system would also increase. Furthermore, as everybody

can accept, when the quality of the source code increase, the probability of having a

defective software decrease. So, we introduce the LOCQ metric as the third metric in

the first group after LOC and CBO.

Although, RFC may explain complexity to some extent, it may not be the case if

a class is using internal methods or instance variables only. That is why, RFC together

with WMC are entitled as the second group of metrics. On the other hand, NOC

indicates the number of children of a class and is not a good indicator for both size and

complexity, since the parent-child relationship does not contribute to the complexity

if there is no caller-callee relationship between them which is the case for most of the

time. Due to similar reasons DIT also does not explain size or complexity alone. So,

we decide to give DIT and NOC as the last metrics in the initial ordering.

Following our reasoning, we generate three group of metrics where LOC, CBO,

and LOCQ are in Group1, WMC and RFC are in Group2 and LCOM, DIT, and NOC

are in Group3. Group1 metrics are more important than Group2 metrics and Group2

metrics are more important thanGroup3 metrics in terms of their effect on defectiveness

(See Table 6.2).
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In defect prediction, it is very crucial to model the dependencies among different

modules in a software system. If say a software module is dependent on three highly

defect prone modules, then we would expect a high defectiveness rate for this module.

That is why, rather than calculating defectiveness of software modules locally, it is a

good idea to model the effect of parent nodes (modules that call this module) on these

nodes. The first step is to extract the dependency graph of a software system. It is

a graph G of V vertices and E edges, where each vertex represents different software

modules in the system and an edge represents the dependency between vertices. For

instance, there will be an edge e1 from vertice v1 to v2, if the module that corresponds

to v1 is calling a sub routine from the module that represents v2. This way we can

generate a dependency graph of the software system using Bayesian network model and

then use this Bayesian network model to calculate the influential relationships among

different modules by learning the conditional probability tables of the network. Using

this Bayesian network, we see the modules that are affected most by other modules and

also are effective on the defectiveness of the whole system. We deduce that modules

with higher marginal defectiveness probability are more critical and should be tested

more carefully. We plan to explore the inter module influential relationships with

Bayesian networks as a future work.

6.2. Kernel Methods to Predict Defectiveness

Kernel methods make it possible to model the relationships among data points

that do not have a linear correlation. When a set of data points is given as input to a

kernel method, it is possible to classify these data points and say whether any two data

points are in the same group or not. Furthermore, the relationships among different

data points (metrics and defectiveness in this case) are not known and finding these

relations is one of the goals of defect prediction. As it is explained in the literature

review above, the importance of kernel methods have been noticed by researchers

and many articles have been published to prove the efficiency and superiority of this

technique [60, 8, 35, 2, 3].

The main idea of our research is that the extent of similarity between two source
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codes is related with the extent of similarity in their defectiveness. We believe that

similarity must be measured in terms of both syntactic and semantic features. There

are many clone detection techniques in the literature most of which detects only lexical

similarity and we believe they are not good means for source code similarity extraction.

On the other hand, some plagiarism tools like MOSS and JPlag consider structural

similarity together with fingerprint based approaches and we believe that they are

more suitable to measure the similarity we want. From the output of the plagiarism

tools, we generate a kernel matrix and use it to learn the relationship of source code

similarity and defectiveness.

We use SVM with a precomputed kernel matrix composed of similarity measure-

ments among the files in a software system. We give the kernel matrix with the class

information of files (defective or not) to the SVM classifier and make the prediction

process easier compared to traditional methods.

Assume that the software system is composed of one or more versions, in total of

N files (modules) where each mi represents a software file (module). Then the kernel

matrix is defined as

K =


K(m1,m1) K(m1,m2) ... K(m1,mN)

K(m2,m1) K(m2,m2) ... K(m2,mN)

... ... ... ...

K(mN ,m1) K(mN ,m2) ... K(mN ,mN)

 (6.1)

where K(mi,mj) represents the similarity between files mi and mj. Similarity can be

measured by calculating the number or percentage of similar code patterns.

The similarity matrix is generated by using plagiarism software. The plagiarism

software tells us how much parallelism exists among files (or classes) of a given soft-

ware. Assuming there are N files in the software system, the output generated by the

plagiarism software is used to create an N by N kernel matrix that is given as input

to the SVM classifier.
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Table 6.3. An example kernel matrix showing similarity between files of a software

system composed of File1, File2, File3, and File4.

File1 File2 File3 File4

File1 99 25 0 0

File2 25 99 15 12

File3 0 15 99 0

File4 0 12 0 99

An example kernel matrix for an hypothetical software system that is composed

of File1, File2, File3 and File4 is shown in Table 6.3. The values in this matrix show

the percentage of similarity among the files of the system. For instance File1 and File2

are 25 percent similar. A value of zero means no similarity exits which is the case for

files File1 and File3. Furthermore, the diagonal similarity scores in the kernel matrix

are high since a file is compared with itself.

Although it is not a necessity that the similarity based matrices we generate are

semi-definite, the kernel matrices computed for the data sets in our experiments satisfy

the positive semi-definiteness attribute and are therefore valid kernels.

We normalized the precomputed kernel matrices to the unit norm, as this may ef-

fect their generalization ability and also result in a smaller range for C. The normalized

matrix Kn is defined as

Kn(x, z) =
K(x, z)√

K(x, x)K(z, z)
(6.2)

for all examples x, z.
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6.2.1. Selecting Plagiarism Tools and Tuning Their Input Parameters

Plagiarism tools measure structural similarity using fingerprint based and content

comparison techniques. JPlag [97] and MOSS [100] are two of the most famous and

widely used plagiarism tools worldwide that measure structural similarity in source

codes.

JPlag [97], is an open source plagiarism tool that can be used through a web

service. JPlag is capable of measuring similarity in terms of the number of similar

tokens. JPlag has some user defined parameters such as minimum match length and

maximal number of matches and these parameters must be tuned very carefully not

to affect the results negatively. To adjust these parameters, -especially the minimum

match length- the user has to know the underlying string matching algorithm. If the

minimum match length is chosen to be very small, then some coincidental similarities

may be included in the results and the results might be less meaningful. Furthermore,

as it is confirmed in some previous studies [101], we also confirm that JPlag is not very

successful in detecting all similarities and the kernel matrix generated from the JPlag

is more sparse compared to the MOSS. That is why, during our experiments, we select

MOSS to extract similarities among classes or files of software systems and to generate

the precomputed kernel matrix for the SVM classifier.

MOSS (Measure Of Software Similarity) is a tool developed by Alex Aiken and

hosted by Stanford University [100]. MOSS has a web interface and the users are

capable of submitting source code to detect plagiarism. For the purpose of plagiarism,

two parameters i.e. m and n need to be tuned very carefully. m represents the

maximum number of times a given passage may appear before it is ignored. If a

certain substring appears more than m times, then it is not regarded as plagiarism

but may be accepted as a library function that is used frequently in many files. For

our purpose, m needs to be high, because our aim is to measure similarity rather than

plagiarism, so all types of similarities are meaningful for us (We set m 1,000,000 in our

experiments). n represents the maximum number of matching files to include in the

results and is set to 250 by default. Since we need to extract as much similarity as
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Table 6.4. List of software metrics used for SVM with linear and RBF kernels.

Metric Metric full name Source

wmc Weighted method per class [42]

dit Depth of inheritance tree [42]

noc Number of children [42]

cbo Coupling between Objects [42]

rfc Response for class [42]

lcom Lack of cohesion of methods [42]

ca Afferent couplings [102]

ce Efferent coupling [102]

npm Number of public methods [103]

lcom3 Lack of cohesion in methods [99]

loc Lines of code

dam Data access metric [103]

moa Measure of aggregation [103]

mfa Measure of functional abstraction [103]

cam Cohesion among methods of class [103]

ic Inheritance coupling [104]

cbm Coupling between methods [104]

amc Average method complexity [104]

max cc max. (McCabe’s cyclomatic complexity) [36]

avg cc avg. (McCabe’s cyclomatic complexity) [36]

possible, we set this value high (around 5,000) depending on the size of the attribute

set we tried to learn.

We believe that there is no need to tune m and n in the experiments. First, a

high m value is needed in order not to miss any similarity information. It should be

higher than the maximum number of times a token or passage can appear in a software

system and our setting (1,000,000) always satisfies this criteria for the data sets we

chose. Second, n should be large enough to include all similarities among the files in
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a software system (even similarity scores less than 5 percent), and the setting of 5,000

was appropriate to list all similarity information in our data sets.

6.2.2. Data Set Selection

First, we looked at the data sets that are large enough to perform 5×2 cross

validation. That is why, we eliminated some of the data sets that have less than 100

entries and are small in terms of size. Second, since we use the source code to extract

similarity kernel matrix, we need the source code corresponding to exactly the same

version specified in the defect data. So, we preferred data sets whose source code is

available in the open source project repositories. For instance the Log4j data set has

defect data for versions 1.0, 1.1, and 1.2 in the Promise data repository, but the sources

corresponding to these versions are not present in Apache repositories. Although the

sources are available for many sub versions of 1.0, 1.1, and 1.2, there is no source

code marked with version 1.0, 1.1, or 1.2 exactly. That is why, we eliminated some

more data sets whose sources are not available or open for the versions specified in the

Promise data repository. Based on these criteria, we used open source projects Camel,

Tomcat, Poi, Xalan, JEdit, Velocity, Ant, Lucene, Synapse, and Ivy shown in Table 6.5

from Promise data repository [49]. Furthermore, the object oriented and other type

of software metrics included in these datasets are listed in Table 6.4. In experiments

for SVM with linear or RBF kernels, these metrics are used to explore the relationship

between metrics and defect proneness.

6.2.3. Kernel Matrix Generation

For our experiments both defect data and source code of the projects are used

together. Defect data is used to get the class information whereas the source code is

used to extract similarities across files and generate the kernel matrix. The value at

(i, j) index of the kernel matrix shows how much structural parallelism exists between

the i ’th and j ’th files of the software system. The parallelism was measured by the

average of the percentage of similarity between corresponding files. If there are no

shared substrings then the (i, j) term of the kernel matrix is set to zero.
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Table 6.5. The 10 data sets used in the experiments to predict defectiveness and the

number of defects with Kernel methods (Experiment III and IV).

Data Set Version Num. of Instances

Camel 1.0 339

Tomcat 6.0 858

Poi 3.0 442

Xalan 2.5 803

JEdit 4.0 306

Velocity 1.5 214

Ant 1.7 745

Lucene 2.4 340

Synapse 1.2 256

Ivy 2.0 352

Table 6.6. A sample part of MOSS output that shows similarity scores of files in a

software system that is composed of 4.0 and 4.3 versions.

File 1 File 2 Similarity (%)

4.3/InstallPanel.java 4.3/TextAreaPainter.java 3.5

4.3/DockableWindowImpl.java 4.3/JEditBuffer.java 3

4.3/DockableWindow.java 4.3/VFSDirectoryEntryTable.java 6

4.3/DockableWindowFactory.java 4.3/VFS.java 6.5

4.3/BrowserOptionPane.java 4.3/GutterOptionPane.java 19

4.0/VFSBrowser.java 4.3/FontSelector.java 6

4.0/SettingsReloader.java 4.3/SettingsReloader.java 59

4.0/OptionsDialog.java 4.0/ToolBarOptionPane.java 6.5

4.0/GeneralOptionPane.java 4.3/BrowserOptionPane.java 25.5

We use MOSS in CygWin environment on Windows. MOSS outputs a table

giving file based similarities (An example MOSS output is shown in Table 6.6). The

third column of the table (Similarity) shows the percentage of similarity detected for

the files in the first and second columns.
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Figure 6.2. A sample kernel matrix generated from the MOSS output shown in Table

6.6.

An example kernel matrix generated from the MOSS output given in Table 6.6

is shown in Figure 6.2. We see that files that have high structural similarity have high

percentage score in the kernel matrix. For example, the files GeneralOptionPane.java

from version 4.0 and BrowserOptionPane.java from version 4.3 are 25.5 percent similar.

This is something expected, since both of the classes in these files are derived from the

same parent. Similarly, SettingsReloader.java in version 4.0 is 59 percent similar to

SettingsReloader.java in version 4.3, which means the file was not changed too much

in version 4.3. Moreover, the diagonal terms are very high since the file is compared

with itself.

MOSS provides more detailed information about the parts of the source code

where similarities have been found (See Figure 6.3). First of all, a master table is

presented showing the sections of files that are similar. Each row of the master table

shows the extent of the similarity found between specified sections of the files where

the amount of the similarity is represented with colorful bars. Secondly, when a row

is clicked then the similar parts of files are shown. As it is seen in the similar sections
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Figure 6.3. A detailed MOSS output about the similarities between files

GeneralOptionPane and BrowserOptionPane from Table 6.6.

of the files GeneralOptionPane.java (lines 73-84) and BrowserOptionPane.java (lines

123-133) in Figure 6.3, structural parallelism is captured while syntactic similarities

are ignored.

6.3. Kernel Methods to Predict the Number of Defects

We propose to use MOSS [100] in extracting class or file based similarities and

generate a precomputed kernel matrix to predict the number of defects. One can submit

batches of source code to MOSS server and get a link to the HTML page showing the

similar or plagiarized source code parts for the submitted source code. MOSS uses

robust winnowing algorithm, which is more efficient and scalable since it selects fewer

finger prints for the same quality of results than previous algorithms tried [105].

Imagine a software system that has N files and a file is represented as fi. Then

the precomputed kernel matrix we generate from MOSS is represented as:

K =


K(f1, f1) K(f1, f2) ... K(f1, fN)

K(f2, f1) K(f2, f2) ... K(f2, fN)

... ... ... ...

K(fN , f1) K(fN , f2) ... K(fN , fN)

 (6.3)

where K(fi, fj) shows the similarity between files fi and fj. This kernel matrix is

72



Table 6.7. Part of the MOSS output for Lucene data set.

Class1 Class2 Similarity (%)

QueryTermVector DirectoryIndexReader 38

FieldsWriter DirectoryIndexReader 24

TermQuery FuzzyQuery 42

TermQuery QueryTermVector 38

TermQuery SpanTermQuery 72

MultiFieldQueryParser FuzzyQuery 26

CustomScoreQuery FuzzyQuery 22

generated from the output of MOSS and is given as a precomputed kernel to SMOReg

method, to predict the number of defects.

Figure 6.4. A sample kernel matrix generated from the MOSS output shown in Table

6.7.

To illustrate the precomputed kernel matrix generation with a simple example,

a small part of the MOSS output for Lucene data set is shown in Table 6.7. Sim-

ilarity between each class file pair is shown in terms of percentages. For instance,

TermQuery and SpanTermQuery are 72 % similar which is something expected since

both are descendants of the base Query class. Furthermore, the classes TermQuery and

FuzzyQuery are found to be 42 percent similar, which can also be justified by looking
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at the similar code pieces and inheritance relationship in each class. For instance, the

class TermQuery is extended from the base Query class, whereas the FuzzyQuery is

extended from an abstract class named MultiTermQuery which is an extension of the

base Query class.

A kernel matrix generated from the output in Table 6.7 is shown in Figure 6.4.

Assigning the class files of the software system as rows and columns of the kernel

matrix, each cell is filled using the similarity output generated by the plagiarism tool.

We also observe that the diagonal terms in the kernel matrix are filled with very high

percentage values since a class is compared with itself. Furthermore, when there is no

similarity detected between any two files, the value in the corresponding cell of the

kernel matrix is zero.

We use Weka [106] to compare the performance of the proposed kernel method

with linear, RBF kernels and other defect prediction methods LinR and IBK. In each

experiment, 5×2 fold cross-validation is used and all the necessary parameters of SVM

(C, ε, and γ) are tuned. Furthermore, we use the Root Mean Square Error (RMSE)

metric, to compare the novel kernel method with other kernels and algorithms (LinR

and IBK). We select 10 data sets Camel, Tomcat, Poi, Xalan, JEdit, Velocity, Ant,

Lucene, Synapse, and Ivy shown in Table 6.5 from the Promise data repository [49]

that are open source and have enough entries in their defect files to be able to apply

5×2 cross validation.
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Chapter 7

Experiments and Results

7.1. Experiment I: Determine Influential Relationships Among Metrics

and Defectiveness Using Bayesian Networks

7.1.1. Experiment Design

In our experiments, we determine the influential or associational relationships

among the software metrics and defectiveness and identify the most effective metrics

by giving them scores considering their effect on defect proneness. We use public data

sets Xerces, Ant, Tomcat, Xalan, Jedit, Velocity, Synapse, Poi, Lucene, Log4j, Arc,

Camel shown in Table 7.1 from Promise data repository [49] and use Weka [106] for

Bayesian network structure learning. We learn the network structure from the data sets

and use SimpleEstimator while constructing Bayesian networks for defect proneness.

Furthermore, we select K2 as the search algorithm and use predefined ordering of

nodes of LOC, CBO, WMC, RFC, LCOM, LCOM3, DIT, and NOC. We use AUC

while comparing the performance of the Bayesian networks in our experiments.

7.1.2. Results

The AUC values found for each network are shown in Table 7.2. The highest AUC

value is found for the Xerces data set whereas the smallest AUC value is observed for

the Log4j data set. A high AUC value implies that the data set used is able to define the

structure of the Bayesian network better. The AUC values found in our experiments

are relatively high and we believe that this situation makes our results more important

and reliable.

75



Table 7.1. Brief details of 12 data sets used in Experiment I.

Data Set Version No. of Instances % Defective Instances

Xerces 1.4 588 74.32

Ant 1.7 745 22.28

Tomcat 6.0 858 8.97

Xalan 2.7 909 98.79

Jedit 4.3 492 2.24

Velocity 1.6 229 34.06

Synapse 1.2 256 33.59

Poi 3 442 63.57

Lucene 2.4 340 59.71

Log4j 1.2 205 92.2

Arc 1.0 234 11.54

Camel 1.6 965 19.48

Table 7.2. The AUC values of the Bayesian networks in Experiment I.

Data Sets AUC

Xerces 0.922

Ant 0.792

Tomcat 0.758

Xalan 0.746

Jedit 0.816

Velocity 0.632

Synapse 0.665

Poi 0.838

Lucene 0.658

Log4j 0.576

Arc 0.745

Camel 0.577

76



Figure 7.1. Bayesian network showing the relationships among software metrics in

Xerces version 1.4.

Figure 7.2. Bayesian network showing the relationships among software metrics in

Ant version 1.7.

The Bayesian network for Xerces data set is shown in Figure 7.1. First of all,

LOC, CBO, and LCOM3 are the most effective metrics since they are directly con-

nected with defectiveness. RFC and DIT are indirectly effective on fault proneness.
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Figure 7.3. Bayesian network showing the relationships among software metrics in

Tomcat version 6.0.

However, WMC, LCOM, and NOC are not effective at all. On the other hand, from

the conditional probability table of LOC, we see that there is a positive correlation

between LOC and defect proneness. When LOC value is high, the software is more

defect prone; when LOC value is low, the software is less defect prone. Similarly, from

the conditional probability table of CBO, we see that there is also a positive correlation

between CBO and defect proneness. Furthermore, we observe that when both LOC

and CBO are high, the defect proneness probability is the highest (0.989). This shows

that the size and the complexity metrics together affect defectiveness more, compared

to the effect of either size or complexity alone.

We obtain similar but slightly different results for Ant data set as it is shown in

Figure 7.2. Similar to Xerces data set, LOC is the most effective metric again, but

now CBO is indirectly effective compared to LOC. RFC, WMC, and LCOM3 are at
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the same level in terms of their effect on defectiveness. However, DIT and NOC are

not effective on fault proneness. Moreover, similar to the Xerces data set, conditional

probability table of LOC implies that classes with higher LOC are more defect prone.

Furthermore, we also observe that a higher LOC implies higher CBO and a higher

CBO leads to higher LOC, as one would expect by looking at the definitions of LOC

and CBO. The Bayesian network for Tomcat data set shows that LOC and CBO are

directly effective on defect proneness, whereas WMC is indirectly effective. But DIT

and NOC metrics are not effective in determining the defect prone classes (See Figure

7.3). Furthermore, similar to our previous findings for Xerces and Ant, when both

LOC and CBO are high, the defectiveness probability is higher compared to the case

when either one of them is small. Additionally, when both LOC and CBO are high,

the probability of having a high WMC is higher.

For the remaining 9 data sets, Bayesian networks are shown in Figure 7.4. For

Xalan data set, metrics LOC and DIT are directly effective on defect proneness whereas

other metrics are conditionally independent of defectiveness. Furthermore, WMC,

RFC, LCOM, and LCOM3 form a disjoint Bayesian network where they have no con-

nection with defect proneness. For JEdit data set, LOC, CBO, and WMC are directly

effective on defectiveness whereas RFC, LCOM, and LCOM3 are effective indirectly.

Moreover, DIT and NOC are found to be independent from defect proneness. Similar

to the previous findings, for Velocity data set, DIT, NOC, and LCOM3 are independent

of defect proneness where LOC, CBO and LCOM are directly effective on defective-

ness. Confirming the results found for Velocity data set, DIT and NOC metrics are not

effective on defect proneness for Synapse data set also. But, LOC and WMC are more

effective compared to other metrics. Furthermore, there are influential relationships

among the metrics other than DIT and NOC and these relationships are expressive

considering the meaning of each metric. For instance, LOC is directly influential on

RFC, CBO, and WMC as one may expect. For Poi data set, LOC, CBO, WMC, and

LCOM are directly effective on defect proneness whereas NOC is not effective at all.

The Bayesian network learned from Lucene data set, confirms some of the findings of

the previous experiments as DIT, NOC, and LCOM3 are disconnected i.e. they are

conditionally independent from defect proneness. In parallel with other experiments,
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Figure 7.4. Bayesian networks for Xalan, Jedit, Velocity, Synapse, Poi, Lucene, Log4j,

Arc, and Camel data sets, showing the relationships among software metrics and

defect proneness (bug).
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Table 7.3. The scores of metrics obtained in Experiment I.

Experiments LOC CBO WMC RFC LCOM LCOM3 DIT NOC

Xerces 1 1 0 1 0 1 1 0

Ant 1 1 1 1 1 1 0 0

Tomcat 1 1 1 1 1 1 0 0

Xalan 1 0 0 0 0 0 1 0

Jedit 1 1 1 1 1 1 0 0

Velocity 1 1 1 1 1 0 0 0

Synapse 1 1 1 1 1 1 0 0

Poi 1 1 1 1 1 1 1 0

Lucene 1 1 1 1 1 0 0 0

Log4j 1 0 0 0 0 0 0 0

Arc 1 1 1 1 1 0 0 0

Camel 1 1 1 1 1 0 0 1

Total Score 12 10 9 10 9 6 3 1

Bayesian networks learned from data sets Log4j, Arc, and Camel shown in Figure 7.4

clarify that LOC is directly effective on defect proneness whereas DIT and NOC are

not effective most of the time.

To measure the effect of metrics quantitatively, we give scores to the metrics in

each experiment. If a metric affects defectiveness, we assign it a score of 1, if it has no

relationship with defectiveness it is assigned a zero score. Table 7.3 shows the scores of

metrics assigned in each experiment. As it is seen in the total score row of the table, the

score of LOC is the highest and it is the most effective metric. whereas DIT and NOC

are the least effective metrics. Furthermore, DIT and NOC are untrustworthy since

their effectiveness is not consistent in all experiments. For instance, DIT is effective in

Xerces and Poi experiments whereas it has no importance in other 10 experiments and

there is a similar situation for NOC also.
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7.2. Experiment II: Determine The Role Of Coding Quality And Number

Of Developers On Defectiveness Using Bayesian Networks

7.2.1. Experiment Design

In a separate experiment setup we define two more metrics i.e. LOCQ and NOD.

Lack of coding quality (LOCQ) measures the quality of the source code and the number

of developers (NOD) metric shows the number of distinct developers for each class. We

add these two metrics to the previous set of metrics and learn their relationship with

defectiveness.

We determine the influential or associational relationships among the software

metrics and defectiveness and identify the most effective metrics by giving them scores

considering their effect on defect proneness. While choosing the data sets from Promise

data repository, first we look at the data sets that are large enough to perform cross

validation. So, we eliminate some of the data sets in the repository that are small in

terms of size. Second, to extract additional metrics LOCQ and NOD, we need the

source repositories of the data sets. That is why, we prefer the data sets in Promise

data repository whose source code is available in the open source project repositories.

For instance the Log4j data set has defect data for versions 1.0, 1.1, and 1.2 in the

Promise data repository, but the sources corresponding to these exact versions are

not present in the Apache repository. We eliminate some data sets whose sources are

not available or are skewed which could affect the learning performance of the Bayes

net classifier. Based on these criteria we select public data sets Ant, Tomcat, Jedit,

Velocity, Synapse, Poi, Lucene, Xalan, and Ivy from Promise data repository [49] (See

Table 7.4 for the details of the datasets).

We use Weka [106] for Bayesian network structure learning where we learn the net-

work structure from the data sets and use SimpleEstimator while constructing Bayesian

networks for defect proneness. Furthermore, we select K2 as the search algorithm and

use predefined ordering of nodes of LOC, CBO, LOCQ, WMC, RFC, LCOM, LCOM3,

DIT, and NOC.
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Table 7.4. Brief details of data sets used in Experiment II where Lack of Coding

Quality metric (LOCQ) is considered together with LOC, CBO, WMC, RFC, LCOM,

LCOM3, DIT, and NOC metrics.

Data Set Version No. of Instances % Defective Instances

Ant 1.7 745 22.28

Tomcat 6.0 858 8.97

Jedit 4.3 492 2.24

Velocity 1.6 229 34.06

Synapse 1.2 256 33.59

Poi 3 442 63.57

Lucene 2.4 340 59.71

Xalan 2.5 741 48.19

Ivy 2.0 352 11.36

Table 7.5 shows the AUC values for each Bayesian network. The results show

that Ivy dataset has the highest AUC value whereas Xalan data set has the smallest

AUC value. A high AUC value implies that the data set used is able to define the

structure of the Bayesian network better. The AUC values found in our experiments

are relatively high and we believe that this makes our results more important and

reliable.

We obtain the Bayesian network shown in Figure 7.5 for Ant data set. The

metrics LOC and LOCQ are the most effective whereas CBO, WMC, RFC, LCOM, and

LCOM3 are indirectly and less effective on defectiveness. However, DIT and NOC are

not effective on the bug attribute. When we look at the conditional probability table of

LOC, we observe that there is a positive correlation between LOC and defect proneness.

For instance the non-defectiveness probability is 0.678 for small LOC, whereas it is 0.096

for high LOC which means that as the LOC increase the probability of defectiveness

increases too. We observe a similar relationship between LOCQ and defectiveness also

where the defect proneness probability is high for high LOCQ values. Furthermore, we

observe that when the LOC is high, the probability of having a high CBO is also high
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Table 7.5. The AUC values of the Bayesian networks in Experiment II.

Data Sets AUC

Ant 0.820

Tomcat 0.766

Poi 0.845

Jedit 0.658

Velocity 0.678

Synapse 0.660

Lucene 0.633

Xalan 0.624

Ivy 0.846

which means that there is a positive correlation between LOC and CBO too.

The Bayesian network for Tomcat data set shows that LOC and CBO are directly

effective on defect proneness, whereas WMC, LOCQ, RFC, LCOM, and LCOM3 are

indirectly effective. But DIT and NOC metrics are not effective in determining the

defect prone classes (See Figure 7.6). Furthermore, when both LOC and CBO are

high, defectiveness probability is higher (0.9) compared to the case when either one of

them is small. Similarly, when both are low, the non defectiveness probability is higher

(0.793) compared to cases when either one of them is high.

The Bayesian network obtained for Poi data set is shown in Figure 7.7. First of

all, CBO, LOC, LOCQ, WMC, and LCOM are the most effective metrics since they are

directly connected with defectiveness. RFC, DIT, and LCOM3 are indirectly effective

on fault proneness. On the other hand, NOC is not effective at all. Similarly, from the

conditional probability table of CBO, we see that there is also a positive correlation

between CBO and defect proneness. Furthermore, we observe that when both LOC

and CBO are high, the defect proneness probability is the highest (0.904). This shows

that the size and the complexity metrics together affects defectiveness more compared

to the effect of either size or complexity alone.
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Figure 7.5. Bayesian network showing the relationships among software metrics in

Ant version 1.7.

For the remaining 6 data sets, Bayesian networks are shown in Figure 7.8. For

Synapse data set, DIT, NOC, and LCOM3 metrics are not effective on defect proneness.

On the other hand, LOC is the most effective metric and LOCQ, CBO, WMC, RFC,

and LCOM are indirectly effective on defect proneness. The probability of having a

defect free software is 0.839 for small LOC, whereas it is 0.161 for higher LOC values.

We also observe that there is a positive correlation between LOC and LOCQ metrics.

For instance, when the LOC is small, LOCQ is also small with a probability of 0.942.

Similarly, the probability of having both LOC and LOCQ high is 0.877.

We observe a similar result for Lucene data set also where LCOM3, DIT, and

LOC are not effective on defect proneness whereas CBO and LOC are the most effective

metrics. For higher CBO values, the defect proneness probability is 0.743 whereas it is
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Figure 7.6. Bayesian network showing the relationships among software metrics in

Tomcat version 6.0.

only 0.257 for smaller CBO. That means as the coupling between objects increase, the

probability of defectiveness increases also. On the other hand, LOCQ, WMC, RFC,

and LCOM are indirectly effective on defect proneness.

Similar to the previous findings, for Velocity data set, DIT, NOC, WMC, and

LCOM found to be independent of defect proneness where LOC is directly effective on

defectiveness. On the other hand, CBO, LOCQ, RFC, and LCOM3 are indirectly and

less effective compared to LOC. When we look at the conditional probability table for

LOC, we observe that the defectiveness probability is 0.64 for higher LOC whereas it

is 0.36 for smaller LOC values.

For JEdit data set, metrics DIT and NOC are independent from defect proneness

whereas LOC, CBO, WMC, and LCOM3 are effective on the bug attribute. On the
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Figure 7.7. Bayesian network showing the relationships among software metrics in

Poi version 3.0.

other hand, LOCQ, RFC, and LCOM are indirectly and less effective compared to

LOC, CBO, WMC, and LCOM3 metrics.

We observe that LOC and LCOM3 metrics are directly effective on defect prone-

ness whereas DIT, NOC, CBO, and LCOM are not effective for Xalan data set. On

the other hand, LOCQ, WMC, and RFC are indirectly effective on defectiveness. Fur-

thermore, for a lower LOC, the probability of having a lower LOCQ is 0.967 whereas

the probability of a higher LOCQ is 0.033. Similarly, for a higher LOC, the probability

of having a higher LOCQ is 0.568, whereas the probability of a lower LOCQ is 0.432.

For Ivy data set, LOC, CBO, and LOCQ are the most important metrics, whereas

DIT, NOC, and LCOM3 are not effective on fault proneness. Furthermore, WMC,

RFC, and LCOM are less effective on defectiveness compared to LOC, CBO, and

LOCQ. Similar to the previous findings, when both LOC and CBO are high, the

87



Figure 7.8. Bayesian networks for Synapse, Lucene, Velocity, Jedit, Xalan, and Ivy

data sets, showing the relationships among software metrics and defect proneness

(bug).

defectiveness probability is the highest (0.983).

To measure the effect of metrics quantitatively, we give scores to the metrics

in each experiment. If a metric is affecting defectiveness (directly or indirectly) we

assign it a score of 1, if it has no relationship with defectiveness it is assigned a zero

score. Table 7.6 shows the scores of metrics assigned in each experiment. According

to the average scores, LOC, CBO, LOCQ, WMC, and RFC are the most effective

metrics, whereas DIT and NOC are the least effective ones. Furthermore, DIT and
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Table 7.6. The scores of metrics obtained in Experiment II.

Data Sets LOC CBO LOCQ WMC RFC LCOM LCOM3 DIT NOC

Ant 1 1 1 1 1 1 1 0 0

Tomcat 1 1 1 1 1 1 1 0 0

Poi 1 1 1 1 1 1 1 1 0

Jedit 1 1 1 1 1 1 1 0 0

Velocity 1 1 1 0 1 0 1 0 0

Synapse 1 1 1 1 1 1 0 0 0

Lucene 1 1 1 1 1 1 0 0 0

Xalan 1 0 1 1 1 0 1 0 0

Ivy 1 1 1 1 1 1 0 0 0

Average 1 0.89 1 0.89 1 0.78 0.67 0.11 0

NOC are untrustworthy since their effectiveness is not consistent in all experiments.

For instance, DIT is effective in Poi whereas it has no importance in other data sets.

Similarly, NOC is independent from defect proneness in all experiments. Moreover, we

observe that LCOM and LCOM3 are more effective compared to DIT and NOC and

less effective compared to others.

7.2.2. Conclusion Instability Test

Some times the results found for a data set, might not be valid for its subsets due

to some uncommon local attributes [68]. So, we check if the results shown in Table 7.6

are valid for the subsets of the data sets too. Therefore, we make 20 experiments with

different 2/3rd subsets of each data set and calculate the average score for each metric

based on these 20 experiments. While generating the subsets, we stratify the data and

use a different seed to ensure each subset is different from the previously generated

ones. For each data set, the average scores we find at the end of 20 experiments are

listed in Table 7.7. When we look at the average scores of the metrics on all data sets,

we observe that although the results are slightly different from the results presented

in Table 7.6 in terms of ordering, there are very strong similarities. For instance, still

LOC, CBO, LOCQ, WMC, and RFC are the most important metrics. Furthermore
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Table 7.7. The average scores of the metrics obtained for 20 different subsets of Ant,

Tomcat, Poi, Jedit, Velocity, Synapse, Lucene, Xalan, and Ivy.

Data Sets LOC CBO LOCQ WMC RFC LCOM LCOM3 DIT NOC

Ant 1.00 1.00 1.00 1.00 1.00 0.90 0.70 0.10 0.00

Tomcat 1.00 1.00 0.90 0.90 1.00 1.00 0.50 0.10 0.10

Poi 1.00 0.70 1.00 0.90 1.00 0.80 0.80 0.40 0.00

Jedit 0.60 0.50 0.30 0.60 0.50 0.40 0.00 0.00 0.00

Velocity 0.90 0.50 0.50 0.40 0.90 0.10 0.30 0.00 0.00

Synapse 0.70 0,80 0.60 0.60 0.70 0.60 0.00 0.00 0.00

Lucene 0.30 0.70 0.60 0.80 0.90 0.60 0.20 0.00 0.00

Xalan 1.00 0.10 0.95 0.55 0.95 0.65 0.50 0.05 0.10

Ivy 1.00 0.90 1.00 1.00 0.95 0.70 0.50 0.00 0.00

Average 0.83 0.69 0.76 0.75 0.88 0.64 0.39 0.07 0.02

DIT and NOC are the least effective and untrustworthy metrics. Similar to the results

shown in Table 7.6, LCOM and LCOM3 are more effective compared to DIT and NOC

and less effective compared to other metrics.

7.2.3. Effectiveness of Metric Pairs

We look at the 180 Bayesian networks (generated for 20 subsets of 9 data sets),

in terms of which metric pairs are the most effective on defectiveness. For a specific

Bayesian network, if both of the metrics in the pair have a relationship with defec-

tiveness we assign a score of 1 to the metric pair. If either or neither of the metrics

is related with defect proneness we assign a zero score for the metric pair. The sum

of the scores of the metric pairs calculated for all subsets of the data sets are shown

in Table 7.8 (Only the most effective ten metric pairs are included in the list). We

observe that metric pairs LOC-RFC, RFC-LOCQ, RFC-WMC are the most effective

pairs and their scores are 145, 136, and 133 respectively. We see that the metric pairs

that have the highest scores are composed of metrics that got the highest score in the

previous evaluation where each metric is considered alone (See Table 7.6). For instance

the metric pair LOC-RFC got the highest score and we see that metrics LOC and RFC
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Table 7.8. The scores of metric pairs obtained for the 20 subsets of Ant, Tomcat, Poi,

Jedit, Velocity, Synapse, Lucene, Xalan, and Ivy data sets.

Metric Pairs Total Score

LOC-RFC 145

RFC-LOCQ 136

RFC-WMC 133

LOC-LOCQ 131

LOC-WMC 121

RFC-CBO 120

LOCQ-WMC 119

WMC-CBO 109

LOC-CBO 108

LOCQ-CBO 106

alone are among the metrics that got the highest scores in Table 7.6.

7.2.4. Feature Selection Tests

Using Bayesian network model, it is possible to make probabilistic causal or

diagnostic inferences about the effectiveness of a metric on another metric or on the

defectiveness. At the end of learning a Bayesian network, we not only determine the

set of most important metrics but also find the relationship among them and the

probability of their effect on defect proneness. Therefore, with Bayesian networks

we are able to model the uncertainties better, compared to other machine learning

methods. Although they do not give the extent of influential relationships among

metrics and defectiveness, using Feature selection methods, we can determine the most

important metrics and make a cross check with the results of Bayesian network model.

At the end of our experiments, we observe that considering all data sets we use in

our experiments, LOC, CBO, LOCQ, WMC, and RFC are the most effective metrics

and DIT and NOC are the least effective ones (See Tables 7.6 and 7.7). We run two

91



Table 7.9. The results of feature selection tests with CfsSubsetEval and BestFirst

search method where a metric is assigned a score of 1 if it is selected and is assigned

zero score otherwise.

Data Sets LOC CBO LOCQ WMC RFC LCOM LCOM3 DIT NOC

Ant 1 1 1 0 1 1 0 0 0

Tomcat 1 1 1 0 1 0 0 0 0

Poi 0 1 1 0 1 1 1 0 0

Jedit 0 0 0 0 1 0 0 0 0

Velocity 1 1 0 0 1 0 1 0 0

Synapse 1 1 0 1 1 0 0 0 0

Lucene 0 1 1 0 1 1 0 0 1

Xalan 1 0 1 0 1 0 1 0 0

Ivy 1 1 1 0 1 0 1 0 0

Average 0.67 0.78 0.67 0.11 1 0.33 0.44 0 0.11

feature selection algorithms CFS (CfsSubsetEval attribute evaluator with BestFirst

search method) and Relief (ReliefFAttributeEval with Ranker search method) to see

which metrics are selected as the most important attributes and whether the results

of the feature selection experiments are different from the results shown in Table 7.3.

For CFS tests, for each data set, each metric is assigned a score of 1 if it is among the

selected metrics and it is assigned 0 otherwise. Table 7.9 shows the results of feature

selection tests with CFS. When we look at the average scores of the metrics, we observe

that LOC, CBO, LOCQ, and RFC are among the most important features and DIT

and NOC are the least important ones. So, although the ordering found at the end

of feature selection is slightly different from the ordering shown in Table 7.6, except

WMC, we can say that there is a coherence between the feature selection test and our

experiments in terms of the most and least effective attributes.

We repeat the feature selection test with Relief where Ranker is used as the search

method. Relief gives the rankings of the attributes for each data set. When we take

the average of the rankings for each metric on all data sets, we observe that except

for DIT metric, the results of the feature selection tests with Relief are coherent with
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our results shown in Table 7.6. For instance, still LCOM, LCOM3, and NOC are less

effective compared to other metrics. Similar to the results shown in Table 7.6, metrics

RFC and CBO are the among most effective metrics. Although the average rankings

found for LOC, LOCQ, and WMC are not so good, they are still more important

compared to LCOM, LCOM3, and NOC (See Table 7.10).

Table 7.10. The results of feature selection tests with ReliefFAttributeEval and

Ranker search method where the rankings of the metrics are shown for each data set

(If the average ranking of a metric is smaller, then it means the metric is more

important).

Data Sets LOC CBO LOCQ WMC RFC LCOM LCOM3 DIT NOC

Ant 5 6 3 4 2 9 8 1 7

Tomcat 5 2 4 6 3 9 8 1 7

Poi 6 5 3 1 2 7 9 4 8

Jedit 5 3 6 4 2 7 8 1 9

Velocity 5 2 6 4 1 7 9 3 8

Synapse 2 3 6 5 1 7 8 4 9

Lucene 7 2 5 4 3 8 1 9 6

Xalan 1 3 5 2 4 7 6 9 8

Ivy 5 2 4 6 3 9 8 1 7

Average 4.56 3.11 4.67 4.00 2.33 7.78 7.22 3.67 7.67

7.2.5. Effectiveness of the Number of Developers (NOD)

Among the data sets listed in Table 7.4, we use Poi, Tomcat, and Xalan to extract

the number of developers since developer names could be retrieved from their source

code repositories. We count the number of distinct developers (NOD) for each class of

each data set. We use the NOD metric together with the metrics listed in Table 6.1 and

LOCQ, to learn a Bayesian network for each data set and to extract its relationship

with other metrics and the extent of defect proneness. Furthermore, we select K2 as

the search algorithm and use predefined ordering of nodes of LOC, NOD, CBO, LOCQ,

WMC, RFC, LCOM, LCOM3, DIT, and NOC. To see the relationship of NOD and

the level of defectiveness better, we define three states for defect proneness. All class
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Figure 7.9. Bayesian networks showing the relationship of the number of developers

with the level of defectiveness in Poi, Tomcat, and Xalan data sets.

instances where bug is zero are accepted as defect free classes. The classes that have 1

or 2 bugs, are marked as less defective, and the classes that have more than 2 bugs are

accepted as more defective. As a result, we simply define three defect proneness states

which are, defect free, less defective, and more defective. There is nothing special for

the threshold values we use to define the level of defectiveness, someone else might use

different thresholds or define more levels for defect proneness. The Bayesian networks

we obtain at the end of our experiments are shown in Figure 7.9.

For all Bayesian networks learned, NOD is directly effective on defect proneness

and we observe a positive correlation between NOD and the level of defectiveness.

For instance for Poi data set, we see that as the number of developers increases, the

defectiveness increases too. If the number of developers is less than 3, the non defec-

tiveness probability is 0.997, but it is 0.003 if there are more than 3 developers per

class. For Tomcat data set, we observe that if the number of developers is more than

1, the probability of a defect free class is 0.167. But the probabilities of having a less
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Table 7.11. The average scores of metrics obtained at the end of runs on 10 subsets of

Poi, Tomcat, and Xalan data sets (If a metric affects defectiveness we assign it a

score of 1, if it has no relationship with defectiveness it is assigned a zero score).

Data sets

Metrics Poi Tomcat Xalan Average

NOD 0.7 1 0.7 0.80

LOC 1 1 1 1.00

CBO 1 1 0.9 0.97

LOCQ 1 1 0.9 0.97

WMC 1 0.9 0.9 0.93

RFC 1 1 1 1.00

LCOM 1 0.9 1 0.97

LCOM3 1 0.6 0.6 0.73

DIT 0.7 0 0 0.23

NOC 0 0 0 0.00

or more defective class are 0.514 and 0.812 respectively. For Xalan, we observe a sim-

ilar relationship between NOD and the level of defectiveness, where if the number of

developers is less than 2 then the non defectiveness probability is 0.705. If NOD is 2 or

3 then the non defectiveness probability is 0.276 and if NOD is greater than 3 then it

is only 0.019. Apparently, as the number of developers increases, the non defectiveness

probability decreases or the level of defectiveness increases.

To be sure that our results do not suffer from conclusion instability, and our

observations are valid for the subsets of the data sets too, we repeat our experiments

with the 10 subsets of each data set. Each data set is stratified and 67 percent of its

data is included in the subsets. Furthermore, for each stratification a different seed

is used. For the Bayesian network obtained in each experiment, a metric is assigned

1, if it has a relationship with defectiveness and assigned zero otherwise. The average

scores of the metrics for Poi, Tomcat, and Xalan data sets are shown in Table 7.11. In

7 experiments for Poi, in all experiments for Tomcat, and in 7 experiments for Xalan,
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Figure 7.10. The non defectiveness probabilities of two cases i.e. when the number of

developers is 1 (NOD = 1) and when it is greater than 1 (NOD > 1).

NOD is directly effective on defectiveness and there is a positive correlation with the

developer count and defectiveness. Furthermore, supporting the results observed in

the previous experiments (Tables 7.6 and 7.7), LOC and RFC are the most effective

metrics whereas DIT and NOC are the least effective ones.

We compare the non defectiveness probabilities of two cases i.e. when the number

of developers is 1 (NOD = 1) and when it is greater than 1 (NOD > 1). Figure 7.10

shows the non defectiveness probabilities of these two cases, for 30 experiments carried

out on 10 stratified subsets of Poi, Tomcat, and Xalan (3 experiments for Poi and 3

experiments for Xalan data sets where NOD is not related with defectiveness are not

included). To check for the statistical significance of the results, we apply a t-test (in

95 % confidence interval) to the non defectiveness probabilities of the two cases and

show that the non defectiveness probability when NOD = 1 is better with a p value of

zero.

We conclude that as the number of developers increases for a specific class, the

class tends to be more defective and show that the common idiom “too many cookers

spoil the broth” is valid for Software Engineering. At the end of our experiments,

we observe that too many developers make a class more defect prone. This is due to

the fact that when too many developers work on the same piece of code, the number
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of potential dependencies among their work items increases. We recommend project

managers to explore the cost benefit curve of NOD versus defectiveness level where the

value of adding more developers should be controlled with respect to the introduced

number of defects. We must emphasize that this conclusion is based on the experiments

on the data sets used and other researchers shall make more experiments on more data

sets to justify our findings.

7.3. Experiment III: Defect Proneness Prediction Using Kernel Methods

7.3.1. Experiment Design

The major steps we follow in each experiment are:

1. We choose a data set from Promise data repository. The data set must have

enough entries to be able to apply cross validation and its source code must be

public, to extract a similarity based kernel matrix.

2. We choose one or more versions of this data set and download corresponding

sources from open source data repositories.

3. We edit the defect data and change all bug info that is greater than 1 with 1.

Since we perform classification rather than regression, the bug feature must be

zero for non defective files and 1 for defective ones.

4. We create a class feature file from the changed defect data file that includes only

the file names and the bug feature, in order to give the class feature to SVM

together with the precomputed kernel matrix.

5. We input the source code to MOSS and generate an output that shows how much

similarity exists among the source files of the data set we chose.

6. We convert the similarity output to a similarity kernel matrix using the software

developed during this research. The software processes each row from the MOSS

output and generates an n by n matrix assuming there are n files in the software

system chosen. Each cell of this kernel matrix shows how much similarity exists,

between the files in the row and column of the matrix in terms of percentage.

Then the kernel matrix is normalized and saved in a file. An example kernel
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Table 7.12. Average and standard deviations of the Area Under ROC Curve for

P-SVM, L-SVM, RBF-SVM, LR, and J48 in Experiment III.

Datasets P-SVM L-SVM RBF-SVM LR J48

Camel 0.62 ± 0.16 0.50 ± 0.00 0.50 ± 0.0 0.74 ± 0.04 0.50 ± 0.01

Tomcat 0.61 ± 0.04 0.53 ± 0.05 0.50 ± 0.0 0.53 ± 0.06 0.51 ± 0.02

Poi 0.73 ± 0.03 0.78 ± 0.03 0.78 ± 0.041 0.85 ± 0.04 0.67 ± 0.12

Xalan 0.65 ± 0.01 0.66 ± 0.02 0.69 ± 0.02 0.72 ± 0.02 0.65 ± 0.02

JEdit 0.67 ± 0.03 0.67 ± 0.05 0.50 ± 0.005 0.69 ± 0.07 0.59 ± 0.07

Velocity 0.63 ± 0.04 0.71 ± 0.07 0.55 ± 0.05 0.76 ± 0.06 0.67 ± 0.08

Ant 0.63 ± 0.02 0.62 ± 0.04 0.50 ± 0.005 0.60 ± 0.11 0.56 ± 0.04

Lucene 0.65 ± 0.03 0.68 ± 0.05 0.50 ± 0.005 0.65 ± 0.05 0.60 ± 0.06

Synapse 0.65 ± 0.03 0.64 ± 0.03 0.50 ± 0.00 0.66 ± 0.08 0.57 ± 0.04

Ivy 0.60 ± 0.04 0.50 ± 0.01 0.50 ± 0.00 0.55 ± 0.07 0.59 ± 0.08

matrix generated from a sample output in Table 6.6 is shown in Figure 6.2.

7. We give the class feature file and the computed kernel matrix as input to SVM

and learn the relationship between defectiveness and similarity. The classification

is run on Weka experimenter with 5×2 cross validation.

7.3.2. Results

We use Weka [106] to compare the performance of the precomputed kernel matrix

with linear and RBF kernels. For each data set, 5×2 fold cross-validation is used and

C parameter of SVM is tuned.

Usually the defect prediction data sets are skewed, that is the percentage of

defective files is much lower than the percentage of non-defective ones. In this case,

the accuracy is not a good metric for making comparisons. Instead, we choose the area

under the ROC curve (AUC) to compare the classification algorithms.

Table 7.12 shows average and standard deviation of AUC for SVM with precal-
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Figure 7.11. AUC of P-SVM, L-SVM, RBF-SVM, LR and J48 for Camel, Tomcat,

Poi, Xalan, JEdit, Velocity, Ant, Lucene, Synapse, and Ivy data sets in Experiment

III.

culated kernel matrix (P-SVM), linear kernel (L-SVM), and RBF kernel (RBF-SVM).

Furthermore, it also lists the average AUC values for linear logistic regression (LR) and

J48 algorithms to have an idea about how good our novel method is compared to some

existing methods. First, the results show that the performance of the P-SVM is better

than the performance of the L-SVM and RBF-SVM. Because in 6 of 10 experiments,

its AUC is higher than L-SVM and in 8 of 10 experiments its AUC is higher than

RBF-SVM numerically. Second, P-SVM achieves better results than J48 and is more

consistent when compared to LR. Because, although the average AUC value achieved

by P-SVM is lower than LR in 6 experiments, the worst AUC for P-SVM is 0.60 in

these experiments. On the other hand, in 4 experiments P-SVM is better than LR, but

the lowest AUC for LR is 0.53 in these experiments. So, we believe that this makes

P-SVM more trust worthy since its results are good enough irregardless of the data set

chosen (See Figure 7.11).
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Table 7.13. Comparison of P-SVM with L-SVM, RBF-SVM, LR and J48 algorithms

in Experiment III. The first, second, and third values in each cell shows the number

of significant cases where P-SVM performs better or worse than the algorithm in the

column or the number of cases where there is no difference respectively.

L-SVM RBF-SVM LR J48

P-SVM 3, 2, 5 8, 2, 0 2, 4, 4 6, 0, 4

To check for the statistical significance of the results, we applied unpaired t-test

(in 95 % confidence interval) to the results of P-SVM, L-SVM, RBF-SVM, LR, and J48.

Table 7.13 shows statistical comparison of the P-SVM with L-SVM, RBF-SVM, LR

and J48 algorithms. The first, second, and third values in each cell shows the number of

statistically significant cases where P-SVM performs better or worse than the algorithm

in the column or the number of the cases where there is no difference. For instance,

the table shows that in 3 out of 10 experiments P-SVM is better and in 2 out of 10

experiments L-SVM performs better, whereas in 5 experiments there is no significant

difference between P-SVM and L-SVM. We also see that P-SVM is statistically better

than RBF-SVM and J48. Moreover, when the number of statistically significant cases

are considered, LR performs better than P-SVM, since it achieves better AUC in 4 out

of 10 experiments.

We also observe that the performance P-SVM is more consistent than both L-

SVM and RBF-SVM because in all experiments the AUC for P-SVM is above 0.60

including the ones where L-SVM or RBF-SVM is better (like experiments with Poi

or Xalan data sets for example). On the other hand, although for some experiments

a high AUC is observed for L-SVM, it has a very low AUC for Camel, Tomcat and

Ivy data sets which are relatively skewed. Similarly, in 2 out of 10 experiments, for

Poi and Xalan data sets, RBF-SVM is significantly better than P-SVM for balanced

data sets, but in other 8 experiments its AUC value is very low around 0.50. As a

summary, based on these observations, one can argue that although its AUC is smaller

than L-SVM and RBF-SVM for some data sets, the precalculated kernel we propose is

more trust worthy compared to both L-SVM and RBF-SVM since its performance is

good for both skewed and balanced data sets.
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Figure 7.12. Box plots of AUC of P-SVM, L-SVM, and RBF-SVM for Camel,

Tomcat, Poi, Xalan, JEdit, Velocity, Ant, Lucene, Synapse, and Ivy data sets.

The box plots of the AUC values observed are shown in Figure 7.12. For each

data set, the first, the second and the third box plots shows P-SVM, L-SVM, and RBF-

SVM respectively. P-SVM is significantly better than L-SVM on Camel, Tomcat,

and Ivy data sets, whereas L-SVM is significantly better than P-SVM on Poi and

Velocity data sets. On the other hand, P-SVM is significantly better than RBF-SVM

on Camel, Tomcat, JEdit, Velocity, Ant, Lucene, Synapse, and Ivy data sets whereas

RBF-SVM performs significantly better than P-SVM on Poi and Xalan data sets. As

a summary, the precalculated kernel we propose (P-SVM), achieves better AUC values

when compared with both L-SVM and RBF-SVM.
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Table 7.14. The AUC found for precalculated kernel matrix (P-SVM) and the average

similarity (AS) score in Experiment III.

P-SVM AS

Camel 0.62 1.8

Tomcat 0.61 0.07

Poi 0.73 3.17

Xalan 0.65 1.4

JEdit 0.67 1.43

Velocity 0.63 0.6

Ant 0.63 0.43

Lucene 0.65 1.38

Synapse 0.65 1.37

Ivy 0.6 1.43

The box plots of the AUC values observed are shown in Figure 7.13 where the first,

the second and the third box plots shows P-SVM, LR, and J48 respectively. P-SVM is

significantly better than LR on Tomcat and Ivy data sets, whereas LR is significantly

better than P-SVM on Camel, Poi, Xalan, and Velocity data sets. On the other hand,

P-SVM is significantly better than J48 on Camel, Tomcat, JEdit, Ant, Lucene, and

Synapse data sets whereas there is no data set for which J48 performs significantly

better than P-SVM. As a summary, considering 10 data sets, the performance of P-

SVM is better than J48. Moreover, although P-SVM is more consistent than LR, since

it is able to learn better considering all experiments i.e. its lowest AUC is 0.60, its

number of win cases are lower when compared to LR.

We observe that when the amount of similarity among the files of a software

system is high, then the AUC achieved by SVM with precalculated kernel matrix is

also high. Higher similarity means a less sparse kernel matrix or a matrix that is filled

with larger percentage values. When the similarity is high, there are more relationships

among the files of the software system and this helps SVM to achieve better AUC while

predicting defects.
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Figure 7.13. Box plots of AUC of P-SVM, LR, and J48 for Camel, Tomcat, Poi,

Xalan, JEdit, Velocity, Ant, Lucene, Synapse, and Ivy data sets.

For each data set, the amount of similarity is calculated by the average of the

similarity scores in the kernel matrix. In our experiments, the size of the kernel matrices

are measured by the number of cells in the matrix. For example if a kernel matrix has

500 rows and 500 columns its size is counted as 250,000. Then the average similarity

(AS) is calculated by dividing the sum of similarity scores in the kernel matrix by the

size of the matrix for each data set. The average similarity values calculated is shown

in Table 7.14. The highest average similarity values observed are 3.17 for Poi, 1.43 for

JEdit, and 1.4 for Xalan.

We see a relationship between the AUC achieved and the average similarity scores
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Figure 7.14. The relationship of AUC and average similarity (AS) in Experiment III.

found. For instance, the highest AS value (3.17) is observed for Poi data set for which

the highest AUC value (0.73) is found. Similarly, except for Ivy data set, a low AUC

is observed for data sets like Tomcat, Velocity and Ant, where the average similarity

value found is also low. (See Figure 7.14).

This observation justifies our belief that structurally similar code patterns (either

good or bad) are good hints to predict defectiveness. If we are able to detect more

similarities among the files of a software system, and/or consider semantic similarity

besides structural similarity, SVM with precomputed kernel matrix could perform much

better and consistent in defect prediction.

7.4. Experiment IV: Prediction of the Number of Defects with Kernel

Methods

7.4.1. Experiment Design

We define the major steps followed for each experiment below:

1. First we choose a data set from Promise data repository. While choosing the
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data set, two conditions must be satisfied: First the data set must have enough

entries for learning with cross validation and second it must have public source

code to extract a source code similarity based precomputed kernel matrix (See

Table 6.5).

2. We download the source code for the corresponding data sets from open source

data repositories (like Apache.org).

3. We give the source code to MOSS as input and generate an output that shows

how much similarity exists among the classes of the data set we chose (A sample

MOSS output is shown in Table 6.7).

4. We convert the generated similarity output in the previous step to a precomputed

kernel matrix. Each cell of this kernel matrix, shows how much similar the classes

(or files) in the row and the column are (The kernel matrix is later normalized

when processed in Weka). An example kernel matrix generated from a sample

output in Table 6.7 is illustrated in Figure 6.4.

5. We create a new arff file (defect file) from the Promise data defect file that includes

only the file names and the number of bugs.

6. To measure the performance of the proposed method (P-SVM), the defect file

generated in step 5 and the precomputed kernel found in step 4 are given as

inputs to SVM regression (SMOReg) in Weka with 5×2 cross validation.

7. To measure the performance of other kernels (L-SVM and RBF-SVM) and ex-

isting defect prediction methods (Linear regression and IBK), the original defect

data file from Promise data repository is used.

8. The results of all methods are compared using the Root Mean Square Error

(RMSE) where a smaller error interpreted as a better fit for regression.

7.4.2. Results

Table 7.15 shows average and standard deviation of RMSE for SVM with precal-

culated kernel matrix (P-SVM), linear kernel (L-SVM), and RBF kernel (RBF-SVM).

Furthermore, we also compare the proposed kernel technique (P-SVM) with existing

defect prediction methods linear regression (LinR) and IBK algorithms. We see that

P-SVM achieves a smaller RMSE compared to L-SVM in 6 of 10 experiments, whereas
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Table 7.15. Average and standard deviations of the Root Mean Square error for

P-SVM, L-SVM, RBF-SVM, LinR, and IBK in Experiment IV.

Datasets P-SVM L-SVM RBF-SVM LinR IBK

Camel 0.21 ± 0.06 0.21 ± 0.05 0.21 ± 0.05 0.56 ± 0.02 0.26 ± 0.17

Tomcat 0.61 ± 0.13 0.51 ± 0.12 0.51 ± 0.121 0.69 ± 0.07 0.6 ± 0.13

Poi 1.88 ± 0.53 1.76 ± 0.54 1.81 ± 0.75 1.89 ± 0.67 1.83 ± 0.55

Xalan 1.01 ± 0.13 1.09 ± 0.17 1.12 ± 0.18 0.98 ± 0.12 1.13 ± 0.15

JEdit 2.18 ± 1.08 2.27 ± 1.02 2.27 ± 1.01 2.19 ± 0.98 1.79 ± 0.56

Velocity 1.84 ± 0.33 1.97 ± 0.36 1.97 ± 0.36 1.9 ± 0.33 2.05 ± 0.38

Ant 1.12 ± 0.20 1.2 ± 0.19 1.21 ± 0.20 1.15 ± 0.16 1.2 ± 0.13

Lucene 2.78 ± 1.16 2.91 ± 1.03 2.94 ± 1.00 2.86 ± 0.90 2.7 ± 0.85

Synapse 1.08 ± 0.30 1.15 ± 0.37 1.15 ± 0.38 1.08 ± 0.33 1.2 ± 0.28

Ivy 0.51 ± 0.12 0.51 ± 0.12 0.51 ± 0.12 0.66 ± 0.08 0.52 ± 0.10

Table 7.16. A comparison of P-SVM with L-SVM, RBF-SVM, LinR, and IBK

algorithms in Experiment IV. The first values in each cell show the number of cases

where P-SVM is better than the algorithm in the column. The second values in each

cell give the number of cases where P-SVM is worse than the algorithm in the column.

The third values in each cell, represent the number of cases where there is a tie.

L-SVM RBF-SVM LinR IBK

P-SVM 6, 3, 1 6, 2, 2 8, 2, 0 6, 4, 0

it is worse in 3 experiments and in 1 experiment there is no difference. Similarly, it

generates better RMSE in 6 experiments, whereas it is worse in only 2 experiments

when compared to RBF-SVM. When we compare the results with existing techniques,

we observe that P-SVM is better in 6 experiments but worse in 4 experiments when

compared with IBK. Similarly, for LinR, it is better numerically in 8 experiments and

it is worse in only 2 experiments (See Table 7.16).

We apply the Nemenyi post hoc test (in 95 % confidence interval) to detect if

the performance of P-SVM differs significantly from other kernels and defect predic-

tion techniques [107]. In this test, for all pairs of classifiers, the null hypothesis that
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Figure 7.15. Box plots of RMSE of P-SVM, L-SVM, and RBF-SVM for each data set

Camel, Tomcat, Poi, Xalan, JEdit, Velocity, Ant, Lucene, Synapse, and Ivy data sets.

their respective mean ranks are equal is tested. The null hypothesis is rejected if the

difference between their mean ranks exceeds the critical difference (CD) defined as:

CD = qα

√
k(k + 1)

6N
(7.1)

The value of qα is based on the Studentized range statistic divided by
√

2 and is listed

in statistical textbooks [107]. k represents the number of methods tested and N shows

the number of observations for each method. The result of the test is shown in Figure

7.17. We observe that although P-SVM is the best algorithm, it is still on the same

block with other algorithms and there is no significant difference among the mean ranks

of the tested algorithms. However, since it is on the border of the critical difference
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Figure 7.16. Box plots of RMSE of P-SVM, IBK, and LinR for each data set Camel,

Tomcat, Poi, Xalan, JEdit, Velocity, Ant, Lucene, Synapse, and Ivy data sets.

Figure 7.17. The mean ranks of the P-SVM, L-SVM, RBF-SVM, IBK, and LinR in

Experiment IV.

block, if more algorithms are tested on the same data sets, it could be possible to

visualize the difference and superiority of our proposed precomputed kernel method

better.
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We also check the statistical significance of the results, by applying unpaired t-test

(in 95 % confidence interval) to the results obtained for P-SVM, L-SVM, RBF-SVM,

LinR, and IBK methods. We found that, although the mean ranks of the techniques

are not different statistically, we observe significant differences for some data sets. For

example, the performance of P-SVM is better than LinR, for Camel and Ivy data sets

with a p-value of 0.0 and 0.004 respectively (See Figure 7.16).

As a conclusion, we see that our proposed precomputed kernel (P-SVM) to predict

the number of defects is comparable not only with existing linear and RBF kernels,

but also with existing defect prediction techniques in the literature i.e. LinR and IBK.

7.5. Threats to Validity

According to Perry et al. there are three types of validity threats that should

be considered in research studies. We briefly explain the methodology we follow to

alleviate these threats [108].

An internal validity threat might arise if a cause effect relationship could not be

established between the independent variables and the results. We address this issue by

cross checking our results on different subsets of the data sets. During our experiments,

not only we use 10 fold cross validation, but also we replicate the experiments on

different subsets of all the data sets when necessary.

Construct validity threats might be observed when there are errors in the mea-

surements. To mitigate this threat, first we automatize the metric extraction and

preparation process and minimize the manual interventions, second we cross check the

extracted metrics and try to find if any abnormal values exist.

External validity threats might arise if the results observed for one data set are

not valid for other data sets. To mitigate external validity, we test our proposed

method on several data sets and replicate the experiments on their subsets whenever

necessary. Although our results are promising and our work is unique in the sense
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that metric effectiveness investigated on more than one data set, further research with

other data sets and other search algorithms could be helpful to justify our findings.

We should emphasize that the results we find are valid in the domain we choose, and

our observations can not be generalized.
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Chapter 8

Conclusion

8.1. Summary of Results

8.1.1. Bayesian Networks

We propose a novel method using Bayesian networks to define relationships among

software metrics and defect proneness. We use data sets from Promise data repository

and show that RFC, LOC, and LOCQ are the most useful metrics in defect proneness

prediction. On the other hand, the effect of NOC and DIT on defectiveness is limited

and untrustworthy.

8.1.2. Kernel Methods to Predict Defectiveness

We propose a new defect prediction model based on SVM with a precalculated

kernel matrix. The precalculated kernel matrix shows the extent of the similarity

among the files of the software system and is generated from the outputs of the pla-

giarism tool MOSS. We compare our approach with the linear and RBF kernels and

logistic regression and J48 algorithms on 10 open source projects from Promise data

repository and show that our precomputed kernel matrix can achieve better results

than the linear and RBF kernels. On the other hand, when the defect prediction per-

formance is considered, the precalculated kernel method we propose is clearly better

than J48 algorithm, and is comparable with LR method.

We also show that when the amount of similarity among the files or classes of a

software system is high, in other words, if the calculated kernel matrix is less sparse or

contains larger similarity measurements, then the AUC achieved by the precalculated
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kernel matrix is also high.

8.1.3. Kernel Methods to Predict the Number of Defects

We propose a new kernel method to predict the number of defects in the software

modules (classes or files). The proposed method is based on a precomputed kernel

matrix which is based on the similarities among the modules of the software system.

We compare our novel kernel method with existing kernels in the literature (linear and

RBF kernels) and show that it achieves comparable results with them. Furthermore,

the proposed defect prediction method is also comparable with some existing famous

defect prediction methods in the literature i.e. linear regression and IBK.

8.2. Contributions

8.2.1. Bayesian Networks

The main contributions of our findings regarding Bayesian networks:

• We use Bayesian networks to model the relationships among metrics and defect

proneness on multiple data sets. For instance Gyimothy et al. [43] used Mozilla

data set whereas Zhou et al. and Pai and Dugan used KC1 data set from Nasa

repository [76, 1]. The results obtained using one data set might be misleading

since a metric might perform well on one data set but poor on another one.

As Menzies et al. suggest, it is not adequate to assess defect learning methods

using only one data set and only one learner, since the merits of the proposed

techniques shall be evaluated via extensive experimentation [38]. Our work is a

good contribution to the literature, since we determine the probabilistic causal or

influential relationships among metrics and defect proneness, considering 9 data

sets at the same time.

• We introduce a new metric we call Lack of Coding Quality (LOCQ) that can

be used to predict defectiveness and is as effective as the famous object oriented

metrics like CBO and WMC.
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• We extract the Number of Developers (NOD) metric for data sets whose source

code include developer information and show that there is a positive correlation

between the number of developers and the extent of defect proneness. So, we

suggest project managers not to assign too many developers to one class or file.

• It was found that in most experiments NOC and DIT are not effective on defec-

tiveness.

• Furthermore, since LOC achieves one of the best scores in our experiments, we

believe that it could be used for a quick defect prediction since it can be measured

more easily compared to other metrics.

• LCOM3 and LCOM are less effective on defect proneness compared to LOC,

CBO, RFC, LOCQ, and WMC.

8.2.2. Kernel Methods to Predict Defectiveness

As a summary, the main contributions of our findings are:

• We propose a novel kernel for defect prediction that could be used as an alterna-

tive for linear or RBF kernels.

• Extracting the metrics of a software system prior to defect prediction is necessary

since most defect prediction techniques are based on the software metrics. But

unfortunately, for some software projects, metrics may not be ready for defect

proneness prediction. Our method is making it possible to predict defectiveness

without the need to extract the software metrics, since SVM with the precalcu-

lated kernel we propose is based on the source code similarity.

• We prove that as the similarity among the files of a software system increases,

SVM with source code similarity based kernel (P-SVM) achieves better AUC.

8.2.3. Kernel Methods to Predict the Number of Defects

• We propose a novel kernel method to predict the number of defects in the software

modules.

• Prior to test phase or maintenance, developers can use our proposed method to
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easily predict the most defective modules in the software system and focus on

them primarily rather than testing each and every module in the system. This

can decrease the testing effort and the total project cost automatically.

8.3. Future Work

As a future work, we plan to refine our research to include semantic similarity

while calculating the kernel matrix. Graph based clone detection techniques are able

to detect functional similarity and are more successful compared to the token based

techniques in extracting semantic similarities [98]. We believe that when semantic

similarity is considered besides structural similarity, the accuracy of defect prediction

using a precalculated kernel matrix would be much higher.

On the other hand, we plan to add other software and process metrics to our

Bayesian network model, to reveal the relationships among these metrics and defect

proneness. We believe that rather than dealing with a large set of software metrics,

focusing on the most important ones will improve the success rate and effectiveness of

defect prediction studies.
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