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M.S., Computer Engineering, IŞIK UNIVERSITY, 2007
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FACIAL EXPRESSION RECOGNITION BASED ON

FACIAL ANATOMY

Abstract

In this thesis we propose to determine the underlying muscle forces that compose

a facial expression under the constraint of facial anatomy. Muscular activities

are novel features that are highly representative of facial expressions. We model

human face with a 3D generic wireframe model that embeds all major muscles.

The input to our expression recognition system is a video with marked set of

landmark points on the first frame. We use these points and a semi-automatic

fitting algorithm to register the 3D face model to the subject’s face. The influence

regions of facial muscles are estimated and projected to the image plane to deter-

mine feature points. These points are tracked on the image plane using optical

flow algorithm. We estimate the rigid body transformation of the head through

a greedy search algorithm. This stage enables us to align the 3D face model with

the subject’s head in consecutive frames of the video. We use ray tracing from

the perspective reference point and through the image plane to estimate the new

coordinates of model vertices. The estimated vertex coordinates indicate how the

subject’s face is deformed in the progression of an expression. The relative mo-

tion of model vertices provides us an over-determined linear system of equations

where unknown parameters are the muscle activation levels. This system of equa-

tions is solved using constrained least square optimization. Muscle activity based

features are evaluated in a classification problem of seven basic facial expressions.

We demonstrate the representative power of muscle force based features on four

classifiers; Linear Discriminant Analysis, Naive Bayes, k-Nearest Neighbor and

Support Vector Machine. The best performance on the classification problem of

seven expressions including neutral was 87.1 %, obtained by use of Support Vector

Machine. The results we attained in this study are close to the human recognition

ceiling of 87-91.7 % and comparable with the state of the art algorithms in the

literature.
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YÜZ ANATOMİSİNE DAYALI İFADE TANIMA

Özet

Bu tezin amacı yüz ifadelerini oluşturan kas kuvvetlerinin yüz anatomisi kısıtı

altında tespit edilmesidir. Kas aktivasyonları yüz ifadelerini büyük ölçüde temsil

eden yeni özniteliklerdir. İnsan yüzü temel yüz kaslarını içeren üç boyutlu genel

bir telkafes ile modellenmiştir. İfade tanıma sisteminin girdisi imge dizisinin ilk

çerçevesi üzerinde işaretlenmiş olan nirengi noktalarıdır. İşaretlenmiş olan nirengi

noktaları ve yarı–otomatik yüz modelleme algoritması kullanılarak üç boyutlu

yüz modeli deneğe uyarlanır. Yüz kaslarının etki alanları tahmin edilir ve kamera

düzlemine izdüşümleri öznitelik noktaları olarak belirlenir. Bu noktalar kamera

düzleminde optik akış algoritması ile izlenir. Başın katı devinimi fırsatçı algoritma

ile tahmin edilir. Bu aşama 3 boyutlu yüz modeli ile deneğin kafasının video-

nun ardışık çerçevelerinde hizalanmasını sağlar. Kamera referans noktasından

kamera düzlemi boyunca ışın izleme yöntemi kullanılarak modelin düğüm nokta-

larının yeni koordinatları tahmin edilir. Tahmin edilen düğüm koordinatları ifade

oluşumu sırasında deneğin yüzünün nasıl şekil değiştirdiğini gösterir. Modelin

düğüm noktalarının bağıl hareketleri ile bilinmeyen değişkenleri kas aktivasyon

seviyeleri olan artık-belirtilmiş denklemler sistemi elde edilir. Bu denklemler sis-

temi kısıtlı en küçük kareler yöntemi kullanılarak çözülür. Kas aktivasyonlarına

dayalı öznitelikler yedi temel yüz ifadesinin sınıflandırılması probleminde kul-

lanılır. Kas kuvvetlerine dayalı özniteliklerin temsili gücü Doğrusal Ayırtaç Ana-

lizi, Naive Bayes, En Yakın K Komşu ve Destek Vektör Makineleri sınıflandırıcıları

ile gösterilir. Nötr ifade de dahil olmak üzere yedi ifadenin sınıflandırılmasında

en iyi performans 87.1 % ile Destek Vektör Makineleri kullanılarak elde edilir.

Bu çalışmada elde edilen sonuçlar insanın yüz ifadesi tanımadaki yetkinlik oranı

olan 87-91.7 % aralığına yakın olup literatürde yer alan çalışmaların başarıları ile

kıyaslanabilir durumdadır.
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Chapter 1

Introduction

Communication is a word of Latin origin. Latin word communicare means to im-

part, share, or make common. According to Oxford dictionary the word commu-

nication means: the imparting or exchanging of information by speaking, writing,

or using some other medium. Human beings do two-way communication through

not only words but also facial expressions, gestures and posture. Mehrabian [1]

reported that there are three elements in face to face communication: words, tone

of voice and non-verbal behavior. Figure 1.1 depicts the percentages of impor-

tance of these elements in face to face communication as Mehrabian proposed.

Figure 1.1: Elements of communication.

Mehrabian reported importance of verbal, vocal and visual elements of any mes-

sage as 7 %, 38 % and 55 %, respectively. According to his findings tone of voice

and non-verbal behavior are more effective than the “spoken words”. During com-

munication if a person feels inconsistency between spoken words, tone of voice and
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non-verbal behavior, she/he prefers to believe tone of voice and non-verbal be-

havior (38 % and 55 %). This shows us that for effective communication, spoken

words, tone of the voice and non-verbal behavior of the speaker must complement

each other. Friedrich Nietzsche referred to this fact as:

“The mouth may lie, alright, but the face it makes nonetheless tells

the truth”.

Non-verbal behavior can also be called as body language that includes facial ex-

pression, eye, hand and head movements, appearance, posture etc. In person to

person interaction facial expressions are frequently used. Communication over

the Internet can be also a good example for explaining the importance of the

facial expressions. In the beginning people expressed their feelings only by writ-

ing and send text messages to each other. Later they started to use particular

symbols (smiley or sad face) in the conversation for improving the interpretation

of the text. This indicates the difficulty of transferring feelings without facial

expressions.

Face serves as an interface, making interpersonal communication possible. Due to

this fact facial expressions constitute a popular field of research in many research

domains, especially in psychology. Facial expressions are also studied in human-

computer interaction (HCI). In the most general sense the goal of HCI is to

analyze the emotional status of the human operator and use the obtained results in

the decision processes of the machine for better adaptation to the user′s emotions.

Among all gestures, facial expressions are the most direct, natural and most of the

time involuntary expressions of the emotions. For that reason analysis of these

expressions is one of the most prominent emotion analysis methods. Correct

analysis of human faces will enable satisfactory human-computer interaction.

Latest efforts in HCI focus on automatic detection of physiological situations such

as boredom, fatigue and stress. If researchers succeed in this front, unsuitable

conditions of the staff who work in critical positions like pilots, drivers or system

2



security, can be detected and accidents can be avoided ([2, 3]). If we can ever

reach the success of human security experts, we may be able to detect suspicious

people or deceptive facial expressions.

Research in facial expression recognition goes back to mid 1800s with the experi-

ments of famous neurologist Duchenne de Boulogne [4]. He applied electric shocks

to live subjects to observe how muscles produce facial expressions. A decade later,

Charles Darwin [5] presented six universal facial expressions; anger, disgust, fear,

happiness, sadness and surprise that are common among all cultures (Figure 1.2).

Figure 1.2: Six universal facial expressions.

About a century later, Ekman and Friesen [6] proposed a systematic method

for measuring facial behaviors, namely Facial Action Coding System (FACS).

They based these behaviors on action units (AUs) rather than muscle activations.

Ekman and Friesen′s study drew attention to psychological studies while initiating

the first steps in computer-based automated facial expression recognition.

An automatic facial expression recognition system includes three main stages.

The first stage is detecting the human face in an input, which can be an image

or the first frame of a video sequence. The second stage is extracting the features

that discriminate facial expressions in the input. When the observation is video,

we have the opportunity to make use of the dynamics of the expression by tracking

the face and its features. The last stage is classification of the facial expression

using the obtained numeric values of the features.

Face is a very sophisticated structure, and extracting meaningful information

from it is a challenging task. Geometric, appearance-based and hybrid methods

have been proposed for feature extraction. In this study we propose a new and

anatomy based set of features that are derived from muscle activation levels. We
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demonstrate that these features are robust and representative of common facial

expressions.

1.1 FACS Action Units as Features

Ekman and Friesen analyzed appearance changes on human face and defined

them with action units (AUs). In FACS there is not an exact one-to-one mapping

between facial muscles and AUs. There exist action units that correspond to the

visual effect of a combined activity of muscles. For instance brow lowering action

(AU 4) is observed as a result of the contraction of facial muscles Corrugator

supercilii and Depressor supercilii (facial muscles which are located at the middle

portion of the eyebrow). Conversely, one muscle may be a constituent of multiple

AUs. For instance Orbicularis Oris muscle which encircles the mouth appears in

the formation of six different facial actions.

Action units are annotated by the FACS experts. To become an expert, trainees

attend 300 hours of training to learn rules of annotating action units and an

expert can score one minute of a video clip in approximately two hours [7].

Figure 1.3: Fear expression and related action units [8].

Figure 1.3 presents an example FACS annotation. In figure subject performs

Fear expression and experts determined the existence of seven AUs. AUs are

labelled with numbers and letters for describing the face actions and intensity

levels. Lowest and highest intensity values are represented with the letters A and

E, respectively. For instance in figure subject slightly lowers his brow and experts
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coded this action with 4B where number 4 indicates brow lowerer action unit and

letter B indicates slight intensity level.

The most current FACS categorization uses 46 action units for describing the

facial actions (Table 1.1). Nine action units are related with the upper region of

the face and 18 of them are related with the lower region [9]. There also exist

additional action units for describing head and eye movements.

Table 1.1: Example action units used for facial expression recognition
Action Units Description Example Image Related

(AU) Expression

AU 5 Upper Lid Raiser Surprise

AU 9 Nose Wrinkler Disgust

AU 12 Lip Corner Puller Happy

AU 15 Lip Corner Depressor Sad

AU 16 Lower Lip Depressor Happy

AU 20 Lip Stretcher Fear

AU 23 Lip Tightener Anger

AU 24 Lip Pressor Anger

FACS experts also modelled facial expressions with combinations of AUs (Table

1.2). These rules form a basis for FACS-based facial expression recognition stud-

ies. However as can be seen from the Table 1.2 an action unit may appear in

more than one combination. An example is AU 4, which exists in the formation

of anger, fear and sadness expressions. There also exist action units (AU 5, 9,
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12, 15, 16, 20, 23 and 24) that are responsible for producing single facial expres-

sion. Kotsia and Pitas [10] simplified these sets of rules in their facial expression

recognition study.

Table 1.2: Description of six universal facial expression in terms of action units
[11]

Expression Action Unit Description
Anger 4+7+(((23 or 24) with or not 17) or (16+(25 or 26)) or

(10+16+(25 or 26))) with or not 2
Disgust ((10 with or not 17) or (9 with or not 17))+(25 or 26)

Fear (1+4)+(5+7)+20+(25 or 26)
Happy 6+12+16+(25 or 26)

Sad 1+4+(6 or 7)+15+17+(25 or 26)
Surprise (1+2)+(5 without 7)+26

Majority of the current research efforts rely on extracting the FACS AUs as fea-

tures [12, 13, 14]. Therefore the common focus is on more precise extraction

of FACS AUs, automating FACS coding and improving the classification perfor-

mance using FACS AUs. In this research, we argue that FACS has significant

limitations. In the remaining of this chapter we will discuss these limitations,

which serve as the motivation of our research. Next, we will discuss how we plan

to address these limitations. The context of this discussion is critical in the de-

velopment of the proposed approach.

1.2 Limitations of FACS AUs

We will be discussing the limitations of FACS AUs in conjunction with the

anatomical structure of the face, specifically the layout of the facial muscles.

Figure 1.4 depicts the layout of muscles on the human face. Note that many

muscles can be involved in the progress of an action unit.
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Figure 1.4: Facial muscles and FACS AUs.

In the rest of this section the limitations of the FACS AUs will be introduced.

a) Intensity scoring does not support detection of subtle changes.

FACS uses rules for scoring the intensities of AUs. When there is no evidence

of an AU, the face is evaluated as neutral. AUs are scored for intensity using a

five-point ordinal scale. The intensities are denoted by five letters that span the

range of intensities from trace to maximum.

Figure 1.5: Relation between the scale of evidence and intensity scores.

Score intensity is indicated after the action unit code, i.e. 4B or 4E for indicating

the intensity level of the action. Figure 1.5 indicates an unequal division of the

intervals. Intensity levels C and D cover a larger activity range than the other

levels. However, most of the expression activities fall in these ranges. An impor-

tant limitation of FACS is the limited number of levels of quantification and their

non-uniform distribution of range. Due to this scheme of scoring discrimination

between intensities of expressions is a difficult problem.

7



Due to these disadvantages, many researchers preferred to employ a continuous

scale of intensities for action units. Essa and Pentland [15], Kimura and Yachida,

[16] and Lien et al.[17] defined continuous intensity levels to be used in classi-

fying facial expressions. Tian et al. [18] used Gabor filters and artificial neural

networks to quantify the action of eyelids. Pantic and Patras [19] and Valstar et

al. [20] implemented a continuous scale using mid-level parameters.

b) Completely different sets of muscles can produce very similar vectoral displace-

ments of feature points.

The FACS model focuses on facial feature points and their directions of motion.

The compound effects of facial muscles may produce very similar activities of

feature points. For instance, sadness and anger expressions are characterized by

lip corner depressor and lip depressor actions, respectively (Figure 1.6 ). However,

disjoint sets of muscles are active for these expressions. The sadness expression is

realized by the Depressor Anguli Oris muscle (Section 3.1) whereas the muscles

that are active in anger are Orbicularis Oris (facial muscle which encircles the

mouth) and Incisivus Labii Inferioris (facial muscle which is located on the front

of mandible).

Figure 1.6: Expressions and related muscles from Goldfinger [21].

Which muscles are active during the construction of an expression is critical for

expression recognition. As we stated before, there ceases to exist a one to one
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mapping between the vectorial displacement of a feature point (AU) and an ex-

pression. The decision for the facial action has to be supported by vectorial

displacements of other feature points to obtain a sound classification.

c) It is hard to identify individual action units in compound expressions.

Action units compose facial expressions individually or in different combinations.

The combinations can be additive or non-additive. Additive combinations, as the

name suggests, do not affect the appearance of individual action units. Table 1.3

illustrates examples of additive action unit combinations.

Table 1.3: Additive action units
Action Units (AU) Action Units (AU) Additive Combination

AU 12 AU 25 AU 12+AU 25
Lip Corner Puller Lips Parted Smiling

AU 12 AU 26 AU 12+AU 26
Lip Corner Puller Jaw Drop Smiling

AU 1 AU 2 AU 1+AU 2
Inner Brow Raiser Outer Brow Raiser Surprise

The first two combinations are involved in the formation of smiling action. AU 12

lifts the corner of the lips upwards. AUs 25 and 26 present the different degrees

of lip opening action. Individual presence of AUs 12, 25 and 26 can be easily

detected in the additive combinations. In the last combination AUs 1 and 2 raise

inner and outer parts of the eyebrows, respectively. This additive combination can
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be evaluated as a clue for surprise expression. As can be seen from the last frames

individual action units do not change their appearance during the combinations.

In non-additive combinations, the compound effect alters the appearance of indi-

vidual action units. Compound effects of action units are generally not linearly

additive if they influence the same region of the face. Table 1.4 illustrates exam-

ples of non-additive action unit combinations.

Table 1.4: Non-additive action units
Action Units (AU) Action Units (AU) Non-additive Combination

AU 12 AU 15 AU 12+AU 15
Lip Corner Puller Lip Corner Depressor Embarrassment

AU 1 AU 4 AU 1+AU 4
Inner Brow Raiser Brow Lowerer Sadness

In the first example AUs 12 and 15 have almost opposite functionalities. One

of them lifts the corner of the lips upwards and the other one pulls the lips

downwards. According to Li and Jain [22] this combination often occurs during

the embarrassment. As can be seen from the resultant frame, the individual

action units are hard to recognize when the observation does not reflect a linear

combination of their effects. In the second example AU 1 pulls the inner brow

upward and AU 4 pulls the entire brow downward. Due to the nature of the non-

additive combination, the appearance of AU 4 is modified in the combination.

There may also exist additional appearance changes like wrinkles in the forehead.

According to Darwin [5] resultant combination can be detected in the formation

of the sadness expression.

Once AUs are compounded, it is extremely difficult to decompose an expression

back to AUs unless a large rule base is made available. Tian et al. [13] also
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showed that approaches that focus on individual action units may fail on com-

pound expressions.

d) It is hard to identify feature points when interpersonal variations are present.

Park and Kim [23] states that interpretations of AU′s have been difficult because

of inter-person variations. As a result of this he argues that human emotions

are interpreted by human experts, like psychologists, with much higher accuracy.

The appearances of human faces differ remarkably between individuals.

1.2.1 Motivation for Muscle Based Features

In the paragraphs above we discussed four important limitations of the FACS

based approaches. In this research we propose the following solutions to these

limitations.

• We can estimate the layout of muscles by precisely fitting an anatomy-based

generic wireframe model to the detected human face in observed scene.

• Once the model is customized the layout of muscles completely defines the

muscular regions of influence.

• The displacement of each feature point that is carefully placed in the region

of influence of muscles serves as an evidence of muscle activities.

• A set of n feature points carefully distributed in regions of influence of m

muscles generates an over–determined system of equations if n > m. This

system is solvable using convex optimization methods provided that the

condition number of the coefficient matrix is low.

In this study we propose a set of new and robust features by mapping the motions

of feature points due to the facial expressions to the underlying muscle forces. We
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aim to determine the muscle activations with high precision using a realistic and

anatomy based human face model. Our novel contributions are a generic and

anatomically accurate wireframe model and a set of new and robust features

that are based on the facial anatomy. Our proposed system is different from the

existing systems in the following aspects:

• In this study we propose and use an anatomy based high polygon wireframe

model for extracting features that are based on muscle activities.

• We simultaneously track facial feature points that are distributed over mus-

cular regions of influence on an expression video.

• We estimate head orientation and deformations on the wireframe model

that constitute the observed facial expression.

• The deformation of the wireframe model is uniquely solved under the con-

straint of the facial anatomy to obtain muscle activation levels.

• The muscular activation levels are a set of new features, which can be used

for static and dynamic classification purposes.

1.3 Problem Statement and Overview of the System

The ultimate goal of this study is to propose a set of new and robust features by

mapping the deformations due to the facial expressions to the underlying muscle

forces. As depicted in the figure below, we define our input as a video that

contains a single human face and 32 landmark points on the first frame. We

assume that the face is at a neutral expression state and is oriented towards the

camera in the first frame of the video. Our approach is to dynamically track

the face and its landmarks while deriving muscle activations at each state. The

output of our system will be a classification of the displayed facial expression.
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Figure 1.7: Structure of the facial expression recognition system.

The first steps of our work are to register the face image with a 3D generic face

model and update the model to accommodate interpersonal variations (semi-

automatic customization). In the next stage, we track the facial landmarks on

the 2D video and find a rigid body transformation for the wireframe model that

best describes the motion of the head (greedy search). When the orientation of the

head in the 3D space is estimated, we proceed to solve for the displacements of the

landmarks due to facial expression (ray tracing). These displacements will be used

to solve a linear system of equations to obtain facial muscle activations. Primary

focus and contribution of our research will be deriving the muscle activations that

are to be used as new features. We will demonstrate the performance of these

new features on a sample classification problem of seven expressions including

neutral.

1.4 Organization of the Dissertation

The dissertation is organized as follows. In Chapter 2, we explore the state of the

art studies in facial expression recognition field. In Chapter 3, we introduce our

high polygon wireframe model and the layout of the muscles in accordance with

the anatomical maps. We also present generation of the muscle map. In Chapter

4, we describe the customization of high-polygon generic wireframe model. The
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next stage in facial expression recognition, which is tracking of rigid body motion

of the head is introduced in Chapter 5. Deformation of the wireframe model in

accordance with the subject′s expression is detailed in Chapter 6. In Chapter 7 we

present derivation of the stiffness matrix and discuss the constrained least squares

solution to the system. We introduce the experiments and results in Chapter 8

and conclude this study in Chapter 9.
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Chapter 2

Overview of Facial Expression Recognition

Human beings meet thousands of human faces throughout their lifes. They can

learn and recognize faces even after many years. Over time visual characteris-

tics of human face (ageing, glasses, beard, moustache, hair style) may change,

however human beings will continue to recognize faces. It seems an effortless

task for human beings to detect faces, identify them and recognize facial expres-

sions. However computer-based automated facial expression recognition is still a

challenging task. Bruce and Young [24] studied how people recognize face iden-

tity. They developed a model that is still valid in face recognition research (Figure

2.1). This model defines eight modularities for face recognition. Structural encod-

ing generates descriptions of numerous faces. Face recognition units and person

identity nodes include structural information about familiar faces. Name of the

person is stored in name generation component. Cognitive system includes extra

information (attractiveness, asymmetry), influencing other components. Specific

facial information may be treated selectively in directed visual processing com-

ponent [25]. Emotional states are recognized from facial features in expression

analysis component. The observation of a speaker′s lip movements assists speech

perception.

It is known fact that we mostly stare on the face of a speaker to infer the exact

meaning of uttered words. In perception, visual component frequently dominates

the auditory component even when the auditory information is clear; sometimes
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changing what we believe to hear. An intriguing illustration of this phenomenon is

the McGurk effect. McGurk and MacDonald [26] demonstrated that when audio

syllable /ba/ is dubbed upon videos of spoken /ga/, observers report to hear /da/.

When the audio or video is presented in isolation, observers accurately identify

audio /ba/ and video /ga/. This study is an excellent proof of the power of

visual stimuli; they can make us believe to hear things that are merely suggested

by vision.

Figure 2.1: Bruce & Young model for studying faces [27].

Bruce and Young assumed that recognition of facial identities and expressions

are realized separately. This idea is supported by the study of Humphreys et

al. [28]. They studied with healthy and prosopagnosic participants (who can not

recognize familiar faces, in some cases their faces in a mirror). Prosopagnosic

participants have poor skills for recognizing familiar faces however in this study

they recognized facial expressions, including the most subtle ones. They show

comparable performances with the healthy participants.
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Humans’ recognition of facial expressions is not fully understood. For that rea-

son this field attracted both computer scientists and psychologists. Computer

scientists are working on faster and satisfactory fully automatic facial expression

recognition systems while psychologists seek to reveal the mechanisms of emo-

tions and expressions. In the next paragraphs we will introduce the stages of

facial expression recognition system from the computer science perspective and

explore the state of the art in this field.

2.1 Facial Expressions and Their Characteristics

Fasel and Luettin [29] define facial expressions as the contractions of facial mus-

cles that result in deformation of facial features such as eyelids, eyebrows, nose,

lips and skin texture. Most expressions are composed of a combination of these

deformations. For that reason, quantifying an overall expression in terms of de-

formations is often a painstaking and cumbersome task.

Facial expressions are commonly described with three characteristics; location,

intensity and dynamics. Intensity values of facial expressions can be measured

using the geometric deformations of the face and wrinkles. For instance, the

intensity level of smile expression can be measured using the magnitude of cheek,

lip corner raising and wrinkles.

The dynamics (timing and duration) of facial actions are as meaningful as the

actual deformations of the facial features. Static images clearly do not provide the

dynamics of the face, nevertheless it is important to assess the dynamics of the

facial expressions for accurate classification. The importance of the expression

dynamics is addressed by researchers but there exist a limited number of studies

in this topic. For instance, Messinger et al. [30] investigate and compare the

timing of Duchenne (which comprises cheek raising) and non-Duchenne (which

does not involve cheek raising) smiles in their study.
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Facial expressions can be described with the three temporal parameters: onset

(attack), apex (sustain) and offset (relaxation). Onset refers the point when

expression begins to appear. Apex indicates the peak point of the expression; and

Offset is the point when expression starts to fade. Until recently, these temporal

parameters were coded only by human experts. Pantic and Patras [31] worked

on the automatic detection of facial action units and their temporal dynamics.

They propose a rule based method and achieved higher recognition rates.

Facial actions are described by their locations and intensities and sometimes dy-

namics. A widely used method for this purpose is the facial action coding system

(FACS). FACS models facial expressions with combinations of action units (Table

1.2). First studies on automatic encoding of AUs in images of faces were reported

by Bartlett et al. [32], Lien et al. [17], and Pantic et al. [33].

Current studies mostly focus on automatic coding of FACS AUs on genuine and

synthetic facial expressions. Although significant success has been achieved on

synthetic facial expressions, the performance of automated expression recognition

systems is subpar compared to human experts, especially on genuine expressions.

2.2 Facial Expression Recognition

An automatic facial expression recognition system includes three main stages

(Figure 2.2). First stage is detecting the human face from an input which may be

a still image or a video. The second stage is extracting the features that describe

a facial expression in the observed input. When the observed input is a video, we

have the opportunity to make use of the dynamics of the expression by tracking

the face and its features. The last stage is classification of the facial expression

using the obtained numeric values of the features. In the following paragraphs

we will describe these facial expression recognition stages.
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Figure 2.2: Facial expression recognition system [34].

2.3 Face Databases

Most facial expression recognition algorithms need a large collection of training

and test data. For this purpose databases have been developed. Table 2.1 shows

an overview of the existing databases that can be used in automatic facial expres-

sion analysis. These databases and their important properties will be introduced

below.

Table 2.1: Overview of the existing Face Databases
Name Number of Number of Type of

Subjects Expressions Expression
Cohn-Kanade [35] 97 6 Posed
Extended 123 7 Posed and
Cohn-Kanade [36] non-posed
PICS [37] 35 3 Posed
JAFFE [38] 10 7 Posed
AR [39] 126 4 Posed
PIE [40] 68 4 Subtle
Muti-PIE [41] 337 6 Subtle
MMI 52 9 Posed and
[42], [43] Spontaneous
RU-FACS 100 Not Spontaneous
[44] mentioned
UT-Dallas [45] 284 11 Spontaneous

Cohn-Kanade (CK or DFAT) Database: Developed in the Carnegie Mellon

University, it is the most widely used database in facial expression analysis re-

search. This database has 2105 image sequences and contains both single action

unit examples and emotional expressions like joy, surprise, sadness, disgust, anger
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and fear. But it has two limitations. First, each recording ends at the apex of the

shown expression and this limits analysis of facial expression temporal activation

patterns to onset (attack), apex (sustain). The second limitation of this database

is that the date/time stamps of the recordings of videos are displayed over the

chin of the subject. As a result of this, the appearance changes of the chin become

less visible, making it difficult to track the deformations of the chin.

Extended Cohn-Kanade (CK+) Database: It is an extension of the CK

database. The dataset contains 593 sequences from 123 subjects, with increased

number of sequences (additional 107 sequences) and subjects (additional 26 sub-

jects). As in the original CK, the image sequence starts with the neutral expres-

sion and ends at the peak of the facial expression. FACS experts annotated 327

of the 593 sequences according to the peak frames of the expressions. Subjects

performed 7 facial expressions; 6 basic emotions and contempt.

PICS Database: It is an image database developed in the Stirling University

and stands for Psychological Image Collection at Stirling. It contains grayscale

and color images of both female and male subjects. There are multiple views of

subjects such as profile view and frontal view. Subjects performed smile, surprise

and disgust expressions.

JAFFE Database: JAFFE is a project of Kyushu University and ATR Hu-

man Information Processing Research Laboratory and it stands for the Japanese

Female Facial Expression database. It contains 219 static images. 10 Japanese

females display 7 facial expressions; 6 basic emotions and a neutral expression.

Each image is rated by 60 Japanese subjects.

AR Database: It is created in Computer Vision Center (CVC) of Universitat

Autonoma de Barcelona. It contains over 4000 color images of 126 subjects

(70 male and 56 female). Subjects performed neutral, anger, smile and scream

expressions. Also, experiments are done under varying illumination conditions.

Few images are collected with subjects wearing sun glasses and scarf.
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PIE Database: It is the image database of Carnegie Mellon University Robotics

Institute and stands for CMU Pose, Illumination, and Expression (PIE) database.

It contains 41368 images of 68 people. The images of participants are collected

under 13 different poses, 43 different illumination conditions and with 4 differ-

ent expressions including neutral, smile, and blink. The images include talking

subjects.

Multi-PIE Database: The original PIE database has few limitations such as

limited number of subjects, single recording session and few number of expres-

sions. Multi-PIE database is an improved version of PIE database with increased

number of subjects (337 people), recording sessions (increased to 4 sessions) and

number of expressions (increased to 6 expressions). Subjects performed neutral,

smile, surprise, squint, disgust and scream actions. Images are taken under 15

view points and 19 different illumination conditions.

MMI Database: It is developed in Man-Machine Interaction (MMI) group of

Delft University of Technology. It consists of two parts. First part of MMI con-

tains deliberately displayed facial expressions; there are over 4000 videos and 600

static images in this category. This database includes facial expressions of sin-

gle AU activation, multiple AU activations, and emotions such as anger, disgust,

fear, happiness, sadness, surprise, scream, boredom and sleepiness. FACS cod-

ing is done by two certified coders. Second part of MMI contains 65 videos for

spontaneous facial expressions. This part is also coded by two certified coders.

RU-FACS Database: RU-FACS database contains spontaneous facial expres-

sions that are coded by FACS experts. Subjects participate a false opinion

paradigm. They filled a questionnaire and attempted to persuade an interviewer

(retired police and FBI) that he/she is telling the truth. The dataset contains

100 subjects, 33 of which are annotated by FACS experts.

UT-Dallas Database: UT-Dallas is collected in the University of Texas. It

contains static images and video sequences. There are 284 subjects performing

11 different expressions (happiness, sadness, fear, disgust, anger, puzzlement,
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laughter, blank stare, surprise, boredom, disbelief). It includes videos of more

than one expression such as subject starting her/his performance with puzzled

expression, changing the expression to surprise or disbelief and concluding with

laughter. FACS coding of this database is not available.

There are also a significant number of 3 dimensional data sets available for re-

search. A brief summary of a subset of existing 3 dimensional face data sets is

proved in Table 2.2.

Table 2.2: 3 dimensional face data sets. Variations include (E)xpression,
(I)llumination, (O)cclusion, (P)ose, (S)peech.

Database Name Subjects Resolution Variation
3DRMA [46] 120 240 x 320 P
Bosphorus 3D [47] 105 1128 x 1374 E, O, P
BU-3DFE [48] 100 1049 x 1329 E, P
BU-4DFE [49] 101 1040 x 1329 E, P
CASIA [50] 100 640 x 480 E, I, P
CAS-PEAL [51] 1040 360 x 480 E, I, P
FRGC-v2.0 [52] 466 1704 x 2272 E, I
GavabDB [53] 61 240 x 320 E, P
Max Plank Inst. [54] 200 786 x 576 E, P
ND 2006 [55] 888 240 x 320 E, P
Photoface [56] 453 1280 x 1024 E, I
Texas 3DFRD [57] 284 720 x 480 E, P
XM2VTS [58] 295 720 x 576 R, S
York [59] 350 240 x 320 E, P

2.4 Face Detection

The initial step of facial expression recognition study is face detection. Face detec-

tion is the special case of object detection. Object detection methods can achieve

successful results on simpler objects. However face detection is significantly more

complex than detection of simple and rigid objects. Identifying human faces in an

observed scene was an important challenge for algorithmic approaches for decades

(Figure 2.3).

22



Figure 2.3: Face Detection.

There are a significant number of studies in this topic. The problem of face

detection is now considered to be solved with works of Rowley and Viola Jones.

Rowley et al. [60] used neural networks for detecting upright, frontal views of

faces. They examined small windows of gray-scale images and detected face and

non-face patters. Schneiderman and Kanade [61] proposed a statistical method

for detection of faces with out-of plane rotation. Yang et al. [62] presented

a method that uses SNoW (Sparse Network of Winnows) learning architecture.

Romdhani et al. [63] used non-linear support vector machines. Most commonly

used face detection algorithm was proposed by Viola and Jones [64]. In this

method cascade of rectangular box based classifiers are constructed and trained

by AdaBoost.

2.5 Feature Extraction and Tracking

After the face detection stage, the next step is extracting discriminative in-

formation for recognizing expressions. Face is a very sophisticated structure,

and extracting meaningful information from it is a challenging task. Geometric,

appearance-based and hybrid methods have been proposed for feature extraction.

The geometry of facial feature points and deformations on the skin are impor-

tant visual cues for facial expression recognition. Appearance based features are

derived from the texture of a facial image. Model based methods are proposed

to derive a mathematical model of variation modes of geometric or appearance
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based features. In this section we will discuss these methods and address to their

connections with our approach.

Geometric features are driven from the facial components (e.g. eyes, mouth) and

the pixel coordinates of facial fiducial points (e.g. corners of the eyes, mouth).

Pantic and Patras [19] proposed a method for detecting FACS AUs and their

temporal dynamics from profile-view image sequences. They tracked a set of

facial points using particle filtering, observed the position changes of the tracked

points, and calculated the relative changes in feature coordinates, which they call

as mid-level parameters. These mid-level parameters are used to determine action

units.

Valstar et al. [20] presented a method for discriminating the posed and spon-

taneous facial expressions by analyzing the brow actions. They used a semi-

automatic method for initializing feature points on input face image. Feature

points are tracked with two standard tracking algorithms and mid-level feature

parameters are calculated. Gentle Boost method is used to select more infor-

mative features and the expressions are classified with a probabilistic decision

function.

Valstar and Pantic [65] employed an automatic feature extraction system. Facial

feature points are automatically detected with Gabor feature-based classifiers and

tracked with Particle Filtering with Factorised Likelihoods algorithm. Polynomial

mid-level parameters are classified with combined HMM and SVM.

Seyedarabi et al. [66] presented a facial expression analysis and synthesis system.

They manually marked 14 facial feature points in the first frame and estimated

motion of these points with an improved cross-correlation based motion tracking

algorithm. They extracted features (width of eye and mouth, height of eyebrows,

openness of mouth, nose tip-lip corner distance and eye-cheek distance) from

facial feature points and classified them with probabilistic neural network (PNN)

classifier.
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Kotsia and Pitas [10] proposed a facial expression recognition system based on

geometric deformation features. They initialized Candide grid with a semi-

automatic fitting approach and tracked the model in consecutive frames by a

pyramidal variant of Kanade-Lucas-Tomasi tracker [67]. They calculated geomet-

rical displacements of grid nodes between first and last frames of the expression.

Extracted features are classified with multi-class SVM.

Lu and Zhang [68] used optical flow to track feature points in subsequent frames.

They calculated displacements of feature points and classified facial expressions

to one of the basic emotions with discriminative analysis of canonical correlations.

Valstar and Pantic [69] introduced a fully automatic expression analysis method

to recognize action units and their temporal characteristics. They used Gabor-

feature-based boosted classifier for detecting facial feature points. They utilized

particle filtering for tracking these points in consecutive frames and applied a

combination of GentleBoost, SVM and HMM for classifying action units and

their temporal dynamics.

Appearance based methods deal with the texture of the facial skin including wrin-

kles, bulges and furrows. Valstar et al. [70] proposed an AU recognition system

based on Multilevel Motion History Images. They examined the performances of

temporal templates in AU detection with a combined (kNN and rule based) and

SNoW classifier.

Guo and Dyer [71] manually marked fiducial points on the face image, applied Ga-

bor filters, used the amplitude values of fiducial points as features and compared

the performances of several classification methods.

Bartlett et al. [72, 73] also used Gabor filters and presented expression recognition

results of different machine learning methods. Whitehill and Omlin [74] proposed

Haar features for FACS AU recognition. They also examined the performance

differences between introduced Haar features with Adaboost method and Gabor
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features with SVM approach and obtained similar recognition results. Jiang et al.

[75] examined the local binary pattern descriptors for facial action unit detection.

Zhang et al. [76] classified expressions using two types of features: geometric

positions and Gabor wavelet coefficients of the fiducial points. These features are

given as input to a two-layer perceptron. They demonstrated that Gabor wavelet

coefficients achieves better recognition performance than geometric coordinates.

Chen et al. [77] combined both geometric and appearance based features in their

facial expression recognition study. They used extended active shape model to

extract facial feature points. Facial feature point displacements and local texture

differences between the neutral and peak frames are computed. Obtained hybrid

features are classified with SVM.

Model based approaches can be an alternative to appearance based approaches.

Typical examples are Active Shape Model [78] and Active Appearance Model

[79]. This is a parametric deformable model. They are used to create models of

human hearts, hands and faces. A statistical shape model of the face object is

built using a set of training examples. Pose and shape parameters are iteratively

modified for a better fit.

Gang et al. [80] introduced a geometric feature extraction method for facial

expression recognition study. They applied ASM based method for detecting

the coordinates of facial fiducial points and computed distances between each

facial fiducial point and the center of the gravity of the face shape. Geometric

deformation in the neutral and peak frames are extracted and classified with

SVM.

Active Appearance Model (AAM) is also proposed by Cootes et al. [79] for

matching a generic face model to input face image. AAM combines the statis-

tical model of the shape and the gray-level appearance of the object of interest.

The synthesized model is projected onto the face image and matching is done

iteratively.
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Lucey et al. [81] derived features based on Active Appearance Model (AAM) and

employed them for facial action recognition task. Lucey et al. [36] introduced

Active Appearance Model based system to classify seven emotions. They tracked

the face and extracted geometric shape and canonical appearance features. They

demonstrated classification results of the individual and combined features. Ac-

cording to the results combined features reached higher accuracy than individual

features.

2.6 Facial Expression Classification

In its early stages, research on automatic facial expression recognition focused on

static images. Studies in this context can be grouped in two: facial action unit

(AU) detection and facial expression recognition. Table 2.3 presents recognition

of facial action units (AUs) on static images. Studies focused on detecting action

units alone or in combinations. Tian et al. [13] grouped AUs as upper and

lower face and detected them using neural networks. Pantic and Rothkrantz

[11, 82] applied a rule based method and detected large numbers of AUs with

high accuracy.

Table 2.3: AU recognition studies on static images. u Upper-face FACS AU. l

Lower-face FACS AU.

Study Methodology Success FACS Database
AUs

Tian et al. NN 95.4 % 6u CK
[13] 95.6 % 10l Ekman & Hager [83]

Pantic & Rule based 89.0 % 31 Pantic &
Rothkrantz [11] Rothkrantz [11]

Pantic & Rule based 86.0 % 32 Pantic &
Rothkrantz [82] Rothkrantz [82]

As aforementioned in Table 1.2, most facial expressions can be described with

a combination of action units. Therefore facial action unit detection can also

be viewed as a preliminary stage of facial expression recognition. There are
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quite a few studies that extract AUs and utilize them for classifying basic facial

expressions.

Table 2.4 presents selected facial expression recognition studies on static images.

In these studies artificial neural networks [76], linear discriminant analysis [84]

and rule based classifiers [11] among others are applied on single frames. In

static analysis, time information is not used, therefore the dynamics of facial

expressions are ignored. The experimental studies showed that, formation stages

of facial expressions are as important as the peak appearance of facial expressions

[85].

Table 2.4: Selected facial expression recognition studies on static images.

Study Methodology Success Emotion Database
Zhang et al. NN 90.1 % 6 JAFFE

[76]
JAFFE

Lyons et al. LDA 75-92 % 6 Ekman & Friesen
[84] [86]

Fellenz et al. PCA+MLP 60.0 % 4 CMU
[87]

Pantic & Rule based 91.0 % 6 Pantic &
Rothkrantz [11] Rothkrantz [11]
Littlewort et al. SVM 92.0 % 7 CK

[88]
Wen & Huang NN+GMM 71.0 % 6 CK

[89]

Recent FACS AU detection and facial expression recognition studies are done

with image sequences. Table 2.5 presents AU classification studies on image

sequences. In latest studies number of detected AUs are increased. However none

of the studies can recognize the full set of FACS AUs. The largest AU set is

utilized by Pantic and Patras [19]. Bartlett et al. [44] recognized spontaneous

facial actions with high accuracy. There also exist few studies that are focused

on detecting temporal dynamics (onset, apex, offset stages) of the facial action

units [19, 69].
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Table 2.5: Dynamic facial action unit classification. Explanations of the abbre-
viations: sf : shape features, af : appearance features, cf : combined features

Study Methodology Success FACS Database
AUs

HMM 85.0 % 3 Frank &
Lien et al. PCA+HMM 93.0 % 3 Ekman

[17] Variation finding+ 85.0 % 4 [90]
HMM

Bartlett et al. SVM+HMM 98.0 % 2 Frank &
[91] 70.0 % 3 Ekman

Cohn et al. Rule Based 57.0 % 3 Frank &
[92] Ekman

Moriyama et al. Rule Based 98.0 % 2 Frank &
[93] Ekman

CK
Bartlett et al. Adaboost 91.0 % 20 Hager & Ekman

[44] [83]
Adaboost 93.0 % 19 RU-FACS

Pantic & Rule Based 87.0 % 27 MMI
Patras [19]

90.0 % sf 17
Lucey et al. SVM 91.4 % af 17 CK+

[36] 94.5 % cf 17
95.3 % 22 MMI

Valstar & Pantic GentleSVM &
[69] HMM 91.7 % 22 CK

Table 2.6 shows a categorization of recent studies in facial expression recognition.

As can be seen from the table most of the studies included neutral expression

in their emotion sets. Sebe et al. [94] created an authentic facial expression

database and applied several classifiers to recognize neutral, joy, surprise and dis-

gust emotions. They also utilized Cohn and Kanade database. Park and Kim

[23] introduced a motion magnification based method to recognize subtle facial

expressions. They used SFED2007 database that contains four facial expressions

(neutral, smile, surprise and anger) of 20 subjects and obtained the highest ac-

curacy with SVM classifier.
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Table 2.6: Recent facial expression recognition studies and their results. Expla-
nations of the abbreviations: pd: person dependent experiment, pi: person in-
dependent experiment,sf : shape features, af : appearance features, cf : combined
features, n: neutral class.

Study Methodology Success Emotion Database
Bartlett et al. Adaboost 90.1 %

[14] SVM 88.0 % 7n CK
AdaSVM 93.3 %
LDAPCA 80.7 %

NB 75.6 %
Sebe et al. C4.5 83.9 % 4n CK

[94] SVM 75.4 %
kNN 93.0 %
NB 91.5 %

Sebe et al. C4.5 91.6 % 4n Sebe et al.
[94] SVM 86.8 % [94]

kNN 95.6 %
DNMF 74.3 %

Kotsia et al. SVM 84.8 % 7n CK
[95] MRBF NN 92.3 %

Nearest Neighbor 71.9 %
PNN 74.4 % SFED2007

Park & Kim LDA 79.4 % 4n [96]
[23] QDA 77.5 %

SVM 88.1 %
Sung & Kim Layered GDA 98.2 % 4n Sung &

[97] Single layer GDA 96.7 % Kim [97]
Gang et al. SVM 89.5 % pd 7n JAFFE

[80] 68.5 % pi

50.0 % sf

Lucey et al. SVM 66.7 % af 7 CK+
[36] 83.3 % cf

Lu & Zhang Canonical 90.0 % 6 CK
[68] Correlations

Chen et al. SVM 95.0 % 7 CK+
[77]

Sebe et al. [94] and Park and Kim [23] worked on a simpler classification prob-

lem. Both of them classified 4 emotions including neutral and excluding fear and

sadness. This selection is done in accordance with the complexity of emotions.
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Emotions may differ in degree of complexity in terms of the number of muscles in-

volved. From this point of view, happiness can be described as a simple emotion,

whereas fear is one of the most complex emotions.

Kotsia et al. [95], Lucey et al. [36] and Chen et al. [77] utilized hybrid features for

classifying facial expressions. Kotsia et al. [95] classified seven emotions including

neutral with texture-based (74.3 %) and shape-based features (84.8 %). They

also introduced the recognition results for combined features (92.3 %). Lucey

et al. [36] classified seven emotions with shape-based (50 %), appearance-based

(66.7 %) and combined features (83.3 %). Obtained results showed that hybrid

features achieve better recognition performances than individual features. Chen

et al. [77] also combined geometric and appearance based features and classified

seven basic emotions with high accuracy (95 %). In literature instead of using

geometric and appearance-based features alone, researchers proposed to combine

them. Obtained results also support the effectiveness of this idea.

Gang et al. [80] applied person-dependent and person-independent tests to eval-

uate performance of their approach. In person-dependent experiment a subject′s

image samples of the same expression can be appear both in training and test-

ing data set. In person-independent experiment a subject′s image samples of the

same expression can appear in training or testing data but not both of them. In

both of the experiment approaches same features, dataset and classifier are used

but different recognition results are obtained. As expected, person dependent

test showed better performance than the independent. However it is important

to note that the actual performance of a system must be considered on person

independent test.

Many studies in the literature do not clearly introduce the testing procedures.

Most of the times distinct observations from the same expression of a specific sub-

ject may appear both in training and testing data sets. Recognition performances

of those studies that utilize person-dependent approach can be misleading.
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Another challenge in facial expression recognition study is a lack of standardized

performance evaluations. Studies are done using different databases and different

facial expressions; therefore it is hard to pass judgement on the most successful

approach.

In dynamic analysis acceptable success rates were achieved only when basic emo-

tions were targeted. These results suggest that there are open issues for research

in facial expression analysis. In the past ten years research in facial expression

recognition is increasingly getting attention. However each advancement in this

field brings about new and challenging research problems. One issue open for de-

bate is how to deal with an increased number of classes. Another open question

is how to scale the intensity of facial expressions, if any. In the following chapters

we will introduce our approach to the facial expression recognition problem.
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Chapter 3

Face Model

There are more than 600 muscles in human body and approximately 52 of them

form facial expressions [98]. Muscles are responsible for posture, body movements

and facial expressions. Facial muscles produce over 10,000 facial expressions 3,000

of which can be recognized from other people. In smiling action almost 15 facial

muscles become active. Our approach in this study capitalizes on the anatomical

structure of the human face. We propose to identify the activation levels of facial

muscles in the progress of an expression by observing the displacements of feature

points that are distributed over a region. Obviously the actual forces applied by

the facial muscles are not observable unless electrical activity sensors such as those

employed in electroencephalograph (EEG) are utilized. However, it is possible to

derive them given an accurate model of the face, the physical properties of skin

and muscles, and the observed displacements of carefully selected feature points.

Hence, having an accurate anatomical model of the human face is critical for

our research. In this Chapter we will discuss face anatomy, which will serve as

a reference for the development of a face model. This chapter is organized as

follows: In Section 3.1 we introduce major facial muscles. In Section 3.2 we

present existing face models and in Section 3.3 we describe our high polygon

face model (HIGEM). In Section 3.4 we introduce placement of facial muscles on

HIGEM face model and in Section 3.5 we present generation of muscle map.
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3.1 Facial Anatomy

All fiber muscles on the human face have an origin (O) and an insertion (I) point.

The origin point of a muscle is the point where it attaches to a skull. Since the

muscle is anchored to the bone, origin point does not move by the contraction of

the other muscles. Insertion point is distinct from the origin point, it attaches to

the skin.

Figure 3.1: Facial muscles and their directions [21].
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In the following paragraphs we introduce major facial muscles, their function-

alities and layout on face. Muscles that are discussed in this section will be

implemented on the HIGEM wireframe model.

1. Frontalis: It covers the forehead. It is composed of medial and lateral

fibers. The layout of the muscle with its origin and insertion points is

shown in Figure 3.2.

Figure 3.2: Origin and insertion points of Frontalis [21].

These two constituents of the Frontalis muscle may act together and alone.

When they become active they pull different regions of the eyebrows up-

wards. For instance, medial Frontalis raises the medial end whereas lateral

Frontalis raises the middle and lateral ends of the eyebrow. When both

parts become active, they express surprise and fear expressions (Figure 3.3).

Medial Frontalis is active in the formation of the sadness expression.

Figure 3.3: Frontalis activity [21].

2. Procerus or Pyramidalis Nasi: It covers the nasal bones and the skin

between lower region of the forehead and between eyebrows. It draws the

medial ends of the eyebrows downward. It forms anger expression and
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contributes to disgust expression. The layout of the muscle with origin and

insertion points is shown in Figure 3.4.

Figure 3.4: Origin and insertion points of Procerus [21].

3. Levator Labii Superioris Alaeque Nasi (LLSAN): It covers the upper

lip and lateral side of the nasal bones. It raises upper lip upward and en-

larges wing of the nose. It forms the snarl expression. Since this expression

was often performed by Elvis Presley, this muscle is also known as “The

Elvis muscle”. The layout of the muscle with origin and insertion points is

shown in Figure 3.5.

Figure 3.5: Origin and insertion points of LLSAN muscle [21].

4. Levator Anguli Oris (LAO): It is positioned below the lower part of the

orbit. It raises the corner of the mouth. It is a constituent of the smile

expression. The layout of the muscle with origin and insertion points is

shown in Figure 3.6.
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Figure 3.6: Origin and insertion points of LAO muscle [21].

5. Zygomaticus Major (ZMa): It covers the cheek bone and the muscles

near the corner of the mouth, lifting the corner of the lips upwards. It forms

expressions such as happiness, joy-smiling and laughing. The layout of the

muscle with origin and insertion points is shown in Figure 3.7.

Figure 3.7: Origin and insertion points of ZMa muscle [21].

6. Risorius: It is positioned around the mouth. It pulls the corner of the

mouth backward and outward. It contributes to the expression of happiness.

The layout of the muscle with origin and insertion points is shown in Figure

3.8.

Figure 3.8: Origin and insertion points of Risorius [21].

7. Depressor Anguli Oris (DAO): It is located in the area starting from

the mandible and ending with the corner of the mouth. It pulls the mouth

37



downward and is a major constituent of the sadness expression. The layout

of the muscle with origin and insertion points is shown in Figure 3.9.

Figure 3.9: Origin and insertion points of DAO muscle [21].

8. Depressor Labii Inferioris (DLI): It is positioned in the jaw area. It

pulls the lower lip downwards. It forms expressions that are primarily used

in speaking. The layout of the muscle with origin and insertion points is

shown in Figure 3.10.

Figure 3.10: Origin and insertion points of DLI muscle [21].

9. Mentalis: It winds up the chin. It forms expressions such as sadness,

grief, anger, disdain, and disgust. The layout of the muscle with origin and

insertion points is shown in Figure 3.11.

Figure 3.11: Origin and insertion points of Mentalis [21].
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3.2 Types of Face Models

The first stage of our study is developing a 3D generic wireframe model according

to the anatomy of the human face. The Candide model [99] has been widely used

in the literature for modelling and animation of the faces. It was developed

in Linköping University for model-based coding of human faces. The original

Candide model contained 75 vertices and 100 triangular faces. After its first

introduction, modified versions were created with increased vertex and polygon

numbers (Figure 3.12).

A common version of Candide also defined 11 action units. The vertices of the

Candide model are carefully selected to be able to track, identify, or synthesize the

prominent deformations of the face. As such, Candide is not intended to recognize

subtle expressions or life-like facial expression simulations. Such studies of the

face require a more precise model through increased number of polygons.

Figure 3.12: Different versions of Candide [99, 100, 101] .

There also exist other face models in the literature. The first 3D parametric face

model is developed by Parke [102]. Parke constructed a face model (Figure 3.13)

for expression and speech animation that contains about 400 vertices and 300

polygons.
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Figure 3.13: Face model proposed by Parke [102].

Waters [103] proposed another face model for animating facial expressions that

consists of 512 vertices and 878 polygons. This polygonal face model is also

utilized in the studies [104, 105, 106]. Erol [106] initialized nine symmetric pairs

of muscles on the generic face model to represent facial deformations. Upper and

lower part of the face contains 10 and 8 muscles, respectively. Figure 3.14 depicts

face model and utilized facial muscles. Note that a few major muscles which

appear in mandible like Mentalis and DLI are not included in face model.

Figure 3.14: Face model and muscle layout proposed by Waters [103].

Essa and Pentland [15, 107] utilized extended face model of Platt and Badler

[108] in facial expression recognition study. The introduced face model consists

of 1226 nodes and 80 facial regions. They [107] used the method of Waters and

Terzopoulos [109] and muscle data of Pieper et al. [110] for constructing an

anatomical muscle model of the face. Figure 3.15 depicts face model and defined

22 muscles.
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Figure 3.15: Face model and muscle layout proposed by Essa and Pentland [107].

Breton et al. [111] defined 25 muscles for facial expression animation. Upper

part of the face contains 8 muscles for controlling the movement of eyebrow and

forehead. Lower part of the face contains 17 muscles for controlling the movement

of lips. Figure 3.16 presents face model and muscle layout.

Figure 3.16: Muscle layout in the model proposed by Breton [111].

Zhang [112] developed a 3D face model for facial expression animation that con-

sists of 753 vertices and 1394 faces. Zhang et al. [113] selected 23 facial muscles to

animate facial expressions. The visual representation of face model and selected

muscles is shown in Figure 3.17.
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Figure 3.17: Face model [112] and muscle layout [113] proposed by Zhang.

3.3 HIgh resolution GEneric Model – HIGEM

In this study we propose a generic wireframe model that conforms to the human

face anatomy. HIgh polygon Generic face Model or HIGEM is presented in Figure

3.18. It comprises of 612 nodes and 1128 polygonal surfaces, which are known as

faces in computer graphics terminology.

HIGEM includes all major muscles of the human face. Each muscle is represented

by an insertion point (on the skin) and an origin point (on the skull). These

points are used to determine the directions of the muscle forces. The placement

of muscles on HIGEM is detailed in the next section.

HIGEM is made available to researchers at Işık University Pattern Recognition

and Machine Intelligence Laboratory web site [114].

Figure 3.18: HIGEM face model.
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3.4 Placement of Muscles

We assigned on the wireframe model the origin and insertion points for each

muscle described in the previous section. This assignment step is done once in

the beginning of the study, then the muscle-based wireframe model will be used

for all subjects after a simple customization step. In the wireframe model, each

muscle is represented by an origin and insertion vertex, which describe a ray in

the 3 dimensional space. The information on muscle directions is used to solve

for muscle activation levels in the final step of our analysis.

In this study we followed the study of Breton et al. [111] and graphical sketches

of Goldfinger [21] in placement of muscles on the wireframe model. We define 18

muscles (Medial Frontalis (×2), Lateral Frontalis (×2), Procerus, Levator Labii

Superioris Alaeque Nasi (×2), Levator Anguli Oris (×2), Zygomatic Major (×2),

Risorius (×2), Depressor Anguli Oris (×2), Depressor Labii Inferioris (×2), Men-

talis) on the model. We categorize the facial muscles into two groups. The first

group controls the movement of the eyebrow and forehead and the second group

is related with lower region of the face. Muscle layout on HIGEM is presented in

Figure 3.19. We marked the muscle-skin connection points and directions of the

muscles under the constraint of facial anatomy. In figure red and green points

stand for the muscle insertion and origin points, respectively. Blue lines in this

figure represent muscles, which are modelled as linear fibers.

3.5 Muscle Model

Muscles are fiber structures that can only contract, producing pulling forces on

the attached skin. The attachment of a muscle to the skin is not a single spot but

a region. This is the region of influence, where the muscular force is distributed

in varying intensities. We model the human face with a wireframe, and the

muscle-skin connection points and directions of the muscles are marked under

the constraint of facial anatomy.
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Figure 3.19: Muscle layout on the HIGEM model.

Based on Waters′ research on 3 dimensional animation of facial expressions [103],

we define our muscles as linear springs with distributed forces in their regions of

influence. A fiber muscle can be shown with vector ~OI as depicted in Figure 3.20.

The contraction of a muscle affects all vertices of the wireframe model that fall

in this bounded region.

Figure 3.20: Waters′ muscle model.

In Figure 3.20, V is any wireframe vertex, β is the angle of deviation from the

muscle fiber, φ is the angular limit for region of influence. The force exerted by

the muscle on wireframe vertices is faded as the angle of deviation β approaches

angular limit φ. On the radial axis, the muscle force increases until the insertion

point I and fades back to zero in the outer band of the region.
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We define force fading coefficients based on the angle of deviation and the length

of ~OI vector. The angular fading coefficient δA is computed with;

cos β = ~OI · ~OV/(|| ~OI|| × || ~OV||)

δA =


cosβ−cosφ

1−cosφ if cosβ ≥ cosφ

0 otherwise
(3.1)

Denoting the fiber length || ~OI|| and maximum radial distance of influence || ~OE||

with r and rmax respectively, we define radial fading coefficient δR as;

δR =


cos
( r−|| ~OV||

r
π
2

)
if || ~OV|| ≤ r

cos
( || ~OV||−r
rmax−r

π
2

)
if r < || ~OV|| ≤ rmax

0 otherwise

(3.2)

The overall fading in the region of influence is the product of angular and radial

fading coefficients;

δ = δA · δR (3.3)

This model distributes muscle forces conforming with the physical reality of

spreading muscle fibers beneath a region of influence. A sample distribution

of force for the Procerus muscle is illustrated in Figure 3.21. The sizes of the

red dots represent the magnitude of forces exerted by the Procerus muscle. The

muscle forces are always directed towards vertex O, where the muscle attaches to

the skull. The range of the muscle effects can be defined as [0, 1].
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Figure 3.21: Distribution of forces exerted by the Procerus muscle.

We consolidate the effects of muscles on wireframe vertices in matrix A, which

serves as our muscle map. The muscle map is solely dependent on the anatomical

structure of human face. This is a 3n × m matrix where n is the number of

vertices and m is the number of muscles. The first three rows of matrix A stand

for the effect of each muscle on the first vertex in x, y and z axes for a unit muscle

force. The product of A with the m × 1 vector of muscle activations (~fm) gives

us 3n× 1 vector of muscle forces on each vertex in each axis (~f s) (Eq. 3.4).

A~fm = ~f s (3.4)

46



Chapter 4

Wireframe Customization

A typical model-based facial expression recognition system incorporates the fol-

lowing five stages; detecting the human face in the input, fitting a 3D model onto

face region, tracking the rigid body motion of the head and the deformations of

the face, extracting features and classifying the facial expression. As one of the

earlier stages, registering the subject’s face with a generic 3D face model is critical

for the overall success of the system. The error introduced in this stage may ac-

cumulate and thus amplify in the later stages. The adaptation of the generic face

model must be precise and flexible enough to accommodate interpersonal varia-

tions. This stage is referred to as adaptation, initialization or customization by

researchers.

The wireframe adaptation step can be done manually or automatically. In man-

ual fitting user drags the vertices of the wireframe in the 3D coordinate system

and visually matches their projections to the camera plane with facial landmark

points. Semi-automatic fitting requires the user to identify a subset of landmark

points in the input image. In this scenario, vertices of the wireframe are auto-

matically translated to match with the identified landmark points. In automatic

fitting feature detection algorithms are run to extract important landmarks in the

image input and the generic 3D face model is deformed to match the estimated

positions of these landmarks.
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Essa [15] used Pentland and Moghaddam′s [115] view-based and modular eigenspace

methods for fitting 3-D face model to a face in an image. The positions of the

eyes, nose and lips are extracted automatically. According to the positions of

these features the canonical face mesh is deformed and matched with the face

image.

Active Shape Models (ASM) approach is proposed by Cootes et al. [78]. These

models are parametric deformable models. They are used to create models of

human hearts, hands and faces. A statistical shape model of the face object is

built using a set of training examples. Pose and shape parameters are iteratively

modified for a better fit. Lu et al. [116] used ASM algorithm for detecting

facial feature points and silhouettes. Head pose is determined by solving the

point-to-point and point-to-curve correspondences. Iterative closest point method

is used for converting the point-to-curve correspondences to the point-to-point

correspondences.

Active Appearance Model (AAM) was also proposed by Cootes et al. [79] for

matching a generic face model to input face image. AAM combines the statis-

tical model of the shape and the gray-level appearance of the object of interest.

The synthesized model is projected onto the face image and matching is done

iteratively. Ahlberg [117] used a color-based algorithm for detecting the size and

the position of the face, and applied AAM search to do the fitting. Dornaika

and Ahlberg [118] ultimately proposed two appearance-based fitting methods. In

their first method they did a locally exhaustive and directed search in parameter

space, and in the second one they decoupled the estimation of head and facial

feature motion. They demonstrated the robustness of their fitting method on

video sequences. Also, Dornaika and Ahlberg [119] designed a fast and reliable

active appearance model search for face tracking.

Krinidis and Pitas [120] used a semi-automatic approach for fitting the wireframe

model to a face image. The face model is a 2D mesh whose elements are springs

with stiffness. In the first step they coarsely initialized the wireframe on the face
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image, and then manually matched model nodes with the corresponding positions

of the face image. Using these correspondences driving force values that will cause

the deformation of the wireframe are calculated. Proposed spring-mesh model is

also used in the studies of Kotsia and Pitas [10], Kotsia et al. [121], Vretos et al.

[122], Krinidis and Pitas [123].

We propose a semi-automatic model fitting method for wireframe deformation.

The problem of projecting facial landmarks from 2D images to 3D space is under-

determined and for that reason most semi-automatic and automatic fitting ap-

proaches employ an iterative error minimization scheme. The real challenge in the

customization task is to estimate the 3D locations of vertices using the 2D input.

We studied ray tracing method which will be presented in Section 4.1. In Sections

4.2 and 4.3 we will introduce our manual wireframe fitting and semi-automatic

wireframe fitting studies.

4.1 Ray Tracing

In this study we aim to detect and track facial feature points on the subject′s

face, which exist in real world. The input to our system is a 2D observation

of the subject. We would like to trace facial features in the given observation

into a virtual space where our anatomical face model is positioned. In Computer

Graphics, one of the methods to project a scene in 3D world to the camera view

plane is perspective projection. Our goal on the other hand is to estimate the

3D position of a point given its location in screen coordinates. We will start our

discussion with perspective projection and continue with our assumptions to do

a variant of the well known ray tracing method.

Perspective projection is a method for mapping a 3D object onto 2D camera

plane. Following equations show the general perspective-transformations.

49



xp = x(
zprp − zvp
zprp − z

) + xprp(
zvp − z
zprp − z

) (4.1)

yp = y(
zprp − zvp
zprp − z

) + yprp(
zvp − z
zprp − z

) (4.2)

In these equations, zvp stands for the z-coordinate of the view (camera) plane and

(xprp, yprp, zprp) point stand for the projection reference point.

Figure 4.1: Perspective projection and ray tracing.

The projection reference point is chosen on the z-axis to simplify the calculations

of perspective projection. When the projection reference point is fixed on z axis

(xprp = yprp = 0), Eq.4.1 and 4.2 can be rewritten as in Eq.4.3.

fp(x, y, z) = (xp, yp) =


x( zprp−zvp

zprp−z )

y( zprp−zvp
zprp−z )

 (4.3)

This mapping projects each 3D point to the camera view plane as depicted in

Figure 4.1. Similarly, any point on the camera view plane is a projection of a 3D

point that lies in the ray that emanates from the projection reference point and

passes through the point on the camera view plane. Given the depth (z) of the
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3D point, we can invert Eq.4.3 to find its exact location on the 3D coordinate

system. This is a variant of ray tracing method that will be exploited in the

wireframe customization and wireframe deformation calculation stages.

f−1
p (xp, yp, z) = (x, y, z) =



xp(
zprp−z
zprp−zvp )

yp(
zprp−z
zprp−zvp )

z


(4.4)

4.2 Manual Fitting of the Wireframe Model to the Subject′s Face

The first task for model based facial expression study is wireframe customization.

In initial project work plan we planned to achieve this step manually. In manual

fitting all vertices on the wireframe model are manually marked on face image.

Since we are marking all the vertices on wireframe model, we need to reduce

our original wireframe model′s polygon size. The new generated low polygon

wireframe model contains 64 vertices. In manual fitting we marked 64 facial

landmarks on face image. Figure 4.2 represents the marking process.

Figure 4.2: Marking facial landmarks.

After the marking process, feature points on video frame are translated to the

corresponding vertices on wireframe model through ray tracing. As described in

Section 4.1. Figure 4.3 shows the obtained results in manual wireframe fitting
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study. Original wireframe model is shown on the left, customized wireframe

model is presented in the middle and the result of wireframe projection to the

input image is shown on the right.

Figure 4.3: Test results.

4.3 Semi-Automatic Fitting of the Wireframe Model to the Subject′s

Face

Precise registration of a generic 3D face model with the subject′s face is a critical

stage for model based analysis of facial expressions. In this study we propose a

semi-automatic model fitting algorithm to fit a high-polygon wireframe model to

a single image of a face (Figure 4.4). We manually mark important facial land-

marks both on the wireframe model and the face image. We carry out an initial

alignment by translating and scaling the wireframe model. We then translate

the wireframe landmarks in the 3D wireframe model so that their perspective

projections coincide with the image facial landmarks. The vertices that are not

manually labelled as landmark are translated with a weighted sum of vectorial dis-

placement of k neighboring wireframe landmarks, inversely weighted by their 3D

distances to the vertex. Our experiments indicate that we can fit a high-polygon

model to the subject′s face with modest computational complexity.

4.3.1 Selection of Facial Landmarks

A facial landmark is a point that represents an important feature on the face of the

subject such as eye corner, tip of the chin or top of the forehead. Facial landmarks
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Figure 4.4: Semi-automatic fitting method.

can be marked manually on the subject′s face or can be detected automatically.

In semi-automatic fitting methods facial landmarks are located manually. In this

study we marked 32 facial landmarks both on face image and wireframe model.

Figure 4.5 shows the selected facial and wireframe landmarks.

Figure 4.5: Marked facial landmarks.

In this study the points that are considered more informative than the others are

selected as facial landmarks. For instance, the top of the forehead and the tip

of the chin are selected as facial landmarks in order to assess the height of the

wireframe. We also selected points on the extremities of the left and right cheeks

as an indication of the width of the wireframe. The other features, such as those

around the eyes and eye sockets, are carefully selected to sketch the general shape

of subject′s face. These landmarks are consistent with those proposed by Cootes

[79].
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4.3.2 Wireframe Customization through Ray Tracing

We aim to reshape the generic wireframe model based on the facial landmarks

selected on the 2D image. In order to calculate translation vectors for the wire-

frame vertices we need to estimate the 3D coordinates of these facial landmarks.

Facial landmarks on face image are translated to 3D wireframe vertices using the

ray tracing method that was introduced in Section 4.1.

Figure 4.6: Ray tracing.

Our generic wireframe model is fixed with all of its wireframe landmarks. In

other words, the only input to our system is the facial landmarks on the 2D facial

image. When the user selects a facial landmark on the face, we know the depth

of the corresponding vertex in the wireframe. We apply ray tracing keeping the

depth of the vertex fixed (Figure 4.6).

4.3.3 Wireframe Alignment

For an initial alignment of the wireframe model with the facial landmarks, we

will translate the wireframe and scale it in x, y and finally z directions. For rigid

body translation of the entire wireframe, we map each facial landmark to the 3D

space through ray tracing and calculate the mean shift for wireframe vertices.

(Eq.4.5).
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T =
1

n

n∑
i=1

f−1
p (pli)− vli (4.5)

In Eq.4.5, n is the number of facial landmarks, f−1
p is ray tracing, pli and vli

stand for facial landmarks and wireframe landmarks, respectively. Computed

translation vector is applied to all vertices of the wireframe model.

vi,centered = vi,original + T (4.6)

We applied varying scaling factors on the x, y and z axes of the wireframe model

to achieve a better initial alignment to subject′s face. The scaling factor in the

x axis is found by the ratio of inverse projected width of the face to the original

width of the wireframe model. To estimate the inverse projected width, we used

the facial landmarks that lie on the left and right cheeks (Figure 4.7). Similarly,

the forehead and chin facial landmarks are used to scale the wireframe in y axis.

Scale factor for the depth of the head is assumed to be 1.15 times the scaling

factor of the width of the head. This ratio was empirically found and reported

by Luximon et al. [124].

Figure 4.7: Width and height values of wireframe model and face image.

4.3.4 Nearest Neighbors Weighted Average Customization (NNWA)

When the translation and scaling stages are complete we have an initial alignment

of the wireframe with the face image. To determine the final coordinates of
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wireframe landmarks we apply ray tracing method on each facial landmark of the

face. Here the depth of a facial landmark is assumed to be the same as the z

coordinate of the corresponding wireframe landmark, as shown in Eq.4.4. After

this operation we have the customized coordinates of the wireframe landmarks on

the wireframe model and are ready to customize the non-wireframe landmarks.

For each wireframe landmark vli we computed the translation vector by subtract-

ing its initial position in original wireframe from the customized position in the

deformed wireframe model.

∆vli = vli,orig − vli,custom (4.7)

For each non-wireframe landmark in the original wireframe we calculated the

Euclidean distances between the vertex and the wireframe landmarks. These

distances are to be used to determine the nearest k wireframe landmarks and

their weights in calculating the displacement vector for the vertex.

di,j =
∥∥∥vli,orig − vnlj,orig∥∥∥ i = 1...32, j = 1...580 (4.8)

In Eq.4.8, vnlj,orig and vli,orig represent the coordinates of a non-landmark and land-

mark vertices on the original wireframe model, respectively. In our generic wire-

frame model we have 32 wireframe landmarks and 580 non-wireframe landmarks.

Each non-wireframe landmark is translated with a sum of translation of k nearest-

neighbor wireframe landmarks, weighted by the inverse of their distances to the

vertex.

Tj =

∑k
i=1

∆vli
d2ij∑k

i=1
1
d2ij

(4.9)

vnlj,custom = vnlj,orig + Tj (4.10)
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4.3.5 Customization Experiments and Results

We evaluated the performance of the NNWA algorithm using the Photoface and

Bosphorus databases. We visually examined the customization performance on

chosen subjects of the Photoface database. For this experiment, we annotated 32

landmarks on the chosen images. Once face modelling is complete, we mapped the

texture of the face image to wireframe faces through interpolation. The snapshots

of the customized models are presented in Figure 4.8.

(i) Wireframe (j) Left (k) Front (l) Right

Figure 4.8: Modelling examples from the Photoface data set. The left column
illustrates the projection of the customized wireframe model onto the image. Next
3 columns illustrate different views of the models with mapped texture.

We conducted our next batch of experiments on the Bosphorus 3 dimensional face

data set. Bosphorus data set comprises of 4666 2 dimensional images and their

corresponding 3 dimensional data clouds. The data set provides various facial

expressions of 105 subjects. We carried out our experiments on 104 subjects

since the 3 dimensional data cloud for one subject (subject #7) was not correctly

parsed. In our experiments we utilized the neutral poses of subjects.
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The purpose of our next experiment is to perform a quantitative evaluation of the

NNWA algorithm. For that reason, we manually marked the facial landmarks on

both the facial images and data clouds of all subjects.

4.3.6 Evaluating the Performance of Customization

Once a face model is generated, we need to find its deviation from the data cloud

of the subject, which is the ground truth for our experiment. For this purpose we

brought both the model and the data cloud to a common scale and aligned them

around origin in 3 dimensional coordinates. We define error as the absolute value

of distance for each wireframe vertex to the nearest data point in the data cloud.

The mean error is calculated over all 612 nodes of the wireframe model. The

same process is repeated to evaluate the performance of customization through

Procrustes analysis. ASM operates on modes of variation of the landmark points.

Therefore the mean error of ASM was calculated only over the landmark points.

The faces we are dealing with can be of different sizes. In order to bring all

error measurements to a standard base we exploited relative error in our exper-

iments. We benefited from the bounding box of the 3 dimensional data cloud in

quantifying the relative error. For each subject the relative error is obtained by

dividing the mean error with the diagonal length of the 3 dimensional bounding

box belonging to that subject.

We also developed a model coloring strategy to illustrate the error variation on

the surface of the model. We colored the negative and positive errors in shades of

blue and red, respectively. A perfect match of the model with the data cloud is

represented in green. The frontal and lateral profiles of a customized model are

illustrated in Figure 4.9.
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Figure 4.9: Illustration of error variation on a customized model

4.3.7 Identifying the Landmark Vertices

Marking a substantial number of facial landmarks is an error prone task. There-

fore determining an ideal number of landmark traits that is sufficient in accurately

defining a face is critical in our research. To reduce the number of landmarks we

observed the variation of the magnitude of mean error with respect to varying

number of landmarks.

We performed this experiment by gradually decreasing the number of landmarks

from 42 to 10. In this experiment we employed 15 randomly selected subjects

from the Bosphorus 3 dimensional face data set.

As expected the mean error of the model increases as the number of landmarks

decreases (Figure 4.10). There is a trade-off between the effort required in

locating facial landmarks and the accuracy. Taking this fact into consideration we

chose to employ 32 landmarks in the customization process. All of our subsequent

experiments are conducted using these landmarks.

Following a similar analysis, we chose number of neighbors k as 5. Choosing a

very low value for k deteriorates the smoothness of the model. On the other hand

when k is above 10 the landmarks that are in farther regions of the face start

influencing the customization of a non-landmark vertex, reducing the modelling

performance.
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Figure 4.10: Mean error comparison for the proposed method with respect to
varying number of landmarks

4.3.8 NNWA Customization Results

We applied our algorithm on 104 subjects in the Bosphorus face data set. Our

results demonstrate low relative error values and variability indicating the robust-

ness of the proposed technique (Figure 4.11). We carried out these experiments

only on the frontal image of the subject’s face. Therefore relative error for each

subject was determined over a single face model.
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Figure 4.11: Relative error using 5-neighbor NNWA customization for 104 sub-
jects in the Bosphorus data set

We also observed the variation of relative error on an individual subject. To eval-

uate this we applied the NNWA customization on a randomly selected subject in

the Bosphorus data set. Figure 4.12 illustrates the nearest neighbor customiza-

tion on subject number 15.
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Figure 4.12: Facial landmarks on sample subject, generic wireframe model over-
layed on the image, acquired 3 dimensional model and the data cloud (Subject
Number 15)

The graph that demonstrates the relative error on each of the 612 vertices is

presented in Figure 4.13. The majority of the vertices in the generic model

consistently demonstrated low relative error magnitudes.
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Figure 4.13: Relative error for the vertices of the wireframe model (Subject Num-
ber 15)

4.3.9 Procrustes Analysis Results

Procrustes analysis is an alignment technique for superimposing one or more

shapes onto each other. This is performed through isotropic scaling, translation,

and rotation. Procrustes analysis iteratively finds the best fit between two or

more shapes outlined by the landmark points. It only allows rigid body transfor-

mations on the data sets and the transformations conserve the relative distance
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between feature points. Procrustes analysis has many variations. Of these differ-

ent variations, General Procrustes analysis [125, 126], otherwise known as GPA

is one of the more commonly exploited techniques in shape correspondence.

The alignment process of the General Procrustes analysis consists of six stages.

1. Normalize all shapes to unit size and translate their center of masses to

origin.

2. Determine mean shape m = 1
n

∑
i xi,j where i and j represent observations

and cloud points.

3. Align each shape i with m via transformation Ti.

4. Re-calculate m = 1
n

∑
i Ti (xi,j).

5. Translate m to origin and normalize its size.

6. Go to step 3 until convergence.

Procrustes analysis is usually employed as the first step in 3 dimensional mod-

elling. We also applied Procrustes analysis and evaluated the acquired relative

error rates. Figure 4.14 presents a comparison of the relative error for 104 subjects

using two methods; NNWA customization and Procrustes analysis. As expected,

NNWA customization performs substantially better than Procrustes analysis.

4.3.10 Active Shape Model (ASM) Results

We implemented ASM to compare its results with the NNWA algorithm. ASM is

originally proposed for 2 dimensional models. In our research we extended ASM

to be used with a 3 dimensional generic face model. Our ASM implementation

can be outlined with the following algorithm.

1. Align the 3 dimensional data clouds using Procrustes analysis (translation,

rotation and isotropic scaling).

62



0 10 20 30 40 50 60 70 80 90 100
0.01

0.015

0.02

0.025

0.03

0.035

Subject Number

R
e
la

ti
v
e
 E

rr
o
r

 

 

NNWA Customization
Procrustes Analysis

Figure 4.14: Relative error comparison for NNWA customization and Procrustes
analysis

2. Apply principal component analysis (PCA) on the 3 dimensional data set

to obtain the mean model m and eigenvectors a.

3. Find the Jacobian of residual with respect to transformation parameters in

6 degrees of freedom.

4. Apply Gauss-Newton approximation to estimate the transformation param-

eters.

5. Apply the estimated transformation on m +
∑

i γiai where γi are the shape

parameters.

6. Find the Jacobian of the residual with respect to shape parameters.

7. Apply Gauss-Newton approximation to estimate the shape parameters.

8. Go to step 3 until convergence.

We define the residual vector as the square of Euclidean distance between each fa-

cial landmark and the perspective projection of wireframe landmark. Figure 4.15

depicts the relative error comparison between NNWA and ASM algorithms. Al-

though both ASM and NNWA methods attained very low error rates, we observe

that ASM consistently outperforms NNWA customization. However this fact
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alone does not make ASM superior to the proposed method. ASM has impor-

tant constraints as a statistical modelling technique and an iterative optimization

algorithm.

Figure 4.15: Relative error comparison for NNWA and ASM algorithms

ASM requires a large data set of 3 dimensional data clouds with data point cor-

respondences for deriving the modes of variation (eigenvectors) for the data set.

NNWA algorithm utilizes a generic wireframe model and directly operates on a fa-

cial image with marked landmarks. As an iterative error minimization approach

ASM does not guarantee convergence to the global optimum. Moreover, the

demonstrated relative error values for ASM are quantified only for 32 correspon-

dence points, whereas NNWA algorithm provides customization for non-landmark

vertices of the model as well.
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Chapter 5

Tracking Rigid Body Motion

Given a model that has been customized for a subject, we can identify its vertices

that are in the region of influence of any muscles using Eq. 3.3. We identify the

projections of these vertices onto the image plane as feature points, as illustrated

in Figure 5.1. The displacements of these features will be used both to estimate

the rigid body motion of the subject’s head and relative motion of skin points

due to a facial expression. We track feature points on the image plane using the

optical flow algorithm proposed by Lucas and Kanade [127].

Figure 5.1: Identifying feature points to be tracked. Left: Influence regions of
muscles. Right: Projection of vertices (feature points).

5.1 Optical Flow

Input for our system is image sequences that are captured over time. Image data

is a function of space (x,y) and time (t) (Figure 5.2). Horn and Schunk [128]

define optical flow as the apparent motion of brightness patterns in the image.
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Figure 5.2: Image Data.

A pixel at location (x,y,t) with intensity I(x,y,t) move by ∆x,∆y and ∆t between

consecutive frames. There are three main assumptions for estimating the apparent

motion.

• Brightness Constancy: Projection of a tracking point looks same in every

frame.

• Spatial Coherence: Tracking points move like their neighbors

• Small Motion: Tracking points do not move very far

We can formulate the motion with the brightness constancy constraint.

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (5.1)

Using Taylor Series Expansion we can get

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+H.O.T (5.2)

In Eq. 5.2 the abbreviation H.O.T stands for the higher order terms. We neglect

higher order terms and combine equations 5.1 and 5.2 as

I(x, y, t) = I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t (5.3)
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The term I(x, y, t) appears both side of the equation, so they cancel each other

producing the following equation

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t = 0 (5.4)

We divide both of the terms with ∆t

∂I

∂x

∆x

∆t
+
∂I

∂y

∆y

∆t
+
∂I

∂t

∆t

∆t
= 0 (5.5)

and reorganize the Eq. 5.5

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0 (5.6)

In Eq. 5.6 terms Vx and Vy stand for the x,y components of the velocity vec-

tor. Terms ∂I
∂x
, ∂I
∂y

and ∂I
∂t

represent the derivatives of the image at (x,y,t). For

simplification we used Ix, Iy and It to represent the derivatives.

IxVx + IyVy = −It or OIT .~V = −It (5.7)

This is a single equation with two unknowns (Vx and Vy). In the literature this

situation is referred as the aperture problem. Lucas and Kanade [127] utilized

spatial coherence constraint for generating additional equations and solved the

system with the least squares method.

According to spatial coherence constraint we collect all pixels within a window

centered at p and generate new equations.

67



Ix(p1)Vx + Iy(p1)Vy = −It(p1)

Ix(p2)Vx + Iy(p2)Vy = −It(p2)
...

Ix(pn)Vx + Iy(pn)Vy = −It(pn)

(5.8)

In Eq. 5.8, pi indicates the neighboring pixel and it is located inside the window.

Here the size of the window is nxn. As a numeric explanation, if we use a 5x5

window, we can have 25 equations per pixel. We represent those equations in

matrix form

A =


Ix(p1) Iy(p1)

Ix(p2) Iy(p2)
...

...

Ix(pn) Iy(pn)

 v =

Vx
Vy

 b =


−It(p1)

−It(p2)
...

−It(pn)

 (5.9)

By inclusion of the spatial coherence constraint, we obtain more equations than

unknowns. This system can be solved with convex optimization methods such as

x, y, and least squares.

5.2 Lost Features Problem

Drifting of feature points is a major source of error both for estimating the rigid

body motion of the head and deformations based on expressions. In an uncon-

trolled drift, the topology of feature point and its neighbors will be altered. Figure

5.3 depicts drifting of feature point p0 at time tk. Note that any feature point

is a projection of its corresponding wireframe vertex and without folding this

topology change is not permissible.

To identify the drifting feature points, we record the directions of cross products

on triangles formed by the feature point with its neighbors. The two vectors
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Figure 5.3: Drifting feature point on image plane.

to identify this point as a drifting feature are ~u0,1 and ~u1,2. We compute cross

products in each frame, after tracking of feature points;

~c tk1,2 = ~u tk
0,1 × ~u

tk
1,2 (5.10)

The calculation of cross product is repeated for all faces the vertex resides on.

We identify inversion of the direction of a cross product as a state (topology)

change. All feature points that undergo a state change are marked as untrusted.

The remaining feature points and their corresponding wireframe vertices will be

used for estimating the orientation of the head.

5.3 Estimating head orientation

Precise alignment of the face model with the observed face image is mandatory

for estimation of relative displacements of vertices. The orientation of the sub-

ject’s head is determined by greedy search on trusted feature points and their

corresponding vertices in 6 degrees of freedom, as depicted in Figure 5.4. A simi-

lar greedy search algorithm for finding the head orientation was implemented by

Dornaika and Ahlberg [129].

The 3 dimensional rigid body motion of the subject’s head is defined by rotations

(θ) and translations (T ) on x, y and z axis;
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Figure 5.4: Alignment of the face model with the observed face image.

b = [θxθyθzTxTyTz] (5.11)

Our search algorithm iteratively seeks for a suitable transformation in each degree

of freedom in positive and negative directions. An iteration ends with applying

on the model the transformation that produces maximum reduction in error.

We define error as the sum squared distance between the projected vertices and

tracked feature points. Iterations will end if the error reduction is less than a

predefined threshold.
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Algorithm 5.3.1: RigidMotion(V, P )

//V : landmarks on the face model

//P : feature points on the image plane

b← {0, 0, 0, 0, 0, 0}

while maxErrReduc > threshold

do



currErr ← sumsq(project(V ), P )

maxErrReduc← 0

for j ← degrees of freedom

do



for k ← {−stepSize, stepSize}

do



V ← transform(V, bj, k)

err ← sumsq(project(V ), P )

errReduc← currErr − err

if errReduc > maxErrReduc

then

maxErrReduc← errReduc

bestT ← j

bestDir ← k

if maxErrReduc > 0

then b{bestT} ← b{bestT}+ bestDir

return (b)

This algorithm successfully tracked the head motion in all image sequences in the

CK database. It is unreliable however, when the motion of the subject is normal

to the image plane. Note that in this case the same set of error minimizing
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projections can be obtained by displacement in z axis or rotations around the

axes of the image plane (pitch and yaw).
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Chapter 6

Estimating Deformations

Once the estimation of head orientation is complete, we have the face model

aligned with the observed face on the image plane. Note that the projections of the

wireframe vertices still would not precisely overlap with the image feature points.

The causes of these deviations are (1) inaccuracies in the estimation of head

orientation, (2) drifting feature points (untrusted features) and (3) deformations

or relative motion of facial feature points due to facial expressions.

Our greedy search algorithm works successfully for small displacements and ro-

tations of the head (Section 5.3). We also identified the drifting feature points

and labelled them as untrusted (Section 5.2). The deviations between the trusted

tracking points and the projections of corresponding vertices serve as indicators of

facial expressions. We once again turn to ray tracing to extract the displacements

of vertices due to facial expressions.

Figure 6.1 depicts a landmark vertex v0 and its neighbors on the wireframe model.

Assuming that the surfaces are small enough so that they do not bulge or wrin-

kle, this vertex hypothetically moves on one of the faces it resides on. In this

illustration, v0 moves on the surface defined by v0, v1 and v2.

73



Figure 6.1: Estimating the new coordinates of vertices through ray tracing.

Note that unlike model customization, it is not possible to assume fixed depth

for vertices in this stage. However, if we can identify the plane of motion for

the vertex, we can estimate its new coordinates through a line–plane intersection.

The plane of motion can be any of the faces the vertex resides on. We find the

intersection of the ray with each of these faces.

Any vector lying in the plane must be perpendicular to the normal vector. Normal

vector of the plane computed as

n = (v0 − v1)× (v0 − v2) (6.1)

And plane equation is defined

n · (p− v) = 0 (6.2)

where p(x, y, z) and v represent any two points that are on the plane, n is the

normal vector of the plane. Then we rearrange the plane equation

a(x− xv) + b(y − yv) + c(z − zv) = 0 (6.3)

A line is specified by two points in the space. In our study the projection reference

point A(xprp, yprp, zprp) generates a line equation for each inverse projected facial

landmark on the video frame B(x, y, z) = f−1
p (xp, yp, zvp).
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Figure 6.2: A line in the 3D space.

Given two points in the affine space

A = xA
−→
i + yA

−→
j + zA

−→
k and B = xB

−→
i + yB

−→
j + zB

−→
k (6.4)

The vector pointing from A to B is calculated with

−→
AB = B − A = (xB − xA)

−→
i + (yB − yA)

−→
j + (zB − zA)

−→
k (6.5)

And the line through A and B is computed as

L(v′0) = A+ v′0(B − A) = A+ v′0u (6.6)

where u presents the vector
−→
AB. After generating line and plane equations, we

computed their intersections.

a((xA + v′0xu)− xv) + b((yA + v′0yu)− yv) + c((zA + v′0zu)− zv) = 0 (6.7)

We solved equation and obtained the value of variable v′0 which is the intersection

point of the line and plane.

Line plane intersections are carried out for each triangular surface the vertex in

consideration resides on. This produces a hypothesis for the new coordinates of
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the vertex for each plane. The intersection point v′0 may be found within or

outside the boundaries of a triangular face as depicted in Figure 6.3.

Figure 6.3: Identifying the plane of motion.

Note that the second row in Figure 6.3 implies that the plane of motion is not

the selected plane. The intersection point is found within the bounded triangular

plane in the first row, which is the plane of motion. To eliminate those intersection

points that do not lie in the plane of motion, we determine three normal vectors

for each face

~n1 = −−→v1v0 ×
−−→
v0v

′
0

~n2 =
−−→
v′0v0 ×−−→v0v2 (6.8)

~n3 = −−→v1v0 ×−−→v0v2

where v0, v1 and v2 are the vertex and its neighbors on the aligned wireframe

model. The intersection point v′0 is the back projection of the tracked feature

point found through line plane intersection. Note that for v′0 to be in the region

bounded by the face, normal vectors must point to the same direction;

~n1 · ~n3 > 1− ε and ~n2 · ~n3 > 1− ε (6.9)
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These two conditions enable us to identify the plane of motion and the new

coordinates of the corresponding vertex for all trusted vertices. Note that these

conditions do not restrict the vertex to move across the −−→v1v2 edge. In fact, this

vertex may be moving in the same same direction with its neighbors and it may

cross this edge, which is defined by vertices on the aligned model.

An untrusted vertex is considered to be drifting and lost in tracking, therefore

(1) we update its coordinates with arithmetic average of its neighbors and (2) we

project the vertex back to the image plane and relocate the drifting feature point

at this location.
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Chapter 7

Solving muscle forces

We solve the muscle forces using the anatomical muscle map (Section 3.5), es-

timated displacements of the wireframe vertices (Chapter 6) and the stiffness of

the wireframe. The wireframe is modelled as a 3D surface that is composed of

polygons. Each face on the wireframe model is defined by three vertices, repre-

senting a triangular plane in the 3D space. The edges between each neighboring

vertices are modelled with springs as illustrated in Figure 7.1.

Figure 7.1: Representing the edges of the wireframe model with springs.

The aim of this study is analyzing muscle motions rather than the displacement

of points. We used Hooke′s elasticity law for computing the total tensile forces

on the grid vertices.

F = −Kv (7.1)
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The stiffness matrix K is an n× n matrix of effective stiffness values, where n is

the number of vertices. The resultant force matrix F and vertex coordinates v

consist of n rows and 3 columns, representing the x, y and z axes.

In multi body problems, object coordinates are used for determining the magni-

tude and direction of the force. For each vertex force equations are established

for generating the stiffness matrix K of the whole system. Figure 7.2 shows a

single spring identified by the vertices vi and vj and there are forces Fij
i and Fij

j

respectively. At equilibrium Fij
i + Fij

j = 0 or Fij
j = −Fij

i . These forces calculated

in the following equation.

Figure 7.2: Single spring

−→
Fij

i = kij(lij − ‖vi − vj‖)
vi − vj

‖vi − vj‖
(7.2)

In Eq. 7.2, Fij
i stands for the 3-dimensional force on vertex i in spring ij. kij is

the stiffness of the spring attached to vertices i and j, and is taken constant in

this study. lij is the rest length of this spring, vi and vj are the 3D coordinates

of the vertices. Note that the first parenthesis in this equation represents the

extension or contraction magnitude of the spring. The ratio forms the unit vector

from vj to vi, which represents the direction of the spring force.

Force can be calculated as a 3-dimensional vector. We can factor out the scalar

terms in this equation to obtain;

−→
Fij

i = αij(vi − vj) where αij = kij
lij − ‖vi − vj‖
‖vi − vj‖

(7.3)

79



The effective stiffness value, αij depends on the displacements of both vertices.

Mutual effective stiffness values αij and αji are equal to each other. To represent

the entire model with a linear set of equations, we collect the effective stiffness

values in a stiffness matrix. If multiple vertices exert force on a single vertex, the

effective stiffness values are summed.

An illustrative example is shown in Figure 7.3. Without loss of generality this

grid can be considered as 3 dimensional, i.e. perpendicular forces can move the

vertices in an out of the plane. We assume that the vertices that are on the

boundaries of the grid are fixed.

Figure 7.3: A simple wireframe and its deformation under the influence of external
forces.

Both neighbors of vertex v1 are fixed. Since there can be no extension or contrac-

tion on the attached springs, their effective stiffness on v1 are zero. Consequently,

the first row of the stiffness matrix K will be zero. The second vertex, v2 has

only one non static neighbor, v6. The force exerted on v2 by motion of v6 is

calculated with;

−−→
F26

2 = k26(l26 − ‖v2 − v6‖)
v2 − v6

‖v2 − v6‖
(7.4)
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−−→
F26

2 = α26(v2 − v6) where α26 = k26
l26 − ‖v2 − v6‖
‖v2 − v6‖

(7.5)

Consequently, the second row second column and second row sixth column entries

of stiffness matrix K become α26 and −α26, respectively. Note that since vertex

v2 is pinned this force will have to be balanced with an external stabilizing force,

which will appear in the second row of force matrix F (Eq. 7.6).

−→
F2 =

[
0 α26 0 0 0 −α26 0 0 0 ...

]
× v (7.6)

where the resultant force on second vertex is

−→
F2 =

−−→
F26

2 (7.7)

When multiple vertices produce spring forces on a single vertex, we sum their

effective stiffness values. As an example, both v6 and v7 may produce spring

forces on v3, so the resultant force is computed as;

−→
F3 =

−−→
F36

3 +
−−→
F37

3

= α36(v3 − v6) + α37(v3 − v7)

= (α36 + α37)v3 − α36v6 − α37v7

Eq. 7.8 sets the third row third column of the stiffness matrix to α36 + α37. The

third row sixth and seventh columns of the stiffness matrix become −α36 and

−α37, respectively (Eq. 7.8).

−→
F3 =

[
0 0 α36 + α37 0 0 −α36 −α37 0 0 ...

]
× v (7.8)
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Since the relative coordinates are changed, force can be applied to a non-fixed

vertex from its fixed neighbors. For instance, the total force on the sixth vertex

will be computed with the following equation.

−→
F6 =

−−→
F26

6 +
−−→
F36

6 +
−−→
F56

6 +
−−→
F67

6 +
−−→
F69

6 +
−−−→
F6,10

6

= α26(x6 − x2) + α36(x6 − x3) + α56(x6 − x5)

+ α67(x6 − x7) + α69(x6 − x9) + α6,10(x6 − x10)

= (α26 + α36 + α56 + α67 + α69 + α6,10)x6

− α26x2 − α36x3 − α56x5 − α67x7 − α69x9 − α6,10x10

Eq. 7.9 will be the entry of the sixth row of the stiffness matrix.

−→
F6 =

[
0 −α26 −α36 0 −α56 (α26 + α36 + α56 + α67 + α69 + α610) ...

]
× v

(7.9)

We carry out the same analysis on each vertex to put together the stiffness matrix

of the entire wireframe. The stiffness matrix for the system shown in Figure 7.3

consists of 16 rows and columns. Due to space restrictions, we only show the

first six rows and seven columns of the stiffness matrix. Note that in this model,

external forces on boundary vertices are the stabilizing forces that keep the model

pinned in the coordinate system, whereas the external forces on vertices 6, 7, 10

and 11 represent muscles that act on these vertices.
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K =



0 0 0 0 0 0 0 ...

0 α26 0 0 0 −α26 0 ...

0 0 α36 + α37 0 0 −α36 −α37 ...

0 0 0 α47 0 0 −α47 ...

0 0 0 0 α56 −α56 0 ...

0 −α26 −α36 0 −α56 (α26 + α36 + α56 + α67 + α69 + α610) −α67 ...
...


(7.10)

7.1 Least Squares Solution

We calculate the external forces on each vertex using Eq. 7.1. Recall that our

muscle map A is a 3n×m matrix in which each triplet of rows represents the effect

of all muscles on a single vertex in x, y and z axes (Section 3.5). We therefore

reorganize the n× 3 force matrix F to generate a column vector ~f s of x, y and z

components of forces. Thus our anatomy based model for unknown muscle forces

~fm becomes;

A~fm = ~f s (7.11)

This is a linear, over determined system of equations with 3n equations and m

unknowns. We use constrained least squares to solve this system of equations;

~fm = (ATA)−1 ·AT ·~f s , ~fm ≥ 0 (7.12)

The accuracy of least squares method depends on the condition number of the

coefficient matrix. The condition number of our muscle map A differs for each

subject due to customization of the wireframe model. On average, we found the
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condition number of the muscle map to be 4.50, which indicates a reliable system

to be solved with the least squares method.

84



Chapter 8

Experiments and Results

In this study we propose a set of novel, anatomy–based features that represent

the activation levels of facial muscles. We demonstrate the representation power

of facial muscle forces on classification of seven basic facial expressions (anger,

disgust, fear, happiness, sadness, surprise and neutral) that are frequently used

in the literature. We will start this discussion with the facial expression database

used in our experiments (Section 8.1). Next, we will introduce identified muscle

forces in our experiments (Section 8.2). We will conclude this chapter with the

results and discussion of the facial expression recognition experiments (Section

8.3).

8.1 Database Description

We used Cohn-Kanade (CK) database in our classification experiments [35] as it

is the most frequently used database in the literature. This database contains

228 FACS-annotated image sequences of six emotions which are performed by 97

different subjects. Table 8.1 presents the distribution of observations to expression

classes.

In CK each recording ends with the peak (apex) of the expression. Since the rep-

resentative muscle forces are obtained from the last frame of the video session, we
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Table 8.1: Distribution of the input data

# Subjects (Sequences)
Anger 29
Disgust 34
Fear 17
Happy 61
Sad 16
Surprise 71
Total 228

collected the muscle forces that were identified in the last frame of the performed

expression.

8.2 Identified Muscle Forces

Processing of each sequence starts with customization of the wireframe model

to the subject in the first frame (Chapter 4). Vertices that are in the region of

influence of at least one muscle are determined (Section 3.5), projected onto the

image plane and the feature points are initialized. Tracking of feature points using

optical flow (Section 5.1) provides us an estimate of head orientation (Section 5.3)

and relative displacements of wireframe vertices (Chapter 6). These displacements

will be used to calculate the external forces on each vertex, which in turn will be

used for solving muscle forces (Chapter 7).

Figure 8.1 presents a visual demonstration of our results. The strength of activity

for each muscle is coded with line thickness. We observe muscular activity in

the forehead for anger and surprise expressions. Disgust is clearly separated

from other expressions with muscle activity on both sides of the nose. Muscular

activities in fear and happiness are very similar, as are the observed expressions.

Sadness is distinguishable with muscular activity on the chin.

86



Peak Expression Resulting Muscle Forces

Anger

Disgust

Fear

Happy

Sad

Surprise

Figure 8.1: Expressions and extracted muscle forces.
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8.3 Classification of Seven Basic Expressions

Using the activation levels of facial muscles, we planned to classify seven ba-

sic facial expressions. We utilized all available data in the CK database. This

database contains 228 labelled image sequences of 6 discrete emotions. Inclusion

of the neutral expression expands the size of the dataset to 253 observations.

During the experiments we applied leave–one–out technique on all sequences of

our database in a cross validation scheme of 253 rounds. Each cross validation

round provides us the class label of the peak frame in one sequence. The results

of the cross validation rounds are consolidated in a confusion matrix. Classifica-

tion experiments are performed with 4 classifiers; Linear Discriminant Analysis

(LDA), Naive Bayes (NB), k-Nearest Neighbor (kNN) and Support Vector Ma-

chine (SVM). Individual performances of these classifiers will be presented in the

next sections.

8.3.1 Linear Discriminant Analysis (LDA)

In multi–class LDA distribution of observations is modelled with class means

and covariance. LDA projects all the data into a lower dimensional space and

maximizes the ratio of between–class variance to within–class variance. In other

words, LDA maximizes distances between classes while minimizing the distances

within class members. We choose LDA as our first classifier since it is a simple

linear classifier, it prevents over tuning on training observations, and it is suitable

when observations are not equally distributed to classes.

Table 8.2 presents the results obtained by the LDA classifier. In this confusion

matrix rows indicate the actual classes and columns indicate the obtained classes

through classification. The diagonal entries show correctly classified expressions

and off-diagonal entries correspond to misclassification. The lowest classification

performance was obtained for the sadness expression (44 %) where 31 % of ex-

amples were incorrectly classified as anger. Fear expression is frequently confused
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Table 8.2: Classification results for LDA. A: Anger, D: Disgust, F: Fear, H: Happy,
Sa: Sad, Su: Surprise, N: Neutral.

A D F H Sa Su N %
A 18 1 2 0 2 0 6 62
D 1 30 0 0 0 1 2 88
F 0 0 8 5 4 0 0 47
H 2 0 6 53 0 0 0 87
Sa 5 0 1 0 7 0 3 44
Su 1 0 0 0 1 69 0 97
N 0 0 0 0 0 0 25 100

with happiness and sadness. Similarly, 9.8 % of frames that belong to the hap-

piness class were misclassified as fear. We obtained the best performance in the

neutral class (100 %), where we assume that all muscles are idle. The average

performance of LDA classification is found as 75 %.

8.3.2 Naive Bayes (NB)

Naive Bayes classifier is based on Bayes′ rule with independence assumption. Eq.

8.1 presents the Bayes′ rule

P (C|F1, ..., Fn) =
P (C)P (F1, ..., Fn|C)

P (F1, ..., Fn)
(8.1)

where C stands for the class and F1 through Fn stand for feature variables. In

the formulation denominator is constant and the numerator is equivalent to the

joint probability P (F1, ..., Fn|C).

Naive Bayes assumes that each feature Fi is conditionally independent of every

other feature Fj given the class C. Under this assumption the model has the form
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P (F1, ..., Fn|C) = P (F1|F2, ..., Fn, C)P (F2, ..., Fn|C)

P (F1|C)P (F2, ..., Fn|C) (8.2)

P (F1|C)P (F2|C)...P (Fn|C)

In learning phase using training data Naive Bayes generates conditional proba-

bility tables. In testing phase it assigns the test data to the most probable class.

Naive Bayes is suitable for non–uniform distribution of samples among classifiers.

Table 8.3: Classification results for Naive Bayes. A: Anger, D: Disgust, F: Fear,
H: Happy, Sa: Sad, Su: Surprise, N: Neutral.

A D F H Sa Su N %
A 13 3 2 1 6 0 4 45
D 0 31 0 0 0 1 2 91
F 2 0 7 5 3 0 0 41
H 0 0 0 61 0 0 0 100
Sa 1 0 0 0 11 0 4 69
Su 0 0 0 1 0 70 0 99
N 0 0 0 0 0 0 25 100

Table 8.3 presents classification results by the Naive Bayes classifier. We obtained

the lowest classification accuracy in fear (41 %). It was confused with anger,

happiness and sadness. Happy and neutral expressions reached higher accuracy

rates (100 %). Observations that belong to the Anger class was confused with all

other classes except surprise. The overall success rate of the Naive Bayes classifier

is found as 77.9 %.

8.3.3 k-Nearest Neighbor (kNN)

k-Nearest Neighbor is a non-parametric classifier. It assigns testing data to the

class that is most common among its k nearest neighbors. Table 8.4 presents

classification results by the kNN classifier. During the experiments k value is

taken as 3. As in Naive Bayes, we obtained the lowest classification accuracy
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in fear (29 %). Significant percentages of fear examples were misclassified as

happiness (35.3 %) and sadness (23.5 %). We again obtained the highest accuracy

in the neutral expression (100 %). The overall success rate of the kNN classifier

is found as 77.3 %.

Table 8.4: Classification results for kNN. A: Anger, D: Disgust, F: Fear, H: Happy,
Sa: Sad, Su: Surprise, N: Neutral.

A D F H Sa Su N %
A 17 2 1 0 8 1 0 59
D 1 32 0 0 0 1 0 94
F 1 0 5 6 4 1 0 29
H 0 0 2 59 0 0 0 97
Sa 3 0 1 0 10 0 2 63
Su 0 0 0 1 0 70 0 99
N 0 0 0 0 0 0 25 100

8.3.4 Multi–class Support Vector Machine (Multi–class SVM)

Support vector machine finds the optimal hyperplane that separates two classes

with the maximum margin. SVM is a binary classifier, but adaptable to multi–

class classification problem. We implemented multi–class SVM using one–vs–one

(OVO–SVM) strategy [130], training a SVM classifier for each pairwise combina-

tions of classes. For k classes, OVO-SVM approach generates (k(k−1)/2) binary

classifiers. Given a set of muscle forces, each binary SVM classifier returns a

label of decided class. We feed muscle forces extracted from peak frame of an

expression sequence independently to these classifiers. The class that was voted

most frequently among these classifiers, in other words the mode of the returned

class labels, is decided as the class of the frame.

Table 8.5 presents our results for the multi–class SVM classifier. As in LDA,

lowest recognition rate is obtained in sadness expression (75 %). It is most of

the times confused with anger and fear expressions. Significant percentage of fear

examples were misclassified as happy (23.5 %), conversely 6.5 % of the happy

examples were misclassified as fear. The overall classification performance of

multi–class SVM is found as 87.1 %.
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Table 8.5: Classification results for multi–class SVM. A: Anger, D: Disgust, F:
Fear, H: Happy, Sa: Sad, Su: Surprise, N: Neutral.

A D F H Sa Su N %
A 23 2 0 0 4 0 0 79
D 2 31 0 0 0 1 0 91
F 0 0 13 4 0 0 0 77
H 1 2 4 54 0 0 0 89
Sa 2 0 2 0 12 0 0 75
Su 0 0 1 0 0 70 0 99
N 0 0 0 0 0 0 25 100

8.4 Discussion

Experiments that are introduced in this section are performed to facilitate com-

parison with the state of the art studies. As aforementioned in Chapter 2, it

is necessary to prepare same experimental set up with other studies for passing

judgement on the most successful approach. In the rest of this section we will

present a comparative evaluation of our approach with other state–of–the–art

algorithms.

Table 8.6 presents facial expression recognition results of seven basic emotions

(anger, disgust, fear, happiness, sadness, surprise and neutral). In both of these

studies CK database is utilized and leave–one–out testing strategy is followed.

These results indicate that we have comparable results with Kotsia et al. [95]

and Bartlett et al. [14].

Kotsia et al. classified seven emotions with texture–based (74.3 %) and shape–

based features (84.8 %). They improved their classification accuracy by combining

features (92.3 %). Compared to our muscle–based features (geometry-based), the

features used in this study are more complex (texture-based) whereas their overall

performance is lower (74.3 %). The classification performance of muscle–based

features is higher than both texture and shape–based features.

Bartlett et al. demonstrated recognition performances of different classification

algorithms. As can be seen from the table, muscle–based features and gabor
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Table 8.6: Comparison of recent studies in seven class recognition with leave–
one–out strategy. Explanation of the abbreviation: n: neutral class.

Study Features Methodology Success Emotion Database
Current study Muscle SVM 87.1 % 7n CK

(to appear) forces
Adaboost 90.1 %

Bartlett et al. Gabor SVM 88.0 % 7n CK
[14] features AdaSVM 93.3 %

LDAPCA 80.7 %
Texture DNMF 74.3 %

Kotsia et al. Shape SVM 84.8 % 7n CK
[95] Combined MRBF NN 92.3 %

features showed similar classification performances by multi–class SVM classifier.

However Bartlett et al. increased the classification accuracy to 93.3 % by selecting

a subset of gabor features using AdaBoost and classifying them by SVM.

In the second experiment we changed our experimental set up. Instead of ex-

tracting muscle forces in peak frames only, we collected the muscle forces that

were identified in the last 5 frames of the performed expression. We split the data

using 10-fold cross validation method and repeated our experiments with kNN

classifiers. We partitioned the data into 10 equal sized sets. 9 of them are used for

training the model and the remaining set is used for estimating the performance

of the trained model (testing). Experiments are repeated 10 times and each time

a randomly selected set is held out for testing. Note that in this experiment,

distinct observations from the same expression of a specific subject may appear

both in training and testing data sets.

Table 8.7 demonstrates our results for the kNN classifier. We took k value as 3

for making an accurate comparison with the study of Sebe et al. [94]. According

to the results, kNN classifier performed best on the neutral expression (100 %).

Lowest recognition rate is obtained in anger expression (90 %). Few examples of

the anger expression were confused with all other classes except fear. The overall

classification performance in classification with kNN is found as 96 %.
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Table 8.7: kNN classification results on seven class recognition with random cross–
validation strategy. A: Anger, D: Disgust, F: Fear, H: Happy, Sa: Sad, Su:
Surprise, N: Neutral.

A D F H Sa Su N %
A 130 4 0 2 4 4 1 90
D 4 164 0 0 0 2 0 97
F 0 0 80 2 1 2 0 94
H 0 0 2 302 0 1 0 99
Sa 3 0 1 0 76 0 0 95
Su 3 0 1 1 1 347 2 98
N 0 0 0 0 0 0 125 100

Table 8.8 presents a comparison of our approach with the study of Sebe et al. In

both studies CK database and 10-fold cross validation testing strategy is utilized.

As can be seen from the table muscle–based features achieve higher accuracy rates

than Sebe et al.

Table 8.8: Comparison of recent studies in seven class recognition with random
cross–validation strategy. Explanation of the abbreviation: n: neutral class.

Study Features Methodology Success Emotion Database
Current study Muscle kNN 96.0 % 7n CK

(to appear) forces
Sebe et al. Bezier volume kNN 91.8 % 7n CK

[94] deformation

In our third experiment we extended our data set with the CK+ [36] database.

This database contains 327 FACS-annotated image sequences of seven emotions

which are performed by 118 different subjects. We collected the muscle forces that

were identified in the last frame of the performed expression. We applied leave–

one–out testing strategy and classified seven basic expressions (anger, disgust,

fear, happiness, sadness, surprise and neutral) with multi–class SVM classifier.

Table 8.9 demonstrates our results for multi–class SVM classifier. Compared to

CK experiment, disgust and sadness results are higher. Lowest recognition rate is

obtained in fear expression (68 %). It was confused with all other classes except
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Table 8.9: Multi–class SVM classification results in seven class recognition prob-
lem on the CK+ database. A: Anger, D: Disgust, F: Fear, H: Happy, Sa: Sad,
Su: Surprise, N: Neutral.

A D F H Sa Su N %
A 35 2 2 1 5 0 0 78
D 2 56 1 0 0 0 0 95
F 2 1 17 2 3 0 0 68
H 2 1 4 61 0 1 0 88
Sa 3 0 2 0 23 0 0 82
Su 1 0 3 0 0 79 0 95
N 0 0 0 0 0 0 25 100

surprise and neutral. Significant percentage of anger examples were misclassified

as sadness expression (11.1 %), conversely 10.7 % of the sadness examples were

misclassified as anger. The overall classification performance is found as 86.6 %.

In the literature limited number of studies utilize CK+ database. One such study

is reported by Lucey et al. [36], in which they classified seven basic emotions

(anger, disgust, fear, happiness, sadness, surprise and contempt). For comparing

the performances of muscle based features we included the Contempt expression

in our dataset and applied leave–one–out cross validation approach.

Table 8.10: Multi–class SVM classification results in seven class recognition prob-
lem on the CK+ database. A: Anger, D: Disgust, F: Fear, H: Happy, Sa: Sad,
Su: Surprise, C: Contempt.

A D F H Sa Su C %
A 32 1 3 0 5 0 4 71
D 2 54 1 0 0 0 2 92
F 3 1 15 2 3 0 1 60
H 2 1 4 59 0 1 2 86
Sa 3 0 2 0 23 0 0 82
Su 1 0 3 0 0 78 1 94
C 5 2 0 2 1 0 8 44

Table 8.10 presents our results on CK+ database and including contempt using

the multi–class SVM classifier. The multi–class SVM classifier performed best on

the surprise expression (94 %). Lowest recognition rate is obtained in contempt
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expression (44 %). Specifically, 27.7 % of the contempt examples were misclassi-

fied as anger, and 8.8 % of anger examples were misclassified as contempt. The

overall classification performance of multi–class SVM is found as 75.5 %.

Table 8.11 presents a comparative evaluation of our approach with the study

of Lucey et al. They classified seven emotions with shape–based (50 %) and

appearance–based features (66.7 %). They improved their classification accuracy

by combining features (83.3 %). Considering the individual performances of fea-

tures, muscle–based features achieve better performances than shape–based and

appearance–based features alone. However in the case of combined features they

obtained significantly better results than us.

Table 8.11: Comparison of recent studies in seven class recognition problem on
the CK+ database.

Study Features Methodology Success Emotion Database
Current study Muscle SVM 75.5 % 7 CK+

(to appear) forces
Shape SVM 50.0 %

Lucey et al. Appearance SVM 66.7 % 7 CK+
[36] Combined SVM 83.3 %

Researchers who follow leave–one–out strategy did not report significantly higher

success rates than ours on the CK+ dataset. The biggest challenges on this

dataset are to discriminate between Anger vs. Sad, Anger vs. Contempt and

Happy vs. Fear classes. We can deduce the reasons for these confusions by

observing the misclassified examples. Figure 8.2 presents samples of fear and

happiness expressions in the CK+ database. In this image, the frames were an-

notated as Fear, Fear, Happy and Fear, in the same order. Note that the first

three frames are hard to distinguish even for a human observer. They are very

similar in appearance, especially around the mouth corners. The fear expres-

sion of the third subject is significantly different than the others, which is easily

distinguishable from her happiness expression.
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Figure 8.2: Similarity between fear and happiness in the CK+ database. Frames:
Fear–Fear–Happy–Fear.

Figure 8.3 presents examples of anger and sadness expressions from the CK+

database. The first two images are annotated as Anger and the last one is anno-

tated as Sad by FACS coders. Note that these expressions are also challenging

examples for human observers.

Figure 8.3: Similarity between anger and sadness in the CK+ database. Frames:
Anger–Anger–Sad.

Classification performance on seven basic facial expressions (anger, disgust, fear,

happiness, sadness, surprise and neutral) with muscle forces as features has been

in the range 75-87 %. This performance is close to the human ceiling of recog-

nition [86, 131] and comparable to the results of the state–of–the–art algorithms

that use geometric, appearance or FACS based features in classification.

A recent study by Goeleven et al. [132] provides a good benchmark for validating

the performance of automated expression recognition algorithms. This study

reports the recognition accuracy of human subjects on basic expressions. They

used Karolinska Directed Emotional Faces database, a very similar database to

CK+ that includes all expressions other than Contempt. The recognition rates

of humans and our algorithm are presented in Table 8.12. These figures indicate
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that use of muscle based features with SVM classifier is at least as successful as

humans in facial expression recognition.

Table 8.12: Performance comparison for human observers [132] and the proposed
method.

A D F H Sa Su N
Human 79 % 72 % 43 % 93 % 77 % 77 % 63 %

Muscle–based 79 % 91 % 77 % 89 % 75 % 99 % 100 %
features with SVM

As a final remark our results indicate that features based on facial anatomy and

muscle activation levels match up with state–of–the–art algorithmic approaches

and human observers.
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Conclusion

Action Units of FACS and geometric features derived from them have been used

frequently in facial expression recognition research. Many FACS AUs correspond

to a compound effect of multiple facial muscles. This characteristic of FACS AUs

makes identification and scoring of a facial action an intricate task both for hu-

man experts and computers. Specifically, (1) it is hard to identify subtle facial

activities, (2) AUs restrict the analysis to psychologically known mechanisms of

emotions, (3) it is hard to identify the individual action units in compound ex-

pressions and (4) it is hard to identify feature points when interpersonal variations

are present.

In this thesis we propose new features that are based on muscle forces composing

all facial expressions under the constraints of facial anatomy. We aim to determine

the muscle activations through a mapping from displacement of facial features to

activation levels of facial muscles. Our aim in this study is to be able to auto-

matically recognize six universal facial expressions with same or better accuracy

of best practices in the literature. Our contribution is a set of new features that

are based on the facial anatomy.

Our proposed feature extraction system consists of; (1) semi–automatic cus-

tomization of the face model to the subject, (2) identification and tracking of

facial features that reside in the region of influence of a muscle, (3) estimation

of head orientation and alignment of the face model with the observed face, (4)

estimation of relative displacements of vertices that produce facial expressions,

and (5) solving vertex displacements to obtain muscle forces.

The proposed feature extraction system obtains its strength from customization

of a generic anatomical model to subject’s face and tracking of multiple points on
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muscular regions of influence. The generic face model embeds prior knowledge in

the anatomy of the human face and customization enables us to precisely locate

muscles on a given face.

In this study, we model human faces with a generic wireframe (HIGEM), which

consists of 612 vertices and 1,128 faces. We define 18 major muscles (features)

based on the anatomy of the human face. We model muscles as linear fibers and

compute muscles regions of influence contraction of a muscle affects all vertices

of the wireframe that are within its region of influence.

In customization stage we focus on registering a 3D generic wireframe model with

an input face image. In this stage our input is a set of facial landmarks in the 2D

video frame. The problem of model customization is to find a mapping from 2D

inputs to 3D space. We estimate the 3D coordinates of the facial landmarks on

the camera view plane using ray tracing method.

We propose a semi-automatic wireframe fitting algorithm for customizing a high-

polygon wireframe model. In the first step we manually mark 32 facial landmarks

on both of the face image and wireframe model. We apply an initial alignment

to the wireframe model. Next, we utilize ray tracing method for estimating the

3D coordinates of the facial landmarks. Finally, we calculate the new positions

of the vertices, that are not manually labelled as landmark, with the proposed

nearest neighbors weighted average customization algorithm. We also provide a

comparative analysis of NNWA algorithm with Procrustes analysis and Active

Shape Model. We demonstrate that the performance of the proposed algorithm

is comparable with state of the art algorithms in face modelling such as ASM.

Feature points that are tracked on video frame are used to determine 3D rigid

body motion of the head and deformations on wireframe model. We choose ver-

tices that exist in the muscle influence regions as feature points. However in

tracking phase feature points may drift away from their correct positions. This

drifting problem will affect the accuracy of the alignment and deformation cal-

culations. For identifying and solving the drifting problem we propose a cross
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product based method and examined state (topology) changes of each feature

point. All feature points that undergo a state change are marked as untrusted.

The remaining feature points and their corresponding wireframe vertices are uti-

lized for estimating the orientation of the head. We implement a greedy search

algorithm to find a solution for 3D transformation of the model to match with

the observation.

The deviations between the trusted tracking points and the projections of corre-

sponding vertices in the aligned face model serve as indicators of facial expressions.

We apply ray tracing to extract the displacements of vertices due to facial expres-

sions. In the customization stage we assumed that wireframe vertices have fixed

depths. However, it is not possible to utilize this assumption in facial deformation

estimation stage. We identify plane of motion for each of the trusted vertex and

estimate its new coordinates through line–plane intersection. We also recompute

coordinates of the untrusted vertices by taking the average of its neighbors.

We model human face as a 3D surface that is composed of polygons. Each face on

the wireframe model is defined by three vertices. The edges between neighboring

vertices are modelled with springs. External forces (muscle forces) on the vertices

are computed with Hooke′s law. We developed the stiffness matrix of the entire

face model and solved muscle activations using constrained least squares method.

We demonstrate the representative power of the proposed features on four clas-

sifiers; LDA, NB, kNN and SVM. The best performance on the classification

problem of seven expressions including neutral was 87.1 %, obtained by use of

SVM. The results we attained in this study are close to the human recognition

ceiling of 87-91.7 % and comparable with the state–of–the–art algorithms in the

literature. Up to 10 % increase in performance with the SVM classifier indicates

a complex decision boundary between expression classes as Sebe et al. [94] noted.

In this dissertation we proposed and experimentally showed that muscle activa-

tions based features are good discriminators for facial expression recognition.
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cal Engineering, Linköping University, Tech. Rep., 2001.

[102] F. Parke, “Parameterized models for facial animation,” Computer Graphics

and Applications, IEEE, vol. 2, no. 9, pp. 61–68, 1982.

[103] K. Waters, “A muscle model for animation three-dimensional facial expres-

sion,” in Proceedings of the 14th annual conference on Computer graphics

and interactive techniques, ser. SIGGRAPH ’87, 1987, pp. 17–24.

[104] D. Terzopoulos and K. Waters, “Physically-based facial modelling, analysis,

and animation,” The Journal of Visualization and Computer Animation,

pp. 73–80, 1990.

[105] D. Terzopoulos and K. Waters, “Analysis and synthesis of facial image

sequences using physical and anatomical models,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 15, pp. 569–579, 1993.

[106] F. Erol, “Modeling and animating personalized faces,” Master’s thesis,

Bilkent University, 2002.

[107] I. Essa and A. Pentland, “A vision system for observing and extracting fa-

cial action parameters.” Massachusetts Institute of Technology, Perceptual

Computing Section, Tech. Rep., 1994.

[108] S. M. Platt and N. I. Badler, “Animating facial expressions,” in Proceed-

ings of the 8th annual conference on Computer graphics and interactive

techniques, ser. SIGGRAPH ’81, 1981, pp. 245–252.

114



[109] K.Waters and D. Terzopoulos, “Modeling and animating faces using

scanned data,” The Journal of Visualization and Computer Animation, pp.

123–128, 1991.

[110] S. Pieper, J. Rosen, and D. Zeltzer, “Interactive graphics for plastic surgery:

a task-level analysis and implementation,” in Proceedings of the 1992 sym-

posium on Interactive 3D graphics, 1992, pp. 127–134.

[111] G. Breton, C. Bouville, and D. Pelé, “Faceengine a 3d facial animation
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