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A DYNAMIC APPROACH FOR TRAVELING

SALESMAN PROBLEM USING GENETIC

ALGORITHMS

Abstract

TSP is a challenging and popular problem from combinatorial optimization. TSP

is often tackled with well known heuristic genetic algorithm. Due to the nature

of the TSP, traditional GA’s stay poor when competing with other approaches.

Traditional crossover and mutation operators do not satisfy TSP needs. These

operators mostly end up with illegal tours. For this reason, researchers proposed

many adaptive elements and cooperation of other algorithms. When the logic

of GA is combined with these elements, high quality solutions both in time and

path length are obtained.

In this research, we analyze successful elements from the literature to use them

efficiently in a novel algorithm. We also propose a new selection method which

works well with our operators. We extend the abilities of greedy crossover and

untwist local operator to utilize in our hybrid approach. Multiple populations

collaborate together to achieve better solutions. According to the experimen-

tal results, proposed novel elements outperforms their counterparts in the TSP

literature. Multiple population approach provides better quality solutions.
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GEZGİN POSTACI PROBLEMİNE GENETİK

ALGORİTMA KULLANARAK HİBRİD YAKLAŞIM

Özet

Gezgin postacı problemi, kombinasyonel optimizasyon sınıfından zorlu ve popüler

bir problemdir. Bu problem sıklıkla genetik algoritma ile çözümlenir. Bu prob-

lemin doğası gereği, geleneksel genetik algoritmalar başka yaklaşımlar ile karşılaştı-

rıldığında zayıf kalır. Geleneksel çiftleşme ve mutasyon yöntemleri bu problemin

çözümü için yetersiz kalmaktadır. Bu operatörlerin kullanımı çoğunlukla uygun

olmayan turlarla sonlanır. Bu sebepten dolayı, araştırmacılar bu probleme uygun

olarak genetik algoritma ile kombine çalışacak elemanlar önermişler ve sonucunda

tur kalitesi ve zaman açısından kaliteli çözümler çıkarmışlardır.

Bu araştırmada, literatürden başarılı elemanları analiz edip kendi önerdiğimiz al-

goritmamızda efektif olarak kullanmak istedik. Ayrıca, bizim operatörlerimizle iyi

çalışan yeni bir seçim yöntemi önerdik. Bizim hibrid yaklaşımımızda kullanmak

üzere, greedy çiftleşme ve untwist yerel operatörlerinin yetkinliklerini genişlettik.

Çoklu populasyonlar birlikte çalışarak daha iyi sonuçlar vermektedir. Deneysel

sonuçlarımıza göre, önerdiğimiz yeni elemanlar literatürdeki muadillerini geride

bırakmaktadır.
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Chapter 1

Introduction

TSP, is one of the most important problems in combinatorial optimization. It

was first formulated by the mathematician Karl Menger in 1930 and belongs to

the set of NP-Hard problems. Given a list of N cities, a salesman tries to visit

all of the cities only once, where he/she minimizes the path length. The running

time of the problem grows exponentially with respect to the number of cities,

i.e. the number of possible solutions is (N - 1)!. To overcome the issue, lots of

research have been presented but no one is able to state an algorithm that finds

the optimal route in polynomial time.

Figure 1.1: A visualization of symmetric TSP. (a) a twisted bad route (b) the
optimum route

Considerable number of variations exists for the TSP. Some of these are; asym-

metric TSP, multiple TSP, clustered TSP etc. In symmetric TSP (STSP) each

city pair have the same distance for both directions. We represent an example of

STSP in Figure 1.1. Figure 1.1 (a) and (b) show a non-optimal solution and the
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optimal solution to the example STSP respectively. Asymmetric TSP is similar to

the symmetric TSP where the distance between two cities is not equal or no path

exists for one direction. In multiple TSP, salesmen collaborate to achieve a target

solution. In clustered TSP, there are clusters composed of adjacent cities. These

clusters behave as a single city to decrease the number of cities and therefore

improve running time. We focus on STSP in this thesis.

In history, two types of algorithms are designed for this challenge; exact algo-

rithms and heuristic algorithms. Exact algorithms apply brute force search tech-

niques and try to minimize the search space with specific constraints. They may

find the optimal tour but the time complexity is not satisfactory especially when

the number of cities is large, i.e. N > 1000. Linear programming is an example

of exact algorithms. Concorde TSP Solver is arguably the best program [1] to

solve TSP using linear programming concepts.

Heuristic algorithms traverse the search space randomly and try to approach the

global optimum. For these approaches, we are less likely to reach the global opti-

mum as exact algorithms do. On the other hand, time complexities of the heuristic

algorithms are far better than the exact algorithms. Ant colony optimization and

simulated annealing algorithms are well-known examples of heuristic approaches.

They can compete with genetic algorithms [2] [3] [4] and can also perform as

internal GA elements.

GA’s are one of the optimization algorithms. A typical GA has several steps. We

first initialize an individual (chromosome) array, i.e. population. Then we iterate

on this population until a satisfactory solution is found. The unit of iteration is

known as a generation, and an iteration consists of applying operators consistent

with the nature of the GA. The basic operators are crossover and mutation.

Crossover operator exchanges information between two individuals known as par-

ents. We select the parents with a selection method and form offspring(s) from

the chromosomes of parents. The selection method is based on a fitness value

which indicates the wellness of an individual.
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Mutation operator is often executed on a single individual. It is inspired by

the nature to diverse the chromosomes of the population. This operator tries to

prevent the algorithm from getting stuck at local optima. At each generation,

operators try to improve the population to reach a near-optimal solution.

In TSP, GA’s are suffering from stucking at local optima because of the ordering

issues in the routing structure. So, using a pure GA for TSP is not a strong idea.

Classical crossover operators are not suitable for TSP. In the literature, many

authors have proposed useful crossover designs to meet TSP features. Some

handy mutation operators are also proposed in the literature to solve TSP with

GA. Other elements that works well with GA on TSP are local operators, hybrid

approaches, artificial chromosome generator, etc. The designer should be aware

of effective cooperation between crossover, mutation, and local operators.

In this thesis, we try to solve STSP with a specialized GA approach. We pro-

pose greedy k-nn crossover as the crossover model and a new selection method

named greedy selection. We compare these novel elements with their counter-

parts from the TSP literature. In addition, we analyze how multiple populations

improve solution quality with smart immigration. According to experimental re-

sults, multiple population design outperforms single population in terms of tour

quality.

This thesis is organized as follows: We give the literature review on GA’s in

Chapter 2. We explain our proposed approach in detail in Chapter 3. We give

experimental results in Chapter 4 and conclude in Chapter 5.
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Chapter 2

Literature Review

There is no wonder why TSP is so challenging. Being in the problem set of

NP-Hard and its simple formulation, so many people are fascinated to propose

a solution. Due to its exponential running time, researchers tend to solve this

problem via heuristic approaches rather than exact algorithms. According to its

simple structure and tweakable form, GA’s can stand as a role model for all other

heuristic optimizations in TSP. For this reason, many authors have proposed an

hybrid structure of GA to solve TSP. We present this hybrid model in Figure 2.1.

We first initialize the population. According to the parameters of the approach,

we apply selected elements to get a new population. If the best individual of

the new population satisfies a pregiven criteria, we stop and return to the best

solution. Otherwise, we continue iteration by applying selected elements to the

new population.

Section 2.1 explains different representations of a chromosome. Section 2.2 de-

scribes selection methods. Sections 2.3 and 2.4 cover fundamental genetic opera-

tors crossover and mutation for TSP respectively. Local operators are described

in Section 2.5.
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Figure 2.1: Hybrid GA Model

2.1 Representations

In the literature, researchers have proposed several alternatives to represent chro-

mosomes in GA for TSP. Well known representations are binary representation,

path representation, adjacency representation, ordinal representation, and matrix

representation.

In binary representation, we encode N cities using dlog2Ne bits. The tour given

in Figure 1.1 (a) is represented as:

( 000︸︷︷︸
0

100︸︷︷︸
4

101︸︷︷︸
5

010︸︷︷︸
2

111︸︷︷︸
7

011︸︷︷︸
3

001︸︷︷︸
1

110︸︷︷︸
6

)

Path representation is the most used representation. We basicly represent the

tour in the Figure 1.1 (b) as follows:

(1, 2, 3, 4, 5, 6, 7, 8)

Path representation is a base representation to solve TSP using GA analogy. We

assume that all paths should be cyclic to provide a complete tour. Our proposed

algorithm uses path representation.

There exist also other representations; such as adjacency, ordinal and matrix rep-

resentations. But, these representations are not used anymore for GA approaches.
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2.2 Selection

Selection is very critical in GA because the process will be completely random

without it. The element is inspired by the natural selection phenomenon of the

evolution. Crossover designs work better with specific selection methods to im-

prove the population quality. Such selection methods are; roulette wheel selection

(RWS) and tournament selection (TS).

RWS algorithm 2.2 is based on the idea that, the individual’s selection probability

is proportional with its fitness score like in the natural selection. In RWS, all

individuals are sorted according to their fitness scores (Lines 1-2). We calculate

an array of sum of fitnesses for the population (Line 3). sumOfFitnesses[i]

stores the sum of fitnesses of all individuals indexes through 0 to i. Then, we

generate a random value between 0 and last element of the array which is sum

of all fitnesses of the population (Line 4). To select an index, we iterate through

the array and look for the first index where the random value is larger than the

sum of fitnesses until that index (Lines 5-9).

Algorithm 1 Roulette Wheel Selection

1: population.evaluateFitnesses()
2: population.sortIndividuals()
3: sumOfFitnesses = population.generateSumOfFitnesses()
4: value = random(0, sumOfFitnesses[lastElement])
5: for i = 0 to sumOfFitnesses.length do
6: if value < sumOfFitnesses[i] then
7: return i
8: end if
9: end for

In TS algorithm 2, we first evaluate and sort all the chromosomes in a population

(Lines 1-2). Then, we simply generate a random number to pick that amount

of individuals from the population (Lines 3-4). Then we select the fittest among

them (Lines 5-11). Setting aNumber as 1 will result in 100% random selection.
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Algorithm 2 Tournament Selection

1: population.evaluateFitnesses()
2: population.sortIndividuals()
3: shortest = ∞
4: aNumber = random(0, N)
5: for i = 0 to aNumber do
6: index = random(0, N)
7: if length(tour[index]) < shortest then
8: shortest = length(tour[index])
9: selectedIndex = index
10: end if
11: end for

Table 2.1: Well-known crossover operators in the literature

Operator Name Paper
Partially Mapped Crossover PMX [5]
Order Crossover OX [5]
Cycle Crossover CX [6]
Distance Preserving Crossover DPX [7], [8]
Alternating Positions Crossover APX [5]
Greedy Crossover GX [9]
Complete Subtour Exchange Crossover CSX [10], [11]
Sorted Match Crossover SMX [5]

2.3 Crossover

The most important operator of GA is crossover. Search space is explored globally

with this operator. Without crossover, GA wouldn’t be much of a global search

algorithm. A good crossover implementation for a TSP application should have

some characteristics.

For example, one needs to preserve good edges of chromosomes through gen-

erations and introduce new edges that leads offspring to improve. While some

crossover operators provides fast convergence to global optimum, there are also

some other crossover ideas focusing on clever swapping which improves diversity

level. Table 2.1 shows the well-known crossover operators in the TSP literature.
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2.3.1 Partially Mapped Crossover

Partially Mapped Crossover (PMX) is one of the most studied operators in the

literature. It exchanges information between two parents with swapping mecha-

nism.

Algorithm 3 Partially Mapped Crossover

1: cutPoint1 = random(0, N)
2: cutPoint2 = random(0, N)
3: subtour1 = parent1.getSubtour(cutPoint1, cutPoint2)
4: subtour2 = parent2.getSubtour(cutPoint1, cutPoint2)
5: offspring1.setSubtour(subtour2, cutPoint1, cutPoint2)
6: offspring2.setSubtour(subtour1, cutPoint1, cutPoint2)
7: for i = 0 to N do
8: if i <= cutPoint1 or i >= cutPoint2 then
9: if parent1[i].memberOf(subtour2) then
10: offspring1[i] = getMapping(subtour2[i])
11: else
12: offspring1[i] = parent1[i]
13: end if
14: if parent2[i].memberOf(subtour1) then
15: offspring2[i] = getMapping(subtour1[i])
16: else
17: offspring2[i] = parent2[i]
18: end if
19: end if
20: end for

In partially mapped crossover 3, we select two cutting points from parents (Lines

1-2). We get subtours between cutpoints of the parents (Lines 3-4). Mapping

function is derived from subtours, i.e. subtour1[i] ⇔ subtour2[i]. We set these

subtours as subtour of the offsprings (Lines 5-6). Then, we start copying cities

from parent i to offspring i excluding the subtour area (Line 7). In the case that

a city exists in the subtour area, we use the mapping function to add the city in

the offspring (Lines 8-19).

parent 1: (1, 6, [4, 5, 2], 3, 7, 8) parent 2: (4, 2, [3, 6, 1], 5, 8, 7)

offspring 1: (2, 5, [3, 6, 1], 4, 7, 8) offspring 2: (3, 1, [4, 5, 2], 6, 8, 7)
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We select the subtours as [4, 5, 2] and [3, 6, 1] from parent1 and parent2 re-

spectively. And we copy cities from parent i to offspring i, where i starts from

first index to N excluding subtour area. If we encounter a city exists, we use the

mapping function to form a legal tour.

2.3.2 Cycle Crossover

Cycle Crossover is one of the most studied crossovers in the TSP literature.

Algorithm 4 Cycle Crossover

1: currParent = parent1
2: city = currParent.getFirstCity()
3: offspring.add(city)
4: while offspring not complete do
5: cityIndex = city.getIndex()
6: currParent = switchParent()
7: city = currParent.getCity(cityIndex)
8: offspring.add(city)
9: end while

In cycle crossover 4, we set current parent to parent1 (Line 1). We get the first

city of parent1 and add it to the offspring (Lines 2-3). While the offspring is

not complete (Line 4), we take the city index of the last city that is inserted into

the offspring (Line 5). Then, we switch parent2 to get the city which is located

in that city index (Line 6). As the iteration continues, we add that city to the

offspring (Line 8).

parent 1: (1, 6, 4, 5, 2, 3) parent 2: (4, 2, 3, 6, 1, 5)

offspring: (1, 2, 6, 5, 3, 4)

We take the first city of parent1 which is city 1. Then, we look for the index of

city 1 in parent2 which is city 2. We add city 2 to the offspring. After, we look

for the index of city 2 in parent1 which is city 6. We add city 6 to the offspring.

And the process continues with this analogy.
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2.3.3 Order Crossover

Order Crossover (OX) is one of the most studied crossovers in the literature. This

element outperforms its competitors PMX and CX in terms of performance.

Algorithm 5 Order Crossover

1: cutPoint1 = random(0, N)
2: cutPoint2 = random(0, N)
3: subtour1 = tour1.getSubtour(cutPoint2, cutPoint1)
4: subtour2 = tour2.getSubtour(cutPoint2, cutPoint1)
5: tour1.orderSubtourBy(subtour1, tour2)
6: tour2.orderSubtourBy(subtour2, tour1)

In order crossover 5, since TSP paths are cyclic, we simply take subtours from

cutPoint2 to cutPoint1 (Lines 1-4). Next, we produce subtour of offspring1

(offspring2) by sorting the subtour of parent1 (parent2) according to their

order of appearances in parent2 (parent1). The subtour always starts with the

smallest indexed city (Lines 5-6).

parent 1: (1, 6], 4, 5, 2, [3, 7, 8) parent 2: (4, 2], 3, 6, 1, [5, 8, 7)

offspring 1: (3, 6], 4, 5, 2, [1, 8, 7) offspring 2: (4, 5], 3, 6, 1, [2, 7, 8)

We have 2 subtours [3, 7, 8, 1, 6] and [5, 8, 7, 4, 2] from parent1 and parent2

respectively. We sort these subtours by the order of appearances in the other

parent starting from the smallest indexed city.

2.3.4 Distance Preserving Crossover

In distance preserving crossover 6, we extract all common subtours from the

parents (Line 1). Next we choose a random subtour and put it in the offspring

(Lines 2-3). After that, we form the offspring by merging the common subtours.

We do not prefer a common subtour to merge with the offspring if an edge of that

subtour already exists in one of the parents (Lines 5-12). We remove a subtour

if it is used (Lines 4, 9).
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Algorithm 6 Distance Preserving Crossover

1: subtours = Tour.getCommonSubtours(tour1, tour2)
2: aSubtour = random(0, subtours.length)
3: offspring.add(aSubtour)
4: subtours.remove(aSubtour)
5: while !subtour.isEmpty() do
6: aSubtour = random(0, subtours.length)
7: if !aSubtour.edgeOf() then
8: offspring.add(aSubtour)
9: subtours.remove(aSubtour)
10: end if
11: end while

parent 1: (1, 6, 4, 5, 7, 2, 3) parent 2: (4, 2, 3, 7, 6, 1, 5)

subtours: ([1, 6], [4, 5], [7], [2, 3])

offspring: ([4, 5], [3, 2], [6, 1], [7])

We select a random subroute [4, 5] and put it into the offspring. Then, we form

the offspring from the other subtours with the instructions stated above.

2.3.5 Alternating Positions Crossover

In this crossover model we pick cities from parent1 and parent2 one by one

excluding the one’s that exist in the offspring.

Algorithm 7 Alternating Positions Crossover

1: currParent = parent1
2: while offspring not complete do
3: city = currParent.getNextCity()
4: if !memberOf(offspring, city) then
5: offspring.add(city)
6: end if
7: currParent = switchParents()
8: end while

In Alternating Positions Crossover 7, we set current parent to parent1 (Line 1).

While the offspring is not yet complete (Line 2), we get the next available city

from the current parent (Line 3). We add the city in the offspring as long as
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it is not a member of the offspring (Lines 4-6). At the end of iteration, current

parent is switched to the other one (Line 7).

parent 1: (1, 6, 4, 5, 2, 3) parent 2: (4, 2, 3, 6, 1, 5)

offspring: (1, 4, 6, 2, 3, 5)

Starting from the smallest index, we get the cities to form the offspring from

parent1 and parent2 respectively. If a city exists in the offspring we proceed

to the next available city.

2.3.6 Greedy Crossover

GX targets using edge values thus leading fast convergence. GX tries to exchange

information between parents with the logic of choosing closer cities while forming

the offspring.

In greedy crossover 8, we select the first city of parent1 and add it to the offspring

(Lines 1-2). Then, we iterate until offspring represents a complete tour (Line

3). At each iteration, we determine the next city of the paths in both parents

(Lines 4-5). If both of them do not exist in the offspring, we compare them

with respect to their edge length (Line 6). The shorter edge will be added to the

offspring and current city is updated for the next iteration (Lines 7-13). If the

next city of parent1 is available only, we add it to the offspring (Lines 14-16).

We do the same for parent2 (Lines 17-19). If next cities of both parents exist in

the offspring, we simple get a suitable city that is not exists in the offspring

and update the current city. (Lines 20-24).

parent 1: (1, 6, 4, 5, 2, 3) parent 2: (4, 2, 3, 6, 1, 5)

offspring: (1, 5, 2, 3, 6, 4)

For this example, we use the distance matrix 3.1. We start from the first city of

parent1 which is city 1. Candidate edges are: [1, 6] and [1, 5]. D(1, 5) < D(1,

12



Algorithm 8 Greedy Crossover

1: city = parent1.getFirstCity()
2: offspring.add = city
3: while offspring not complete do
4: next1 = parent1.getCity(city).next()
5: next2 = parent2.getCity(city).next()
6: if !memberOf(offspring, next1) AND !memberOf(offspring, next2) then
7: if next1 < next2 then
8: offspring.add(next1)
9: city = next1
10: else
11: offspring.add(next2)
12: city = next2
13: end if
14: else if !memberOf(offspring, next1) then
15: offspring.add(next1)
16: city = next1
17: else if !memberOf(offspring, next2) then
18: offspring.add(next2)
19: city = next2
20: else
21: suitableCity = getSuitableCity()
22: offspring.add(suitableCity)
23: city = suitableCity
24: end if
25: end while

6). We continue with the city 5. Candidate edges are: [5, 2] and [5, 4]. D(5, 2)

is shorter. For city 2 we have both city 3 connected in both parents. City 3 has

one suitable connection which is city 6. Finally, we complete the offspring by

adding the last suitable city which is city 4.

2.3.7 Complete Subtour Exchange

Protecting and reversing routes for next generations seem to be appropriate to

produce better offsprings in TSP according to our observations. This crossover

operator focuses on swapping common subtours of chromosomes to obtain feasible

offsprings for ongoing generations. In this crossover, 2 x 2sub - 2 offsprings created,

where sub represents the number of distinct common subtours.
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Algorithm 9 Complete Subtour Exchange

1: subtours = getCommonSubtours(parent1, parent2)
2: offsprings = new Offspring[2 times 2sub - 2]
3: for i = 0 to 2 times 2sub - 2 do
4: offsprings[i] = new Offspring(subtours)
5: end for

Complete subtour exchange 9 works as follows: We get common subtours from

parents (Line 1). We create an offspring array of length 2 times 2sub - 2 (Line

2). Then we form the offsprings by combining the subtours in every possible

combination including their reverse order (Lines 3-5).

parent 1: ([1, 6], [4, 5], [2, 3]) parent 2: (4], [2, 3], [6, 1], [5)

offsprings: {([1, 6], [5, 4], [2, 3]), ([1, 6], [5, 4], [3, 2]), ([1, 6], [4, 5], [3, 2]), ([6, 1],

[5, 4], [2, 3]), ([6, 1], [5, 4], [3, 2]), ([6, 1], [4, 5], [3, 2]), ([6, 1], [4, 5], [2, 3]), (4],

[3, 2], [6, 1], [5), (4], [3, 2], [1, 6], [5), (4], [2, 3], [1, 6], [5), (5], [2, 3], [6, 1], [4),

(5], [2, 3], [1, 6], [4), (5], [3, 2], [6, 1], [4), (5], [3, 2], [1, 6], [4)}

The common subtours are listed: {[1, 6], [4, 5], [2, 3]}. offsprings are formed

with all possible combinations including reversed order of the subtours.

2.3.8 Sorted Match Crossover

SMX tries to find common paths of same length and set of cities which are also

start end with the same cities. We use the shorter one for the offspring.

Algorithm 10 Sorted Match Crossover

1: subtour1, subtour2 = getCommonSubtours(parent1, parent2)
2: if length(subtour1) < length(subtour2) then
3: offspring = parent2
4: else
5: offspring = parent1
6: end if
7: offspring.swapTours(subtour1, subtour2)

14



In algorithm 10, we get common paths having properties as stated above (Line 1).

After, we form the offspring from the parent that have longer subtour (Lines

2-5). Then, we swap the subtours to get a shorter path for the offspring.

parent 1: (1, 6, [4, 2, 5, 3]) parent 2: ([4, 5, 2, 3], 1, 6)

offspring: (1, 6, [4, 5, 2, 3])

For these two parents we have two common subtours which are [4, 5, 2, 3] and [4,

2, 5, 3] having lengths 46 and 100 respectively according to distance matrix 3.1.

We use [4, 5, 2, 3] for parent1.

2.4 Mutation

Another important GA operator is the mutation operator. It helps the algorithm

to jump out of the local optima. Various mutation operators have been developed

for TSP, each of which states a local modification of an individual. The operator is

completely blind unless there is a special implementation applied for it. Multiple

mutations and improving mutations are examples of special implementations.

Therefore, diversity is provided by this operator through generations. On the

other hand executing this operator with a small random probability protects

most of the individuals.

In a traditional GA, if we take mutation out of the approach, most probably lots

of applications can no longer produce different individuals after a certain amount

of generations. Here, we present the well-known mutation operators in the TSP

literature in detail. Table 2.2 shows the well-known mutation operators in the

TSP literature.

15



Table 2.2: Well-known mutation operators in the literature

Operator Name Paper
Exchange Mutation EM [5], [12]
Insertion Mutation IM [5], [12]
Displacement Mutation DM [5], [12]
Simple Inversion Mutation SIM [5]
Inversion Mutation IVM [5]
Scramble Mutation SM [5]
Ends Exchange Mutation ESEM [12]
Reverse Ends Mutation RESM [12]
Reverse Ends Exchange Mutation RESEM [12]

2.4.1 Reciprocal Exchange Mutation

REM is the classical swap mutation of the traditional GA design. It is shown in

algorithm 11

Algorithm 11 Reciprocal Exchange Mutation

1: function REM(city1 = random(0, N), city2 = random(0, N))
2: tour.swap(city1, city2)
3: endfunction

We simply select two cities for the function REM (Line 1) and swap them (Line

2).

before: (1, 6, 4, 5, 2, 3)

after: (1, 2, 4, 5, 6, 3)

To apply REM, we swap the cities 6 and 2.

2.4.2 Insertion Mutation

IM 12 is similar to EM rather a city is removed from the tour and inserted into

another randomly chosen place consequently.
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Algorithm 12 Insertion Mutation

1: function IM(oldIndex = random(0, N), newIndex = random(0, N))
2: aCity = tour.removeCity(oldIndex)
3: tour.insertCity(newIndex, aCity)
4: endfunction

A random city’s current and new index are given to the function IM as inputs

(Line 1) and removed from the route (Line 2). At the second stage, the removed

city is inserted into a random place (Lines 3).

before: (1, 6, 4, 5, 2, 3)

after: (1, 6, 5, 2, 4, 3)

We remove the city 4 from the individual which leads to the subtour [1, 6, 5, 2,

3]. Then, we insert city 4 to a random position of the subtour to form a complete

path.

2.4.3 Displacement Mutation

An extended version of IM is DM where a subroute is exchanged rather than a

single city. It is shown in algorithm 13

Algorithm 13 Displacement Mutation

1: function DM(oldIndex = random(0, N), length = random(0, N), newIndex =
random(0, N))

2: aSubtour = tour.removeSubtour(oldIndex, length)
3: tour.insertSubtour(newIndex, aSubtour)
4: endfunction

For the DM function, we have 3 inputs for displacing a random subtour, (Line

1) which is derived from a starting index and length, is removed from the route

(Line 2). At the second stage, the removed subtour is inserted to the same route

into a random place (Line 3).

before: (1, [4, 6, 5], 2, 3)

after: (1, 2, [4, 6, 5], 3)
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We remove the subtour [4, 6, 5] from the tour. We have [1, 2, 3] remained. Then,

we insert subtour [4, 6, 5] into a random position of the individual to form a

complete path.

2.4.4 Simple Inversion Mutation

SIM is the reversed version of DM which is described in algorithm 14.

Algorithm 14 Simple Inversion Mutation

1: function SIM(index = random(0, N), length = random(0, N))
2: aSubtour = tour.getSubtour(index, length)
3: return reverse(aSubtour)
4: endfunction

We call SIM with inputs index and length (Line 1). A random subroute which is

obtained from the inputs, selected for reversal (Line 2) and that random subroute

is reversed (Line 3).

before: (1, [4, 6, 5], 2, 3)

after: (1, [5, 6, 4], 2, 3)

We reverse the subtour [4, 6, 5].

2.4.5 Inversion Mutation

IVM 15 is a variation of SIM where reversed subroute is inserted to the route just

like the insertion pattern followed in IM and DM.

Algorithm 15 Inversion Mutation

1: function IVM(oldIndex = random(0, N), length = random(0, N), newIndex
= random(0, N))

2: SIM(oldIndex, length)
3: DM(oldIndex, length, newIndex)
4: endfunction

First, we call the function IVM with input parameters: oldIndex, length, and

newIndex (Line 1). SIM function is invoked to reverse the subtour derived from
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oldIndex and length (Line 2). As a final step, we call the function DM to displace

it to newIndex (Line 3).

before: (1, [4, 6, 5], 2, 3)

after: (1, 2, [5, 6, 4], 3)

We remove the subtour [4, 6, 5]. Then, place its reversed version [5, 6, 4] into a

random place in the individual.

2.4.6 Scramble Mutation

Scramble Mutation 16 has the maximum number of enhancements according to

the paper [5].

Algorithm 16 Scramble Mutation

1: function SM(index = random(0, N), length = random(0, N))
2: aSubtour = tour.getSubtour(index, length)
3: return scramble(aSubtour)
4: endfunction

First, we call the function SM with index and length inputs (Line 1). Then, by

using these inputs we select a random subtour (Line 2) and scramble it (Line 3).

before: (1, [4, 6, 5], 2, 3)

after: (1, [6, 5, 4], 2, 3)

We scramble the subtour [4, 6, 5] leading [6, 5, 4].

2.4.7 Ends Exchange Mutation

ESEM 17 is similar to DM but we use it twice for the ends of the individual.

We invoke ESEM (Line 1). Then, we apply DM to the ends of the individual

with selected length (Lines 2-3).
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Algorithm 17 Ends Exchange Mutation

1: function ESEM(length = random(0, N/2))
2: DM(0, length, N)
3: DM(N - (length times 2), length, 0)
4: endfunction

before: ([1, 4], 6, 5, [2, 3])

after: ([2, 3], 6, 5, [1, 4])

We simply swap two subtours [1, 4] and [2, 3] from the ends of the individual.

2.4.8 Reverse Ends Mutation

RESM 18 is similar to SIM but we use it twice for the ends of the chromosome.

Algorithm 18 Reverse Ends Mutation

1: function RESM(length = random(0, N/2))
2: SIM(0, length)
3: SIM(N - length, N)
4: endfunction

We call the function RESM (Line 1). Then, we apply SIM to the ends of the

individual with selected length (Lines 2-3).

before: ([1, 4], 6, 5, [2, 3])

after: ([4, 1], 6, 5, [3, 2])

We reverse the subtours [1, 4] and [2, 3] from the ends of the chromosome.

2.4.9 Reverse Ends Exchange Mutation

RESEM 19 is similar to IVM but we use it twice for the ends of the individual.

The subtour length should be <= N/2.

We invoke RESEM (Line 1). Then, we apply IVM to the ends of the individual

with selected length (Lines 2-3).
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Algorithm 19 Reverse Ends Exchange Mutation

1: function RESEM(length = random(0, N/2))
2: IVM(0, length, N)
3: IVM(N - (length times 2), length, 0)
4: endfunction

Table 2.3: Well-known local operators in the literature

Operator Name Paper
2-Opt [7], [13], [14]
3-Opt [8]
Lin-Kernighan-Opt [8]
Remove Sharp [15]
LocalOpt [15]
Untwist [16]

before: ([1, 4], 6, 5, [2, 3])

after: ([3, 2], 6, 5, [4, 1])

We both apply reversing and swapping to the subtours [1, 4] and [2, 3].

2.5 Local Operators

If we compare an ordinary tour with the optimum tour, an human eye can easily

detect the local problems in the ordinary tour. After several observations, we are

aware of some common problem patterns, i.e. twisted routes. A local optimiza-

tion, by the name itself, optimizes the route by solving these local problems. A

local optimization with a loss of quality in individual score may serve as a global

mutation operator for the algorithm, so we refer to local operators as global mu-

tations. Table 2.3 shows the well-known local operators in the literature.
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2.5.1 2-opt

It is one of the most popular local operators in the literature. 2-opt searches the

best swapping of all dual pairs of the individual.

Algorithm 20 2-opt

1: shortest = length(tour)
2: for i = 0 to N - 1 do
3: for j = i + 1 to N - 2 do
4: newTour = tour.2optSwap([i, i+1], [j, j+1])
5: if length(newTour) < shortest then
6: shortest = length(newTour)
7: end if
8: end for
9: end for

2-opt algorithm 20 searches the best swapping from all dual pairs of the individual

(Lines 2-3). If the score improves after the swap, 2optSwap is applied and the

shortest tour is decided (Lines 4-6).

Algorithm 21 2optSwap

1: function 2optSwap([x1, x2], [y1, y2])
2: [x1, x2].cut()
3: [y1, y2].cut()
4: [x1, y2].merge()
5: [x2, y1].merge()
6: endfunction

In 2optswap algorithm 21, we invoke 2optSwap with two edge inputs (Line 1).

We cut those 2 edges (Lines 2-3). Then, we merge the cities with the second

possible option (Lines 4-5).

2.5.2 3-opt

It is one of the most popular local operators in the literature. 3-opt searches

the best swapping from all ternary pairs of the individual. 3-opt mechanism is a

version of 2-opt.
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Algorithm 22 3-opt

1: shortest = length(tour)
2: for i = 0 to N - 1 do
3: for j = i + 1 to N - 2 do
4: for k = j + 1 to N - 3 do
5: newTour = tour.3optSwap([i, i+1], [j, j+1], [k, k+1])
6: if length(newTour) < shortest then
7: shortest = length(newTour)
8: end if
9: end for
10: end for
11: end for

In 3-opt algorithm 22, we search for the best ternary pairs (Lines 1-3). At the

second stage, 3optSwap is used to determine the shortest path in the current

iteration (Lines 4-7).

Algorithm 23 3optSwap

1: function 3optSwap([x1, x2], [y1, y2], [z1, z2])
2: [x1, x2].cut()
3: [y1, y2].cut()
4: [z1, z2].cut()
5: edges = getShortestEdgeCombination(x1, x2, y1, y2, z1, z2)
6: edges.merge()
7: endfunction

3optSwap algorithm 23 is called with 3 edge parameters (Line 1). The function

is about cutting those 3 edges from the tour (Lines 2-4). Then, the shortest

combination of the edges are merged (Lines 5-6).

2.5.3 Lin-Kernighan Opt

Lin-Kernighan approach uses path swapping with k-opt technique where k is

determined by the algorithm itself at each iteration. k is mostly 2 or 3.

In Lin-Kernighan opt algorithm 24, we iterate on all edge pairs (Line 1). After,

we remove 2 or 3 edges from tour (Line 2). These removed edges are said to

be the worst edges of the tour. So, replacing them with feasible subtours will

minimize the tour length (Line 3).
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Algorithm 24 Lin-Kernighan Opt

1: for iterate over all dual or ternary edge pairs do
2: apply 2-opt or 3-opt to the tour.
3: try all subtour combinations to minimize the tour length.
4: end for

2.5.4 Remove Sharp

Remove Sharp removes a city from the tour. Then, the operator inserts the city

into before and after all of its k-nn. The insertion place where the shortest value

in tour length is selected for the tour construction.

Algorithm 25 Remove Sharp

1: function removesharp(city = random(0, N))
2: shortest = length(tour)
3: aCity = tour.removeCity(city)
4: for i = 0 to k do
5: tour.insertCity(i, aCity)
6: if length(tour) < shortest then
7: shortest = length(tour)
8: shortestIndex = i
9: end if
10: tour.removeCity(i, aCity)
11: end for
12: tour.insertCity(shortestIndex, aCity)
13: endfunction

removesharp algorithm 25 takes two parameters (Line 1). The operator removes

a random city from the tour resulting a cyclic path of N − 1 cities (Line 3). The

removed city is inserted into the path before and after the all k-nearest neighbours

of the city to look for which tour gives the shortest path among all (Lines 4-11).

As a last step, we insert the selected city which makes the tour shortest (Line

12).

2.5.5 LocalOpt

LocalOpt selects a subtour from the tour. Then we try all possible combinations

of the tour to construct the shortest one among all combinations.
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Algorithm 26 LocalOpt

1: function localopt(oldIndex = random(0, N), length = random(0, N))
2: aSubtour = tour.removeSubtour(oldIndex, length)
3: shortest = length(aSubtour)
4: subtours = aSubtour.getCombinations()
5: while subtours.hasNext() do
6: aSubtour = subtours.next()
7: if length(aSubtour) < shortest then
8: shortest = length(aSubtour)
9: end if
10: end while
11: endfunction

LocalOpt algorithm 26 takes two inputs (Line 1) to select aSubtour from the tour

(Line 2). We get all possible combinations of the tour to construct a shorter one

(Line 4). The best combination is selected as the shortest path of the cities (Lines

5-10).

2.5.6 Untwist

Untwist by the name itself, deals with twisted routes. If there are no twisted

routes, it means that we are close to the global optimum.

Algorithm 27 Untwist

1: function untwist(i = random(0, N), j = random(0, N))
2: if D(Ci, Ci−1) + D(Cj, Cj+1) > D(Cj, Ci−1) + D(Cj+1, Ci) then
3: tour.deleteEdges([i, i-1], [j, j+1])
4: tour.addEdges([j, i-1], [i, j+1])
5: end if
6: endfunction

For untwist algorithm 27, we generate two cities for the function untwist as inputs

(Line 1). Then, we change the edges of the cities i and j in case that the fitness

score improves related to the formula (Lines 2-5).
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Chapter 3

Proposed Algorithm

3.1 Greedy k-nn Crossover

Before implementing our special algorithm, we have analyzed how an optimal tour

looks like for a specific data. We observed that in an optimal route two cities

belonging to an edge are closely related in a k-nearest neighbour way. A city C1

is in the k-nn list of city C2; C1 is one of the closest k cities of city C2. Mostly,

we found that, a city is connected to its first, second or third nearest neighbour

in the optimal tour as shown in Table 3.2. So, we have decided to implement a

crossover method to satisfy the k-nn logic. We name this novel crossover method

as greedy k-nn crossover. It is called greedy because we extend the abilities of

the greedy crossover [9], where it provides us a base for our new approach.

Table 3.1: Distance Matrix D

D =



∞ 72 36 12 4 5

72 ∞ 14 89 1 73

36 14 ∞ 6 10 19

12 89 6 ∞ 31 99

4 1 10 31 ∞ 6

5 73 19 99 6 ∞


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Algorithm 28 Greedy k-nn Crossover

1: city = parent1.getFirstCity()
2: offspring.add(city)
3: while offspring not complete do
4: next1 = parent1.getCity(city).next()
5: next2 = parent2.getCity(city).next()
6: if !memberOf(offspring, next1) AND !memberOf(offspring, next2) then
7: if next1 < next2 then
8: offspring.add(next1)
9: city = next1
10: else
11: offspring.add(next2)
12: city = next2
13: end if
14: else if !memberOf(offspring, next1) then
15: nncity = city.knn(4)
16: if next1 < nncity then
17: offspring.add(next1)
18: city = next1
19: else
20: offspring.add(nncity)
21: city = nncity
22: end if
23: else if !memberOf(offspring, next2) then
24: nncity = city.knn(4)
25: if next2 < nncity then
26: offspring.add(next2)
27: city = next2
28: else
29: offspring.add(nncity)
30: city = nncity
31: end if
32: else
33: nncity = city.knn(4)
34: offspring.add(nncity)
35: city = nncity
36: end if
37: end while
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Table 3.2: The number of k-nearest neighbours appearing in the optimal tour

k/Dataset berlin52 eil51 eil76 eil101 kroa100 pcb442
1 42 44 59 83 87 355
2 27 32 46 56 46 294
3 13 9 28 33 28 140
4 6 8 8 13 20 56
5+ 16 9 11 17 19 39

In greedy k-nn crossover 28, we select the first city of parent1 and add it to the

offspring (Lines 1-2). Then, we iterate until offspring represents a complete tour

(Line 3). At each iteration, we determine the next city in both parents (Lines

4-5). If both of them do not exist in offspring, we compare them with respect

to their edge length (Line 6). The shorter edge will be added to the offspring

and current city is updated for the next iteration (Lines 7-13). If the next city of

parent1 is available only, we compare it with a city derived from k-nn heuristic.

The shorter edge will be added to the offspring and current city is set as before

(Lines 14-22). We do the same process for the condition that only the next city

of parent2 is available (Lines 23-31). If next cities of both parents exist in the

offspring, we simple get a city from k-nn list and update the current city. (Lines

32-36).

Let’s say k = 2 and initially we have two parent chromosomes:

parent 1: (1, 6, 4, 5, 2, 3)

parent 2: (4, 2, 3, 6, 1, 5)

According to distance matrix D in Table 3.1, aparent1 has length 274 and parent

2 has 162. First of all, we should have a template which would be the one of parent

chromosomes. We select the template chromosome as parent1. So city 1 is the

first city of the offspring.

offspring: [1]
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Then, we locate city 1 in both parents to compare the edges that contains it. (1,

6) and (1, 5) are the candidate edges. Since D(1, 5) < D(1, 6), we select edge (1,

5) to add to the offspring.

offspring: [1, 5]

After the offspring’s first two cities are formed, we see that city 5 in parent2 is the

last city. For this crossover model, we represent edges in a left to right manner

because individuals are processed in the same direction. As a result, taking the

first city from a chromosome is the right way to form the edge, if we are trying

to find the edge partner of the last city. Candidate edges are: (5, 2) and (5, 4).

Since D(5, 2) < D(5, 4), we select edge (5, 2) to add to the offspring.

offspring: [1, 5, 2]

Both of the parents have the same edge going out from 2, so we have one candidate

edge to select from: namely (2, 3).

offspring: [1, 5, 2, 3]

Edges that contains the city 3 are (3, 1) and (3, 6). The city 1 is already in the

offspring. So, our k-nn model steps into the hybrid crossover design. 2-nn of city

3 is 4, 5. City 5 exists in the offspring so we pick city 4 and compare edges

(3, 4) and (3, 6). Since D(3, 4) < D(3, 6), we select edge(3, 4) to add to the

offspring.

offspring: [1, 5, 2, 3, 4]

There are two edges going out from city 4: (4, 2) and (4, 5). Both cities 2 and 5

are in the offspring. So we use k-nn model to pick a city. There is one suitable

city left to put into the offspring, so k-nn will choose that city as expected.

Complete offspring with length 129 is as follows:

offspring: (1, 5, 2, 3, 4, 6)
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3.2 Greedy Selection

RWS and TS are the popular selection methods as described in Chapter 2. But

initialization of the population with those selection methods result in a chromo-

some list full of cities having nearly equal scores with these methods. So when

selecting cities from the population, we see that best chromosome and worst

chromosome do not differ so much.

Algorithm 29 Greedy Selection

1: initialize population
2: while termination do
3: value = random(0, 1)
4: exp = power(value, 4)
5: index = exp * populationSize
6: return index
7: end while

As a result, we have implemented a simple selection method named greedy se-

lection as shown in algorithm 29. First, we get a random value between 0 and

1 (Line 3). Then, we calculate value 4 so that we select better chromosomes

(Line 4). Finally, we multiple the value with population size to indicate its in-

dex (Line 5). Sorting of individual fitness scores is required for this method to

work successfully. This design provides fitter chromosomes to be selected more

frequently.

3.3 Extended Untwist

We are using this formula for every city pair in an individual rather than selecting

one pair in the classical one. This kind of processing reminds us 2-opt. Untwisting

a route may result in worse paths or can lead to a more twisted route exclusively

in early generations. We tweak local operator untwist, to take more advantage of

it.
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Algorithm 30 Extended Untwist

1: for i = 0 to N - 1 do
2: for j = i + 1 to N do
3: untwist(i, j)
4: end for
5: end for

Untwist by the name itself, deals with twisted routes. We extend the abilities of

this operator by applying this formula to all dual city pairs in a complete tour

(Lines 1-2) as shown in algorithm 30.

3.4 Other Elements

We choose REM as the mutation element for our system. Our mutation rate is

10%. The best individual survives to the next generation for survival strategy

and 10% of the population is replaced with newly created artificial chromosomes

to maintain the diversity through the iterations. These chromosomes are called

reinforcements. We take k as 5 through the algorithm. By doing this, the system

moves around good paths to approach the global optimum.

According to our preliminary results, the best individual of the population occa-

sionally is not sufficient for a good result. In most of the populations, the best

individual have some good and bad parts unless we have successfully approached

global optimum. So, we have decided to work with multiple populations. At

specific generation intervals, we immigrate the best individuals of all populations

to other populations. By doing this, we make all populations collaborate together

to reach the optimum route.
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3.5 The Algorithm

Algorithm 31 Proposed Hybrid GA

1: population = new Population(populationSize)
2: while generation < numberOfIterations do
3: newPopulation.add(population.best())
4: chromosomes = population.greedyknn(greedyselection(), k)
5: newPopulation.add(chromosomes)
6: newPopulation.reinforcement(k, reinforcementRate)
7: if probability <= mutationRate then
8: chromosome.REM()
9: end if
10: chromosome.extendedUntwist()
11: newPopulation.evaluate()
12: best = population.best()
13: population = newPopulation
14: end while

We present our novel algorithm in algorithm 31. We initiate our population

with k-nn approach (Line 1). We do numberOfIterations (Line 2). At each

iteration we protect the best individual from previous population (Line 3) and

add reinforcements with 10% rate. After, we mutate an individual with 10%

probability (Lines 7-9). Extended untwist is applied to all chromosomes (line

10). Finally, we evaluate the population to determine the fittest individual (Lines

11-12) and clone newPopulation to serve for the next generation (Line 13).
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Chapter 4

Experiments

4.1 Experimental Setup

In order to compare our work with previous approaches we select the datasets

that are frequently used in the literature. The datasets that we use are, berlin52,

eil51, eil76, eil101, kroa100, and pcb442. The tests are performed on a commodity

computer; RAM: 8 GB and CPU: 2.40Ghz * 4.

Table 4.1: Algorithm Parameters

k 5
populationSize 200
crossoverRate 100%
mutationRate 10%

reinforcementRate 10%
numberOfIterations 10000

We run our algorithm 10 times and compare out results with the optimum tours

[17].The algorithm parameters are given in the Table 4.1.

In Figure 4.1 there are 4 datasets; eil51, eil76, kroa100 and berlin52. These

dataset have small number of cities and a good tour can be guessed.

In Figure 4.2 there are 4 datasets; kroa150, kroa200, eil101 and d198. These

dataset have more number of cities and a good tour is hard to guess.
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Figure 4.1: Easy datasets

In Figure 4.3 there are 2 datasets; lin318 and pcb442. These dataset have high

number of cities and a there are a lot of good tours.

4.2 Experimental Results

According to the experimental results shown in the Table 4.2, we reach the op-

timum tour in small datasets but in bigger datasets we are close to optimum.

This is the base experiment table and we compare it with some other parameters.

Color green and red indicate a better and worse result respectively.
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Figure 4.2: Medium datasets

Figure 4.3: Hard datasets

According to the experimental results with multiple populations in Table 4.3,

multiple population model outperforms in both best and average tour quality of

the dataset eil101.
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Table 4.2: Experimental Results

Dataset Optimum Best Error (%) Iteration Average Error (%)
berlin52 7544.36 7544.36 0.000 3 7544.36 0.000
eil51 428.87 428.87 0.000 30 428.91 0 .010
eil76 544.36 544.36 0.000 48 545.00 0.117
eil101 640.21 640.21 0.000 164 643.32 0.485
kroa100 21285.44 21285.44 0.000 22 21287.00 0.010
kroa150 26524 26524.86 0.003 3919 26668.23 0.544
kroa200 29368 29369.40 0.005 8725 29487.62 0.407
d198 15780 15811.34 0.199 4579 15828.57 0.308
lin318 42029 42188.51 0.380 7351 42512.36 1.150
pcb442 50783.54 50965.11 0.358 3181 51362.99 1.141

Table 4.3: Experimental Results with 4 populations

Dataset Optimum Best Error (%) Iteration Average Error (%)
berlin52 7544.36 7544.36 0.000 2 7544.36 0.000
eil51 428.87 428.87 0.000 7 428.88 0.003
eil76 544.36 544.36 0.000 34 544.57 0.037
eil101 640.21 640.21 0.000 79 641.19 0.153
kroa100 21285.44 21285.44 0.000 27 21285.44 0.000
kroa150 26524 26524.86 0.003 214 26573.75 0.188
kroa200 29368 29369.40 0.005 89 29433.47 0.223
d198 15780 15808.65 0.182 252 15823.17 0.274
lin318 42029 42263.30 0.557 1129 42430.65 0.955
pcb442 50783.54 50944.28 0.317 8542 51283.16 0.983

Table 4.4: Experimental Results with PMX

Dataset Optimum Best Error (%) Iteration Average Error (%)
berlin52 7544.36 7544.36 0.000 7 7544.36 0.000
eil51 428.87 428.87 0.000 516 428.88 0.003
eil76 544.36 544.36 0.000 2186 547.43 0.563
eil101 640.21 645.25 0.787 6507 649.17 1.399
kroa100 21285.44 21285.44 0.000 739 21287.63 0.010
kroa150 26524 26688.38 0.619 6059 26799.53 1.038
kroa200 29368 29662.34 1.002 9897 29781.69 1.408
d198 15780 15935.22 0.983 9459 15979.85 1.266
lin318 42029 43169.63 2.714 7035 43377.09 3.207
pcb442 50783.54 52793.15 3.955 5186 53122.11 4.604
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Table 4.5: Experimental Results with k = 1

Dataset Optimum Best Error (%) Iteration Average Error (%)
berlin52 7544.36 7544.36 0.000 2 7544.36 0.000
eil51 428.87 428.87 0.000 10 428.97 0.023
eil76 544.36 544.36 0.000 205 544.98 0.112
eil101 640.21 642.40 0.343 49 645.84 0.880
kroa100 21285.44 21285.44 0.000 13 21285.44 0.000
kroa150 26524 26524.86 0.003 450 26654.80 0.493
kroa200 29368 29369.40 0.005 7542 29426.62 0.200
d198 15780 15812.11 0.204 8963 15835.69 0.353
lin318 42029 42263.30 0.557 9328 42396.81 0.875
pcb442 50783.54 50935.56 0.299 1085 51084.75 0.593

Table 4.6: Experimental Results with TS

Dataset Optimum Best Error (%) Iteration Average Error (%)
berlin52 7544.36 7544.36 0.000 2 7544.36 0.000
eil51 428.87 428.87 0.000 59 428.87 0.000
eil76 544.36 544.36 0.000 9587 546.58 0.407
eil101 640.21 644.32 0.643 3158 647.56 1.148
kroa100 21285.44 21285.44 0.000 792 21288.12 0.013
kroa150 26524 26718.21 0.732 1130 26878.69 1.337
kroa200 29368 29861.70 1.681 1952 29928.25 1.908
d198 15780 15877.27 0.616 2031 15903.34 0.782
lin318 42029 43086.09 2.515 1533 43427.26 3.327
pcb442 50783.54 52629.47 3.635 7970 52941.30 4.248

According to the experimental results with PMX in Table 4.4, our novel crossover

operator is superior especially in big datasets.

According to the experimental results with k = 1 in Table 4.5, pcb442 has a good

enhancement in its best tour length due to the point distribution of the dataset.

By forcing k = 1, we get average results better because the edges are created with

the nearest neighbour whenever possible. But in the optimum tours, we mostly

get better results.
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According to the experimental results with TS in Table 4.6, our novel greedy

selection method performs much better than the popular TS. In smaller datasets,

the difference in the tour quality is slightly less.
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Chapter 5

Conclusion

We observe that most of the attempts in the TSP literature come up with a

hybrid design or introduce a new element such as a novel crossover or mutation.

These structures are usually designed to get out of the local optima.

In this thesis, we propose a new selection method and a crossover operator, based

on successful elements from the literature. Our crossover operator decreases the

search space by using k-nn logic. We also extend the abilities of the untwist local

operator. The best individual is protected to the next generation with a survival

selection method. While this helps us to approach the global optimum, reinforce-

ment of artificial chromosomes stabilize diversity level at each generation. We

see that, among multiple populations the best individuals end up with different

routing structures. As a result, we immigrate the best individual of a population

to other populations at specific generations.

We have collected a subset of the popular datasets used in the literature. Our

experimental results show that, proposed novel operators outperform their equiv-

alents in the TSP literature. Multiple population design is superior to its single

version in terms of tour length. With multiple populations, we get to the global

optimum more frequently especially when the number of cities is not large.

Our hybrid approach model, that we presented have, forms a basis to our future

work. In the future, we plan to integrate dynamic behaviour into the structure.
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At runtime, operators will change according to the diversity level and individual

quality of the population. For the datasets that have large number of cities, we

plan to integrate a route changing plan for the good tours that are trapped in a

local optima.
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