
A LEARNING OBJECT HARVESTING MODEL AND A SAMPLE

APPLICATION

AHMET SOYLU

IŞIK UNIVERSITY

2008

A LEARNING OBJECT HARVESTING MODEL AND A SAMPLE

APPLICATION

AHMET SOYLU

M.S., Computer Engineering, Işık University, 2008

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

IŞIK UNIVERSITY

2008

 i

IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

A LEARNING OBJECT HARVESTING MODEL AND A SAMPLE

APPLICATION

AHMET SOYLU

APPROVED BY:

Prof. Selahattin Kuru (Işık University) ____________________

(Thesis Supervisor)

Assist. Prof. Taner Eskil (Işık University) ____________________

Assoc. Prof. Seyhun Altunbay (Işık University) ____________________

APPROVAL DATE : 03 / 06 / 2008

 ii

A LEARNING OBJECT HARVESTING MODEL AND A SAMPLE

APPLICATION

Abstract

The aim of this thesis is to enable harvesting of Learning Objects which are

embedded in web pages. Two main challenges have been identified which are

interoperability and semantics. For this purpose, several learning object metadata

standards such as XML, XSLT, RDF, SPARQL etc. and several Learning Object

Metadata standards have been investigated for compatibility with this harvesting

approach, and then a light weight Application Profile and Microformat for Learning

Objects has been proposed. Additionally a web service has been created which uses

XSLT/GRDDL to extract Learning Objects in different web pages, and uses SQI

target for retrieval facility with a more complex query language called SPARQL.

Final work is a sample application; a search client employing created SQI service for

search and retrieval of Learning Objects.

 iii

ÖĞRENĐM NESNESĐ TOPLAMA MODELĐ VE ÖRNEK

UYGULAMA

 Özet

Bu tezin amacı web sayfalarına gömülmüş öğrenim nesnelerinin ayıklanmasına

imkan veren bir model yaratmaktır. Aşılması gereken iki önemli problem

belirlenmiştir, bunlar birlikte çalışabilirlik ve anlamsallıktır. Bu amaç için birlikte

çalışabilirlik ve anlamsallık çerçevesinde XML, XSLT, RDF, ve SPARQL gibi

çeşitli teknolojiler ve öğrenim nesnesi üstveri standartları bu modele uygunluk

açısından incelenmiştir. Daha sonra öğrenim nesneleri için dar kapsamlı bir

Microformat önerisi getirilmiştir. Ek olarak XSLT/GRDDL teknolojileri kullanılarak

farklı web sayfalarından öğrenme nesnelerini ayıklayabilen ve bunların SPARQL

sorgulama dili ile sorgulanabilmesini sağlayan bir SQI web servisi oluşturulmuştur.

Son olarak bu servis üzerinden çalışarak öğrenme nesnelerinin aranmasını ve

aktarımını sağlayan bir arama motoru oluşturulmuştur.

 iv

Acknowledgements

I thank Prof. Dr. Selahattin Kuru, my major professor and dissertation supervisor.

Having the opportunity to work with him over the years was intellectually rewarding

and fulfilling. I also thank Mag. Fridolin Wild, Dr. Felix Mödritscher and Steinn E.

Sigurdarson for their insightful suggestions and expertise, they contributed a lot to

this thesis starting from the early stages of my work, and The Scientific and

Technological Research Council of Turkey (TUBITAK) for their financial support

during my studies.

My special thanks go to Uğur Kırmızıbekmez and Kadir Banicar whose friendship I

deeply value.

The last words of thanks go to my family. I thank my parents Mustafa Soylu and

Sakine Soylu and my sister Duygu Soylu for their patience and encouragement.

 v

Table of Contents

Abstract ...ii

Özet...iii

Acknowledgements..iv

Table of Contents... v

List of Tables..vii

List of Figures..viii

List of Abbreviations ...xii

1 Introduction ..1

2 Ground Web Technologies and Specifications.. 7

2.1 XML... 8

2.1.1 How to Create XML Documents .. 9

2.1.2 XML Schema Definition...11

2.2 XHTML.. 16

2.3 XSL .. 18

2.3.1 XPath... 18

2.3.2 XSLT... 20

2.4 Web Services.. 23

2.4.1 WSDL ... 24

2.4.2 SOAP .. 26

2.5 SQI ... 27

3 Semantic Web Technologies and Specifications..31

3.1 RDF.. 31

3.1.1 Model, Concepts and Syntax .. 32

3.1.2 RDF Schema ... 45

3.2 SPARQL .. 49

3.3 GRDDL.. 55

4 Semantic Web and Microformats...57

4.1 Semantic Web .. 57

 vi

4.2 A deeper look at Microformats .. 61

4.2.1 POSH .. 62

4.2.2 Basic Principles... 63

4.2.3 Design Patterns ... 64

4.2.4 An example Microformat..66

5 Learning Object Metadata Standards...69

5.1 Learning Standards... 69

5.2 Learning Object Metadata Standards ... 73

5.2.1 Application Profile.. 74

5.2.2 IEEE LOM .. 76

5.2.3 ADL-Scorm – Scorm Metadata .. 80

5.2.4 Other LO Metadata Standards and Application Profiles 81

5.2.5 Dublin Core... 82

6 Implementation..85

6.1 Application Profile Proposal .. 85

6.1.1 Scope and Purpose .. 85

6.1.2 Use Cases .. 86

6.1.3 Metadata Elements.. 87

6.2 Microformat Proposal .. 94

6.3 Case Example: Sematic Search Engine for LOs.. 98

7 Evaluation of Model and Application..106

8 Conclusion and Recommendations for Future Work.....................................111

8.1 Overview.. 111

8.2 Recommedations for Future Work... 112

References...115

Appendix A: CD Containing Sample Application and Tools120

Curriculum Vitae ...121

 vii

List of Tables

Table 2.1 Example Expressions for XML File in Figure 2.5..................................... 19

Table 2.2 Example Axes for XML Code in Figure 2.5 [17]...................................... 20

Table 2.3 SQI Methods .. 29

Table 3.1 Result of Third Query on Figure 3.8.. 50

Table 3.2 Result of Second Query on Figure 3.13... 51

Table 5.1 Snapshot of Standard Organizations [46] .. 72

Table 5.2 LOM v1.0 Elements... 77

Table 5.3 A Sample from LOM v1.0 [10] ...78

Table 5.4 LOM v1.0 Data Types ... 80

Table 5.5 DC Elements Mapping over IEEE LOM Elements [52] 83

Table 5.6 DCMI-EMS Metadata Schema [58, 59] .. 84

Table 7.1 LOM Element Use [60].. 107

Table 7.2 Evaluation of Learning Object Metadata Proposal 108

Table 7.3 Evaluation of Microformats Proposal .. 109

 viii

List of Figures

Figure 1.1 Graphical Representation of the Proposed Work 6

Figure 2.1 Simple XML Code.. 9

Figure 2.2 Name Spaces... 10

Figure 2.3 XML with Schema Reference ..12

Figure 2.4 Schema Definition .. 12

Figure 2.5 XML in Details... 13

Figure 2.6 Schema for Figure 2.1 .. 14

Figure 2.7 Schema for Person Name Space...15

Figure 2.8 Schema for Product Name Space ... 16

Figure 2.9 Sample XHTML Document ... 17

Figure 2.10 How to Use XSLT .. 21

Figure 2.11 Style Sheet for Figure 2.1 ... 22

Figure 2.12 Web Service Architecture... 24

Figure 2.13 Sample WSDL Document ..25

Figure 2.14 Sample SOAP Request Message .. 27

Figure 2.15 Communication Between Two Repositories [20] 27

Figure 2.16 UML Class Diagram of SQI [20] ... 29

Figure 3.1 Sample RDF Document.. 33

Figure 3.2 Graphical Representation of RDF ..33

 ix

Figure 3.3 Sample Triple Format ... 34

Figure 3.4 Example of Prefix Use.. 34

Figure 3.5 Properties as Resources .. 34

Figure 3.6 Resources as Properties .. 35

Figure 3.7 Triple Representation of Resources as Properties 35

Figure 3.8 Demonstration of Structured Property.. 36

Figure 3.9 Structured Properties .. 36

Figure 3.10 Triple Demonstration of Structured Properties 37

Figure 3.11 Blank Nodes ... 37

Figure 3.12 Triple Demonstration of Blank Nodes.. 38

Figure 3.13 Demonstration of Blank Nodes ..38

Figure 3.14 Typed Literals Sample.. 38

Figure 3.15 Triple Demonstration of Typed Literals... 39

Figure 3.16 Demonstration of Blank Nodes ..39

Figure 3.17 Demonstration of “rdf:ID” Attribute .. 40

Figure 3.18 Demonstration of “rdf:type” Property .. 40

Figure 3.19 Triple Demonstration of “rdf:type” ..40

Figure 3.20 “rdf:type” Demonstration ... 41

Figure 3.21 Demonstration of RDF Container Elements... 42

Figure 3.22 Triple Demonstration of RDF Container Elements................................ 42

Figure 3.23 Graph Demonstration of “rdf:alt” Container .. 42

Figure 3.24 Demonstration of Collections... 43

Figure 3.25 Graph Demonstration of Collections.. 44

Figure 3.26 Demonstration of Collections... 44

Figure 3.27 Triple Demonstration of Collections .. 45

 x

Figure 3.28 Demonstration of “Literal” and “Resource” Parse Type........................ 45

Figure 3.29 Demonstration of RDFS ... 46

Figure 3.30 Graph Demonstration of Collections.. 47

Figure 3.31 Triple Demonstration of RDFS Classes ... 47

Figure 3.32 Abbreviated Demonstration of RDFS .. 48

Figure 3.33 Property Declarations ... 48

Figure 3.34 Triple Demonstration of Property Declarations 49

Figure 3.35 Sample SPARQL Queries .. 50

Figure 3.36 Sample SPARQL Query with Prefix .. 50

Figure 3.37 Sample SPARQL Query Two Patterns... 51

Figure 3.38 Sample SPARQL Query Using Filter... 51

Figure 3.39 Sample SPARQL Query Using Regex ... 52

Figure 3.40 Sample SPARQL Query Using Optional ... 52

Figure 3.41 Sample SPARQL Query Using Union ... 53

Figure 3.42 Sample SPARQL Query Using From... 53

Figure 3.43 Sample SPARQL Query Using From Named .. 54

Figure 3.44 Sample SPARQL Query Using Modifiers and Solution Sequences 54

Figure 3.45 Sample GRDDL Use [27]... 55

Figure 3.46 GRDDL Transformation via Schema ... 56

Figure 3.47 GRDDL Transformation via Profiles ... 56

Figure 4.1 Example Use of Microformats.. 61

Figure 4.2 HTML, POSH and Microformats [39] .. 62

Figure 4.3 Foundation of Microformats [39] ... 64

Figure 4.4 Abbr Design Pattern Sample .. 65

Figure 4.5 Date Time Design Pattern Sample..65

 xi

Figure 4.6 Class Design Pattern Sample.. 65

Figure 4.7 Rel Design Pattern Sample .. 65

Figure 4.8 hCard Example ... 67

Figure 4.9 vCard Format after Exporting... 68

Figure 5.1 How Standards are Formed [7]... 70

Figure 5.2 Scorm Metadata – General Category XML Binding Example................. 81

Figure 6.1 Use Case I ... 86

Figure 6.2 Use Case II.. 87

Figure 6.3 Use Case III .. 87

Figure 6.4 Sample XML Binding of Application Profile .. 94

Figure 6.5 Sample Microformat of Proposed Application Profile (LO2).................. 95

Figure 6.6 Demonstration of Proposed Microformat... 96

Figure 6.7 Sample CSS File... 97

Figure 6.8 Demonstration of Proposed Microformat, CSS Applied.......................... 97

Figure 6.9 Sample RDF Document of LO2 ... 99

Figure 6.10 Graph Representation of LO2...100

Figure 6.11 View from XSLT File for Microformat to RDF Conversion 100

Figure 6.12 Web Service Detected by Liquid Studio .. 101

Figure 6.13 Web Service Called via Browser.. 102

Figure 6.14 End-user Interface Displaying Results of a Query 103

Figure 6.15 End-user Interface Displaying Options Panel....................................... 104

Figure 8.1 Learning Object Metadata Lifecycle .. 112

 xii

List of Abbreviations

DC Dublin Core

DOM Document Object Model

DTD Document Type Definition

GRDDL Gleaning Resource Descriptions from Dialects of Languages

HTML Hyper Text Mark-up Language

IEEE Institute of Electrical and Electronic Engineers

IMS Instructional Management Systems

LOM Learning Object Metadata

RDF Resource Description Framework

RDFS Resource Description Framework Schema

REST Representational State Transfer

RSS Really Simple Syndication

SCORM Sharable Object Content Reference Model

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SPM Smallest Permitted Maximum

SQI Simple Query Interface

UML Unified Modelling Language

W3C World Wide Web Consortium

WSDL Web Service Description Language

WWW World Wide Web

XHTML Extensible Hyper Text Mark-up Language

XML Extensible Mark-up Language

XML- RPC XML Remote Procedure Call

XSD XML Schema Definition

XSL Extensible Style Sheet Language

XSLT Extensible Style Sheet Language Transformations

 1

Chapter 1

Introduction

E-learning refers learning which uses variety of technologies such as internet,

television etc. to produce, deliver, manage, store, manipulate, and evaluate learning

resources, activities and outcomes for better and efficient outputs. Another

description of E-learning clarifies what it is meant by better and efficient output;

“…e-enhancements of models of learning. That is to say that; using technology to

achieve better learning outcomes, or a more effective assessment of these outcomes,

or a more cost-efficient way of bringing learning environment to the learners.” [1].

Online and hybrid nature of e-learning brings an important property together such as

flexibility which makes learning progress independent of time and date, and enables

features such as self-monitoring, self-determination of learning progress, always

accessible information, and performance monitoring.

E-learning evolved a lot by the emergence of computers and later internet, and

continues its raise with the advancements in network and mobile services and

software market which offers variety of advanced learning environments, tools and

adaptive multimedia technologies. As an example from one specific vertical market,

that of education, a recent Datamonitor report suggested that the global learning

market for higher education is set to grow with a healthy CAGR of 12%, to $1,891

million by 2008 [2]. By the support of technological advancements e-learning also

faced with some important pedagogical movements such as learner centric, self

directed approaches which are based on constructivist theories. These approaches

consider learners as active participants of learning instead of passive consumers and

change the role of teachers as facilitators who assist learners to clarify their goals and

enable them to be capable of planning, executing and evaluating their learning

 2

progress and outcomes collaboratively, without taking a particular position in the

discussions, rather than being pure source of information [3, 4, 5]. The following

statement describes the challenges of these approaches clearly; “Providing active,

stimulating, authentic learning experiences that support learner collaboration,

construction and reflection is major challenge for success of E-learning.” [6]. These

approaches triggered the creation of learner-centric, social and collaborative learning

environments. Moreover social software (blogs, wikis etc.) gained an important place

for e-learning thus the mine of data, World Wide Web, because of Web 2.0’s great

collaborative potential, Wisdom of Crowds, and simple find-remix and share rule. In

today’s world we are much more connected and that fosters engagement of

information and makes it necessary thus today embedding social networking and

collaboration into learning progress is considered as driving force for learner’s

motivation and activity. Social Web 2.0 tools coming into play also formed different

type of e-learning forms such as blended learning which is usually combination of

several web based tools and instructor-led learning. All in all, learners are not bound

neither to individual learning environments as closed box of pure information nor to

classical in-class learning environments anymore, instead by the guidance of these

constructivist learning theories they are facing with many tools including their

particular learning environments which enables them to collaborate, to reach endless

amount of information of web, and to remix-share it, thus also to create social

networks. Depending on the situation, these tools are being used individually by

learners, or by means of mashups, or as heterogeneous systems which involve

several tools and might be centered by a particular learning system. All these

movements and approaches ended up in same technological challenge as many of

other software related disciplines did; interoperability. E-Learning market has

already been over populated with tools and platforms to support different types of

learning communities with learning management, content management and

communication tools [5]. Thus enabling all these tools to communicate and share

data among each other became a key technological challenge to reach the objectives

of driving pedagogic theories behind.

Interoperability ensures that applications can share data and communicate with each

other in order to complete a particular task without any concern of each others

internal structure or nature. This is completely desired but something is missing,

 3

what about meanings, and relations between data? Isn’t it also desirable that an

application can understand collections of data for particular course and able to link

and present them coherently? Here other global concepts appear which also reflect

greatly over e-learning technologies, one is semantic which aims giving meaning to

data, and ontology which means defining relations and rules between data pieces.

Applications can exchange data with an agreement of the structure of data; however

this seems impractical when the huge amount of information that is produced for

human resides out there in World Wide Web.

Here, Standards come into scene as a solution for the goals specified above;

interoperability and semantics. Standards help to ensure interoperability and five

other important "abilities” which protect and even nurture e-Learning investments;

re-usability, manageability, accessibility, durability, scalability and affordability [7].

Several bodies have developed standards, specifications, guidelines in order to

enable interoperability among different tools, systems and applications and to

achieve semantic web vision like IEEE Learning Standards (e.g. LOM), IMS Global

Learning Consortium (content packaging, metadata etc.) which are education specific

standards, and like W3C,The World Wide Web Consortium, (HTML, XHTML,

XML, RSS, RDF, SOAP etc), Dublin Core, Microformats etc. which are globally for

Web.

The work going to be done in this thesis bases on the key element called learning

objects (also called as “learning resource”), for our case which might be anything

digital (image, text etc) that can be used for educational purposes. A more down-to-

earth approach is to think of a learning object as a digital part of a course ranging in

size and complexity from a single graphic to an entire course itself [8]. Enabling

learning objects to be re-usable and sharable by different tools, systems and

applications is major for e-Learning interoperability challenge, furthermore enabling

computers to understand and process information on the web will also move us to

beginning of the semantic web vision. Here metadata plays a key role; metadata can

be simply explained as data about data, for instance title information of an image or

author information of a text is considered as a metadata element. The bodies noted

previously also have standards and specifications published for metadata

information. In the content of this thesis LOM (Learning Object Metadata)

 4

standardized by IEEE holds an important place; however other bodies and standards

will also be investigated. Most of these standards consist of many elements which

might contain some irrelevant attributes depending on the application, for instance

LOM currently has more than 71 elements. After investigation of LOM and other

metadata standards, next step is going to be deriving an application profile from

LOM, which is simply a sub-set of LOM elements. The application profile is going

to be used as a basis for embedding learning resources into web pages in order to

enable them to be harvested. Rest of the work can be tracked over Figure 1.1;

however before going further it is better to explain some key technologies.

The terms XHTML, XSL, XSLT, SPARQL, RDF, GRDDL, SOAP, and WSDL are

the keystones which constitute the core of enabling technologies of interoperability

and semantic web together with other technologies and standards those are not listed

here or not implemented yet but expressed as future possibilities. It is better to have

brief descriptions of these technologies and standards here. All these technologies

and standards going to be explained in details in coming chapters, however it is

important to denote here that all of these technologies base, involve or relate with

XML; Extensible Markup Language.

• XML: It is a markup language like HTML but differs from HTML because

it’s purpose and functionality; it is used to carry data not to display and

employs own tags of user instead of predefined tags. (W3C)

• XHTML: is HTML defined as an XML application, and a strict version of

HTML which is aimed to replace HTML. (W3C)

• XSL: Stands for Extensible Style sheet Language, describes how the XML

document should be displayed, consist of three parts; XSLT, XPath and XSL-

FO. (W3C)

• XSLT: Extensible Style sheet Language (XSL) Transformation is a language

for transforming XML documents into another XML document or other

formats such as XHTML or RDF. (W3C)

• RDF: The Resource Description Framework is a standard for describing

resources on the Web. (W3C)

 5

• GRDDL: is a mechanism for Gleaning Resource Descriptions from Dialects

of Languages. GRDDL introduces markup based on existing standards for

declaring that an XML document includes data compatible with the RDF and

for linking to algorithms (typically represented in XSLT), for extracting this

data from the document.

• SPARQL: is a standardized query language for RDF data which offers

developers a way to write queries across the wide range of RDF information

on the web. (W3C) [9,10]

• SOAP: is a simple XML-based protocol to let applications exchange

information over HTTP. (W3C)

• WSDL: Web Service Definition Language is a XML document which

describes Web Services, such as operations are available. (W3C)

After defining an application profile, next step will be proposing a light-weight

Microformat which is a set of XHTML tags that is used to embed information into

web pages which are understandable both by machines and humans while

considering the human as first priority. Embedding Microformat structures into

XHTML page might be simply manual which means via basic XHTML coding or it

can be done via applying XSLT transformations over XML bindings of learning

objects. After proposing a light-weight Microformat for learning objects, a web

service (based on SOAP and WSDL) will be created which collects learning objects

in XHTML pages and transforms them to RDF format via XSLT or GRDDL, which

is also based on XSLT. XHTML file might be accompanied with an XSL file which

tells how to translate embedded information into RDF, if so then GRDDL will be

used, if this is not the case then a predefined XSL transformation will be applied for

RDF transformation. This service will also enable these objects to be queried via an

SQI target, which is an interoperability structure that enables heterogeneous systems

to communicate for the purpose of learning object retrieval by using a common query

langue in our case it is SPARQL [4]. The last step of the work will be setting up a

search client which will use SQI target to query learning resources, this small

application will serve as the proof of concept.

 6

Figure 1.1 Graphical Representation of the Proposed Work

To sum up, the aim of this thesis is to enable harvesting of Learning Objects which

are embedded in web pages by proposing a model. Therefore, several Learning

Object Metadata standards will be investigated for compatibility with this harvesting

approach, and then a light weight Microformat for learning objects will be proposed.

Then a web service will be created which uses XSLT/GRDDL to extract learning

objects in different web pages, and uses SQI target for retrieval facility with a more

complex query language called SPARQL. Final work will be providing a search

client employing created SQI service for search and retrieval of learning objects.

Rest of this document is structured as follows; Chapter 2 involves the state of the art

on basic related web technologies while Chapter 3 provides the state of the art on

related semantic web technologies. The details of Microformat approach will be

included in Chapter 4 and Chapter 5 introduces and investigates learning object

metadata standards and specifications. Chapter 6 proposes an application profile and

Microformat for learning object search and retrieval, and then provides an example

implementation. Chapter 7 evaluates the model and the application while Chapter 8

discusses about possible future developments related with the work done and also

involves a brief critique of the driven concepts, technologies and philosophies

behind.

App.
Prof.

XHTML

SQI Target
Web Service

(SOAP, WSDL)

XHTML

Central Storage

R
D
F

XHTML

R
D
F

R
D
F

STORE

QUERY
SPARQL

USERS

EXTRACT

XSLT / GRDDDL

LOM

Microformat

EMBED

EMBED

EMBED

World Wide Web

Subset

Transform

XML

XSLT

AGENTS

e.g. Applying
Reasoning algorithms

XSL

 7

Chapter 2

Ground Web Technologies and Specifications

In this chapter some of W3C technologies and specifications that were referred in

Chapter 1 will be explained in details, also details of SQI will take part in this

chapter; however these details will be limited by the needs of this thesis, wherever

proper other relevant or more advanced technologies and specifications will be

referenced and introduced briefly. These interoperable technologies which will be

under interest of this chapter are XML, XHTML, XSL, XSLT, SOAP and WSDL

and they will form the technological ground of the main work targeted by this thesis

in the sense of interoperability, other technologies RDF, GRDDL, and SPARQL will

be under consideration of Chapter 3, because these technologies differ from the each

other in the sense of purpose and acceptance. First set of technologies has a wild

acceptance and became wildly accepted standards, however second set of

technologies are still have a lack of acceptance and they target semantic issues even

though they are built over the first set of technologies.

There is several open-source, or freeware tools and services that can be used to test

and create the examples given in this chapter. The tools and services which are used

to test and validate examples and concepts in this chapter are as follows;

Liquid XML studio 2008, this is a freeware tool that can be used to create and test

XML, XSLT, XSD, WSDL etc. documents and Web Services. Most of the examples

in this chapter tested and validated with this tool.

• Mark-up validator: This service is used to validate Web Documents in the

format of HTML, XHTML etc. It can be found in the following link:

http://validator.w3.org

 8

• XML Schema validator: This validator is used to test and validate XML

Schema documents. It can be found in the following link

http://www.w3.org/2001/03/webdata/xsv.

• Online XSLT 2.0 Service: This service is used to test and validate any given

XSLT document over any given XML document. It can be found in the

following link; http://www.w3.org/2005/08/online_xslt/

2.1 XML

Extensible Mark-up Language (XML) is a simple, very flexible text format.

Originally designed to meet the challenges of large-scale electronic publishing, XML

is also playing an increasingly important role in the exchange of a wide variety of

data on the Web and elsewhere [11]. XML is recommendation of W3C, it is basically

a mark up language like HTML.

It is noted previously that XML differs from HTML because of its purpose and

functionality. XML allows user to use any tag she wants instead of using predefined

tags. Therefore it is self descriptive and meanings of tags can only be understood by

the writer if the tags are not clear enough. A XML document will not mean anything

to a browser; it is not used for presentation purposes. XML does not do anything;

XML was created to structure, store, and transport information [12]. XML files are

plain text files therefore any program which can understand the tags in particular

XML file can do special operations over this XML document.

XML is software and hardware independent by nature, so it really makes an efficient

way of storing and transporting data among any kind of programs regardless of

compatibility level among them. XML has been widely adopted both by Web

Applications and by desktop applications. A XML file simply can be used as a

response format for a Web service, or one can simply keep all product data of her

web site in XML files to separate data from presentation, or a desktop application

can hold all its configuration data in XML files. XML is also used for other internet

technologies such as XHTML, RSS, WSDL, RDF, OWL etc. Therefore without clear

understanding and competence of XML, it will not mean much in the kingdom of

XML.

 9

2.1.1 How to Create XML Documents

The XML file, Student.xml, in Figure 2.1 demonstrates simple XML file which holds

basic data for a student.

1 <?xml version="1.0" encoding="utf-8"?>
2 <student recordid="1">
3 <name>Ahmet</name>
4 <surname>Soylu</surname>
5 <age>23</age>
6 <gender>Male</gender>
7 </student>

Figure 2.1 Simple XML Code

XML file consists of tags which are simply in “<tag>data</tag>” format. Each

structure that has a starting tag and a closing tag called as element. Let’s move

through the XML file in Figure 2.1, first line tells that this document is a XML

document then it gives the version of XML and encoding of this XML file. XML

files have a tree structure; therefore each XML file has a root element necessarily, in

Figure 2.1 at line 2, the “<student>” tag is starting tag of our root element. Each

element might have children, in this case “<name>”, “<surname>”, “<age>”,

“<gender>” are children of “<student>” element, also each element might have

siblings; all children of “<student>” are siblings of each other. Elements are case

sensitive therefore “<name>” and “<Name>” are not equal to each other. Elements

need to be nested properly, for instance “<a>” is nested wrongly, its

correct nesting would be “<a>”. Elements might have attributes like the

case of the tag at second line; “recordid” is the attribute of “<student>” element. All

children of “<student>” element can be represented as attributes of this element. This

is possible however; it would be inefficient and inflexible, only having data which is

irrelevant to original data should be placed as attributes, which is actually metadata.

All values of attributes should be quoted with a single quote or double quote.

Between start and end tags of any element there might be other elements those

elements having other elements as data are called complex elements, or there might

be plain text as data those elements which hold plain text as data are called simple

elements or leaves. Here <student> is a complex element, but “<name>” is a simple

element. “<name>” contains text data. Using special characters inside data should be

avoided, those are; ‘<’, ‘>’, ‘&’ etc. instead their HTML representations should be

 10

used, because content of simple elements are also being parsed by parsers. Each

simple element might have two types of data; first one is PCDATA which is parsed

by parsers, or CDATA which is not parsed by parsers. Therefore these special

characters can be used inside CDATA. All data inside simple tags are PCDATA by

default, usage of CDATA is in following format <name> “<![CDATA["Ahmet"]]>

</name>”. It is also important to note naming rules here; element names might

include letters, numbers and other characters but can not include spaces, and can not

start with numbers, punctuation characters and with “xml” keyword.

When one opens the XML document in Figure 2.1 via a browser she will just see a

coloured version of this sample code, and she will see a “-” sign before <student> tag

which allows her to expand or hide content of complex elements. This is so because,

except the structure of a XML document there is nothing it can tell to the browser.

1 <?xml version="1.0" encoding="utf-8"?>
2 <basket xmlns:person="www.xxx.com/person" xmlns:product="www.xxx.com/product" >
3 <person:owner>
4 <person:name>Ahmet</person:name>
5 <person:surname>Soylu</person:surname>
6 <person:age>23</person:age>
7 <person:gender>Male</person:gender>
8 </person:owner>
9 <product:item id="134">
10 <product:name>TV</product:name>
11 <product:price>400</product:price>
12 <product:size>55</product:size>
13 <product:type>Flat</product:type>
14 <product:comment><![CDATA[This is nice.]]></product:comment>
15 </product:item>
16 <date>2008-03-11</date>
17 <status>Draft</status>
18 </basket>

Figure 2.2 Name Spaces

Let’s move with another example, the XML code in Figure 2.2 includes data about a

simple shopping basket. It introduces another concept, called “Name Spaces”. Line

two introduces two name spaces which are “product” and “person”. “XMLNS” refers

to XML Name Spaces, name spaces used to differentiate tags that belong to different

XML documents. Actually each name space provide a set vocabulary in some

respect, for instance to define a product, a product name space might provide “price”,

“name”, “brand” etc. as terms of this vocabulary. Besides data on different XML

documents can be mixed into single XML document, in order to prevent tag name

 11

conflicts name spaces are used. In code in Figure 2.2 there are two tags called

“<name>”, one is name for basket owner and other one is name for product. These

two tags are differentiated by using different name spaces for each. Name space

declaration is added to beginning of each tag via semi-colon. The URI that name

space shows actually never used, generally it targets to a page where name space

elements are defined. Only “date” and status “tags” belong to current XML file other

tags belong either to person or product name space in this example.

So far it is really clear that anyone can store her data via well-formed XML, but what

about restrictions and constrains, for instance what happens when one writes “Male”

between “<age>” tags, or writes “<gender>” element two times. So parser needs to

verify consistency of the data and structure of a XML file. Here DTD, Document

Type Definition, and XSD, XML Schema Definition, plays important role. Those

technologies used to define structure of a XML file and applying constraints on data.

XSD is more flexible than DTD therefore DTD will not be under interest of this

chapter.

2.1.2 XML Schema Definition

The purpose of a XML Schema is to define the legal building blocks of a XML

document, just like a DTD. [13] It is used to define and validate structure, elements,

attributes, data types of a XML document. It is written via XML syntax; it is much

more powerful than DTD because it is extendable and supports name spaces and data

types.

The XML code in Figure 2.3 is the same code in Figure 2.1, only difference is that it

references a XML Schema Definition file which is Student.xsd. First the XML

Schema name space instance is referenced, and then schema definition is referenced

via “noNameSchemaLocation”. In examples of this chapter, all codes assumed to

reside in same physical place however this location is usually a web address denoted

by a URL.

 12

1 <?xml version="1.0" encoding="utf-8"?>

2
<student xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="Student.xsd" recordid="1">

3 <name>Ahmet</name>
4 <surname>Soylu</surname>
5 <age>23</age>
6 <gender>Male</gender>
7 </student>

Figure 2.3 XML with Schema Reference

The code in Figure 2.4 is XML Schema definition of Student.xml. First line of the

code is a usual XML document declaration. The second line first tells that any

element and attribute used in this XML document must be name space qualified.

Then it references XML Schema Name Space with “xs” which means any element

that starts with “xs:” belongs to XML Schema Name Space. The rest of the document

says that “<student>” element is root of this XML file and it is a complex element

(“xs:complexType”), it consist of sequence (“xs:sequence”) of simple elements

which are name, surname, age, and gender elements, and it has a required attribute

“recordid” which must be positive integer. “Type” attribute in element declarations

refers to data type of element, “maxOccur” means how many times this element can

appear at most and “minOccur” attribute means how many times this element should

appear at least. Variety of rules and constraints can be applied over a XML

document, and much more complex situations exist; a XML document might include

different name spaces like in the example Figure 2.2 and so on.

1 <?xml version="1.0" encoding="utf-8"?>

2
<xs:schema attributeFormDefault="qualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

3 <xs:element name="student">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element minOccurs="1" maxOccurs="1" name="name" type="xs:string" />
7 <xs:element minOccurs="1" maxOccurs="1" name="surname" type="xs:string" />
8 <xs:element minOccurs="1" maxOccurs="1" name="age" type="xs:positiveInteger" />
9 <xs:element minOccurs="1" maxOccurs="1" name="gender" type="xs:string" />
10 </xs:sequence>
11 <xs:attribute name="recordid" type="xs:positiveInteger" use="required" />
12 </xs:complexType>
13 </xs:element></xs:schema>

Figure 2.4 Schema Definition

A better example is demonstrated in Figure 2.5 to give deeper understanding and

competence of XSD. Figure 2.5 contains a more complex example for a shopping

 13

basket which includes basket owner details like name, surname, age and gender, and

basic data about products like product name and price. There are three XSD files

assigned for this XML file, one for “basket.xml” in general (“basket.xsd”), one for

Person name space (“person.xsd”) and other one is for product name (“product.xsd”)

space.

1 <?xml version="1.0" encoding="utf-8"?>

2
<basket xmlns:person="person" xmlns:product="product"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="basket.xsd">

3 <person:owner>
4 <person:name>Ahmet</person:name>
5 <person:surname>Soylu</person:surname>
6 <person:age>23</person:age>
7 <person:gender>Male</person:gender>
8 </person:owner>
9 <product:item id="A13">
10 <product:name>TV</product:name>
11 <product:price>400</product:price>
12 <product:comment><![CDATA[This is nice.]]></product:comment>
13 </product:item>
14 <product:item id="B42">
15 <product:name>Mouse</product:name>
16 <product:price>10</product:price>
17 </product:item>
18 <date>2008-03-11</date>
19 <status>Draft</status>
20 </basket>

Figure 2.5 XML in Details

In Figure 2.6 “Basket.xsd” file content is shown, first line is regular XML

declaration that is used before. In second line name spaces that will be used in this

document are declared which are person and product name spaces. In third and

fourth lines the xsd files imports other xsd files (person and product). In import

statement we do have name space attribute which tells for which name space the

schema file is used for.

 14

1 <?xml version="1.0" encoding="utf-8"?>

2
<xs:schema xmlns:product="product" xmlns:person="person"
attributeFormDefault="qualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

3 <xs:import schemaLocation="person.xsd" namespace="person" />
4 <xs:import schemaLocation="product.xsd" namespace="product" />
5 <xs:element name="basket">
6 <xs:complexType>
7 <xs:sequence>
8 <xs:element minOccurs="1" maxOccurs="1" ref="person:owner" />
9 <xs:element minOccurs="0" maxOccurs="unbounded" ref="product:item" />
10 <xs:element minOccurs="1" maxOccurs="1" name="date" type="xs:date" />

11
 <xs:element minOccurs="1" maxOccurs="1" default="Draft" name="status"
type="xs:string" />

12 </xs:sequence>
13 </xs:complexType>
14 </xs:element>
15 </xs:schema>

Figure 2.6 Schema for Figure 2.1

Then it says there is a root element called “basket” which is complex type, and it has

sequence, “<xs:sequence>” , of elements in given order. “<xs:all>” or “<xs:choice>”

could also be used instead of “<xs:sequence>”. “<xs:all>” means all elements will be

used without any order constraint, “<xs:choice>” means one of this elements can be

used depending on the choice. First element is defined as owner element in person

name space, and second one defines the product element which is in product name

space defined in product.xsd. “minOccurs” defined as 0 and “maxOccur” defined as

“unbounded” for “product” element which says product element might appear at

least 0 times or at most infinite times. For status element there is a default value

defined as “draft”. There is variety of types that can be used for “type” such as

“integer”, “positiveInteger”, “string”, “date” etc.

Figure 2.7 shows the content of Person.xsd which defines schema for person name

space. The lines from 3-14 introduces two simple element types that can be used by

means of reference. Currently they are just definition (like custom data types). First

simple element type is called “ageType” which will be used to denote age data, its

restrictions (“xs:restriction”) says it needs to be positive integer and minimum value

for this positive integer is 18 (“minInclusive”) and maximum value (“maxInclusive”)

for this positive integer is 99. Other simple type definition is called as “genderType”

which will be used to denote gender data. Its restrictions says it only can take “Male”

and “Female” as value (“xs:enumeration”). It is important to note here, a complex

 15

element can also be defined as element type. After element type definitions, XSD

document starts to define XML file, it says root element is “owner” and this complex

type element includes “name”, “surname”, “age”, and “gender” child elements.

“Name” element is string type which has minimum length (“xs:minLenght”) of 2 and

maximum length (“xs:maxLenght”) of 5.

1 <?xml version="1.0" encoding="utf-8"?>

2
<xs:schema xmlns:person="person" attributeFormDefault="qualified"
elementFormDefault="qualified" targetNamespace="person"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

3 <xs:simpleType name="ageType">
4 <xs:restriction base="xs:positiveInteger">
5 <xs:minInclusive value="18" />
6 <xs:maxInclusive value="99" />
7 </xs:restriction>
8 </xs:simpleType>
9 <xs:simpleType name="genderType">
10 <xs:restriction base="xs:string">
11 <xs:enumeration value="Male" />
12 <xs:enumeration value="Female" />
13 </xs:restriction>
14 </xs:simpleType>
15 <xs:element name="owner">
16 <xs:complexType>
17 <xs:sequence>
18 <xs:element minOccurs="1" maxOccurs="1" name="name">
19 <xs:simpleType>
20 <xs:restriction base="xs:string">
21 <xs:minLength value="2" />
22 <xs:maxLength value="10" />
23 </xs:restriction>
24 </xs:simpleType>
25 </xs:element>
26 <xs:element minOccurs="1" maxOccurs="1" name="surname" type="xs:string" />

27
 <xs:element minOccurs="1" maxOccurs="1" name="age"
type="person:ageType" />

28
 <xs:element minOccurs="1" maxOccurs="1" name="gender"
type="person:genderType" />

29 </xs:sequence>
30 </xs:complexType>
31 </xs:element>
32 </xs:schema>

Figure 2.7 Schema for Person Name Space

Figure 2.8 shows the content of Product.xsd which defines schema for product name

space. It says root element is “item”. This element is complex type and it has

sequence of elements which are name, price, and comment. The restriction for

“comment” element says; it should collapse the content which means it will replace,

file end signs, new line signs, and multiple lines with single space. In line 15

 16

“xs:any” element means this complex element might be extended with new elements,

another XSD file can be shown as reference in XML file for these new extended

elements. It is also seen that “item” element has “id” attribute and a regular

expression is applied as restriction to this attribute which enforces value of “id” to be

consist of a capital character from A to Z and two digits from 1 to 9.

1 <?xml version="1.0" encoding="utf-8"?>

2
<xs:schema xmlns:product="product" attributeFormDefault="unqualified"
elementFormDefault="qualified" targetNamespace="product"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

3 <xs:element name="item">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element minOccurs="1" maxOccurs="1" name="name" type="xs:string" />

7
 <xs:element minOccurs="1" maxOccurs="1" name="price"
type="xs:positiveInteger" />

8 <xs:element minOccurs="0" maxOccurs="1" name="comment">
9 <xs:simpleType>
10 <xs:restriction base="xs:string">
11 <xs:whiteSpace value="collapse" />
12 </xs:restriction>
13 </xs:simpleType>
14 </xs:element>
15 <xs:any minOccurs="0" maxOccurs="2" />
16 </xs:sequence>
17 <xs:attribute name="id">
18 <xs:simpleType>
19 <xs:restriction base="xs:string">
20 <xs:pattern value="[A-Z][0-9][0-9]" />
21 </xs:restriction>
22 </xs:simpleType>
23 </xs:attribute>
24 </xs:complexType>
25 </xs:element>

Figure 2.8 Schema for Product Name Space

2.2 XHTML

XHTML 1.0, Extendable Hypertext Mark-up Language, is a reformulation of

HTML 4 as a XML 1.0 application [14]. XHTML is aimed to replace HTML; it is

actually stricter version of HTML and recommendation of W3C. Currently, Web

browsers can render bad formed HTML (like having incorrectly nested tags)

documents, and tries to fix and interpret document. This gives so many loads to

browsers. Think about small PDAs or mobile devices, even the load will be much

higher for this kind of devices. Therefore - by combining HTML and XML, and their

 17

strengths, we got a mark-up language that is useful now and in the future – XHTML

[15]. Today’s browsers both support XHTML and HTML, however in the future they

are just supposed to support XHTML, that will cause web to be consist of well-

formed web pages.

There are important restrictions that XHTML enforces different than HTML, and

actually they are the main difference between HTML and XHTML coming from

XML. These restrictions are as follows, all elements must be properly nested, all

elements need to have a closing tag or if it is en empty element like “<hr>” it should

also must be used as “<hr />”. All element and attribute names must be lower case,

and each XHTML file need to have a root element which is “<html>”. Attribute

values need to be double or single quoted. “id” attribute should be used instead of

“name” attribute. Also attribute minimization is not allowed, for instance this “<input

checked>” should be written as “<input checked="checked">”. All HTML

documents have to have “DOCTYPE” declaration. “html”, “head”, “title” and

“body” elements are mandatory. Inside the “DOCTYPE” a DTD for XHTML file is

declared, this DTD is used to ensure syntax and grammar of the XHTML document.

There are three types of DTD that can be used with an XHTML document; those are

“strict”, “transitional”, and “frameset”. Strict one does not allow any presentational

features, a CSS (Cascading Style Sheet), need to be used together for presentational

concerns. Transitional ones allows presentational features to be used and frameset

one allows HTML frames to be used. The sample code in Figure 2.9 demonstrates a

simple XHTML document.

1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

2 <html>
3 <head>
4 <title>Sample XHTML Document</title>
5 </head>
6 <body>
7 <hr />
8 <p id='p1'>This is a sample XHTML document</p>
9 <hr />
10 </body>
11 </html>

Figure 2.9 Sample XHTML Document

 18

XHTML also defines standard attributes for tags and events (JavaScript events),

Furthermore W3C created small set of XHTML elements as modules that can be

used for different type of devices such as from a normal pc explorer to a mobile

explorer, this is done because whole set might be so much for a device, and a small

set might be insufficient for a pc browser. There are several modules created.

Attribute and event sets and XHTML modules will not be detailed here, however

W3C site might be checked for more details on these issues.

2.3 XSL

XSL is a family of W3C recommendations for defining XML document

transformation and presentation. It consists of three parts [16]:

• XSLT: XSL Transformations, a language for transforming XML.

• XPath: XML Path Language, an expression language used by XSLT to

access or refer to parts of a XML document.

• XSL-FO: XSL Formatting Objects, a XML vocabulary for specifying

formatting semantics

XSLT and XML will be under focus of this chapter, those technologies will be useful

to transform a XML document to another XML document or to a RDF document or

to a XHTML page.

2.3.1 XPath

XPath is a language for finding information in a XML document. XPath is used to

navigate through elements and attributes in a XML document [17].

XPath uses expression similar to traditional computer system to navigate in XML

files. It has a library for standard functions which involves more than 100 built-in

functions. XPath is a major element for XSLT therefore it is important to have a

XPath knowledge to use XSLT.

XPath considers a XML file as a collection of nodes, and there seven types of XML

items those are accepted as nodes; elements, attributes, text, name space, processing

–instruction, comment, and root nodes [17]. Nodes might have, parent, children,

 19

siblings, ancestor, and descendant relationship among each other. Parent, children,

and sibling relationship already introduced at XML section, ancestors of an element

are parent of this element, parent of its parent and so on. Descendants of an element

are children of this element, children of its children and so on. Here on Table 2.1,

important XPath expressions are introduced.

Table 2.1 Example Expressions for XML File in Figure 2.5

Expression Description
/ Selects from the root node.
basket Selects all the child nodes of basket.
/basket Selects the root node of basket.

/basket/person:owner

Selects owner elements that are
children of basket. If there were no
name space in out XML document
query would be /basket/owner.

//product:price
Selects all the price elements , no
matter where they are in the
document.

basket//product:price

Selects all price elements that are
descendant of the basket element, no
matter where they are under the
bookstore element.

//@id
Selects all the attributes those are
named id.

/basket/product:item[1]
Selects the first item element that is
the child of the basket element.

/basket/product:item[last()]
Selects the last owner element that is
the child of the basket element.

/basket/product:item[last()]
Selects the last but one book element
that is the child of the bookstore
element.

/basket/product:item[last()<3]
Selects the last two item elements
that are children of the basket
element.

//product:item[@id]
Selects all the item elements that
have an attribute named id.

//product:item[@id=’A13’]
Selects all the item elements that
have an attribute named id with a
value of 'A13'

/basket/product:item[product:price>100]

Selects all the item elements of the
basket element that have a price
element with a value greater than
100.

/basket/product:item[product:price>100]/product:name

Selects all the name elements of the
item elements of the basket element
that have a price element with a
value greater than 100

/basket/*
Selects all the child nodes of the
basket element.

//* Selects all elements in the document

//product:item[@*]
Selects all item elements which have
any attribute.

//product:name | //product:price
Selects all the name AND price
elements of all product elements.

//product:name/text()
Selects all the text values of name
elements, result will be, TV and
Mouse.

 20

These expressions can be tested over any XML document via Liquid XML studio

XPath facility, most of the web programming languages, and browsers (via

JavaScript by using Document Object Model, DOM) allows XPath expressions to be

used. The following expressions can also be tested via IE 7.0 DOM, however it is

always advisable to use this expression on server side, as a programmer should never

completely trust on client side processing.

There is also a concept called axes. An axis defines a node-set relative to the current

node [17]. In Table 2.2, there are the examples of most important ones. Rest can be

found on W3C site.

Table 2.2 Example Axes for XML Code in Figure 2.5 [17]

Expression Description

child::product:item
Selects all item nodes that are children of
the current node

attribute::id Selects the lang attribute of the current node
child::* Selects all children of the current node
attribute::* Selects all attributes of the current node

child::text()
Selects all text child nodes of the current
node

child::node() Selects all child nodes of the current node

descendant::product:item
Selects all item descendants of the current
node

ancestor::product:item Selects all item ancestors of the current node

ancestor-or-self::product:item
Selects all item ancestors of the current node
- and the current as well if it is a book node

child::*/child::price
Selects all price grandchildren of the current
node

2.3.2 XSLT

XSLT stands for Extensible Style Sheet Transformation and it is a W3C

recommendation XSLT is designed for use as part of XSL, which is a style sheet

language for XML. In addition to XSLT, XSL includes a XML vocabulary for

specifying formatting. XSL specifies the styling of a XML document by using XSLT

to describe how the document is transformed into another XML document that uses

the formatting vocabulary [18].

HTML uses predefined tags that browsers know how to render, and via CSS it is

much easier to assign custom presentation features to any element of HTML.

 21

However a XML file does not include any predefined tags therefore, they are not

understandable for browsers or by other programs. Thus, XSLT might be used to tell

browser how a XML file should be displayed or can be used to transform a XML file

into another XML file or a different format such as RDF. XSLT uses XPath to

traverse on a XML file when a particular match found then XSLT transforms this

matching part into desired result document.

In Figure 2.10, XSLT usage is demonstrated via example XML and XSLT

documents. In XML file the line 2 makes the only difference from a regular XML

file. This line references the XSLT file and says that this is a style sheet file. XSLT

file starts with a regular XML line, line 1, since it uses XML syntax. The second line

refers to XSL name space to use XSLT features. The rest of the document includes

transformation rules and XPath expressions. After having an XSLT file and a XML

file that references this XSLT file as a style sheet, when one opens this XML file via

browser XML file is presented in a way that related XSLT file describes.

XML File XSLT File

1
<?xml version="1.0"
encoding="ISO-8859-1"?>

<?xml version="1.0" encoding="ISO-8859-1"?>

2
<?xml-stylesheet
type="text/xsl"
href="cdcatalog.xsl"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

3 <basket> <xsl:template match="/">
4 * * * * * *
5 </xsl:template>
6 </basket> </xsl:stylesheet>

Figure 2.10 How to Use XSLT

In Figure 2.11, a more detailed example has been given which covers most of the

functionality of XSLT. The example XSLT file transforms basket.xml into a

XHTML page. “<xsl:template>” element at line two selects the XML elements that

the template will be applied, for given example it is set to whole document because

of “/”. “<xsl:value-of select=’’>” at lines 5,6,7,8 is used to select value of a XML

element and add it to result, here “select” allows applying an Xpath expression.

“<xsl:for-each select=’’>” at line 15 is used to select elements those are belong to

specific node set. “chose-when-otherwise” at lines 17-31 structure is used to apply a

conditional test against XML file.

 22

1 <?xml version="1.0" encoding="ISO-8859-1"?>

2

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:person="person"
xmlns:product="product">
<xsl:template match="/">

3
 <html>
 <body>
 <h2>My Shopping Basket</h2>

4
 <table border="1">
 <tr> <th>Name</th> <th>Surname</th> <th>Age</th> <th>Gender</th> </tr>

5
 <tr>
 <td> <xsl:value-of select="/basket/person:owner/person:name"/> </td>

6 <td> <xsl:value-of select="/basket/person:owner/person:surname"/> </td>
7 <td> <xsl:value-of select="/basket/person:owner/person:gender"/> </td>

8
 <td> <xsl:value-of select="/basket/person:owner/person:age"/> </td>
 </tr>

9 </table>
10 <table>
11 <caption>
<i>Products in your basket</i></caption>
12 <tr bgcolor="silver">
13 <th>Name</th> <th>Price</th> <th>Comment</th>
14 </tr>
15 <xsl:for-each select="/basket/product:item">
16 <xsl:sort select="/basket/product:item/product:price"/>
17 <xsl:choose>
18 <xsl:when test="product:price > 100">
19 <tr bgcolor="red">
20 <td> <xsl:value-of select="product:name"/> </td>
21 <td> <xsl:value-of select="product:price"/> </td>
22 <td> <xsl:value-of select="product:comment"/> </td>
23 </tr>
24 </xsl:when>
25 <xsl:otherwise>
26 <tr>
27 <td> <xsl:value-of select="product:name"/> </td>
28 <td> <xsl:value-of select="product:price"/> </td>
29 <td> <xsl:value-of select="product:comment"/> </td>
30 </tr>
31 </xsl:otherwise>
32 </xsl:choose>
33 </xsl:for-each>
34 </table>
35
Date : <xsl:value-of select="/basket/date"/>

36 Status: <xsl:value-of select="/basket/status"/>
37 </body>
38 </html>
39 </xsl:template>
40 </xsl:stylesheet>

Figure 2.11 Style Sheet for Figure 2.1

“<xsl:sort select=’’>” at line 16 is simply used to sort output. Another conditional

test structure which is not used in this example is if clause. The format is as follows;

“<xsl:if test=’expression’> some output </xsl:if>”.

 23

2.4 Web Services

A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network [19]. It is self descriptive and self-containing

application component which uses open protocols and XML.

Web services provide application re-usability and data exchange between different

types of applications and ensure loosely-coupling. There are many kind of

applications needed very often, instead of writing same application again and again,

a web service will be a good opportunity to use same application as a part of

different applications. Moreover each one of these applications might be created via

using different technologies, and each one has its own way to deal with data, in that

sense a web application provides a common way of interaction and exchange of data

between these applications.

The components which are the part of a web service can be counted as follows;

• Service Transport,

• XML messaging,

• Service Description,

• Service Discovery.

Service Transport is responsible for transportation of messages between applications,

HTTP, FTP, SMTP etc. provides service transport. XML messaging provides means

of encapsulating messages in a common XML form, so both applications can

understand messages; examples are SOAP, XML-RPC (Remote Procedure Call),

REST etc. Service Description defines an interface for service so other applications

can communicate with this service with respect to this description; the service

description language is WSDL which is also an XML document. Finally service

discovery, gathers all services to a common registry so that other applications can

find these services, this is handled via Universal Discovery Description and

Integration, UDDI.

 24

Figure 2.12 Web Service Architecture

The service transport technology that will be used is mainly based on the type of

application; therefore the listed technologies for service transport are not complete

alternatives to each other. There are no mature alternatives against WSDL and

UDDI. However the XML messaging technology alternatives are competing, in that

sense SOAP has a major place because of its advances. For instance XML-RPC is

considered as too simple to be used in enterprise level where REST is not considered

as well established yet. However SOAP is a W3C recommendation and it provides

extensibility, better support and able to deal with complex data expressiveness. This

brings complexity as a drawback.

2.4.1 WSDL

WSDL, Web Service Description Language, is a XML based language which

describes Web services, their operations and how to access them. A WSDL

document includes a set of definitions to describe service, besides within a single

WDSL document several Web Services can be described.

The code piece in Figure 2.13 belongs to a sample WSDL document, main elements

of a WSDL document are “<wsdl:portType>”, “<wsdl:message>”, “<wsdl:type>”,

”<wsdl:binding>”. “<wsdl:portType>” defines the operations performed by the Web

UDDI

USER

SERVICE

WSDL

1. Register
2. Search

3. Refer

4. Connect
SOAP

 25

service, it can be thought as a function, “<wsdl:message>” defines messages used by

the Web Service, they can be thought as parameters of functions. “<wsdl:binding>”

defines the communication protocol used by the Web Service.

1 <?xml version="1.0" encoding="utf-8"?>

2

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="www.mysite.com/MyNamespace"
 targetNamespace="www.mysite.com/MyNamespace">

3
4 <wsdl:message name="MyInput">
5 <wsdl:part name="parameters" element="xs:string" />
6 </wsdl:message>
7 <wsdl:message name="MyOutput">
8 <wsdl:part name="Body" element="xs:string" />
9 </wsdl:message>
10
11 <wsdl:portType name="ServiceSoap">
12 <wsdl:operation name="MyMWebMethod">
13 <wsdl:input message="tns:MyInput" />
14 <wsdl:output message="tns:MyOutput" />
15 </wsdl:operation>
16 </wsdl:portType>
17
18 <wsdl:binding name="ServiceSoap" type="tns:ServiceSoap">
19 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
20 <wsdl:operation name="MyMWebMethod">

21
 <soap:operation
soapAction="http://www.example.com/SampleWebService/MyMWebMethod"
style="document" />

22 <wsdl:input>
23 <soap:body use="literal" />
24 </wsdl:input>
25 <wsdl:output>
26 <soap:body use="literal" />
27 </wsdl:output>
28 </wsdl:operation>
29 </wsdl:binding>
30
31 <wsdl:service name="Service">
32 <wsdl:port name="ServiceSoap" binding="tns:ServiceSoap">

33
 <soap:address location="http://www.example.com/SampleWebService/Service.asmx"
/>

34 </wsdl:port>
35 </wsdl:service>
36
37 </wsdl:definitions>

Figure 2.13 Sample WSDL Document

The code piece in Figure 2.13 starts with common XML declaration after that it

proceeds with the root element “<wsdl:definitions>” and makes declaration of

 26

necessary Name Spaces. After root element messages are declared one as “MyInput”

and other one as “MyOutput”, names are assigned arbitrarily. Code proceeds with

“<portType>” declarations, port name “ServiceSoap” is an arbitrary name and can be

thought as library name where “MyWebMethod” is can be thought as a function of

this library. After operation declarations, document proceeds with bindings, and

concludes with service definitions and location information. More details can be

found in related W3C specifications.

2.4.2 SOAP

SOAP, Simple Object Access Protocol, is a platform and language independent and

XML based protocol which enables applications to communicate and exchange

information over HTTP. One of the most important pros of SOAP is its being based

on HTTP, because HTTP is supported by all internet browsers and it provides a way

for applications to communicate without any constraint based on operating systems,

programming languages and technology.

A SOAP message is actually HTTP request/response based on XML, however it has

to satisfy SOAP encoding rules. The SOAP message in Figure 2.14 is a simple

SOAP request message encoded according to the sample WSDL document in Figure

2.13. Basic elements of a SOAP message are “envelope” (root element, mandatory),

“header” (optional), “body” (mandatory) and “fault” (optional) element. The sample

in Figure 2.14 starts with common XML declaration, then it proceeds with root

element which is “<soap:envelope>” and it declares necessary Name Spaces.

“<soap:Header>” comes after root element if it exists, and it contains application

specific information like authentication. Document proceeds with “<soapBody>”

where actually SOAP message takes place. A SOAP response follows the same

convention. Usually SOAP users do not need to deal with SOAP messaging most of

the application frameworks and tools already handles SOAP messaging and hides

internal details from users.

 27

1 <?xml version="1.0" encoding="utf-8"?>

2
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

3
4 <soap:Header>

5
<m:Trans xmlns:m=" http://www.example.com/SampleWebService/”
soap:actor=" http://www.example.com/SampleWebService” soap:mustUnderstand=1> 234

6 </m:Trans>
7 </soap:Header>
8
9 <soap:Body>
10 <m:MyWebMethod xmlns:m="http://www.mysite.com/MyNameSpace">
11 <m:myInput>Hello</myInput>
12 </m:MyWebMethod>
13 </soap:Body>
14
15 </soap:Envelope>

Figure 2.14 Sample SOAP Request Message

2.5 SQI

SQI is an Application Program Interface, API, which defines set of methods for

querying different learning object repositories in order to achieve interoperability

among learning repositories [20, 21]. The set of methods provided by SQI are

actually web service methods however SQI does not impose any constraint on query

language or type of result format because each repository has its own nature.

Figure 2.15 Communication Between Two Repositories [20]

The figure above, Figure 2.15, demonstrates the basic structure of communication for

SQI. Learning repository A considered as source which submits a query to “target”

which is learning repository B. It is the necessary for learning repositories to agree

on a common query language and result format before submitting a query or for any

further communication according to SQI specification. Wrappers might be needed

 28

for any kind of mapping from common to local environment such as query or schema

mapping.

SQI supports both synchronous and asynchronous queries; in synchronous querying

target returns the result to the source as response to the query call and it is source

initiated. In asynchronous querying, when target found enough amount of result for

source’s query, result is forwarded to source, and this is target initiated.

Asynchronous querying is more difficult to handle, in SQI it is handled in following

way when source calls query method it also sends a parameter which gives the

address of source listener so target can forward result via this listener and another

parameter which is an id the for the query submitted.

SQI also support stateless and stateful communication, in statelful communication

target keeps track of previous actions with respect to their orders, and however in

stateless communication target does not hold any information about previous actions.

Moreover SQI enforces command-query separation principle which means that every

method must either perform a command or process a query or send result back, a

method performing both is not proper.

It is already noted before that it is assumed that before any further communication a

session identifier assigned to the source. Therefore SQI methods could be separated

as query management methods and session management methods. This says that SQI

actually separates session management methods and query management methods. A

session id must be assigned to source by target, this session does not necessarily need

to be via password and user name, anonymous sessions can also be created and

assigned, important use is identification of sources. Actually session management is

not part of the SQI specification; however specification also refers some basic

methods those might be needed. Below table, Table 2.3 gives the summary of SQI

session management and query management methods.

Table 2.3 and Figure 2.16 give a brief overview of SQI API. More detailed

specification of API involving input parameters, fault types etc. can be found at

specification documentation.

 29

Table 2.3 SQI Methods

Method Implemented at
1 createSession Target
2 createAnanoymousSession Target
3 destroySession Target
4 setResultsFormat Target
5 setQueryLAnguage Target
6 setMaxQueryResults Target
7 setMaxDuration Target
8 setResultSetSize Target
9 syncronousQuery Target
10 getTotalResultsCount Target
11 asyncrounousQuery Target
12 setSourceLocation Target
13 queryResultListener Source

“createSession” method creates and assigns a session identifier to source according

to given defined credentials such as password. “createAnnonymousSession” method

creates and assigns a session identifier without need of such credentials.

“destroySession” method ends validity of a specified session identifier and destroys

it. “setQueryLanguage” method defined the syntax of query language like SQL,

SPARQL etc.

Figure 2.16 UML Class Diagram of SQI [20]

“setMaxQueryResults” method defines the maximum number of results that a query

will produce.”setMAxDuration” method defines the time-out time for particularly

asynchronous queries. “setResultsFormat” method defines the format of result that

will be returned as a result of query. “setResultSetSize” defines the maximum

number of results that will be returned by a single result set. ”synchronousQuery”

 30

allows source to send a synchronous query to source. “getTotalResultCount” method

returns the maximum number of results of query. “setSourceLocation” method

defines the source’s result listener location so that target can forward results for

asynchronous queries. “asynchronousQuery” method allows source to send an

asynchronous query to target. “queryResutListener” method forwards the result set to

source.

 31

Chapter 3

Semantic Web Technologies and Specifications

This chapter introduces important Semantic Web technologies, RDF, SPARQL and

GRDDL in details. RDF constitutes the basic building stone of Semantic Web Vision

of W3C and inspires other works related with the Semantic Web, GRDDL and

SPARQL enables harvest and use of RDF resources. These technologies are wildly

considered as the future of Semantic Web where machines are capable of

understanding and linking information on the web.

 There are several tools and Web Services which are used to test and validate

examples given in this chapter. These tools and services listed as follows;

• Twinkle: It is an open-source tool which provides a GUI interface in order to

execute SPARQL queries. SPARQL queries in this chapter tested and

validated via this tool. It can be found in the following link;

http://www.ldodds.com/projects/twinkle/

• W3C RDF validation Service: This service is used to validate RDF

documents and to transform them into triple and graph form. It can be found

in the following link; http://www.w3.org/RDF/Validator/

3.1 RDF

RDF, Resource Description Framework, is a W3C recommendation; it provides a

framework, syntax and schema, for describing web resources. RDF is based on

XML, provides a XML syntax called RDF/XML, and inherits its tagging method and

 32

name space facility. RDF supports the interoperability of metadata while it allows

descriptions of Web resources - any object with a Uniform Resource Identifier (URI)

as its address - to be made available in machine understandable form [22]. It is also

one of the key stones of Semantic Web Vision. It is important emphasize that RDF is

designed for machines not for human reading although there are some work (eRDF,

RDFa, will be investigated later in Chapter 4) that also enables RDF to be human

readable by embedding RDF into XHTML pages.

3.1.1 Model, Concepts and Syntax

Basically a resource described by RDF is collection of properties, and properties

have values. An example would be as follows, “http://www.sales.com/tv.htm” is a

resource, “price” is property and “300$” is property value. The combination of a

“Resource”, a “Property”, and a “Property value” forms a “Statement” (known as the

“subject”, “predicate” and “object” of a “Statement”) [23]. Subject must be presented

by an URI, Unique Resource Identifier, which is usually URL, Universal Resource

Locator, for web resources. URLs are particular kind of URI and used to locate

objects that can be accessible via network. However objects those are not accessible

via network or abstract concepts that actually do not exists physically can also be

used as subject in RDF documents.

RDF file has been demonstrated at Figure 3.1. Main elements of an RDF file is

“<rdf>” root element and “<rdf:description>” element. The first line of the code is

usual XML declaration which says this is an XML document. At the second line

RDF name space is referenced in order to use RDF syntax, also name space for

product is referenced in order to use “product” name space elements. At line 3, it first

identifies resource via using “<rdf:Description rdf:about=’resource URI’>”. At line 3

and 4, it defines the properties and their property values. Note that the product name

space is out of RDF, RDF just provides the framework. Actually all properties of the

resource could be written inside separate “description” elements, the example at

Figure 3.1 is an abbreviation and also a common way of using. On the other hand all

properties of resource could be used as attributes of “<rdf:description>” element.

This might be used to embed RDF into a web page however this is not for

presentation, in this way RDF document is embedded but not in a form that browser

 33

can render and display it, only machines can detect and use it. However this limits

the features of RDF.

1 <?xml version="1.0"?>

2
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:product="http://www.sales.com/product#">

3 <rdf:Description rdf:about="http://www.sales.com/tv">
4 <product:name>TV</product:name>
5 <product:price>300$</product:price>
6 </rdf:Description>
7 </rdf:RDF>

Figure 3.1 Sample RDF Document

RDF documents can be demonstrated via graphs; here the Figure 3.2 demonstrates

the example given in a graph representation. The graph simply says that the TV

resource has a price which is “300$” and a name which is “TV”. In RDF graphs

nodes those are URI references shown as eclipse and the nodes those are literals

shown as boxes.

Figure 3.2 Graphical Representation of RDF

In plain English the graph in Figure 3.2 would be expressed as follows;

http://www.sales.com/tv.htm has a price whose value is 300$.

http://www.sales.com/tv.htm has a name whose value is TV.

Another way of representing a RDF document is using triples where each statement

in the graph is written in a simple triple structure; subject, predicate, and object form

in given order. The triple representation in Figure 3.3 belongs to the Figure 3.1. Note

that “http://www.sales.com/product#” defines the name space, in other words it

300$

http://www.sales.com/tv.htm

http://www.sales.com/product#Price

TV

http://www.sales.com/product#Name

 34

provides a vocabulary. Any word after “#” character is an element of this vocabulary.

It also important to note that as indicated in XML section before, this name spaces

are not retrieved, this is just a convention. Also note that URIs must be written inside

“<” and “>” characters as a convention.

1 <http://www.sales.com/tv.htm> <http://www.sales.com/product#Price> “300$”
2 <http://www.sales.com/tv.htm> <http://www.sales.com/product#Name> “TV”

Figure 3.3 Sample Triple Format

The way of representation in above example might cause long documents because of

long URI names, therefore instead of repeating long name URIs each time, this URIs

can be assigned to a “prefix” for one time, and then this prefix can be used instead of

URIs. The example would be as follows;

1 PREFIX sales: http//www.sales.com
2 PREFIX product: http://www.sales.com/product#
3 sales:tv.htm product:price “300$”
4 sales:tv.htm product:name “TV”

Figure 3.4 Example of Prefix Use

Now it is time to traverse more on RDF syntax. RDF property elements can also be

resources like the example given in Figure 3.5. In this example brand of the TV is

another resource and “rdf:resource” attribute used to describe this case at line 7, and

note that it is used within an empty tag, which means it has an “/” character at the

end of tag.

1 <?xml version="1.0"?>

2
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:product="http://www.sales.com/product#">

3 <rdf:Description rdf:about="http://www.sales.com/tv">
4 <product:name>TV</product:name>
5 <product:price>300$</product:price>
6 <product:brand rdf:resource="http://www.xbrand.com/xbrand.htm" />
7 </rdf:Description>
8 </rdf:RDF>

Figure 3.5 Properties as Resources

The Figure 3.6 demonstrates the case when a property itself is also a resource. The

demonstration only covers the brand property of Figure 3.5 since the rest of the

 35

presentation is same as in Figure 3.2. As noted before resources are represented by

an eclipse therefore eclipse is used instead of a rectangle for

“http://www.xbrand.com/xbrand.htm” resource.

Figure 3.6 Resources as Properties

The triple demonstration of above graph is shown in Figure 3.7;

1 PREFIX sales: http://www.sales.com/
2 PREFIX product: http://www.sales.com/product#
3 PREFIX xcompany: http://www.xcomp.com
4 sales:tv.htm product:brand xcompany:xbrand.htm

Figure 3.7 Triple Representation of Resources as Properties

Untill now demonstrated example RDF resources have simple properties, but what

about complex properties? Imagine a case that birth date information needs to be

given, however instead of giving it as a single string; it needs to be given as separate

pieces of information (day, month, and year). Then a structured property is needed

which aggregates birth date information. Consider the following example RDF

document in Figure 3.8. In this example the resource “http://www.sales.com/asoylu”

has properties “name”, “surname”, and “age” whose vocabulary is defined in

“http://www.sales.com/person#”. The age property is another resource,

“http://www.sales.com/asoylu/birthdate”, which is actually a structured aggregate

property. Birth date resources defined by “byear”, “bmonth” and “bday” properties

by using another “rdf:description” element.

http://www.sales.com/tv.htm

http://www.xcomp.com/xbrand.htm

http://www.sales.com/product#brand

 36

1 <?xml version="1.0"?>

2
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:person="http://www.sales.com/person#">

3 <rdf:Description rdf:about="http://www.sales.com/asoylu">
4 <person:name>Ahmet</person:name>
5 <person:surname>Soylu</person:surname>
6 <person:age rdf:resource=" http://www.sales.com//birthdate/asoylu" />
7 </rdf:Description>
8 <rdf:Description rdf:about="http://www.sales.com/birthdate/asoylu">
9 <person:byear>1984</person:byear>
10 <person:bmonth>11</person:bmonth>
11 <person:bday>26</person:bday>
12 </rdf:Description></rdf:RDF>

Figure 3.8 Demonstration of Structured Property

Figure 3.9 demonstrates the graph representation of the RDF example in Figure 3.8.

This one is more complicated than Figure 3.2 as each resource has also other simple

properties.

Figure 3.9 Structured Properties

Triple representation of the RDF example in Figure 3.8 is shown in Figure 3.10;

1984

11

26

Ahmet

Soylu

http://www.sales.com/person#name

http://www.sales.com/person#surn
ame

http://www.sales.com/person#birthdate

http://www.sales.com/person#byear

http://www.sales.com/person#month

http://www.sales.com/person#bday

http://www.sales.com/a
soylu

http://www.sales.com
/birthdate/asoylu

structuredPropertyExample.rdf

 37

1 PREFIX sales: http://www.sales.com/
2 PREFIX pbirthdate: http://www.sales.com/birthdate/
3 PREFIX person: http://www.sales.com/person#
4 sales:asoylu person:name “Ahmet”
5 sales:asoylu person:surname “Soylu”
6 sales:asoylu person:birthdate pbirthdate:asoylu
7 pbirthdate:asoylu person:byear “1984”
8 pbirhtdate:asoylu person:bmonth “11”
9 pbirhtdate:asoylu person:bday “26”

Figure 3.10 Triple Demonstration of Structured Properties

How about a case when there is no actual URI for a resource which is actually a

structured property? For instance we don’t really need a universal identifier for birth

date; therefore it is also possible and most common way to use blank nodes. Figure

3.11 demonstrates how it would be with using a blank node. It represents the same

thing in Figure 3.9 however just uses a blank node for birth date resource.

Figure 3.11 Blank Nodes

The below code, Figure.3.12, is triple representation of Figure 3.11, for blank node

identifier the form “_:name” is used. In whole chapter the “name” variant will be

selected randomly, any name might be given, however a processor application

generates its own unique names for blank nodes.

1984

11

26

Ahmet

Soylu

http://www.sales.com/person#name

http://www.sales.com/person#surname

http://www.sales.com/person#birthdate

http://www.sales.com/person#byear

http://www.sales.com/person#month

http://www.sales.com/person#bday

http://www.sales.com/a
soylu

structuredPropertyExample.rdf

 38

1 PREFIX sales: http://www.sales.com
2 PREFIX person: http://www.sales.com/person#
3 PREFIX person: http://www.sales.com/person#
4 sales:asoylu person:name “Ahmet”
5 sales:asoylu person:surname “Soylu”
6 sales:asoylu person:birthdate _:asoylubirthdate
7 _:asoylubirthdate person:byear “1984”
8 _:asoylubirthdate person:bmonth “11”
9 _:asoylubirthdate person:bday “26”

Figure 3.12 Triple Demonstration of Blank Nodes

The Figure 3.13 demonstrates how a blank node is used in a RDF document by

altering the example in Figure 3.8. In such a case this most common way is using a

blank node identifier. A blank node identifier used to identify a blank node within a

particular RDF/XML document but, unlike an URIref, it is unknown outside the

document in which it is assigned [24]. At line 6, instead of “rdf:resource”,

“rdf:nodeID” is used as blank node identifier, this is the same in line 8 instead of

“rdf:about”, a blank node identifier is used.

1 <?xml version="1.0"?>

2
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:person="http://www.sales.com/person#">

3 <rdf:Description rdf:about="http://www.sales.com/asoylu">
4 <person:name>Ahmet</person:name>
5 <person:surname>Soylu</person:surname>
6 <person:age rdf:nodeID="asoylubirthdate" />
7 </rdf:Description>
8 <rdf:Description rdf:nodeID="asoylubirthdate">
9 <person:byear>1984</person:byear>
10 <person:bmonth>11</person:bmonth>
11 <person:bday>26</person:bday>
12 </rdf:Description>
13 </rdf:RDF>

Figure 3.13 Demonstration of Blank Nodes

Until now all the values we used for property values were plain literals. They were

not declared as an integer, string or so on. Consider the below example triple;

1 _:asoylubirthdate person:bday “26”

Figure 3.14 Typed Literals Sample

It is not indicated above triple piece that the value 26 is actually an integer, it might

be even considered as string that starts with ‘2’ continued with ‘6’. However the

 39

below triple piece clearly indicates that this “bday” is an integer. This type of literals

called Typed Literals.

1 _:asoylubirthdate person:bday “26”^^xsd:integer

Figure 3.15 Triple Demonstration of Typed Literals

Example RDF code in Figure 3.16 demonstrates how Typed Literals are used in RDF

documents. “rdf:datatype” attribute at line 11 references an URI which defines the

data type of this property value. The whole URI is not available in “rdf:datatype”

attribute, instead it is abbreviated. An XML entity declaration is used to associate

“xsd” with name space URI reference for XML Schema data types. The name space

URI could also directly written into “rdf:datatype”attribute. “xsd:string”,

“xsd:boolean” and “xsd:date” are some of other available data types.

1 <?xml version="1.0"?>

2
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:person="http://www.sales.com/person#">

3 <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
4 * * *
5 <rdf:Description rdf:nodeID="asoylubirthdate">
6 * * *
7 <person:bday rdf:datatype="&xsd;date">26</person:bday>
8 </rdf:Description>
9 </rdf:RDF>

Figure 3.16 Demonstration of Blank Nodes

Another type of abbreviation could be done via “rdf:ID”, the following example in

Figure 3.17 demonstrates how it is used. At line two there is a new attribute used

“xml:base”; it declares a base URI for this document. After this declaration, for any

resource which resides in this base URI, it is not needed to given whole URI of

resource; instead resource name will be enough like at line 4 and 8. This is done via

using “rdf:ID” instead of using “rdf:about”. Actually defining a base URI might not

be necessary depending on the situation. If the URI of the document is the same as

the URI of resources then it is not needed to define a base, because if it is not defined

the document URI will be accepted as a base URI. The concatenation is done via “#”

element, considering the first resource it will be; “www.people.com/people#asoylu”.

 40

1 <?xml version="1.0"?>

2

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:person=http://www.sales.com/person#
xml:base="www.people.com/people">

3 <rdf:Description rdf:ID="asoylu">
4 <person:name>Ahmet</person:name>
5 * * *
6 </rdf:Description>
7 <rdf:Description rdf:ID="dsoylu">
8 <person:name>Ahmet</person:name>
9 * * *
10 </rdf:Description>
11 * * *
12 </rdf:RDF>

Figure 3.17 Demonstration of “rdf:ID” Attribute

RDF also enables assignment of a resource as an instance of specific types. This kind

of resources called as typed nodes. For this purpose “rdf:type” property is used.

Consider the example RDF code in Figure 3.18.

1 <?xml version="1.0"?>

2

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:person=http://www.sales.com/person#
xml:base="www.people.com/people">

3 <rdf:Description rdf:ID="asoylu">* * *
4 <rdf:type rdf:resource="http://www.sales.com/terms/Person"/>
5 <person:name>Ahmet</person:name>
6 * * *
7 </rdf:Description>
8 </rdf:RDF>

Figure 3.18 Demonstration of “rdf:type” Property

Below triple, Figure 3.20, representation belongs to example RDF document in Table

3.18

1 PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
2 PREFIX people: http://www.people.com/people
3 PREFIX person: http://www.sales.com/person#
4 PREFIX terms : http://www.sales.com/terms/
5 people:asoylu person:name “Ahmet”
6 people:asoylu person:surname “Soylu”
7 people:asoylu person:birthdate _:asoylubirthdate
8 people:asoylu rdf:type sales:person
9 _:asoylubirthdate person:byear “1984”
10 _:asoylubirthdate person:bmonth “11”
11 _:asoylubirthdate person:bday “26”

Figure 3.19 Triple Demonstration of “rdf:type”

 41

Figure 3.19 demonstrates how an “rdf:type” property is shown in graph

representation.

Figure 3.20 “rdf:type” Demonstration

RDF container elements are another type of RDF elements which are used describe

group of things such as authors of a paper. The contained things called as members

and they can be resources or literals. “<rdf:Bag>”, “<rdf:Seq>”, “<rdf:Alt>”

elements are RDF container elements. “<rdf:Bag>” element used to describe an

unordered list of values whereas “<rdf:Seq>” element is used to describe ordered list

of values. “<rdf:Alt>” element is used to describe list of alternative values. The

example below is demonstration of “<rdf:alt>” element which describes a tool and

gives alternatives for its version as “full” or “trial”. Use of other RDF container

elements is the same way as shown on Figure 3.21.

Each member have the name in the form of rdf:_n, n is a decimal number with no

leading number and starts from one, “rdf:li” is used to avoid explicitly numbering

each member. However triple and graph representation will use “rdf:_n” form, this

transformation is done automatically by processing program.

1984

11

26

Ahmet

Soylu

http://www.sales.com/person#name

http://www.sales.com/person#surname

http://www.sales.com/person#birthdate

http://www.sales.com/person#byear

http://www.sales.com/person#month

http://www.sales.com/person#bday

http://www.people.com
/people#asoylu

http://www.w3.org/1999/02/22-rdf-syntax#type www.sales.com/
terms/terms/Person

 42

1 <?xml version="1.0"?>

2
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:software="http://www.sales.com/software#">

3 <rdf:Description rdf:about="http://www.sales.com/xtool">
4 <software:version>
5 <rdf:Alt>
6 <rdf:li>Full</rdf:li> <rdf:li>Trial</rdf:li>
7 </rdf:Alt>
8 </software:version>
9 </rdf:Description> </rdf:RDF>

Figure 3.21 Demonstration of RDF Container Elements

A blank node is created in the type of “alt”, “seq”, or “bag” and members assigned to

this node as properties. The below triple demonstration belongs to Figure 3.21;

1 PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
2 PREFIX software: http://www.sales.com/software#
3 PREFIX sales: http://www.sales.com
4 sales:xtool software:version _:z
5 _:z rdf:type rdf:Alt
6 _:z rdf:_1 “Full”
7 _:z rdf:_2 “Trial”

Figure 3.22 Triple Demonstration of RDF Container Elements

The Figure 3.23 below is graph demonstration of example RDF document in Figure

3.21.

Figure 3.23 Graph Demonstration of “rdf:alt” Container

 Full

Trial

http://www.sales.com/software#version
http://www.w3.org/1999/02/22-rdf-
syntax-ns#type

http://www.w3.org/1999/
02/22-rdf-syntax-ns#Alt

http://www.w3.org/1999/02/22-
rdf-syntax-ns#_1

http://www.w3.org/1999/02/22-rdf-syntax-ns#_2

http://www.sales.com/xtool

 43

Members do not necessarily need to be plain literals, they can also be resources, in

this case “rdf:resource” attribute is used inside the “rdf:li” element. Also members

can be duplicate elements such as “software:author” as there might be several

authors of a software. Members also might be different elements such as

“software:author” and “software:expire_time”. It is important to note that the

members of a container are not expected to be the full list, there might be other

elements but not included in the list, the element in the list is not supposed to be

complete. “rdf:parseType=’Collection’“ is used for such cases.

The RDF example in Figure 3.24 demonstrates use of “rdf:parseType=’Collection’“.

A collection is assumed to be a complete list where a container is not. At line four of

below example parse type defined as to be a collection and some resources listed as

members of this collection.

1 <?xml version="1.0"?>

2
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:team="http://www.xteam.com/vocab#">

3 <rdf:Description rdf:about="http://www.xteam.com/ourteam">
4 <team:players rdf:parsetype= "collection">
5 <rdf:Description rdf:about="http://www.xteam.com/players/ahmet"/>
6 <rdf:Description rdf:about="http://www.xteam.com/players/hasan"/>
7 </team:players>
8 </rdf:Description> </rdf:RDF>

Figure 3.24 Demonstration of Collections

The graph in Figure 3.25 belongs to RDF document in Figure 3.24, each member of

collection is a blank node which consists of original member itself referred with

“rdf:first” element in this case a resource and a blank node pointing out next

member with a “rdf:rest” element. Then the next member also consists of original

member itself and a blank node pointing out the next member of collection. The last

member of collection references to “rdf:nil” element to close collection.

 44

Figure 3.25 Graph Demonstration of Collections

Therefore according to explanation of above graph, the same rdf document can be

also created by using “rdf:first”, “rdf:rest” and “rdf:nil” elements like in Figure 3.25.

The RDF document itself is quite self descriptive.

1
<?xml version="1.0"?><rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:team="http://www.xteam.com/vocab#">

2 <rdf:Description rdf:about="http://www.xteam.com/ourteam">
3 <team:players rdf:nodeID="s1" />
4 </rdf:Description>
5 <rdf:Description rdf:nodeID="s1">
6 <rdf:first rdf:resource="http://www.xteam.com/players/ahmet"/>
7 <rdf:rest rdf:nodeID="s2" /></rdf:Description>
8 <rdf:Description rdf:nodeID="s2">
9 <rdf:first rdf:resource="http://www.xteam.com/players/hasan"/>
10 <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil" />
11 </rdf:Description> </rdf:RDF>

Figure 3.26 Demonstration of Collections

The code piece in Figure 3.27 is triple representation of RDF documents in Figure

3.24 and Figure 3.26. They both represent the same thing therefore it is normal that

they have same triple representation.

http://www.xtea
m.com/ourteam

http://www.xtea
m.com/players/
ahmet

http://www.xtea
m.com/players/
hasan

http://www.w3.org/1999/02/22-rdf-syntax-ns#first

http://www.w3.org/1999/02/22-rdf-syntax-ns#first

http://www.w3.org/1999/02/22-rdf-
syntax-ns#rest

http://www.w3.org/1999/02/22-rdf-
syntax-ns#rest

http://www.xteam.com/vocab#team

http://www.w3.org/
1999/02/22-rdf-
syntax-ns#nil

 45

1 PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
2 PREFIX team: http://www.xteam.com/vocab#
3 PREFIX xteam: http://www.xteam.com/
4 PREFIX xplayers: http://www.xteam.com/players/
5 xteam:ourteam team:players _:s1
6 _:s1 rdf:first xplayers:ahmet
7 _:s1 rdf:rest _:s2
8 _:s2 rdf:first xplayers:hasan
9 _:s2 rdf:rest rdf:nil

Figure 3.27 Triple Demonstration of Collections

Other important parse type attribute values are “Literal” and “Resource”.

“rdf:parsetype=’Resource’” attribute says that the content of an element is to be

interpreted as the description of a new (blank node) resource.

“rdf:parsetype=’Literal’” allows users to use XML fragments as a value of a

property.

1 <?xml version="1.0"?>
2 <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

3
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:team="http://www.xteam.com/vocab#">

4 <rdf:Description rdf:about="http://www.xteam.com/ourteam/asoylu">
5 <team:player rdf:parseType="Literal">
6 <team:pname>Ahmet</team:pname>
7 </team:player>
8 <team:salary rdf:parsetype= "Resource">
9 <rdf:value rdf:datatype="&xsd;decimal">240000</rdf:value>
10 <team:units rdf:resource="http://www.example.org/units/euro"/>
11 </team:salary>
12 </rdf:Description></rdf:RDF>

Figure 3.28 Demonstration of “Literal” and “Resource” Parse Type.

The RDF document in Figure 3.28 demonstrates how “Resource” and “Literal” parse

type attribute values are used. At line 5 “rdf:parsetype=’Literal’” is employed, it does

not create any blank node in the graph where “rdf:parsetype=’Resource’” which is

employed at line 8 creates a blank node.

3.1.2 RDF Schema

RDF also enables users to define their application specific classes and relations

similar to the way object oriented languages provide in some respects. It does not

provide application specific classes, but instead it enables users to describe custom

 46

classes by providing a type system. Actually it is done via an extension of RDF

called RDF Schema. Users actually create their own RDF vocabulary by defining

classes and relations among them.

1 <?xml version="1.0"?>
2 <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

3

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://example.org/schemas/world">

4 <rdf:Description rdf:ID="Animal">
5 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
6 </rdf:Description>
7 <rdf:Description rdf:ID="Mamal">
8 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
9 <rdfs:subClassOf rdf:resource="#Animal"/>
10 </rdf:Description>
11 <rdf:Description rdf:ID="Horse">
12 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
13 <rdfs:subClassOf rdf:resource="#Mamal"/>
14 </rdf:Description></rdf:RDF>

Figure 3.29 Demonstration of RDFS

RDF schema facilities are provided via another RDF vocabulary whose name space

is “http://www.w3.org/2000/01/rdf-schema#” and whose prefix is usually “rdfs”. The

RDF schema can be interpreted by RDF applications becuase it does not have any

difference from normal RDF documents. However without built-in understanding of

RDFS it is not possible for an application to understand what it means.

Classes are described using the RDF Schema resources “rdfs:Class” and

“rdfs:Resource”, and the properties “rdf:type” and “rdfs:subClassOf”. Figure 3.29

demonstrates how RDF Schema deals with classes. At line 4 it starts to describe

“http://example.org/schemas/world#Animal” resource, which is written in

abbreviated form via using “xml:base”. Then at line 5 it says this resource is a type

of, an instance of, “http://www.w3.org/2000/01/rdf-schema#Class”. At line 7, it

starts to describe another resource “http://example.org/schemas/world#Mamal”, and

then it says that it is a RDFS class and also a sub class of “Animal” class.

Below graph belongs to Figure 3.29, one important thing is that rdf classes are

transitive, in below example “Horse” class is sub class of “Mamal” and “Mamal”

class is sub class of Animal, this enables any application capable of understanding

 47

RDF Schema to interfere that any instance of “Horse” class is also sub class of

Animal.

Figure 3.30 Graph Demonstration of Collections

The below triple representation demonstrates RDF classes, it is clearly seen that

every RDFS class is also an instance of “rdfs:Class”.

1

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

2 PREFIX rdfs:http://www.w3.org/2000/01/rdf-schema#

3 PREFIX world: http://example.org/schemas/world#Horse
4 world:Animal rdf:type rdfs:Class
5 world:Mamal rdf:type rdfs:Class
6 world:Horse rdf:type rdfs:Class
7 world:Mamal rdfs:subClassOf world:Animal
8 world:Horse rdfs:subClassOf world:Mamal

Figure 3.31 Triple Demonstration of RDFS Classes

The RDFS document can be abbreviated like in Figure 3.32, “rdf:Description” is

replaced with the type name which is “rdfs:class”, note that “rdfs:Class” is also a

type (class). However this abbreviation can be done for one class, if an instance

belongs to more than one classes, other classes must be declared via “rdfs:type”, only

one class declaration can be abbreviated.

http://example.o
rg/schemas/worl
d#Horse

http://example.o
rg/schemas/worl
d#Animal

http://example.o
rg/schemas/worl
d#Mamal

http://www.w3.or
g/2000/01/rdf-
schema#Class

http://www.w3.org/2000/01/
rdf-schema#subClassOf

http://www.w3.org/2000/01/
rdf-schema#subClassOf

http://www.w3.org/2000/01/
rdf-schema#subClassOf

http://www.w3.org/1999/
02/22-rdf-syntax-
ns#Type

http://www.w3.org/1999/
02/22-rdf-syntax-
ns#Type

http://www.w3.org/1999/
02/22-rdf-syntax-
ns#Type

RDFClasses.rdf

 48

1 <?xml version="1.0"?>
2 <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

3

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://example.org/schemas/world">

4 <rdfs:Class rdf:ID="Animal" />
5 <rdfs:Class rdf:ID="Mamal">
6 <rdfs:subClassOf rdf:resource="#Animal"/>
7 </rdfs:Class>
8 <rdfs:Class rdf:ID="Horse">
9 <rdfs:subClassOf rdf:resource="#Mamal"/>
10 </rdfs:Class>
11 </rdf:RDF>

Figure 3.32 Abbreviated Demonstration of RDFS

RDF Schema also provides a way to define properties which describe classes.

Properties are described using the RDF class “rdf:Property”, and by the RDF Schema

properties “rdfs:domain”, “rdfs:range”, and “rdfs:subPropertyOf”. Every property is

an instance of “rdf:Property” class. “rdfs:Range” is used to denote the classes whose

instances can be among the values of a property, and a property might have 0 or

more “rdfs:range” properties. If a property has more than one range property then

each value of this property has to be instances of each class defined by range

properties. “rdfs:range” can also be used to say that the value of a property is a typed

literal like “xsd:integer”, it is good practice to also define that a URIref is actually a

data type via using “rdfs:Datatype”. “rdfs:Domain” property is used to denote that

the particular property applies to specified classes. A property might have zero or

more “rdfs:domain” property. If it is the case that a property has more than one

“rdfs:domain” property, then any resource having this particular property has to be

instance of all the classes defined by “rdfs:domain” properties. RDFS also enables

specialization of properties as it does for classes, for this purpose predefined

“rdfs:subPropertyOf” property is used.

1 <rdf:property rdf:ID="weight”>
2 <rdfs:domain rdf:resource="#Animal"/>

3 <rdfs:range rdf:resource="&xsd;decimal"/>
4 <rdf:property>
5
6 <rdfs:Datatype rdf:about= "&xsd;decimal" />

Figure 3.33 Property Declarations

 49

Figure 3.33 demonstrates usage of “rdfs:domain”, “rdfs:range” properties and

“rdf:property” class and below there is triple representation of the example. It is

assumed that the code piece belongs to code in Figure 3.33.

1 world:weight rdf:type rdf:property
2 world:weight rdfs:range xsd:integer

3 world:weight rdfs:domain world:Animal
4 xsd:decimal rdf:type rdfs:Datatype

Figure 3.34 Triple Demonstration of Property Declarations

It is said that RDFS type system is similar to the other object oriented programs’ type

systems. However this match is not exact and involves many core differences. In an

object oriented language a class is collection of specific properties, however in RDFS

a properties applies specific classes (via “rdfs:range” and “rdfs:domain”). It means

properties are global in RDFS where properties in an object oriented language are

specific to classes. Besides in object oriented languages an class can not exists

without a its particular properties and these constraint is applied by language.

However in RDFS one application can simply see these declarations as just simple

declarations and does not give any problem in a case of inconsistency where another

application program behaves in opposite way.

3.2 SPARQL

SPARQL is a query language for RDF. SPARQL can be used to express queries

across diverse data sources, whether the data is stored natively as RDF or viewed as

RDF via middleware. SPARQL is "data-oriented" in that it only queries the

information held in the models; there is no inference in the query language itself [25]

[26].

There are four examples of simple SPARQL query below. The numbers at the

beginning of each query does not belong to query, it is just for identification

purposes. SPARQL syntax shows similarities with SQL. The both examples below

equals to “SELECT * FROM <Table_Name>” or “SELECT att-1, att-2, … att-n

FROM <Table_Name>” in SQL. However as the structure and semantic of the

source that SPARQL queries differs from the source that SQL queries, this similarity

 50

will be mostly in the sense of syntax. First two queries return same results over a

particular RDF document. “SELECT” clause identifies the variables to be displayed

in the result set. “WHERE” clause identifies the pattern to be matched with triples.

The keywords that start with “?” or “$” are variables, and these signs can be used

instead of each other. In the rest of this thesis, “?” notation will be used. In the

“WHERE” clauses of the queries the variables associated with the subject, predicate

and object. The first two queries does not impose any constraint on any elements of

triple therefore whole triple set will be in the result, however in the third query the

object is associated with “Ahmet”, therefore only the subject and predicate pairs who

has “Ahmet” as object will be in the result set.

1 SELECT ?x ?y ?z WHERE { ?x ?y ?z }
2 SELECT * WHERE { $subject $predicate $object }

3 SELECT * WHERE { $subject $predicate “Ahmet” }

4 SELECT * WHERE {$subject <http://www.sales.com/person#name> “Ahmet” }

Figure 3.35 Sample SPARQL Queries

The result set below appears when query three is executed over the RDF document in

Figure 3.8.

Table 3.1 Result of Third Query on Figure 3.8

subject predicate
http://www.sales.com/asoylu http://www.sales.com/person#name

The fourth query will only return subject “http://www.sales.com/asoylu” as result.

The important thing to note there is URIs must be enclosed between “<” and “>”

characters. The fourth query can also be written like in below query via using

PREFIX in order to avoid writing long URI names every time.

PREFIX person:<http://www.sales.com/person#> 5
SELECT * WHERE { ?subject person:name "Ahmet" }

Figure 3.36 Sample SPARQL Query with Prefix

The query in Figure 3.37, query six, fetches the surname property value of the

resource whose name property value is “Ahmet”. The first triple pattern matches all

 51

triple sets whose predicate is “person:name” and object value is “Ahmet”, and the

second triple pattern matches all the triples whose predicate is “person:surname”.

The important thing is how first pattern and second pattern is combined, this happens

like a “join” operation in SQL which is applied to the first result set and the second

result set based on “subject” variable. Therefore the same variable name “subject” is

used in both patterns.

PREFIX person:<http://www.sales.com/person#> 6
SELECT ?surname WHERE { ?subject person:name "Ahmet".

 ?subject person:surname ?surname }

Figure 3.37 Sample SPARQL Query Two Patterns

Query results can also contain blank nodes the second query applied over the RDF

document in Figure 3.13 where there is a blank node and result set displayed on

Table 3.2. It is important to note that blank node identifiers are assigned randomly;

therefore it is not safe to base a query on blank node identifier.

Table 3.2 Result of Second Query on Figure 3.13

subject predicate object
http://www.sales.com/asoylu http://www.sales.com/person#name Ahmet
http://www.sales.com/asoylu http://www.sales.com/person#surname Soylu
http://www.sales.com/asoylu http://www.sales.com/person#age _:b
_:b http://www.sales.com/person#byear 1984
_:b http://www.sales.com/person#bmonth 11
_:b http://www.sales.com/person#bday 26

“FILTER” can be used to restrict RDF literals; one common example is “REGEX”

which allows “SQL like” style tests. The below example query seven involves

“REGEX” function demonstration for “FILTER”. It returns any triple that has object

value which starts with “Ahmet” word.

7 SELECT * WHERE {?subject ?predicate ?object

 FILTER regex(?object,"^Ahmet")

 }

Figure 3.38 Sample SPARQL Query Using Filter

 52

The example query below, query eight, demonstrates another “FILTER”, it returns

only the day of birth triples whose value is bigger than 20 or smaller than 18.

. PREFIX person: <http://www.sales.com/person#> 8
 SELECT * WHERE {

 ?subject person:bday ?object

 FILTER regex(?object < 18 || ?object > 20)

 }

Figure 3.39 Sample SPARQL Query Using Regex

There are many other functions that can be used with filter like, isIRI, isBlank,

isLiteral, sameTerms etc., whose names are already self-descriptive, and also allows

some operands to be applied over variables. Those can be checked via SPARQL

syntax.

RDF is a semi-structured data and it is not forced to use all elements, therefore in

order to prevent pattern matching failures because of missing properties several ways

exists. For instance imagine and RDF document in Table 3.3 where a new person

added however without surname property, but when a query is applied which wants

to fetch every name-surname pair even no surname value is defined. SPARQL

allows this to be done via “optional” facility. The below query, query nine, is

demonstration of “optionals” in SPARQL.

PREFIX person: <http://www.sales.com/person#> 9
SELECT ?name ?surname WHERE {?subject person:name ?name.

 OPTIONAL {?subject person:surname ?surname}}

Figure 3.40 Sample SPARQL Query Using Optional

The query in Figure 3.40 fetches all name-surname pairs, and defines “surname” as

optional, therefore for resources that surname is not defined a blank value will be

returned for surname.

 53

SPARQL also allows usage of “UNION” operation which enables several alternative

triple patterns to match and take place in the result set. Consider the following

example, query 10;

PREFIX person: <http://www.sales.com/person#>
PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>

10

SELECT ?name WHERE { {?subject person:name ?object } UNION {?subject

vCard:name ?surname }}

Figure 3.41 Sample SPARQL Query Using Union

The above query depends on a case where name of a person can be presented via

vCard vocabulary or person vocabulary. In order not to miss any result item, a

“UNION” operation, which combines result sets of both notations, is used.

Until now the assumption was that the graph, the RDF document, to be queried is

loaded via SPARQL protocol by application program or API. However it is also

possible to define this default graph via SPARQL. Moreover data about resources

might reside in different graphs therefore different graphs might need to be queried

within the same query. All these needs are solvable via “FROM”, “FROM NAMED”

and “GRAPH” clauses. In the following query, query eleven, default graph to be

queried is given in the query itself;

11 SELECT ?z FROM <c:/ex.rdf> WHERE { ?x ?y ?z }

Figure 3.42 Sample SPARQL Query Using From

.

“FROM” clause is used in a way to similar to the SQL, the graph is assumed to

reside in computers physical storage, however it might also reside in the internet

therefore a URI could also be given. It is necessary to note that multiple FROM

clauses can be used, than combination of graphs creates the default graph.

“FROM NAMED” clause also defines the graphs to be queried, however it does not

involve this graphs as a part of default graph, for instance if the eleventh query is

written via “FROM NAMED”, the result set would be empty because no default

 54

graph exists. When “FROM NAMED” clause is used “GRAPH” clause is used to

identify graph. Consider the following query 12, it defines two named graphs and

then fetches object values of each triple from this graphs, the variable “g” after graph

keyword identifies the resource graph name which can be “ex1.rdf” or “ex2.rdf” for

any result.

12 SELECT ?g ?z

 FROM NAMED <c:/ex1.rdf>

 FROM NAMED <c:/ex2.rdf>

 WHERE { GRAPH ?g { ?x ?y ?z } }

Figure 3.43 Sample SPARQL Query Using From Named

There are also several solution sequences and modifiers available in SPARQL like in

SQL. The following query demonstrates several of them;

13 SELECT DISTINCT ?z

 WHERE { ?x ?y ?z }

 ORDER BY ASC(?x)

 LIMIT 10

 OFFSET 5

Figure 3.44 Sample SPARQL Query Using Modifiers and Solution Sequences

The “DISTINCT” clause in query 13, simply eliminates duplicate results, and

“ORDER BY ASC(?z)” clause orders result in ascending way with respect to subject

of triple, “LIMIT 10” clause causes only top ten results to be fetched and “OFFSET

5” causes result set to start after 5th element in the result set.

“SELECT” clause is used during in all examples; however there are other clauses

that can be used in order to get different result sets. Those are “CONSTRUCT”,

“ASK” and “DESCRIBE”. “CONSTRUCT” clause returns an RDF graph

constructed by substituting variables in a set of triple templates. “ASK” clause

returns a boolean indicating whether a query pattern matches or not. Finally

“DESCRIBE” clause returns an RDF graph that describes the resources found.

 55

3.3 GRDDL

GRDDL introduces mark-up based on existing standards for declaring that an XML

document includes data compatible with the Resource Description Framework (RDF)

and for linking to algorithms (typically represented in XSLT), for extracting this data

from the document [27].

GRDDL gleaning approach is based on either directly associating individual

documents with their transformations or associating this transformation with

“profiles” and name space documents. It is already noted this transformation usually

represented in XSLT which is already introduced in this chapter, the status “name

space” concept is also same. The “profiles” concept also will be introduced in

coming pages. XSLT is already purposed to transform XML document in to form of

other documents, here GRDDL defines a specification so that every XML or

XHTML document can be associated with a transformation and any GRDDL aware

agent can understand this transformation association and able to apply this

transformation.

1

<html xmlns=”www.w3.org/1999/xhtml”
 xmlns:grddl=”www.w3.org/2003/g/data-view#”
 grddl:transformation=”gleantitle.xls
 http:\\www.w3.org/2001/sw/grddl-wg/td/getauthor.xls”
>

2 <head>

3 ***
4 <head>
5 ***
6 </html>

Figure 3.45 Sample GRDDL Use [27]

This XHTML document in Table 3.45 associated with two GRDDL transformations,

one is “http:\\www.w3.org/2001/sw/grddl-wg/td/getauthor.xls“ and other one is

“gleantitle.xls”, however the location of the second transformation is not given

therefore it is found based on the base URI. These two transformations will produce

two RDF documents, and then these RDF documents will be combined into one

singe RDF document.

 56

1 <?xml version="1.0" encoding="utf-8"?>

2

<xs:schema xmlns:product="product" xmlns:person="person"
attributeFormDefault="qualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:data-view=”www.w3.org/2003/g/data-view#”
 Data-viewl:transformation=”gleantitle.xls
 http:\\www.w3.org/2001/sw/grddl-wg/td/getauthor.xls”

>

3 ***

Figure 3.46 GRDDL Transformation via Schema

The example in Figure 3.46 was for the case where a transformation associated with

an individual document. However it is also possible to associate a GRDDL

transformation with the documents who share the same name space. The usage is as

in Figure 3.46.

Another way of association is via “profiles”, a profile way of example is given in

Figure 3.47 below;

1 <html xmlns="http://www.w3.org/1999/xhtml">
2 <head profile=”http://www.w3.org/2003/g/data-view”>

3 <link rel="transformation" href="http://www.test.com/t1.xsl" />

4 <link rel="transformation" href="http://www.test.com/t2.xsl " />
5 ***

Figure 3.47 GRDDL Transformation via Profiles

 57

Chapter 4

Semantic Web and Microformats

4.1 Semantic Web

Currently information on the web pages are based on natural human language and

aimed for human, therefore human-being is able to process information on the web,

this means being able to deduce facts, to draw reasons, to associate and link different

kind of information. It doesn’t matter whether all the information presented in a

single page or presented in several web pages, human is able to interpret, and locate

and link necessary information for a particular task or activity, but what about

computers?

Computers are not able to apply same actions (derive, associate, link etc.)

automatically as humans do with the information on the web, they only deal with

presentation and some other routine processing because web does not consist of

automatically process able information rather it is pure source of information which

is collection of documents linked to each other without any implied reason why.

Semantic Web will offer variety of opportunities for web, a popular example of Tim

Berners-Lee, who is a founder of HTML, HTTP, and Semantic Web Vision, is Pete

and Lucy’s hospital appointment example which is carried out by their agents via

processing hospitals web page and other related pages about distance, appointment

times, preferences and doctors etc. The Semantic Web will bring structure to the

meaningful content of Web pages, creating an environment where software agents

roaming from page to page can readily carry out sophisticated tasks for users [28].

Semantic web is not something totally new; it is extension of the current World Wide

Web. The first basement of semantic web challenge is based on knowledge

representation (KR), which has its roots before World Wide Web. KR’s main

 58

objective is to represent knowledge in a way that computers can understand and draw

reasons from it. Semantic Web employs KR in a decentralized manner as web does.

XML and RDF technologies already constitute a basis for knowledge representation

for semantic web. In Chapter 3, XML, RDF, and RDFS introduced in details with

other related technologies, an important point is that XML just gives structure to the

data and does not say anything about meaning where RDF expresses the meaning;

however RDF is not enough to describe complex relationships between objects such

as cardinality constraints, unions, disjoint classes etc. RDFS gives a limited

capability to define only simple relationships. At this point ontologies come up as a

solution, they are used to define complex relationships and set of interference rules

between data objects by providing more vocabulary. The most typical kind of

ontology for the Web has a taxonomy (which defines classes of objects and relations

among them), and a set of inference rules [28]. There are also many efforts for

ontologies for semantic web, important ones are DAML and OWL ontology

languages and both of these languages are based on XML, RDF and RDFS. XML,

RDF and OWL can be seen as the layers of a three where each layer requires

different skills and targets different needs [29]. For instance XML constitutes the

first layer of this structure which requires fewer skills and offers solutions to the less

complex problems then RDF or OWL offers. In Chapter 3, SPARQL and GRDDL is

introduced SPARQL allows querying data structured with RDF and GRDDL allows

us to harvest these data on web pages, this is one step more which allows us to use

semantically structured data.

All these efforts move us to a point where information on the web can be moved into

a form where it is machine understandable and semantically and ontologically

enhanced. However XML, RDF, OWL etc. all these technologies aims machine

understandability not for human, here it seems like we are at the beginning again. It

would be a big burden to duplicate efforts, meaning creating a piece of data both in

the form of such as RDF, for machines, and in the form of simple XHTML, for

human. This would also bring other problems like when a change is needed; user

need to both update metadata and presentation which would raise data consistency

and syncronization problems. There are also efforts to prevent this double work

burden. eRDF, RDFa and Microformats are leading technologies in this area, they

allow embedding semantic data into web pages that can be both machine and human

 59

understandable. RDFa is a W3C specification based on expressing structures via

attributes of languages of XHTML and HTML [30]. eRDF, Embedded RDF, allows

some very important parts of the RDF model to be embedded but does not attempt to

extend this to the full RDF model [31]. eRDF is inspired by some basic principles of

Microformats, those principles will be introduced later in this chapter. We already

defined Microformats in Chapter 1 as, XHTML tags that are used to embed

information into web pages which are understandable both by machines and humans

while considering the human as first priority.

All these technologies, RDFa, eRDF and Microformats, have their advantages and

disadvantages coming from their nature. RDFa and eRDF is based on RDF

framework and they just provide syntax in order to express RDF via XHTML

attributes, attributes in an XHTML page are not viewable by users, so RDFa and

eRDF uses these attributes to embed RDF vocabulary into XHTML page. The main

difference between RDFa and eRDF is that, RDFa reflects full capability of RDF via

completing missing abilities of XHTML with new attributes, however eRDF does

not introduce any new attributes, and it prefers not to express RDF models which are

not expressible by the capabilities of XHMTL such as blank nodes, containers, typed

literals. This can be denoted as every eRDF structure is expressible via RDF but not

every RDF structure is expressible via eRDF. RDF introduces new attributes

therefore it is not compatible with XHTML 1.0 and breaks the syntax of XHTML,

therefore any XHTML cleaning tool like “Tidy” [32] would break up the RDFa

structure if it is applied, however RDFa is expected to be supported by later versions

of XHTML.

RDFa and eRDF is based on the framework provided by RDF where Microformats

offers both syntax and a set of fixed vocabulary as it does not rely on RDF or any

other framework. Therefore Microformats are domain specific; you can not express

everything with Microformat unless its syntax and vocabulary is defined by its

community. This also implies that the extracting procedure is same for every eRDF

and RDFa involving XHTML pages where it is different for every Microformat

involving document. However as Microformat does not have any relation with RDF

or such framework, it can be directly embedded into XHTML page without any need

of both XHTML and RDF mark-up writing. eRDF and RDFa’s being based on RDF

 60

enables users to mix and use different name spaces, however Microformat uses a flat

name space, it is already predefined and you can not extend or mix it, besides you

can not add a new metadata element. It is obvious that RDFa and eRDF provides

much more flexibility then Microformats besides there strong ontology languages

built on them such as OWL and DAML however yet there is no real life application

of neither RDFa nor eRDF where there are many real life examples of Microformats

both used by hobbyists or some enterprises like “Yahoo Locals”. However it is

important to note that Microformats does not neither aim to be a panacea for all

taxonomies, ontologies or and other such abstractions not aims to infinitely

extensible or open ended [33].

While Microformats can encode explicit information to aid machine readability,

Microformats do not address implicit knowledge representation, ontological analysis,

or logical interference [34]. However simplicity of Microformats moves it to the

practical real life; that is why people call Microformats as “lower case” semantics.

Besides Microformats does not aim to reflect everything, it is developed by

community so anyone can not simply offer a new Microformat and every domain is

not suitable to be expressed with Microformats. They usually base their

implementations to express well-established and accepted metadata-standards such

as Dublin Core, iCal, vCard, Foaf, Atom etc. For instance using the hAtom

Microformat, a website becomes the feed by intelligently marking up items. There is

no longer a need to publish the same content in other formats like RSS since

applications can extract raw Atom data from the (X)HTML of the website, again

without converting to and from RDF [35]. Many people think that Microformats has

its place now, and it allows us to reach of limited benefits of semantic web, and one

day people needs will reach at the borders of these limitations and then RDFa and

eRDF will have their place and they are expected to clear their weaknesses till that

time.

Microformats will be under consideration of this thesis as it has many real life

applications and might be a good instrument for e-Learning metadata standards and

might offer variety of opportunities for e-Learning domain. Rest of this chapter will

include details on Microformats.

 61

4.2 A deeper look at Microformats

Semantic web could evolve from a collection of loosely linked pages to an enormous

database that can be searched, filtered, and re-assembled in new ways. [36]

Microformats offer a simple way in order to do so, which does not require any extra

work, anyone with basic HTML knowledge can be able to employ Microformats.

Instead of throwing away what works today, Microformats intend to solve simpler

problems first by adapting to current behaviors and usage patterns (e.g. XHTML,

blogging). [37]

Figure 4.1 Example Use of Microformats

Figure 4.1 demonstrates use of Microformats, the simple HTML page shown

includes an hCard Microformat. hCard Microformat is based on vCard which is a

standard defining the format of an electronic business card, it offers variety of

elements to be used such as name, organization, address etc. and how they should be

used. As it is said Microformats are based on well established standards, vCard is the

base of hCard. The example is demonstrated in a Firefox browser which has a

Microformat plugin, “Operator” [38], installed on it. This plugin is capable of

detecting several kind of Microformats, as it is shown in the given snap-shot, the

contact information is detected, it can be exported to vCard format and can be used

 62

in vCard supported applications, or several other operations are possible depending

on the extractor application.

4.2.1 POSH

The first step before going further into Microformats world in the sense of either

creating a new Microformat, or understanding how Microfrmats work, or employing

Microformats in own web pages, is POSH. It means “Plain Old Semantic HTML”,

and it aims separating presentational and semantic behavior of HTML 4.01 or

XHTML 1.0 by using semantic elements and attributes separate from presentational

elements and attributes. Furthermore while leaving semantic elements and attributes

on XHTML page; it moves all presentational behavior over CSS, Cascading Style

Sheet, files.

Figure 4.2 HTML, POSH and Microformats [39]

Some important principles for a valid POSH, can be summarized and sampled as

follows. First of all the XHTML pages must be validated, that means these pages

must follow basic syntax and rules of XHTML like correct nesting, and should use

Strict HTML4.0/XHTML1.0. Secondly, semantic markup and presentational markup

should not be mixed into each other, instead presentational issues should be handled

HTML
POSH

Semantic Patterns

Microformats

 63

via CSS, for instance to create paragraph headings and sub-headings, “<h1>Heading

1<h1>” format should be used which is a semantic markup element for headings (h1,

h2… etc.). Its presentational behaviors might be presented via CSS as follows; “h1

{font: bold xx-large; }” which would present heading in bold with a large font size.

A wrong use to represent same heading with mixing presentational and semantic

elements would be as follows; “ This is a heading ”.

Fewer HTML elements should be used, many presentational elements and attributes

can easily represented with CSS such as “color” attribute or “<center>” attribute.

Another example can be use of “
” element, whose affect can be easily

accomplished via use of semantic “<p>” element. Such as instead using

“

This is a paragraph.

This is another paragraph

”,

“<p>This is a paragraph<p><p>This is another paragraph</p>” can be used. All

XHTML elements should be used appropriately and should be used for their intended

use, for instance “<h1>” should not be used for getting large text, or “” or

“” element should not be used for getting bold text, or tables should be used

for tabular data not for layout etc.

4.2.2 Basic Principles

Now some important basic principles of Microformats, which also inspired other

works such as eRDF, will take place;

• Don’t Repeat Yourself (DRY): This principle is against the cases where

meta-data and presentation is separated from each other and when update is

needed both need to be updated. Data should reside only in a single place,

and when metadata is updated, it has to reflect all layers.

• Visible Metadata: There have been several attempts to associate metadata

with HTML pages like “meta” element which is invisible to the user but can

be detected by computers. However “meta” element has been an instrument

for abusing search bots such as Google or other web search engines, besides

as it is not visible many have been forgotten and stayed out date. Visible

metadata principle is a lesson learnt from these previous attempts and making

metadata visible prevents these problems.

 64

• Re-use: Microformats are built on widely adopted standards such as XHTML

and it uses well established schemas and standards such as RSS, vCard etc.

Besides enables Microformats to be compound meaning a Microformat can

be used inside another Microformat. For instance a Microformat which

requires expressing people should use hCard Microformat which is used to

express people.

• A specific problem should be solved and solution should be as simple as

possible.

• And the most famous one, “human first machine second”.

Figure 4.3 Foundation of Microformats [39]

4.2.3 Design Patterns

Design patterns give Microformat authors a vocabulary for expressing their ideas

consistently with what has already been done [40].

Abbr Design Pattern: Allows encoding a text in a more formal way or machine

readable way around presented human readable data for machines by using “<abbr>”

element. In below in the first example, data value presented more formally for

machines and in the second example name and surname of a person presented in

more formal way where a nick is provided for presentation

 65

1 <abbr class=”dtstart” title=”20080404T11:10:00-0200”>at 11:10 am of 4th April</abbr>
2 <abbr class=”author” title=”Ahmet Soylu”>Ahmet<abbr>

Figure 4.4 Abbr Design Pattern Sample

Date-time Design Pattern: This design pattern is used to make date time values both

human readable and formally machine readable. The following case demonstrates

usage;

3 <abbr class=”semantic_name” title=”YYYY-MM-DDTHH:MM:SS+ZZ:ZZ”>Date Time
</abbr>

Figure 4.5 Date Time Design Pattern Sample

Class Design Pattern: This pattern is mostly used one among Microformat design

patterns. It encodes semantic meaning via using “class” attribute, it is important to

note that if there is a semantic proper XHTML element, such as “<h1>” for title,

available it must be used, if it is not available “<div>” or “” element should

be used, any presentational element should be avoided. Below example demonstrates

how an author name is encoded via “class” attribute.

4 <div class=”author”>Ahmet Soylu</div>

Figure 4.6 Class Design Pattern Sample

Rel Design Pattern: This design pattern is used to express the meaning of a link by

using “rel” attribute. Here below an example is given;

5 iCamp</tag>

Figure 4.7 Rel Design Pattern Sample

Elemental Microformats: Aimed to solve minimal problems and used to be part of

larger compound Microformats. “rel-license”, “rel-nofollow”, ”rel-tag” etc. are some

examples.

 66

Compound Microformats: A compound Microformat consists of elemental

Microformats and HTML element where each one can be expressed by “rel” or

“class” attributes. “hReview”, “hCalandar” , “hCard” etc. are some examples.

Include Pattern: This pattern allows data re-usability within the same source

document. A Microformat structure that takes place in one portion of page can be

reused included, in another Microformat structure. This pattern has some problems

those are still waiting for solution that comes up differently in different browsers.

This pattern is realized by either links or objects.

4.2.4 An example Microformat

The below example, Table 4.1, includes a hCard Microformat embedded XHTML

code whose output is shown in Figure 4.1 above.This example is created with the

help of hCard creator service, hCard Creator [41], of Microformats community. This

creator and creators for other Microformats can be found in Microformats

community page. The specification for hCard can also be found in their community

page in details.

Properties of hCard are [42];

• Fn

• n(family name, given-name, additional name, honorific-prefix, honorofix-

suffix)

• nickname, sort-string

• url, email(type, value), tel(type, value)

• adr(post-office-box, extended-address, street-address, locality, region, postal-

code, country-name, type, value), label

• geo(latitude, longitude), tz

• photo, logo, sound, bday,

• title, role, org, (organization-name, organization-unit)

• category, note

• class, key, mailer, uid, rev

 67

Basically “fn”, full name, and “n”, name, properties are mandatory rest of the

properties are optional such as “photo”, “tags”, “url” etc., “n” property is a complex

property which consist of “family-name”, “given-name”, “additional-name”,

“honorific-prefix” and “honorific-suffix” in given order. Each property embedded as

class names and their values are usually values of XHTML elements. However in

some cases such as in a case of using “abbreviation” pattern the value is the value of

“title” attribute of “<abbr>”, or when “<a>” element is used the for the “photo”

property the value of “href” attribute makes the property value. Another point about

specification, in Figure 4.8 the vCard elements “NAME”, “VERSION” and

“SOURCE” is not gleaned from embedded Microformat and it is not part of the

specification to embed this information, rather this information is extracted from the

source of page such as title of page becomes “NAME” and URL of the page becomes

“SOURCE” etc.

The Figure 4.8 gives the code which belogs to demonstration in Figure 4.1.

1 * * *
2 <div id="hcard-Ahmet-Fethi-Soylu" class="vcard">
3
4 Ahmet
5 Fethi
6 Soylu
7
8 <div class="org">ISIK University</div>
9 ahmetsoylu@yahoo.com
10 <div class="adr">
11 <div class="street-address">Buyukdere Cad.</div>
12 Istanbul,
13 Maslak,
14 34398,
15 Turkey
16 </div>
17 <div class="tel">905433869031</div>
18 <div class="tags">
19 ahmet
20 soylu
21 <div>
22 </div>
23 * * *

Figure 4.8 hCard Example

It is important to note again it does not matter which XHTML elements used, only

the semantic class names assigned allows detection of Microformat properties. Using

 68

presentational XHTML elements must be avoided, however Microformat should be

easily presentational format able via CSS or even without CSS it should be presented

in a human readable way. For instance in Figure 4.8 neither presentational XHTML

elements are used nor CSS is used, however it is still viewable in a human readable

way as it is shown in Figure 4.8.

Note that “rel-tag” elementary Microformat is also used in this example in lines 19

and 20, and these tags are also detected in Figure 4.1.

The code piece in Figure 4.9 belongs to the vCard representation of above embedded

hCard Microformat after a conversion done with an extractor application such as a

GRDDL agent. This is totally a valid vCard file which can be directly used with any

supporting application such as Outlook. It is also important to note that vCard is a

wildly accepted and used standard.

1 BEGIN:VCARD
2 PRODID:-//kaply.com//Operator 0.8//EN
3 SOURCE:file:///C:/Documents%20and%20Settings/ahmet/Desktop/test.htm
4 NAME:
5 VERSION:3.0
6 N;CHARSET=UTF-8:Soylu;Ahmet;Fethi;;
7 ORG;CHARSET=UTF-8:ISIK University
8 FN;CHARSET=UTF-8:Ahmet Fethi Soylu
9 UID:
10 EMAIL:ahmetsoylu@yahoo.com
11 ADR;CHARSET=UTF-8:;;Buyukdere Cad.;Istanbul;Maslak;34398;Turkey
12 TEL;TYPE=VOICE:905433869031
13 END:VCARD

Figure 4.9 vCard Format after Exporting

 69

 Chapter 5

Learning Object Metadata Standards

5.1 Learning Standards

Needs of e-Learning has evolved a lot since the expectations moved from generic

features and functionalities (such as quizzes, calendars etc.) of tools and systems to

pedagogic and discipline based needs and features. These increasing needs have

populated e-Learning world with many tools and nearly every e-Learning related

party tried to employ or employed their own tools and systems. These movements

enforced significant existence of standards in e-Learning world because otherwise it

is impossible to ensure the return of this huge amount of investment.

Standards, brings important benefits together if they really manage to have wild

acceptance and practice in their targeted domains. These benefits referred in Chapter

1 shortly and they can be summarized as follows;

• Re-usability: Learning content can be easily split up, re-used and formed

again in order to create different contexts

• Interoperability: Multiple Learning Systems or tools can communicate each

other, besides they can share and mix their learning resources.

• Manageability: Tracing of learning content and users by learning tools or

systems becomes easy.

• Accessibility: Learning content can be accessed by several learning tools and

devices, besides appropriateness of content can be ensured.

• Durability: Users are not bound to any specific system, tool or device,

interoperability and reusability is ensured.

 70

• Scalability: Functionalities of systems and tools and investment over these

items can be increased depending on the needs and requirements.

• Affordability: It can be ensured that Learning investments are appropriate

and risk free.

There are several works done on learning standards area conducted by different

bodies such as IMS, IEEE, ADL etc. depending on the discipline, geography and

market. These bodies usually conduct research on Learning Standards in general, and

they usually offer bundle of standards together. It is not uncommon for these

standard bodies to adapt one or several learning standards of other bodies as a part of

their learning standards bundle. However it is obvious that each application might

have its own requirements and it is also obvious that one standard can not cover

needs of all different applications. Therefore applications have to choose from

alternatives of these learning standards or have to adopt these standards according to

their needs without breaking their compliance to the standards.

Figure 5.1 How Standards are Formed [7]

Figure 5.1 demonstrates how e-Learning standards are formed; actually same

principles apply for the different domains. However before going in deep of this

process, two important concepts need to be given. These are “de facto” and “de jure”

standards, “de jure” standards are specifications which are accredited by an

accredited body such as IEEE, ISO etc, and “de jure” standards are specifications

 71

which have wild acceptance, adoption and use without any accreditation. Ideally a

“de facto” standard is also a “de juro” standard. Now back to Figure 5.1, first some

research bodies identifies possible solutions and prepares specifications depending

on the requirements, then this specification is tested to check whether it works or not,

then if it is thought that the specification is complete and works appropriately by the

accredited body, it becomes an accredited standard and it is made available by

accredited body. The Figure 5.1 gives some examples of bodies taking part in each

stage.

Some example standards in E-Learning world are learning resource metadata,

content packaging, question and test interoperability, content sequencing, tool

interoperability, learner profile etc. Bodies those offer e-Learning standards,

specifications or best practices summarized briefly in Table 5.1. Relatively important

ones are IMS, ADL-Scorm and IEEE. IMS Global Learning Consortium is a global,

non-profit, member association that provides means of shaping and growing the

learning and educational technology industries through collaborative support of

standards, innovation, best practice and recognition of superior learning impact [43].

IMS is like an umbrella group which involves several work groups (more than 30),

besides it is in cooperation with other organizations such as ADL, IEEE, AICC,

Dublin Core etc. ADL is a US Department of Defence initiative, ADL refers to

Advanced Distributed Learning. ADL employs a structured, adaptive, collaborative

effort between the public and private sectors to develop the standards, tools and

learning content for the learning environment of the future [44]. Scorm is wildly

known and adopted initiative of ADL which refers to Sharable Object Content

Reference Model. Scorm provides a reference model and framework, this means it is

not a standard it self but collection of individual standards and specifications

(adopted from other bodies such as IMS, IEEE etc.). This reference model ensures

interoperability, re-usability and manageability of learning content. IEEE employs

IEEE Learning Technologies Standards Committee (IEEE LTSC). Its aim is to

develop internationally accredited technical standards, best practices, and guides for

learning technology [45]. It also collaborates with different bodies that create e-

Learning standards and specifications. This collaboration occurs in a formal or

informal manner. Accredited standards of IEEE have been wildly adopted by

different bodies, and user parties.

 72

Table 5.1 Snapshot of Standard Organizations [46]

 73

5.2 Learning Object Metadata Standards

In Chapter 1, a learning object is referred as “a digital part of a course ranging in size

and complexity from a single graphic to entire course”. However it is important to

note that there is no common definition of a learning object as the definition might

change depending on the requirements of applications.

Whatever definition it has the important gain that comes together with “learning

objects” is their small granularity. A learning object thought to be as smaller as it can

be, so it can be re-used or re-assembled in different contexts. However it is important

to note that these small learning objects should be meaningful. An example can be

thought as follows, imagine a video file, an image file, or a text file as learning

objects, they can together form a lesson and the lessons can together form a course.

Providing that learning objects are independent from each other and smaller as much

as they can be, their mobility, and re-usability is ensured. In this way investments can

be saved because there will be no burden of creating same learning objects again and

again for different contexts. According to Higgs et al (2003), essential characteristics

of a learning object can be listed as follows;

• Independent

• Sharable / Reusable

• Interoperable

• Instructional value

• Discoverable

• Minimal context

However independence and small granularity will not provide a learning resource to

be re-used completely. It must also ensure that these learning objects are

interoperable. Learning Object Metadata can efficiently facilitate description,

discovery and retrieval of learning content [47]. Yet it also enables interoperability of

learning object by allowing different applications to share their learning objects.

Metadata has been also introduced in Chapter 1; it is simply data about data. It is like

catalogue carts in a library where each book or source tracked with information

 74

charts. The information tracked might be the title, subject, place etc. of the resource.

Metadata can be tagged directly over information or can be kept separately from the

source. Some web technologies like RDF, XML has already been introduced and

these technologies are being used to carry metadata information in general by using

the vocabulary set, like vCard, developed and proposed by some bodies.

There are several bodies which do research and produce specifications or standards

or best practices for Learning Object Metadata; most of these organizations have

already been introduced in previous pages. The relatively important works are IEEE

LOM (IEEE Learning Object Metadata), ADL-Scorm which have been known

wildly and adopted by different bodies, organizations and other related parties.

Dublin Core is also an important metadata standard even thought it is not specifically

for Learning Objects but for general, it has an importance for Learning Object

Metadata works. The coming pages will involve the works done in the area of

Learning Object Metadata, however before proceeding further, an important concept

need to be clarified briefly. This is “application profile” which has been denoted in

Chapter 1 shortly.

5.2.1 Application Profile

It is already denoted that it is not possible for a single learning object metadata

standard to cover all requirements of different applications, in the mean time a

learning object metadata set might also give much more than an application require.

Here application profiles plays a key role, they aim to facilitate the application-

oriented implementation of educational metadata specifications by allowing mixing

and matching metadata elements in order to meet specific requirements for a

particular context [48, 49]. Simply saying, an application profile might be a subset of

a standard or can be mixture of elements from different standards.

Designing an application profile requires a systematic approach which should be

carefully followed. A guideline has been published for application profile

development in 2006 CEN/ISSS WS/LT workshop [50]. It is important to highlight

the followings;

 75

• One or more application profile can be selected as base standards,

• A target system which is compliant with the base standards must be also

compliant with the application profile, or a target system compliant with the

application profile should be compliant with the base standard.

• The application profile can not be less restrictive than the base standards

which means application profile can make restrictions of base standards

harder but can not relax them.

The basic guidelines can be summarized as follows in given order;

• Requirements: The first task must be identifying requirements in order to do

so scope and purpose of the application profile must be defined, then

according to scope and purpose use cases should be documented to identify

requirements appropriately.

• Selection of Data Elements: Base standards need to be selected; those

standards should be selected from the ones which share the same scope and

purpose with proposed application profile.

• Multiplicity Requirements: The concept “Smallest Permitted Maximum”

(SPM) is important here. It means at least how many times and element

should appear and target system should process an application profile can

reduce this number or can leave it equal, however can not increase this

number.

• Data Elements from Multiple Namespaces: Proposed application profile

might depend on multiple metadata schemas.

• Local Data Elements: An application profile may involve local data

elements.

• Obligation of Data Elements: Typical values include, “Mandatory”,

“Recommended”, “Conditional”, “Optional”. However application profile

can not soften the obligation for instance can not reduce obligation from

“Mandatory” to “Optional“, however can harden the obligation.

• Value Space: Value space defines the domain or set of values which the data

element can have values from. This can be two fold, a vocabulary can be

given or a reference to another standard can be given. As usual an application

 76

profile can not be less restrictive. In vocabulary case application profile might

choose a subset of specified vocabulary and in a case to referencing another

standard application profile might choose an application profile of the

referenced standard.

• Relationship and Dependencies: Complex relationships among data

elements can be defined by not violating the rule which does not allow

application profile to be less restrictive than base standards.

• Data Type Profiling: Example data types might be “LangString”,

“DateTime”, “Duration” etc. which are some of the data types those belongs

to LOM. Data types themselves are also a metadata schema therefore all the

rules for application profile also apply data types.

5.2.2 IEEE LOM

This standard (IEEE LOM 1484.12.1-2002) is a multi-part standard that specifies

Learning Object Metadata and for this standard, a learning object is defined as any

entity, digital or non-digital, that may be used for learning, education or training [51]

[10]. A vocabulary, extensions and description of semantics are involved in this

standard. LOM has been accepted, adopted and used by many bodies and

organizations such as ADL, IMS etc.

LOM vocabulary grouped into nine categories which are globally accepted. Those

categories are summarized below briefly;

• General: In this category, general elements those describe the Learning

Object with its general properties are grouped.

• Lifecycle: In this category, elements those are related with the history and

current state of the learning object are grouped during its life cycle.

• Metadata: In this category, elements those describe metadata instance itself

are grouped.

• Technical: In this category, technical properties and requirement of Learning

Object are grouped.

 77

• Educational: In this category, elements those describe educational and

pedagogic properties of Learning Objects are grouped.

• Rights: In this category, elements those describe intellectual property rights

and conditions of Learning Objects are grouped.

• Relation: In this category elements those describe relation of Learning

Object with other Learning Objects are grouped.

• Annotation: In this category, elements those give comment on educational

use of Learning Object grouped. Besides elements those give information

about the comment provider are also grouped in under this category.

• Classification: In this category elements those describe classification of

Learning Object with respect to a particular classification system are grouped.

In Table 5.2 LOM elements are listed with respect to their category in given order.

Table 5.2 LOM v1.0 Elements

Category Elements

1 General
Identifier (Catalog, Entry), Title, Language, Description, Keyword, Coverage,
Structure, Aggregation Level

2 Lifecycle Version, Status, Contribute (Role, Entity, Date)

3 Metadata
Identifier (Catalog, Entry), Contribute (Role, Entity, Date), Metadata Schema,
Language

4 Technical
Format, Size, Location, Requirement (orComposite (Type, Name, Minimum
Version, Maximum Version)), Installation Remarks, Other Platform
Requirements, Duration

5 Education
Interactivity Type, Learning Resource Type, Interactivity Level, Semantic
Density, Intended End User Role, Context, Typical Age Range, Difficulty,
Typical Learning Time, Description, Language,

6 Rights Cost, Copyright and Other Restrictions, Description
7 Relation Kind, Resource (Identifier (Catalog, Entry), Description)
8 Annotation Entity, Type, Description
9 Classification Purpose, Taxon Path (Source, Taxon (Id, Entry)), Description, Keyword

It is important to note that LOM elements have a hierarchical structure, and an

element might be “simple” or “aggregate” element. Simple elements are leaves and

they have value spaces and data types, however aggregate elements do have neither

value spaces nor data types. In Table 5.2 “General.Identifier” is an aggregate element

which contains some sub elements, however “General.Identifier.Catalog” is a simple

element.

 78

Table 5.3 A Sample from LOM v1.0 [10]

Name Explanation Size Order Val. Space Data Type Example

1.1 General

This category
groups the
general
information
that describes
the learning
object as a
whole.

1 unspecified - - -

1.1.1 Identifier

A globally
unique label
that identifies
this learning
object.

spm
:10

unspecified - - -

1.1.2 Catalog

The name or
designator of
the
identification
or cataloging
scheme for
this entry. A
name space
scheme.

1 unspecified
Repertoire of
ISO/IEC 10646-
1:2000

CharacterSt
ring,
SPM:1000

“ISBN”,
“ARIADNE
”, “URI”

* * *

1.7 Structure

Underlying
organizational
structure of
this object.

1 unspecified

atomic: An object
that is invisible. (in
this context)

collection: A set of
objects with no
relationships
among them.

networked: A set
of objects with
relationships that
are unspecified.

hierarchical: A set
of objects whose
relationships can
be represented by a
tree structure.

linear: A set of
objects that are
fully ordered. (E.g:
A set of objects
that are connected
with “previous”
and “next”
relationship.)

Vocabulary
(State)

NOTE—A
learning
object with
Structure=“
atomic” will
typically
have
1.8:General.
Aggregation
-
Level=1. A
learning
object with
Structure=”
collection”,
“linear”,
“hierarchica
l” or
“networked
” will
typically
have
1.8:General.
Aggregation
Level=
2, 3, or 4.

9 Classific.

This category
describes
where this
learning
object falls
within a
particular
classification
system.

spm
:40

unordered - - -

* * *

 79

Table 5.2 does not include whole details of the elements, however more details can

be found in the standard document (LOM 1484.12.1, 2002). In this standard

document every element is described by a “name”, “explanation”, “size”, “order”

and “example”. In Table 5.3 a demonstration is given.

“Name” and “explanation” are already self descriptive. “Size” shows how many

times this LOM element must appear. An exact number gives the number of exact

occurrences, however if a Smallest Permitted Maximum, SPM, is defined this gives

the minimum number of occurrences that an application should process. In example

“1.1.1 Identifier”’ has SPM of 10 while “9 Classification” has SPM of 40. The rest of

the elements given in example have an exact value of 1. “Order” is used to indicate

whether the orders of values of an element are significant or not, this is used for the

elements where a vocabulary is defined for value space. A famous example for this

case can be the authors of a paper, the order of the authors are important because of

they are usually listed according to the level of their contribution, or at least the first

author is the main author of the paper. “Value Space” is used for simple elements,

and it gives a set of values, a vocabulary, which is applicable for this element. A

reference to another standard can be given for a value space, for instance vCard can

be used as a value space for an element which refers to a person or organization. An

example from the Table 5.3, “1.1.2 Catalog” value space refers to a standard where

“1.7 Structure” value space refers to a set of values. “Datatype” refers to type of the

value; this is also valid for simple elements. Finally “Example” gives a

demonstration of the element use.

Data types for LOM v1.0 are also worth to mention here, the valid data types are;

“LangString”, “DateTime”, “Duration”, “Vocabulary”, “CharacterString” or

“Undefined”. Data type also might include a SPM value like “Size”, for instance a

SPM indicates how much characters should be processed by application for

“CharacterString” data type having values. LOM elements represent a hierarchy, and

the numbering represents this hierarchy like “1.1.1” or “1.1.2”. Data types in LOM

are also represented by a schema in standard document in the same format and

descriptive elements in Table 5.3. In Table 5.4, this schema demonstrated basically.

Whole definitions and descriptions can be found in standard document.

 80

Table 5.4 LOM v1.0 Data Types

Datatype Elements
1 LangString LangString(Language, String)
2 DateTime DateTime, Description
3 Duration Duration, Description
4 Vocabulary Source, Value
5 CharacterString -

All elements of the LOM are currently optional; this means no of them is forced to

be used. If the application profile rules are recalled, it was saying no obligation can

be relaxed, as all elements are already optional there is no need to consider this rule.

However when producing an application profile for LOM, if a set of new local

elements to be added, if there is already a match between LOM elements and the new

set, LOM elements should stay but the matching element in the new set should be

ignored. Furthermore if an extension is about to be defined for a data element, no

value space or data type should be defined for aggregate elements.

Another document, “IEEE LOM v1.0 Extensible Markup Language (XML) Schema

Definition Language Binding for Learning Object Metadata” (IEEE1484.12.3.2005),

accompany standard document. This standard defines World Wide Web Consortium

(W3C) Extensible Markup Language (XML) structure and constraints on the

contents of XML 1.1 documents that can be used to represent learning object

metadata (LOM) instances as defined in IEEE Std 1484.12.1-2002.1 and this

standard defines the structure and constraints of the XML 1.1 documents in W3C

XML Schema definition language [53].

5.2.3 ADL-Scorm – Scorm Metadata

SCORM is a collection of standards and specifications adapted from multiple sources

to provide a comprehensive suite of e-learning capabilities that enable

interoperability, accessibility and reusability of Web-based learning content [54].

Scorm Metadata is based on IEEE 1484.12.1-2002 LOM and IEEE1484.12.3.2005

Standard for Extensible Markup Language (XML) Binding for Learning Object

Metadata. Approximately 64 LOM metadata elements are defined by Scorm. Scorm

CAM (Content Aggregation Model) document provides definitions of all these

 81

elements with their example XML bindings. While Scorm provides, best practices

and requirements for efficient use of LOM, it also encourages other parties to decide

on their own element sets and requirements.

1 <lom>
2 <general>
3 <identifier>
4 <catalog>URI</catalog>
5 <entry>http://www.example.com/object1</entry>
6 </identifier>
7 <title>
8 <string language="en">An example title</string>
9 </title>
10 <language>en</language>
11 <description>
12 <string language="en">Description</string>
13 </description>
14 <keyword>
15 <string language="en">Test, Object</string>
16 </keyword>
17 <coverage>
18 <string language="en">Animals</string>
19 </coverage>
20 <structure>
21 <source>LOMv1.0</source>
22 <value>atomic</value>
23 </structure>
24 <aggregationLevel>
25 <source>LOMv1.0</source>
26 <value>2</value>
27 </aggregationLevel>
28 </general>
29 </lom>

Figure 5.2 Scorm Metadata – General Category XML Binding Example

Above code piece is a demonstration of “General” category elements by Scorm.

More details can be found in Scorm CAM (Content Aggregation Model) document

[55]. The document provides examples, and practices and gives description, name

space, multiplicity requirements and data type information for each element.

5.2.4 Other LO Metadata Standards and Application Profiles

There are several other initiatives which provide metadata standards, application

profiles, best practices or reference models for learning object metadata. Some of

them are listed and explained below briefly;

 82

• ARIADNE Metadata: Current version of this specification is an application

profile of LOM whose scope is Higher Education and Professional Training.

Provides 43 elements, and 23 of these elements directly maps to the IEEE

LOM elements. Early version of this specification was the basis of IEEE

LOM.

• UK Learning Object Metadata Core: This is also an application profile of

IEEE LOM which is specifically aimed for UK education. The main purpose

is to provide best practices, guidelines to metadata implementers, users and

creators. The current specification is not accompanied with bindings.

• IMS Global Learning Consortium: IMS and ARIADNE submitted a joint

proposal to IEEE which resulted with the draft proposal of IEEE LOM and

creation of IEEE LTSC working group [56]. IMS uses IEEE LOM as its basis

now, and publishes best practice specifications. IMS/GLC and IEEE still

have close cooperation for learning object metadata initiative.

• CanCore Metadata: Originally called Canadian Core, and it is totally based

on IEEE LOM Standard and IMS specification. CanCore selects sub elements

of LOM (currently 46 active elements) according to their minimalist

approach and gives detailed information, practices and recommendations

about these elements. More information about specification can be found in

specification document [57].

5.2.5 Dublin Core

Dublin Core (DC) Metadata is not specifically produced for Learning Object

Metadata but rather for general use. That is why it is considered in above Learning

Object Metadata sets; however DC has a significant importance for Learning Object

Metadata. It mainly aims facilitating discovery and retrieval of learning objects.

Many standard and specification bodies adopted or used DC, one example can be

CanCore.

DC is actually can be seen as lowest common denominator. DC provides 15 elements

which can be considered pretty small with respect to IEEE LOM, this mean high

 83

manageability for DC. Actually all elements of the DC can be mapped into IEEE

LOM, Table 5.5 represents DC elements and their mapped IEEE LOM element.

Table 5.5 DC Elements Mapping over IEEE LOM Elements [52]

Dublin Core Data Element IEEE LOM Data Element
DC.Identifier 1.1.2:General.Identifier.Entry
DC.Title 1.2:General.Title
DC.Language 1.3:General.Language
DC.Description 1.4:General.Description

DC.Subject
1.5:General.Keyword or 9:Classification with
9.1:Classification.Purpose equals “Discipline” or “Idea.”

DC.Coverage 1.6:General.Coverage
DC.Type 5.2:Educational.LearningResourceType

DC.Date
2.3.3:LifeCycle.Contribute.Date when 2.3.1:LifeCycle.Contribute.Role
has a value of “Publisher.”

DC.Creator
2.3.2:LifeCycle.Contribute.Entity when
2.3.1:LifeCycle.Contribute.Role has a value of “Author.”

DC.OtherContributor
2.3.2:LifeCycle.Contribute.Entity with the type of contribution
specified in 2.3.1:LifeCycle. Contribute.Role.

DC.Publisher
2.3.2:LifeCycle.Contribute.Entity when
2.3.1:LifeCycle.Contribute.Role has a value of “Publisher.”

DC.Format 4.1:Technical.Format
DC.Rights 6.3:Rights.Description
DC.Relation 7.2.2:Relation.Resource.Description

DC.Source
7.2:Relation.Resource when the value of 7.1:Relation.Kind is
“IsBasedOn.”

DC Metadata initiative also involved in development of educational elements for

Dublin Core to describe educational materials which is called DC-Ed. DC-Ed is

extension of DC, it has 5 elements. DC-Ed is aims describing Learning Objects in a

more general way rather than describing them extensively as IEEE LOM does. IEEE

LTSC LOM Working Group and Dublin Core Metadata initiative has accepted a

memorandum to cooperate for developing metadata. Thus DCMI-EMS (Dublin Core

Metadata Initiative – Educational Metadata Set) is proposed which consist of 15 DC

elements, 5 DC-Ed elements and 3 IEEE LOM elements. The DCMI-EMS metadata

set is given in Table 5.6.

 84

Table 5.6 DCMI-EMS Metadata Schema [58, 59]

Element Name Description
Title (DC) A name given to the resource

Contributor (DC)
An entity responsible for making contributions to the content of the
resource

Creator (DC)
An entity primarily responsible for making the content of the resource.
Datatype

Publisher (DC) An entity responsible for making the resource available
Subject (DC) The topic of the content of the resource.
Description (DC) The topic of the content of the resource.
Date (DC) A date associated with an event in the life cycle of the resource.
Type (DC) The nature or genre of the content of the resource
Format (DC) The physical or digital manifestation of the resource.
Identifier (DC) An unambiguous reference to the resource within a given context
Language (DC) A language of the intellectual content of the resource.
Source (DC) A Reference to a resource from which the present resource is derived
Coverage (DC) The extent or scope of the content of the resource.
Rights (DC) Information about rights held in and over the resource.
Audience (DC-Ed) A category of user for whom the resource is intended.
Audience.Mediator (DC-
Ed)

An entity that mediates access to the resource.

Standards (DC-Ed)
A reference to an established education or training standard to which
the resource is associated

Standards.Identifier (DC-
Ed)

Where available, an identifier that serves to uniquely identify the
standard being associated

Standards.Version (DC-Ed)
Information identifying the version of the standard being referenced
(e.g., a year of publication, a version number, etc.)

InteractivityType (LOM) The flow of interaction between this resource and the intended user
InteractivityLevel (LOM) The degree of interactivity between the end user and this resource.
TypicalLearningTime
(LOM)

Approximate or typical time it takes to work with this resource.

 85

Chapter 6

Implementation

The work done here has several phases, the first phase is proposing an application

profile, second phase is based on defining the XML, RDF bindings, XSLT files for

transformations and proposing Microformat for this application profile, third phase

consists of setting up an SQI service which is able to extract RDF data from different

pages via GRDDL and makes these RDF files to be queried via SPARQL. An

example semantic search engine which uses this SQI service will be created; this will

be the final phase of the implementation.

6.1 Application Profile Proposal

In order to propose an application profile the guideline given in Chapter 5 will be

used roughly. Scope and purpose, use cases, defining data types, selection and

definition of metadata elements, and finally providing XML and RDF bindings

constitutes the mile stones of proposing the application profile for this thesis.

6.1.1 Scope and Purpose

The first step for creating an application profile is deciding on the purpose and scope

of the application profile as it is indicated in Chapter 5. Purpose and scope of the

application profile which are derived from the context of this thesis are as follows;

Purpose: The primary purpose of the proposed application profile is to facilitate

search and harvesting of Learning Objects both by individuals and automated

software applications such as agents. The minimalist approach defines the borders of

this application profile; it is major to cover the common needs of different interested

parties instead of providing a comprehensive profile because of the nature of the

 86

domain that this application profile will be used for. This application profile will be

used to develop a Learning Object Microformat and it is important to remind that

schemas of Microformats are defined once and they are not subject to change often.

Scope: This application profile defines minimal set of metadata elements and their

structure for Learning Objects. This application profile accepts any digital or non-

digital entity, which is used as a part of digital learning activity, as Learning Object.

Elements of this application profile are derived from IEEE LOM 1482-12-1 2002,

and Dublin Core. This application profile’s reference model and XML bindings are

based on SCORM 2004 3rd Edition.

6.1.2 Use Cases

Three important use cases are provided below which demonstrates how the end user

would make use of the proposed application profile.

First use case is given in Figure 6.1 below;

Use Case Name Creating Learning Object Metadata Instances
Purpose A related party wants to create descriptions for learning resources by only

defining generic elements and major commonly used learning related
elements such as subject, competence etc. and they want to ensure searching
and harvesting of these learning objects via these descriptions.

Primary Actors Cataloguer (anyone who is responsible for providing description for learning
resources)

Preconditions • Existence of related application profile,
• Existence of learning object description editor.

Flow of Events • Cataloguer selects the resource to be described,
• System retrieves and provides the metadata fields to be filled

according to application profile,
• Cataloguer provides necessary information by filling metadata

fields,
• Cataloguer saves the description,
• System binds the description into XML or RDF.

Figure 6.1 Use Case I

Second use case is given in Figure 6.2 below;

 87

Use Case Name Searching Learning Objects
Purpose Purpose: An individual user or an automated software application wants to

apply search operations over a repository that provides learning resources
which are described by learning object metadata.

Primary Actors • Student,
• Software Agent (as a Search Medium)

Preconditions • A learning resource repository,
• Described Learning resources in repository.

Flow of Events • Student starts the agent which can query repository (system),
• Student provides search criteria into the agent,
• Agent connects repository and submits queries according to given

criteria,
• Repository scans the learning resource descriptions and returns the

matched learning object descriptions,
• Agent provides the appropriate results to the student.

Figure 6.2 Use Case II

Third use case is given in Figure 6.3 below;

Use Case Name Harvesting Learning Objects
Purpose A teacher uses an automated software application and a learning object

description detector tool to harvest and process one or more results of
learning object search.

Primary Actors • Teacher,
• Software Agent (e.g. Reasoning Algorithm Applier)

Preconditions • Teacher already submitted a query,
• Search results are already returned,
• Teacher has a tool capable of detecting learning resources,
• Teacher has an agent which applies reasoning algorithms over

learning resource descriptions.
Flow of Events • Teacher displays the search results,

• Teacher selects different learning objects,
• Detector software detects the Learning Objects,
• Teacher shares these learning object descriptions with her agent via

detectors software,
• Agent applies several reasoning algorithms to derive some reasons

from input such as competence learning object relationship.

Figure 6.3 Use Case III

6.1.3 Metadata Elements

First data types those will be used in the application profile must be defined, before

selection and definition of metadata elements. For the sake of simplicity and

minimalist approach, only CharacterString and Vocabulary data types going to be

used. However as noted before Vocabulary element for Vocabulary data type is an

aggregate element and it consists of “source” and “value” elements. In this case

Vocabulary is used as simple element; actually it is interpreted as CharacterString

 88

element. Here only difference of Vocabulary type from CharacterString type is its

having a defined set of vocabulary as value domain.

Selection of metadata elements follows the same approach that is followed when

selecting data types to be used; simplicity and minimalist approach. This comes from

the scope and purpose that proposed application profile going to serve for. Only

thing that is expected from this application profile is enabling search and harvest of

learning resources in the frame of Micrformats. Therefore a learning object do not

need to be represented with all its details by this application profile, rather it will

facilitate discovery and limited reflection of these objects into web with limited set of

elements. Complete IEEE LOM Metadata set could be mapped into Microformats,

however this would break the Microformats principles and would cause

manageability problems. Therefore complex features can still be accessible by means

of using complete IEEE LOM set via RDF or XML, while ensuring simple and

important features with a limited set of elements via Microformats. The proposed set

is completely derivable from any IEEE LOM instance, therefore it does not arise

compatibility or manageability problems.

IEEE LOM and Dublin Core including DC-Ed and DCMI-EMS are used to select

Metadata elements. IEEE LOM is a wildly accepted specification by for learning

community and Dublin Core is wildly accepted for defining general web resources.

The problem that IEEE LOM arises is manageability because of the number of

elements (more than 71) it provides. The conventional wisdom is that learning object

should be accompanied by metadata whose minimal form would contain the

information typically found in the description of a book, journal etc. [60]. There are

already some analysis work done for selection of data elements which are wildly

used by other application profiles, the important ones are Friesen and Campbell

spreadsheets [61, 62] and later work of Carol Jean Godby [60] which is based on

Friesen and Campbell spreadsheets. Total of 35 application profile has been

investigated during these works and the results showed a close match between

Dublin Core elements and mostly used IEEE LOM elements. Therefore the idea that

is going to be followed here is mapping Dublin Core (15 elements) elements into

IEEE LOM elements and including a few important learning specific elements for

application profile need to be proposed. Total of 18 elements has been proposed

 89

below, 7 of them adopted from Dublin Core name space, 9 of them adopted from

IEEE LOM name space and 2 of these elements are derived from IEEE LOM over a

custom name space.

Identifier

Description: This element provides a way to assign a globally unique label to the

learning object.

XML Name Space: http://course.isikun.edu.tr/custom/

XML Binding Representation: <identifierURI>, <IdentifierURN>,

<IdentifierDOI>, <IdentifierISBN>, or <IdentifierISSN>

Multiplicity Requirements: This element must appear 0 or 1 time.

Data type: This element is CharacterString type and it has SPM of 1000 characters.

This element is derived from IEEE LOM, however it is serialized for the sake of

simplicity, <identifierURI> is mandatory, and others are optional. The serialization

done over the following vocabulary derived for <catalog> element of IEEE LOM.

• URI: Universal Resource Identifier,

• URN: Universal Resource Name,

• DOI: Digital Object Identifier,

• ISBN: International Standard Book Numbers,

• ISSN: International Standard Serial Numbers.

Title

Description: This element provides the name of the learning object.

XML Name Space: http://ltsc.ieee.org/xsd/LOM

XML Binding Representation: <title>

Multiplicity Requirements: This element must appear 1 time.

Data type: This element is CharacterString type and it has SPM of 1000 characters.

Language

Description: This element provides the language of the learning object. Language

code must be provided according to the ISO 639:1988. Country sub code can be also

presented (Langcode - Subcode) according to the ISO 3166-1997. “none” can be

provided as a value of language element if the content is not lingual.(e.g.: en-GB)

 90

XML Name Space: http://ltsc.ieee.org/xsd/LOM

XML Binding Representation: <language>

Multiplicity Requirements: This element must appear 0 or 1 time.

Data type: This element is CharacterString type and it has SPM of 1000 characters.

Description

Description: This element provides a textual description for the learning object in

general.

XML Name Space: http://ltsc.ieee.org/xsd/LOM

XML Binding Representation: <description>

Multiplicity Requirements: This element must appear 0 or 1 time.

Data type: This element is CharacterString type and it has SPM of 1000 characters.

Keyword

Description: This element provides keywords describing the learning object.

XML Name Space: http://ltsc.ieee.org/xsd/LOM

XML Binding Representation: <keyword>

Multiplicity Requirements: This element shall appear 0 or more time and has SPM

of 10.

Data type: This element is CharacterString type and it has SPM of 40 characters.

Classification

Description: This element provides a means of classification by providing a subject

a phrase, or a classification code.

XML Name Space: http://course.isikun.edu.tr/custom/

XML Binding Representation: <classification>

Multiplicity Requirements: This element shall appear 0 or 1 time.

Data type: This element is CharacterString type and it has SPM of 1000 characters.

This element is derived from IEEE LOM; it matches with the <description> sub

element of IEEE LOM <classification> element.

Coverage

Description: This element provides the description for time, geography, or region

for which learning object belongs to.

 91

XML Name Space: http://ltsc.ieee.org/xsd/LOM

XML Binding Representation: <coverage>

Multiplicity Requirements: This element shall appear 0 or more times and has SPM

of 2.

Data type: This element is CharacterString type and it has SPM of 1000 characters.

Type

Description: This element provides the kind of the learning object.

XML Name Space: http://ltsc.ieee.org/xsd/LOM

XML Binding Representation: <type>

Multiplicity Requirements: This element shall appear 0 or 1 time.

Data type: This element is Vocabulary type and proposed vocabulary is as follows;

• exercise, simulation questionnaire, diagram, figure, graph, index, slide, table,

narrative text, exam, experiment, problem statement, self assessment, lecture.

End User

Description: This element annotates the intended end user for which the learning

resource purposed.

XML Name Space: http://ltsc.ieee.org/xsd/LOM

XML Binding Representation: <endUser>

Multiplicity Requirements: This element shall appear 0 or 1 time.

Data type: This element is Vocabulary type and proposed vocabulary is as follows;

• all, teacher, author, learner, manager.

Context

Description: This element annotates the intended environment for which the

learning resource purposed.

XML Name Space: http://ltsc.ieee.org/xsd/LOM

XML Binding Representation: <context>

Multiplicity Requirements: This element shall appear 0 or 1 time.

Data type: This element is Vocabulary type and proposed vocabulary is as follows;

 92

• school, higher education, training, other.

Date

Description: This element annotates the learning object of date of any event

associated with learning object.

XML Name Space: http://purl.org/dc/elements/1.1/

XML Binding Representation: <dateTime>

Multiplicity Requirements: This element shall appear 0 or 1 time.

Data type: This element is DateTime type.

Creator

Description: Provides the primarily responsible entity for making the resource.

XML Name Space: http://purl.org/dc/elements/1.1/

XML Binding Representation: <creator>

Multiplicity Requirements: This element shall appear 0 or more times and has SPM

of 2.

Data type: This element is CharacterString type and it has SPM of 1000 characters.

All values shall be presented in vCard format.

Contributor

Description: Provides the entities who contribute to the learning object.

XML Name Space: http://purl.org/dc/elements/1.1/

XML Binding Representation: <Contributor>

Multiplicity Requirements: This element shall appear 0 or more times and has SPM

of 2.

Data type: This element is CharacterString type and it has SPM of 1000 characters.

All values shall be presented in vCard format.

Publisher

Description: Provides the entities that are responsible of making resource available.

XML Name Space: http://purl.org/dc/elements/1.1/

XML Binding Representation: <publisher>

Multiplicity Requirements: This element shall appear 0 or 1 time.

 93

Data type: This element is CharacterString type and it has SPM of 1000 characters.

All values shall be presented in vCard format.

Format

Description: Provides the information about the format of the learning object.

XML Name Space: http://ltsc.ieee.org/xsd/LOM

XML Binding Representation: <format>

Multiplicity Requirements: This element shall appear 0 or 1 time.

Data type: This element is CharacterString type and it has SPM of 500 characters.

All values shall be presented in vCard format. The CharacterString shall be a MIME

type (IANA registration or string: “non-digital”).

Rights

Description: Provides the information about rights held in and over the learning

object.

XML Name Space: http://purl.org/dc/elements/1.1/

XML Binding Representation: <rights>

Multiplicity Requirements: This element shall appear 0 or 1 time.

Data type: This element is CharacterString type and it has SPM of 1000 characters.

Relation

Description: Provides the information about a related resource.

XML Name Space: http://purl.org/dc/elements/1.1/

XML Binding Representation: <relation>

Multiplicity Requirements: This element shall appear 0 or 1 time.

Data type: This element is CharacterString type and it has SPM of 1000 characters.

Source

Description: Provides the information about a resource which learning object is

derived from.

XML Name Space: http://purl.org/dc/elements/1.1/

XML Binding Representation: <source>

Multiplicity Requirements: This element shall appear 0 or 1 time.

Data type: This element is CharacterString type and it has SPM of 1000 characters

 94

 1 <?xml version="1.0" encoding="utf-8"?>

2
<mLom xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:lom="http://ltsc.ieee.org/xsd/LOM/"
xmlns:my=”http://course.isikun.edu.tr/custom/”>

3 <my:identifierURI> http//course.isikun.edu.tr/LO1</my:identifierURI>
4 <lom:title>Learning Object</lom:title>
5 <lom:language>en-GB</lom:language>
6 <lom:description>Textual description of Learning Object</lom:description>
7 <lom:keyword>eLearning</lom:keyword>
8 <lom:keyword>Learning Object</lom:keyword>
9 <my:classification>ADL Scorm Cocepts<my:classification>
10 <lom:coverage>eLearning</lom:coverage>
11 <lom:type>narrative text</lom:type>
12 <lom:endUser>Learner</lom:endUser>
13 <lom:context>School</lom:context>
14 <dc:date>2001-07-30</dc:date>

15
 <dc:creator> entity>BEGIN:VCARD
VERSION:2.1
FN:Ahmet
Author
END:VCARD</dc:creator>

16
 <dc:contributor> entity>BEGIN:VCARD
VERSION:2.1
FN:
John Author
END:VCARD</dc:contributor>

17
 <dc:publisher> entity>BEGIN:VCARD
VERSION:2.1

ORG:ISIK Author
END:VCARD </dc:publisher>

18 <lom:format>text/html</lom:format>
19 <dc:rights>http://www.isikun.edu.tr/termsandconditions.htm</dc:rights>
20 <dc:relation>Part of Scorm 3rd Editon, Content Aggregation Model</dc:relation>
21 <dc:source>Scorm 3rd Edition</dc:source>
22 </mLom>

Figure 6.4 Sample XML Binding of Application Profile

Sample XML binding of the proposed application profile is given in Figure 6.4. All

elements directly mapped to their associated XML binding representation. Three

name spaces have been used. “lom” represents IEEE LOM name space, “dc”

represents Dublin Core name space and “my” represents the custom name space for

the elements which are adopted from IEEE LOM by changing their original form.

6.2 Microformat Proposal

Proposal of Microformat is quite straight forward in this case, because the base

applications profile itself is already simple and flat because there is no aggregate

element used in application profile at all.

In Figure 6.5, an example Microformat demonstration is given, for this example “dl”

(definition list) HTML element has been used to embed Microformat.

 95

1 <?xml version="1.0" encoding="UTF-8"?>

2
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml">
4 <head> <link rel="stylesheet" type="text/css" href="mLOM.css" />
5 <title>LOM Microformat</title>
6 </head>
7 <body>
8 <dl class="mLom">
9 <dt>Title</dt>

10
 <dd class="title">Sharable Content Object Reference Model - Sequencing
and Navigation</dd>

11 <dt>Language</dt>
12 <dd><abbr class="language" title="en-GB">British English</abbr></dd>
13 <dt>Description</dt>

14

 <dd class="description">The SCORM SN book describes how SCORM
conformant content may be sequenced to the learner through a set of learner or system-
initiated navigation events.
 </dd>

15 <dt>Creators</dt>
16 <dd class="creator vcard">Daren</dd>
17 <dt>Contributors</dt>
18 <dd class="contributor vcard">Alice</dd>
19 <dt>Publisher</dt>

20
 <dd class="publisher vcard">Advanced Distributed
Learning (ADL)</dd>

21 <dt>Identifier</dt>
22 <dd class="identifierURI">http://course.isikun.edu.tr/LO2</dd>
23 <dt>Classification: </dt>
24 <dd class="classification"> ADL Scorm Cocepts </dd>
25 <dt>End User: </dt>
26 <dd class="endUser"> Learner </dd>
27 <dt>Classification: </dt>
28 <dd class="context"> School </dd>
29 <dt>Coverage</dt>
30 <dd class="coverage">eLearning</dd>
31 <dt>Keywords</dt>
32 <dd class="keyword">

33
 <a href="www.example.com/eLearning"
rel="tag">eLearning,

34 Learning Object
35 </dd>
36 <dt>Type</dt>
37 <dd class="type">narrative text</dd>
38 <dt>Date</dt>
39 <dd><abbr class="date" title="2001-07-30">30 July 2007</abbr></dd>
40 <dt>Format</dt>
41 <dd class="format">txt/html</dd>
42 <dt>Rights</dt>

43
 <dd><a href='http://www.isikun.edu.tr/termsandconditions.htm'
class="rights">http://www.isikun.edu.tr/termsandconditions.htm</dd>

44 <dt>Relation</dt>

45
 <dd class="relation">Part of Scorm 3rd Editon, Content Aggregation
Model</dd>

46 <dt>Source</dt>
47 <dd class="source">Scorm 3rd Edition</dd>
48 </dl><body></html>

Figure 6.5 Sample Microformat of Proposed Application Profile (LO2)

 96

However note that any other HTML element could be used, proper assignment of

class attribute is the only important thing. Therefore any XHTML element can be

used as far as appropriate class names are assigned, however it is important to remind

that these elements must be semantic elements instead of presentational elements. In

this proposal again only title and identifier element is mandatory and the rest of the

elements are not forces, shortly the Microformat proposal follows the application

profile constraints.

Most of the elements has been directly associated with a “class” attribute. The

“creator”, “contributor” and “publisher” elements used together with “vcard”

identifier. This is because the domains associated with these elements are based on

“vcard” as previously noted in related element definitions. Class design pattern is

used for most of the elements, and abbr-design pattern has been used for “date” and

“language” elements. Only one elemental Microformat has been used, and this is rel-

tag elemental Microformat which is used for “keyword” element.

In Figure 6.6 the view of example code in Figure 6.5 has been demonstrated.

Figure 6.6 Demonstration of Proposed Microformat

 97

It is plain, free of any presentational code, and understandable. The elemental

Microformat rel-tag and the information closured by “vcard” are already detected by

the Firefox Operator plug-in as.

The code piece in Figure 6.7 is an example CSS file produced for the Microformat

example in Figure 6.5. Main HTML elements are directly assigned with a

presentational CSS like “dt” and “dl”, for the class names “.class_name” format has

been used, so for each application profile element any individual presentational

features can be assigned like “.title” in given example CSS code in Figure 6.7.

1 dt{font-weight:bold; }
2 dl{
3 padding:.5em; background:#ccc; border:1px solid black;
4 margin-right:2em;
5 width:700px; }
6 .title{ font-style:italic; }

Figure 6.7 Sample CSS File

In Figure 6.8 the view of example code in Figure 6.5 has been demonstrated after

applying the CSS code given in Figure 6.7.

Figure 6.8 Demonstration of Proposed Microformat, CSS Applied

 98

Any shape and look and feel can be created over proposed Microformat by just

manipulating CSS code without involving any presentational features inside the

HTML of Microformat.

6.3 Case Example: Sematic Search Engine for LOs

Implementation work for the case example can be summarized as follows;

• Preparation of the example Microformat embedded web pages,

• Defining the structure of RDF document,

• Preparation of XSLT transformation file for XHTML (Microformat

involving) to RDF conversion,

• Creation of a SQI service,

• Integration of GRDDL API into SQI service,

• Integration of SPARQL API into SQI service,

• Preparation of XSLT transformation file for XML to XHTML(Microformat

involving) transformation,

• Setting up Search Engine Client,

• Setting-up Search Engine End-user interface

Three example Web pages has been prepared which involves Microformat embedded

information for some example Learning Objects. One of the examples has already

been introduced in Table 6.2 which resides in the CD as “mLOm2.htm” under

“randPage2” folder which includes Learning Object Two (LO2). Other example files

are “mLom1.htm” and “mLom3.htm” which include Learning Object One and

Learning Object Three in given order.

The sample RDF document for LO2 in Figure 6.9 provides the basic structure of the

RDF form of the application profile.

 99

1 <?xml version="1.0" encoding="UTF-8" ?>

2

<rdf:RDF
 xml:base="http://localhost/thesisApp/randPage2/mLom2.htm#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:lom="http://ltsc.ieee.org/xsd/LOM/"
 xmlns:htm="http://www.w3.org/1999/xhtml"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:my="http://course.isikun.edu.tr/custom/">

3 <rdf:Description rdf:about="http://localhost/thesisApp/randPage2/mLom2.htm">

4
 <lom:title>Sharable Content Object Reference Model - Sequencing and
Navigation</lom:title>

5 <lom:language>British English</lom:language>

6
 <lom:description><![CDATA[The SCORM SN book describes how SCORM conformant
content may be sequenced to the learner through a set of learner or system-initiated navigation
events.]]></lom:description>

7 <dc:creator>Daren</dc:creator>
8 <dc:contributor>Alice</dc:contributor>
9 <dc:publisher>Advanced Distributed Learning (ADL)</dc:publisher>
10 <my:identifierURI>http://course.isikun.edu.tr/LO2</my:identifierURI>
11 <my:classification>ADL Scorm Cocepts</my:classification>
12 <lom:endUser>Learner</lom:endUser>
13 <lom:context>School</lom:context>
14 <lom:coverage>eLearning</lom:coverage>
15 <lom:keyword>eLearning</lom:keyword>
16 <lom:keyword>Learning Object</lom:keyword>
17 <lom:type>narrative text</lom:type>
18 <dc:date>2001-07-30</dc:date>
19 <lom:format>txt/html</lom:format>
20 <dc:rights>http://www.isikun.edu.tr/termsandconditions.htm</dc:rights>
21 <dc:relation>Part of Scorm 3rd Editon, Content Aggregation Model</dc:relation>
22 <dc:source>Scorm 3rd Edition</dc:source>
23 </rdf:Description>
24 </rdf:RDF>

Figure 6.9 Sample RDF Document of LO2

The Figure 6.10 provides the general graph representation of the proposed

application profile. However it is important to note that for elements like “creator”,

“contributor” etc. the predicates will also be resource. However for simplicity all are

threaded as simple elements here.

 100

Figure 6.10 Graph Representation of LO2

The code view in Figure 6.11 gives the general structure of XSLT file used for

XHTML to RDF conversion. Only first half of the XSLT file has been shown,

however rest of the file is repeating sequence of the code at lines 11-13 for each

element. Main template locates the “mLom” class name having XHTML elements

via “//*[@class='mLom']"” pattern, each match represents a learning object. Then for

each application profile element applies the similar matching pattern to retrieve the

content.

1 <?xml version="1.0" encoding="UTF-8" ?>

2

<xsl:stylesheet version="1.0"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:htm="http://www.w3.org/1999/xhtml"
 xmlns:lom="http://ltsc.ieee.org/xsd/LOM/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:my="http://course.isikun.edu.tr/custom/" >

3 <xsl:template match="/">
4 <xsl:for-each select="//*[@class='mLom']">
5 <rdf:Description>
6 <xsl:attribute name='about'></xsl:attribute>
7 <xsl:apply-templates/>
8 </rdf:Description>
9 </xsl:for-each></xsl:template>
10 <xsl:template match="htm:*[@class='identifierURI']">
11 <my:identifierURI><xsl:value-of select="."/></my:identifierURI>
12 </xsl:template>* * *

Figure 6.11 View from XSLT File for Microformat to RDF Conversion

 * * * mLom2

http://ltsc.ieee.org/xsd/LOM/title

http://ltsc.ieee.org/xsd/LOM/language

http://purl.org/dc/elements/1.1/relation

http://purl.org/dc/elements/1.1/source

 101

The code view in Figure 6.11 gives the general structure of XSLT file used for

XHTML to RDF conversion. Only first half of the XSLT file has been shown,

however rest of the file is repeating sequence of the code at lines 11-13 for each

element.

Figure 6.12 Web Service Detected by Liquid Studio

The above phases enabled the basics of proposed application. After these steps a SQI

service has been created via PHP according to the specification given for SQI in

Chapter 2. However this implementation covers the limited features of SQI, for

instance session management is not handled at all. However the features provided are

enough for the proof of concept. In Figure 6.12, the SQI web service has been

detected by the Liquid XML studio application, and list of functions provided by this

web service are listed. This application also enables testing of these functions by

generating SOAP messages and then forwarding these messages to web service.

Response given by the web service is displayed by the Liquid XML studio which

makes debugging easier. When the end-point of the SQI web service is called via

browser the WSDL document describing the Web service is forwarded to the

browser, this has been demonstrated in Figure 6.13.

 102

Figure 6.13 Web Service Called via Browser

After setting up the SQI service, it has been enhanced with the GRDDL feature, for

this purpose RAP Rdf API [63] for PHP (an open source semantic toolkit) has been

integrated with the SQI service. This API provides easy to use functions for GRDDL

transformation. Each time a particular function in SQI target is called, SQI target first

executes GRDDL procedures of RAP over defined XHTML pages and RDF

transformation occurs. Extracted RDF data of web pages are stored in the SQI target

physical space as RDF files. Each source references the XSLT transformation page

provided in Figure 6.11, RAP API detects these references and applies the referenced

transformations over these pages.

The existence of RDF files means that SQI target has sources that it can run queries

over, via SPARQL; therefore SQI target has been also enhanced with SPARQL by

using RAP Rdf API again. The SQI target modified so it takes the query as a

parameter of the related function instead of taking query parameters and substituting

these values inside a predefined query. The query results are returned as an

associated array by the API therefore before forwarding the results back to the client,

 103

results are transformed into their respective XML binding in the format provided in

Figure 6.4.

After having an operational SQI target which successfully executes forwarded

queries, another XSLT file has been created which processes XML response into

Microformat embedded XHTML again. This transformation file is used by client and

creates the complete result structure that will be displayed to the end-user. Client

procedure is pretty simple, it only receives the query parameters from end-user

interface, and after that prepares necessary query and forwards this query to SQI

target. When SQI target sends back the related result, client applies necessary

transformation via XSLT document and forwards the processes result for direct

display of end-user interface.

In Figure 6.14 result of search for keyword “elearning” has been displayed, the end-

user interface has been created by using mainly AJAX, JavaScript and CSS.

Figure 6.14 End-user Interface Displaying Results of a Query

For your information; JavaScript is an interpreted language for use of HTML and

totally runs on client’s browser and enables dynamic behaviour of the page. AJAX

(Asynchronous JavaScript and XML) is a technique for communication of the client

 104

(browser) and server behind the scene silently, this enables web applications to

behave like desktop applications.

Prototype API [64] has been used for providing easy-to-use AJAX functionalities;

however it is important to note that an API is not necessary for using AJAX it is

already supported by most of the browsers; however each browser supports different

structure and procedures even though they resemble each other a lot. Handling all

these differences by yourself is big burden, therefore this APIs rescues you from this

burden and enables your code to work in any browser while providing more usable

and easy-to-use functions (via DOM manipulation features). The query request,

transitions between pages, hiding and showing of results or transition between menus

are all handled via AJAX and JavaScript. Therefore most of the work has been done

in the client side by neither overloading the client application server nor SQI

application server. This is already the idea behind AJAX; only loading necessary

information and placing or replacing it on the browser via DOM manipulation

without reloading the whole page again and again.

In Figure 6.15, the options panel is displayed.

Figure 6.15 End-user Interface Displaying Options Panel

This panel is pretty simple and allows user to choose whether she wants her

keywords to have an exact match or like match, besides enables user to choose the

number of results that she want to be displayed in each page.

 105

This basic SQI Service and simple Search Engine provides a detailed proof of the

concept.

 106

Chapter 7

Evaluation of Model and Application

So far a learning object harvesting model has been proposed and a sample

application has been developed based on this model. The model is based on a

learning object metadata application profile proposal derived from IEEE LOM,

Dublin Core and Scorm, and a Microformat proposal employing this application

profile. Several semantic web technologies have been used to realize this harvesting

model, these technologies enabled learning object metadata to be embedded into

XHTML pages, and to be harvested from XHTML pages. For the proof of concept, a

search client and server employing the harvesting model and SQI target have been

set up over these technologies and the model. Proposed model and the application

can be evaluated form different perspectives.

It is already denoted in definition of e-Learning that it consists of actions delivering,

manipulating, and managing etc. e-Learning resources, outcomes, and activities.

Learning resources provides the basic ground of the e-Learning therefore success of

e-Learning environments, systems etc. strictly based on how they deal with learning

objects. Therefore various e-Learning object metadata standards and application

profiles have been investigated; the obvious problem was the manageability of these

standards and profiles because of the number of elements provided. Although most

of these application profiles aimed to provide the most common set of elements apart

from best practices on use of these elements, a panacea for every related party did

not arrive. The application profile proposed by this thesis employs the set of

elements from IEEE LOM which are mapped from Dublin Core generally, and this

application profile has a quite general nature apart from a few elements directly

related with learning aspects. This is mainly based on the fact that most of the LOM

 107

elements are not used by most of the application profiles, in order to come up with a

common solution a common set tried to be identified.

Table 7.1 LOM Element Use [60]

The Table 7.2 demonstrates use of the LOM elements among 35 different

Application profiles, selection of elements for proposed application profile considers

this usage statistics. This set of commonly used elements is enhanced with some

learning related elements and it can be evaluated against following criteria. The main

disadvantage is lack of ontological expression. IEEE LOM classification element

actually provides capability to express any ontological relation; however it increases

the complexity of the application profile, therefore proposal of such element requires

an in-depth analysis of learning object examples. Ontological expression power will

increase accessibility and interpretation of learning objects while increasing

utilization.

 108

Table 7.2 Evaluation of Learning Object Metadata Proposal

Re-usability Proposed application profile is lowest common denominator for most of the

application profiles, high re-usability.

Interoperability Proposed application profile has been derived from IEEE LOM, Dublin Core

and SCORM which are the most commonly adopted standards, this gives

high interoperability.

Manageability The size of proposed set of elements is quite light 18, this provides high

manageability.

Accessibility Higher size for elements in the application profile might be considered as a

plus for accessibility, however as most of these elements are out of use in

many application profiles it can be claimed that the trade of is not that much,

besides the minimal size ensures the appropriateness of the results. A

disadvantage comes from the lack of representing complex (ontological)

relations between learning objects.

Durability Interoperability and usability has already been ensured therefore, durability is

considered as high.

Scalability This application profile is thought to provide minimal set of elements for e-

Learning domain; however by nature application profile itself provides

scalability.

Affordability This application profile can be considered as the core of all other profiles

therefore affordability is ensured because it is easy to switch between

alternatives.

The main aim of thesis is to enable harvesting of learning objects embedded in

XHTML pages, therefore Microformats proposal is the second main stone of this

thesis. The Microformats approach has been already compared with its alternatives

(eRDF, RDFa) previous chapters. However apart from their advantages and

disadvantages with respect to each other, the main idea of embedding semantic data

into XHTML pages greatly contributes into the e-Learning, it enables the biggest

source of information, WWW, to be harvested by every single learner. Microformats

can be thought as the second layer of this model therefore it has been evaluated

according to the same criteria below;

 109

Table 7.3 Evaluation of Microformats Proposal

Re-usability Enables re-usability of learning content on World Wide Web.

Interoperability Proposed Microformat employs an application profile derived from wildly

accepted standards, therefore enables interoperability.

Manageability Managing information in XHTML pages is quite straight forward, enabling

technologies do exists, and besides the size of application profile that

Microformat proposal is based on is quite minimal.

Accessibility Learning Objects are accessible form any type of device and system as they

are embedded into presentation free, POSH pages.

Durability Interoperability and usability has already been ensured therefore, durability is

considered as high.

Scalability Although application profile itself provides scalability, the nature of

Microformats is a barrier. They do not allow name spaces plus they are

defined once and not subject to change often.

Affordability The base application profile can be considered as the core of all other profiles

therefore affordability is ensured, because the information presented by

Microformat does not go beyond the standards.

Main problem of the Microformats proposal does not come from the proposal but

rather from comes from the Microformat idea itself. During this thesis RDF has been

used, however Microformats lacks cooperating the features provided by the RDF,

those are;

• Open-ended design,

• Ontological expression power,

• Extendibility,

• No predefined format.

eRDF and RDFa can be considered as alternatives to the Microformat approach,

however they do not have real life examples and acceptance yet. As already noted

previously eRDF is not capable of expressing every RDF structure, however RDFa

has this power but it uses some XHTML elements which are not in use yet. A switch

from Microformats to RDFa is possible when it is mature enough, however because

of the acceptance and ease-of-use of Microformats, it will keep leading till RDFa

arrives.

 110

The technological infrastructure used in sample application is subject to change

depending on the case; this already the one of the ideas behind, the proposed model

provides high level of independency. Therefore it is not bound to SQI or SOAP,

alternatives can be used. However evaluation of sample application can be done as

follows by indicating the plusses and minuses below;

Plusses;

• Application demonstrates an important view where the proposed model might

be applied primarily

• Application stands as the basic proof of concept of the proposed model,

• Application stands as a compact demonstration of tool and data

interoperability,

• Application provides a demonstration of the importance of standard

compliance,

Minuses;

• SQI infrastructure is not totally implemented,

• Some constrains of the model omitted for the sake of simple design,

• Search client does not employ any ranking system or ontological inference.

 111

Chapter 8

Conclusion and Recommendations for Future Work

8.1 Overview

The purpose of this thesis was to come up with a web based interoperable Learning

Object harvesting model and its application in order to exploit use of huge amount of

information contained by World Wide Web. Two main challenges have been

identified which are interoperability and semantics. Various related technologies and

standards have been investigated for this purpose.

Interoperability has been considered in two folds during this thesis, first one is tool

interoperability and the second one is data interoperability, actually in this case rather

meta-data interoperability. Tool interoperability is known as; different applications

being able to communicate each other. The most known solution for World Wide

Web (WWW) is web services. Therefore various XML based technologies and

standards have been investigated to come-up with a proper solution for e-Learning

domain. SAOP and SQI (which is based on SOAP) have been used as the key

elements of tool interoperability. The second part of interoperability is called as data

interoperability; it refers to different applications being able to use and share same

data. In general this has been considered to be solved via investigating wildly known

Learning Object metadata standards and their possible bindings into XML, RDF and

especially into XHTML as Microformats. In this sense data interoperability moved

into a broader concept which is usually called semantic interoperability; it means

applications are not only capable of using same data but also capable of

understanding, linking, and interpreting the data

.

 112

The results of these investigations resulted in a light weight application profile

proposal for Learning Object Metadata (derived from IEEE LOM, Dublin Core and

ADL Scorm), creation of related XML, RDF bindings, and Microformat proposal.

After all, a case application has been introduced by providing Microformat

embedded sample XHTML pages, a SQI web service which employs SPARQL

query language for RDF documents extracted from these XHTML pages, a client

web application which acts as a search engine by employing the SQI service, besides

both applications have been donated with related XSLT files for GRDDL

transformations.

8.2 Recommedations for Future Work

Once the application profile defined, the properly formatted metadata might reside or

move in World Wide Web in any format such as XML, RDF etc. The example

application provided is a good demonstration. In example application data moves

from XHTML format to RDF, RDF to XML and XML to XHTML as demonstrated

in Figure 8.1. Therefore it will not be wrong to claim that comprise on the metadata

standard is much more important than how the metadata is stored physically, because

once agreed on a common standard it is not really a big deal to transform data

between these physical structures. Of course this is still a burden but not as much as

the burden of not having a common metadata standard.

Figure 8.1 Learning Object Metadata Lifecycle

Microformat

RDF

XML

XSLT

XSLT

XSLT
Learning Object Metadata Life Cycle

 113

The importance of the XML, RDF, or Microformats is not being ignored by

emphasizing the importance of a common metadata standard. A common metadata

standard builds a solid ground that these technologies can be exploited by e-Learning

domain. RDF provides great utilization of semantic web by itself and ontology

languages built upon it such as OWL. Their being able to define resources and

complex relationships among them makes the World Wide Web a highly connected

network of information from its arbitrarily distributed and disconnected structure.

These advancements reach to an upper level of utilization by the existence of

Microformats, eRDF, RDFa. Despite their limitations, they save the current nature of

World Wide Web from user perspective however provides any information to be

understandable by computers without duplicating any information for presentation or

storage. XML never loses its importance; it is the mother of all these technologies

and still the most efficient way for data transportation and for other uses.

It has been proven that a complete working model can be provided for Learning

Object Harvesting, so what can be the next? Actually this thesis just moves us to just

to the beginning and the future opportunities are endless, there are a lot to do.

Imagine such use of this harvesting model; applying a reasoning algorithm over the

data that is queried over RDF documents via SQI target to decide on a competence-

activity relation which questions; which activity(s) is used for which competence(s).

Such use of the model requires the intervention of ontologies, for this purpose the

first step is enhancing our solid base which is metadata application profile proposed.

In the context of this thesis it is tried to be kept as simple as possible just for enough

to enable search and retrieval of learning objects. However for such ontological

needs, each element need to be considered seriously, because they constitute the hot

points where ontological relations come up. Classification element is a good

example, in original IEEE LOM standard it has much more power of expression

from hierarchical position of resources to their competence levels etc. Therefore it is

really important from ontological point of view which can not be reflected by just

providing it in the form of description. Both for the completeness and the ontological

expressiveness of the application profile, many real life learning objects and their

associated metadata records need to be analysed, however note that even this task

itself is really hard to deal with. Definition of the object changes from application to

 114

application while the metadata elements sets are changing deepening on the location,

application etc.

Successfully completing these advancements need to be followed by strong

reasoning and data mining algorithms and techniques not just for harvesting but also

for analysing possibly huge amount of learning patterns and activities which will be

mostly dependent on purpose of the applications. These applications mentioned

might be agents harvesting the World Wide Web by roaming from page to page.

Those agents are not expected to serve just for traditional PCs but rather for any kind

device which has access to internet such as PDAs, cell phones etc. In this way

learning will be embedded into real life.

It is already obvious that the improvements mentioned are actually global and not

limited with the e-Learning domain. It also should be noted that Word Wide Web is

not specifically for any group or level of people, it is open to everybody, and

therefore simplicity is the must of this world. Currently anybody using World Wide

Web can freely make contribution via Web2.0 tools; therefore active existence of any

user without having any complex skills already became indispensable right of

everybody. Therefore “Human first, machine second!” principle of Microformats

actually should be considered globally for World Wide Web.

Regarding the sample application, obviously many enhancements are possible.

Technologies like AJAX provides endless opportunities to increase usability and

efficiency of such web applications however apart from these usability dependent

enhancements, several important enhancements are possible such as embedding a

ranking strategy, and employing ontological inference feature which is dependent on

the model proposed indeed. Fully implementation of SQI and providing the missing

constraints of the proposed model might be considered the primary future work with

respect to sample application.

 115

References

[1] Mayes, T., Freitas, S., “Review of E-Learning Theories, Frameworks and
Models”, JISC E-Learning Models Study Report, Joint Information Systems
Committee, 2004

[2] Allen, E. and Seaman, J., “ Growing by Degrees: OnLine Education in the
United States”, Sloan Consortium, 2005

[3] Soylu, A., Karahasan, O., Kuru, S., “Çok Uluslu, Đşbirlikçi, Sosyal e-

Öğrenme: iCamp Örneği”, AB2007 Conference, Duplupinar University, 31
Jan. – 2 Feb. 2007

[4] Kuru, S., Nawojczyk M., Niglas, K., Butkeviciene E., Soylu A., "Facilitating

Cross-border Self-directed Collaborative Learning: The iCamp Case", EDEN
2007 Annual Conference, Naples, Italy, 13-16 June 2007

[5] Kieslinger, B., Fiedler, S., Wild, F., Sobernig, S. “ iCamp: The Educational

Web for Higher Education in an Enlarged Europe”, eChallenges e-2006,
Barcelona, Spain, October 25-27, 2006.

[6] Wade, V., Ashman, H., “ Evolving the Infrastructure for Technology-

Enhanced Distance Learning”, Internet Computing, IEEE, Volume 11, Issue
3, P 16-18, 2007

[7] MASIE Centre e-Learning Consortium, “ Making Sense of E-learning

Standards and Specifications: A decision Makers Guide to their Adoption 2nd
Edition”, November 2003

[8] Collier, G., Sun Microsystems,”e-Learning Application Infrastructure”,

Whitepaper, 2002

[9] “World Wide Web Consortium”, http://www.w3c.com, Retrieved on March

2008

[10] “W3 Schools Online Web Tutorials”, http://www.w3schools.com, Retrieved

on March 2008

[11] “Extensible Markup Language (XML)”, http://www.w3.org/XML/, Retrieved

on March 2008

 116

[12] “Introduction to XML”, http://www.w3schools.com/xml/xml_whatis.asp,
Retrieved on March 2008

[13] ”Introduction to XML Schema”,

http://www.w3schools.com/schema/schema_intro.asp, Retrieved on March
2008

[14] “XHTML 1.0: The Extensible Hypertext Markup Language (Second

Edition)”, http://www.w3.org/TR/xhtml1/, Retrieved on March 2008

[15] “XHTML Why?”, http://www.w3schools.com/xhtml/xhtml_why.asp,

Retrieved on March 2008

[16] “The Extensible Style Sheet Family (XSL)”, http://www.w3.org/Style/XSL/,

Retrieved on March 2008

[17] http://www.w3schools.com/xpath/default.asp, Retrieved on March 2008

[18] “XPath Tutorial”, http://www.w3.org/TR/xslt, Retrieved on March 2008

[19] “Web Services Glossary”, http://www.w3.org/TR/ws-gloss/, Retrieved on

March 2008

[20] Simon, B., Massart, D., Assche, V. F., Ternier, S., Duval, E., Branter, S.,

Olmedilla, D., Miklos, Z., “A Simple Query Interface for Interoperable
Learning Resources”, Proceedings of the 1st Workshop on Interoperability of
Web-based Educational Systems, Chiba, Japan, May, 2005

[21] Simon, B., Massart, D., Assche, V. F., Ternier S., Duval, E., “Simple Query

Interface Specification”, 2005

[22] Iannella, R., “An Idiot's Guide to the Resource Description Framework”, The

New Review of Information Networking, Vol 4, 1998

[23] “RDF Rules”, http://www.w3schools.com/rdf/rdf_rules.asp, Retrieved on

March 2008

[24] “RDF Primer, 2004”, http://www.w3.org/TR/REC-rdf-syntax/, Retrieved on

March 2008

[25] “SPARQL Query Language for RDF, 2008”, http://www.w3.org/TR/rdf-

sparql-query/, Retrieved on March 2008

[26] “SPARQL Tutorial”, http://jena.sourceforge.net/ARQ/Tutorial/, Retrieved on

March 2008

[27] “Gleaning Resource Descriptions from Dialects of Languages (GRDDL)”,

http://www.w3.org/2004/01/rdxh/spec, Retrieved on March 2008

 117

[28] Lee, T., Handler, J., Lassila O., “The Semantic Web”, Scientific American,
May17, 2001

[29] Wilson, M., Matthews, B., “The Semantic Web: Prospects and Challenges”,

Databases and Information Systems, 2006 7th International Baltic
Conference, pages 26-29, July 2006

[30] ”RDFa Primer”, http://www.w3.org/TR/xhtml-rdfa-primer/#id85078, March

2008

[31] “Rdf in HTML:Embedded RDF”,

http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml, Retrieved on March
2008

[32] “Clean-up your HTML pages with Tidy”,
 http://www.w3.org/People/Raggett/tidy/, Retrieved on March 2008

[33] Simpson, J., “Microformats vs. RDF: How Microformats relate to the

Semantic Web”,
http://www.semanticfocus.com/blog/entry/title/microformats-vs-rdf-how-
microformats-relate-to-the-semantic-web/, October, 2007

[34] Khare, R., Çelik, T., “Microformats: A pragmatic path to the Semantic Web”,

15th International World Wide Web Conference, 2006

[35] Graf, A., “RDFa vs. Microformats”, DERI Technical Report, April, 2007

[36] “What is the Next Big thing on the Web? It may be a Small, Simple Thing –

Microformats.”,http://knowledge.wharton.upenn.edu/article.cfm?articleid=12
47,Knowledge@wharton, 27 July 2005

[37] “About Microformats”, http://microformats.org/about/, Retrieved on March

2008

[38] “Operator:Firefox Add-on”, https://addons.mozilla.org/en-

US/firefox/addon/4106, Retrieved on March 2008

[39] “Getting back to POSH”, http://factoryjoe.com/blog/2007/04/21/getting-back-

to-posh-plain-ol-semantic-html/, Retrieved on March 2008

[40] “Microformats”, http://microformats.org/wiki/Main_Page, Retrieved on

March 2008

[41] “hCard Creator”, http://microformats.org/code/hcard/creator, Retrieved on

March 2008

[42] “hCard”, http://microformats.org/wiki/hcard, Retrieved on March 2008

[43] “About IMS Global Learning Consortium”,

http://www.imsglobal.org/aboutims.html, Retrieved on April 2008

 118

[44] “About ADL”, http://www.adlnet.gov/about/index.aspx, Retrieved on April

2008

[45] “About IEEE Learning Technologies Standard Committee”,

http://ieeeltsc.org/, Retrieved on April 2008

[46] Etesse, C., “Leading the Way on Standards-Based e-Learning”, November

2004

[47] Seth, R., “Learning Object Metadata and its Application”, DRTC Conference

on ICT for Facilitating Digital Learning Environment, Bangalore, India, 11-
13 Jan 2006

[48] Sampson, D., “The evaluation of Educational Metadata: From Standards to

Educational Metadata”, IEEE International Conference on Advanced
Learning Technologies ICALT’04, 2004

[49] Duval, E., Smith, N., Coillie, M.,”Application Profiles for Learning”, IEEE

International Conference on Advanced Learning Technologies ICALT’06,
2006

[50] Smith, N., Van Coillie, M. and Duval, E. “Guidelines and support for building

Application profiles in e-Learning”, CEN/ISSS WS/LT Learning Technologies
Workshop CWA, 1-26, 2005

[51] “About IEEE Standard for Learning Object Metadata”,

http://ltsc.ieee.org/wg12/par1484-12-1.html, Retrieved on April 2008

[52] “IEEE Standard for Learning Object Metadata”, IEEE Computer Society,

IEEE Std. 1484.12.1 – 2002, 6th September 2007

[53] “IEEE Standard for Learning Technology—Extensible Markup Language

(XML) Schema Definition Language Binding for Learning Object Metadata”,
IEEE Computer Society, IEEE Std. 1484.12.3 – 2005, 10th November 2005

[54] “About Scorm 2004 3rd Edition”, http://www.adlnet.gov/scorm/index.aspx,

Retrieved on April 2008

[55] “Scorm 2004 3rd Edition, Sharable Content Reference Model-Content

Aggregation Model”, Advanced Distributed Learning, 2006

[56] “IMS Metadata Best Practice Guide for IEEE 1482-12-1-2002 Standard for

Learning Object Metadata”, Version 1.3, Final Specification, IMS GLC, 2006

[57] Friesen, N., Fisher, S., Roberts, A., “CanCore Guidelines for the

Implementation of Learning Object Metadata”, Version 2.0, CanCore, 2004

 119

[58] “The DCMI Education Metadata Set”, http://www.schemas-
forum.org/registry/schemas/DCMI-Education/index.html, Retrieved on April
2008

[59] “Dublin Core Metadata Element Set, Version 1.1”,

http://dublincore.org/documents/dces/, Retrieved on April 2008

[60] Godby, C. J., “What do Application Profiles Reveal about the Learning

Object Metadata Standard?”, ARRIADNE issue 41, October 2004

[61] Friesen, N.. “Survey of LOM Implementations”, CanCore, September 2003

[62] Campbell, M. L., “UK LOM Core Update", PowerPoint presentation, CETIS.

September 2003

[63] “RAP Rdf API”, Freie Universität Berlin, 2002

[64] ”Prototype JavaScript Framework: Easy Ajax and Dom Manipulation for

Dynamic Web Applications”, http://www.prototypejs.org/, Retrived on April
2008

 120

Appendix A: CD Containing Sample Application and Tools

All developed applications and APIs are included in the CD.

 121

Curriculum Vitae

Ahmet Soylu was born on 26 Nowember 1984, in Elazığ. He received his B.Sc.

degree from Computer Engineering Department of Işık University, Istanbul, Turkey

in 2006 with honors degree and ranked 2nd in the department. He works as a research

assistant at the Informatics Research and Development Center (IRDC) of Computer

Engineering Department of Işık University since 2006. He received a graduate

scolarship from the Işık University and TUBITAK. His research interests include e-

Learning, Software Engineering and Database Systems, Parallel Programming, and

Data Mining. He has been working on several EU framework programmes such as

iCamp, LEFIS, LEGIS, and Law & ICT. He has publised several papers and reports.

Publications:

[1] Wild, F., Sigurðarson, S., Sobernig, S., Stahl, C., Soylu, A., Rebas, V., Górka
D., Danielewska-Tuecka, A., Tapiador, A., “ An Interoperability
Infrastructure for Distributed Feed Networks” , Proceedings of the 1st
International Workshop on Collaborative Open Environments for Project-
Centered Learning, Crete, Greece, September, 2007

[2] Kuru, S., Nawojczyk, M., Niglas, K., Butkeviciene, E., Soylu, A.,

"Facilitating Cross-border Self-directed Collaborative Learning: The iCamp
Case", EDEN 2007 Annual Conference, Naples, Italy, 13-16 June 2007

[3] Soylu A., Karahasan O., Kuru S., “Multi Cultural, Colloborative, Social E-

Learning: iCamp Case” , AB2007 Conference, Kütahya, Turkey, 31 January –
2 February 2007

[4] Wild, F., Sigurðarson, S., Sobernig, S., Stahl, C., Soylu, A., Rebas, V., Górka,

D., Danielewska-Tuecka, A., Tapiador, A., iCamp Deliverable 3.3, “ An
Interoperability Infrastructure for Distributed Feed Networks”, July 2007
(iCamp Project funded under FP6)

[5] Väljataga, T., Siegas, M., Soylu, A., Afonin, A., Wild, F., Sobernig, S.,

Fiedler, S., “iCamp Building Blocks, Version 2”, August 2007 (iCamp Project

 122

funded under FP6)

[6] Kolmos, A., Kuru, S., Hansen, H., Eskil, T., Podesta, L., Fink, F., Graaff, E.,

Wolff, J. U., Soylu, A., “Problem Based Learnig”, TREE – Teaching and
Research in Engineering in Europe, August 2007

