

SOA BASED FORM DEVELOPMENT

FRAMEWORK WITH WEB 2.0

HÜSEYĐN ERGÜN

IŞIK UNIVERSITY
2008

H

. E
R

G
Ü

N

M
.S

 T
hesis

 2008

SOA BASED FORM DEVELOPMENT

FRAMEWORK WITH WEB 2.0

HÜSEYĐN ERGÜN

M.S., Computer Engineering, Işık University, 2008

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

IŞIK UNIVERSITY

2008

IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

SOA BASED FORM DEVELOPMENT
FRAMEWORK WITH WEB 2.0

HÜSEYĐN ERGÜN

APPROVED BY:

(Prof. Selahattin Kuru) (Bahçeşehir University) _____________________

(Thesis Supervisor)

(Assist. Prof. Taner Eskil) (Işık University) _____________________

(Assoc. Prof. Seyhun Altunbay) (Işık University) _____________________

APPROVAL DATE: …./…./….

ii

SOA BASED FORM DEVELOPMENT FRAMEWORK WITH WEB 2.0

Abstract

Enterprise companies require central, web based, performance proved robust

applications. There are different types of frameworks and design patterns to fulfill this

requirement. The author of this thesis and a team of engineers have developed a

platform for software houses and it departments, easy and standards based of Ajax web

applications with a WYSIWYG graphical user interface design studio, XML structure

of defining a web page and a complete Ajax rendering mechanism to parse this XML

system. This way, companies are able to build a web application like a desktop

platform even without writing any code in the front part.

iii

SERVĐS TABANLI WEB 2.0 ĐLE FORM GELĐŞTĐRME PLATFORMU

Özet

Bilgi işlem departmanları ve yazılım firmaları, merkezi, web tabanlı, performanslı

çalıştığı garanti edilen, güçlü uygulamalara ihtiyaç duymaktadır. Bu ihtiyacı karşılamak

için çeşitli uygulama geliştirme alt yapıları ve tasarım kalıpları bulunuyor. Bu tezin

yazarı ve araştırma ekibindeki mühendisler standart temelli, Ajax ile uygulama

geliştirmeye olanak sağlayacak ve kolay kullanılan bir tasarım stüdyosuna sahip, XML

tabanı sayesinde birden çok platformda çalışan yapıya sahip bir platform geliştirdiler.

Bu sayede firmalar, tıpkı masaüstü uygulaması geliştirir gibi web uygulaması yazabilir

ve standart temelli bir çok sistemden otomatik tasarım aktarabilir.

iv

Acknowledgement

I would like to express my gratitude to my thesis advisor Professor Selahattin Kuru,

for this kind attitude in consulting, suggestions, giving support and patience during

project development of project and writing the thesis.

v

Table of Contents

Abstract ii

Özet iii

Acknowledgement iv

Table of Contents v

List of Tables vii

List of Figures viii

Abbreviations x

1. Introduction 1

2. State of the Art 3

2.1 SOA (Service Oriented Architecture)……….....……………………….3

 2.1.1 Definition………………………...………….....………...........3

2.1.2 SOA Service Characteristics.....…………………………………..4

 2.1.3 SOA Components………….…………………………………..6

2.2 Web 2.0……………………….………………………………………...6

 2.2.1 Ajax…….………………………………………..……….……7

 2.2.2 Javascript……….………………………………………….…..8

 2.2.3 XML….………………………………………………….….....8

2.3 Architectural Components……....……………………………………...9

 2.3.1 EJB…….………………………………………………………9

 2.3.2 Hibernate…….………………………………………………...9

 2.3.3 Eclipse………….………………………………………….....10

3. Motivation for the Proposed Work 11

3.1 Similar Applications...12

3.2 Oracle Forms..12

3.3 Software AG, Natural for Ajax..13

vi

3.4 Alternative Frameworks for Web Based Java Software Development..13

4. SOA Based Web 2.0 Development System 14

4.1 XML Structure to Complete an End to End Application………...........14

4.2 SOA Architecture and Server Side Mechanism.....................................16

4.3 Beans to Provide an Application..22

4.4 Configuration Files and Their Definitions for This System to Work.....22

4.5 Rendering Mechanism for XML Ajax...29

 4.5.1 About Qooxdoo.....……....………..…………………………..29

4.6 Service Execution Mechanism...30

4.7 Jgroups...31

4.8 Cache Mechanism..32

5. Sample Application and Design Studio 36

5.1 Eclipse Plugin...36

5.2 Sample Application Tutorial..43

6. Conclusions and Recommendations for Future Work 50

References 52

Appendix A. List of Configuration Files 55

Appendix B. CD Containing Code Listing and Installation Package 60

Curriculum Vitae 61

vii

List of Tables

Table 4.1 The Definitions of XML Structure ...16

Table 4.2 List of Beans and Their Descriptions on the System24

Table 4.3 XML Configuration Files ...27

viii

List of Figures

Figure 2.1 Service Oriented Architecture Components ..7

Figure 4.1 Client Server Communication Mechanism ..14

Figure 4.2 GUIML Page Structure Building Framework Applications15

Figure 4.3 Server Side SOA Architecture ...20

Figure 4.4 Server Configuration with Different Context Bean21

Figure 4.5 Sample Context Bean Code ...23

Figure 4.6 Sample Service Code ...23

Figure 4.7 Sample Configuration File ...27

Figure 4.8 Ajax Rendering Mechanism ..29

Figure 4.9 Sample Bean Code for Combo Box ...30

Figure 4.10 Execute Service Method on Ajax ..31

Figure 4.11 Cache Mechanism Sample Code ...32

Figure 4.12 Jgroups Architecture ..33

Figure 4.13 Cache Data structured as a Tree ..35

Figure 5.1 Eclipse Configuration Files ...37

Figure 5.2 Sample Application Screen ...38

Figure 5.3 Actions Tab to Show Client Side Method Development 39

Figure 5.4 Services Tab to Show How a Service is Implemented40

Figure 5.5 Variables Tab to Show the List of the Variables41

Figure 5.6 Events Tab to Show the List of Events on a Page42

Figure 5.7 Creating a New Project ..43

Figure 5.8 Creating a New Package ..44

Figure 5.9 A New Page, After It is Created ..45

Figure 5.10 Fill Combo Service Code ..46

Figure 5.11 Combo Box Set Model Data..47

ix

Figure 5.12 Button and Click Event ...47

Figure 5.13 Binding the Event to the Action ..48

Figure 5.14 Running the Application for Test ..49

x

Abbreviations

API Application Programming Interface

ACID Atomicity, Consistency, Isolation, Durability

AJAX Asynchronous Java Script and XML

BPM Business Process Management

EJB Enterprise Java Bean

GUI Graphical User Interface

GUIML Graymound User Interface Markup Language

JDBC Java Database Connectivity

JEE Java Enterprise Edition

JSON Java Script Object Notation

JTA Java Transaction API

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

UML Universal Markup Language

URL Uniform Resource Locator

WSDL Web Service Description Language

WYSIWYG What You See is What You Get

XML Extensible Markup Language

1

Chapter 1

Introduction

Enterprise companies require central, web based, performance proved robust

applications. There are different types of frameworks and design patterns to fulfill

this requirement. The author of this thesis and a team of engineers have developed a

platform for software houses and it departments, easy and standards based of Ajax

web applications with a WYSIWYG graphical user interface design studio, XML

structure of defining a web page and a complete Ajax rendering mechanism to parse

this XML system. This way, companies are able to build a web application like a

desktop platform even without writing any code in the front part.

This way it will be easier for software developers to form a web application,

maintain the code and make changes if necessary.

Technically the system is n-tier application framework for JEE developers to develop

JEE applications rapidly with a design studio. In this way JEE developers could

develop and distribute Rich Interface Applications. This entire framework is based

on open source JEE solutions and they have the following features:

• Database tier built on JDBC and Hibernate [1]

• Presentation tier built on Qooxdoo [2], Swing and JasperReports [3]

• Client reaches application via Web Browser or Java Web Start

• Presentation tier renders User Interface (GUIML) pages and generates JavaScript

and Swing output.

• Server-Client communication built on JSON, SOAP, Java contexts

• User Interfaces developing on Eclipse based Graymound Editor Plug-in

2

Upon the completion of this thesis project, companies in the IT industry have started

using this framework and began to implement their applications on top of this

framework. Furthermore, the author continues to implement new features. On the

following years, the service layer between client and server will grow richer with

BPM Engine.

The Framework has the features of XML rendering. This way it is able to generate

both a desktop application and an Ajax front end. Another feature is SOA based

client server communication. This methodology generates a loosely coupled relation

between server components and modules. Also it has a server based transaction

management, report integration and web service generation components which easies

the development of enterprise applications and makes the developers target business

logic instead of technology details on back end side. When the system is deployed on

server side, it has a distributed cache mechanism, for increasing the performance and

increases the availability.

The motivation of the proposed framework arises with providing a standard based

application development platform with easy of customization and development. Java

applications have many server side components to learn and configure like EJB,

servlet, client server communication, session, security management, database

connection pooling, distributed cache etc. There are application development

environments on the market. This framework is the new generation of oracle forms

[4] or any other alternative form generation frameworks with N tier SOA based

structure and 100% Ajax compatibility.

The thesis contains six chapters and two appendices. The first chapter is the

introduction. The second chapter gives an overview of the state of the art. The third

chapter implies the motivation of the proposed work. The fourth chapter explains

framework and its architecture details. Fifth chapter is the evaluation of the project

and the last chapter is the conclusion and the recommendations for the future work.

3

Chapter 2

State of the Art

In this chapter state of the art of SOA is investigated. We first discuss SOA itself,

which is followed by a discussion of XML, and then we give the state of the art in

Web 2.0 and architectural components. The system is based on Service Oriented

architecture which became popular over the last years. It combines the design pattern

or services via Ajax development front end results a web based, fast robust and

enterprise application development platform. The system itself uses many external

tools and functions as an end to end framework.

2.1 SOA (Service Oriented Architecture)

Service-Oriented Architecture (SOA) is a software architecture where functionality is

grouped around business processes and packaged as interoperable services. SOA also

describes IT infrastructure which allows different applications to exchange data with

one another as they participate in business processes. The aim is a loose coupling of

services with operating systems, programming languages and other technologies

which underlie applications [5].

2.1.1 Definition

“SOA is a form of technology architecture that adheres to the principles of service

orientation, when realized through the Web service technology platform; SOA

establishes the potential to support and promote these principles throughout the

business process and automation domains of an enterprise [6].”

4

Service-Oriented Architecture (abbreviated as SOA) is an architectural pattern that

defines the use services as defined in the statement and accesses the parts of the

system as a generic service mechanism. Services are software components that allow

remote access over standard protocols and provide declarative descriptions of their

requirements and capabilities [7]. These services have well-defined and mostly

XML based interfaces that are platform, and protocol independent which forms a

loosely coupled relationship. With the help of this structure it is easy for an external

system to bind its application or communicate with these services. These

heterogeneous services can interact with each other in a uniform and universal

manner and forms a interoperability. This interoperability benefits companies that

adopt a SOA strategy, which highly increases of the reusability of the existing

software system. The need of a business to change can be caused by partnerships,

mergers, acquisitions, changed business focus, changing policies, etc. Currently big

vendors like Oracle, IBM, Software AG. And HP has solutions on this SOA

migration and has a SOA development strategy and platforms.

2.1.2 SOA Service Characteristics

All the services in SOA architecture have similar characteristics. These characters

can be stated as follows:

• Services are stateless in nature. A SOA service should operate independently of

other services, without pre-conditions and side effects. In most systems, to form the

authentication session data is passed between the service calls. In addition, since

services are stateless, they are transactional.

• Services are technology independent. Developers might implement the service

with the programming language and platform of their choice. However calling a web

service and connecting is platform and language independent.

• Services are discoverable and dynamically bound [8]. A service consumer that

needs a service discovers what service to use based on a set of criteria at runtime.

5

The service consumer does not know the format of the request message or response

message or the location of the service until the service is actually needed.

• Services are self-contained and modular. Since all the services are stand alone and

do not depend to each other, with making a package of services it is possible to make

a modular development and modular system.

• Services are loosely coupled. Coupling refers to the number of dependencies

between modules. There are two types of coupling: loose and tight. Loosely coupled

modules have a few well known dependencies. Tightly coupled modules have many

unknown dependencies. All software architecture strives to achieve loose coupling

between modules. Service-oriented architecture promotes loose coupling between

service consumers and service providers and the idea of a few well-known

dependencies between consumers and providers [9].

• Services have a network-addressable interface. A consumer on a network must be

able to invoke a service across the network. The network allows services to be reused

by any consumer at any time. The ability for an application to assemble a set of

reusable services on different machines is possible only if the services support a

network interface.

• Services have coarse-grained interfaces. The appropriate level of granularity for a

service and its methods is relatively coarse. A service generally supports a single

distinct business concept or process. It contains software that implements the

business concept so that it can be reused in multiple large, distributed systems.

• Services are location-transparent. Consumers of a service do not know a service’s

location until they locate it in the registry. The lookup and dynamic binding to a

service at runtime allows the service implementation to move from location to

location without the client’s knowledge.

• Services are composable. A service’s composability is related to its modular

structure. Modular structure enables services to be assembled into applications the

developer had no notion of when designing the service. Using preexisting, tested

services greatly enhances a system’s quality and improves its return on investment

because of the ease of reuse.

6

• Service-oriented architecture supports self-healing. For instance, a service

implementation may run in a clustered environment. If a single service

implementation fails, another instance can complete the transaction for the client

without the client’s knowledge.

2.1.3 SOA Components

The following are the SOA Components. In Figure 2.1 these components are

illustrated.

• Service provider: Service provider registers itself and waits for a consumer to

connect to the service. The service provider has the working service and ready to

connect. The start of a service is always initiated by the request of a service

consumer.

• Service consumer: A service consumer requests a service from a service provider

and supplies it with data. In the case the service providers sends a response, the

service consumer will process this result.

• Service registry: As with a basic Web Services architecture, a services repository

is important to dynamically discover services that can execute a certain task.

2.2 Web 2.0

Although in the last few years, Web 2.0 is a very popular term, it is difficult to give a

precise definition. Tim Berners-Lee, the inventor of the Internet explains Web 2.0 as:

“Web 1.0 was all about connecting people and facilitating new kinds of

collaboration. It was an interactive space, and I think Web 2.0 is of course a piece of

jargon, nobody even knows what it means. If Web 2.0 for you is blogs and wikis, then

that is people to people. But that was what the Web was supposed to be all along”

[10]. In short, Web 2.0 is the Web where people meet, collaborate and share

anything that is popular by using social software applications [10]. The term refers to

second generation of Internet-based services: blogs, wikis, communication tools and

7

platforms like del.icio.us [11], Flickr [12], Wikipedia [13], last.fm [14], Technorati

[15].

Web 2.0 applications derive from new techniques such as rich internet applications

(RIA), Asynchronous JavaScript and XML (AJAX), semantically valid Extensible

Hyper Text Markup Language (XHTML), Cascading Style Sheets (CSS),

Syndication and aggregation of data in RSS or Atom, clean and meaningful URLs. A

user of Web 2.0 must feel as if he/she used traditional desktop applications to share

anything with the community.

2.2.1 Ajax

AJAX is a web development technique to create web applications as if they were

desktop ones. The aim is to exchange only small amounts of data with a server; this

should be performed behind the scenes. No longer should entire page be (re)loaded.

One of the first Web 2.0 applications was Google Maps, a set of interactive maps of

the world. One can watch diverse views of the world, change the way the views are

displayed and personalize them. There is a constant dialog between the server and

client application, but a page is not reloaded.

Figure 2.1 Service Oriented Architecture Components

8

What makes Ajax interesting is that it is based on existing web standards like HTML,

CSS, DOM, XML and JavaScript. Modern web browsers are in a sense already Ajax-

enabled. Ajax unlike other RIA technologies does not require the user to install

various plug-in. Unlike ordinary web applications an Ajax application would be able

to change and update parts of the view without reloading the web page entirely. A

user could for instance read e-mails in one part of the webpage while another part of

the web page is updated automatically with new incoming messages. This update is

done by the web application calling a web service asynchronously. When the

response has been completed the view is updated without interrupting the user. Any

Ajax application would rely heavily on JavaScript. JavaScript has not always been

taken seriously by developer but this new dependence requires a new view on

JavaScript.

2.2.2 Javascript

The dictionary definition of Javascript is “a scripting language most often used for

client-side web development. It was the originating dialect of the ECMAScript

standard. It is a dynamic, weakly typed, prototype-based language with first-class

functions.” [16] JavaScript was influenced by many languages and was designed to

look like Java, but be easier for non-programmers to work with.

2.2.3 XML

The Extensible Markup Language (XML) is a general-purpose specification for

creating custom markup languages. It is classified as an extensible language because

it allows its users to define their own elements. Its primary purpose is to facilitate the

sharing of structured data across different information systems, particularly via the

Internet, and it is used both to encode documents and to serialize data.

9

2.3 Architectural Components

On the server side of the system there are open source components used for a fast and

robust development environment. A stateless session bean EJB is used to handle the

transactions. Hibernate is used for object relation persistence. It maps the tables with

objects inside the code. Eclipse is used as a development environment. And design

studio is written as a plugin in Eclipse so that users can define the user interface fast

and efficiently.

2.3.1 EJB

The EJB specification is one of several Java APIs in the Java Platform, Enterprise

Edition. The EJB specification intends to provide a standard way to implement the

back-end 'business' code typically found in enterprise applications (as opposed to

'front-end' user-interface code). Such code was frequently found to reproduce the

same types of problems, and it was found that solutions to these problems are often

repeatedly re-implemented by programmers. Enterprise JavaBeans were intended to

handle such common concerns as persistence, transactional integrity, and security in

a standard way, leaving programmers free to concentrate on the particular problem at

hand.

The system uses stateless session bean. Stateless Session Beans are distributed

objects that do not have state associated with them thus allowing concurrent access to

the bean [17]. The contents of instance variables are not guaranteed to be preserved

across method calls. The lack of overhead to maintain a conversation with the calling

program makes them less resource-intensive than statefull beans.

2.3.2 Hibernate

Hibernate [1] is an object-relational mapping (ORM) library for the Java language,

providing a framework for mapping an object-oriented domain model to a traditional

10

relational database. Hibernate solves Object-Relational impedance mismatch

problems by replacing direct persistence-related database accesses with high-level

object handling functions. On the framework, Hibernate is used as a standard ORM

tool. With its eclipse plugin, it is easy to generate mappings and form the application.

2.3.3 Eclipse

Eclipse [19] is a software platform comprising extensible application frameworks,

tools and a runtime library for software development and management. It is written

primarily in Java to provide software developers and administrators an integrated

development environment (IDE). Users can extend its capabilities by installing plug-

ins written for the Eclipse software framework, such as development toolkits for

other programming languages, and can write and contribute their own plug-in

modules. Language packs provide translations into over a dozen natural languages.

The key to the seamless integration (but not of seamless interoperability) of tools

with Eclipse is the plugin. With the exception of a small run-time kernel, everything

in Eclipse is a plugin. This means that every plugin developed integrates with Eclipse

in exactly the same way as other plugins; in this respect, all features are created

equal. Eclipse provides plugins for a wide variety of features, some of which are

through third parties using both free and commercial models. Examples of plugins

include UML plugin for Sequence and other UML diagrams, plugin for Database

explorer, etc. The application design studio is written as an Eclipse plugin, thus

enjoys all features of Eclipse development environment.

11

Chapter 3

Motivation for the Proposed Work

Enterprises are searching versatile, robust and high performance transaction

processing platforms that can be accessed on the Web and administered by

centralized IT departments. The vision of Web-enabling enterprise applications on

any platform with user friendly and real-time interactivity is a compelling one. Such

a pretentious target has been almost proven difficult to attain with given restrictions

of the Web’s existing “click-and-use” model.

Enterprises are really in search of today is the unique harmonization of the following

best of breeding approaches: rich functionality of desktops, robust and continuous

service infrastructure of client/server together with ubiquitous accessibility and low

cost of ownership of the Web. Java Enterprise Editions are robust for many years to

fulfill the requirements of enterprises such as banks, telecom companies and

government departments. However when combining with a web solution on top of

SOA based system, with a brick and click solution there appears a huge gap. With

the improvement of Ajax technologies and frameworks on top of this technology, it

is now possible to develop “desktop looking” applications easier. However there

lacks a complete solution providing an end to end solution with a robust and good

looking design studio, SOA based architecture and complete N tier enterprise

application requirements.

In this chapter we discuss the motivation of the framework. We first discuss the

similar applications and their strengths and weaknesses comparing with the

framework.

12

3.1 Similar Applications

The system has two important components. First one is rendering an application from

XML and second one is complete SOA based architecture. For the SOA system,

enterprises have solutions for Enterprise Service Bus (ESB) for connecting and

orchestrating the web services. There are also many design platforms for service

development. Starting from open source like, Eclipse Web Tools Platform, which is

also, developed by a local Turkish company Etheration, IBM rational development

studio, and a global propriety application. Oracle has SOA Development Suite to

fulfill the service development requirements. However, combining service

development with web applications (not automatic generation) and maintaining them

fast is not available with these platforms. XML rendering and generating a cross

platform application from XML, there is a Cross Platform Development Tool in

Software Ag [20]. It has some similar parts like generating xml in the back ground

and Ajax front end, however, this structure is currently works more efficiently and

flexible comparing to those alternative.

3.2 Oracle Forms

Oracle Forms is a tool with a PL/SQL code [21], which allows a developer to quickly

create user-interface applications which access an Oracle database in a very efficient

and tightly-coupled way. It was originally developed to run server-side in character

mode on any UNIX box, before Windows existed. It was then ported to Windows to

function in a client-server environment. Recent versions have been ported to Java. It

now runs in a J2EE container and can integrate with Java and web services.

The Advantages of Oracle Forms is fast development and rich client features for

application development. Also there are many developers experienced on this

technology. The system works fast and efficiently over Oracle Database. It has

wizards for screen generation and client server connectivity for session. This

increases the data management performance and communication.

13

On Oracle Forms having direct connection with client server has some

disadvantages. Due to that reason it becomes impossible to make http based web

application. The web in nature is stateless and you cannot have a direct connection

with server side. Another disadvantage is, Pl/SQL is on the server side and database

dependent. You cannot use any other database instead of Oracle. Also on Pl/SQL,

object oriented programming or using software engineering tools like code coverage,

unit tests, version control system or automated build mechanism.

3.3 Software AG, ;atural for Ajax

Software AG is Germany based software Development Company whom acquired

WebMethods, a company targeting middleware. The Natural for Ajax platform [22]

of WebMethods has a drag and drop based desktop like development environment

which is similar to the proposed framework. The advantages of this system is

advanced GUI development tool for Ajax and many embedded design and sample

applications. The disadvantage of the system is it does not have a client side control,

thus for every action it has to connect with the server side which decreases

performance and requires more server investment.

3.4 Alternative Frameworks for Web Based Java Software Development

On Java world, there are many popular frameworks targeting web development and

increase performance. Most popular technologies are Java Server Faces [23], Spring

platform [24], Google Web Toolkit [25]. There are many technologies which are

derivatives of this system like Oracle ADF [26], IBM Rapid Application

Development [27] or ZK [28], IceFaces frameworks [29] which extends JSF

somehow. Spring community provides many tools for developing software

applications in many aspects like web services development, Model View Controller

Framework or Acegi Security [30]. The main methodology of these systems are

based on web development and controlling the workflow of this code system. JSF

has many capabilities of getting extended. However, the systems are not capable of

desktop like applications, XY layout and only SOA based implementation.

14

Chapter 4

SOA Based Web 2.0 Development System

In this chapter SOA system of the Ajax framework is explained. We first describe the

xml system of the platform and then SOA architecture of the server mechanism. On

the following parts bean mechanism to extend the system, configuration files and

rendering mechanism is discussed.

4.1 XML Structure to Complete an End to End Application

In order to generate an Ajax application or even a Java Desktop application, the

mechanism has a unique XML structure where it is suitable to build a complete

application. The dtd of the XML structure is given in Figure 4.2. The system both

generating a desktop application and a web application is illustrated in Figure 4.1.

Figure 4.1 Client Server Communication Mechanism

15

The description of this XML structure is given in Figure 4.2. With the help of this

XML model, it is possible to generate an application definition using this XML

system. It has a well formed and generic structure; hence adding new components to

this system is easy. Another advantage of this xml system is, it has no relation or

bounds with any programming language or technology. Ajax, Swing, .NET, Flash or

any GUI based development technologies.

<!ELEMENT guiml (page,actions?,services?,variables?)>

<!ELEMENT page (layout,bean*) >

<!ELEMENT layout (properties?) >

<!ATTLIST layout type (XYLayout|BorderLayout|GridLayout) #REQUIRED>

<!ELEMENT bean (layout?,properties?,listeners?)>

<!ATTLIST bean type CDATA #REQUIRED>

<!ATTLIST bean layoutConstraint CDATA #REQUIRED>

<!ATTLIST bean name CDATA #REQUIRED>

<!ELEMENT properties (property) >

<!ELEMENT property (data*)>

<!ATTLIST property name CDATA #REQUIRED>

<!ELEMENT data >

<!ATTLIST data en CDATA #REQUIRED>

<!ELEMENT listeners (listener)>

<!ELEMENT listener (listener-method)>

<!ATTLIST listener name CDATA #REQUIRED>

<!ELEMENT listener-method>

<!ATTLIST listener-method name CDATA #REQUIRED>

<!ATTLIST listener-method action CDATA #REQUIRED>

<!ELEMENT actions (action+)>

<!ELEMENT action (call+)>

<!ATTLIST action name CDATA #REQUIRED>

<!ELEMENT call (call+)>

<!ATTLIST call id CDATA #REQUIRED>

<!ATTLIST call type CDATA #REQUIRED>

<!ATTLIST call method CDATA #IMPLIED>

<!ELEMENT services (service+)>

<!ELEMENT service (inputs?,outputs?)>

<!ATTLIST service name CDATA #REQUIRED>

<!ATTLIST service target CDATA #IMPLIED>

<!ELEMENT inputs (input+)>

<!ELEMENT input (call)>

<!ATTLIST input name CDATA #REQUIRED>

<!ELEMENT outputs (output+)>

<!ELEMENT output (call)>

<!ATTLIST output name CDATA #REQUIRED>

<!ELEMENT variables (variable+)>

<!ELEMENT variable>

<!ATTLIST variable name CDATA #REQUIRED>

<!ATTLIST variable value CDATA #IMPLIED>

Figure 4.2 GUIML Page Structure Building Framework Applications

16

4.2 SOA Architecture and Server Side Mechanism

As stated in the initial chapters it is more reusable and flexible to use service oriented

architecture in the client server communication. Table 4.1 shows the general

structure and architecture of client server side communication.

Table 4.1 The Definitions of XML Structure

Tag Definition Sub Tags Parent

Tag

Attributes

Guiml Guiml is the XML

definition tag. This

is the out most tag,

to define that it is

an guiml application.

It contains the

application

components

underneath.

Page (required), actions

(optional), services

(optional), variables

(optional)

NONE NONE

Page The page tag gives

that it is a page

Layout (required), bean (zero

or more bean tag)

guiml NONE

layout The page tag gives

that it is a page

Layout (required), bean (zero

or more bean tag)

Guiml type

(required)

alternativ

es are

xylayout,

orderlayou

t,

gridlayout

Bean Bean is a noteworthy

tag in the xml

structure. It is used

to list the

application

components such as

text box, combo box,

table etc inside the

application. The list

of beans is dynamic

and users are able to

extend this part with

their own

requirements.

Layout (optional). This is

used for layout structure of

the specific bean. Inside an

application panels, tabbed

panes etc. might have their

own layout. If not specified

it gets this value from

super. Properties (optional).

ists the properties of the

beans. The lists of bean

properties are derived from

bean definition xml’s.

Listeners (optional).

Listeners are used to

associate specific bean

events to some actions. For

example, when button is

pressed, do X action. Or when

focus lost in a text box do Y

action.

page NONE

17

Table 4.1 The Definitions of XML Structure (cont’d)

properties Properties tag is used to

hold specific properties

for components inside the

XML structure.

property Page, beans NONE

Property Property is used to store

individual property of

beans, pages etc.

NONE Page,

beans,

properties

It has name

attribute

with data,

to store

the named

property

data Data is used to store the

value of the selected

element property. The list

of properties are listed in

bean definition files. They

are stated in the following

parts of the thesis.

 property en (default

English

value,

others are

up to the

languages)

listeners They list the listener data

in order to bind with the

beans. It has the list of

listeners underneath.

listener Beans NONE

listener The list of listeners, bind

with actions. When button

pressed, when focus lost

etc. It has the listener

name and the listener

action. These are defined

in bean definition xml’s in

the following chapters.

Listener-method listeners NONE

actions The list of actions is

inside these element. These

are stored under guiml

bean. It has list of whole

actions in a page. They

bind with events.

Action actions NONE

18

Table 4.1 The Definitions of XML Structure (cont’d)

actions The list of actions is

inside these element. These

are stored under guiml bean.

It has list of whole actions

in a page. They bind with

events.

Action actions NONE

call In all actions, there is a

call. These are similar to

statements in a function.

Call can be actions too.

This way it becomes a

recursive action. They also

call services. It has action

id, its type, method , text

etc. and method name.

Call Id, type,

method

service Services are the server side

communication mechanism.

They have the inputs,

collected from page and

output as a result of the

server side return

mechanism.

Input, output Guiml Name ,

target

Input ,

output

Input and output elements

are used to send data to

server andreceive a data

from server side code. It is

the way to communicate to

the server side Java

mechanism. All services are

transaction based.

 Service name

V

a

r

i

a

b

l

e

Variables are the client

side xml based page

variables. With this

information. They are

generic type object and can

be used inside the xml for

comparison etc.

requirements.

Guiml Name, value

19

Table 4.1 The Definitions of XML Structure (cont’d)

Input ,

output

Input and output elements

are used to send data to

server and receive a data

from server side code. It is

the way to communicate to

the server side Java

mechanism. All services are

transaction based.

 Service name

Variable Variables are the client

side xml based page

variables. With this

information. They are

generic type object and can

be used inside the xml for

comparison etc.

requirements.

Guiml Name,

value

The client side may vary with different protocols and technologies. In Figure 4.3

client server side mechanism with properties discussed are illustrated. Using a

standard technology like SOAP can solve the varying technologies problem and all

clients may communicate with the client with server. However in high performance

environments, like banks, telecom companies etc. where there are a huge number of

clients the communication delay and processing affects the system a lot. To solve this

issue Client side uses a “context” to call the server and different context have

different communication protocols. A Java servlet checks this context and responds

the clients differently. In Figure 4.4 there is the sample client context configuration

file. On the server context parts there are currently four contexts. Java is for Swing

clients to directly connect to the server side with object serialization method. Thus

rather than xml’s passing from one side to another, it serializes the objects and sends

it to other side. JSON stands for Javascript Object Notation. Thus, via this notation it

is possible to send directly objects to Javascript without parsing the primitive object

types. Another one is set for reports. Report mechanism is different than service

executing. It includes compiling, checking and generating reports on the server side

and passing parameters to the reports when necessary. The system currently uses

20

Jasper Reports for the report mechanism. The last one is the SOAP context. It is the

standard SOAP communication protocol mechanism, for third party applications to

call Web Services from this SOA based service mechanism.

The server side mechanism has other properties of transaction management database

persistence and session management. For the transaction mechanism, the system uses

a stateless session bean. This type of EJB (Enterprise Java Bean) handles the

transactions. It is stateless and all services are single transactions with ACID

properties. With Java 6.0 there is JTA standard. Java Transaction Agent are the

persistence standard and since system supports that standard Hibernate or any other

persistence framework can easily be connected to the service execution mechanism.

In Figure 4.5 a sample context code is shown.

The servlet gets the request with different context and starts a transaction with an

EJB. The standard for client server parameter passing is via HashMap. By definition

HashMap is data structure that associates keys with values. The primary operation it

supports efficiently is a lookup: given a key (e.g. a person's name), find the

corresponding value (e.g. that person's telephone number). It works by transforming

the key using a hash function into a hash, a number that is used as an index in an

array to locate the desired location ("bucket") where the values should be.

 Figure 4.3 Server Side SOA Architecture

21

Figure 4.4 GM Server Configuration with Different Context Bean

The servlet gets the request with different context and starts a transaction with an

EJB. The standard for client server parameter passing is via HashMap. By definition

HashMap is data structure that associates keys with values. The primary operation it

supports efficiently is a lookup: given a key (e.g. a person's name), find the

corresponding value (e.g. that person's telephone number). It works by transforming

the key using a hash function into a hash, a number that is used as an index in an

array to locate the desired location ("bucket") where the values should be.

Using HashMap, the functions has no longer needs to change. The parameters can

dynamically bind inside the HashMap. For example think there is a function foo

(Name, Surname) with two parameters from the client side, Name and Surname. You

need to change the function parameters to add ID to the function foo (Name,

Surname, ID). With that change all functions that are calling them will give compile

errors. Also it is practically impossible to call this function generic. When all the

functions gets a HashMap bag like foo (HashMap<String,Object> iMap), you can

22

add whole parameters inside this HashMap and when the number of parameters

change dynamically.

Client side calls services generically with a service name. Like

ACC_ACCOUNT_SAVE with parameters. The developer needs to register this

service to the server in order to bind it. In Java 6.0 there is a notion of annotations.

Annotation is extra information asserted with a particular point in a document or

other piece of information using tags. An annotation, in the Java computer

programming language, is a special form of syntactic metadata that can be added to

Java source code. Classes, methods, variables, parameters and packages may be

annotated. Java annotations are reflective in that they are embedded in class files

generated by the compiler and may be retained by the Java VM to be made

retrievable at run-time.

Using the annotations it becomes possible to call a service on the server side. In

Figure 4.6 There is a sample server side service code with annotations. The

annotation is named as GraymoundService and developer can extract all the

necessary parameters from this annotation. Calling the services from the client side

and using input/outputs are defined in the design studio section.

4.3 Beans to provide an application

In order to fill out the xml structure and fill to form an application there is a notion of

“beans”. They are the defined text boxes, combos, tables etc. In Table 4.2 there are

the full lists of beans currently supported by Ajax. Their listeners and codes will be

in the attachment.

4.4 Configuration Files and Their Definitions for This System to Work

The system has many configuration files for client and server side. In order for the

Ajax front end to work or server side to communicate with the client end side. In

figure 4.7 a sample configuration files is shown. The configuration files are

23

completely XML based and used by the system. The definition of the configuration

files are shown in Table 4.3. The full list of XML files are given in Appendix B.

System has a complete configuration capability thus it is easy and possible to change

all classes to redirect the layers to a different group of execution mechanism. For

example, transactions are handled in an EJB inside the application server. However,

users might want to change the transaction execution mechanism and use another

method for this purpose. Without changing any code, it is possible to make it inside

the configuration files.

Figure 4.5 Sample Context Bean Code

Figure 4.6 Sample Service Code

24

Table 4.2 List of Beans and Their Descriptions on the System

;ame Definition

Methods and Events

Utility Beans
Frame This is the Java Frame Bean

for storing the beans

underneath.

Methods: open, exit

MainOutlook The screen design varies on

different applications.

MainOutlook is the page system

with a menu on the left.

NONE

MainInternet MainInternet is the default

page with a menu on top

NONE

MainSimple MainSimple is the simple

browser window without a menu

and shows beans

NONE

Browser Browser bean is used to open a

new page container and show

other pages

Methods: open,

openAndKeepCurrent,

openandRemoveCurrent, close,

setvariable

Compare Compare bean is used to

compare different type of

objects with each other. It

has methods for isequal is

null, less than or equal or

not etc.

Methods: equals, lessThan,

lessThanorEqual, greaterThan,

greaterThanorEqual, isNull

Date Date bean is used for getting

the date and making date

operations on an object.

Methods: getNow, addYear,

addMonth, addDay

KeyEvent Key event is used to make

shortcuts on a specific bean.

Methods: createKeyEvent,

createKeyEventFor

Logic Logic bean is used to change

Boolean operations

Methods: not, and, or

Math Math bean is used to convert

Strings to bigdecimal, integer

or any other class type and

makes arithmethic operations

between numbers

Methods: sum, sumInt, subtract,

multiply, divide, pow, isZero,

toBigdecimal, toInteger, round

MessageBox Message box is the warning,

info or error boxes. Errors

show automatically via server

side exception

Methods: info, warn

Popup Popup bean is used to open a

popup of choice. User can set

and get parameters to the

popup. Popup shows two

buttons, ok and cancel at the

bottom. User can set actions

for these operations.

Methods: setParameter,

getParameter, setActionForCancel,

setActionForOk, show

Session Session is for storing the

session information. Variables

of choice individually or as a

group can be mapped to

session. Users can put and get

from session and clear it when

necessary.

Methods: clear, put, get,

getLanguage, setLanguage, remove,

putToGroup, getFromGroup,

removeFromGroup, containsKey

25

Table 4.2 List of Beans and Their Descriptions on the System (cont’d)

StatusBar Status bar is the bottom line

in the application. User can

put information to this status

bar.

Methods: setItem, removeItem

String String operations are done

with this utility bean. System

concats, gets substring,

checks if the string is empty

or not etc.

Methods: isEmpty, length, concat,

subString

ToolBar Toolbar is the topmost part

with buttons. The buttons and

their corresponding actions

are set in the configuration

files.

Methods: setActionEnabled

Beans

Button Button is the standard button

in Ajax and Swing

Methods: getThis, requestFocus

Events: ActionPerfomed

DynamicButtonGro

up

DynamicButtonGroup is a set of

radiobuttons. It acts like a

combo, and events can be fired

on top of that.

Methods: setModelData,

setSelectedItem,

setSelectedItemWithKey,

getSelectedValue

CheckBox Checkbox is the standard

checkbox it has some

properties in the

configuration file.

Methods: isSelected, setSelected,

getThis, requestFocus

Events: actionPerformed

ComboBox Combo box is the standard

combo box. User can select

items from that

Methods: setModelData, addItem,

getSelection, getNodeData,

setSelectedItemWithKey, getThis,

clear, clearModelData,

requestFocus

Events: actionPerformed

ContentAssist Content assist is the tool

where the context is filled

automatically while the user

is typing. It is extended from

textbox.

Methods: SetModelData, getData,

getText, getThis, requestFocus

Events: focusLost

CurrencyField Currency field is for money.

User can define separator and

how many digits.

Methods: getCurrency,

requstFocus, getThis

Events: actionPerformed,

FocusLost, onChange

DatePicker Date picker is for selecting a

date.

Methods: getDate, setDate,

getThis, requestFocus

Events: ActionPerformed,

onChange, focusLost

DynamicPart Dynamic part is for storing a

page inside a page. Like

frames in the web technology.

This way it is possible to use

a page again and again.

Methods: setGuiml, callAction,

setVariable, getVariable

File File bean is for selecting and

uploading a file to the server

side.

Methods: getContent, download,

getText, setText, clear,

getFileName

ImageButton Image button is same as button

with a complete image in the

front end.

Events: ActionPerformed

Label Label is the text on the

pages.

NONE

26

Table 4.2 List of Beans and Their Descriptions on the System (cont’d)

Link Link extends Label, with a

link to open a url.

Methods: open, openwithURL

List List is the, list of items

where user can select one.

Methods: getModelData, setModelData,

getNodeData, setNodeData,

createNode, removeNode, getThis,

requestFocus

Events: ValueChanged

MaskField Mask field is the custom user

defined text box, where user

can define its own mask. Like

telephone numbers, identity

code etc.

Methods: getThis, requestFocus

Events: ActionPerformed, FocusLost

Page Page bean stores and opens a

page.

Methods: getThis, clear, isEnabled,

setEnabled

Panel Panel is for storing beans

underneath

Methods: toggle, getThis, clear,

isEnabled, setEnabled

PasswordField Password field is like a

textbox with asterix character

in the front end.

Methods: getPassword, requestFocus,

getThis

Events: actionPerformed, focusLost

RadioButton Radio Button is selection from

various items.

Methods: isSelected, requestFocus,

setSelected

Events: actionPerformed

Report Report bean shows a report

underneath. On Ajax server

side generates a pdf, and

report area shows a pdf in

that part. Swing generates a

Jasper Report and shows a

report via jasper viewer

aplet.

Methods: setReport, addParameter,

execute, print, getThis

TabbedPane Tabbed pane stores panels

under various tabs.

Methods: getSelectedIndex,

requestFocus, setSelectedIndex,

setEnableMask

Events: stateChanged

Table Table is the standard generic

table. User can add different

type of columns to that table.

Methods: GetPointedColumnIdentified,

removeSelectedRow, appendRow, clear,

RequestFocus, getThis, addRow,

setModelData, getSelectedRow,

setSelectedRow, setSelectedRowWith,

sum, setValueAt, setColumnVisible,

getValueAt

Events: MouseListener,

ListSelectionListener,

TableModelListener.

TableColumn Table column bean is the

different type of columns on a

table. This is a generic super

class. Other beans extend this

one, and table may contain

many column types.

Methods: SetEditorData, getData

Events: columnChanged

TextArea Text area stores text in

multiple lines.

Methods: getThis, requestFocus

TextField Textfield stores text. User

can select different types of

input

Methods: getThis, requestFocus

Events: actionPerformed, onChange,

focusLost

27

Table 4.2 List of Beans and Their Descriptions on the System (cont’d)

CheckBoxTree Checkbox tree is a

hierarchical tree with option

to select top or bottom items.

Tree Tree is showing the lines in a

tree order.

Methods: getRoot, getSelectedNode,

setSelectedNode, getNodeData,

setNodeData, clear, getThis,

addNodeToParent, expandAll,

collapseAll, hasChildren, addNode,

setModelData, getModelData,

requestFocus, removeSelectedNode

Events: MouseListener,

TreeSelectionListener

TreeTable Tree table is a tree with

columns.

Methods: getNodeData,

getNodeDataWithSearchKey,

setNodeData,

setNodeDataWithSearchKey, clear,

getThis, expandAll, collapseAll,

setModelData, getModelData

Events: TreeSelectionListener,

CellEditorListener

Figure 4.7 Sample Configuration File

Table 4.3 XML Configuration Files

Client Side

File Explanation
GMBeans.xml Bean definition files are listed on this XML. System has the

formation of “beans” as working small widgets on the client
side. The list of the beans is shown on this configuration file
thus it can increase dynamically. Also, framework user
interface plugin uses this system as the list of items on
palette.

28

Table 4.3 XML Configuration Files (cont’d)

GMBrowserConfiguration.xml The client side of the framework has a browser which
converts the XML files to an application dynamically. This
configuration file stores the size, look and feel and other
visual related configuration.

GMBrowserToolBar.xml The browser has a shared toolbar on top part. The GM
Browser Configuration file stores the toolbar menu items
and their related actions, which action will be called on
press.

GMConnection.xml The client system connects server side with a url, username
password and other connection related security information.
For a fast start this information can be stored on this XML
file.

GMLayouts.xml Layouts of the client side system. The layout definitions,
their corresponding java files and properties are listed.

GMListeners.xml On client side, there are different listeners on beans. These
listeners are listed on this file. Some examples are
cellEditorListener, FocusListener, DocumentListener.

GMPalette.xml On user interface development plugin, the list of possible
items is listed here. Using this file, palette is dynamically
formed.

GMResourceFactory.xml This file is used to store the connection information between
client and server side. Connection type, the context and the
url is stored on this file. The difference between the
connection xml file is, this is used on client system services,
and the other is used on services called in java codes.

GMToolkit.xml Language information is stored on this configuration file.
There are keys and the corresponding values.

Server Side
GMCacheConfiguration.xml It stores the cache configuration of the server side. The

framework has cache integration of variety of mechanisms.
GMClusterConfiguration.xml Cluster configuration stores the configuration of cluster

mechanism in distributed cache and service mechanism.
GMServerConfiguration.xml Server configuration is the server side, transaction, data

source context and other server related configuration files.

GMServerDatasources.xml GMServerDatasources stores the data source information
for service related components or reading the service
methods. It normally reads these from the application server
datasource, however this is an external mechanism for the
same purpose.

GMServiceConfiguration.xml This stores the service execution mechanism and the class.
Users can either store the service classes in database or in
this file as a configuration.

29

4.5 Rendering Mechanism for XML Ajax

The front end GUI system has XML based definition of the front end. Ajax

mechanism on the server side renders the XML, converts this as a standard Swing,

and the Qooxdoo framework, which automatically retrieves this swing and builds up

an Ajax GUI. This system is illustrated on Figure 4.8. The system also has a custom

implemented service calling mechanism for server side. The actions and if-then-else

or while loop properties on XML are the basic functions triggered by events to

handle the simple requests on client side.

Figure 4.8 Ajax Rendering Mechanism

On the client side of the system all the beans are implemented in Javascript files. So

that when parser gets into these bean definitions it uses the referenced files. A sample

bean code is shown in Figure 4.9.

4.5.1 About Qooxdoo

Qooxdoo is a comprehensive and innovative Ajax application framework. It is

entirely class-based and tries to leverage the features of object-oriented JavaScript. It

is fully based on namespaces and does not extend native JavaScript types to allow for

easy integration with other libraries and existing user code. The system supports

most of the modern browsers and targeting to become free of memory leaks. It comes

with a comprehensive API reference that is auto-generated from Javadoc-like

comments and from the syntax tree representing the code. The fast and complete

30

JavaScript parser allows doc generation, but is an integral part of the automatic build

process that makes optimizing, compressing, linking and deployment of custom

applications. The system also has internalization and localization.

Figure 4.9 Sample Bean Code for Combo Box

4.6 Service Execution Mechanism

Service execution mechanism is the key part in communication with the server side.

Client side development system is based on the service calling mechanism for any

server side Actions. The XML system stores the GUI definitions, variables and

service information. The service system uses a HashMap as a parameter to the

service. This way if the parameters on a service increase, HashMap can dynamically

bind any number of parameters with a “key, value” system. The service reaches the

31

server side with a HashMap package and the name of the service to be called. On the

server side there is a servlet with different context. With the help of different

contexts, it is possible to call services with different standards. For example JAVA

context receives objects as the service parameter and the whole request is a JAVA

object. The SOAP context receives a web service implementation with a standard

XML. The Ajax system uses a JSON context which stands for Java Script Object

Notification. This system is parsed on the server side, then a stateless session bean

EJB is called to start a transaction. The whole service is transactional and provides

ACID features. It requires an application server to run this single service execution

EJB. The service execution class is configured in an XML thus developers can

implement their own service execution. The input and output parameters of the

service are primitive type data structures since Ajax and Web Browser does not

support any object oriented type or complex data structures. A sample execute

service method is given on Figure 4.10.

Figure 4.10 Execute Service Method on Ajax

4.7 Jgroups

Jgroups is a group multicasting solution used in the system in clustering and caching.

This project is worldwide popular and in the hearth of largest Java projects. It has a

well implemented and performance proved application system.

32

Jgroups is defined as toolkit for reliable group communication [31]. Processes can

join a group, send messages to all members or single members and receive messages

from members in the group. The system keeps track of the members in every group,

and notifies group members when a new member joins, or an existing member leaves

or crashes. A group is identified by its name. Groups do not have to be created

explicitly; when a process joins a non-existing group, that group will be created

automatically. Member processes of a group can be located on the same host, within

the same LAN, or across a WAN. A member can be part of multiple groups.

4.8 Cache Mechanism

The system is organized to implement Enterprise Projects. These projects have a high

load and capacity requirements. In order to fulfill this request systems mostly require

clustering to become both productive and fault tolerant. Cache is the key part in

increasing the efficiency of the system. The architecture has a unique cache

mechanism to store different cache architectures on its own. The caching is a layer to

“put” to the cache and “get” from the cache. On Figure 4.11 sample caching code is

shown.

Figure 4.11 Cache Mechanism Sample Code

33

In technical details, a cache is organized as a tree, with a single root. Each node in

the tree essentially contains a Map, which acts as a store for key/value pairs. The

only requirement placed on objects that are cached is that they implement

java.io.Serializable. This way cache items can serialize, sent to another cache

group and desterilized. Cache mechanism can be either local or replicated. Local

trees exist only inside the JVM in which they are created, whereas replicated trees

propagate any changes to some or all other trees in the same cluster. A cluster may

span different hosts on a network or just different JVMs on a single host. JVMs on a

single host. Figure 4.12 shows communication between two clients and the Jgroups

role on this system.

Figure 4.12 Jgroups Architecture

34

When a change is made to an object in the cache and that change is done in the

context of a transaction, the replication of changes is deferred until the transaction

commits successfully. All modifications are kept in a list associated with the

transaction for the caller. When the transaction commits, cache mechanism replicate

the changes. Otherwise, (on a rollback) system simply undo the changes locally

resulting in zero network traffic and overhead. For example, if a caller makes 100

modifications and then rolls back the transaction, system does not replicate anything

and it does not result any traffic. This cache mechanism is also completely thread-

safe. It uses a pessimistic locking scheme for nodes in the tree by default, with an

optimistic locking scheme as a configurable option. With pessimistic locking, the

degree of concurrency can be tuned using a number of isolation levels, corresponding

to database-style transaction isolation levels, i.e., SERIALIZABLE,

REPEATABLE_READ, READ_COMMITTED, READ_UNCOMMITTED and

NONE.

A Cache consists of a collection of Node instances, organized in a tree structure.

Each Node contains a Map which holds the data objects to be cached. It is important

to note that the structure is a mathematical tree, and not a graph; each Node has one

and only one parent, and the root node is denoted by the constant fully qualified

name, ROOT. The reason for organizing nodes as such is to improve concurrent

access to data and make replication and persistence more fine-grained.

In Figure 4.13, each box represents a JVM. It shows 2 caches in separate JVMs,

replicating data to each other. These VMs can be located on the same physical

machine, or on 2 different machines connected by a network link. The underlying

group communication between networked nodes is done using Jgroups. Any

modifications in one cache instance will be replicated to the other cache. Naturally,

developers can have more than 2 caches in a cluster. Depending on the transactional

settings, this replication will occur either after each modification or at the end of a

transaction, at commit time. When a new cache is created, it can optionally acquire

the contents from one of the existing caches on startup.

35

Figure 4.13 Cache Data Structured as a Tree

36

Chapter 5

Sample Application and Design Studio

This chapter shows the visual part of the plugin with the explanation of Eclipse

design studio and then a step by step tutorial of how to generate a first “hello world”

application using this tool. It is easy to use and develop an application using this

technology. Eclipse is used on client side to inherit all the features of this

development environment. Tutorial includes many figures to easily illustrate the

development steps. Installation package of the framework can either be downloaded

from url http://open.sabanciuniv.edu/graymound or, Appendix B contains the latest

version of the development framework.

5.1 Eclipse Plugin

This chapter displays the details of the framework’s eclipse plugin design studio and

its properties. The eclipse design studio has a properties window, which is available

at menu, window - preferences.

Figure 5.1 has the configuration file of the Eclipse framework. Install home is the

installation directory of the system. This file is chosen during the installation process

of the framework. Login page is the initial page during testing or application

development. Normally the system works under a server. During the development

phase, it is possible to test the pages one by one. To make session mechanism and

server authentication work, system first opens the login page and this page

automatically logins and redirects to the development page. Language configuration

is the internalization option. The framework has built in multiple language support.

37

Hence, when a language context is provided either from internet browser or from this

configuration file or via regional settings of the operating system, it shows the text

with that language file. “GUIML test URL” is the testing URL of the pages. When a

page is opened for testing inside the eclipse plugin, it redirects to this URL and then

opens the test page. The system automatically searches for server side web services

to be able to easily select from client side. Thus the connection driver, connection

URL, username and password are for this connection purpose.

Figure 5.1 Eclipse Configuration Files

Eclipse plugin contains the palette and the XML design studio. In Figure 5.2, a

sample application screen on framework design studio is given. Using this studio,

38

users can select the appropriate bean from the right pane, and drag and drop that to

the inner screens. The system has the properties option, thus when an item is selected

on the page, its properties automatically listed, where users can edit these properties.

All the labels and text has the internalization option, and Turkish and English text

can be written at the same time. The screenshot on Figure 5.2 is from a health

insurance application of an insurance company.

Figure 5.2 Sample Application Screen

39

The system has the notion of Actions. Actions correspond to the methods in regular

code. In an action pane, users can call methods of beans, call services or call actions

for recursive action. Also it is possible to use if-then-else block inside the action.

With this property primitive controls and methods can be executed on the client side

without server side service calling or any other operation. The actions are standard

and users cannot write any code on client side. This way all the codes written are

based on XML and easily be transformed or maintained. Figure 5.3 gives sample

actions tab from an existing project.

Figure 5.3 Actions Tab to Show Client Side Method Development

40

Services are the core communication model of this system. A service name is the key

and server side must have a corresponding tag starting with an annotation

@GraymoundService(“Service_name”). The application automatically receives this

annotation and marks this piece of code underneath as a service. The service has

inputs and outputs. Inputs are the set of parameters sent from client to the server.

These can either be variables, static text or parameters received from the client side

beans. Outputs are the response of the services. These services can be methods to call

a bean function with this parameter. For example, when a service response is

returned like NAME, this can be called as txtbox.setText method thus this parametric

result will be automatically set to text on the textbox. Figure 5.4 shows a sample

services tab.

Figure 5.4 Services Tab to Show How a service is Implemented

41

Outputs can also be set to variables on a page. This way, variables are updated and

hold on page and can be used when necessary. Another parameter can be static text,

thus the input or the return value of a service is converted into a static text where

users can insert whatever they want. Service return is also another option where a

service can be called directly from an output. Then output of a service becomes the

input of another service. Output parameters can be Actions, which are the functions

and when an output parameter is set to an action, it will be a parameter passed to this

action. If-then-else is used for a primitive logic during this output values, for

example users can control this input and it required value, then call some action of

call some another action etc. The last one is the block. Block is the set of code

executed. Variables tab on eclipse plugin are for storing the variables on a page.

Variable has the type of object, and can be all primitive type objects like String,

Integer or Boolean. These values are casted and used on server side. Figure 5.5

shows a sample variables tab.

Figure 5.5 Variables tab to show the list of the variables

42

The events tab on the eclipse plugin shows the list of the events triggered by specific

actions. Figure 5.6 has a screenshot of events tab. The lists of events are configured

on bean xml files which are explained on chapter 4.4 Configuration files part. On

design studio users right click on specific bean, select the events button and list of

events triggered by that bean is listed, like table cell editing stopped or row inserted.

Users can bind specific actions to the events when necessary.

Figure 5.6 Events Tab to Show the List of Events on a Page

43

5.2 Sample Application Tutorial

Sample application tutorial shows a step by step demo of developing a “Hello

World” type application communication with server side. Prior to this tutorial users

shall install the application development framework on their computers. The tutorial

begins with running Eclipse from desktop shortcut which the installer generated. We

will use existing Graymound data source for this tutorial. Data source is the

connection of database inside the application server.

First of all user should change eclipse perspective to Graymound. Eclipse plugin

installed comes with its own perspective. First thing is creating a new Graymound

project. This is done by the following steps below. Figure 5.7 shows eclipse page,

after a project is created.

File -> New -> Other -> Graymound -> Graymound Project -> Next

Project Name: “Tutorial” -> Finish .

Figure 5.7 Creating a New Project

44

After creating a new project, some files automatically appear. These are the set of

libraries or necessary folders for this specific project. Src holds the source files of the

application. Graymound is the set of libraries on client side necessary during

development or build. JRE system library is the eclipse generated java client library

for client side. Build is the build folder where build script results are stored here. For

example when build.xml is executed, the xml makes a jar file from the sources and

also generates a hibernate archive for object relation mapping for the database side.

These files are put under the Build folder. Content folder includes three sub folders.

Guiml, reports and images. This folder is generated to give an order to the

application files. Images are suggested to put under images file, reports are the jasper

report database connected report files and guimls are the xml files the framework lies

on. Next step is creating a new package. Users now should create a new package

which is given on Figure 5.8. The name of the package is suggested to be

tr.com.obss.tutorial.

Figure 5.8 Creating a New Package

45

Now it is time to generate a new GUIML page for development. This is done by file-

> new-> other-> guiml page. This page will be an empty framework page which is

ready to be coded. This page opened in the GUIML editor is shown on Figure 5.9.

The tutorial will have a combo box on the application. You can drag and drop a

combo box from the palette to the application screen. After generation, you shall

change its name to a readable one, like cmbLanguage. Next step is generating the

service code for filling this combo. This code is given on Figure 5.10.

Figure 5.9 A New Page, After It is Created

46

Figure 5.10 Fill Combo Service Code

After filling out the Combo code it is necessary to set the result of this code to the

combo box. This is done by using the setModelData method of combo box. On

Figure 5.11 setModelData method and how to select it on the combo box is shown.

47

Figure 5.11 Combo Box Set Model Data

The last step of this application is putting a button on page, generating an action for

combo and running the page to test the application. These last steps are illustrated on

Figures 5.12, 5.13 and 5.14.

Figure 5.12 Button and Click Event

48

Figure 5.13 Binding the Event to the Action

49

Figure 5.14 Running the Application for Test

50

Chapter 6

Conclusions and Recommendations for Future Work

The system has a high capacity of desktop like web application development. During

the development phase system has also started in building an enterprise application,

internet banking. The system completely fulfills the requirements of security,

development and performance. Besides programmatic requirements, nowadays

enterprises require management and monitoring capabilities over the application. The

next step in development of the framework is, adding Business Process Management

and Business Process Monitoring on top of this system.

The contributions of the project are unique xml mechanism such that it is able to

generate a form application. Normally there are user interface standards to define on

xml. These systems are successful in designing pages or even generating forms for

settings of an application etc. However the xml of this system is dedicated for form

applications which has extendable bean and layout capability, language independent

system so that can be parsed by different languages, service calling and action,

variable and event based system to generate a complete application. Another

contribution of this system is AJAX mechanism. There are varieties of AJAX

frameworks on the market. They are generally either for transforming swing code to

AJAX or libraries for extendible use. However the AJAX mechanism of this

framework has form generation capability and desktop application like structure

which is unique in its category. The system uses an AJAX framework in the

background and it acts as a high level language of Ajax based form generation.

51

Currently the system is used in an internet banking project of a Bank in Turkey and

an Internet Banking project started in Albania. The system has high performance and

capacity thus have a great potential getting used in Banks and large it projects. The

next steps are Business Process Management inside this framework. A business

process is a collection of related, structured activities that produce a service or

product that meet the needs of a client. These processes are critical to any

organization as they generate revenue and often represent a significant proportion

of costs. Queuing the tasks and generating a process on top of those require

standalone services. The BPM technology uses a SOA structure underneath and this

framework has sufficient capabilities to integrate with BPM. This way it is possible

to define processes inside the company using this framework. Another system

required to integrate with this framework is Business Rules. A business rules engine

is a software system that executes one or more business rules in a runtime production

environment. Most Java-based rules engines provide a technical call-level interface,

based on the application programming interface (API) standard, in order to allow for

integration with different applications, and many rule engines allow for service-

oriented integrations through Web-based standards such as WSDL and SOAP. Thus

it will be possible to embed a rule engine to this system as one of the next steps.

52

References

[1] http://www.hibernate.org/, 2008

[2] http://qooxdoo.org/, 2008

[3] http://jasperreports.sourceforge.net, 2008

[4] http://www.oracle.com/technology/products/forms/index.html, 2008

[5] Erl, T.,

http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_gci1044083,00.htm

, 2005

[6] Curbera, F. and Duftler, M. J. C., Lightweight middleware for service-oriented

computing., IBM Research..

http://www.research.ibm.com/journal/sj/444/curbera.html, 2005

[7] Potts, M., Find Bind and Execute: Requirements forWeb Service Lookup and

Discovery, http://www.talkingblocks.com/resources.htm, 2005

[8] McGovern, J., et al., Java Web Services Architecture. s.l. : Sun Microsystems,

2003

[9] Lee, B., IBM Research

 http://www-128.ibm.com/developerworks/podcast/dwi/cm-int082206.txt, 2006

53

[10] Dobrzanski, J., Social Semantic Information Sources for eLearning, 2007

[11] http://delicious.com/, 2008

[12] http://www.flickr.com/, 2008

[13] http://www.wikipedia.org/, 2008

[14] http://www.last.fm/, 2008

[15] http://technorati.com, 2008

[16] http://en.wikipedia.org/wiki/JavaScript, 2008

[17] Sun Microsystems, Enterprise JavaBeans Specification, Version 2.1

http://java.sun.com/products/ejb, Nov. 12, 2003

[18] http://www.hibernate.org/118.html, 2008

[19] http://www.eclipse.org/, 2008

[20] http://www.softwareag.com/, 2008

[21] http://en.wikipedia.org/wiki/PL/SQL, 2008

[22] http://www.softwareag.com/Corporate/products/natural/rich_appl/default.asp,

2008

[23] http://java.sun.com/javaee/javaserverfaces/, 2008

54

[24] http://www.springframework.org/, 2008

[25] http://code.google.com/webtoolkit/, 2008

[26] http://www.oracle.com/technology/products/adf/index.html, 2008

[27] http://www-01.ibm.com/software/awdtools/developer/application/, 2008

[28] http://www.zkoss.org/, 2008

[29] http://www.icefaces.org/main/home/index.jsp, 2008

[30] http://www.acegisecurity.org/, 2008

[31] http://www.jgroups.org/, 2008

55

Appendix A. List of Configuration Files

- <beans>

- <!--
Util

 -->

 <bean name="Frame" infoPath="configuration/bean/util/GMFrameBeanInfo.xml" />
 <bean name="MainOutlook"
infoPath="configuration/bean/main/GMMainOutlookBeanInfo.xml" />
 <bean name="MainInternet"
infoPath="configuration/bean/main/GMMainInternetBeanInfo.xml" />
 <bean name="MainSimple"
infoPath="configuration/bean/main/GMMainSimpleBeanInfo.xml" />
 <bean name="Browser" infoPath="configuration/bean/util/GMBrowserBeanInfo.xml" />
 <bean name="Compare" infoPath="configuration/bean/util/GMCompareBeanInfo.xml" />
 <bean name="Date" infoPath="configuration/bean/util/GMDateBeanInfo.xml" />
 <bean name="KeyEvent" infoPath="configuration/bean/util/GMKeyEventBeanInfo.xml" />
 <bean name="Logic" infoPath="configuration/bean/util/GMLogicBeanInfo.xml" />
 <bean name="Math" infoPath="configuration/bean/util/GMMathBeanInfo.xml" />
 <bean name="MessageBox"
infoPath="configuration/bean/util/GMMessageBoxBeanInfo.xml" />
 <bean name="Popup" infoPath="configuration/bean/util/GMPopupBeanInfo.xml" />
 <bean name="Session" infoPath="configuration/bean/util/GMSessionBeanInfo.xml" />
 <bean name="StatusBar" infoPath="configuration/bean/util/GMStatusBarBeanInfo.xml"
/>
 <bean name="String" infoPath="configuration/bean/util/GMStringBeanInfo.xml" />
 <bean name="ToolBar" infoPath="configuration/bean/util/GMToolBarBeanInfo.xml" />
 <bean name="Flash" infoPath="configuration/bean/GMFlashBeanInfo.xml" />
- <!--
 Bean

 -->

 <bean name="Button" infoPath="configuration/bean/GMButtonBeanInfo.xml" />
 <bean name="DynamicButtonGroup"
infoPath="configuration/bean/GMDynamicButtonGroupBeanInfo.xml" />
 <bean name="CheckBox" infoPath="configuration/bean/GMCheckBoxBeanInfo.xml" />
 <bean name="ComboBox" infoPath="configuration/bean/GMComboBoxBeanInfo.xml" />
 <bean name="ContentAssist"
infoPath="configuration/bean/GMContentAssistBeanInfo.xml" />
 <bean name="CurrencyField"
infoPath="configuration/bean/GMCurrencyFieldBeanInfo.xml" />
 <bean name="DatePicker" infoPath="configuration/bean/GMDatePickerBeanInfo.xml" />
 <bean name="DynamicPart" infoPath="configuration/bean/GMDynamicPartBeanInfo.xml"
/>
 <bean name="File" infoPath="configuration/bean/GMFileBeanInfo.xml" />
 <bean name="ImageButton" infoPath="configuration/bean/GMImageButtonBeanInfo.xml"
/>
 <bean name="Label" infoPath="configuration/bean/GMLabelBeanInfo.xml" />
 <bean name="Link" infoPath="configuration/bean/GMLinkBeanInfo.xml" />
 <bean name="List" infoPath="configuration/bean/GMListBeanInfo.xml" />
 <bean name="MaskField" infoPath="configuration/bean/GMMaskFieldBeanInfo.xml" />
 <bean name="Page" infoPath="configuration/bean/GMPageBeanInfo.xml" />

56

 <bean name="Panel" infoPath="configuration/bean/GMPanelBeanInfo.xml" />
 <bean name="PasswordField"
infoPath="configuration/bean/GMPasswordFieldBeanInfo.xml" />
 <bean name="RadioButton" infoPath="configuration/bean/GMRadioButtonBeanInfo.xml"
/>
 <bean name="Report" infoPath="configuration/bean/GMReportBeanInfo.xml" />
 <bean name="TabbedPane" infoPath="configuration/bean/GMTabbedPaneBeanInfo.xml"
/>
 <bean name="Table" infoPath="configuration/bean/GMTableBeanInfo.xml" />
 <bean name="TableColumn" infoPath="configuration/bean/GMTableColumnBeanInfo.xml"
/>
 <bean name="TextArea" infoPath="configuration/bean/GMTextAreaBeanInfo.xml" />
 <bean name="TextField" infoPath="configuration/bean/GMTextFieldBeanInfo.xml" />
 <bean name="TimeField" infoPath="configuration/bean/GMTimeFieldBeanInfo.xml" />
 <bean name="CheckBoxTree"
infoPath="configuration/bean/GMCheckBoxTreeBeanInfo.xml" />
 <bean name="Tree" infoPath="configuration/bean/GMTreeBeanInfo.xml" />
 <bean name="TreeTable" infoPath="configuration/bean/GMTreeTableBeanInfo.xml" />
- <!--
Adapters

 -->

 <bean name="DataFieldAdapter"
infoPath="configuration/bean/adapter/GMDataFieldAdapterBeanInfo.xml" />
 <bean name="CheckBoxAdapter"
infoPath="configuration/bean/adapter/GMCheckBoxAdapterBeanInfo.xml" />
 <bean name="ComboBoxAdapter"
infoPath="configuration/bean/adapter/GMComboBoxAdapterBeanInfo.xml" />
 <bean name="ContentAssistAdapter"
infoPath="configuration/bean/adapter/GMContentAssistAdapterBeanInfo.xml" />
 <bean name="CurrencyFieldAdapter"
infoPath="configuration/bean/adapter/GMCurrencyFieldAdapterBeanInfo.xml" />
 <bean name="DatePickerAdapter"
infoPath="configuration/bean/adapter/GMDatePickerAdapterBeanInfo.xml" />
 <bean name="TextFieldAdapter"
infoPath="configuration/bean/adapter/GMTextFieldAdapterBeanInfo.xml" />
 <bean name="TimeFieldAdapter"
infoPath="configuration/bean/adapter/GMTimeFieldAdapterBeanInfo.xml" />
- <!--
 Custom Beans

 -->

 <bean name="DataField"
infoPath="configuration/bean/custom/GMDataFieldBeanInfo.xml" />
 <bean name="DataBlock"
infoPath="configuration/bean/custom/GMDataBlockBeanInfo.xml" />
 </beans>

Figure A.1 GMBeans Configuration File

57

 <?xml version="1.0" encoding="UTF-8" ?>

- <configuration>

- <properties>

 <property name="size" value="1024,768" />
 <property name="resizable" value="true" />
 <property name="lookAndFeel" value="com.graymound.uiml.browser.util.GMLookAndFeel"
/>
 <property name="loginPage" value="GM_ADM_LOGIN.guiml" />
 <property name="firstPage" value="0" />
 <property name="debug" value="true" />
 </properties>

 </configuration>

Figure A.2 GMBrowser Configuration File

- <toolbar>

 <action name="New" actionName="NEW" icon="New.gif" />
 <action name="Save" actionName="SAVE" icon="Save.gif" />
 <action name="Delete" actionName="DELETE" icon="Delete.gif" />
 <action name="Search" actionName="SEARCH" icon="Search.png" />
 <action name="Clear" actionName="CLEAR" icon="Refresh.gif" />
 </toolbar>

Figure A.3 GMBrowserToolBar Configuration File

 <?xml version="1.0" ?>

- <connections>

- <connection name="Default" url="http://localhost:8080/GMServer/Server/JAVA">
 <property name="authenticate-service" value="GM_ADM_USER_AUTHENTICATE" />
 <property name="language" value="tr" />
 <property name="username" value="Admin" />
 <property name="password" value="4e7afebcfbae000b22c7c85e5560f89a2a0280b4" />
 </connection>

 </connections>

Figure A.4 GMConnection Configuration File

- <layouts>

 <layout name="XYLayout" class="com.graymound.uiml.bean.layout.XYLayout"
constraintClass="java.awt.Rectangle" />
- <layout name="BorderLayout" class="java.awt.BorderLayout"
constraintClass="java.lang.String">
 <property name="vgap" displayName="Horizontal Gap" class="int" />
 <property name="hgap" displayName="Vertical Gap" class="int" />
 </layout>

 <layout name="FlowLayout" class="java.awt.FlowLayout" constraintClass="java.lang.String"
/>
- <layout name="GridLayout" class="java.awt.GridLayout" constraintClass="java.lang.String">
 <property name="vgap" displayName="Horizontal Gap" class="int" />
 <property name="hgap" displayName="Vertical Gap" class="int" />
 <property name="rows" displayName="Rows" class="int" />
 <property name="columns" displayName="Columns" class="int" />
 </layout>

 </layouts>

Figure A.5 GMLayouts Configuration File

58

- <listeners>

 <listener name="ChangeListener"
class="com.graymound.uiml.bean.listener.GuimlChangeListener" />
 <listener name="MouseListener"
class="com.graymound.uiml.bean.listener.GuimlMouseListener" />
 <listener name="ActionListener"
class="com.graymound.uiml.bean.listener.GuimlActionListener" />
 <listener name="FocusListener"
class="com.graymound.uiml.bean.listener.GuimlFocusListener" />
 <listener name="CellEditorListener"
class="com.graymound.uiml.bean.listener.GuimlCellEditorListener" />
 <listener name="ListSelectionListener"
class="com.graymound.uiml.bean.listener.GuimlListSelectionListener" />
 <listener name="TableColumnListener"
class="com.graymound.uiml.bean.listener.GuimlTableColumnListener" />
 <listener name="TableModelListener"
class="com.graymound.uiml.bean.listener.GuimlTableModelListener" />
 <listener name="TreeSelectionListener"
class="com.graymound.uiml.bean.listener.GuimlTreeSelectionListener" />
 <listener name="DocumentListener"
class="com.graymound.uiml.bean.listener.GMDocumentListener" />
 </listeners>

Figure A.6 GMListeners Configuration File

 <?xml version="1.0" encoding="UTF-8" ?>

- <resource-factory>

- <resource name="Remote" class="com.graymound.resource.GMResourceRemote"
default="true">
 <property key="url" value="http://localhost:8080/GMServer/Server/JAVA" />
 </resource>

- <!--

 <resource name ="Local"

 class="com.graymound.resource.GMResourceLocal" default="true">

 <property key="url"

 value="C:\GMDevelopment/Graymound/Server/Content/Root"/>

 <property key="har-path"

 value="C:\GMDevelopment/Graymound/Server/Hibernate" system="true"/>

 </resource>

 -->

 </resource-factory>

Figure A.7 GMResourceFactory Configuration File

59

 <?xml version="1.0" encoding="iso-8859-9" ?>

- <page>

- <i18n>

- <language name="tr">
 <text key="Close" value="Kapat" />
 <text key="Close All" value="Hepsini Kapat" />
 <text key="Close Others" value="Diğerlerini Kapat" />
 <text key="File" value="Dosya" />
 <text key="Exit" value="Çıkış" />
 <text key="Modules" value="Modüller" />
 <text key="Save" value="Kaydet" />
 <text key="OK" value="Tamam" />

 <text key="Cancel" value="Vazgeç" />
 <text key="Select All" value="Hepsini Đşaretle" />
 <text key="Deselect All" value="Đşaretleri Kaldır" />
 <text key="Hide All" value="Hepsini Gizle" />
 <text key="Show All" value="Hepsini Göster" />
 <text key="Username" value="Kullanıcı Adı" />
 <text key="Password" value="Şifre" />
 <text key="Language" value="Dil" />
 <text key="Login" value="Giriş" />
 <text key="Find" value="Bul" />
 <text key="Shortcut" value="Kısa Yol" />
 <text key="Error" value="Hata" />
 <text key="INVALID_DATE" value="Geçersiz tarih girdiniz" />
 </language>

 </i18n>

- <i18n>

- <language name="en">
 <text key="INVALID_DATE" value="Invalid Date" />
 </language>

 </i18n>

 </page>

Figure A.8 GMToolkit Configuration File

60

Appendix B. CD Containing Code Listing and

the Installation Package

CD will be provided within the thesis containing framework code.

61

Curriculum Vitae

Hüseyin Ergün was born on 27 September 1981, in Đstanbul. He received his BS

degree in Computer Science and Engineering in 2004 from Sabancı University. In

1999, he was 19th Ranking at OSS, Nationwide University Entrance Examination

among 1.4 Million applicants; in 2002, he received IBM e-business certificate,

concentrated on CRM, SCM and e-business strategy given by IBM-Turk and SU

Management Club; in 2003, SU Computer Club Network Structure and Server were

chosen the business case of the month and published in the newsletter of Mandrake

Soft and also he was recipient for Linux Achievement Award from IBM-Turk with

project Turquaz, v0.2.; in 2004 he was again recipient for Free Software Award

given by Linux Users Association, with project Turquaz v0.3 and finalist, Linux

Achievement Award from IBM-Turk with project B2B v0.1; in 2007 he received full

scholarship from Isik University for Doctoral Study Courses and become a teaching

assistant.

Since 2004 he has been the founder of an open source software company (OBSS,

Open Business Software Solutions) and he has been working as projects manager and

lead developer. The company has shared associate with Sabanci University and

Sabanci Holding Company. Projects involved in this period are: Turquaz Financial

Accounting, B2B Enterprise Integration Engine, GrayMound N-Tier Rich Client

Application Development Framework, SmartBrowser, Browser Extension for

English Learning, Bulk SMS Gateway and Web Application, Formal Verification of

a Distributed Download Protocol, Calikbank Core Banking Application, Yapi Kredi,

Health Insurance Application, Aktifbank, Internet Banking…

