
DATA COLLECTION AND ANALYSIS ON VANET

HĐLAL KARATOY

B.S., Information Technologies, Işık University, 2005

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

 Computer Engineering

IŞIK UNIVERSITY

2009

IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

DATA COLLECTION AND ANALYSIS ON VANET

HĐLAL KARATOY

APPROVED BY:

Assoc Prof. Ercan SOLAK (Işık University) _____________________

(Thesis Supervisor)

Assist. Prof. O. Taner YILDIZ (Işık University) _____________________

Assist. Prof. Tankut ATAN (Işık University) _____________________

APPROVAL DATE: 02/01/2009

ii

DATA COLLECTION AND ANALYSIS ON VANET

Abstract

The communication between devices is provided by wireless networks and it is

growing rapidly, dependent on the needs. Wireless networks strike the attention of

people throughout the world, and the ad hoc network is part of this attention. Ad hoc

networks do not need structural mechanisms and are mostly used by the mobile

nodes. In ad hoc networks the nodes act as a router and communicate with the other

nodes. Ad hoc networks can be used in various places such as campus, shopping

centers, buildings and vehicles.

Ad hoc network systems without any infrastructure have two kinds of nodes which

are mobile and fixed. Actually, node mobility is not taken into account.

The aim of this thesis is to find the cheapest way to provide the practical statistical

data that will be saved after communication between vehicles depend on road

constructing, renewing, development and time schedule of the drivers etc. The data

used in the analysis were the route and schedule information of the local city buses.

Istanbul Metropolitan Municipality provided the coordinates of the bus stops and

time tables for the data collection part. We used MATLAB to edit the data in data

analysis part. We used 802.11 standards for the communication of the buses and

C++ to create the protocol of data transmission. We wrote Google Earth scripts to

observe the data correctness and coded TCL scripts for simulation in NS2 to see and

analyze the data transfer between nodes, i.e., the buses. Different ranges of

communication are used and analyzed, and their results are shown in this project. To

collect more data, thousands of nodes are used, which represent more than 40 bus

lines and their paths from different continents including Asia and Europe, which

constitute the two sides of Istanbul.

iii

VANET ÜZERĐNDE VERĐ TOPLAMA VE ANALĐZ ETME

Özet

Günümüzde araçlar arasındaki iletişim kablosuz ağlar sayesinde sağlanmaktadır ve

ihtiyaçlara bağlı olarak da kullanımı hızla artmaktadır. Kablosuz ağlar tüm dünyanın

ilgi odağı haline gelmiş durumdadır ve özellikle tasarsız ağlar bunlardan biridir.

Tasarsız ağlar çok adımlı iletişim sağlayan, altyapısız ve çoğunlukla hareketli

düğümler tarafından kullanılan mekanizmalardır. Bu ağlarda düğümler hem

yönlendirici görevi görür hemde diğer düğümler ile iletişim halinde olur. Tasarsız

ağların kullanımı farklı yerlerde mümkündür bunlar üniversite kampüsleri, alışveriş

merkezleri, ve hatta araçlar olarak örneklendirilebilinir.Tasarsız ağlarda düğümlerin

hareketliliği önemsenmez. Düğümler hareketli ve hareketsiz olmak üzere ikiye

ayrılır.

Bu tezin amacı, araçlar arasında gerçekleşen veri alışverişi sonucu elde edilen

istatistiki bilgilerin, en ucuz şekilde yol yapılandırmalarında, şoförlerin iş saatlerine

riayetinde, saatlere göre yol yoğunluğunun hesaplanmasında kullanılmasını

sağlanmaktır. Kullanılacak araçlar belediye otobüsleri ve analiz edilecek veriler de

otobüslerin yol bilgileri ve hareket saatleri olarak belirlendi. Veri toplama kısmında,

otobüs duraklarının koordinatlarını ve ana durağa varış-ayrılış saatlerini Istanbul

Büyükşehir Belediyesi verdi. Veri analizi için Matlab aracı kullanıldı. Araçlar arası

bağlantı 802.11 standardıyla sağlandı ve veri alışverişi icin yeni bir protokol C++

dilinde yazıldı. Google Earth aracı koordinatların ve mesafelerin doğruluğunu

görmek için kullanıldı. Otobüsler arasındaki veri alışverişini görmek ve

simulasyonları gerçeklemek için ns-2 aracı kullanıldı. Farklı veri iletimi aralıkları

kullanılarak sonuçlar grafik ortama taşındı ve gün içinde Đstanbulun hangi noktaları

hakkında ne kadar veri sahibi olunduğu analiz edildi. Verinin yayılımı için gerekli

yayın alanı değerleri değiştirilerek, 40 otobüs hattından fazla, binlerce hareketli ve

onlarca hareketsiz düğüm kullanılarak daha fazla veri elde edildi ve analizleri

yapıldı. Istanbul’un avrupa ve asya yakalarına geçişlerindeki veri alışverişleride

analizler sonuncunda görüldü.

iv

Acknowledgements

I am deeply grateful to Assoc. Prof. Dr. Ercan Solak, my major professor and

dissertation supervisor, who has done more than just supervising my thesis. Having

the opportunity to work with him over the years has been intellectually rewarding

and fulfilling.

I also thank Taner Eskil for his insightful suggestions and expertise.

My special thanks go to my closest friends Kristin Benli, Gülşen Aydoğan, Rina

Barbut, Fethiye Erdem. Another special thanks for Cahit Çokal, Ahmet Soylu, Ömer

Karataş, Turhan Daybelge, Ferhat Ural, Yalçın Şanlı, Ece Cansun, Burak Çizmeci,

Burcu Adıgüzelli, Rüştü Derici, and Murat Anlı. They always share their knowledge

with me and many times we had brainstorming. I’m also thankful to Neslihan Arslan

and register office personnel whose friendship I deeply value. I never felt the

absence of their support and presence.

The last words of thanks go to my family. I thank my parents Fethiye Karatoy and

my little brother Bahadır Karatoy.

I also thank the Istanbul Metropolitan Municipality for providing us the raw data.

v

To Kerime ŞENGÜL

vi

Table of Contents

Abstract .. ii

Özet ..iii

Acknowledgements ... iv

Table of Contents ... vi

List of Figures ...viii

List of Algorithms ... iix

List of Tables ... x

List of Abbrevations ... xi

1. Introduction ... 1

1.1 Research Motivation ... 3

1.2 Research Objective .. 4

1.3 Thesis Outline ... 5

2. Literature Review .. 6

2.1 Broadcast Protocol .. 6

2.2 Ad hoc networks ... 7

2.3 Geographical Positions .. 7

3. Tools ... 10

3.1 MATLAB .. 10

3.2 Google Earth ... 10

3.2.1 KML ... 11

3.3 NS-2 .. 13

3.3.1 TCL .. 13

3.3.1.1 Simple Simulation Example (wired) ... 14

3.3.1.2 Simple Simulation Example (wireless) 15

3.3.1.3 Trace File .. 18

3.3.1.4 Add New Protocol ... 19

4. 'ew Protocol IETT on 'S-2 ... 221

vii

4.1 Raw Data Transformation ... 221

4.1.1 Data Selection .. 22

4.1.2 Data Structures ... 27

4.1.2.1 Distance Computation ... 28

4.1.2.2 Time Computation .. 29

4.1.3 Bus Items .. 31

4.2 Data Simulation ... 32

4.2.1 Coordinate Verification .. 32

4.2.2 Measurement Verification .. 33

4.2.3 Movement – Time Verification .. 36

4.2.4 Broadcasting Verification .. 38

4.2.5 IETT Protocol ... 38

4.2.6 Definition of the Materials ... 38

4.2.7 IETT Data Exchange and Collection Protocol 40

4.2.8 Testing .. 44

5. Experimental Results .. 46

6. Conclusion .. 58

References .. 59

Appendix A Appendices ... 61

Curriculum Vitae .. 62

viii

List of Figures

Figure 2.1 Example of an Ad Hoc Network .. 7

Figure 2.2 World Map ... 8

Figure 2.3 Turkey Map .. 8

Figure 2.4 Istanbul Map .. 9

Figure 3.1 Line and Icon on map... 11

Figure 3.2 Line on map ... 12

Figure 3.3 Icon on map .. 13

Figure 3.4 Nam for wired network .. 14

Figure 3.5 NAM for wireless network .. 16

Figure 3.6 Trace Format example ... 19

Figure 4.1 All stops are located on the Istanbul .. 32

Figure 4.2 Intersection Busses ... 33

Figure 4.3 500T_1, 500T_2 and 30M_1 ... 34

Figure 4.4 Distances between 500T_1_31 and 500T_1_32 35

Figure 4.5 Time and distance of bus_id 10 ... 35

Figure 4.6 Time and distance of bus_id 522B ... 36

Figure 4.7 Node movement (for 522B, 10, 30M, 1A) ... 37

Figure 5.1 Istanbul map ... 46

Figure 5.2 Dumped Data on selected peron Asian side... 48

Figure 5.3 Dumped Data on selected peron European side-wide transmission range

 ... 510

Figure 5.4 Data Density of the day of 30M ... 552

Figure 5.5 Dumped Data on selected peron Europe side-small transmission range . 52

Figure 5.6 Data Density of the day of 30M ... 543

Figure 5.7 Dumped data with long time scale ... 54

Figure 5.8 Dumped data with short time scale .. 56

Figure 5.9 Dumped data with different values .. 576

ix

List of Algorithms

Algorithm 3.1 Line drawn and Icon insertion on map .. 11

Algorithm 3.2 Line drawing on map ... 12

Algorithm 3.3 Icon insertion on map .. 12

Algorithm 3.4 Example of wired network ... 14

Algorithm 3.5 Example of wireless network ... 16

Algorithm 3.6 Cerate trace file .. 18

Algorithm 3.7 Simple Tcl file ... 20

Algorithm 4.1 Total distance ... 28

Algorithm 4.2 Time computation for RING ... 30

Algorithm 4.3 Time computation for Not RING .. 31

Algorithm 4.4 Create kml file for two buses ... 34

Algorithm 4.5 Generate Tcl file .. 37

Algorithm 4.6 Simple Tcl file ... 40

Algorithm 4.7 IETT packet and agent ... 43

Algorithm 4.8 cmu_trace.cc .. 45

Algorithm 4.9 cmu_trace.h .. 45

Algorithm 5.1 Read trace file .. 46

Algorithm 5.2 Draw Istanbul map ... 47

Algorithm 5.3 Create .avi file for selected peron .. 48

x

List of Tables

Table 4.1 Hatlar.txt ... 23

Table 4.2 Duraklar.txt ... 23

Table 4.3 Hattin_Duraklari.txt .. 24

Table 4.4 Hareket_Saatleri_Isgunu.txt .. 24

Table 4.5 Example of RING time schedule .. 29

Table 4.6 Example of Not RING time schedule ... 30

Table 4.7 1A_1.txt ... 331

xi

List of Abbreviations

CBR Constant Bit Rate

DSR Dynamic Source Routing

GSM Global System for Mobile Communication

IEEE Institute of Electrical and Electronics Engineers

IETT Istanbul Elektrikli Toplu Taşıma

KML Keyhole Markup Language

MAC Media Access Control

NAM Network Animator

NS-2 Network Simulator version 2

OTcl Object Tool Command Language

TCL Tool Command Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

VANET Vehicle Ad Hoc Network

1

Chapter 1

Introduction

The need for wireless communication has been growing, which has also expanded its

use. Primarily, wireless communication has been widely used by the military.

Besides, as a result of the growing dependence on technological improvement, it has

been used by different areas in different applications since 1980.

Users can reach the information independently through the wireless communication.

Wireless networks has two main aspects; namely structured and ad hoc networks.

Bus stations provide an example of the structured networks, in which communication

is never cut when the communication device moves from one station range to go to

another. On the other hand, in ad hoc networks mobile nodes can act as a router and

communicate with the other nodes sending the packets through the others.

With the increasing use of wireless networks, different topologies and multi-hop

systems started to be applied. However, its usage has created some problems. For

this reason, MANET (Mobile ad hoc networks) was founded by IETF (Internet

Engineering Task Force) to research the ad hoc networks and provide solutions for

related problems. Since then, various routing protocols have been built up such as

Destination Sequenced Distance Vector (DSDV), Wireless Routing Protocol (WRP),

Temporally Ordered Routing Algorithm (TORA), Zone Routing Protocol (ZRP),

Dynamic Source Routing (DSR), and Ad doc On Demand Distance Vector (AODV),

which are among the most widely used protocols [1, 2, 3].

Beside all these routing protocols, broadcast service is important as much as the

other protocols for all kinds of networks. When a message needs to be sent to all

nodes across the network, or if the destination location is unknown at the time of

2

sending the message, a broadcast is necessary. In our project, we used broadcasting

when the nodes send packets to the network. This data sending method is proper for

our new protocol.

A VANET (Vehicular Ad Hoc Network) is a wireless network that is formed

between vehicles as needed. VANEI nth last decade, research on VANET has

improved rapidly. Thus, the attention to communication in car networking has grown

with the improvements in wireless communication. In this networking system,

vehicles must be equipped with the necessary devices, which include wireless

transceivers and programmed software, to act as a mobile node as part of VANET.

The range of communication between vehicles may be limited to a few hundred

meters, which could be a drawback for data exchanging. In such cases, to provide the

end-to-end communication across a larger distance of communication, the roadside

units can be used and operated as fixed nodes. This method extends the wireless

communication because when the mobile nodes cannot move, the roadside units can

be used in emergent situations or at other times, and this method can also be

analyzed. These permanent units can be useful for various services of vehicular

networks such as a drop point for the data about the traffic situation. For example,

the roadside units serve as a gateway to the internet, or warn the driver as a road

guide in a Mercedes. In this project, we used the fixed nodes peron to drop the

collected data.

A VANET is similar to a MANET (Mobile Ad Hoc Network), but it has its own

properties that differentiate it from a MANET. Vehicles are mobile just as mobile

nodes in a MANET, yet they move at higher speed level than nodes in a MANET,

and their communication can be interrupted by the surrounding buildings. In this

project, we ignored the buildings and the weather conditions. In general, speeds of

the vehicles moving in the same direction are similar, and their data communication

rate is higher than the opposite direction. In our research, buses move at similar

speed levels depending on the time of the day and the traffic situation on the roads

because public transportation vehicles have to obey traffic rules. Their trip duration

is scheduled, so their speed is calculated considering the road time.

3

VANET has a wide range of applications serving the interests of consumers,

businesses, governments, law enforcement agencies, and emergency services. Beside

this, the aim of our project is to collect city data and use it in obtaining profiles for

the whole city [4].

The introduction part describes the motivation and the objectives of this research and

then explains the outline of the thesis.

1.1 Research Motivation

The traffic density differs from urban to rural areas. In urban daytime, vehicles are

densely packed, so packet sending is not as big a problem as it is in a rural highway

or even in cities at night when fewer vehicles are moving and the response of the

broadcasting may not be possible. In urban scenarios, sparse networks can be

prevalent due to the sensitivity of the information exchange.

VANET provides communications between vehicles. In VANET, nodes interact

without using fixed infrastructure or centralized system. It can be used by taxis, as

well as public transportation, and the information can be used in many places to

create statistical reports by gathering useful data. Examples include the arrival time

to the bus stops, the density of the city traffic in specific hours, emerging situations,

driving assistance, air pollution, and wasted time. The city bus system has been

chosen for the project because buses use all the main roads of the city, are used by

most of the citizens, have stable schedules, and are available for a wide time range.

Istanbul is chosen as the experimental city since it is one of the three metropolitans

that exist in Turkey. In Istanbul, there are approximately 2000 public buses, which

start to give service at 05:30 am and work until 02:00am. If these vehicles

communicate with each other while they are traveling in their path, the collected city

information can be broadcast over the bus VANET.

“One existing application is observed in the VMesh Demand-Response project where

utility pricing information is exchanged from roaming utility vehicles for utility

usage information from consumers’ homes.” [5].

4

This is another reason for the choice of busses and the innovation of the new ideas.

For example, this project can be used for the commercial part of the market. The

buses can communicate with markets, shopping centers and other places, which are

areas of commerce. Furthermore, when the traffic density is getting larger,

commercial possibilities are also increasing.

Installing immobile infrastructure on roads incurs great expense, so vehicle-to-

vehicle communication will be necessary to extend the range of network vehicles,

and more effective for the commerce and collection of the data. Also, when a vehicle

dumps its data, the robustness due to the storage will be obstructed [5].

1.2 Research Objective

The communication between vehicles, roadside units and fixed structures has been

improving with new technologies. Recruitments are applied to the 802.11 by the

IEEE 802.11 group in order to provide support for ITS (Intelligent Transportation

System) application.

In existing infrastructure and ad hoc modes of the IEEE 802.11, wireless standards

are being developed, which provides wireless devices with the ability to perform the

short duration exchanges necessary to communicate between a high-velocity vehicle

and fixed units. In this project, perons are the immobile units.

The high velocities at which vehicle move sometimes reduce the amount of time

available for data exchanges. In our protocol, the delay time for the response of the

message received is defined by a very little value, but it will be increased in the real

time because of that reason. Apart from velocity, the direction of the vehicle in

motion affects the data exchanges. Moreover, the road characteristics also constitute

an influential factor. In this project, curve in a road and the waiting time on the

traffic lamps and bus stations are ignored, which could be considered as the slight

deficiency in the project.

Traffic density depends on the trip time of the buses moving in this project. Still, the

density of the road in real time should be computed in the future [4].

5

Indeed, the objective of this thesis is to set up simulation environment for a bus

VANET and test it with real data. To this purpose, a new protocol which analyses the

information particularly produced for Istanbul has been created. To collect the

information in the cheapest way, 802.11 standards are used, for it does not use the

base stops and is less expensive compared to GSM [5].

1.3 Thesis Outline

Related research and previous experiments are presented in Chapter 2, in which the

different localization methods in VANET are explained. Chapter 3 describes the

tools which are used for data transformation, collection, and simulations. Chapter 4

contains the main development. The experimental work and the results are presented

in Chapter 5. Finally, conclusion of the thesis is elaborated in Chapter 6.

6

Chapter 2

Literature Review

In this chapter, the background information that will be useful to understand the rest

of this thesis will be given. In the following sections, the basics of ad hoc networks

will be explained, and then the Geographical Position will be introduced.

2.1 Broadcast Protocol

When a message needs to be sent to all nodes across the network or if the destination

location is unknown at the time of sending the message, a broadcast is necessary. A

broadcast protocol is also used for routing. The basic way to implement a broadcast

service, namely flooding, is to have each node broadcast the message which is sent to

all of its neighbors except the node which is the message sender. For the wireless

media, however, flooding is an inefficient method to send data because the

bandwidth usage is increased. When the number of nodes increases on the network

for one message, the usage of bandwidth also increases exponentially.

On the other hand, the traditional broadcast protocol for wireless ad hoc network has

several advantages. First, the protocol is simple with its convenient implementation.

Second, a node sending a message by broadcasting does not need to send an extra

message when no broadcast message is generated. Third, each broadcast message

will take all possible ways to reach other nodes in traditional broadcast protocols. It

doesn’t matter whether one of the nodes have failed; other nodes will still be able to

send or receive the message.

Nevertheless, broadcast protocol has one crucial disadvantage depending on the

conditions and needs. If the transmission radius is defined by a large value, or if the

7

number of the nodes is high, the transmission area of any node will cover many

nodes. As it has already been explained, this is a disadvantage depending on the

conditions. In our project, however, this particular disadvantage will not create an

undesirable condition as data will not be collected from current node’s data. Instead,

different transmission ranges are applied, and the analyzed their effect on the data

collection as well as communication density of the nodes will be analyzed.

2.2 Ad hoc 'etworks

Ad hoc networks do not use any infrastructure and preassigned routers to provide a

communication between nodes. Instead, every node acts as a router. Nodes recognize

other nodes which are in the same range. In Figure 2.1, B forwards the D or C‘s data

to the node A because C and D can not reach node A directly.

Figure 2.1 Example of an Ad Hoc Network

This kind of network doesn’t need an expensive infrastructure, it can be setup as an

independent network or it can be connected to the wired network using a hybrid

structure with fixed nodes. This thesis is about VANET. Ad hoc networks made up

of mobile vehicle nodes.

2.3 Geographical Positions

Latitudes and longitudes create a grid system on the Earth’s surface and every point

on Earth can be expressed with a unique set of latitude and longitude coordinates.

 Latitude also known as parallels starts from earth's equator goes to south and north

geographical poles respectively measure 90° north and 90° south from the equator

which is 0° latitude. Each half has a 90 latitudes means that 180 latitudes divide the

earth and one degree latitude equals to 111km.Latitude lines start at 0° on equator

8

and +90 on North Pole, -90 on South Pole. Longitude starts from Greenwich with 0°

and span the world with 180° to the west and 180° to the east [7]. The distance

between lines of longitude varies as we move from the equator to the north or south

poles. Latitude coordinates are specified as 'orth and South and longitude as East

and West.

Figure 2.2 World Map

Latitude of Turkey is 36º north of the Equator and longitude of Turkey 26º East of

Greenwich. Turkey’s geographical coordinates are latitude 36-42° N, longitude 26-

45° E.

Figure 2.3 Turkey Map

Istanbul’ geographical coordinates are latitude 40-41° N, longitude 28-29° E.

9

Figure 2.4 Istanbul Map

10

Chapter 3

Tools

In Chapter 3, Tools which are used in the project will be explained. The used tools

are MATLAB, Google Earth, and ns-2. MATLAB is used for the functions which are

used for analysis and simulation scripts. Google Earth is used for time and distance

verifications and ns-2 used for verifications, movement and broadcasting

simulations.

3.1 MATLAB

In MATLAB, users perform computational tasks faster than traditional programming

languages [8].

MATLAB is the main tool in this project. It is used for raw data transformation, data

collection, data analysis, visualizing data, and creates different types of files.

Different types of MATLAB functionalities are used for the implementations.

 In this project, the raw data type is string and they are converted to floating point

data types and they are used in calculations. For all jobs the efficiently coded

functions are used. The functions and operations will be shown below.

Structure data type is used to collect data. MATLAB String library is used to

compare strings and convert strings to integers. Sorting functions are used for

enumerating nodes across time.

3.2 Google Earth

Google Earth is a computer program which is developed by Keyhole and bought by

Google. It basically shows satellite pictures and has different resolutions. When x

11

and y coordinates are given to the program the location is shown by Google Earth.

Satellite imaginary, maps, terrain, 3D buildings are shown in map [9].

3.2.1 KML

Keyhole Markup Language (KML) is a file format used to display geographic data in

an Earth browser such as Google Earth which is used for this project. KML uses a

tag-based structure with nested elements, attributes and is based on the XML

standard. In this project some KML tags are used to show the stops and paths, such

as place marks, lines, polygons. KML is a case sensitive language.

Algorithms 3.1, 3.2 and 3.3 show KML scripts [10, 11].

 Algorithm 3.1 Line drawn and Icon insertion on map

<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://earth.google.com/kml/2.1">

<Document>

<name>1A.kml</name>

</Placemark>

//Line properties

< Placemark >

< Placemark >

//Icon coordinates

</Placemark >

</Document>

</kml>

Figure 3.1 Line and Icon on map

12

Algorithm 3.2 Line drawing on map

<Placemark>

<name>1A_1</name>

 <styleUrl>#blueLine</styleUrl>

 <LineString><altitudeMode>relative</altitudeMode>

 <coordinates>

29.052830,41.023990,0.0

29.042600,41.023500,0.0

29.036300,41.024500,0.0

29.033500,41.026800,0.0

//x,y,z coordinates

 </coordinates>

 </LineString>

</Placemark>

Figure 3.2 Line on map

Algorithm 3.3 Icon insertion on map

<Placemark>

<name>1A_1_6</name>

<Point>

 <coordinates>29.052830,41.023990,0.0</coordinates>

</Point>

</Placemark>

13

Figure 3.3 Icon on map

3.3 'S-2

Network Simulator (version 2) is an object-oriented network simulation tool written

in C++ and simulation interface in OTcl (object tool command language). NS is

useful for simulating many different network topologies [12].

3.3.1 TCL

Tool Command Language is dynamic programming language, suitable for

networking usage. Tcl is an open source [13].

Tcl has a very wide range of uses but some of them are used in this project, which

are to make wired and wireless connections, node movement, and broadcasting.

NAM (Network Animator) is a TCL/TK (Tool Command Language / TK GUI

Toolkit) based animation tool for viewing network simulations. When a simulation

has been run in ns-2 it outputs a trace file that can be opened in NAM and it’s then

possible to watch the nodes move and to see the simulation take place.

14

3.3.1.1 Simple Simulation Example (wired)

This section shows a simple NS simulation script and explains what each line does.

Example is an OTcl script that creates the simple network configuration and runs the

simulation scenario below. This example is for wired network and shown in

Algorithm 3.4.

Figure 3.4 Nam for wired network

This network consists of 5 nodes (n0, n1, n2, n3, n4) as shown in Figure 3.4. The

duplex links between n0 and n2, and n1 and n2 have 2 Mbps of bandwidth and 10 ms

of delay. The duplex link between n2 and n4 and n4 and n3 has 1.7 Mbps of

bandwidth and 20 ms of delay. An "UDP", user datagram protocol, agent is attached

to n1, and a connected to a “null” agent attached to n3. A "null" agent just frees the

packets received. As default, the maximum size of a packet that an "UDP" agent can

generate is 1Kbyte and rate 100 bps. The "CBR", constant bit rate, is set to start at

0.1 sec and stop at 4.5 sec [17].

Algorithm 3.4 Example of wired network

#Create a simulator object
set ns [new Simulator]

#Open the �AM trace file
set nf [open out.nam w]

$ns namtrace-all $nf

15

Algorithm 3.5 (cont’d)
#Define a 'finish' procedure
proc finish {} {

 #Close the DAM trace file

 #Execute DAM on the trace file

}

#Create five nodes
set n0 [$ns node]

set n1 [$ns node]

…

#Create links between the nodes
$ns duplex-link $n0 $n2 2Mb 10ms DropTail

$ns duplex-link $n1 $n2 2Mb 10ms DropTail

…

#Give node position (for �AM)
$ns duplex-link-op $n0 $n2 orient right-down

$ns duplex-link-op $n1 $n2 orient right-up

…

#Setup a UDP connection
set udp [new Agent/UDP]

$ns attach-agent $n1 $udp

set null [new Agent/Dull]

$ns attach-agent $n3 $null

$ns connect $udp $null

#Setup a CBR over UDP connection
set cbr [new Application/Traffic/CBR]

$cbr attach-agent $udp

$cbr set type_ CBR

$cbr set packet_size_ 1000

$cbr set interval_ 100

$cbr set rate_ 100

#Schedule events for the CBR
$ns at 0.1 "$cbr start"

$ns at 4.5 "$cbr stop"

#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish"

#Run the simulation
$ns run

3.3.1.2 Simple Simulation Example (wireless)

This section shows a simple NS simulation script and explains what each line does.

Example is an OTcl script that creates the simple network configuration and runs the

simulation scenario below. This example is for wireless network and shown in

Algorithm 3.5.

16

Figure 3.5 NAM for wireless network

This network consists of 3 nodes (n0, n1, n2) as shown in Figure 3.5. The wireless

connection is between three nodes. An "UDP" agent is attached to n0, “CBR” attach

to udp and a connected to a “null” agent attached to n1 and. A "TCP" agent is

attached to n1, and a connected to a “sink” agent attached to n2. A "null" agent just

frees the packets received. As default, the maximum size of a packet that an "UDP"

agent can generate is 1 Kbytes and tcp packet size is 552byte. The "CBR" is set to

start at 61 sec and “TCP” start at 93sec and continue to connection till simulation

end.

Algorithm 3.5 Example of wireless network
#Define options
set val(chan) Channel/WirelessChannel ;# channel type

set val(netif) Phy/WirelessPhy ;# netw interface type

set val(rp) AODV ;# routing protocol

set val(x) 500 ;# X dimension (meter)

set val(y) 500 ;# Y dimension (meter)

set val(time) 200.0 ;# Simulation time (sec)

Initialize Global Variables
set ns_ [new Simulator]

set tracefile [open out.tr w]

$ns_ use-newtrace

set namfile [open out.nam w]

Create God
create-god $val(nn)

Create the specified number of mobilenodes [$val(nn)] and "attach" them

17

Algorithm 3.5 (cont’d)

to the channel.
set chan [new $val(chan)]

configure node
$ns_ node-config -adhocRouting $val(rp) \

 -agentTrace OD \

 -routerTrace OD \

 -macTrace OD \

 -channel $chan

for {set i 0} {$i < $val(nn) } {incr i} {

 set n($i) [$ns_ node]

 $n($i) random-motion 0 ;# disable random motion

 $ns_ initial_n pos $n($i) 20

}

Provide initial (X,Y, for now Z=0) co-ordinates for mobilenodes

�ode movement
$ns_ at 3.0 "$n(0) setdest 235.3 285.8 5.0"

Setup traffic flow between nodes
set udp_(0) [new Agent/UDP]

$ns_ attach-agent $n(0) $udp_(0)

$ns_ at 61 "$cbr_(0) start"

Create an FTP application from 1 to 2 at time 93 (seconds)

set tcp [new Agent/TCP]

$tcp set class_ 2

$ns_ attach-agent $n(1) $tcp

set sink [new Agent/TCPSink]

$ns_ attach-agent $n(2) $sink

$ns_ connect $tcp $sink

$tcp set fid_ 1

$tcp set packetSize_ 552

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns_ at 93 "$ftp start"

Mobile'ode parameters:

A wireless simulation is made up of some number of Mobile'odes. Each such

mobile node needs some options to be configured like routing protocol, MAC layer

protocol, antenna type, channel type etc. A list of all parameters is given below for

reference.

• Channel type (Channel/WirelessChannel)
• Propagation model (Propagation/TwoRayGround)
• Interface type (Phy/WirelessPhy)
• MAC layer protocol (Mac/802_11)
• Routing protocol (DSR)
• Interface Queue type (CMUPriQueue - for DSR)
• Interface Queue Length (50)
• Antenna type (Antenna/OmniAntenna)

18

• LL type (LL)

Energy parameters [14] :

• energyModel $val(engmodel)
• rxPower $val(rxPower) # transmitting power
• txPower $val(txPower) # recving power
• sensePower $val(sensePower) # sensing power
• idlePower $val(idlePower) # idle power
• initialEnergy $val(initeng) # Initial energy

Topology parameters:

These are the configuration parameters for the topology structure, like the

dimensions of the grid, number of nodes present etc. A list of them is given below

for reference.

• x-dimension of the topography
• y-dimension of the topography
• Number of nodes.

Other parameters are,

• Total simulation time, and
• Trace file name

3.3.1.3 Trace File

This section shows a trace analysis example. In Algorithm 3.6, trace file opening and

writing traces on it are shown.

Algorithm 3.6 Cerate trace file
set tracefile [open out.tr w]

$ns_ use-newtrace

$ns_ trace-all $tracefile

Running the above script generates a NAM trace file that is going to be used as an

input to NAM and a trace file called "out.tr" that will be used for simulation analysis.

Figure 3.6 shows the trace format and example trace data from "out.tr".

19

Figure 3.6 Trace Format example

Each trace line start with event descriptor which are (+,-, r, d), and followed by the

simulation time (in second) to the event, and show the node numbers which are from

and to nodes, which identify the link on which the event occurred. Next information

is about the packet type and its size (in bytes). The next field after “---” is flow id of

ipV6 that a user can set for each flow at the input OTcl scripts, flow id field is also

used when specifying stream color for the NAM display. The next two fields are

source and the destination address in forms of “node.port”. The next field shows the

network layer protocol's packet sequence number (UDP doesn't use SEQ number).

The last field shows the unique id of the packet [15].

3.3.1.4 Add 'ew Protocol

To add new protocol in ns-2 there are two points, we should obey. The first one is a

packet and the second one is an agent. (A “packet” is a group of data. An “agent” is

component of software and hardware and it can communicate the other agents with

using those properties). The packet header must be declared, what packet header will

include, such as source ip address, packet number, and destination ip address. After

deciding of the packet header structure it must be introduced to the system. The final

step is for the agent. What will agent do when receive the packet or send the packet.

Some necessary changes will be done in ns-2 files.

20

The new packet name must be written in “packet.h” to create static class for the

OTcl linkage and “tcl/lib/ns-packet.tcl” to enable new header in OTcl.

The new agent link with a OTcl class.

This example is going on the ping packet type and agent. The necessary changes are

below.

• Copy “ping.cc” and “ping.h” as “new_.h”, “new_.cc” to the ns-2 directory.

 new_.cc includes the recv and send methods for the new agent.

• Register the new application header by modifying “packet.h” and “ns-

packet.tcl”.

• Set default values for the newly introduced configurable parameters in "ns-

default.tcl"

• Register the new application by modifying Makefile

 ping.o \ new_.o

 $(LIB_DIR)int.Vec.o $(LIB_DIR)int.RVec.o \

• Run “make” on the console and introduce the changes to the ns-2.

• To test the new protocol, write a simple tcl file which is shown in Algorithm

3.7.

• To control this tcl file write “ns new_.tcl” on the console [16].

Algorithm 3.7 Simple TCL file

set ns [new Simulator]

set nf [open out.nam w]

$ns namtrace-all $nf

#Create three nodes

#Connect the nodes with one link

#Create two new_ agents and attach them to those nodes

#Connect the three agents

#Schedule events

#Run the simulation

21

Chapter 4

'ew Protocol IETT on 'S-2

In this chapter some tools that were referred in Chapter 3, process flow and project’s

algorithm will be explained in details. They will be detailed under the sections of

Raw Data Transformation and Data Simulation. We started with four text files.

Those four files had much information about the buses and bus stops. We separated

those data in files and tested their accuracy by using test simulations. Then the

protocol is used in data exchanging among buses.

4.1 Raw Data Transformation

The raw data is contained in four text files. Those four files had the information of

buses and bus stops of Istanbul.

• Hatlar(bus_route) : includes the bus route’ information such as bus identity

number,operational zone, trip_time, and path.

• Duraklar(bus_stops) : includes the bus stops’ information such as stops’

identity number, name, coordinates, direction, construction history and other

information such as ticket counters.

• Hattin_Duraklari(stops_of_the_line) : includes the stops of the bus’ route

such as bus’ identity number, direction type (which is departure or arrival), bus

stops’ id.

• Hareket_Saatleri_Isgunu(arrival_departure_time) : includes the buses’

movement information, how many buses will be used for different locations,

and daily schedule for them and each bus movement are organized by given

 service number and arrival departure time.

22

Using MATLAB we combined using related items and coded by MATLAB. The

Turkish frames of files come from their originals supplied by IETT.

4.1.1 Data Selection

In this project, the first step is to select the data from the four text files. Of course the

related data must be selected. Data are stored in the structures because some data

types must be different, such as integer, string and float. First of all, each text file re-

separated column by column and related columns were selected which would be used

in the next step of the project. Each text file will be shown below after the

explanation of each item.

The four text files are shown below and their given data and selected data will be

shown with examples. These files include data which was more than what we

needed. For this reason, specific columns were selected.

T
ab

le
 4

.1
 H

at
la

r.
tx

t

T
ab

le
 4

.2
 D

ur
ak

la
r.

tx
t

du
ra

k_
ko

du

ad

yo
n

is
le

tm
e_

bo
l

D
ur

ak
_t

ip
i

m
od

ul
_a

de
di

ye

ni
_d

ur
ak

_k
od

u
ya

pi
li

s_
ta

ri
hi

il

ce
si

x_

ko
or

di
na

t
y_

k
oo

rd
in

at

A
00

01
B

Ü

S
K

Ü
D

A
R

 C
A

M
Đ

Ö
N

Ü

1
pe

ro
n

(H
A

T

15
B

-1
5C

Ü

sk
üd

ar

M
O

D
E

R
N

10

14

00
10

02

.0
2.

20
01

 0
0:

00

Ü
sk

üd
ar

2.

90
1.

63
0.

00
0

4.
10

2.
79

0.
00

0

A
00

01
C

Ü

S
K

Ü
D

A
R

 C
A

M
Đ

Ö
N

Ü

2
pe

ro
n

(H
A

T
15

-1
5A

)
Ü

sk
üd

ar

M
O

D
E

R
N

8

14
00

20

13
.0

2.
20

01
 0

0:
00

Ü

sk
üd

ar

2.
90

1.
60

0.
00

0
4.

10
2.

76
0.

00
0

A
00

01
D

Ü

S
K

Ü
D

A
R

 C
A

M
Đ

Ö
N

Ü

Ç
E

Ş
M

E

Y
A

N
I(

15
Ş

)
Ü

sk
üd

ar

W
A

L
L

3

14
00

30

16
.0

7.
19

98
 0

0:
00

Ü

sk
üd

ar

2.
90

1.
56

0.
00

0
4.

10
2.

66
0.

00
0

A
00

02
A

T

E
K

E
L

 D
E

P
O

S
U

B

E
Y

K
O

Z

Y
Ö

N
Ü

Ü

sk
üd

ar

A
Ç

IK
 Ü

Ç
G

E
N

0

14
00

42

01
.0

6.
19

98
 0

0:
00

Ü

sk
üd

ar

2.
90

2.
06

0.
00

0
4.

10
3.

13
0.

00
0

A
00

02
B

T

E
K

E
L

 D
E

P
O

S
U

Ü

S
K

Ü
D

A
R

Ü

sk
üd

ar

M
O

D
E

R
N

1

14
00

41

30
.1

1.
20

03
 0

0:
00

Ü

sk
üd

ar

2.
90

2.
06

0.
00

0
4.

10
3.

13
0.

00
0

A
00

03
A

P

A
Ş

A
L

ĐM
A

N
I

B
E

Y
K

O
Z

Ü

sk
üd

ar

M
O

D
E

R
N

1

14
00

52

27
.1

0.
20

01
 0

0:
00

Ü

sk
üd

ar

2.
90

2.
55

0.
00

0
4.

10
3.

39
0.

00
0

A
00

03
B

P

A
Ş

A
L

ĐM
A

N
I

Ü
S

K
Ü

D
A

R

Ü
sk

üd
ar

W

A
L

L

1
14

00
51

11

.0
9.

19
98

 0
0:

00

Ü
sk

üd
ar

2.

90
2.

53
0.

00
0

4.
10

3.
38

0.
00

0

A
00

04
A

K

U
Z

G
U

N
C

U
K

B

E
Y

K
O

Z

Y
Ö

N
Ü

Ü

sk
üd

ar

A
Ç

IK

0
14

00
62

Ü
sk

üd
ar

2.

90
2.

91
0.

00
0

4.
10

3.
64

0.
00

0

A
00

04
B

K

U
Z

G
U

N
C

U
K

Ü

S
K

Ü
D

A
R

Y

Ö
N

Ü

Ü
sk

üd
ar

W

A
L

L

1
14

00
61

08

.0
5.

19
98

 0
0:

00

Ü
sk

üd
ar

2.

90
2.

95
0.

00
0

4.
10

3.
65

0.
00

0

ha
t_

ko
du

is
le

tm
e_

bo
l

se
fe

r_
m

ud
de

ti
an

a_
gu

ze
rg

ah

h
at

_a
d

i

10

A
na

do
lu

13

0
K

A
D

IK
Ö

Y
-A

L
T

IY
O

L
-Z

.B
E

Y
-S

.C
E

D
ĐD

-A
Y

Ş
E

 K
A

D
IN

-K
Ü

Ç
Ü

K
Y

A
L

I-
ĐD

E
A

L
T

E
P

E
-M

A
L

T
E

P
E

- T
U

G
A

Y
 Y

O
L

U
C

E
V

ĐZ
L

Đ
K

A
D

IK
Ö

Y
-M

A
L

T
E

P
E

-C
E

V
ĐZ

L
Đ

10
B

A

na
do

lu

11
0

K
A

D
IK

Ö
Y

-A
L

T
IY

O
L

-Z
ĐV

E
R

B
E

Y
-K

O
Z

Y
A

T
A

Ğ
I-

B
Ö

C
E

K
L

Đ
C

A
M

ĐĐ
-B

A
Y

A
R

 C
A

D
-A

L
T

B
O

S
T

A
N

C
I

K
A

D
IK

Ö
Y

-A
L

T
B

O
S

T
A

N
C

I

14
1

Đk
it

el
li

40

C

ĐH
A

N
G

ĐR
 M

A
H

.-
 A

M
B

A
R

L
I

-
 A

V
C

IL
A

R
 M

E
R

K
E

Z
Đ

-
ĐS

T
.Ü

N
V

.A
V

C
IL

A
R

 K
A

M
P

Ü
S

Ü

C
ĐH

A
N

G
ĐR

 M
A

H
. -

 A
V

C
IL

A
R

 M
E

T
R

O
B

Ü
S

14
2F

Đk

it
el

li

80

Y
E

Ş
ĐL

K
E

N
T

-T
O

K
A

T
 M

H
.-

F
ĐR

Ü
Z

K
Ö

Y
-Ü

N
ĐV

E
R

S
ĐT

E
 M

H
-F

A
B

R
ĐK

A
L

A
R

 Y
O

L
U

-
A

V
C

IL
A

R
 M

E
T

R
O

B
Ü

S

Y
E

Ş
ĐL

K
E

N
T

-
A

V
C

IL
A

R
 M

E
T

R
O

B
Ü

S

15
0

B
ey

oğ
lu

90

S

A
R

IY
E

R
-M

A
D

E
N

 M
A

H
A

L
L

E
S

Đ-
 K

O
Ç

 Ü
N

ĐV
E

R
S

ĐT
E

S
Đ-

G
A

R
ĐP

Ç
E

 K
Ö

Y
Ü

-R
U

M
E

L
Đ

F
E

N
E

R
Đ

S
A

R
IY

E
R

 -
 R

U
M

E
L

Đ
F

E
N

E
R

Đ

15
1

B
ey

oğ
lu

90

S

A
R

IY
E

R
-M

A
D

E
N

 M
A

H
.-

U
Y

U
M

 S
ĐT

E
S

Đ-
Z

E
K

E
R

ĐY
A

 K
Ö

Y
-U

S
K

U
M

R
U

K
Ö

Y
-K

ĐL
Y

O
S

S

A
R

IY
E

R
 -

 K
ĐL

Y
O

S

55

T
op

ka
pı

95

G

A
Z

ĐO
S

M
A

N
P

A
Ş

A
-Ü

Ç
 Ş

E
H

ĐT
L

E
R

 -
 E

Y
Ü

P
 -

 H
A

L
IC

IO
Ğ

L
U

 -
 O

K
M

E
Y

D
A

N
I

-
Ş

ĐŞ
L

Đ
G

A
Z

ĐO
S

M
A

N
P

A
Ş

A
 -

 Ş
ĐŞ

L
Đ

55
E

T

T
op

ka
pı

70

E

Y
Ü

P
Ü

Ç
Ş

E
H

ĐT
L

E
R

-A
Y

V
A

N
S

A
R

A
Y

-H
A

L
IC

IO
Ğ

L
U

-A
N

A
D

O
L

U
 K

A
H

V
E

S
Đ-

D
O

L
A

P
D

E
R

E
-T

A
K

S
ĐM

-
A

L
T

IN
T

E
P

E

E
Y

Ü
P

 Ü
Ç

Ş
E

H
ĐT

L
E

R
-T

A
K

S
ĐM

55
M

T

op
ka

pı

70

E
Y

Ü
P

 Ü
Ç

Ş
E

H
ĐT

L
E

R
-A

Y
V

A
N

S
A

R
A

Y
-

H
A

L
IC

IO
Ğ

L
U

-
Ç

E
V

R
E

Y
O

L
U

-
Ç

A
Ğ

L
Ğ

Y
A

N
-

M
E

C
ĐD

ĐY
E

K
Ö

Y

E
Y

Ü
P

 Ü
Ç

Ş
E

H
ĐT

L
E

R
-M

E
C

ĐD
ĐY

E
K

Ö
Y

T
ab

le
 4

.3
 H

at
ti

n_
D

ur
ak

la
ri

.tx
t

ha
t_

ko
du

Y

on

si
ra

_n
o

du
ra

k_
ko

du

10

D

1
A

22
24

A

10

D

2
A

20
03

A

10

D

3
A

24
08

A

10

G

2
A

05
87

A

10

G

3
A

05
89

A

10

G

4
A

05
91

B

1A

G

1
A

03
30

A

1A

G

2
A

02
87

A

1A

G

3
A

02
85

B

T
ab

le
 4

.4
 H

ar
ek

et
_S

aa
tl

er
i_

Is
gu

nu
.tx

t

ha
t_

ko
du

se

rv
is

_n
o

si
ra

_n
o

gu
n_

ti
pi

sa

at
_g

id
is

sa

at
_d

on
us

10

38

1
1

I
01

.0
1.

20
00

 0
6:

25

01
.0

1.
20

00
 0

8:
00

10

38

1
2

I
01

.0
1.

20
00

 0
9:

10

01
.0

1.
20

00
 1

6:
25

10

38

1
3

I
01

.0
1.

20
00

 1
7:

30

01
.0

1.
20

00
 1

8:
40

10

38

3
1

I
01

.0
1.

20
00

 0
7:

05

01
.0

1.
20

00
 0

8:
40

10

38

3
2

I
01

.0
1.

20
00

 0
9:

50

01
.0

1.
20

00
 1

7:
05

10

38

3
3

I
01

.0
1.

20
00

 1
8:

10

01
.0

1.
20

00
 1

9:
15

10

E

44
1

3
I

01
.0

1.
20

00
 0

9:
00

01

.0
1.

20
00

 0
9:

50

10
E

44

1
4

I
01

.0
1.

20
00

 1
0:

40

01
.0

1.
20

00
 1

1:
35

10

E

44
1

5
I

01
.0

1.
20

00
 1

2:
25

10
E

44

2
1

I

01
.0

1.
20

00
 1

3:
40

25

• Table 4.1 shows Hatlar.txt, bus_route text file.

Selected:

bus_id =10E

trip_time= 90

line_name = KADIKÖY-ESATPAŞA

• Table 4.2 shows Duraklar.txt, bus_stops text file.

Selected:

stop_id = A0001B

stop_name= TEKEL DEPOSU

x_coordinate=29.01630000

y_coordinate=41.02790000

• Table 4.3 shows Hattin_Duraklari.txt, stops_of_the_line text file.

Selected:

bus_id=10E

direction_type=D

stop_id= A0627B

• Table 4.4 shows Hareket_Saatleri_Isgunu.txt, arrival_departure_time text

file.

Selected:

bus_id=10E

service_number=441

day_type=I

departure_time=01.01.2000 10:40:00

arrival_time=01.01.2000 11:35:00

Explanation of the Selected Data

• bus_id (hat_kodu) = It is given to the whole line. Each line can have several

buses operating on the line. The number of buses for each line (bus_id)

approximately varies with the number of people using the line.

 Example: 10E

26

• trip_time (sefer_muddeti) = It is the round trip time.

• line_name (hat_adi) = It shows the source and destination neighborhood name

which are departure and arrival stops’ locations.

 Example: KADIKÖY-ESATPAŞA

• stop_id (durak_kodu) = It is given to bus stops. Their id must be unique and

each bus stops in certain stops and they are determined by the municipality.

 Example: A0001B (TEKEL DEPOSU)

• stop_name (durak_adi) = Each stop has a name but names are not unique.

 Example: TEKEL DEPOSU (A0001B)

• x_coordinate (x_koordinat) = Stop’s x coordinate (longitude) on the earth.

 Example: 29.01630000

• y_coordinate (x_koordinat) = Stop’s y coordinate (latitude) on the earth.

 Example: 41.02790000

• direction_type (yon) = It is the direction of the bus’s route. G symbolizes

departure from the main stop and D arrival to the main stop.

• service_number (servis_no) = Each bus has a service number.

 Example: 441

• day_type (gun_tipi) = It is type of day, week days are symbolized by I and

weekend days are symbolized by C and P. C for Saturday and P for Sunday.

 Example: I

• departure_time (saat_gidis) = Departure time of bus from the peron. Time is

represented as hh:mm:ss.

 Example: 10:40:00

• arrival_time (saat_donus) = Departure time of bus from the peron. Time is

represented as hh:mm:ss.

 Example: 11:35:00

 When we analyzed data, we considered two main points.

1. There are two types of paths. The first one is RING, which means the bus

returns to the starting stop. Bus’s starting and ending stops are the same. In the

second type, the bus departs from one stop but arrives at a different stop.

2. There are two ways of assigning service numbers to the bus line. One of them

is the situation of having two consecutive numbers in which first of them is an

27

odd number. The other situation is having two numbers in which first of them

is an odd number and the other number is equal to the number plus 2.

Example: 331-332 are assigned to one bus

 331-333 are given to different buses

4.1.2 Data Structures

We store selected items in the structures which are strHT, strDR, strHD, strHS.

• strHT is created from Hatlar.txt and we used it to define which bus_id spends

time on the line. Structure of strHT is;

structure strHT {
 string hat_kodu;

 integer sefer_muddeti; //minute
 }

• strDR is created from Duraklar.txt and we used it to store stops’ information.

Structure of strDR is;

structure strDR {
 string durak_kodu;

 string durak_ad;
 float x_koor;

 float y_koor;
 }

Stop’s name and coordinates can be same but their ids must be unique. If the stop

coordinates are same but ids are different then we can say that this stop is used for

arrival and departure directions.

• strHD structure is created from Hattin_Duraklari.txt and it is used to store

bus’s line information. Structure of strHD is;

structure strHD {
 string hat_kodu;
 string yon;
 string durak_kodu;
 integer sira_no;
}

28

This structure shows whether the bus is RING or not. If the bus has directions for

return and forward that means that the bus is not RING, otherwise if the bus has one

direction which is return it means that the bus is RING.

• strHS structure is created from Hareket_Saatleri_Isgunu.txt and it is used to

store arrival and departure time in each service. Each route can have more than

one bus.

structure strHS {
 integer servis_no;

integer sira_no;
string gun_tipi;
string durak_kodu;
integer saat_gidis; //second
integer saat_donus; //second

}

4.1.2.1 Distance Computation

The given coordinates depend on the longitude and latitude. For Turkey the

longitude’s distance is 85 km and latitude’s distance is 111km. Each coordinate

must be converted to the same unit of data; here 1 unit corresponds to 1 kilometer.

The Euclidian formula can be used now as

We calculated the distance between two consecutive stops by above equation. In this

structure there are “n” stops and “n-1” intervals.

We added the intervals and found the distance between starting stop and ending stop

of the each bus_id. Algorithm 4.1 is used to find the intervals and total distance of

the each bus_id.

Algorithm 4.1 Total distance

total_distance=0;

total_distance_a=0;

total_distance_d=0;

for i=2:size(strHD_Durak_Don)

if distance_a(i) = = 0 // bus has return trip to go to the main stop

distance_a(i)= ((y(i)-y(i-1))*111^2+(x(i)-x(i-1))85^2);

29

Algorithm 4.1 (cont’d)
total_distance_a=total_distance_a + distance_a(i);

end

end

 if (bus_id== Dot RIDG)

 for i=2:size(strHD_Durak_Git)

 distance_d(i)= ((y(i)-y(i-1))*111^2+(x(i)-x(i-1))85^2) ;

 total_distance_d=total_distance_d + distance_d(i);

end

end

total_distance=total_distance_a + total_distance_d;

4.1.2.2 Time Computation

There are two choices to calculate the round trip time. The first one is trip_time

(sefer_müddeti), and the second one is subtractions of sequential trip times. If

trip_time is less than the subtractions of sequential trip times, period time will be

used for the round trip time. When we have a RING, there is no D column for it in

struct strHD.

The first step is to check if the bus is RING or not. If the bus_id is RING just

sequential departure times will be subtracted. To explain it clearly some examples

are shown below.

RI'G ;

Table 4.5 Example of RING time schedule

 Departure Arrival

i-1 time(i-1)

i time(i)

If those two sequential times, shown in Table 4.5, are for the same bus_id and they

are in the same service_number, the first time will be subtracted from the second

one and it is compared with the period time of the bus_id which is less than the

other, as shown in Algorithm 4.2, it will be used for the stop round trip time.

Example:

We assumed;

TD = Total distance between starting and ending stops (it is found in “Distance

Computation”)

d (i) = Distance between two stops(centimeter) (it is found in “Distance

Computation”)

30

trip_time = 30 minutes (it is given by IETT)

time (i-1) = 21840 seconds (it is given as hh:mm:ss and we transformed it to second)

time (i) = 23520 seconds(it is given as hh:mm:ss and we transformed it to second)

Algorithm 4.2 Time computation for RING

time=time(i)-time(i-1);(second)

time=time;(minutes, which is transformed from second)

if(time<trip_time)

 interval_time(i)=(d(i)*time) / TD;

else

 interval_time(i)=(d(i)*trip_time) / TD;

end

We can calculate the passing time from each stop by adding time intervals to the

departure time from the each stop till end of the path.

The trip time calculation depends on the chosen time, total distance and the

interval distance between two sequential stops.

'ot RI'G ;

Table 4.6 Example of Not RING time schedule

 Departure Arrival

i-1 time1(i-1) time2(i-1)

i time(i) 0

This is for a bus_id which is not RING and the calculation will be more complex

than the RING. Second column is for the departure time from the peron, and third

column is for the arrival time from the last peron. Algorithm 4.3 shows the

calculation of each interval time.

Example:

We assumed;

TD = Total distance between starting and ending stops (it is found in “Distance

Computation”)

TD_a = Total distance for return trip(centimeter) (it is found in “Distance

Computation”)

TD_d (i) = Total distance for forward trip(centimeter) (it is found in “Distance

Computation”)

trip_time = for round trip time (minutes) (it is given by IETT)

time1 (i-1) = It is given as hh:mm:ss and we transformed it to second

31

time2 (i-1) = It is given as hh:mm:ss and we transformed it to second

time1(i) = It is given as hh:mm:ss and we transformed it to second

Algorithm 4.3 Time computation for Not RING
time_d=time2(i-1) – time1(i-1)

time_a=time1(i) – time2(i-1)

time=time_d +time_a;

if(time<trip_time)

 interval_time(i)=(d(i)*time) / TD;

else

 interval_time(i)=(d(i)*trip_time) / TD;

end

In Not RING,

After that calculation same as RING interval time added to the starting time of the

departure or arrival sequentially.

4.1.3 Bus Items

For each bus trips we created text files containing time, stop’s identification and

distance information. The text file includes the information of the each trip of the

bus_id. Each text file name is specified for the each bus_id and they are sorted by

their starting time of the trip. For example 1A_1.txt means this is the first trip of the

bus whose id is 1A, it stores the forward trip information.

An example text file is shown in Table 4.7.

Table 4.7 1A_1.txt

 x coordinate of stop

 departure stop id

Time of departure

Time of departure as second

 departure stop name

 y coordinate of stop

06:04:00 21840 A0330A ALTUNĐZADE 29.052.830 41.023.990

06:07:28 22048 A0287A ALTUNĐZADE 29.042.600 41.023.500
06:09:37 22177 A0285B BAĞLARBAŞI 29.036.300 41.024.500

32

4.2 Data Simulation

The aim of this part is to verify the data extracted in the previous part of this

chapter. We used simulations for accuracy of the given data. We generated scripts in

MATLAB, and used them in Google Earth and ns-2. Those tools were explained in

Chapter 3.

4.2.1 Coordinate Verification

KML scripts were generated in MATLAB and they are displayed in Google Earth.

 We inspected the coverage area of the bus network. We wrote KML scripts to

analyze them sense of proportion. The coverage concentrated mainly at center of

Istanbul but does not reach to the far corners. Figure 4.1 shows all the bus stops of

the IETT.

Figure 4.1 All stops are located on the Istanbul

We inspected the bus stops for many lines. We wanted to verify if actually there is a

bus stop at the given locations. In some cases there are small discrepancies. For

example a bus stop fall into residential areas close to the road.

We also observed intersection among lines.

33

Example:

10E � 10B, 1A, 14B, 522B this means 10E uses some common points with these

buses. To verify, we wrote KML scripts and they are displayed in Google Earth. The

observation shows that, approximately hundreds buses pass the same place and they

use the same stop or not but they pass the same zone, such as KUYUBAŞI.

However one point is realized that if we want to find intersections we have to check

stop_ids, not zones. In Figure 4.2, is created in MATLAB and it is plotted, two lines

are shown, 12H and 10E. They pass through the same zone but they do not meet.

Figure 4.2 Intersection Busses

4.2.2 Measurement Verification

We generated KML scripts for bus lines in MATLAB and displayed in Google

Earth. We used diameter tool of Google Earth to verify the distance between two

stops.

34

Figure 4.3 500T_1, 500T_2 and 30M_1

Algorithm 4.4 is shown in Figure 4.3. It shows 500T which is not RING and 30M

which is RING and their paths are drawn on the map. Colors mean; blue is for 30M,

red for forward trip and green for return trip for 500T.

Algorithm 4.4 Create kml file for two buses

bus=bus1, bus2;

read bus1_1, bus1_2 and bus2_1, bus2_2 from “duraklar_dosyalar”

for i=1: size(bus)

if bus(1)_1 first stop == bus(1)_2 first stop

bus (i)=ring

else

bus(i)=not;

end

end

 if (bus(1) ==RIDG)

 Read x and y coordinates bus1_1.txt from duraklar_dosyalar

write kml file

else

Read x and y coordinates bus_1_1, and read x and y coordinates bus_1_2

write kml file

end

Figure 4.4 shows the distance between two stops. In this figure the distance is

627,47 meters. It is not the exact distance because this distance is measured by hand.

35

Figure 4.4 Distances between 500T_1_31 and 500T_1_32

Figure 4.5 Time and distance of bus_id 10

Figure 4.5 shows the bus_id 10 in its first trip. It passes through the stops Kazasker

and Sultan Sok. Their stop ids are A0635B and A0634B. The stop times are

06:51:11 and 06:52:33.

The distance between two stops is 426.47 meters and time difference is 1 minutes 22

seconds. This means that bus passes between two stops at 18,5 km/hour.

36

Figure 4.6 Time and distance of bus_id 522B

Figure 4.6 shows the bus with bus_id 522B. The distance between its two stops is

8404,87 meters and the travel time is 11 minutes 5 seconds. It means that bus travels

through the stop with approximately 45,5 km/hour velocity.

These two velocity difference depends on the curvature of the road, waiting time on

the stop and the traffic density. We ignored road curvatures and assume the paths

are piece-wise linear.

4.2.3 Movement – Time Verification

We verified coordinates at the previous subsection. We generated tcl scripts in

MATLAB and used ns-2 simulation tool to verify trips of busses from starting stop

to the ending stop. In TCL examples, node is defined as bus. We enumerated the

buses their start time.

Algorithm 4.5 shows that generation of the tcl file for given bus_ids, we wrote it to

simulate node movements.

tcl(‘bus_id1’,’bus_id2’,’bus_id3’,....,’bus_idn’)

37

Algorithm 4.5 Generate TCL file

Determine the number of buses each bus_id

create .tcl file

read bus_id’s from duraklar_dosyalar

find the maximum time

find the minimum time

find the minimum x_coordinate

find the maximum x_coordinate

find the minimum y_coordinate

find the maximum y_coordinate

find the starting and ending stops

eliminate the stops which are in the same zone radius of 50 m

each buses first time stored

time sorted

each sorted indices given to the nodes

the ordered numbers given to the nodes

set nodes in the tcl file

save maximum and minimum x and y coordinates

In Algorithm 4.5, the aim of the finding maximum and minimum values is to reduce

the simulation time and simulation area. We eliminated stops (broadcasting range is

available in 250 meters) which are maximum closer than 50 meters of the peron.

Figure 4.7 Node movement (for 522B, 10, 30M, 1A)

In Figure 4.7 shows the busses and perons. The black nodes are perons and they are

stationary. The orange nodes are buses for the line “1A”. The brown nodes are for

line “30M”. They are RING. The pink nodes are buses for the line “522B” and the

blue nodes are buses for the line “10”. For RING, a bus for line “1A” departs from

the peron 3 and when it turns to the peron 3 it will come to rest. A new node departs

from the peron 3. A bus of line “522B” departs from the peron 1 and arrives to the

38

peron 2 and it comes to rest at peron 2. A new node departs from peron 2, arrives to

the peron 1. In Figure 17 shows the coordinates and times.

4.2.4 Broadcasting Verification

The final step of the simulation is verifying the broadcasting between nodes and

data exchanging. In Chapter 3, we explained protocol creation and modification in

ns-2. In this part of the Chapter 4 shows what kind of modifications and creation

will be done.

1. IETT protocol is added to ns-2

2. IETT protocol is developed

3. TCL script will be written to testing the protocol.

4. Trace files format are modified to reduce size of the trace file.

4.2.5 IETT Protocol

In Chapter 3 includes how to add new protocol in ns-2.

We generated and introduced new protocol IETT to ns-2 by modifying existing ping

protocol files “ping.cc” and “ping.h”

1. Defined iett packet header in “packet.h”

2. Defined new packet type in “ns-packet.tcl”

3. Defined default values in “ns_default.tcl”

4. Wrote a simple Tcl code to verify the new agent.

5. Rerun the ns-2 in order to allow changes take affect.

6. Run the Tcl code

7. Checked the nam file to verify the iett packet type.

4.2.6 Definition of the Materials

1. Copied iett.cc and iett.h as ping.cc and ping.h and we pasted them under ns-

allin-one/ns-2/apps.

2. Defined iett packet type in packet.h

39

• enum packet_t

PT_IETT,

 // insert new packet types here
 PT_NTYPE // This MUST be the LAST one

};
• class p_info {

public:
p_info() {

name_[PT_IETT]= "iett";

 name_[PT_NTYPE]= "undefined";
 }

• static bool data_packet(packet_t type) {
 return (

 (type) == PT_HDLC || \
 (type) == PT_IETT \
);

• #define DATA_PACKET(type) (

 (type) == PT_SCTP_APP1 || \
 (type) == PT_IETT \
)

3. Defined default value of IETT agent in ns-default.tcl

• Agent/IETT set packet_size 51

4. Defined new packet type in ns-packet.tcl.

• foreach prot {

 # Other:

 IETT
}

5. Wrote “iett.o” in Makefile

• apps/ping.o apps/iett.o

6. Went to the directory where is the ns2, run “make” command to configure the

ns-2

7. Wrote a simple Tcl code to verify the IETT agent and went to that directory

where is the Tcl code was saved. Algorithm 4.6 shows simple Tcl code

algorithm.

40

Algorithm 4.6 Simple Tcl file

Define options

 Main Program,

 Initialize global variables

 Create God

 Create the specified number of mobilenodes

 "attach" nodes to the channel.

configure node

Provide initial (X,Y, for now Z=0) co-ordinates for mobilenodes

“attach” agents to the nodes

Schedule event

Tell nodes when the simulation ends

8. Wrote “ns iett.tcl” and run the ns command on the console

9. “iett.nam” and “iett.tr” will be created at the same directory as iett.tcl

10. Opened iett.nam and verified the packet type as iett, unmodified new trace

file format is below

iett.tr

r –t –Hs –Hd –Di –Dx –Dy –Dz –De –Dl RTR –Dw - -Ma –Md –Ms –Mt –Is –Id

-It iett iIl –If –Ii -Iv

iett.nam

r –t –s –d –p iett –e –c-a –I –k RTR

4.2.7 IETT Data Exchange and Collection Protocol

In IETT agent, we used different node types and packet types.

There are two types of node as listed below
• bus
• peron

There are five types of packets as listed below
• beacon
• ack_bus (which is acknowledgement sent by a bus to the beacon of another

bus)
• ack_peron (which is acknowledgement sent by a peron to the beacon of bus)
• data_diff (which is a data fragment sent to another bus)
• data_full (which is send full data to peron)

41

All nodes were created at the beginning of the simulation. A stop is awake during all

the stages of the simulation after it is created. A bus is awake during a trip; it wakes

up at the departure and sleeps with arrival at the last stop belonging to that trip. In

the rest of the time the busses are asleep. Being awake means that a peron or a bus is

listening to the channel. Being asleep means bus stops to listening to the channel.

By giving an energy level, which is set by the ‘awake’ command to the node, a node

can begin listening to the channel. There are three commands, make_peron,

sleep_bus, and awake_bus. “make_peron” gives the full energy to the node, thus the

node behaves like a peron. “awake_bus” gives full energy to the node and

“sleep_bus” gives zero energy level to the node, thus node sleeps.

When a bus departs from a peron it becomes awake and gets its measurement in

every “measurementInterval” seconds.

For example;

“measurementInterval” is set to 30 seconds. We assumed that the bus departs from a

peron at time zero. The bus starts to get its coordinates, on the simulation area

shown by x and y, in every 30 seconds till gets ‘sleep_bus’ command. In trace file

“60 22.4 41.2” means that the bus is on the location x=22.4 and y=41.2, at 60th

second.

Bus has an array to store its measurements.

A bus broadcasts a “BEACON” in every “beaconInterval” seconds when it is

awake. If any awake bus or any peron is in the range of the sender bus, they will

receive that beacon.

For example;

“beaconInterval” is set to 40 seconds. We assumed that the bus departs from a stop

at time zero. The bus starts to broadcast “beacon” in every 40 seconds. In trace file

“40 1 2 BEACON” means node_1 broadcasted a beacon, and node_2 received that

beacon at 40th second.

42

If a bus receives a “beacon”, it replies with “beacon_ack_bus” to the sender bus, to

say that it received the “beacon” and to inform that it is a bus not a peron.

If a peron receives “beacon”, it replies a “beacon_ack_peron” to the sender bus, to

say that it received the “beacon” and to inform that it is a peron not a bus.

For example;

 “43 2 1 ACK_BUS” means that node_2 sends “beacon_ack_bus” to the node_1 at

43rd second.

“43 8 1 ACK_PERON” means node_8 sends “beacon_ack_peron” to the node_1 at

43rd second.

After the sender node receives “beacon_ack_bus”, the sender node chooses a

random data from its array and sends it to the bus with a label named “data_diff”.

When the bus receives the packet containing data_diff and some other data, it stores

the data portion in its array.

For example;

52.0007 1 0 BEACON
52.0025 0 1 ACK_BUS
52.0067 1 0 DATA_DIFF
35.00000 3.0 8.00

After the sender node receives “beacon_ack_peron”, it adds all its data, stored in its

array, to the packet and sends it to the peron with a label named “data_full”. When

the peron receives the packet containing data_full and some other data, it writes the

whole data to the trace file.

 For example;

52.0007 4 12 BEACON
52.0025 12 4 ACK_PERON
52.0067 4 12 DATA_FULL
35.00000 3.0 8.00
65.00000 12.0 3.00
95.00000 32.0 78.00
30.00000 13.0 5.00

Algorithm 4.7 shows IETT packet declaration and agent tasks

43

Algorithm 4.7 IETT packet and agent

Define packet types

beacon

ack_bus

ack_peron

data_diff

data_full

Define packet header

 iett_pt

 beacon_seq_no

 beacon_ack_seq_no

 beacon_ack_dest_ip

 sensor_data data_diff

 sensor_data* data_full

 transmission time

 size_data_full;

Define events

recv

send_beacon

send_beacon_ack

send_data_diff

send_data_full

measure_data

get_diff_data

save_data

 Define timers

beacon_interval;

measure_interval;

data_delay

Define default values for

beacon_interval

measure_interval

data_delay in ns_default.tcl

 command

beacon_seq_no = 0;

 coll_data_size = 0;

 initially sleep bus and peron

 wake_bus // The bus starts sending beacons on wake

 make_peron //For now all the perons are listening all the time

 sleep_bus //energy set to 0

if(awake bus or peron)

 access the iett header for the received packet

access the ip header

if (iett packet = beacon)

Send ACK with the received SEQ DO

and the beacon origin IP

end

if(iett packet = beacon_ack_bus)

44

Algorithm 4.7 (continuous)
reply to beacon_ack

 if there is no previous reply

and the ack is for the outstanding beacon (against late ack)

and this node is the originator of the beacon inducing received ack

end

if(iett packet = beacon_ack_peron)

reply to beacon_ack_peron

 by dumping full data

if buffer has data empty the buffer after dump

end

if(iett packet = data_diff)

Save the received data on the agent

end

if(iett packet = data_full)

Save the received full data from a bus on the trace file

 if peron, ignore if bus

end

end

send_beacon

set beacon to iett packet header

beacon sequence number ++

data set to 0 //no data send for beacon

beacon sequence number set on the beacon packet

send _beacon_ack

 if(peron)

set beacon_ack_peron on the header iett packet

else

set beacon_ack_bus on the header iett packet

end

 copy ack_num on the beacon reply

 whose beacon it's a reply to //who takes the beacon

send_data_diff

 set data_diff on the header iett packet

choose the data to be sent and put it in the header

for now only one sensor data is chosen

Set the payload size to correct the transmission time

delay data in case multiple

send_data_full

 set data_full on the header iett packet

assign the address only

assign the packet size

the number of measurements on the payload

Set the payload size to correct the transmission time

measure_data

get location

add this measurement to the data collection on the node

get_diff_data

choose random data and send

save_data

 print x_coordinate, y_coordinate, and time to the trace fil

45

4.2.8 Testing

In testing, we created new trace files in different formats for IETT packets. Trace

file stores the event data as explained in Chapter 3.

First of all, two of the files under the ns-allin-one/ns2/trace directory would be

modified for IETT trace file format. We modified trace file format due to the fact

that it has lots of data inside of it, and gets larger while simulating it for hundreds of

nodes. To protect the file against getting larger, we write the file in a new format

and minimized it. We wrote only the necessary data such as time, packet type and

coordinates.

Algorithm 4.8 shows the creation of the IETT trace file and Algorithm 4.9 is the

prototype of IETT trace file format.

Algorithm 4.8 cmu_trace.cc

include iett.h

void CMUTrace::format

 if(packet_type=IETT)

call format_iett

else

call other formats

end

end

void CMUTrace::format_iett // at the end of the file

 if(operation= receive & sender_ip != receiver_ip)

 print packet reception time, packet src, packet receiver, packet type

 if(iett_packet=data_diff)

 display measurement time, x_coordinate, y_coordinate

end

if(iett_packet = data_full)

 print packet reception time, packet src, packet receiver, packet type

for i=0 ; i< size_data_full; i++

display measuerement time to “myfile.tr”,

x_coordinate,y_coordinate

end

end

end

end

Algorithm 4.9 cmu_trace.h

void format_iett(Packet *p, int offset) // at the end of the file

46

Chapter 5

Experimental Results

The demanded observation was to see which coordinates, the peron has knowledge

about, in Istanbul, and at any time we want. To achieve this, we analyzed the trace

file and plotted the result on the map of Istanbul, by using the necessary data. We

implemented this, using two functions; read_trace and istanbul_map, in MATLAB.

We all need is in “my file.tr”, we generated different file to write the data which is

dumped to the Peron, and analyzed it easily, and we controlled it because the file

include the information of peron and the data which are dumped at when to where.

There are two cases for function read_trace. In the first case, there are two

parameters, a peron number and a time. The task, in this case, is to collect the data

of the trace file of the given peron, from the beginning of the trace file to the given

time. The second function parameters are peron name, time1 and time2. The task, in

this case, is to collect the data of the given peron in the time interval, between time1

and time2.

Algorithm 5.1 Read trace file

read_trace(parameters)

min_time=load from the tcl creation function.

min_x_coordinate= load from the tcl creation function.

min_y_coordinate= load from the tcl creation function.

if (size(parameter)=2)

read the trace file

find data_full which is dumped to the given peron

check the its time which is smaller and equal the given time

save the x and y coordinates in A

break;

end

if (size(parameter)=3)

read the trace file

find data_full which is dumped to the given peron

47

Algorithm 5.1 (cont’d)
check packet sending time which are between time2 and time1

save the x and y coordinates in A

end

end

To reduce the simulation time, we found the smallest time, min_time, while

generating the tcl file, and subtracted this from all the times. In addition to this, to

reduce the simulation area, we found the smallest coordinates, min_x and min_y, and

subtracted them from all the coordinates in tcl file.

To work with correct information, we consider the min_time while observing the

trace file by subtracting it from the given times, and select the proper lines. While

analyzing the coordinates from trace file, to ignore redundancy, we only add min_x

and min_y to the selected lines of the trace file, and plotted the coordinates to the

appropriate place on the map of Istanbul.

Algorithm 5.2 Draw Istanbul map

Read file which contains border coordinates of Istanbul

Draw patch of Istanbul

Read A

Plot A on the Istanbul map

48

Figure 5.1 Istanbul map

Istanbul earth coordinates are considered on Figure 5.1 which is drawn by using

patch function of Matlab. On the Figure 5.1, the horizontal line values are longitude

and the vertical line values are latitudes of earth. Coordinate computation of Istanbul

is done by considering of explanation of Istanbul latitude and longitude distances

which is explained in Chapter2.

Blue part of the Figure 5.1 symbolizes the European side of Istanbul and green part

for Asian side. Dark green and light green symbolizes Büyükçekmekce Lake and

Küçükçekmece Lake. The lakes are drawn to show the accuracy of the plotting of the

perons and path of the bus-lines, it proves that the stations and paths are not putting

on the wrong places.

In this project, there are 643 bus lines and 48164 movements on Istanbul. Movement

means each arrival to station and departure from station. For example, if bus arrival

to station it means this is one movement and depart from station this is the second

movement of the bus.

49

We used 48 bus lines in our simulation and made sure that the bus lines are from

different sides. We chose bus lines whose path is inside Asian side, European side or

across two sides. The total number of movement for chosen bus lines is 4465 and the

total number of the peron is 34. Additionally, we chose bus lines whose trip type is

RING. We used the Algorithm 4.5 when we decided to define perons and this

algorithm prevent the redundant dumped data.

A video is generated by using Matlab tool because when we watch the video we can

observe the changes the density of data which is dumped to the selected peron. The

video generation is explained in Algorithm 5.3.

Algorithm 5.3 Create .avi file for selected peron
min_time=load from the tcl creation function.

max_time=load from the tcl creation function.

F = from min_t to max_t by increasing 3600 sec

Read myfile.tr to file

for all lines in file

 marked the selected peron

 marked time of dumped data

 insert each time in F

Algorithm 5.4 (continuous)

end

for all index in F

plot each data which is in the index of the F

75 frames for each figure

end

50

Figure 5.2 Dumped Data on selected peron Asian side

In Figure 5.2 shows that the dumped data to the selected peron which is in the Asian

side at Üsküdar. The video is zoomed by the max coordinate value of the dumped

data without showing all Istanbul by adding new algorithm in Algorithm 5.3. In

Figure 5.2, blue star represent the selected peron, red dots are dumped data to the

selected peron. The consecutively dots represent the path of the bus line which

arrive to the selected peron. Otherwise the other dotted, one of them is in the black

circle, represent the data which are exchanged among the buses that cross each other.

For example, a bus passes from the dot, in black circle, doesn’t pass from the

selected peron in anyway but it exchanges the data when see the other bus which

dumped its data to the selected peron. Also other scattered dots represent the

exchanged data.

Two simulations were implemented for this project. Those are accomplished by

varying of the parameters which are transmission range, beacon interval time and

measurement interval time. At the below, there are two figures and in those figures

51

selected perons and the time of the day are the same, reason is accuracy of

observation.

The first simulation we used the 550 meters for transmission range, 350 seconds for

the beacon interval time which is time period of sending beacon and 60 seconds for

the measurement interval time that time period of the location information of the bus,

node. In the second simulation, the parameters are 78 meters for transmission range,

121 seconds for beacon interval time, and 30 seconds for measurement interval time.

We selected the bus line whose trip type is RING and its path is on European side

and it doesn’t pass any place which is Asian side or south part of the European side.

Selected figure is from the video and its time is in the afternoon.

Figure 5.3 Dumped Data on selected peron European side-wide transmission range

In Figure 5.3, blue dots denotes the route of the bus line which arrives to the chosen

peron, blue star denotes the selected peron, red dots outside the blue ring denotes the

52

exchanged data. It shows that the bus receives the data four times at the selected

time.

Figure 5.4 Data Density of the day of 30M

Figure 5.4 illustrates density of the dumped data, in a day. Collected data is dumped

to the chosen peron in Figure 5.3. Horizontal line shown in figure denotes the hours.

Hours are defined by the earliest departure and latest arrival time of movement. Each

segment corresponds to one hour except the last segment. Vertical line shown in

figure denotes the number of data that is dumped to the chosen peron. Density of the

dumped data increases peak hours of traffic and at earliest and the latest time of the

day the dumped data getting zero, it means at that times no movement for buses

which depart to the chosen peron. By the way, vertical line includes the value 40, it

means minimum value of the dumped data is 40 and it shows that the bus/buses

dumped their data which are at least their path coordinates.

53

Figure 5.5 Dumped Data on selected peron Europe side-small transmission range

Figure 5.5 is generated from the second simulation and second parameters. It shows

that the bus receives the data one time at the selected time.

54

Figure 5.6 Data Density of the day of 30M

Figure 5.6 illustrates density of the dumped data, in a day. Collected data is dumped

to the chosen peron in Figure 5.5.

Figures 5.6 and 5.4 illustrate the dumped data and these two graph is generated by

using different parameters and those are explained at the above. These two graphs

show if reduce the transmission range, number of collected data will reduce even

though reduce the sending beacon time. If reduce the measurement time you can get

the data, which is not the transmitted data, is buses’ own routing data. Because the

bus is communicating with fewer bus reason of transmission range.

55

Figure 5.7 Dumped data with long time scale

Figure 5.7 denotes that the beacon interval time and measurement interval time

values are same but the transmission ranges are different. Hence number of collected

data depends on the transmission range of the broadcasting. For this figure sending

beacon interval time is 350 seconds and measurement interval is 60 seconds. When

transmission range is getting large number of the collected data is increasing.

56

Figure 5.8 Dumped data with short time scale

Figure 5.8 denotes that the beacon interval time and measurement interval time

values are same but the transmission ranges are different. Hence number of collected

data depends on the transmission range of the broadcasting. For this figure sending

beacon interval time is 121 seconds and measurement interval is 30 seconds. When

transmission range is getting large number of the collected data is increasing.

57

Figure 5.9 Dumped data with different values

 TR: Transmission Range

 MIT: Measurement Interval Time

Figure 5.9 illustrates that the number of collected data depends on transmission

range and the time of the sending beacon. Number of exchanged data depends on the

transmission range of broadcasting and beacon interval time, on the other hand

collected data depends on the measurement interval time.

58

Chapter 6

Conclusion

In this thesis, we proposed a new protocol for gathering data about bus traffic of

Istanbul on VANET. In this section we summarize the techniques and some

suggestions for the future work.

We provided the concrete statistical data that have been saved after communication

between vehicles, depending on time schedule of them. We used tools, MATLAB,

Google Earth, and ns-2, to gather useful data and we analyzed them. Vehicular ad

hoc network structure was used to create network among vehicles. Bus data simply

consists of position and time. Each bus broadcasts periodically to all neighbors. In

order to achieve this, we wrote a new protocol and modified it according to our

requirements. After gathering the data, we tested the new protocol, among nodes,

and implementation of it in simulation program (ns-2). Finally, the results showed

that an arbitrary stop could have data about any location, not only the locations near

that stop, at a specified time. We produced plots showing the quality of collected

data over time.

59

References

[1] Tüfekçioğlu, F., Mobility Aware, Reliable Ad Hoc Routing Protocols, M.S.
Thesis, Istanbul Technical University, 2005.

[2] Bernsen, J., Manivannan , D., Unicast routing protocols for vehicular ad hoc

networks: A critical comparison and classification, Pervasive and Mobile
Computing 5 (2009).

[3] Lochert, C., Hartenstein, H., Tian, J., Hermann, D., Wauve, M., A “Routing
Strategy for Vehicular Ad Hoc Networks in City Environments”, IEEE

Intelligent Vehicles Symposium, 156-161 (2003).

[4] Bai, R., and Sighal, M., “DOA: DSR over AODV Routing for Mobile Ad Hoc
Networks”, Mobile Computing, IEEE Transactions on, 1403-1416 (2006).

[5] Sun, M., Feng, W., Lai, T., Yamada, K., and Okada, H., “GPS-Based Message
Broadcasting for Inter-Vehicle Communication, Parallel Processing”, 2000
Proceedings. 2000 International Conference on, 279 - 286 (2000).

[6] Bayılmış, C., Ertürk, Đ., Çeken, C., Bandırmalı, N., “DSR ve AODV MANET
Yönlendirme Protokollerinin Başarım Değerlendirmesi”, Elektrik, Elektronik,

Bilgisayar Mühendisliği 11. Ulusal Kongresi, EMO, 280-283, Đstanbul,
Türkiye, 2005.

[7] MapXL Inc., Maps of World,

http://www.mapsofworld.com/lat_long/turkey-lat-long.html, 2008.

 [8] The MathWorks, Inc., MATLAB - The Language of Technical Computing

 http://www.mathworks.com/products/matlab, 2008.

[9] Google, Google Earth,
http://earth.google.com/intl/en_uk/, 2008.

60

[10] Google, KML Tutorial,
http://code.google.com/apis/kml/documentation/kml_tut.html,2008.

[11] Google, Google Earth User Guide

http://earth.google.com/intl/en/userguide/v4/, 2008.

[12] A Collaboration between Researchers at UC Berkeley, LBL, USC/ISI, and
Xerox PARC, The ns Manual, March 22, 2008.

[13] Tcl Developer Xchange, Learn More About Tcl/Tk,

http://www.tcl.tk/, 2008.

[14] Downward, Ian T., How to Simulate Sensor Detworks in ns-2, Naval Research
Laboratory Code 5523 4555 Overlook Ave Washington DC, 20375-5337
(2003).

[15] Chung, J., Claypool, M., DS by Example, WPI Computer Science,
http://nile.wpi.edu/NS/ [08/01/2002 9.09.25], 2008.

[16] Chung, J., Claypool, M., Add Dew Application and Agent, WPI Computer
Science, http://nile.wpi.edu/NS/new_app_agent.html, 2008.

[17] Choi, N., Introduction to ns-2, Oct. 11, 2007
www.utdallas.edu/~venky/acn/ns2.ppt,2008

61

Appendix A Appendices

A1. CD-ROM includes the source code, simulation video, soft copy of the thesis in

.doc and .pdf types and presentation.

62

Curriculum Vitae

Hilal Karatoy was born on 19 June 1980, in Đstanbul. She received her BS degree in

Information Technologies and minor Computer Science in 2005 from Işık

University. She has registered with the MS program in 2006. She has been working

in the Engineering department of Işık University as a Teaching Assistant since 2006.

She has received multiple honor degrees in BS and MS programs. Her research

interests include computer networks, computer security, and bioinformatics.

