
İLK
E
R

Ç
A
M

M
.S.T

hesis
2019

LEARNING FILTER SCALE AND ORIENTATION IN
CONVOLUTIONAL NEURAL NETWORKS

İLKER ÇAM

IŞIK UNIVERSITY
2019

LEARNING FILTER SCALE AND ORIENTATION IN
CONVOLUTIONAL NEURAL NETWORKS

İLKER ÇAM
B.S., Computer Engineering, IŞIK UNIVERSITY, 2019

Submitted to the Graduate School of Science and Engineering
in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

IŞIK UNIVERSITY
2019

IŞIK UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

LEARNING FILTER SCALE AND ORIENTATION IN CONVOLUTIONAL
NEURAL NETWORKS

İLKER ÇAM

APPROVED BY:

Asst. Prof. F. BORAY TEK Işık University

(Thesis Supervisor)

Prof. Dr. OLCAY TANER YILDIZ Işık University

Prof. Dr. FİKRET S. GÜRGEN Işık University

APPROVAL DATE:/..../....

LEARNING FILTER SCALE AND ORIENTATION IN

CONVOLUTIONAL NEURAL NETWORKS

Abstract

Convolutional neural networks have many hyper-parameters such as filter size,
number of filters, and pooling size, which require manual tuning. Though deep
stacked structures are able to create multi-scale and hierarchical representations,
manually fixed filter sizes limit the scale of representations that can be learned
in a single convolutional layer. Can we adaptively learn to scale the filters on
training time?

Proposed adaptive filter model can learn the scale and orientation parameters
of filters using backpropagation. Therefore, in a single convolution layer, we
can create filters of different scale and orientation that can adapt to small or
large features and objects. The proposed model uses a relatively large base size
(grid) for filters. In the grid, a differentiable function acts as an envelope for the
filters. The envelope function guides effective filter scale and shape/orientation
by masking the filter weights before the convolution. Therefore, only the weights
in the envelope are updated during training.

In this work, we employed a multivariate (2D) Gaussian as the envelope func-
tion and showed that it can grow, shrink, or rotate by updating its covariance
matrix during backpropagation training. We tested the model with its basic
settings to show the collaboration of weight matrix with envelope function is pos-
sible. A deeper architecture was used to show the performance on deeper and
wider networks. We tested the new filter model on MNIST, MNIST-cluttered,
and CIFAR-10 datasets. Compared the results with the networks that used con-
ventional convolution layers. The results demonstrate that the new model can
effectively learn and produce filters of different scales and orientations in a sin-
gle layer. Moreover, the experiments show that the adaptive convolution layers
perform equally; or better, especially when data includes objects of varying scale
and noisy backgrounds.

Keywords: Adaptive CNN, filter learning, filter scaling

ii

EVRİŞİMSEL SİNİR AĞLARINDA FİLTRE ÖLÇEĞİ VE

ORYANTASYONUNUN ÖĞRENİLMESİ

Özet

Evrişimsel sinir ağlarında filtre boyutu, sayısı ve ortaklama boyutu elle seçilmek-
tedir. Derin katmanlı sinir ağları hiyerarşik çok ölçekli temsiller öğrenebilme-
sine rağmen, sabit filtre boyutları farklı ölçekteki öğrenilebilecek filtre sayısını
sınırlamaktadır. Aynı katmanda farklı ölçeklerde filtreleri eğitim aşamasında
öğrenebilen bir mimari olabilir mi?

Önerilen filtre modelimizde filtre ölçek ve oryantasyonları geriye yayılım ile öğre-
nilebilir. Bu şekilde, aynı evrişimsel katmanda farklı ölçek ve oryantasonlarla
büyük ve küçük objeleri tanımlayabiliriz. Önerilen model, nispeten büyük filtre
(ızgara) boyutlarına sahiptir. Türevi olan bir çevreleyici fonksiyon ile filtrelerin
efektif ölçeklerini ve oryantasyonlarını, evrişim işlemine girmeden, katsayı ma-
trislerini maskeleyebiliriz. Bu sayede, sadece çevreleyici fonksiyon içerisindeki
katsayılar eğitilecektir.

Bu çalışmamızda, çok değişkenli (2 Boyutlu) Gaussian fonksiyonunu çevreleyici
fonksiyon olarak kullandık. Kovaryans matrisinin geriye yayılım yöntemiyle eği-
tilmesiyle, çevreyeliyici fonksiyonun büyüyüp, küçüldüğünü ve dönebildiğini gös-
terdik. Çevreliyici fonksiyonun eğitilebildiğini ve katsayılarla işbirliğini, modelin
en basit haliyle deneyimledik. Derin katmanlardaki performansını, derin ve geniş
mimariler üzerinde çalıştırdık ve performansını izledik. Önerilen modeli, MNIST,
MNIST-cluttered ve CIFAR-10 veri kümelerinde çaıştırdık ve geleneksel evrişim-
sel sinir ağ mimarilerindeki çalışma performanslarıyla karşılaştırdık. Sonuçlar,
önerdiğimiz modelin, farklı ölçek ve oryanyasyonlarda, aynı katmanda, filtreler
öğrenebildiğini gösterdi. Ayrıca, deneylerimiz, adaptif evrişimsel katmanının aynı,
özellikle veri kümesinde farklı ölçeklerde obje ve gürültülü arkaplan içeren veri
kümelerinde daha iyi çalıştığını gösterdik.

Anahtar kelimeler: Adaptif CNN, filtre öğrenmesi, ölçeklendirilebilir filtre

iii

Acknowledgements

I would like to express my gratitude to my advisor Asst. Prof. F. Boray Tek
for his continuous support of my study. His guidance helped me to develop my
research, writing and coding skills. I could not have imagined having a better
advisor and mentor for my MSc study.

I would not forget to remember Hattori Hanzō and Ichigo Kurosaki for their
encouragement.

And finally, last but by no means least, I am thankful to and fortunate enough to
get constant encouragement, support and guidance from Diliara Umiarova, Esra
Çam and Koral El.

iv

I dedicate this work to my mother; De familia mihi vires.

Table of Contents

Abstract ii

Özet iii

Acknowledgements iv

List of Tables viii

List of Figures ix

List of Abbreviations xi

1 Introduction 1
1.1 Related Work . 2

2 Literature Survey 5
2.1 Machine Learning . 5

2.1.1 Classification . 6
2.1.2 Neural Networks . 7

2.1.2.1 Back-propagation 8
2.1.3 Auto-encoders . 9
2.1.4 Convolutional Neural Networks 10

2.1.4.1 Convolutional Layer 12
2.1.4.2 Non-linearity Layer 12
2.1.4.3 Pooling Layer . 14

2.1.5 Related Adaptive Neural Networks 14

3 Method 16
3.1 Envelope Function . 16

3.1.1 Selecting an Envelope Function 18
3.1.2 An alternative envelope function 21

3.2 Initialization . 21
3.3 Implementation . 23

4 Experiments 25

4.1 Filter Guide Experiments . 25
4.1.1 Learning a Gaussian filter 26
4.1.2 Learning a Gaussian and edge filter 26

4.2 Application on deeper and wider networks 27
4.3 Scale and orientation experiments 30

4.3.1 MNIST . 30
4.3.2 MNIST Cluttered . 32
4.3.3 CIFAR-10 . 32

5 Conclusion 36

Reference 38

List of Tables

4.1 GoogLeNet incarnation of the Inception architecture 29
4.2 The network topology that is used to test our method. All three

networks were comprised of 8 layers. In conv-1 and conv-2 layers,
the proposed adaptive model (ACNN) used an 11 × 11 base grid
for filters, whereas ’cnn-5’ and ’cnn-11’ used 5×5 and 11×11 filter
sizes, respectively. *CIFAR-10 experiments used 16 filters instead
of 8. 30

viii

List of Figures

2.1 An input space is projected to a non-linear space. Figure taken
from [11] . 7

2.2 a) Randomly generated feature set of two classes. A linear classifier
places a separating line. There are infinitely many lines separating
these two classes. b) Data is not linearly separable. 7

2.3 A Neural Network model. Consists of one input, two hidden and
one output layer. 8

2.4 Artificial neuron model. 9
2.5 An auto encoder model. First hidden layer is the encoder layer.

Encoder layer transforms the input to higher or lower dimensional
space. Decoder layer reconstructs an approximation of the input. 10

2.6 A Convolutional Neural Network architecture solving a classifica-
tion problem. Typical CNN consists of convolutional, non-linearity
and a pooling layer. 11

2.7 A not finished convolution operation on 5x5 input with 3x3 kernel.
Using no zero padding will calculate an output feature map with
3x3 dimensions. 13

2.8 Rectified Linear Unit activation function. All negative values are
transformed to zero and positive values do not saturate. 13

2.9 Inception module from GoogleNet 15

3.1 Demonstration of an envelope function. Label 2 shows the size of
kernel and Label 1 shows the effective area. Effective area can grow
or shrink via varying Θ. 17

3.2 Demonstration of an envelope function. Label 2 shows the size of
kernel and Label 1 shows the effective area. Effective area can grow
or shrink via varying Θ . 19

3.3 Illustration of the proposed weight envelope (a) an arbitrary differ-
entiable envelope function controls the weight spread and shape on
a regular relatively large base grid, (b) an example, initial Gaus-
sian kernel with centered µ and initial Σ, (c) initial weights of the
filter that are randomly generated, (d) weights are masked with
the envelope (b) by simple element-wise multiplication. 20

4.1 An example chosen from hand-written digits. Applied a gaussian
filter, the only envelope function learns to enlarge the filter. . . . 26

ix

4.2 An example chosen from hand-written digits. Applied a gaussian
and sobel filter respectively. 27

4.3 a) Envelope functions of first 72 filters (144 filters in total) in
ACNN at the deepest level in adaptive module. b) Weights summed
in depth channel and multiplied with corresponding envelope func-
tion. 28

4.4 a) Naive adaptive module does not implement 1× 1 convolutions.
b) 1× 1 convolutions are used to increase non-linearity and reduce
dimension. 29

4.5 Validation accuracy plot for inception and adaptive modules. . . . 29
4.6 Covariance matrix Σ change in MNIST dataset. Depicted by the

(a) angle of largest eigenvector and (b) largest eigenvalue. 31
4.7 The first layer (conv-1) filters at the end of training with MNIST.

(a) Gaussian envelopes, (b) scaled filters, (c) output of a sample
that was convolved with each filter. 31

4.8 Classification error for MNIST dataset. 32
4.9 Eight randomly selected samples from the cluttered MNIST dataset. 33
4.10 Classification error for cluttered MNIST dataset. 33
4.11 The first layer filters at the end of training in CIFAR-10 database. 34
4.12 Classification error for CIFAR-10 dataset. 34
4.13 Plots for covariance matrix Σ change in CIFAR-10 dataset, de-

picted by the (a) angle of largest eigenvector, (b) largest eigenvalue. 35

List of Abbreviations

CNN Convolutional Neural Network

ACNN Adaptive Convolutional Neural Network

ReLu Rectified Linear Unit

xi

Chapter 1

Introduction

Naming or describing real-life objects is only meaningful with respect to a rele-

vant scale [1]. For instance, a view can be described as a leaf, branch, or a tree

depending on the distance of the observer. Natural and casual scenes are gener-

ally composed of many different entities/objects at various scales. During image

acquisition, the true physical scale is usually ignored. However, the relative scale

of the objects is somehow implicitly captured and stored in the image grid and

pixels.

An automated method to identify or describe objects in images can be analyzed in

two parts: representation + classification. Basic algorithms without add-ons can-

not successfully handle variation and complexity of raw pixel-level representation

of objects, instead, they rely on functions that map image pixels into different

constructs, -named features-, which are seeking to represent the image content

more briefly and invariant to various geometric and intensity changes.

Although recent studies stack different sizes of convolution kernels in a single

layer, these are highly engineered hyper-parameters. Existing convolutional neu-

ral networks use fixed kernel sizes. Can we introduce a trainable parameter to

set kernel size (scale) on run-time? It is known that sparse connectivity has no

negative effect in terms of computation. Can large kernels with limited but grow-

able effective area automatize this scale? How will having different scaled filters

affect the overall performance? Our study tries to answer these questions with an

1

adaptive model of the convolution layer where the filter size (actually scale) and

orientation are learned during training. Therefore, a single convolution layer can

have distinct filter scales and orientations. Broadly speaking, this corresponds

to extracting multi-scale information using a single convolution layer. However,

our aim is not to fully replace the stacked architectures and deep networks for

multi-scale information. Instead, our approach improves the information that can

be extracted from an input (may be an image), in a single layer. Additionally, the

model removes the necessity of fixing convolution kernel sizes, so that the filter

size can be removed from the list of hyper-parameters of deep learning networks.

This study will introduce the related work behind the proposed solution. A

Literature survey will explain the basics of classification, machine learning, and

convolutional neural networks. The method will introduce the implementation

details of the proposed solution. Lastly, we will support our study with various

experiments on filters such as autoencoder, performance on deeper layers and how

the scale and orientation are changed during the training.

1.1 Related Work

Traditionally, computer vision researchers relied on manually designed feature ex-

tractors for representation. Recently, we are witnessing the success of algorithms

which can self-learn appropriate feature extractors. In either case, the size of an

operator or a probe usually determines and fixes the scale of the entities that can

be represented. However, even in the self-learn case, the size of the probes or

operators is often manually selected.

On the other hand, the last two decades have seen many automated object de-

tection/recognition algorithms that were superior to their counterparts because

they have comprised multi-scale processing of images [2], [3]. Multi-scale feature

extractors gather and present the inherent scale information of image pixels to

a subsequent classifier. In SIFT [4] and wavelets [5], this is done by creating a

2

multi-scale pyramid from the input image and then applying a fixed size probe-

kernel to each scale. In an application of Gabor filters for object recognition, Serre

et al. [6] used a hierarchy of stacked Gabor filtering layers, where the filters have

predetermined scales and orientations. However, Chan et al. [7] showed that the

adaptation of handcrafted filters to low-level representations is difficult. On the

other hand, convolution neural networks (CNN) rely on stacked and hierarchical

convolutions of the image to extract multi-scale information. Convention of CNNs

for filter size selection is to use small fixed size weight kernels in the lower levels.

However, thanks to the stacked operation of convolutional layers, sandwiched by

pooling layers which down-sample intermediate outputs, the deeper levels of a

network are able to learn representations of larger scales.

Though the optimality of fixed size kernels has not proven, the convention is to

use filters small as 3×3 in the first layer, which can be larger 5×5 or 7×7 in the

later stages [8]. During backpropagation training, filters are evolved to imitate

lower level receptive fields in biological vision which are sensitive to certain shapes

and orientations. Another justification for avoiding large filter sizes is that, while

certainly increasing computation time, they may also increase over-fitting.

Nevertheless, the number of filters and their sizes in convolution layers are usually

selected intuitively, researchers are seeking alternatives to improve representation

capacity of the network in deeper architectures. For example, Szegedy et al.

[9] handcrafted their "inception’" architecture to include mixing of parallel and

wide convolution layers which use differently sized filter kernels. In a deep ar-

chitecture, this approach allows multi-scale, parallel and sparse representations.

In summary, existing CNN based methods use fixed size convolution kernels and

then rely on the fact that the shape and orientation of the filters can be inferred

from the training data. Additionally, CNNs employ stacked convolution layers to

successfully create multi-scale representations.

On the other hand, Hubel and Wiesel [10] discovered three types of cells in visual

3

cortex: simple, complex, hyper-complex (i.e. end-stopped cells). The simple cells

are sensitive to the orientation of the excitatory input, whereas the hyper-complex

cells are activated with a certain orientation, motion, and length of the stimuli.

Therefore, it is biologically plausible to assume that filters of different scales next

to orientations and direction may also work better in CNNs.

4

Chapter 2

Literature Survey

2.1 Machine Learning

Computer-aided systems can solve many tasks. Each of them is designed for the

purpose of solving a problem with predefined procedures. Set of these creates

algorithms. An algorithm can be finding the largest element in a list, or prime

factors of a number, and many more. Complex mathematical problems can be

easily solved via algorithms no matter how complex we think they are. Once we

define all the steps carefully, an algorithm can calculate an output in seconds. Yet

how can we classify a happy person from a sad one? One can heuristically create

an algorithm for a picture which does some operations on the image. Although,

the position of a person can change and writing lots of algorithms for different

poses is virtually impossible. One of the problems with our modern world is

spams. We need to manually read and understand what information is vital

for us. Therefore the question arises, what kind of algorithm will classify an

important e-mail among lots of spams?

Machine learning algorithms try to transform the given input such that output can

be a class or decision (i.e happy or sad person in the image.). The transformation

between input and output usually depends on repeated steps which are mostly

predictable. These repetitions are called patterns. Nature is based on symmetries,

5

trees, leave tissue, waves and many more. Even though it’s impossible to exactly

model these patterns, computer-aided algorithms can approximate them.

2.1.1 Classification

Classification algorithms solve the problem of assigning correct labels of given

input data. For instance, given tumor size data, classifying it as malignant or

not. Assuming historical data on tumor sizes exists, we can approximate whether

a given tumor is malignant or not. Confidence in this classification relies on how

descriptive the features are and how big the training sample set is. Formally;

Classification is a process of approximating a continuous function f using input

variables X which outputs a discrete output variable(s) y. Depending on the

training inputs, estimating new observations category is identified as classifica-

tion.

There are many classification algorithms available to solve the problem. Depend-

ing on the problem and feature space these can be solved via; linear (i.e Logistic

Regression, Naive Bayes Classifier, Perceptron etc.) and non-linear (Multi-layer

Perceptron, K-Nearest Neighbor etc.) methods. The example given above which

classifies an input with few features may be separated using a combination of

linear separators (Hyper-planes). Projecting the input space to non-linear and

solving the problem linearly as illustrated on figure 2.1

Linear classifiers are considered as baseline solutions for many problems. They

have relatively fewer parameters than non-linear classifiers, thus over-fitting (an

approximation method having close parameters to training data set) is less likely

to happen. Figure 2.2(a) shows an example of two features of two classes separated

via plane. Such example is a linearly-separable problem. Although the line may

separate classes, there are infinity many possible lines to draw.

Real world problems usually have higher dimensional features or lower dimen-

sional representations of raw data (i.e PCA [12]). Feature space of these problems

6

Figure 2.1: An input space is projected to a non-linear space. Figure taken from
[11]

(a) Uniformly distributed classes (b) Gaussian blobs

Figure 2.2: a) Randomly generated feature set of two classes. A linear classifier
places a separating line. There are infinitely many lines separating these two
classes. b) Data is not linearly separable.

might not be linearly separable. In other words, there is no linear line to separate

classes. Non-linear classifiers can divide classes into locally linear segments,

but in overall structure, these decision boundaries have complex shapes that have

no linear shapes.

2.1.2 Neural Networks

The aim of a neural network is to learn a function f which maps the given input

x to a desired output y. y = f(x). It is done by learning set of parameters

σ, y = f(x;σ). As illustrated in figure 2.3, neural networks consist of an input

layer, an output layer and stacked hidden layers. Each hidden layer has multiple

neurons which consist of n trainable parameters w (weight). Every neuron j

7

Figure 2.3: A Neural Network model. Consists of one input, two hidden and one
output layer.

receives all inputs from the previous layer and calculates a weighted activation

aj. A neuron’s mathematical calculation can be written as:

aj = f

(
m∑
i=1

wijxi + w0j

)

Weights (wij and w0j) are the parameter space of neuron j and constructs the

solution space. In feed forward process, the neuron collects activation inputs

from m other neurons and calculates aj via activation function f . The function

is usually chosen to be a non-linear function such as sigmoid. An error function

calculates the error and back-propagates through the network.

2.1.2.1 Back-propagation

Back-propagation calculates the partial gradients of an error function E (cost

function) for each neuron with respect to weights, biases and changes the weights

by η steps on opposite direction on the gradient. This process can be written as:

E =
n∑
j=1

1

2
(tj − aj)2 (2.1) ∂E

∂aj
= (aj − tj) (2.2)

8

Figure 2.4: Artificial neuron model.

∂E

∂wij
=
∂E

∂aj
∗ ∂aj
∂netj

∗ ∂netj
∂wij

(2.3)

wij −= η ∗ ∂E

∂wij
(2.4)

2.1.3 Auto-encoders

A neural network is a supervised learning algorithm where input x has a target

(label) t. Auto-encoders are a type of unsupervised learning algorithm trained to

learn a function f to reconstruct x with a parameter set σ. As illustrated in figure

2.5 the network consists of two elements; a) Encoder: Takes the input and projects

it to a higher or lower dimension. b) Decoder: Projects the encoded space back

to the original input. Encoding step can learn highly descriptive features from

the input. Having m > k units will transform the input to a lower dimensional

space and learned features will be highly descriptive whereas having k > m units

will transform the input to sparse space and hidden descriptive features might be

learned in the space.

9

Figure 2.5: An auto encoder model. First hidden layer is the encoder layer.
Encoder layer transforms the input to higher or lower dimensional space. Decoder
layer reconstructs an approximation of the input.

2.1.4 Convolutional Neural Networks

CNN (Convolutional neural networks) are a type of artificial neural network pop-

ularly used in solving problems on the image domain. They can also be used

for other data analysis and classification problems as well. Conventional neural

networks have hidden layers which are fully connected to the incoming layer. A

single neuron has connections to all inputs. Assuming an input of 32 × 32 × 3,

a fully connected layers every neuron has 3, 072 (32 × 32 × 3) weights. While

inputs such as images have large amounts of pixels, fully connected layers will

have thousands or millions of parameters in one single layer. Such numbers of

parameters require high computation power and could easily lead the model to

overfit. CNN’s, leverage three concepts that power the overall system; Parameter

sharing, sparse connectivity, translation invariance.

CNN’s, introduce parameter sharing by connecting on a small region of the

10

Figure 2.6: A Convolutional Neural Network architecture solving a classification
problem. Typical CNN consists of convolutional, non-linearity and a pooling
layer.

input, thus requiring less computational power and less prone to overfitting. Sin-

gle kernel (weight matrix) of size 5× 5 will only have 75 (5× 5× 3) parameters.

CNN’s has a special type of layers "Convolutional Layer" and has local connec-

tivity to the previous layer. Local connections (by making the kernel smaller than

the input) lead to sparse connectivity. The learned filter will only activate on

certain patterns and output of a convolution will be sparse. Assuming a input

with size m×n, the total parameter calculation will run on O(n×m). Whereas,

sparsely connected neurons k will only require O(n×k) calculations on run time.

Translation invariance is one of the most important aspects of CNN’s. A

convolution layer followed by a pooling layer will approximate to translation in-

variance. A filter can still detect a pattern if the image is shifted to a different

position. For instance: An edge filter is detecting the edges of an input image.

The edge can be on the upper left or right corner of the image. Same represen-

tation will still be detected but activation will be on different iterations. Pooling

also provides translation invariance. For instance, max pooling operation will

still get the largest value within its receptive field. So convolution followed by a

pooling operation is approximating translation invariance to CNN’s.

Figure 2.6 shows a Convolutional Neural Network architecture having stacked

11

convolutional, non-linearity and pooling layers. We will discuss their roles in a

CNN on the following sections.

2.1.4.1 Convolutional Layer

Given input with size m ×m and kernel size k × k, m > k. The convolutional

layer consists of multiple kernels and performs the operation "convolution" to the

input using kernels (weight matrices) and outputs feature maps. As illustrated

in figure 2.7 every kernel slides over the input and performs a dot product. A

convolutional layer has the following hyper-parameters:

• Number of filters: A Convolutional layer consists of n filters1 every filter

is convolved on the input feature map. Typical choices are, 32, 64, 128

• Filter size k: Determines the receptive field size.

• Stride: After every dot product, the kernel is slid by one unit. Changing

stride to 2 will lead to sliding two units thus will less overlap between

neurons.

• Padding: As shown on figure 2.7 convolving a 5x5 input with 3x3 kernels

outputs 3x3 feature map. This might lead to losing in dimension over

stacking many layers. Padding will surround the input with zero-valued

pixel so that the input feature map will grow on the desired size. For

instance, using 2 zero padding on 5x5 input will pad the image to 7x7.

2.1.4.2 Non-linearity Layer

Convolution operations produce linear activations. To introduce non-linearity

CNN’s activate the outputs of convolution with a non-linear function such as

Rectified Linear Unit (ReLu). Formally, ReLu calculates output yi for input xi:
1Also known as kernels or weight matrices

12

Figure 2.7: A not finished convolution operation on 5x5 input with 3x3 kernel.
Using no zero padding will calculate an output feature map with 3x3 dimensions.

Figure 2.8: Rectified Linear Unit activation function. All negative values are
transformed to zero and positive values do not saturate.

yi = max(0, xi). Although it transforms the input from linear to non-linear space,

the function remains very close to a piece-wise linear function. ReLu is widely

used among researches over other activation functions (tanh, sigmoid) while their

easy optimization on linear models. As shown on figure 2.8, ReLu, converts all

negative values to zero thus non-positive activation will not activate a neuron.

Choosing an activation function for a deep architecture is crucial. Gradient-

based learning algorithms depend on increasing the performance by changes in

parameters. Small gradients may lead to very little change in parameters thus

performing poorly. Vanishing gradient problem appears when the activation func-

tion squashes the activations. A popular solution is to use ReLu, while there is

no saturation on positive ranges.

13

2.1.4.3 Pooling Layer

Pooling layers perform downsampling to input feature maps. There are a variety

of pooling layers such as max-pooling and average-pooling. For instance, a max-

pooling operation with size 2 × 2 iterates over the input with same stride size

(2 in this example) and calculates the maximum value of the area. Whereas the

average pool does the same operation but calculates the average. This operation

has two important roles in the CNN stack. Translation invariance: A pattern

might be activated on a different location of the image. Pooling will ensure that

the maximum activation2 will be transformed to the next layer. Dimension

reduction: Input with size 8× 8× 10 will be reduces to 4× 4× 10 which is 75%

less than the input.

2.1.5 Related Adaptive Neural Networks

Classic convolutional neural network stacks have typical structures as convolu-

tional layer followed by spatial pooling layer and stacked them together. GoogleNet

stacks [9] different sizes of convolution kernels on one single output. Figure 2.9

illustrates the inception module used in GoogleNet architecture. 1×1, 3×3, 5×5

convolutions and 3 × 3 max pooling are done on the previous layer and outputs

are stacked all together as one single layer. Convolving the input with 1 × 1

kernels are inspired by the study "Network In Network" [13]. Authors state that

linear convolutions are sufficient for abstracting when data is linearly separable.

However, meaningful abstractions are usually non-linear representations of the

input data. Thus, they use 1 × 1 convolutions to introduce more non-linearity

and increase the representational meaning of the data. However, in GoogleNet’s

1×1 convolutions are used as dimension reduction hence reduce the computation

bottleneck.
2On Max-pool

14

Figure 2.9: Inception module from GoogleNet

Focusing neuron [14] presents an artificial neuron learning its receptive field. Both

field size and location are learned during training. Authors used a Gaussian func-

tion to change the field size and location. The synthetic Gaussian blob experi-

ments show that focus location can steer out from the redundant inputs and focus

on descriptive inputs.

15

Chapter 3

Method

In deep network architectures, stacked convolution layers perform convolutions

with fixed size kernels where sandwiched pooling layers perform down-sampling

operations to achieve a multi-scale and hierarchical representation. Fixed size

convolution kernels put a limit on the scale of features which can be extracted

from a single layer.

Though it is possible to mix several kernels of different size in a single convolution

layer, the convention is to use a fixed size for all the kernels in a layer. Here, we

introduce a new filter model which can adapt its scale and orientation. Therefore,

it allows the development of multi-scale and differently oriented filters in a single

convolution layer. To realize this, we need a smooth function that can grow,

shrink, or rotate during training which acts as an envelope to guide filter scale

and orientation. The following sections explain the role of an envelope, selecting

an appropriate envelope function and its partial derivatives which are used in

back-propagation.

3.1 Envelope Function

The role of the envelope function is to guide the filter scale and orientation de-

velopment. As illustrated in figure 3.1, a base grid acts as the envelope and filter

16

Figure 3.1: Demonstration of an envelope function. Label 2 shows the size of
kernel and Label 1 shows the effective area. Effective area can grow or shrink via
varying Θ.

domain. Since it is the most common case, we will assume a two-dimensional do-

main. Generalizations to higher dimensions are straightforward. In this domain,

the envelope function must be differentiable and smooth. Let us assume a base

grid for an n× n odd sized and square filter (3.1); and let U be a (continuously)

differentiable function defined in grid g (coordinate space) and parameter vector

Θ ∈ Ri to define its shape (3.2).

A = {1, 2, .., n},

g ∈ A× A = {(a, b) | a ∈ A and b ∈ A}
(3.1)

u = U(g,Θ), Θ = {θ1, θ2, ..θi} (3.2)

By updating the parameters in Θ, envelope function must be able to grow or

shrink its effective area and change its orientation. The feed forward model of a

single neuron with an input x and transfer function f can be written as:

17

o = f(
∑

g∈A×A

xg wg U(g,Θ)) (3.3)

Or if we think of a whole convolution layer of input matrix (image) X and weight

matrix W and envelope matrix U . Simply, an element-wise multiplication of U

with the weight matrixW will mask and scale the weights before the convolution.

O = f(X ∗ (W ◦ U)) (3.4)

Since the weights can not grow out of envelope U , the filter size and orientation

will be bounded and determined by U . Assuming that the partial derivatives of

G with respect to continuous parameter θi is defined using the chain rule, the

update can be performed using the standard back-propagation algorithm with

the learning rate η. However, note that the weight update also gets u as a scaler.

w
′

g := wg − η
∂E

∂o

∂o

∂wg
θ
′

i := θi − η
∂E

∂o

∂o

∂U

∂U

∂wg
(3.5)

3.1.1 Selecting an Envelope Function

It is well-known that continuous Gaussian kernel has unique properties which are

important for generating a scale space. Simply put, the Gaussian kernel does

not create new local extrema, nor enhance existing extrema, whilst smoothing

the image with a variable continuous parameter [1]. Some of these properties are

proven to exist in discrete space if the sample size is sufficiently large. Therefore,

Gaussian is an ideal candidate for the envelope function U (As illustrated in

figure 3.2):

U(g, µ,Σ) =
1

A
e−

1
2

(g−µ)′Σ−1(g−µ) (3.6)

18

Figure 3.2: Demonstration of an envelope function. Label 2 shows the size of
kernel and Label 1 shows the effective area. Effective area can grow or shrink via
varying Θ

Here, parameter A is an optional normalization parameter; µ controls the center

of the envelope, whereas the covariance Σ controls the scale and orientation of

the kernel.

µ =

{
µx, µy

}
Σ =

σxx σxy

σxy σyy

 (3.7)

During the feedforward execution the envelope function is calculated on the grid

coordinates g with the current covariance Σ; and then element-wise multiplied

with the weight matrix W , prior to the convolution. This is illustrated in fig-

ure 3.3(b)-3.3(d). Note that this operation not only bounds the weights and

adjusts the effective area, it also scales the weights. To implement the convolu-

tion operation appropriately, we set µ as a vector of constants that is initialized

with the center point coordinates of the grid g. Therefore, it is not updated dur-

ing training. However, the covariance Σ must be updated to learn the filter scale

and orientation.

19

(a) Arbitrary envelope (b) Gaussian envelope (c) Random weights (d) Masked weights

Figure 3.3: Illustration of the proposed weight envelope (a) an arbitrary differ-
entiable envelope function controls the weight spread and shape on a regular
relatively large base grid, (b) an example, initial Gaussian kernel with centered
µ and initial Σ, (c) initial weights of the filter that are randomly generated, (d)
weights are masked with the envelope (b) by simple element-wise multiplication.

In order to keep the symmetric property of Σ we calculate the gradients for each

σ and apply update rule.

∀σ ∈ Σ, σ := σ − η∂E
∂U

∂U

∂σ
(3.8)

Covariance Σ must be kept as a symmetric and positive definite matrix. A sym-

metric matrix is positive definite if for all non-zero vectors: xTΣx ≥ 0; which

imposes the following conditions:

(
σxx > 0, σyy > 0, σxxσyy > σ2

xy

)
or λi ≥ 0 (3.9)

where λi denotes the eigenvalues of the covariance matrix, which can be checked

to ensure positive definiteness. However, during training the diagonal sigma terms

are ensured to be positive (and nonzero) by setting bounds, e.g. σxx =min(ε, σxx);

whereas σxy is constrained by σxy=max
(
σxy,
√
σxxσyy

)
. However, experiments

show that the covariance behaves well during training when it is initialized prop-

erly and updated with a small learning rate, and thus it removes the necessity for

these constraints.

20

3.1.2 An alternative envelope function

Keeping the covariance symmetric and positive definite matrix creates constraints

which can be assured with different methods such as regularizing. In spite of keep-

ing constraints, calculating Σ−1 can be computationally expensive and keeping

covariance as a symmetric and positive definite matrix has additional constraints

to the overall cost function. A fast working alternative is to use a full-with-at-

half-maximum parameter to change the width of a curve function.

U(µ, σ) = e−
(x−µ)2+(y−µ)2

2σ2 (3.10)

Eq. 3.10 has one trainable parameter σ which varies the with of the curve func-

tion. Where x, y are the normalized indices of weight matrix and µ is the center

and constant (0.5).

3.2 Initialization

Since the improvements in computational instruments rise, training deeper neu-

ral networks became popular among researchers. Studies showed that randomly

initialized weights result with poor performance [15]. Recent studies show that

proper initialization for deeply layered networks is crucial [16]. Gradients popu-

lated via back-propagation move weights regardless of the scale difference between

layers. In such a case when the network is relatively deep enough, the scale differ-

ence between weights in different layers may hamper the learning. We observed

scale difference when using recent initialization methods (i.e [15], [17]) on weights,

resulting in vanishing variance between layers.

Conventionally, initial weights are being drawn randomly from a distribution

Wi, j ∼ [−a, a] where a is the upper and lower bounds of the distribution. The

range of a affects the total variance on weights, thus changing the input variance.

On deep neural networks, being able to keep the input variance can be compelling.

21

Ignoring envelope functions scaling on weights will result in irreversible variance

change across the whole network. Ensuring V ar(x) = V ar(y) = 1 where x, y are

the input and output receptively, can be done via keeping the variance change on

weights W over inputs to unit.

V ar(W) · nin = 1 (3.11)

Authors of [15] take this to one step further and also took output connections in

account.

V ar(W) =
2

nin + nout
(3.12)

Where nin and nout is the total number of connected and fed neurons. Deriving

3.12 to a solution yields with two possible solutions 3.13.

V ar(W) ∼ U

[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
(3.13)

Our initialization method is based on Eq.3.13 and still take the envelope func-

tions scaling effect in account. As described above, adding U must still keep the

variance unit. Considering U , the formula can be rewritten with the following

steps;

V ar(WU) = U2V ar(W) (3.14)

V ar(W) =
2

U2(nin + nout)
(3.15)

V ar(W) = E(X2)− E(X)2 =
(b− a)2

12
(3.16)

22

2

U2(nin + nout)
=

(b− a)2

12
(3.17)

• Eq. 3.14: W and U are independent variables. We used a variance property

to take out U from the calculation: V ar(aX + b) = X2V ar(a)

• Eq. 3.16: W is drawn from uniform distribution. Thus variance ofW equals

to a form of interval ranges a and b

• We used the initialization ranges calculated in Eq. 3.18

W ∼

[
−

√
6

U2(nin + nout)
,

√
6

U2(nin + nout)

]
(3.18)

3.3 Implementation

We implemented the adaptive convolution filters using a base CNN implemen-

tation available on Lasagne [18]. Lower level details such as gradient manipu-

lation and learning rate feeding for different parameters are done using Theano

backend.[19] Tests ran on Nvidia Tesla K40 and P100 GPU boards. In terms of

computational complexity, using a Gaussian function as envelope function adds

an extra overhead in training. While most costly operations are on the inverse

calculation of covariance, an approximation function is also used in some stages

of late implementation and tests as described in Section 3.1.2

However, during feed forward execution, the trained and enveloped final weights

can be stored and used immediately without any overhead. Compared to con-

ventional filters, we use relatively larger (e.g. 11x11) base filter sizes to observe

adaptive growth and rotations. Please note that the grid can be selected as

23

large the input image. A-CNN ran one epoch (500 examples) in 6.1 ± .2 sec-

onds whereas CNN-11 ran in 3.4± .15 on MNIST dataset without an optimized

implementation(available online 1.)

1github.com/ilkerc/AdaptiveCNN

24

Chapter 4

Experiments

We conducted three types of experiments to compare and contrast the adap-

tive layers performance on the visual domain. Firstly, auto-encoder tests are

discussing the necessity and collaboration of envelope functions with weights.

ILSVRC14 winner GoogleNet uses a deeper and wider network, inception module

introduces descriptive and highly non-linear features using different kernel sizes

concatenated on a single depth channel. We replaced these engineered filters with

ACNN and discussed results on the second part.

Lastly, using a shallow network we experimented the filters scale and orientation

changes. We tested the adaptive filter model with three different datasets, also

compared the results against two conventional CNN configurations that used

different fixed size filters.

4.1 Filter Guide Experiments

One can argue that the filter guide is unnecessary because a relatively large CNN-

layer can learn any filter. To disprove this idea we conducted a test with an

encoder where the input is an image the filter is expected to learn a simple

filtering operation.

25

(a) Target (b) Output (c) Initial Envelope
Function

(d) Final Envelope
Function

Figure 4.1: An example chosen from hand-written digits. Applied a gaussian
filter, the only envelope function learns to enlarge the filter.

4.1.1 Learning a Gaussian filter

We conducted a test on a simple auto-encoder stack where the input is 28 × 28

image and output is the same input applied edge filter on one axis. The adaptive

convolutional layer is expected to learn the filter without any weights. Figure

4.1 demonstrates how A-CNN can learn a Gaussian filter. The final σ stops to

change on almost identical precision to targets Gaussian wideness. As trivial this

problem might seem, the only trainable parameter is σ of the filter. No weights

or biases are present on the training model.

4.1.2 Learning a Gaussian and edge filter

Perhaps one of the biggest obstacles in this study was the cancellation of envelope

function by the weights. Experiment on Section 4.1.1 can learn a Gaussian filter

with and without training weights. Although, weights collaboration with envelope

function is not illustrated. The input image used in this experiments is convolved

with a Gaussian and edge filters respectively. An envelope function can not

regenerate an output for both filters. Figure 4.2(b) and 4.2(c) shows the finals

weights and envelope function respectively. In addition to Gaussian’s scale and

orientation features, the envelope function also limits the effective area of weights.

We can conclude that weights and envelope function can be trained together.

26

(a) Target (b) Weights (c) Envelope Function (d) Weights * Envelope
Function

Figure 4.2: An example chosen from hand-written digits. Applied a gaussian and
sobel filter respectively.

4.2 Application on deeper and wider networks

GoogleNet, a deep convolutional neural network architecture, uses "inception

modules" which stacks different sizes of convolutional kernels and pooling layer

into one output layer. The main idea of the study is to improve computational

utilization and increase the levels of deepness and wideness. ACNN has a similar

idea to train different scaled kernels in the same layer. We replaced the incep-

tion module’s 3× 3 and 5× 5 convolutional layers with a single ACNN layer and

conducted a similar test case on shallower network architecture. Figure 4.4 illus-

trates the adaptive-module used in replacement for inception-module described

in section 2.1.5.

In order to keep the computational performance faster, we used an alternative

envelope function which only scales up and down on the kernel described in sec-

tion 3.1.2. The original architecture is 22 layers (layers only with trainable pa-

rameters) in total whereas our implementation has 11 layers in order to keep

the test simple and faster. The network details are described in table 4.1. Our

test setup uses nesterov momentum as optimization method with 0.9 momentum,

fixed learning rate 0.01. Trained 150 epochs with 500 mini-batches. Input data-

set is CIFAR-10 [20] 32 × 32 × 3 image-set is divided into 50, 000 training and

10, 000 validation sets.

Validation accuracy is shown on figure 4.5. The adaptive module is performing

less or equally whereas the last stacked adaptive-module filters are illustrated in

27

(a) Envelope functions

(b) Effective weights

Figure 4.3: a) Envelope functions of first 72 filters (144 filters in total) in ACNN
at the deepest level in adaptive module. b) Weights summed in depth channel
and multiplied with corresponding envelope function.

figure 4.3 has a variety of scaled kernels. We initiated Σ such that they have

approximately 3× 3 effective area. Adaptive kernels can grow up to 5× 5 when

envelope function grows. Scaled weights in figure 4.3(b) shows scaled weights,

their effective area is limited by their corresponding envelope function outputs

shown on 4.3(a). The figure shows that filter scales are trained to scale up and

down. We used L-2 norm regularization on weights and as the figure shows the

inactive regions of the weight matrices are very close to zero.

28

(a) Naive Adaptive Module (b) Adaptive Module

Figure 4.4: a) Naive adaptive module does not implement 1× 1 convolutions. b)
1× 1 convolutions are used to increase non-linearity and reduce dimension.

Figure 4.5: Validation accuracy plot for inception and adaptive modules.

type
patch size/

stride
output

size
depth #1×1

#3×3

reduce
#3×3

#5×5

reduce
#5×5

pool
proj

convolution 7×7/1 32×32×16 1
max pool 3×3/2 30×30×16 0
convolution 3×3/1 30×30×48 2 16 48
max pool 3×3/2 28×28×48 0
inception (3a) 28×28×64 2 16 24 32 4 8 8
max pool 3×3/2 14×14×64 0
inception (4a) 14×14×128 2 48 24 52 4 12 16
max pool 3×3/2 7×7×128 0
inception (5a) 7×7×240 2 64 40 80 8 32 32
avg pool 7×7/1 1×1×240 0
dropout (40%) 1×1×240 0
softmax 1×1×10 0

Table 4.1: GoogLeNet incarnation of the Inception architecture

29

Layer Units Filters Filter Size Pool Size Activation
1- input - - - - -
2- convolution-1 - 8/16* 5x5/11x11 - ReLu
3- max pool-1 - - - 2x2 -
4- convolution-2 - 8/16* 5x5/11x11 - ReLu
5- max pool-2 - - - 2x2 -
6- dropout(50%) - - - - -
7- fully connected - 1 256 - - - ReLu
8- fully connected - 2 10 - - - Sigmoid

Table 4.2: The network topology that is used to test our method. All three
networks were comprised of 8 layers. In conv-1 and conv-2 layers, the proposed
adaptive model (ACNN) used an 11×11 base grid for filters, whereas ’cnn-5’ and
’cnn-11’ used 5× 5 and 11× 11 filter sizes, respectively. *CIFAR-10 experiments
used 16 filters instead of 8.

4.3 Scale and orientation experiments

We tested the adaptive filter model with three different datasets, compared the

results against two conventional CNN configurations that used different fixed size

filters. All three networks have the same architecture stacked with two convolu-

tions followed by pooling layers, a dropout layer, and two fully connected layers

as described in table 4.2. The only difference between the adaptive CNN (ACNN)

and conventional CNNs (cnn-5, cnn-11) is the replacement of convolution layers.

The hyperparameters we used are as follows; Learning rate: 0.01, momentum:

0.95, batch size: 500. We trained each model 500 epochs and compared classifi-

cation errors, scale and orientation changes in filters. Though the learning rate

for Σ could be adjusted separately it was not necessary.

4.3.1 MNIST

MNIST [21] is a database of handwritten digits, widely used in machine learning

research to test models. It has 50,000 training and 10,000 testing images from

10 different categories. To observe the change in Σ, we calculated its eigenvalues

and eigenvectors. The maximum eigenvalue represents the scale, whereas the

30

(a) Orientation Change. (b) Scale Change.

Figure 4.6: Covariance matrix Σ change in MNIST dataset. Depicted by the (a)
angle of largest eigenvector and (b) largest eigenvalue.

(a) Gaussian envelope functions. (b) Scaled filters. (c) Convolution outputs.

Figure 4.7: The first layer (conv-1) filters at the end of training with MNIST. (a)
Gaussian envelopes, (b) scaled filters, (c) output of a sample that was convolved
with each filter.

tangent between eigenvectors shows the orientation as illustrated in Figure 4.6.

The early stages of training orientation changes happen rapidly whereas scale

tends to change continuously. In Figure 4.7, we can observe the learned envelope

functions scale and orientation effects on filters. Smoothing effect of the envelope

function over the input is also observed in some outputs (4.7(c)).

Figure 4.8 shows the classification error plot. Although, the adaptive filters had

no performance gain against conventional CNN-11, CNN-5, a variety of scale and

orientation effects can be observed on the final filters.

31

Figure 4.8: Classification error for MNIST dataset.

4.3.2 MNIST Cluttered

Cluttered MNIST dataset [22] consists of 60, 000 samples in 10 classes. We split

this dataset into 50, 000 and 10, 000 for test and train purposes, respectively.

Randomly selected 8 samples are illustrated in Figure 4.9. It contains 60 × 60

images generated from the original MNIST database with numerous distractions.

Projecting the original MNIST 28×28 pixel space onto 60×60 also caused changes

in scale. Thus, the dataset has the scale and rotational variances, in addition to

cluttered background noise which makes it a suitable test case to demonstrate

the use of adaptive filters. Figure 4.10 shows classification error. Compared with

5× 5 and 11× 11 kernel sizes, adaptive kernels perform better than conventional

neural networks.

4.3.3 CIFAR-10

This dataset [20] is a relatively small (32×32×3) image set with 60, 000 samples

from 10 different classes. We divided this dataset into 50, 000 train and 10,000

test sets, respectively. Other than MNIST dataset, color channels are present, and

32

Figure 4.9: Eight randomly selected samples from the cluttered MNIST dataset.

Figure 4.10: Classification error for cluttered MNIST dataset.

objects are much more in need of multi-scale features. The classification results

that are shown in Figure 4.12. ACNN performed better in terms of classification

performance. For further investigation, we also included the change of Σ for

learned envelope functions and scaled filters in Figure 4.11. Compared to MNIST,

the envelope functions are observably different; and included both large, small,

rotated filters. The change in scale and orientation is shown in Figure 4.13.

Compared with change on Σ in MNIST test, scales and orientations have more

variation and some filters tend to shrink, whereas some were enlarged their scales.

33

(a) Gaussian envelope functions. (b) Scaled filters.

Figure 4.11: The first layer filters at the end of training in CIFAR-10 database.

Figure 4.12: Classification error for CIFAR-10 dataset.

34

(a) Orientation Change. (b) Scale Change.

Figure 4.13: Plots for covariance matrix Σ change in CIFAR-10 dataset, depicted
by the (a) angle of largest eigenvector, (b) largest eigenvalue.

35

Chapter 5

Conclusion

In this study, we propose an adaptive convolution filter model based on a Gaussian

kernel that is acting as an envelope function on shared filter weights. The plots of

scale and orientation changes during the training epochs show that the adaptive

model is capable of generating differently scaled and oriented filters in a single

convolution layer. However, besides bounding and scaling of convolution weights,

the Gaussian kernel tends to perform smoothing on input. Such that, if all weights

were set to 1 and not trainable, the kernels perform only a Gaussian smoothing

operation on input.

The initial setting of variance terms to 1.0, enables an initial filter of 5x5 size.

During training the effective size of the filters is gradually increased. This is

because enlarging filters enable more weights to be included in the convolution,

which will allow further reduction in the network error. Therefore, the adaptive

filter may be prone to over-fit more than a conventional fixed sized filter of the

same initial size. However, because the envelope rescales weights (max 1.0), it

has a regulative effect on their magnitudes, which shall create an advantage. In

overall, training of the adaptive filter model did not require very fine tuning of the

parameters. However, we observed that the use of dropout layer encouraged the

development of filters of different scale and orientation. This can be explained by

that the parallel and sparse network configurations induced by the dropout mech-

anism forces filters to prevent co-adaptation and become independent. We will

36

investigate other ways of inducing independent filters, perhaps with an additional

cost term for the network which punishes co-adaptation.

A clear benefit of our model is that it removes the filter size from the list of

hyper-parameters of deep learning networks. However, our main purpose is to

add an adaptive multi-scale representation capacity to convolution layers. The

results show that the advantage of using the new model depends on the complex-

ity and variations in training and test data. Among the three datasets, MNIST

is the simplest where digits are size-normalized and centered. The adaptive fil-

ters have less or no need for scale adaptation in pixel space, which resulted in

no improvement in classification error when compared to conventional CNNs.

However, MNIST cluttered and CIFAR-10 include examples of arbitrary scale,

orientation, and center, which allowed the filters to adapt their scale and orien-

tation to improve training while not over-fitting. Therefore, we can conclude the

adaptive filters expressive power is revealed in datasets with variations in scale

and orientation. It is worthwhile to investigate its applications to other domains.

The new and adaptive model of convolution layers allows filters’ scale and orienta-

tion to be learned during training. Therefore, a single convolution layer can have

filters at various scales and orientations. As a result, a single convolution layer

can adapt to extract multi-scale information from its input. State-of-the-art deep

networks have many layers and more complex designs compared to the networks

that were tested in this study. An interesting question which we will investigate

further is whether using the adaptive filter layers can shorten the depth of state-

of-the-art architectures, such as inception [9], highway [23] or thin [24]. Though

our aim is not to fully replace stacked and deep architectures, the new model

may help reduce redundancy and improve accuracy. Another question is whether

placing the adaptive layer in deeper levels of a network can produce additional

gains by focusing on the higher level representations.

37

References

[1] T. Lindeberg, Scale-Space Theory in Computer Vision. Norwell, MA, USA:

Kluwer Academic Publishers, 1994.

[2] N. Dalal and B. Triggs, “Histograms of oriented gradients for human de-

tection,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, vol. 1. IEEE, 2005, pp. 886–893.

[3] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, Nov 1998.

[4] D. G. Lowe, “Object recognition from local scale-invariant features,” in Com-

puter vision, 1999. The proceedings of the seventh IEEE international con-

ference on, vol. 2. Ieee, 1999, pp. 1150–1157.

[5] S. Mallat and S. Zhong, “Characterization of signals from multiscale edges,”

IEEE Transactions on pattern analysis and machine intelligence, vol. 14,

no. 7, pp. 710–732, 1992.

[6] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust object

recognition with cortex-like mechanisms,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 29, no. 3, pp. 411–426, March 2007.

[7] T. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “Pcanet: A simple

deep learning baseline for image classification?” CoRR, vol. abs/1404.3606,

2014. [Online]. Available: http://arxiv.org/abs/1404.3606

38

http://arxiv.org/abs/1404.3606

[8] M. D. Zeiler and R. Fergus, Visualizing and Understanding Convolutional

Networks, 2014, pp. 818–833. [Online]. Available: https://doi.org/10.1007/

978-3-319-10590-1_53

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with

convolutions,” CoRR, vol. abs/1409.4842, 2014. [Online]. Available:

http://arxiv.org/abs/1409.4842

[10] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture

of monkey striate cortex,” The Journal of physiology, vol. 195, no. 1, pp.

215–243, 1968.

[11] “Applied deep learning - part 1: Artificial neural networks,” ac-

cessed: 2019-02-02. [Online]. Available: https://towardsdatascience.com/

applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6

[12] S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardenes,

M. Romance, I. Sendina-Nadal, Z. Wang, and M. Zanin, “The structure and

dynamics of multilayer networks,” Physics Reports, vol. 544, no. 1, pp. 1–122,

2014.

[13] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint

arXiv:1312.4400, 2013.

[14] F. B. Tek, “An adaptive locally connected neuron model: Focusing

neuron,” CoRR, vol. abs/1809.09533, 2018. [Online]. Available: http:

//arxiv.org/abs/1809.09533

[15] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-

forward neural networks,” in JMLR W&CP: Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics (AISTATS

2010), vol. 9, May 2010, pp. 249–256.

[16] D. Mishkin and J. Matas, “All you need is a good init,” CoRR, vol.

abs/1511.06422, 2015. [Online]. Available: http://arxiv.org/abs/1511.06422

39

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
http://arxiv.org/abs/1409.4842
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
http://arxiv.org/abs/1809.09533
http://arxiv.org/abs/1809.09533
http://arxiv.org/abs/1511.06422

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification,” CoRR, vol.

abs/1502.01852, 2015. [Online]. Available: http://arxiv.org/abs/1502.01852

[18] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby,

D. Nouri et al., “Lasagne: First release.” Aug. 2015. [Online]. Available:

http://dx.doi.org/10.5281/zenodo.27878

[19] Theano Development Team, “Theano: A Python framework for

fast computation of mathematical expressions,” arXiv e-prints, vol.

abs/1605.02688, May 2016. [Online]. Available: http://arxiv.org/abs/1605.

02688

[20] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” Master’s thesis, Department of Computer Science, University

of Toronto, 2009.

[21] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

[Online]. Available: http://yann.lecun.com/exdb/mnist/

[22] c. Christopher, “Cluttered mnist dataset,”

https://github.com/christopher5106/mnist-cluttered, 2015.

[23] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”

CoRR, vol. abs/1505.00387, 2015. [Online]. Available: http://arxiv.org/abs/

1505.00387

[24] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,

“Fitnets: Hints for thin deep nets,” CoRR, vol. abs/1412.6550, 2014.

[Online]. Available: http://arxiv.org/abs/1412.6550

40

http://arxiv.org/abs/1502.01852
http://dx.doi.org/10.5281/zenodo.27878
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1412.6550

	Abstract
	Özet
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Related Work

	2 Literature Survey
	2.1 Machine Learning
	2.1.1 Classification
	2.1.2 Neural Networks
	2.1.2.1 Back-propagation

	2.1.3 Auto-encoders
	2.1.4 Convolutional Neural Networks
	2.1.4.1 Convolutional Layer
	2.1.4.2 Non-linearity Layer
	2.1.4.3 Pooling Layer

	2.1.5 Related Adaptive Neural Networks

	3 Method
	3.1 Envelope Function
	3.1.1 Selecting an Envelope Function
	3.1.2 An alternative envelope function

	3.2 Initialization
	3.3 Implementation

	4 Experiments
	4.1 Filter Guide Experiments
	4.1.1 Learning a Gaussian filter
	4.1.2 Learning a Gaussian and edge filter

	4.2 Application on deeper and wider networks
	4.3 Scale and orientation experiments
	4.3.1 MNIST
	4.3.2 MNIST Cluttered
	4.3.3 CIFAR-10

	5 Conclusion
	Reference

