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ANALYSIS OF DIFFERENT MAINTENANCE

POLICIES ON A MULTI-COMPONENT SYSTEM

USING DYNAMIC BAYESIAN NETWORKS

Abstract

Recently, system components and interactions between them have become more

complex and this situation has made it difficult to provide maintenance decisions.

Herewith, determining effective decisions has played an important role. In multi-

component systems, many methodologies and strategies can be applied when a

component or a system has already broken down or when it is desired to identify

and avoid pro-actively defects that could lead to future failure.

In dynamic systems, it is important for proactive maintenance to increase sys-

tem reliability by performing early diagnosis-based maintenance activities with-

out waiting for a problem. In this study, we focus on proactive maintenance of

a complex multi-component dynamic system. Components are hidden although

there exists partial observability to the decision maker. Components deteriorate

in time. It is possible to replace or repair components with a given cost. We want

to find a policy that minimizes the total maintenance cost in a predefined time

horizon. We propose several maintenance policies and compare the performance

of these by simulating them via Dynamic Bayesian Networks on an empirical

model. Furthermore, a dynamic Bayesian network is constructed for the main-

tenance of an endo generator system to show how the proposed methods can be

implemented in real life.

Keywords: Multi-component systems, Maintenance, Reliability, Policy anal-

ysis, DBNs
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ÇOK-BİLEŞENLİ SİSTEMLER ÜZERİNDE DİNAMİK

BAYESÇİ AĞLAR KULLANARAK FARKLI BAKIM

POLİTİKALARININ ANALİZİ

Özet

Son zamanlarda, sistemlerin karmaşıklığı artmış ve bunun paralelinde bileşenler

arasındaki etkileşimler gittikçe daha karmaşık hale gelmiş ve bu durum bakım

kararlarını vermeyi zorlaştırmıştır. Dolayısıyla etkili bakım politikalarının be-

lirlenmesi ve uygulanması büyük önem kazanmıştır. Çok bileşenli sistemlerde,

birçok metodoloji ve strateji bir bileşen veya sistem bozulduğunda veya bir arızaya

neden olabilecek proaktif olarak kusurları tanımlamak ve önlemek istendiği zaman

uygunanabilir.

Dinamik sistemlerde, bir problem beklemeden erken tanıya dayalı bakım faaliyet-

lerini gerçekleştirerek sistem güvenilirliğini artırması proaktif bakım için önemlidir.

Bu çalışmada, çok bileşenli dinamik bir sistem üzerinde çeşitli bakım politikaları

oluşturup bunları sistem performansı ve bakım maliyetleri bakımından karşılaştırmayı

hedefledik. Ele alınan sistem çeşitli bileşenler ve işlemlere sahiptir. Karar ver-

mek için kısmi bir gözlemlenebilirlik olmasına rağmen, bileşenlerin durumları

gizlidir gizlidir ve zaman içinde bozulmaktadır. Bileşenleri belirli bir zaman

içerisinde değiştirmek mümkündür. amaç, belirli bir planlama ufkunda toplam

bakım maliyetini en aza indirmektir. Empirik bir sistem için bakım politikaları

önerip bunları çeşitli senoryalar altında Dinamik Bayesçi Ağlar ile planlama ufku

boyunca benzeterek performanslarını karşılaştırıyoruz. Ayrıca, önerilen yöntemlerin

gerçek hayatta nasıl uygulanabileceğini göstermek için bir endo jeneratör sistem-

inin bakımı için dinamik bir Bayesian ağı oluşturulmuştur.

Anahtar kelimeler: Çok bileşenli sistemler, Bakım, Güvenirlilik, Politika

analizi, DBNs
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Chapter 1

Introduction

In recent years, systems had a more complex structure and have increased main-

tenance cost by means of evolving technology and industry. Following this, there

have become more and more complex interactions between components and this

situation make it difficult to give their maintenance decisions. Consequently, the

importance of determination and implementation of effective maintenance policy

to decrease maintenance cost and time has increased. In multi-component sys-

tems, effective maintenance policies are more important than single-component

systems. Maintenance is a very important aspect of controlling the system. Sys-

tems are becoming more complex, but in a way that takes a very high intention

of researchers. Many methodologies and strategies have been proposed and im-

plemented in this area.

Also, maintenance stands at the center of strategical plans for economic and social

development. First, of foremost, it provides rational and long-term usage of all

productive resources with the protection of the environment, economic feasibility

and also it provides more effective management [1]. The industrial revolution

has made a major contribution to the development of the maintenance and its

principles in the maintenance field. However, it is still hard to apply them due to

a lot of reasons and factors like size, cost and complexity [2]. While a maintenance

action means of a basic maintenance intervention, a set of rules that describe the

1



triggering mechanism for various maintenance actions is defined as maintenance

policy [3].

1.1 Maintenance Strategies

Maintenance actions are classified as shown in Figure 1.1 [4]. Maintenance actions

are basically divided into two parts which are reactive and proactive strategies

in system health monitoring and estimation. Reactive maintenance actions are

known as breakdown maintenance and it repairs when the equipment has already

broken down. It focuses on bringing the component back to the normal situ-

ation. Reactive maintenance consists of corrective maintenance and emergency

maintenance.

• Corrective maintenance is an activity that is performed to remove the fault

and make the system perform its functions after a fault has occurred in the

system.

• Emergency maintenance is a maintenance activity that must be done im-

mediately to prevent serious consequences [5].

On the other hand, during proactive or scheduled maintenance, maintenance

activities are scheduled without waiting for the system failure. Proactive main-

tenance is a maintenance action that monitors the deterioration of components

and avoids failures by undertaking minor repairs [6]. Proactive maintenance ac-

tivity is examined under two main headings. These are preventive maintenance

and predictive maintenance. With these activities, the likelihood of unexpected

equipment failures is reduced. Preventive maintenance is use-based maintenance.

In other words, maintenance activities are performed in proportion to the amount

of use of the machine or at the end of a certain period. [7, 8].

Regular and routine maintenance helps to keep the component run and prevent

unexpected interruptions of equipment failure and to hinder the high maintenance

2



cost. This type of maintenance is based on the probability of the equipment failure

in the specified interval. The benefits of preventive maintenance include reducing

equipment failures and extending equipment life. The disadvantage of preventive

maintenance is that production must be interrupted at scheduled intervals to per-

form the work. In addition, it is necessary to plan maintenance on the component

before the failure occurs in component or system. Preventive maintenance can

be very complex, especially for companies with a lot of components.

Preventive maintenance strategy is examined under three main headings. These

are constant interval maintenance, age-based maintenance and imperfect mainte-

nance as shown in Figure 1.1.

• Constant interval maintenance is the maintenance of the relevant system or

components at a predetermined fixed time interval. Intervals are selected

according to mean time to failure of the system. The components are reg-

ularly reviewed and any detected failures or degradations that can cause

failures are corrected in the system [9, 10].

• Age-based maintenance is one of the most widely used maintenance strate-

gies in terms of component age. The main idea is that the component is

Figure 1.1: Taxonomy of maintenance strategies.

3



changed or repaired at the time of specific age t at t ∈ T or at the first fail-

ure many T time horizon. Then, next preventive maintenance is scheduled

to t units later [11, 12].

• Imperfect maintenance is defined as an action where the system is some-

where between ”as good as new” state and ”as bad as old” state. Mainte-

nance of a system that is broken is generally insufficient. After maintenance

has been completed the system will be new, but not as good as younger. Im-

perfect maintenance studies show an important improvement in reliability

and maintenance theory [13, 14].

On the other hand, predictive maintenance differs from preventive maintenance at

the point of scheduling of maintenance activities without degradation or failure.

Preventive maintenance activities occur at fixed time intervals, while predictive

maintenance activities happen on the dynamic times’ intervals. They determined

adaptability in predictive maintenance. Predictive maintenance strategy predicts

the state of the components when maintenance needs to be carried out. Prediction

of future faults ensures that maintenance is planned before failure occurs [15].

Predictive maintenance is divided into two parts as reliability centered mainte-

nance and condition-based maintenance as shown in Figure 1.1.

• Reliability- maintenance is a technique used to develop cost-effective main-

tenance plans and evaluation criteria to perform, repair and maintain the

functional capability of the equipment. Its main purpose is to reduce the

cost of maintenance by planning appropriate preventive maintenance work

to achieve these functions by focusing on the most essential functions of the

system. [16, 17].

• Condition-based maintenance is a decision-making strategy in which main-

tenance decisions are determined by observing the state of the system or

components. The system state is continuously monitored and measured

by the specific parameters of the system or application. In other words,
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conditionally-based maintenance is a way of maintenance that is produced

according to the measured values on the component or measurements made

on the observation [18, 19].

Nowadays, It is expected to have a direct effect on the maintenance strategy is

expected as the availability of new maintenance techniques and the economic con-

sequences of maintenance actions are understood. Various maintenance strategies

can be considered to trigger proactive or reactive maintenance interventions in

one form or in another. [3].

1.2 Multi-Component Systems

In the complex system, components affecting each other and the system becomes

complicated and it gets difficult to take a maintenance decision. Complex systems

have many components that are dependent or not. To reduce maintenance cost

and time, it is important to specify which types of dependencies exist between

components. Dependency on the components can be divided into three different

types: one of them is structural, the others are stochastic and economic [20].

• Stochastic dependency

This dependency considers the effect of a component’s degradation on the

lifetime distribution of other components. It is divided into two categories.

These are Type I failure interaction and Type II interaction. In the case of

Type II failure interaction, if a component has a failure, other components

may to certain failure probability. In Type II failure interaction, if a compo-

nent has a failure, this affects the failure rate of one or more component(s)

or cause over-dimensional stochastic damage (shocks) on them.

• Structural dependency

According to this dependency, before the replacement or maintenance of

defective components, it requires the replacement of some other working
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components. If components have structural dependencies, they cannot be

repaired independently. Therefore, this is not a dependency on failure, it is

a dependency on repair.

• Economic dependency

This is the type of dependence that causes grouping maintenance on compo-

nents to result in either cost savings or higher costs compared to individual

maintenance. This dependency is divided into two categories based on the

cost of grouping maintenance: Positive economic dependency provides cost

savings, negative economic dependency causes cost increase. Both posi-

tive and negative economic dependency corresponds k out of n systems. In

the case of n = k serial system, there is a positive economic dependency,

(n > k) means that there is a positive economic dependency when a compo-

nent fails. And following this there is redundancy. Also, there is a negative

dependency on the system as long as it is run. When optimizing mainte-

nance in k out of n systems, the calculation of downtime costs is a problem.

Because failure of a component does not lead to direct system failure.

In multi-component complex systems, it is quite conspicuous to define and model

the dependency between components and the cause-effect relationship of this de-

pendency. This is very important to identify dependencies between components

and cause-effect relationships for reliability, safety analysis, and maintenance.

Many methodologies have been applied and experienced for static and dynamic

systems. There are Bayesian networks (BNs) [21], fault tree (FT) [22] and de-

cision diagrams (DDs) [23, 24] using static models. Most of the methodologies

mentioned are based on the combination between probability theory and graphi-

cal presentation theory. Within these, generally directed acyclic graphs (DAGs)

are used to represent the system using nodes and arrows; where the nodes repre-

sent the variables in the system and the arrows define the relationship between

the nodes through conditional and transition probabilities.
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In real life, most of the systems are dynamic, so these methodologies have been

expanded with time. Expanded methodologies include: Dynamic Bayesian net-

works (DBNs) [25], Dynamic decision networks (DDNs) [26], Dynamic fault trees

(DFT) [27]. The main different point between static and dynamic systems is the

existence of the concept of ageing or deterioration of the components in a dynamic

system. In other words, the state of the variables may change from one state to

another according to the probability distribution in the time. Also, DBNs use

transition possibilities and have the flexibility to model dependencies between

components easily, it is very easy to implement in complex systems.

1.3 Thesis Objective

The objectives of the project are different from the maintenance problems dis-

cussed in the literature. Also, the assumption that component states are fully

observable may not be realistic for most systems. In this thesis, our aim is to

develop original developed corrective, proactive and opportunistic maintenance

strategies for a multi-component system where partial observations and depen-

dencies among its components can be seen. Another objective of the thesis is

to analyse the performances of the proposed strategies on an empirical multi-

component system with partial observations in a finite planning horizon with

Dynamic Bayesian networks (DBNs). We will also develop a DBN model for

a real-life maintenance problem and give insights for the implementation of the

proposed strategies and methods.

1.4 Thesis Motivation

In order to understand the state of multicomponent complex systems, we first

realize the possibility of failure of components without any maintenance. Figure

1.2 shows the results of this prognosis without any maintenance. As expected,

the possibility of failure increases when no maintenance is planned. We see a
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decrease in the probability of failure of the components undergoing a maintenance

operation. Figure 1.3 shows the prognosis results. Because a replacement is

assumed to be perfect maintenance when a component is changed over a period

of time, the failure probability of this component is reset as shown in Figure

1.3. This result shows us how important it is to take maintenance decisions. The

result provides us with the motivation of creating different maintenance strategies

in this thesis.

Figure 1.2: Component failure trend
without maintenance

Figure 1.3: Component failure trend
with maintenance

1.5 Thesis Outline

This study is organized as follows. In Chapter 2 presents related literature

about the maintenance, reliability, maintenance strategies, applying them on a

multi component complex system, dependencies between the components and ap-

proaches. We will give details about the methodology in Chapter 3, including the

BNs and DBNs. In Chapter 4 we will give the details of the definition of the

problem, presentation of the multi-component system with its main components,

and assumptions made. Then, we will present the proposed solutions related to

the maintenance strategies in Chapter 5. We will give our computational results

and we examine these in Chapter 6. We develop a DBN model for a real-life

maintenance problem in Chapter 7. Finally we conclude our work in Chapter 8.
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Chapter 2

Literature Survey

Recently, there has been a great concern in the maintenance and solving the

problems of complex systems. The reason is that the industry has started to

be composed of very complex systems with highly interactive components. In

order to measure the success of complex systems, some aspects have been defined

as reliability and usability. Reliability is the probability that a system (part or

component) performs its intended task under specified conditions for a given time

interval. Availability is the percentage of time that a component or system is in

its required function state.

This chapter provides a review of the following topics: Maintenance decisions,

maintenance strategies, dependencies among components and probability mod-

elling in complex systems.

2.1 Maintenance Decisions and Maintenance Strategies in Complex

Systems

Reliability and maintenance are two basic concepts to be used in industry. There

are many strategies and approaches that are recommended in the literature re-

tailed with these fields.

Gupta et al. [28] studied the issue of allocation of repairable components as

a multi-objective optimization problem. They discussed two different models.
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These are reliability effective model and maintenance (cost and time spent), ef-

fective models. These two models have been formulated as multi-objective non-

linear programming (NLP) and solved by a fuzzy goal programming algorithm in

the mathematical programming solver LINGO.

Chockie et al. [29] examined four organizations (U.S. Air Force program, U.S.

Navy ballistic submarine program, U.S. commercial aviation industry, and the

Japanese nuclear power industry) to assess the system and component ageing

degradation in the nuclear industry. The selection of critical components de-

fined as system analysis, performance analysis and observation of system ageing

through the development of appropriate preventive (time-based) and forecasting

(condition-based) maintenance tasks in the system. Lapa et al. [30] purposed to

increase the availability of the nuclear power plant by optimizing the preventive

maintenance plan. They used the genetic algorithm and probabilistic security in

the optimization. The genetic model has unrestricted optimization that allows

changes in maintenance plans.

Carazas et al. (2009) proposed a method for assessing the reliability and usability

of gas turbines in power plants. The method seemed appropriate for interrelated

components in systems. The method is based on reliability concepts. These

concepts allowed the identification of critical components for maintenance and

they defined the system reliability and usability. They used reliability-centered

maintenance to improve system reliability and reduced unexpected failures of

critical components [31].

Kothamasu et al. considered prognosis and it was a difficult task that required

precise, adaptive and intuitive models to predict future machine health conditions.

A large number of modelling techniques have been proposed in the literature and

applied in practice. This article reviews the philosophies and techniques that

focus on improving reliability and reducing unscheduled downtime by monitoring

and predicting the health of the machine [4].

10



In recent years, the prognosis has been fulfilled frequently in maintenance plan-

ning. Lebold et al. defined prognosis as one of the most important methods for

proactive maintenance. It is used to estimate the remaining life of a component

or a system [32]. Also, Muller et al. proposed a new prognostic model for the

resolution of metal coils life experience. This prognostic model included both

probabilistic approach and dynamic monitoring [33]. Besides this, Tiddens et

al. also discussed prognostic methods as they have been extensively studied, but

are rarely used by companies. The authors explain how companies can apply

prognostic technologies [34].

In another study, a prognostic model used dynamic Bayesian networks was pro-

posed for a system [35]. It was also used to ensure prognosis, reliability, perfor-

mance, and safety of complex systems. An evaluation model was developed using

Dynamic Bayesian Networks (DBNs) for a gas turbine compressor system. The

ant colony algorithm is also used to obtain propagation paths of errors [36].

Sharma et al. studied a literature review and future perspectives on maintenance

optimization. These activities were preventive maintenance, corrective mainte-

nance, and predictive maintenance. Also, these maintenance models included the

analytical hierarchy process, the Bayesian approach, the Galbraith information

processing, and genetic algorithm. There was a new trend towards the use of

simulations for maintenance optimization that changed the appearance of main-

tenance [37].

A survey was conducted to investigate maintenance policies in degradation sys-

tems [38]. An effective maintenance strategy has been developed by establishing

various maintenance policies in terms of system performance, maintenance costs,

maintenance times and system reliability. The purpose of maintenance policies

was to increase the average time between failures and the frequency of failure

that cause maintenance to reduce system reliability, availability, and downtime.

In this paper, the authors examined the stochastic behavior of the system under
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various stock policies and determined the optimal maintenance policies. In gen-

eral, the most appropriate maintenance policy determined by achieving minimum

maintenance costs, maximum system reliability and minimum maintenance time.

An opportunistic predictive maintenance-based DBN-HAZOP model implemented

for a multi-component system in real life [39]. Two approaches presented, as a

local predictive maintenance approach and a global opportunistic predictive main-

tenance approach. Then, an effective maintenance policy that integrated these

approaches ensured optimum maintenance time, reliability and maintenance cost.

Also Hu et al studied DBN based failure prognosis method considering the re-

sponse of protective layers for the complex industrial systems. This study about

failure prognosis which generally considers only dependencies of components. But

it was important that defining protective layers and its effects on the system to

make the failure prognosis analysis more accurate [40].

The article by Verbert et al. was about condition-based maintenance but his

article was studied on last-minute maintenance and consider only one thing such

as maintenance type, maintenance time or grouping maintenance etc. In this

article, a model which included all of the above parameters was studied. Thanks

to this method, what type of maintenance action was required and what time it

should have been done could be decided at the same time. Besides this, combining

or spreading components to maintain could be considered. This means that this

article approached the maintenance both economic dependence and structural

dependence of components [41]

Melani et al. studied on Criticality-based maintenance of a coal-fired power plant.

In this article, the authors handled the components risks in a lot of ways such

as human life risk, environmental risk, loss of production, dependency risk etc.

Also, they show how many of methodologies cpıuld be combined. Besides, as

the multi-criteria optimization method, they used the Analytic Network Process

instead of Analytic Hierarchy Process which was easier [42].
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2.2 Dependencies among the Components and Probability Modelling

in Complex Systems

In recent years, increasingly complex systems have become important in the main-

tenance of policies. Therefore, studies on maintenance policies are increasing in

the literature. Because of the complexity of systems, dependencies between com-

ponents have increased. In a study, they developed a dynamic predictive mainte-

nance policy for complex multi-component systems using different dependencies

between components. This policy collected information about the useful life of a

component and its degradation. Then, schedule of the maintenance policy was

updated according to new information [43]. In another study, they proposed

maintenance policy optimization for multi-component systems. They considered

the degradation of components and imperfect maintenance actions. They used a

clustering method to group components with stochastic economic dependencies

[44].

There are three dependencies between components. These are structural, eco-

nomical and stochastical dependencies. One of the most studied in the literature

is economic dependence [45]. In the literature, the number of studies for more

than one type of dependence is quite low. Scarf and Deara discussed structural

and economic dependence together [46]. In addition, almost all of them made

maintenance autonomy under the assumption of an infinite planning horizon in

the studies on maintenance of multi-component systems to facilitate mathemat-

ical analysis. Thus, it was possible to extract analytical expressions for optimal

control parameters and optimal cost. The finite-horizon model could be solved

within a reasonable period of time [47, 48] but using the intuitive methods in-

creased the size of the problem increases [49, 50, 51].

Up to now, none of the above-mentioned studies related to maintenance of multi-

component systems have used predictive maintenance models that use forecasting,

predictive information, or predictive useful life estimation. Last studies began to

be encountered in times. Tian and Liao studied the situation-based maintenance
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optimization of multicomponent systems that were economically dependent on the

components [52]. Bouvard et al. developed a dynamic conditional-based mainte-

nance planning model for multi-component systems [53]. Hong et al. developed

an optimal status-based maintenance strategy for multi-component systems with

dependent stochastic failures [54]. In particular, Camcı showed that when the

systems with interdependent components are taken into consideration, predictive

maintenance methods using predictive information instead of threshold mainte-

nance policies were more advantageous [55].

Determining the dependencies between components in complex systems is very

important. They consider cause-effect relationships themselves. They are par-

ticularly important in reliability, safety analysis, and maintenance. In this area,

researchers developed various approaches. These approaches were used to de-

scribe these relationships, such as event tree, fault tree and bow tie in literature.

In a study, they developed fuzzy fault tree analysis for failure probability anal-

ysis. This method determined the main cause of accidents in chemical storage

tanks[56]. In another study, they proposed a new methodology that was used

production paths and the most dangerous equipment of accidents. They were

used event tree in the process industry based on the example of the tank farm

case study [57]. The other approach was bow-tie. It was used for dynamic risk

analysis in another study in literature [58].

Recently, Bayesian Networks (BNs) become very popular in addition to all these

approaches. Many researchers compare BNs with all of the aforementioned ap-

proaches. The reason is that the other aforementioned approaches compare dif-

ferent analysis methods such as reliability, safety, and maintenance. Bayesian

networks provide the possibility of failure, predict the future of systems and al-

low them to update the probabilities of failure easily. Moreover, the modelling

capacity of BNs is more flexible than other approaches. In a study, authors com-

pared differences between bow-tie and BNs approach to dynamic safety analysis

of process systems [59]. They indicated that the approaches such as bow tie,
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event tree, and fault tree were based only on the static nature of the components

and that was very difficult to update the probability of events.

In other respects, the structure of BNs aren’t based on a single output and include

probabilistic dependency relationships of all variables in the system. BNs provide

a great advantage in the analysis of complex systems with particular uncertainty.

In a study, they used BNs modelling for maintenance planning in a manufacturing

industry. They provided the simultaneous effect of various parameters such as

average downtime, the arrival rate of defects, failure rate, inspection period and

dependencies between components at the same time [60]. Also, another study

provided a diagnostic advisory framework for improved operational availability

in complex nuclear plants. Systems used the Bayesian Belief networks (BBN)

[61]. In another study, authors represented a nuclear system using the BNs.

They offered a solution to BNs as a log-linear model [62].

Dynamic Bayesian Networks (DBNs) are extended forms of BNs by adding the

time dimension to describe the dynamic behavior of random variables [25]. Li et

al. proposed a new methodology for a multi-state element reliability modelling

and analysis based on the integration of the Markov process and DBNs. They

used the Markov process to determine the state of transition relations and then

according to these relations, they built a DBN model considering perfect repair,

imperfect repair, and conditional based maintenance [63]. Also, Hu et al. had a

series of studies on this subject. One of these was about planning opportunistic

predictive maintenance for a gas turbine compressor system using HAZOP and

DBN. HAZOP was used to analyse and learn the system, and then a DBN model

was created based on these information [39].

15



Chapter 3

Methodology

Probabilistic graphical models (PGMs) are strong frameworks for representing

complex areas using probability distributions with numerous applications in com-

puter vision, machine learning, computational biology, and natural language pro-

cessing. These models provide a flexible framework for modelling large random

variable collections with complex interactions by combining probability theory

and graph theory. In this chapter, we explain Bayesian Networks and Dynamic

Bayesian Networks which are to be used for representing deterioration and de-

pendencies among system components.

3.1 Bayesian Networks

Bayesian Networks (BNs) are known as belief networks. They are members of

the family of PGMs which are used to represent information about the imprecise

definition of the set of the problem of interest. In these models, nodes refer to

random variables, while the edges between the nodes indicate the probabilistic

dependencies between random variables. BNs have a Directed Acyclic Graph

(DAG) structure. They provide an efficient representation of the multivariate

probability distribution of a set of random variables and the ability to perform

various calculations via this representation. Bayesian networks are an important

method in expert systems, which allows unquestioned expert opinions to enter

the system [64].
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A BN represents the causal probabilistic relationship of the set of random variable.

It provides the representation of a joint probability distribution [65]. BNs include

directed acyclic graph and a set of conditional probability distributions. They

have the qualitative and quantitative part. Qualitative part is a directed acyclic

graph and quantitative part constitute the conditional probability distributions.

X = (X1, X2, ..., Xn) be random variables having a set of conditional probability

functions (CPFs). The joint probability function of the random variable X [66]

can be formulated as in Equation 3.1.

Figure 3.1: An example BNs over the nodes

P (X1, ..., Xn) =
n∏

i=1

(P (Xi|pa(Xi))) (3.1)

An example of a BN over the variables X = (X1, X2, X3, X4, X5) is shown in

Figure 3.1. X1 and X2 are the parents of X3 or X3 is the child of X1 and X2.

Similarly X3 is teh parent of X4 and X5. X1 and X2 don’t have ancestors, also

X4 and X5 don’t have descendants. Considering the conditional property of BNs,

we can define joint probability as in Equation 3.2.

P (X1, X2, X3, X4, X5) = P (X1) ∗ P (X2) ∗ P (X3|X1, X2) ∗ P (X4|X3) ∗ P (X5|X3)

(3.2)

There are various inference algorithms to calculate the marginal probabilities for

each unobserved node that is informed of the state of the nodes that are not mon-

itored. Bayesian networks have three important inferences. There are ”Causal or
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Top-Down Inference”, ”Diagnostic or bottom-up inference” and ”Explaining away

inference” [67]. Bottom-up inference collects observations to determine current

conditions. Top-Down inference uses current situations as evidence to identify fu-

ture situations. Explaining away inference is a common reasoning model in which

alternative reasons to verify the cause of an observed or believed event diminishes

the need for search. [68].

3.2 Dynamic Bayesian Networks

Dynamic Bayesian networks are the added form of the time dimension to Bayesian

networks and direct graphical models of stochastic processes. They generalize

hidden Markov models and linear dynamic systems by representing the complex

state in terms of state variables that can have complex dependencies. The graph-

ical structure provides an easier way of specifying this conditional independence.

Hence, the compact parameterization of the model is ensured. [69].

The BNs formulation involves a joint probability distribution (JPD) P (X) of a set

of random variables X = {X1, ..., Xn}. The joint probability distribution expands

with dynamic processes in the DBNs. This dynamic process includes the joint

probability distribution of the set of the variables X[t] = {X1[t], ..., Xn[t]}. In

the DBNs, JPD is represented similarly as in BNs. Equation 3.3 formulates the

JPD for the dynamic process X[t] in the finite time interval [1, T ].

P (X1[1], ..., Xn[T ]) =
T∏
t=1

n∏
i=1

(P (Xi[t]|pa(Xi[t])) (3.3)

The graphical structure of DBNs can be seen with a combination of many BNs

associated by temporal arcs. Each of these static networks is called a time slice

of the DBNs. DBNs have an initial network and a transition network. Transi-

tion networks provide the dynamic process. In these networks, initial network is

represented as B1 and transition network is prepresentd as B→. By definition,

DBNs are based on the stationary assumption. Therefore, DBNs are identical
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according to structure and parameters for each time slice. DBNs move to the

next time interval by the transition network B→. This network encodes the time-

change transition probability distribution in the two time slots P (X[t]|X[t− 1])

for t > 1. Because of the first order Markov assumption, we can define the tran-

sition network on two time slices of variables. B1 defines the structure at time

t = 1 and encodes the distribution on variable X[1]. In a certain finite planning

horizon, unrolling the transition network provides a joint probability distribution.

JPD is calculated as in Equation 3.4 [70].

P (X[1], ..., X[T ]) = PB1(X[1])
T−1∏
t=2

(PB→(X[t]|X[t− 1])) (3.4)

Markovian processes use the Markov property to make the inference mechanism

easier. The Markov property means that when the current situation is given,

future situations are independent of past situations. Thanks to this property,

posterior probability can be calculated using the prior probability with transition

probability. The DBN is modelled, as shown in Figure 3.2.

Figure 3.2: An example DBNs with the two time slice

In the example given by Figure 3.2, the DBN model has a variable with two-

time slices. The first time slice shows the variables in the current time t and the

second time slice shows the variables in the next time period (t+ 1). This model

allows calculating the distribution of the variable by inference. A variable Xi
(t+1)

is defined by the current state in the current time Xi
(t). The CPT is defined by

the transition probability matrix which is represented in Table 3.1.

For calculating the marginal probability for every node, several different inference

algorithms can be benefited. The main type of query for the model calculates
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Table 3.1: CPT defining the transition probability matrix of markovian process.
Xi

(t) P (Xi
(t+1) = 0) ... P (Xi

(t+1) = ni)

0 P (Xi
(t+1) = 0)|Xi

(t) = 0) ... P (Xi
(t+1) = ni)|Xi

(t) = 0)
... ... ... ...

ni P (Xi
(t+1) = 0)|Xi

(t) = ni) ... P (Xi
(t+1) = ni)|Xi

(t) = ni)

the marginal distribution of a node Xi at a time-dependent on other nodes in

times 1, ..., T [71]. The most common type of query is ”filtering, ”smoothing”

and ”prediction” of which the explanations are given below.

• If T = t, the query is a filtering.

• If T > t, the query is a smoothing.

• If T < t, the query is a prediction.

There are several exact and approximate inference algorithms in the DBNs. Exact

inference is used when the analytical form of the problem exists and when the

calculation state is possible. It can be used with directional acyclic graphs. The

main exact inference algorithms are a forward-backward algorithm (FB), frontier

algorithm, interface algorithm. Approximate inference is used when the analytical

form is not available or the time required for the final solution is too long. The

main approximate inference algorithms are The Boyen-Koller (BK) algorithm,

The factored frontier (FF) algorithm and Loopy belief propagation (LBP) [25].
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Chapter 4

Problem Definition and Empirical Model

In multi-component systems, there are relationships and dependencies to be de-

fined between components. These can be very complex. A smaller empirical

dynamic model was developed to examine the performance of the designed main-

tenance strategies. In this section, a DBN model is designed to reflect the relation-

ships between the components. Also, the problem definition and the assumptions

used in the model are given in this chapter. According to these assumptions,

the detailed construction of the DBN model and all the components of it are

explained in detail. The probabilities of each component are calculated according

to the MTBF. Besides this, we also consider the costs related to the maintenance

of the components.

4.1 Problem Definition

In a complex multi-component system, maintenance decisions are difficult to plan

and implement. In addition, high costs arise by reason of the downtime and main-

tenance costs of the system caused by reactive maintenance. Reducing mainte-

nance costs and developing proactive or opportunistic maintenance are very im-

portant for complex systems. Probability chart models can be used to determine

to stop time and subsequent downtime. These models are quite difficult and com-

plex processes. Thanks to the flexibility of modelling DBNs, we can easily model

multi-component complex systems. The assumption that component states are
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fully observable in multi-component DBN models may not be realistic for most

systems. In this study, reactive, proactive and group maintenance policies for a

multi-component complex system have been developed. Their performances are

analysed on an empirical DBN model on a finite planning horizon.

4.2 Assumptions of the Empirical Model

The assumptions made in the experimental DBN model are as follows:

1. One of the assumptions of the thesis is a multi-component complex system

where partial observations and structural and random dependencies between

components can be seen.

2. In the thesis, we assumed that the components and processes are hidden

and can be inferred only from the observation node.

3. In the DBNs, it is not possible to define the actions. But we define actions

with probabilistic nodes in the DBN model.

4. Also all components have certain maintenance durations. The ageing of

the components continues to progress in the DBN model as long as the

system is running in real life. However, when the system halts, ageing of

the components is given a break. That’s why we have assumed that DBN

and system time are separate. With this assumption, when the system stops

due to maintenance, the ageing times of the components also stop.

5. The system starts at its best state at the beginning of the planned mainte-

nance horizon.

6. Since the planned maintenance horizon begins between the two revision

maintenances, it is quite possible to assume the constant failure rate. Also,

we know the MTBF of each component. We are able to use the DBN model

with a constant failure rate.
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4.3 DBN Modelling

Multi-component systems can be very complex based on the relationships and de-

pendencies among the components. A small sized empirical dynamic model was

developed to examine the performance of the designed maintenance strategies.

We construct the model in the GeNie modular [72]. The initial, causal and the

transitional probabilities of the components are defined rationally. In the empiri-

cal model, the maintenance costs are determined by using both the literature and

real-life problems.

4.3.1 Representation of the DBN model

Figure 4.1: The empirical DBN model

In the empirical model, there are four components nodes, three process nodes,

and one observation node. The model is shown in Figure 4.1. It is impossible

to observe component nodes and manipulate nodes directly. However, the states
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of processes and components can be estimated via the observation node. It is

configured that all components C1, C2, C3, C4 can be replaced with action nodes

A1, A2, A3, A4 at any time interval. All component nodes and the observation

node have three states, process nodes and action nodes have two states. The state

space of all nodes are represented in Table 7.1.

Table 4.1: Information of Nodes in the empirical DBN Model
Node type Nodes State space
Action nodes A1, A2, A3, A4 {Y,N}
Component nodes C1, C2, C3, C4 {W,D,F}
Process nodes P1, P2, P3 {W,F}
Observable node O1 {G, Y,R}

In the model, Y represents the “yes” state and it means “replace”, N represents

the “no” state, it means “do nothing”, W represents the “work”, D represents

the “degradation”, F represents the “failure”, G represents the “green”, Y rep-

resents the “yellow” and finally R represents the “red” states according to the

state space table. All components can be degraded over time, thus are modelled

with temporal nodes. Temporal relations are modelling using the circular arrows

represented with “1” in Figure 4.1. Components can be replaced with the help

of the action nodes which are directly linked to the action nodes. The conditions

of the intermediate process nodes (P1, P2) are determined as the result of the

interaction of the preceding components and their interactions. The observation

node O1 is created to gather information provided by the main process node P3

in the model.

4.3.2 Probabilities in the DBN Model

Initially, all component nodes were started from their work states (W = 1, D =

0, NW = 0) . On the other hand, actions nodes have symmetric CPT (Y =

0.5, N = 0.5). The conditional probability tables are given in Tables 4.2, 4.3, 4.4

and 4.5 for process nodes and the observation node respectively. The temporal

property of the component nodes is defined in the transition probabilities of the
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components. Table 4.6 and Table 4.7 include the transition probabilities of C1,

C3 and C2, C4 respectively. As can be seen in the table, the probability of degra-

dation of C1 and C3 components is higher than the probability of degradation of

C2 and C4 components.

Table 4.2: Conditional probability of P1
C2 W D NW
C1 W D NW W D NW W D NW
W 1 0.4 0 0.8 0.2 0 0 0 0

NW 0 0.6 1 0.2 0.8 1 1 1 1

Table 4.3: Conditional probability of P2
C4 W D NW
C3 W D NW W D NW W D NW
W 1 0.8 0 0.4 0.2 0 0 0 0

NW 0 0.2 1 0.6 0.8 1 1 1 1

Table 4.4: Conditional probability of P3
P2 W N
P1 W NW W NW
W 0.999 0.4 0.8 0

NW 0.001 0.6 0.2 1

Table 4.5: Conditional probability of O1
P3 W NW
G 0.9 0
Y 0.09 0.01
R 0.01 0.99

Table 4.6: Transition probabilities of C1 and C3
Reliated action node Y N

(Self)[t-1] W D NW W D NW
W 1 1 1 0.994 0 0
D 0 0 0 0.004 0.996 0

NW 0 0 0 0.002 0.004 1
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Table 4.7: Transition probabilities of C2 and C4
Reliated action node Y N

(Self)[t-1] W D NW W D NW
W 1 1 1 0.997 0 0
D 0 0 0 0.002 0.998 0

NW 0 0 0 0.001 0.002 1

4.3.3 Maintenance Costs

The maintenance costs of each component, the production loss cost occurring

when the system stops and the waiting periods during maintenance of the compo-

nents are given in Table 4.8. Total maintenance cost is calculated using Equation

4.1. Costi refers to the total cost of the maintenance performed to component

i. This cost consists of the cost of repair applied to components and production

loss cost. RCi refers to the cost of the repair applied to components. This cost

includes just maintenance-related costs. dti refers to maintenance duration time.

This time shows the duration from the maintenance start time to the mainte-

nance end time. LPi refers to the cost of the production loss. Production is not

possible due to system failure. Therefore, the daily profit of the production loss

cost is unbeatable.

Costi = RCi + dti ∗ LPi (4.1)

Table 4.8: Maintenance costs and durations

Component
Reactive Maintenance Proactive Maintenance

RCi(TL) dti(day) LPi(TL) RCi(TL) dti(day) LPi(TL)
C1 2,000 2 100,000 1,000 1 25,000
C2 4,000 2 100,000 2,000 1 25,000
C3 6,000 2 100,000 3,000 1 25,000
C4 8,000 2 100,000 4,000 1 25,000
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Chapter 5

Proposed Solutions

We have developed proactive and reactive maintenance strategies for the main-

tenance of a multi-component dynamic system and proposed four methods for

deciding on the maintenance activity. Our goal is to minimize the total mainte-

nance cost at a certain discrete time planning horizon. Then, we have simulated

the developed maintenance strategies using the empirical DBN model and anal-

ysis their performances.

Proposed methods are implemented under different maintenance strategies to

select the repairable component(s) to be maintained. Maintenance strategies

determine the time periods at which reactive or proactive maintenance is going

to be done. Each proposed method is implemented in each developed maintenance

strategy to determine an effective maintenance activity.

In this chapter, we briefly give the general framework of the simulation and explain

how to choose the selected repairable component or components in Section 5.1 and

Section 5.2. Then, we examine the proposed methods, the developed algorithms

and how they are applied in the model in Section 5.3. After that, we talk about

the proposed to maintenance strategies in the Section 5.4.
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5.1 General Framework of the Simulation

Figure 5.1 depicts the general simulation framework. In this framework of sim-

ulation, an observable node is simulated at each time period according to the

probability distribution in this planning horizon. Undesirable means “R”, this

expression almost indicates a failure system state. Thus, at that time point,

maintenance action(s) should be performed under reactive maintenance philoso-

phy. on the other hand, maintenance decision is also taken at a time point if one

of the proactive maintenance conditions occurs at that time. The component to

be replaced is selected after a maintenance decision is taken. In the simulation,

it applies one of the methods for selecting the repairable component(s), and the

evidence is updated as maintenance is done. The time is updated by adding

the maintenance duration to itself. Then, another observation is simulated, that

takes into account the evidence, according to the probability distribution for the

observable node. If this observation is not desired again, it verifies a different

maintenance action from the replaceable components left at that time. In the

other, it increases the time period one by one and continues with the next period

until it reaches the end of the planning horizon.

5.2 DBN Time versus Real Time

In this section, the difference between DBN and real-time will be explained. This

is due to the need for a certain repair time of the component to be serviced.

Two different times are adapted to prevent ageing during the component repair

period. At these times, ageing of the components is ceased while the planned

time horizon of the system proceeds over real time. With this recommendation,

the ageing of the components during the maintenance process has been stopped.

With this adaption, real-life problems can be easily modelled with DBNs. The

general mechanism of the DBN time and real-time is given in Figure 5.2. In this
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Figure 5.1: General framework of the simulation

mechanism, “t” represents “DBN time” and “rt” represents “real time”. Also,

“dt” represents duration time of the maintenance of the component selected.

Figure 5.2: DBN Time vs Real Time
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5.3 Proposed Methods

For a multi-component dynamic system, we proposed four approaches within the

maintenance strategies and apply them in the empirical model presented in Chap-

ter 4. Main goal in this study is to minimize the total cost of maintenance on

a particular discrete time planning horizon. We simulate the proposed mainte-

nance methods using the experimental DBN model. The proposed maintenance

methods use a different efficiency measurement to select the most appropriate

component(s) at a maintenance time to minimize the total maintenance cost in

a given the planning horizon.

Proposed maintenance methods are based on fault effect or replacement effect.

We consider each effect in two versions which are myopic and look-ahead. These

methods are first encountered in [73, 74]. In this study, we extend these methods

and apply them under various maintenance strategies in a given planning horizon.

Proposed maintenance methods select the component to replace using the effi-

ciency measure efit when a maintenance decision is taken. This is realised either

when a proactive maintenance is desired or when the system has an undesirable

observation at a certain time in the planning horizon. Fault effect methods se-

lect the component for replacement as given in Equation 5.1. Replacement effect

methods select the component for replacement as given in Equation 5.2.

i∗ = argmax{efit} (5.1)

i∗ = argmin{efit} (5.2)
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5.3.1 Fault Effect Myopic Method (FEM)

The FEM method is one of the proposed methods for selecting the component

to maintain when we take a maintenance decision. This maintenance method is

based on fault effect. This method is searched by looking at myopic. The method

of myopic is only looking at the relevant moment. Therefore, all maintenance

activities are carried out instantly. The method chooses the component according

to the maximum probability of conditional deterioration. The purpose of this

method is to find the component that has the most explanatory power of the

system malfunction and make maintenance to this component.

The method analyses the condition of system components when an undesirable

observation is collected in t time period. This analysis considers the failure prob-

ability of the components based on the evidence accumulated and the condition

that a red signal is observed. If take a maintenance decision, the method calcu-

lates an efficiency measurement for each component. The efficiency measurement

is calculated in Equation 5.3 according to the objective of minimizing the to-

tal number of replacements and calculated as in Equation 5.4 according to the

objective of minimizing the total maintenance cost. Detailed information about

component selection is given in Algorithm 1.

efFEM
it = P (Cit = “F”|ε ∪ {Ot = “R”}) (5.3)

efFEM
it =

efFEM
it

Costi
(5.4)

Algorithm 1 FEM pseudo-code

1: Calculate Fit = P (Cit = “F”|ε ∪ {Ot ← “R”}) ∀i ∈ I
′

2: Calculate efit
FEM ∀i ∈ I

′

3: Select i∗ = argmax{efitFEM}
4: return i∗
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5.3.2 Fault Effect Look - Ahead Method (FEL)

The FEL method is one of the proposed methods for selecting the components

to maintain when we take a maintenance decision. This maintenance method is

based on fault effect like the FEM method. This method is searched by looking at

look-ahead. The method of look-ahead is looking at the next period. Therefore,

all components are examined in period t+ 1 by considering the fault effect of the

observation. The purpose of this method is to find and maintain the component

that has the most explanatory power at period t+ 1 given a system malfunction.

As we apply this method, we assume the component has a probable failure just

at period t + 1. Therefore, this method takes into account future information.

If a system has an undesirable observation in period t, the method selects the

maintainable component with the maximum probability of failure in period t +

1. In Equation 5.5, we calculate the efficiency measurement according to the

objective of minimizing the total number of replacement. For the objective of

minimizing the total cost, we calculate the efficiency measurement by using the

Equation 5.6. The pseudo-code of this version of the selection method is given in

Algorithm 2.

efFEL
it = P (Ci,t+1 = “F”|ε ∪ {Ot = “R”}) (5.5)

efFEL
it =

efFEL
it

Costi
(5.6)

Algorithm 2 FEL pseudo-code

1: Calculate Fit = P (Ci,t+1 = “F”|ε ∪ {Ot ← “R”}) ∀i ∈ I
′

2: Calculate efit
FEL ∀i ∈ I

′

3: Select i∗ = argmax{efitFEL}
4: return i∗
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5.3.3 Replacement Effect Myopic Method (REM)

The REM method is one of the proposed methods for selecting the components

to maintain when we take a maintenance decision. This maintenance method is

based on the replacement effect. This method decides on the maintenance action

by looking at myopic. The method of myopic is only looking at the relevant

period. Therefore, all maintenance activities are carried out focusing on the

current period. The method selects the component that improves the system

given the condition that the component is replaced at that time period. The

purpose of this method is to find and maintain the component that has the most

improvement on the observation.

When the system has an undesirable observation based on the evidence accu-

mulated until the period t, this method calculates the efficiency measure using

Equation 5.7 if the objective is to minimize the total number of maintenance

activities and Equation 5.8 if the objective is to minimize the total cost. If the

system is observed in the red state, the method considers all maintainable com-

ponents and selects the most relevant component that improves the system. The

pseudo-code of this method is given in Algorithm 3.

efREM
it = P (Ot = “R”|ε ∪ {Cit = “W”}) (5.7)

efREM
it = efREM

it ∗ Costi (5.8)

Algorithm 3 REM pseudo-code

1: Calculate Fit = P (Ot = “R”|ε ∪ {Cit ← “W”}) ∀i ∈ I
′

2: Calculate efit
REM ∀i ∈ I

′

3: Select i∗ = argmin{efitREM}
4: return i∗

33



5.3.4 Replacement Effect Look - Ahead Method (REL)

The REL method is one of the proposed maintenance methods for selecting the

component to be maintained. This maintenance method is based on the re-

placement effect. This method decides on the maintenance action by looking at

look-ahead. The method of look-ahead is focusing the period t+ 1. Therefore, all

maintenance activities are carried out by focusing on the next time period. The

purpose of this method is to find and maintain the component that has the most

improvement on the observation.

The REL method is applied when the system is observed at the red signal and de-

cides to do maintenance under all the evidence accumulated. The component to

be maintained is selected according to the minimum efficiency measurement. The

efficiency criterion is calculated as in Equation refeq:RELformulawithmaintenancenumber

if the objective is to minimize the total number of maintenance activities. On the

other hand, if the objective is to minimize the total cost Equation 5.10 is used as

the efficiency measure. The pseudo code of how the component selection is done

with this method is given in Algorithm 4.

efREL
it = P (Ot+1 = “R”|ε ∪ {Cit = “W”}) (5.9)

efREL
it = efREL

it ∗ Costi (5.10)

Algorithm 4 REL pseudo-code

1: Calculate Fit = P (Ot+1 = “R”|ε ∪ {Cit ← “W”}) ∀i ∈ I
′

2: Calculate efit
REL∀i ∈ I

′

3: Select i∗ = argmin{efitREL}
4: return i∗
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5.4 Maintenance Strategies

Maintenance is the total activity required to maintain the system or bring it

back to the condition necessary for the fulfillment of the production function.

Maintenance and its principles have taken an important place since the industrial

revolution. It is impressively applied in the field of industry, but due to many

reasons and factors such as size, cost, and complexity, it is still a great challenge

to implement maintenance activities. Maintenance strategies vary with the basic

philosophies used. For example, maintenance time is an important factor. Will

the maintenance be made after the problem occurs or when will the maintenance

be made if it is applied before the problem occurs? To answer this question is

very important.

The multi-component complex dynamic models discussed have addressed these

problems. Thus, we have developed effective maintenance strategies to solve these

problems and answer the questions. In the given empirical model, the following

strategies are implemented:

1. Corrective maintenance (CM)

2. Constant interval proactive maintenance (CIPM)

3. Dynamic interval proactive maintenance (DIPM)

4. Threshold-based proactive maintenance (ThPM)

These strategies use proposed maintenance method to select the appropriate

maintenance activity. Maintenance strategies, on the other hand, decide when

to take maintenance. In addition, the corrective maintenance strategy has been

developed under reactive maintenance modelling, but also CIPM, DIPM, and

ThPM have been developed under proactive maintenance modelling. We are giv-

ing the details of the implementation and the application of all of these in this

section.
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5.4.1 Corrective Maintenance Strategy (CM)

Corrective maintenance is the activity to eliminate the malfunction and make

the necessary functions of the system after a fault occurs in the system. In the

empirical model, the deterioration of the system means that the observation node

O1 is in the state of “red”. Thus, Corrective maintenance methods that can be

applied when the system is broken are planned. These maintenance methods are

applied by taking into consideration the costs. When the costs are taken into

account, the aim is to reach the time horizon at the minimum cost.

The purpose of the corrective maintenance strategy is to perform maintenance

using one of the proposed maintenance methods when the system fails during

a certain discrete planning horizon. In the corrective maintenance strategy, the

system is simulated again after a component is maintained. If a failure is still

observed in the system, other relevant components are serviced for replacement.

Furthermore, the system can take a maintenance decision if and only if the el-

igible component list is not empty. The eligible component list keeps the set

of components that have not been maintained at that time point. Also, this

maintenance strategy considers the maintenance duration time. Maintenance du-

ration time should be smaller than the planned maintenance horizon. Corrective

maintenance strategy can be included using the commands shown in Algorithm

5.

Algorithm 5 Corrective Maintenance pseudo-code

1: Set rt=1
2: while rt=1:T do
3: Set I

′
= I

4: Simulate observation node Ot

5: while (Ot is “R”) and (I
′

is not empty) do
6: Apply maintenance method (Algorithm 1, 2, 3, 4) to select i∗

7: Calculate mt = rt + dti∗

8: if mt < T then
9: Calculate Costi∗ = RCi∗ + dti∗ ∗ LPi∗

10: Update ε← ε ∪ {Ci∗t ←W} . Update evidence list i∗

11: Simulate observation node Ot

12: Update eligible component list I
′ ← I

′ |{i∗}
13: rt=rt+1
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5.4.2 Constant Interval Proactive Maintenance (CIPM)

In this maintenance strategy, maintenance is scheduled at time points in a certain

discrete planning time horizon. In this type of maintenance, constant mainte-

nance intervals change according to the needs of the systems. The constant inter-

val maintenance strategy maintains with fixed intervals determined throughout

the planning horizon for the system. In addition, the system performs corrective

maintenance in the event of failure before reaching the maintenance period. In

this case, the maintenance strategy continues to proceed to the next maintenance

period without taking into account the period of corrective maintenance.

The purpose of this maintenance strategy is to maintain the system at certain

fixed intervals using one of the proposed maintenance methods taking into account

the costs of the maintenance of components over a given planning horizon. In

addition, this maintenance strategy aims to avoid unforeseen failures and it aims

to reduce the maintenance costs caused by unexpected failures. Constant interval

proactive maintenance strategy uses Algorithm 6.

Algorithm 6 Constant Interval Proactive Maintenance pseudo-code

1: Input pci . pci represents constant interval maintenance period
2: Input abmt = [pci ∗ 1, pci ∗ 2, ..., pci ∗ bT/pcic] . abmt represents constant interval

maintenance periods array
3: Set rt = 1
4: while rt ≤ T do
5: Set I

′
= I

6: Simulate observation node Ot

7: while (Ot is “R” or abmt(1) ≤ t) and (I
′

is not empty) do
8: Update abmt(1) = [ ] . Delete first element of abmt
9: Apply maintenance method (Algorithm 1, 2, 3, 4) to select i∗

10: Calculate mt = rt + dti∗

11: if mt < T then
12: Calculate Costi∗ = RCi∗ + dti∗ ∗ LPi∗

13: Update ε← ε ∪ {Ci∗t ←W} . Update evidence list
14: Update rt = rt + dti∗

15: Simulate observation node Ot

16: Update I
′ ← I

′ |{i∗} . Update eligible component list

17: rt=rt+1
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5.4.3 Dynamic Interval Proactive Maintenance (DIPM)

The dynamic interval proactive maintenance strategy maintains the system through-

out the specific discrete planning horizon in certain dynamic intervals. The

maintenance interval in this strategy changes depending on the last corrective

maintenance taken. Due to this feature, after the corrective maintenance, the

dynamic maintenance time is shifted. If a fail occurs in the system prior to the

next proactive scheduled maintenance, the corrective maintenance of the system

is performed. In this maintenance strategy, the next maintenance period is calcu-

lated by adding the dynamic interval proactive maintenance period to the current

time after a maintenance period. In this way, we have reached a dynamic interval.

The purpose of the dynamic interval maintenance strategy is to prevent frequent

maintenance in CIPM by shifting the maintenance period and to reduce main-

tenance costs resulting from corrective and/or proactive maintenance at certain

times in the planning horizon. It also selects the component to be maintained

using one of the proposed methods and calculates the maintenance cost of the

component. DIPM uses the pseudo-code as shown in Algorithm 7

Algorithm 7 Dynamic Interval Proactive Maintenance pseudo-code

1: Input pmt = pdi . pdi represents dynamic interval maintenance period
2: Set rt = 1
3: while rt ≤ T do
4: Set I

′
= I

5: Simulate observation node Ot

6: while (Ot is “R” or pmt ≤ t) and (I
′

is not empty) do
7: Apply maintenance method (Algorithm 1, 2, 3, 4) to select i∗

8: Calculate mt = rt + dti∗

9: if mt < T then
10: Calculate Costi∗ = RCi∗ + dti∗ ∗ LPi∗

11: Update ε← ε ∪ {Ci∗t ←W} . Update evidence list
12: Update rt = rt + dti∗

13: Update pmt = mt + pdi
14: Simulate observation node Ot

15: Update I
′ ← I

′ |{i∗} . Update eligible component list

16: rt=rt+1
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5.4.4 Threshold Based Proactive Maintenance (ThPM)

The threshold-based proactive strategy takes proactive maintenance decision if

the system reliability falls below a certain threshold level during the specific plan-

ning horizon. This threshold level keeps the system at the desired level. While

determining the threshold, a reliability level must be set to meet the system re-

quirements. An unexpected failure may occur in the system even if the system

does not fall below the specified threshold level and at that time corrective main-

tenance is also applied. The threshold level is directly controlled in the empirical

system via the main process node P3.

This strategy allows us to make a predictive maintenance decision. In this way,

the ThPM estimates when an equipment failure can occur and prevents system

failure by proactive maintenance. Prediction of future faults ensures that main-

tenance is performed before a failure occurs. This maintenance strategy aims to

reduce the maintenance costs associated with corrective maintenance, as in other

proactive strategies. In addition, after it takes the decision on maintenance, it

uses the proposed methods to choose the component to be maintained and calcu-

lates its cost. Algorithm 8 was used to implement the threshold-based proactive

maintenance strategy.

Algorithm 8 Threshold Based Proactive Maintenance pseudo-code

1: Input thr . thr represents reliability threshold
2: Set rt=1
3: while rt ≤ T do
4: Set I

′
= I

5: Simulate observation node Ot

6: while (Ot is “R” or P (P3t = “W”|ε) ≤ thr) and (I
′

is not empty) do
7: Apply maintenance method (Algorithm 1, 2, 3, 4) to select i∗

8: Calculate mt = rt + dti∗

9: if mt < T then
10: Calculate Costi∗ = RCi∗ + dti∗ ∗ LPi∗

11: Update ε← ε ∪ {Ci∗t ←W} . Update evidence list
12: Update rt = rt + dti∗

13: Simulate observation node Ot

14: Update I
′ ← I

′ |{i∗} . Update eligible component list

15: rt=rt+1
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5.5 Opportunistic Maintenance Approach

The opportunistic approach in maintenance is carried out primarily by imple-

menting additional preventive maintenance activities at a maintenance time that

will not cause a delay in the maintenance end time of the primary maintenance

activity selected to be done. Opportunistic maintenance is the maintenance ac-

tivity used to replace other components, even if they are not in a failure state

when equipment or system has stopped for the maintenance of one or more de-

teriorated components. The ultimate goal of this maintenance approach is to

maintain system functionality with the longest possible service life and at the

same time to enable avoiding any dangerous malfunctions, bringing the machine

to an optimum balance between downtime and maintenance costs. In general,

the opportunistic maintenance approach aims to reduce the planned downtime

for the systems as well as to maximize the life or reliability of the components.

All of this is to provide the best possible life of the components and to avoid

costly and risky failures during operation.

In this study, one of the proposed maintenance strategies is applied within the

opportunistic maintenance approach. Furthermore, when the system encoun-

ters a failure one of the proposed maintenance methods are used to select the

component to be maintained. During each failure period, the most probable de-

fective components are properly repaired and at the same time, opportunistic

maintenance is performed if the reliability of other components below a certain

threshold. This ensures that all components are protected and restored to specific

conditions. Thanks to this threshold, it is not forced to maintain the components

in the system. Algorithm 9 is used to implement the opportunistic maintenance

function.

An advantage of this opportunistic maintenance approach is to save on instal-

lation costs and production loss cost. It can also be easily applied to all main-

tenance strategies. We can implement an opportunistic maintenance approach

with corrective maintenance or proactive maintenance. This application is given
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Algorithm 9 Opportunistic Maintenance Function pseudo-code

1: Set OppList = { }
2: for i

′ ← I
′
do

3: if (dti′ < dti∗) and (P (Ci′ t = W |ε) ≤ Oppthr) then
4: Calculate TCosti′ = TCosti′ + RCi′

5: Update OppList← OppList ∪ {i′}
6: Update I

′ ← I
′ | OppList . Update eligible component list

7: Update ε← ε ∪ {Ci′ t = W} ∀i′ ∈ OppList . Update evidence list

in Algorithm 10. There are many situations in which opportunistic maintenance is

effective. For example, when some components require stopping the entire system

when corrective maintenance is applied, other components may be useful in imple-

menting proactive maintenance in these components when performing corrective

maintenance. Another example is that opportunistic maintenance on defective

components may delay the next corrective maintenance period in a system.

Algorithm 10 Oppurtunistic Maintenance Approach Framework pseudo-code

1: Input Oppthr
2: Input Maintenance strategy and parameter
3: Input Maintenance method
4: Set rt=1
5: while rt ≤ T do
6: Set I

′
= I

7: Simulate observation node Ot

8: while (Ot is “R” or Proactive M. satisfied) and (I
′

is not empty) do
9: Apply maintenance method (Algorithm 1, 2, 3, 4) to select i∗

10: Calculate mt = rt + dti∗

11: if mt < T then
12: Calculate TCosti∗ = TCosti∗ + RCi∗ + dti∗ ∗ LPi∗

13: Apply opportunistic maintenance approach function (Algorithm 9)
14: Update ε← ε ∪ {Ci∗t ←W} . Update evidence list
15: Update t = t + dti∗

16: Simulate observation node Ot

17: Update I
′ ← I

′ |{i∗} . Update eligible component list

18: rt=rt+1
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Chapter 6

Computational Analysis

The designed methods were simulated in the MATLAB environment using the

BNT toolbox [65], which were run on a 300-day planning horizon and with 30

times. The performance of the methods under the maintenance strategies and

also opportunistic maintenance approach were evaluated according to the cost

of maintenance in the given planning horizon. In this part, we present the re-

sults of all maintenance policies proposed which are corrective maintenance, con-

stant interval proactive maintenance, dynamic interval proactive maintenance and

threshold-based proactive maintenance. Opportunistic maintenance approach is

also included in all these strategies and the corresponding results are also dis-

cussed. Then, we compare these results statistically.

Inference calculations required during replications are performed by dynamic

junction tree inference algorithm available in [65]. This algorithm implements

the static junction tree algorithm to neighboring slices [75]. Also, the junction

tree algorithm has exact inference and it ensures exact marginals can be com-

puted.

Also, We use ANOVA models to compare the strategies and methods. There we

have also checked the model adequacy by analysing the residual plots. Where ever

we use ANOVA, the residual plots of all models developed to satisfy the normality,

constant variance, and zero mean assumptions. So, we can say that the ANOVA

models used in the analysis are adequate. All numerical experiments were run on
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four computers. The first computer has 64-bit windows, Intel(R) i5 processor at

1.60 GHz and 8 GB RAM. The second computer has 64-bit windows, Intel(R) i7

processor at 2.60 GHz, 256 GB SSD and 16 GB RAM. The third computer has

64-bit windows, Intel(R) Xeon processor at 2.40 GHz and 12 GB RAM. And the

last computer has Intel(R) i7 processor at 2.80 GHz, 256 GB SSD, and 16 GB

RAM.

6.1 Results of Corrective Maintenance Strategy

In this section, we applied corrective maintenance to eliminate unexpected failures

encountered during the maintenance horizon to improve the system state then we

compared the results in terms of both maintenance quantity and maintenance

cost. The number of replacements for every component is also recorded for each

method. Accordingly, inventory planning is given.

6.1.1 Results Based on the Maintenance Quantity and Cost

Corrective maintenance was applied to failures occurring in the empirical DBN

model and replications results for four methods are presented in Table 6.1. In ad-

dition to these methods, a random maintenance method has also been developed

to be compared to the performances of the others. The purpose of this method is

to perform random maintenance without using any knowledge of the system. The

maintenance results of the given horizon are shown in the table as two different

response variables used in the study for 30 replications. Maintenance cost and

maintenance quantity can be seen in the table for each method.

The results of all five methods, including random method, were compared using

one-way ANOVA. The result of the test is a p-value of 0.000 for both maintenance

quantity and maintenance cost. Thus, at least one method differs significantly

from the others. We applied post-ANOVA and used the Tukey test [76]. Results
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Table 6.1: Replication Results of Corrective Maintenance
Response Method Mean Std. Dev. 95%CI

FEM 4,847,467 459,103 (4,676,035; 5,018,898)
FEL 4,948,000 521,441 (4,753,291; 5,142,709)

Cost REM 5,130,067 455,494 (4,769,637; 5,060,096)
REL 4,914,867 388,931 (4,959,982; 5,300,151)
RND 5,958,200 605,614 (5,732,060; 6,184,340)
FEM 23.767 2.254 ( 22.925; 24.608)
FEL 24.267 2.559 ( 23.311; 25.222)

Quantity REM 25.200 2.235 ( 24.366; 26.034)
REL 24.133 1.907 ( 23.421; 24.845)
RND 29.067 2.935 ( 27.971; 30.163)

are given in Table 6.2. In the table, we can see the behavior of the proposed

method for maintenance quantity and maintenance cost.

Table 6.2: Post-ANOVA Results of Corrective Maintenance
Response Method N Mean Group

RND 30 5,958,200 A
REM 30 5,130,067 B

Cost FEL 30 4,948,000 B
REL 30 4,914,867 B
FEM 30 4,847,467 B
RND 30 29.067 A
REM 30 25.200 B

Quantity FEL 30 24.133 B
REL 30 24.133 B
FEM 30 23.767 B

Furthermore, we compared the difference between the means of maintenance

quantity and maintenance cost. The results are given in Figure 6.1 and Figure 6.2

respectively. Two-way comparisons were made with a 95% confidence interval for

the difference. If a range does not contain zero, the corresponding methods are

significantly different. The random method, as expected, is significantly worse

than any proposed method. However, no one can say that the performances of

the four methods are significantly different.

44



Figure 6.1: CM - Difference of Means of
Quantity

Figure 6.2: CM - Difference of Means of
Cost

As a result, when four methods were examined with random methods, a significant

difference was found both in terms of cost and quantity of changes. However,

we cannot say that there is a significant difference between the four proposed

methods. Each of the four proposed methods for corrective maintenance can be

easily used and applied.

6.1.2 Results of the Selected Maintenance Method

Also, we compared the average total maintenance cost and maintenance quan-

tity according to each component for each method except the random method.

When we look at the total maintenance cost and maintenance quantity which is

given Figure 6.3 and Figure 6.4. The FEM method seems better than the other

methods, although there isn’t any significant difference between them both in

maintenance quantity and maintenance costs.

After that, we compare total maintenance cost, replacement cost, and loss pro-

duction cost according to the FEM method. Most of the total maintenance cost

is the loss of production cost. Replacement cost is very low compared to the loss

production cost. Figure 6.5 gives this cost comparison. As the loss production

cost occurs due to unexpected faults and the system has stopped because of these

faults, production cannot be made. Because of this, penalty costs are included in

the loss of production cost and this increases the total maintenance cost.
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Figure 6.3: CM Cost Distribution among Components

Figure 6.4: CM Quantity Distribution among Components

6.1.3 Resource Planning of the Selected Maintenance Method

When a system fails, assume we prefer to use the FEM method for maintenance.

In order to do this, a resource must be provided urgently in case of failure. These

resources are like spare parts, personnel, test equipment. This important spare

part supply planning has great importance. Supply planning has been reported

components with an average annual supply requirement. These requirements are

given in Table 6.3 for each component C1, C2, C3 and C4.
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Figure 6.5: CM Cost Distribution

Table 6.3: CM Requirements of Components according to FEM
Component Quantity Std. Dev.
C1 10.333 1.240
C2 6.067 0.790
C3 4.867 0.630
C4 2.500 0.510

6.1.4 Effect of the Selected Maintenance Method on the System

Assuming that we implement the FEM method, its result is more suitable than the

others due to low cost and maintenance quantity, when a corrective maintenance

decision is made, we can forecast failure trends of the components. The effect

of the FEM method on the components when the FEM method is applied in

corrective maintenance is given in Figure 6.6 for one replication and a planning

horizon of 300 days. As a result of this single replication, component C1, C2, C3,

and C4 are maintained 11 times, 6 times, 4 times and 3 times respectively. Also,

failure probability is 0.3447 of the system at 300th day.
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Figure 6.6: CM FEM Failure Trends

6.2 Results of Proactive Maintenance Strategies

In this section, we applied proactive maintenance strategies to eliminate probable

future failures in addition to corrective maintenance. Numerical tests were per-

formed in order to examine which of the methods detailed above will give better

results in the DBN system. Maintenance strategies were examined separately

according to both the maintenance costs and maintenance quantity. For the

maintenance quantity and maintenance costs minimization, we performed each

strategy and we used ANOVA according to 95% confidence level for comparisons.

In this section, we showed results to maintenance cost, maintenance quantity, and

resource planning, and the effect of them to be selected maintenance method on

the system.

6.2.1 Results Based on the Maintenance Cost

The replication results of the proposed methods under proactive maintenance

strategies are shown in Table 6.4 and Table 6.5. These results include the average

of the total cost, standard deviation and 95% confidence intervals of 30 replication

in the given planning horizon for each strategy and method.

Each maintenance strategy was compared by using two-way ANOVA according

to the maintenance parameters and maintenance methods and the p-values for all

strategies are shown in Table 6.6. Factors for the comparison of two-way ANOVA

48



Table 6.4: Replication Results of Proactive Maintenance Strategies

Strategy Method Mean (TL) Std. Dev. %95 CI

CIPM, pci = 2

FEM 5,098,667 352,923 (4,966,883; 5,230,450)
FEL 5,250,033 567,519 (5,038,118; 5,461,948)
REM 5,167,767 355,744 (5,034,930; 5,300,604)
REL 5,150,300 435,909 (4,987,529; 5,313,071)

CIPM, pci = 5

FEM 3,810,833 629,264 (3,575,862; 4,045,804)
FEL 3,757,033 419,793 (3,600,280; 3,913,787)
REM 3,751,600 529,636 (3,553,831; 3,949,369)
REL 3,935,700 650,135 (3,692,936; 4,178,464)

CIPM, pci = 10

FEM 3,968,633 587,370 (3,677,176; 4,099,357)
FEL 3,881,233 601,524 (3,718,023; 4,100,177)
REM 3,990,133 551,552 (3,794,222; 4,172,045)
REL 3,948,633 631,213 (3,723,080; 4,119,854)

CIPM, pci = 30

FEM 4,361,467 516,418 (4,168,633; 4,554,300)
FEL 4,470,833 648,141 (4,228,813; 4,712,853)
REM 4,633,500 517,832 (4,440,138; 4,826,862)
REL 4,504,067 502,639 (4,316,378; 4,691,755)

CIPM, pci = 60

FEM 4,573,333 452,045 (4,404,537; 4,742,130)
FEL 4,647,833 447,089 (4,480,888; 4,814,779)
REM 4,688,467 472,839 (4,511,906; 4,865,028)
REL 4,857,333 419,962 (4,700,517; 5,014,150)

CIPM, pci = 90

FEM 4,620,133 491,095 (4,436,755; 4,803,511)
FEL 4,867,033 511,795 (4,675,926; 5,058,141)
REM 5,021,167 4,654,26 (4,847,374; 5,194,960)
REL 4,792,233 465,310 (4,618,484; 4,965,983)

DIPM, pci = 2

FEM 4,019,733 453,305 (3,850,466; 4,189,000)
FEL 4,031,033 412,435 (3,795,002; 4,137,065)
REM 4,137,400 550,144 (3,927,133; 4,248,067)
REL 4,001,233 469,549 (3,948,711; 4,290,289)

DIPM, pci = 5

FEM 3,595,900 602,180 (3,371,042; 3,820,758)
FEL 3,368,300 474,820 (3,190,999; 3,545,601)
REM 3,929,033 637,687 (3,690,917; 4,167,149)
REL 3,807,133 514,642 (3,646,311; 4,166,022)

DIPM, pdi = 10

FEM 4,121,567 605,522 (3,895,461; 4,347,672)
FEL 4,043,400 575,705 (3,828,428; 4,258,372)
REM 4,334,100 358,293 (4,200,311; 4,467,889)
REL 4,240,167 652,089 (3,996,673; 4,483,661)

DIPM, pdi = 20

FEM 4,554,633 535,556 (4,354,654; 4,754,613)
FEL 4,617,900 603,298 (4,392,625; 4,843,175)
REM 4,617,900 603,298 (4,376,491; 4,844,309)
REL 4,739,433 578,913 (4,523,264; 4,955,603)
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Table 6.5: Replication Results of Proactive Maintenance Strategies (cont’d)

Strategy Method Mean (TL) Std. Dev. %95 CI

DIPM, pdi = 30

FEM 4,736,600 482,377 (4,556,477; 4,916,723)
FEL 4,928,400 583,217 (4,710,623; 5,146,177)
REM 4,895,600 441,124 (4,730,881; 5,060,319)
REL 4,989,000 421,467 (4,831,622; 5,146,378)

DIPM, pdi = 60

FEM 4,819,600 502,922 (4,631,806; 5,007,394)
FEL 4,859,467 508,112 (4,669,735; 5,049,199)
REM 5,029,667 461,425 (4,857,368; 5,201,966)
REL 4,980,733 544,728 (4,777,329; 5,184,138)

DIPM, pdi = 90

FEM 4,968,533 396,319 (4,820,545; 5,116,521)
FEL 4,915,000 599,577 (4,691,114; 5,138,886)
REM 4,961,267 451,331 (4,792,737; 5,129,796)
REL 4,953,067 452,440 (4,784,123; 5,122,010)

ThPM, thr = 0.50

FEM 4,819,400 437,225 (4,656,138; 4,982,662)
FEL 4,913,733 520,137 (4,719,511; 5,107,956)
REM 5,028,867 500,631 (4,841,928; 5,215,805)
REL 4,859,067 403,518 (4,708,391; 5,009,743)

ThPM, thr = 0.75

FEM 4,887,333 486,590 (,4705,637; 5,069,029)
FEL 4,988,667 492,003 (4,804,950; 5,172,383)
REM 4,948,133 445,599 (4,781,744; 5,114,523)
REL 4,914,067 429,752 (4,753,595; 5,074,539)

ThPM, thr = 0.85

FEM 4,844,500 361,017 (4,709,694; 4,979,306)
FEL 4,891,067 573,160 (4,677,045; 5,105,088)
REM 4,697,067 466,646 (4,522,818; 4,871,315)
REL 4,949,133 519,767 (4,755,049; 5,143,217)

ThPM, thr = 0.90

FEM 4,210,267 515,104 (4,017,924; 4,402,610)
FEL 4,664,633 592,916 (4,443,235; 4,886,032)
REM 4,378,300 674,665 (4,126,376; 4,630,224)
REL 4,508,400 663,324 (4,260,711; 4,756,089)

ThPM, thr = 0.95

FEM 3,554,800 560,758 (3,345,410; 3,764,190)
FEL 3,778,233 566,699 (3,566,624; 3,989,842)
REM 3,514,533 545,118 (3,310,983; 3,718,084)
REL 3,715,533 705,211 (3,452,203; 3,978,864)

CIPM, thr = 0.97

FEM 3,811,900 482,325 (3,631,797; 3,992,003)
FEL 3,513,700 404,478 (3,362,665; 3,664,735)
REM 3,717,100 568,760 (3,504,722; 3,929,478)
REL 3,753,633 604,003 (3,528,095; 3,979,172)
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were selected from the parameters of the maintenance strategies and the proposed

methods. We analysed the effect of the two factors on the total maintenance cost

in the planning horizon. It was aimed to select the maintenance strategy with

the most appropriate cost among the related parameter and related method.

Table 6.6: ANOVA Results of Proactive Maintenance Strategies
Strategy Factor P -Value

Parameter (2; 5; 10; 30; 60; 90) 0.000
CIPM Method (FEM ;FEL;REM ;REL) 0.000

Parameter*Method 0.442
Parameter (2; 5; 10; 20; 30; 60; 90) 0.000

DIPM Method (FEM ;FEL;REM ;REL) 0.000
Parameter*Method 0.415
Parameter (0.50; 0.75; 0.85; 0.90; 0.95; 0.97) 0.000

ThPM Method (FEM ;FEL;REM ;REL) 0.000
Parameter*Method 0.060

When we look at the CIPM strategy, the period ranges are selected as 2, 5, 10, 30,

60 and 90 days and two-way ANOVA results are given in Table 6.6. According

to the results, the p-value of the parameters is 0.000, the p-value of the methods

is 0.000, and these values are lower than α = 0.05. We can clearly say that

the parameters and methods are significant and that the best interval time for

CIPM is 5 days. We make a further analysis over costs after the two-way ANOVA

results in Figure 6.7 and Figure 6.8 which are interaction and main effects plots

respectively. The figures show that the cost results with the parameters from 5

to 90 are steadily increasing due to the convergence of the model to corrective

maintenance as the interval time increases. On the other hand, when we select

parameter 2, we are forced to do proactive maintenance, therefore, the system

tends to do unnecessary maintenance. Besides, when we look at the interaction

plot of CIPM, p-value is found to be 0,442. This value is higher than α = 0.05.

We can conclude that the parameter and method interaction is not significant in

CIPM.

Following the CIPM main effect plots, we examined the corrective maintenance

and proactive maintenance of the FEM method. When we look at Figure 6.9, we
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Figure 6.7: CIPM Interaction Plot Figure 6.8: CIPM Main Effects Plot

can easily see that the average maintenance cost is converging to the average cost

of corrective maintenance as the proactive maintenance intervals get larger. Also,

it is not a very logical solution to keep the maintenance interval low though. This

is because the system does more maintenance than it is required. This increases

the maintenance cost.

Figure 6.9: CIPM vs CM

The ranges of 2, 5, 10, 20, 30, 60 and 90 days are selected for the dynamic interval

proactive maintenance strategy and two-way ANOVA is applied. The results are

given in Table 6.6. P -value of the effects of parameter and method are both 0.000

and p-value of the effect of interaction between the parameters and the methods

is 0.415. Parameters and methods have low s. So the parameters and methods

considered in this strategy are significantly different. In addition, when we look

at the interaction between the parameters and methods, p-value is higher than

α = 0.05. Therefore, this is not significant for the model. After the ANOVA
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results, we also obtained plots of interaction and main effects for further analysis

in Figure 6.10 and Figure 6.11 where shows the best solution is founded as 5 days.

Figure 6.10: DIPM Interaction Plot Figure 6.11: DIPM Main Effects
Plot

After the ANOVA result, we compare corrective maintenance result to DIPM-

FEM result. Figure 6.12 shows that the parameter 5 to parameter 90 are con-

tinuously leading to an increase in the average total maintenance cost due to

the convergence of the model to corrective maintenance as the interval time in-

creases. Also, we have used the t-test to understand whether it has a significant

difference between proactive maintenance with parameter 90 and the corrective

maintenance. And, we found that p-value is 0.279. The result shows that there

is exist to the significant difference between them. When we select parameter

2, we are forced to do proactive maintenance therefore, the system tends to do

unnecessary maintenance.

Figure 6.12: DIPM vs CM
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When we look at the ThPM strategy, the threshold values are selected as 0.50,

0.75, 0.85, 0.90, 0.95 and 0.97 respectively. The result of ANOVA is given in

Table 6.6. When the results are evaluated, the p-value of the parameters and

methods are 0.000 from which we can say easily that parameters and methods

are significant for the model. In addition, when we look at the interaction between

parameters and methods p-value is 0.060. We examine this value is higher than

α = 0.05. We can conclude that it is not significant. We obtain plots of interaction

and main effects in Figure 6.13 and Figure 6.14 after the ANOVA result. We find

the best parameter is 0.95.

Figure 6.13: ThPM Interaction Plot Figure 6.14: ThPM Main Effects
Plot

After ANOVA analysis on the total costs, we compare corrective maintenance

result to ThPM result using the FEM method. 0.50, 0.75, 0.85 and 0.90 have

higher cost since proactive maintenance is very rare leaving the system doing

almost only corrective maintenance. It gives the best result when the value is

0.95. Also, we have used the t-test to understand whether there exists a significant

difference between the costs while using parameter 0.75. And, we found that p-

value is 0.745 which means there is no significant difference between them.

After each strategy was examined in detail, the best method in each strategy

was examined with one-way ANOVA including also corrective maintenance re-

sults and a p-value of 0.000 was obtained. We can easily say that at least one

parameter of the maintenance strategies is significantly different. After ANOVA,

we compared all averages using Tukey’s test [76]. The results in Table 6.7 are
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Figure 6.15: ThPM vs CM

obtained and the average differences of the selected proactive strategies in 95%

confidence interval are shown in Figure 6.16. If a range does not contain zero,

the corresponding policies are significantly different. As expected, the corrective

maintenance strategy is significantly worse than all strategies applied since it has

the highest average maintenance cost. However, we cannot say that the perfor-

mances of the three strategies differ significantly because they are in the same

group.

Table 6.7: ANOVA Results of Selected Proactive Strategies
Strategy Method N Mean Group
CM FEM 30 4,847,467 A
CIPM pci = 5 FEM 30 3,810,833 B
DIPM pdi = 5 FEM 30 3,595,900 B
ThPM thr = 0, 95 FEM 30 3,554,800 B

As a result, it is understood that there is no difference between the selected best

proactive maintenance strategies. In addition, it is possible to implement any of

these maintenance strategies in the given best parameters effectively.

6.2.2 Results Based on the Maintenance Quantity

Since we did not find any significant differences between the proposed mainte-

nance strategies, we examined further the maintenance quantity. The results

available in Table 6.8 where 95% Tukey groups are also shown as post-ANOVA
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Figure 6.16: Difference of Means for Selected Proactive Strategies

analysis. according to maintenance quantity of selected maintenance strategies.

If we look at the result, we can say that there are significant differences in the

selected maintenance strategies. CIPM was worse than other strategies when

compared with them. This is due to the maintenance of this strategy at fixed

intervals. The DIPM has less maintenance than the CIPM because the mainte-

nance intervals can be shifted because of next maintenance period changes. Since

ThPM is dependent on the reliability of the component, it does not undertake

unnecessary maintenance and has less maintenance quantity than other proactive

maintenance strategies. Although there is no difference in terms of maintenance

cost in these selected maintenance strategies, it is more logical to choose ThPM

when considering the maintenance quantity.

Table 6.8: Post-ANOVA Results of Selected Proactive Strategies wrt Maintenance
Quantity

Strategy Method N Mean Std. Dev. Group
CIPM pci = 5 FEM 30 69.900 3.089 A
DIPM pdi = 5 FEM 30 52.433 1.305 B
ThPM thr = 0, 95 FEM 30 49.100 0.712 C
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6.2.3 Results of the Selected Maintenance Strategy

The ThPM strategy was selected to be analysed further according to proactive

maintenance strategy results. Furthermore, the corrective maintenance cost and

the proactive maintenance cost out of the total cost were examined based on the

replication results. These results are shown in Figure 6.17. The average mainte-

nance cost was 3,554,799.00 TL when the ThPM was applied. We can easily say

that this cost includes average corrective maintenance cost as 2,576,133 TL and

the average proactive maintenance as 978,666 TL. Also, we analysed the correc-

tive part and found average replacement cost as 56,133 TL and loss production

cost as 2,520,000 TL. In proactive part, we are found average replacement cost

as 66,166.670 TL and loss production cost as 978,666 TL. Replacement Cost is

included approximately 2% of total cost. This shows that loss production cost

has great importance for the maintenance planning.

Figure 6.17: ThPM Maintenance Cost
Distribution

Figure 6.18: ThPM Maintenance Quan-
tity Distribution

Furthermore, the maintenance quantity of ThPM is given in Figure 6.18. This

maintenance quantity was found as 49 according to 30 replications results. This

quantity indicates averagely as 49 times of maintenance per 300 days planning

horizon. Approximately 12 of the maintenance quantities come from corrective

maintenance, about 37 of them are proactive. Although the maintenance quantity

is high, the maintenance cost is considerably lower than the maintenance cost

when the corrective maintenance strategy is applied.
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In Table 6.9, this comparison is given in detail. When we look at the table,

there is a high cost in the corrective maintenance strategy. However, in terms of

the maintenance quantity, the vice versa case is valid. Corrective maintenance

has less number of activities. This is the reason why proactive maintenance is

planned maintenance. Because of the planned maintenance, the cost of urgent

procurement of spare parts is exempt from the costs that would incur additional

penalty fees.

Table 6.9: CM vs ThPM
Response CM ThPM
Maintenance Cost 4,847,466.670 3,554,800.300
Replacement Cost 94,133.330 122,300.000
Loss Production Cost 4,753,333.330 3,432,499.600
Maintenance Quantity 23.770 49.100

6.2.4 Resource Planning of the Selected Maintenance Strategy

Planning of resources should be well controlled and planned in order to ensure

that the system continues in a healthy manner, which will not hinder production

and thus prevent capacity losses. In this case, the presence of backups of the com-

ponents that may be needed in a possible or unexpected failure is very important

both in terms of cost and maintenance duration. As we can calculate the average

maintenance cost due to failures occurring in the system, resource planning can

be done to keep the damage minimum. When we apply the ThPM strategy with

FEM method, the amount of resources we need to keep is given in Table 6.10.

Table 6.10: PM Requirements of Components According to ThPM-FEM
Component Quantity Std. Dev
C1 23.233 0.570
C2 11.733 0.580
C3 9.000 0.370
C4 5.133 0.350
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6.2.5 Effect of the Selected Maintenance Strategy on the System

After implementing the ThPM, we took 1 replication for 300 days planning hori-

zon to see the effect on the system. The effect on components and the system

when FEM method is applied that is given in Figure 6.19. As a result, C1 has

0.09282 failure probability, C2 has 0.05725 failure probability, C3 has 0.1329 fail-

ure probability, C4 has 0.107709 failure probability and the system has 0.2270

failure probability at the 300th day. Then, we compared the result according

to the corrective maintenance result. And we can say the failure probability of

components and the system have decreased at the end of the planning horizon.

Figure 6.19: ThPM FEM Failure Trends

6.3 Results of Opportunistic Maintenance Approach

This Section examines the results of the opportunistic maintenance approach that

we developed to prevent failure in the empirical DBN model. The opportunistic

maintenance approach to maintenance is applied in both corrective and proactive

maintenance strategies. 30 replications were taken for each strategy in the 300-

day planned horizon. In this section, we discussed the result of opportunistic

corrective maintenance and opportunistic proactive maintenance.
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6.3.1 Results of Opportunistic Corrective Maintenance (OPPCM)

In this section, we applied OPPCM by using opportunistic maintenance approach

to eliminate unplanned maintenance encountered during the maintenance horizon

planned to improve the system state and compared the results in terms of both

maintenance quantity and maintenance cost. Then, choosing the best from the

maintenance methods encountered, the effects on the system and how much of

the components are changed are given. Accordingly, inventory planning is given.

6.3.1.1 Results Based on the Maintenance Quantity and Cost

In the empirical DBN model, opportunistic corrective maintenance was applied

and results of replications for the four methods are shown in Table 6.11. In

addition to these methods, a random maintenance method has been developed.

The purpose of this method is to perform random maintenance without any sys-

tem knowledge. The given horizon is shown in the table for 30 replicates. The

maintenance cost and maintenance quantity for each method can be seen in the

table.

Table 6.11: Replication Results of Opportunistic Corrective Maintenance
Response Method Mean Std. Dev. 95%CI

FEM 3,547,000 425,075 (3,388,274; 3,705,726)
FEL 3,489,467 396,746 (3,341,319; 3,637,614)

Cost REM 3,580,867 677,291 (3,327,962; 3,833,771)
REL 3,514,800 544,235 (3,311,579; 3,718,021)
RND 3,598,600 414,667 (3,443,761; 3,753,439)
FEM 46.933 3.676 (45.561; 48.306)
FEL 46.067 3.667 (44.698; 47.436)

Quantity REM 47.300 4.587 (45.587; 49.013)
REL 46.967 3.952 (45.491; 48.442)
RND 48.700 3.697 (47.320; 50.080)

The results of all five methods, including random method, were compared us-

ing one-way ANOVA. Results of the tests are a p-values of 0.914 and 0.136 for

maintenance quantity and maintenance cost. This indicates that methods are
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not significantly different from the others. This is because the system has four

components. Therefore, there are no differences among all methods, including

the random method. If we examined the method result, every method has ap-

proximately 16 maintenance quantity with the non-opportunistic part, also these

methods have approximately 30 maintenance quantity with the opportunistic

part. Therefore, the results will always be the same as the statistics for the pro-

posed methods. Distribution results of average total cost and quantity of OPPCM

is shown Table 6.12.

Table 6.12: Cost and Quantity Distribution in OPPCM
Average Cost

Methods Corrective Opportunistic Total
FEM 3,365,133.330 181,866.670 3,547,000.000
FEL 3,310,800.017 178,666.650 3,489,466.667
REM 3,396,533.337 184,333.330 3,580,866.667
REL 3,405,133.340 109,666.660 3,514,800.000
RND 3,444,999.940 153,600.060 3,598,600.000

Average Quantity
Methods Corrective Opportunistic Total
FEM 16.633 30.300 46.933
FEL 16.367 29.700 46.067
REM 16.800 30.500 47.300
REL 16.467 30.500 47.000
RND 16.800 31.900 48.700

As a result, when four methods were examined with random methods had a not

significant difference was found both in terms of cost and quantity of changes.

However, we cannot say that there is a significant difference between the four

proposed methods. Each of the five proposed methods for corrective maintenance

can be used and applied.

6.3.1.2 Results of the Selected OPPCM Method

Also, we compared total cost and maintenance quantity for all method without

random method according to the component. When we look at the total cost

and maintenance quantity are given Figure 6.20 and Figure 6.21. We found that
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there isn’t any significant difference between them both in maintenance quantity

and maintenance costs.

Figure 6.20: Corrective Maintenance
Total Cost

Figure 6.21: Corrective Maintenance
Quantity

After that, we compare total cost according to opportunistic cost and non op-

portunistic cost in the FEM method. This cost is 3,489,467 TL and it include

cost of opportunistic part as 178,666.650 TL and cost of Non-opportunistic cost as

3,310,799.720 TL. Also, every method has approximately 16 maintenance quantity

with non-opportunistic part and approximately 30 maintenance quantity with op-

portunistic part. Although the opportunistic part has a very high quantity, they

incurred very little cost due to this cost doesn’t include loss production cost. This

results are given in Figure 6.22 and 6.23.

Figure 6.22: OPPCM Replacement
Cost Distribution

Figure 6.23: OPPCM Loss Production
Cost Distribution
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6.3.2 Results of Opportunistic Proactive Maintenance Strategies (OPPPM)

In this section, we applied proactive opportunistic maintenance strategies to elimi-

nate probable future failures in addition to the corrective maintenance. Numerical

tests were performed in order to examine which of the methods detailed above will

give better results in the DBN system. OPPPM strategies were examined sepa-

rately according to both the maintenance costs and maintenance quantity. For the

maintenance quantity and maintenance costs minimization, we performed each

strategy and we used ANOVA according to 95% confidence level for comparisons.

In this section, we showed results to maintenance cost, maintenance quantity, and

resource planning, and the effect of them to be selected maintenance method on

the system.

6.3.2.1 Results Based on the Maintenance Cost

The replication results of the proposed maintenance strategies under opportunis-

tic maintenance approach are shown in Table 6.13 and Table 6.14. These results

include the total planning cost average, standard deviation, and intervals of 30

replication in the given planning horizon for each strategy and method.

Each opportunistic maintenance strategy was compared by using two-way ANOVA

according to the maintenance parameters and maintenance methods and the p-

value for all strategies are shown in Table 6.15. Factors for the comparison of

two-way ANOVA were selected from the parameters of the maintenance strate-

gies and the proposed methods. We analysed the effect of the two factors on

the total maintenance cost in the planning horizon. It was aimed to select the

opportunistic maintenance strategy with the most appropriate cost among the

related parameters and methods.

In OPPCIPM strategy, parameters are selected as 2, 5, 10, 30, 60 and 90 days

for maintenance period and two-way ANOVA results are given in Table 6.15.

According to the results, the p-value of the parameters and methods are 0.000.
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Table 6.13: Replication Results of OPPPM Strategies

Strategy Method Mean (TL) Std. Dev. %95 CI

OPPCIPM, pci = 2

FEM 4,937,567 519,651 (4,743,526; 5,131,607)
FEL 5,187,433 4,91,876 (5,003,764; 5,371,103)
REM 5,120,267 4,00,960 (4,970,546; 5,269,988)
REL 5,090,800 4,63,566 (4,917,701; 5,263,899)

OPPCIPM, pci = 5

FEM 3,358,467 568,769 (3,146,085; 3,570,849)
FEL 3,392,000 525,065 (3,195,938; 3,588,062)
REM 3,384,633 482,637 (3,204,414; 3,564,853)
REL 3,419,900 501,449 (3,232,656; 3,607,144)

OPPCIPM, pci = 10

FEM 2,869,667 479,247 (2,690,713; 3,048,620)
FEL 2,903,500 443,971 (2,737,718; 3,069,282)
REM 2,958,133 586,437 (2,739,154; 3,177,113)
REL 2,979,067 518,969 (2,785,280; 3,172,853)

OPPCIPM, pci = 30

FEM 3,606,800 680,845 (3,172,644; 3,685,022)
FEL 3,536,233 588,244 (3,099,617; 3,566,183)
REM 3,498,367 615,035 (3,097,104; 3,550,163)
REL 3,313,133 579,755 (3,284,836; 3,685,364)

OPPCIPM, pci = 60

FEM 3,362,033 590,516 (3,141,531; 3,582,536)
FEL 3,420,400 462,954 (3,24,7530; 3,593,270)
REM 3,388,200 540,747 (3,186,282; 3,590,118)
REL 3,510,933 377,005 (3,370,157; 3,651,709)

OPPCIPM, pci = 90

FEM 3,602,167 499,460 (3,451,462; 3,840,472)
FEL 3,625,567 485,275 (3,446,314; 3,951,286)
REM 3,596,467 737,555 (3,302,607; 3,672,593)
REL 3,623,500 540,334 (3,199,189; 3,648,211)

OOPDIPM, pdi = 2

FEM 3,971,600 454,132 (3,802,024; 4,141,176)
FEL 3,954,267 433,218 (3,792,500; 4,116,033)
REM 3,818,900 41,9752 (3,662,162; 3,975,638)
REL 3,772,233 379,887 (3,630,381; 3,914,085)

OOPDIPM, pdi = 5

FEM 3,266,567 507,370 (3,077,112; 3,456,022)
FEL 3,178,533 480,129 (2,999,250; 3,357,816)
REM 3,133,700 478,502 (2,955,024; 3,312,376)
REL 3,203,200 374,551 (3,063,340; 3,343,060)

OOPDIPM, pdi = 10

FEM 2,970,367 606,803 (2,743,783; 3,196,951)
FEL 2,889,500 505,531 (2,7007,32; 3,078,268)
REM 2,858,900 632,178 (2,622,841; 3,094,959)
REL 3,045,233 572,113 (2,831,603; 3,258,864)

OOPDIPM, pdi = 20

FEM 3,128,033 506,745 (2,938,812; 3,317,255)
FEL 3,213,233 554,847 (3,006,050; 3,420,417)
REM 3,048,867 676,388 (2,796,299; 3,301,434)
REL 3,184,567 613,779 (2,955,378; 3,413,755)
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Table 6.14: Replication Results of OPPPM Strategies (cont’d)

Strategy Method Mean (TL) Std. Dev. %95 CI

OOPDIPM, pdi = 30

FEM 3,582,100 517,534 (3,388,850; 3,775,350)
FEL 3,624,433 431,448 (3,463,328; 3,785,539)
REM 3,485,733 512,799 (3,294,251; 3,677,216)
REL 3,652,833 662,020 (3,405,631; 3,900,035)

OOPDIPM, pdi = 60

FEM 3,540,200 393,854 (3,393,133; 3,687,267)
FEL 3,631,600 545,827 (3,427,785; 3,835,415)
REM 3,646,200 469,800 (3,470,774; 3,821,626)
REL 3,601,733 486,015 (3,420,252; 3,783,214)

OOPDIPM, pdi = 90

FEM 3,750,200 570,166 (3,537,296; 3,963,104)
FEL 3,667,933 469,060 (3,492,783; 3,843,083)
REM 3,496,133 412,526 (3,342,094; 3,650,173)
REL 3,617,200 514,859 (3,424,949; 3,809,451)

OPPThPM, thr = 0.50

FEM 3,518,933 340,428 (3,391,815; 3,646,051)
FEL 3,309,667 484,136 (3,128,887; 3,490,446)
REM 3,523,067 528,753 (3,325,627; 3,720,506)
REL 3,501,600 490,661 (3,318,384; 3,684,816)

OPPThPM, thr = 0.75

FEM 3,806,267 668,169 (3,556,768; 4,055,765)
FEL 3,525,200 524,797 (3,329,238; 3,721,162)
REM 3,508,933 492,190 (3,325,147; 3,692,720)
REL 3,524,733 473,737 (3,347,837; 3,701,630)

OPPThPM, thr = 0.90

FEM 3,240,433 568,031 (3,028,327; 3,452,540)
FEL 3,184,867 502,402 (2,997,267; 3,372,467)
REM 3,207,633 552,015 (3,001,508; 3,413,759)
REL 3,407,700 582,214 (3,190,298; 3,625,102)

OPPThPM, thr = 0.95

FEM 2,974,267 591,162 (2,753,523; 3,195,010)
FEL 2,905,100 444,515 (2,739,116; 3,071,084)
REM 2,902,067 557,000 (2,694,079; 3,110,054)
REL 3,077,000 500,688 (2,890,040; 3,263,960)

OPPThPM, thr = 0.97

FEM 3,23,6167 670,114 (2,985,942; 3,486,391)
FEL 3,362,500 447,250 (3,195,494; 3,529,506)
REM 3,313,633 489,913 (3,130,697; 3,496,570)
REL 3,173,200 405,261 (3,021,873; 3,324,527)
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Table 6.15: ANOVA Results of OPPPM Strategies
Strategy Factor p-value

Parameter (2; 5; 10; 30; 60; 90) 0.000
OOPCIPM Method (FEM ;FEL;REM ;REL) 0.000

Parameter*Method 0.826
Parameter (2; 5; 10; 20; 30; 60; 90) 0.000

OOPDIPM Method (FEM ;FEL;REM ;REL) 0.000
Parameter*Method 0.944
Parameter (0.50; 0.75; 0.85; 0.90; 0.95; 0.97) 0.000

OPPThPM Method (FEM ;FEL;REM ;REL) 0.000
Parameter*Method 0.246

These values show that the parameters and methods are significant. The best

interval time for OPPCIPM is 10 days and that FEM method from the proposed

methods gives the best results. We make a further analysis over costs after the

two-way ANOVA results in Figure 6.24 and Figure 6.25 which are interaction and

main effects plots respectively. The figures show that the results with that the

parameter 10 to parameter 90 are increasingly deteriorating due to the converging

of the model to corrective maintenance as the interval time increases. On the other

hand, when we select parameter 2, we are forced to do proactive maintenance,

therefore, the system tends to do unnecessary maintenance. Besides, when we

look at the interaction plot of CIPM, p-value is found to be 0.826. We can

conclude that the interactions plot of CIPM is not significant.

Figure 6.24: OPPCIPM Interaction
Plot

Figure 6.25: OPPCIPM Main Ef-
fects Plot

We analysed the OPPCM-FEM and OPPCIPM-FEM and comparison is given

in Figure 6.26. We have used t-test to understand whether it has a significant
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difference between corrective maintenance to parameter 90. According to this

comparison, we found that p-value is 0.424 between parameter 90 and OPPCM.

Parameter 90 and OPPCM do not have significant differences. When we examine

parameter 60 and parameter 30 to see why it decrease in parameter 60, p-value

is 0.688 between parameter 60 and 30. There are not significant respectively.

Lastly,

Figure 6.26: OPPCIPM vs OPPCM

The ranges of 2, 5, 10, 20, 30, 60 and 90 days are selected for the OPPDIPM

strategy and two-way ANOVA is applied. The results are given in Table 6.15.

P -value of the effects of parameter and method are both 0.000 and p-value of the

effect of interaction between the parameters and the methods is 0.944. Parameters

and methods have low p-values and they are significantly different. In addition,

when we look at the interaction between the parameters and methods p-value is

higher than α = 0.05. Therefore, this is not significant for the model. After the

ANOVA results, we also obtained plots of interaction and main effects for further

analysis in Figure 6.27 and Figure 6.28 where the best solution is determined as

10 days from the main effects plot of OPPDIPM.

We compare OPPCM-FEM result to OPPDIPM-FEM result. Figure 6.29 shows

the behaviour of the cost of decreasing values of the parameter. We have used

the t-test to understand whether there exists a significant difference between the

OPPCM and OPPDIPM with parameters 30, 60 and 90 respectively. Test results

give p-values of 0.771, 0.948 and 0.424 respectively which indicate no significant

difference. In addition, parameter 2 forces to do proactive maintenance many
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Figure 6.27: OPPDIPM Interaction
Plot

Figure 6.28: OPPDIPM Main Ef-
fects Plot

times. Therefore, the system tends to do unnecessary maintenance which is not

desired.

Figure 6.29: OPPDIPM vs OPPCM

In OPPThPM strategy, the threshold values are selected as 0.50, 0.75, 0.85, 0.90,

0.95 and 0.97 respectively. The result of ANOVA is given in Table 6.15. When

the results are evaluated, the p-value of the parameters and methods are 0.000

from which we can say easily that parameters and methods are significant for

the model. In addition, when we look at the interaction between the parameters

and methods p-value is 0.246 from which we can conclude that interaction is not

significant. We obtain plots of interaction and main effects in Figure 6.30 and

Figure 6.31 after the ANOVA result. We find the best parameter is 0.95.

After ANOVA analysis of the total costs, we compare OPPCM to OPPThPM us-

ing the FEM method. The comparison graph is given in Figure 6.32. Parameters

0.50, 0.75, 0.85 and 0.90 have higher cost since proactive maintenance is very rare
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Figure 6.30: OPPThPM Interaction
Plot

Figure 6.31: OPPThPM Main Ef-
fects Plot

leaving the system doing almost only corrective maintenance. Also, we have used

the t-test to understand whether it has a significant difference between OPPCM

to parameter 0.75. And, we found that p-value is 0.079. The result shows that

there exists no significant difference between them.

Figure 6.32: OPPThPM vs OPPCM

In addition, the best method in each opportunistic strategy was examined with

one-way ANOVA including also corrective opportunistic maintenance results and

a p-value of 0.000 was obtained. So, we compared these strategies also using

Tukey’s test [76]. The results are given in Table 6.16. As expected, the OPPCM

strategy is significantly worse than all strategies applied since it has the highest

average maintenance cost. However, we cannot say that the performances of the

other three proactive strategies differ significantly from each other because they

are in the same group.
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Table 6.16: Post-ANOVA Results of Selected Oppurtunistic Maintenance Strate-
gies

Strategy Method N Mean Group
OPPCM FEM 30 3,547,000 A
OPPThPM thr = 0.95 FEM 30 2,974,267 B
OPPDIPM pdi = 10 FEM 30 2,970,367 B
OPPCIPM pci = 10 FEM 30 2,869,667 B

As a result, it is understood that there is no difference between the selected

best OPPPM strategies. In addition, it is possible to implement any of these

opportunistic maintenance strategies in the given best parameters easily.

6.3.2.2 Results Based on the Maintenance Quantity

We did not find any significant differences between the proposed opportunistic

maintenance strategies, then we examined the maintenance quantity as our sec-

ond objective. The results are given in Table 6.17. We can say that there is

a significant difference among the selected maintenance strategies according to

maintenance quantity. OPPThPM uses the system reliability to beside on the

maintenance time, so it does not take unnecessary maintenance and consequently

has less maintenance quantity than other OPPPM strategies. Although there is

no difference in terms of maintenance cost in these selected maintenance strate-

gies, it is more logical to choose OPPThPM when considering the maintenance

quantity.

Table 6.17: Post-ANOVA Results of Selected OPPPM Strategies
Strategy Method N Mean Std. Dev. Group
OPPCIPM pci = 5 FEM 30 79.200 2.124 A
OPPDIPM pdi = 5 FEM 30 73.033 2.498 B
OPPThPM thr = 0, 95 FEM 30 69.033 2.593 C
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6.3.2.3 Results of the Selected OPPPM Strategy

The OPPThPM-FEM strategy was applied according to OPPPM strategy results.

Furthermore, the corrective maintenance cost part and proactive maintenance

costs part were examined with the opportunistic part and non-opportunistic part

on the results. These results are shown in Table 6.18. In the results, we found

OPPThPM was 2,974,267 TL. In this cost, the corrective part has 2,296,066.67

TL and proactive part 678,200.00 TL. Also, we can look at the replacement cost,

we can see that the effect of the cost of the opportunistic part. In addition,

we found that ThPM was 3,55,480 TL in the previous section. The reason why

OPPThPM is lower than ThPM due to it has an opportunistic part.

Table 6.18: Distribution of Cost in OPPThPM
Replacement Cost

OPPThPM Opp part NonOpp part Total
CM Part 42,333.33 33,733.33 76,066.67
PM Part 29,166.67 91,533.33 120,700.00

Loss Production Cost
OPPThPM Opp part NonOpp part Total
CM Part 0.00 2,220,000.00 2,220,000.00
PM Part 0.00 557,500.00 557,500.00

6.4 Comparison of the Maintenance Policies

After we found the best maintenance strategies, we selected them as policies and

examined them under each method for total cost and quantity. The results are

given in Figure 6.33 and 6.34. The significant of the method is most observed in

the DIPM strategy where is in the other strategies. The maintenance methods

behave indifferently according to the total cost.

In addition, we can say that the proactive maintenance group is better. In total

quantity, the significance of the method is also observed in ThPM strategy. and

methods behave indifferently in the other strategies. Corrective maintenance
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Figure 6.33: Comparison of Policies according to Total Cost

group is better. We take a consider proactive group, the best strategy is ThPM

for proactive strategy and OPPThPM for opportunistic proactive strategy.

Figure 6.34: Comparison of Policies according to Total Quantity

We examined further best policy with one-way ANOVA. P -value was found 0.000.

After ANOVA, we compared all averages using Tukey’s test [76]. The results are

available in Table 6.19. However, there exists a significant difference between the

best-selected policies in terms of cost. Although it is quite indifferent with respect

to the OPPCM, the results show that ThPM is significantly better than CM. As

expected, OPPThPM policy is the best.
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Table 6.19: Post-ANOVA Results of Selected Policies
Strategy Method N Mean Group
CM FEM 30 4847467 A
ThPM thr = 0.95 FEM 30 3554800 B
OPPCM FEM 30 3547000 B
OPPThPM thr = 0.95 FEM 30 2974267 C

6.5 Solution Time Analysis

The solution times of the methods and strategies are given in Table 6.20. When we

examined the results, the random method did not run the inference due to select

the component to be run randomly. Therefore, the solution time is shorter than

the other methods. The parameters of the best selected maintenance strategies

are taken as reference for the solution period of the proactive maintenance and

proactive maintenance policies. These strategies don’t use the random method.

Table 6.20: Distribution of Average Solution Time
Average Solution Time (minute)

Strategies FEM-FEL REM-REL RND
CM 22.60 23.21 9.87
PM 24.20 24.84 −−
OPPCM 14.53 14.62 9.62
OPPPM 14.53 15.02 −−
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Chapter 7

Real Life Model

In the previous sections, we modelled an empirical system and analysed different

maintenance policies using DBNs. In this section, how to apply DBNs in real

life problems is given. This real-life model is about to heat treatment. Heat

treatment is applied in production plants to give a metal shape especially in

the places where metal is used in products. Heat Treatment is the process of

replacing the physical, chemical and mechanical properties of metals by being

heated and cooled in a controlled manner. Heat treatment is carried out using

the austempering furnace line. This furnace line is a complex system with inter-

related components. Maintenance plans for the austempering furnace line must

be developed and implemented. It is aimed to use proposed strategies to plan

maintenance using DBNs.

In this chapter, we will give information about the austempering furnace line and

its subsystems. We will talk about why the endo-gas generator, the subsystem of

the austempering furnace line, is chosen for modelling and how it is modelled with

DBNs, the dependencies between the components, prior and transition probabil-

ities, costs and procurement processes of these components. We will explain how

the malfunctions in the endo-gas generator can affect production.
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7.1 Austempering Furnace Line

Electric or gas heating system with the desired size, gas atmosphere, direct heat-

ing or air circulation can be produced. Thanks to its energy efficiency and homo-

geneous heat distribution, austempering furnaces ensure that the materials are

subjected to high-quality heat treatment to achieve the desired hardness. There

are nine subsystems of the austempering furnace line. These systems are serially

connected to each other except the endo-gas generator. The endo-gas generator

works in parallel with the austempering furnace. In Figure 7.1, sub-systems of

the austempering furnace line are given.

Figure 7.1: Sub-systems of Austempering Furnace Line

A typical austempering furnace line consists of nine main systems which are load-

ing lift system, weighing feeder system, hardening feeder system, austempering

furnace system, endo generator system, salt quench tank with discharge conveyor

system, washing machines system, dryer system, and control panel system. This

study focuses on the endo generator system. This is because the endo generator

system has great importance for the austempering furnace line. Failures that may

occur in this system completely stop the system and prevent production.

7.2 Endo Generator System

The decarburization layer on the steel surface forms a smooth area on this surface

since it will not turn into martensite in the hardening process after cementation.
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Decarburisation results in a reduction in surface hardness and fatigue strength.

This is often undesirable. In order to prevent the formation of decarburisation

layer, the endothermic gas mixture in the furnace atmosphere can be achieved and

the surface of the steel part is protected from CO2, O2, and water vapour. This

endothermic gas mixture is provided by endo generators. Endo generators provide

a homogeneous atmosphere and provide atmosphere control heat treatment.

Figure 7.2: Diagram of Endo Generator System

Endo generator system consists of the air system, LPG system, and combustion

system. The formation of endo-gas depends on the proper operation of these

systems. The diagram of the endo generator system is given in Figure 7.2. Air

system has an air pump and air filter. Air pump consists of a fan belt, the

fan of motor and motor winding. These components draw the air required for

combustion. Air is also controlled by air pressure measuring devices. In order to

prevent air leakage, there are gaskets in the pipe joints. These gaskets consist of

a mixture of hard plastic and paper.
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In the LPG system, LPG is withdrawn from the main natural gas line. The LPG

line and the transfer pipe contain the LPG filter. LPG pressure is monitored by

measuring devices. If there is an LPG transfer at undesired pressure, a portion

of LPG is discharged from the discharge regulator to reduce the pressure. In

addition, there are gaskets to prevent LPG leakage from pipe joints. In the com-

bustion system, there are resistance, thermocouple, and catalyst. The resistance

gives a certain degree of heat and the heat is monitored by the thermocouple.

Catalysts are contained in a retort. The combustion process takes place in this

retort. Catalysts are combusted with the aid of air, LPG and resistances.

7.2.1 Technical Information of the Endo Generator

Endo generator is fitted directly on top of the furnace. It is heated by electrical

heaters fitted inside a radiant tube. Operating temperature of the generator is

1025 C. The generator consists of heat resistant alloy retort inside which catalyst

is filled. A mixture of gas and air is fed from the top into catalyst bed in a ratio of

1:4. a flow meter panel is provided with flowmeters and solenoid valves to control

the gas flow. Gas is kept at 2 cub m/hr and air at 8 cub m/hr. The endo-gas

generated enters the furnace through a pipe at the bottom of the generator. The

gas potential is measured and controlled by a carbon controller which displays

the MV. MV is maintained between 1000 and 1050 MV and this can be set from

the panel. An oxygen probe is fitted on the top of the furnace to measure the MV

value inside the furnace. Reference air panel is provided to give reference air to

the probe. This air is kept at 2 to 3 cub ft/hr. A timer is provided to send purge

air every 2 hr to clean the oxygen probe. To maintain the set MV, a separate

flow of enrichment gas is let into the furnace directly through a flow meter. This

flow is to be kept between 50 and 100 lph.

7.2.2 Working Principle of the Endo Generator

The processes of endo generator working principle is as follows:
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• The air motor rotates the fan belt to rotate the fan and air enters the system

through the air filter. The pressure of the incoming air is monitored.

• The air mixes with LPG to form a mixed gas and is released into the retort.

• The catalysts inside the retort are burnt by means of resistance and mix

gas to form endo-gas.

• The resulting endo-gas is released from the holes under the retort into an

empty chamber.

• With the emitted endo-gas probe, the CO2 value is measured and sent to the

furnace at the desired level. If the amount of gas is too high, it is released

through vent regulator. If the amount of gas is too low, the combustion

process is repeated.

7.3 DBN Model of the Endo Generator System

While modelling the endo generator system, the data obtained from previous

visits were used, such as the dependencies between the components, how a com-

ponent degradation affects other components that depend on it, the cost of repair

and replacement of each component, how long it lasts to repair or component

and Mean Time to Failure of components. According to these, the model is

constructed with the Genie Modeler [72] as given in Figure 7.3.

Endo generator consists of nine components which are air filter, motor winding,

fan belt, LPG filter, resistances, thermocouple, endo-gas retort, ceramic catalyst,

and probe. The model has three node types: dynamic nodes, process nodes, and

observation nodes. In Figure 7.3, the arrows “1” refer to the temporal relation-

ships which are effective after one time period. These arrows may locate between

two different nodes or on the same nodes. Other arrows represent the causal

relations among the nodes. Table 7.1 shows the node types and state spaces

of all nodes in the DBN model. Endo gas CO2 measurement is an observation
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Figure 7.3: Endo Generator DBNs model

node, built in the endo generator system to model the observability that provides

information on the amount of CO2 of the rich gas generated.

7.3.1 Dependencies Among the Components

In the DBN model, components have relationships and dependencies of the Endo

generator system. In the case of burn out of the motor winding in the air pump,

the motor cannot rotate the belt and does not generate air. In this case, no

air flow will occur even if the air filter is working. The formation of endo-gas

arises from the air, LPG and catalytic combustion. The catalysts are burned

with the help of resistances. Catalysts are likely to have 1025 degrees of heat

79



Table 7.1: Types of Nodes in the DBN Model

Nodes Node type State space
Air Filter Component {Normal, Fouling, Blocked}
Motor Winding Component {Normal, Burned}
Fan Belt Component {New, Corrosion, Failure}
LPG Filter Component {Normal, Fouling, Blocked}
Resistance Component {Normal, Degraded, Failure}
Thermocouple Component {Normal, Degraded Low, Degraded High}
Ceramic Catalyst Component {Normal, Low Quantity, Finished}
Endo Gas Retort Inlet Component {Normal, Fouling, Blocked}
Probe Component {Normal, Fouling, Blocked}
Fan Rotation Process {Rotate, Not Rotate}
Air Pressure Process {Normal, Low, Ultra Low}
LPG Pressure Process {Normal, Low, Not Available}
Heat Process {Normal, Low Level, High Level}
Endo Gas Formation Process {Normal, Low, Super Low}
Endo Gas CO2 Measure Observation {Normal, Low, Super Low}

to be burned at the desired level. The resistances are heated at this level. The

temperature inside the furnace is measured by the thermocouple. Resistances and

thermocouple have a stochastic dependency between them. Because the failure

of the thermocouple affects the resistances in the next period. For example, if the

thermocouple is at the “Degraded Low” state, the resistance will be heated more

and hence will work with a higher temperature and will be degraded due to high

current. In this case, the temperature inside the furnace will increase and the

catalysts will burn out faster than expected. The rapid consumption of catalysts

will affect the endo-gas in the retort and will obstruct the endo-gas release by

blocking the retort inlet. There is structural dependence between catalysts and

retort inlet. In this case, a maintenance process that can occur in the retort or the

catalysts leads to maintenance of both have to be maintained at the same time.

In addition, LPG must be supplied at sufficient pressure for endo-gas formation.

The decrease in LPG pressure is caused by the failure of the LPG filter.
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7.3.2 Modelling of Maintenance Actions

In a DBN model, actions are not explicitly included in the model the influence

diagram. Therefore, in this study, probabilistic action nodes were created for the

replacement and repair of each component. The purpose of the action nodes is to

ensure that the repair and replacement of the components do not affect the past

and hence the current state of the other components.

Table 7.2 shows the action nodes and their state spaces. The action of “Do

Nothing” is to leave that component in its case, without any changes, the action of

“Replace” is to replace the component with a new, the action of “Non Calibrate”

is to leave without any changes on the measurement device and the action of

“Calibrate” is to calibrate the measurement device.

Table 7.2: Types of Action Nodes in the DBN Model
Component Nodes Action Nodes State space
Air Filter Action 1 {Replace, Do Nothing}
Motor Winding Action 2 {Replace, Do Nothing}
Fan Belt Action 3 {Replace, Do Nothing}
LPG Filter Action 4 {Replace, Do Nothing}
Resistance Action 5 {Replace, Do Nothing}
Thermocouple Action 6 {Calibrate, Non Calibrate}
Endo Gas Retort Inlet Action 7 {Replace, Do Nothing}
Ceramic Catalyst Action 8 {Replace, Do Nothing}
Probe Action 9 {Calibrate, Non Calibrate}

7.3.3 Probabilities of the DBN Model

Mean Time to Failure (MTTF) was used to determine the failure probabilities

of the components. This information is taken from factory employees. Table 7.3

shows the MTTF of each component and the working probabilities calculated

in the next period accordingly. Initially, all components were started from their

best condition. At later times, if the action node is in the “Replace” state, the

component changes a new one and it backs to best condition.
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Table 7.3: Average MTTF of Components
Component MTTF (day) Working Probability
Air Filter 365.0 0.997264
Motor Winding 1095.00 0.999087
Fan Belt 182.50 0.994536
LPG Filter 365.00 0.997264
Resistance 400.00 0.997503
Thermocouple 730.00 0.998631
Endo Gas Retort Inlet 60.83 0.983696
Ceramic Catalyst 60.83 0.983696
Probe 365.00 0.997264

All component nodes were started from their best states and actions nodes have

symmetric CPT between each other (Replace = 0.5, DoNothing = 0.5) and

(Calibrate = 0.5, NonCalibrate = 0.5). The transition probabilities of all com-

ponent nodes are given from Table A.1 to Table A.9.The conditional probabilities

of the process nodes and observation node resulting from causal relations are rep-

resented Table B.1to Table B.8.
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Chapter 8

Conclusion and Future Study

A multi-component dynamic system consists of various components and subsys-

tems interacting with each other. This system consists of various components and

subsystem. Developing maintenance strategies for this system is quite challeng-

ing. We analyse a four-component the dynamic system under several maintenance

policies. We model the system using DBNs. DBNs provide flexibility in modelling

the dependencies in the system and efficient inference calculation.

For a four-component dynamic system, we propose four methods inspired by the

literature to be used under all kinds of maintenance strategies to determine the

most effective maintenance activity when a maintenance decision is taken. Our

goal is to minimize the total cost. We also develop a random selection method

that will be compared to the four methods. Each of these methods performed

better than the random method and there is no significant difference between

them.

We propose several maintenance policies under reactive, proactive and oppor-

tunistic maintenance strategies and implement them with different parameters.

We simulate the policies within the framework of dynamic Bayesian networks

and compare their performances using two criteria, total maintenance cost, and

total maintenance quantity. The results show that all proactive maintenance

policies are significantly better than the corrective maintenance policy. However,
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there exists no significant difference among the best selected proactive mainte-

nance policies in terms of cost although they differ with respect to the quantity

criterion. Threshold-based proactive maintenance is the best.

When the opportunistic approach is included in the policies, the performance of

the policies is similar to respective cases without opportunistic approach except

for the best parameter values. Proactive maintenance is preferred to be delayed

to a later period when the opportunistic approach is used. Another interesting

result about the policies including the opportunistic approach is that all proposed

maintenance methods give similar performances with the random method in de-

termining the maintenance action. This is not surprising in a four-component

empirical system since more components than the necessary are replaced or re-

paired at any maintenance period within the opportunistic philosophy. Hence,

the importance of determining the most effective component is lost which causes

insignificance among all the component selection methods including the random

method.

Furthermore, a dynamic Bayesian network is constructed for the maintenance of

an endo generator system to show how the proposed methods can be implemented

in real life. Endo generator system consists of several components having depen-

dencies among them. The causal and temporal relations are represented with

probabilities estimated based on the expert knowledge in the visited company.

Once the dynamic Bayesian network model is constructed, the proposed policies

can be efficiently implemented on such a real-life maintenance problem.

As a future study, we will analyse the performance of maintenance strategies

on a more complex problem, the endo generator system, to reduce the total

maintenance cost. The efficiency measures used in the maintenance methods can

be improved and new efficiency measures can be developed. Systems giving more

partial information with more than one observation can also be studied as the

extension of this work.
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In the current work during the integration of the opportunistic approach to main-

tenance policies, the reliability threshold value in the maintenance activity selec-

tion step is taken as 0.95. More extensive replications can be obtained including

different reliability threshold values. Furthermore, sensitivity analysis of the per-

formances of the policies to the loss production cost can be performed like a future

study.

85



Appendix

86



Appendix A

Transition probabilities

Table A.1: Transition probabilities of Air Filter
Action 1 Replace Do Nothing
(Self)[t-1] Normal Fouling Blocked Normal Fouling Blocked
Normal 1 1 1 0.99726 0 0
Fouling 0 0 0 0.9 0.996 0
Blocked 0 0 0 0.00074 0.1 1

Table A.2: Transition probabilities of Motor Winding
Action 2 Replace Do Nothing
(Self)[t-1] Normal Burned Normal Burned
Normal 1 1 0.99909 0
Burned 0 0 0.00091 1

Table A.3: Transition probabilities of Fan Belt
Action 3 Replace Do Nothing
(Self)[t-1] New Corrosion Failure New Corrosion Failure

New 1 1 1 0.99454 0 0
Corrosion 0 0 0 0.005 0.7 0

Failure 0 0 0 0.00046 0.3 1
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Table A.4: Transition probabilities of LPG Filter
Action 4 Replace Do Nothing
(Self)[t-1] Normal Fouling Blocked Normal Fouling Blocked
Normal 1 1 1 0.99908 0 0
Fouling 0 0 0 0.00061 0.9 0
Blocked 0 0 0 0.0003 0.1 1

Table A.5: Transition probabilities of Resistance

Action 5 Replace
(Self)[t-1] Normal Degraded

Thermocouple Normal Fouling Blocked Normal Fouling Blocked
Normal 1 1 1 1 1 1

Degraded 0 0 0 0 0 0
Failure 0 0 0 0 0 0
Action 5 Do Nothing

(Self)[t-1] Normal Degraded
Thermocouple Normal Fouling Blocked Normal Fouling Blocked

Normal 0.997503 0.99726 0.99909 0.99 0.99 0.99
Degraded 0.00250 0.00264 0.00091 0.01 0.01 0.01

Failure 0 0.0001 0 0 0 0
Action 5 Replace Do Nothing

(Self)[t-1] Failure Failure
Thermocouple Normal Fouling Blocked Normal Fouling Blocked

Normal 1 1 1 0.99 0.99 0.99
Degraded 0 0 0 0.01 0.01 0.01

Failure 0 0 0 0 0 0

Table A.6: Transition probabilities of Thermocouple

Action 6 Calibrate Non Calibrate
(Self)[t-1] Normal D. Low D. High Normal D. Low D. High
Normal 1 1 1 0.99863 0 0

Degraded Low 0 0 0 0.00068 1 0
Degraded High 0 0 0 0.00068 0 1
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Table A.7: Transition probabilities of Endo Gas Retort Inlet
Action 7 Replace

Heat Normal Low Level
(Self)[t-1] Normal Fouling Blocked Normal Fouling Blocked
Normal 1 1 1 1 1 1
Fouling 0 0 0 0 0 0
Blocked 0 0 0 0 0 0
Action 7 Do Nothing

Heat Normal Low Level
(Self)[t-1] Normal Fouling Blocked Normal Fouling Blocked
Normal 0.983602 0 0 0.989 0 0
Fouling 0.009 0.99 0 0.01 0.999 0
Blocked 0.00740 0.01 1 0.001 0.001 1
Action 7 Replace Do Nothing

Heat High Level High Level
(Self)[t-1] Normal Fouling Blocked Normal Fouling Blocked
Normal 1 1 1 0 0 0
Fouling 0 0 0 0.1 0.001 0
Blocked 0 0 0 0.9 0.999 0

Table A.8: Transition probabilities of Ceramic Catalyst
Action 8 Replace
(Self)[t-1] Normal L. Quantity Finished
Normal 1 1 1

L. Quantity 0 0 0
Finished 0 0 0
Action 8 Do Nothing
(Self)[t-1] Normal L. Quantity Finished
Normal 0.98361 0.01 0

L. Quantity 0.009 0.989 0.001
Finished 0.00740 0.001 0.999

Table A.9: Transition probabilities of Probe
Action 9 Calibrate Non Calibrate
(Self)[t-1] Normal Fouling Blocked Normal Fouling Blocked
Normal 1 1 1 0.99727 0 0
Fouling 0 0 0 0.0025 0.99 0
Blocked 0 0 0 0.00024 0.01 1
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Appendix B

Conditional probabilities

Table B.1: Conditional probabilities of Fan Rotation

Motor Winding Normal Burned
Fan Belt New Corrosion Failure New Corrosion Failure
Rotate 1 0.8 0 0 0 0

Not Rotate 0 0.2 1 1 1 1

Table B.2: Conditional probabilities of Air Pressure

Air Filter Normal Fouling Blocked
Fan Rotation New Not Rotate New Not Rotate New Not Rotate

Normal 1 0 0.001 0 0 0
Low 0 0 0.9989 0 0 0

Ultra Low 0 1 0.0001 1 1 1

Table B.3: Conditional probabilities of LPG Pressure
Air Filter Normal Fouling Blocked
Normal 1 0.0001 0

Low 0 0.9899 0
Not Available 0 0.01 1
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Table B.4: Conditional probabilities of Heat
Resistance Normal

Thermocouple Normal D. Low D. High
Normal 1 1 1
L. Level 0 0 0
H. Level 0 0 0

Resistance Degraded
Thermocouple Normal D. Low D. High

Normal 0 0 0
L. Level 1 1 1
H. Level 0 0 0

Resistance Failure
Thermocouple Normal D. Low D. High

Normal 0 0 0
L. Level 0 0 0
H. Level 1 1 1
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