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PREFACE 

 

Interpreter programs are system programming softwares and also design and 

implementation needs advanced knowledge and experience. These developments were 

driven by the advent of new programming paradigms. Learning this paradigm is 

important for solving other kinds of problems. For example; programs that convert any 

file format into another can be written by using the compiler/interpreter design 

paradigm. Furthermore, with this paradigm, important and advanced data structures 

must be used. For that reason, programmers have a good experience in data structures.  

 

In this thesis, it is aimed learning design and implementation of compilers/interpreters. 

Furthermore, sample interpreter uses this paradigm in details. This interpreter is the 

detailed generic (skeletan) interpreter and also shows the way to design another 

compilers/interpreters for any programmer.  
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Bu tezde yorumlayıcı tasarımı detaylı olarak ele alınmış ve her aşaması ayrı ayrı 
anlatılmıştır. Yorumlayıcı, programın kaynak kodunu anlamlandırıp çalıştıran 
programdır. Bu yazılım, makineden bağımsız olarak kod yazmaya ve geliştirilmesine 
olanak sağlar. Bu tarz yazılan programlar için işletim sistemi düzeyinde çalışan aslında 
yorumlayıcı programın kendisidir. Bu duruma örnek; Java programlama dili ve .NET 
platformunda geliştirilen programlar verilebilir. 
 
Yorumlayıcı sistem programlama yazılımlarından biri olup, tasarımı ve geliştirilmesi 
ileri düzeyde bilgi birikimi ve tecrübe gerektirmektedir. Karışık bir yapısı olan 
yorumlayıcıyı tasarlamak ve geliştirmek için teorik bilginin yanı sıra pratik bilgi de 
gerekmektedir.  
 
Bu çalışmada ayrıca detaylı (genel) iskelet yorumlayıcı oluşturulmuş ve son bölümde 
tasarımı ve  kodları anlatılmıştır.  

    

Anahtar Kelimeler: Derleyici, Yorumlayıcı 
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ABSTRACT 

 

DESIGN AND IMPLEMENTATION OF INTERPRETERS 

 

Karan, Oğuz 

 

 

Supervisor: Prof. Dr. Ali Okatan 

 

Istanbul 2005, 85 pages 

 

 

In this thesis, interpreter design is discussed in details and all phases are explained one 
by one. Interpreter is a program that meaning and executes the source code. For this 
kind of programs, real process in operating system’s level is the interpreter. Programs 
that  are implemented in Java programming language and in .NET platform can be 
given as example.  
 
Interpreter programs are system programming softwares and also design and 
implemantation needs advanced knowledge and exprience. There should be applied 
knowledge as well as theoretical information for designing and implementing of an 
interpreter.  
 
In this study, additionally detailed generic(skeletal) interpreter is developed and in last 
chapter design and implementation of this interpreter is explained.  
 

Key words: Compiler, Interpreter 
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1. INTRODUCTION 

1.1 Translators and Compilers 

Software that transforms one program code that is written in any programming 

language into another programming language is called translator program or 

translator. The language that is being transformed is called source language and the 

resulting one is called target language [1].  

 
For example, a program that transforms Pascal code to C code is a translator. 

Particularly, if the source is the high level or mid level language and the target is the 

low level language, (Assembly language or pure machine language), then the 

translator is called compiler, however the program that translates the assembly 

language to pure machine language is called assembler. Although assemblers 

transform source to target language, they are not technically translators. Linkers that 

link the object codes are similar to translators. Also, the loader of the operating 

system is similar to translators.  

 
From the pragmatic point of view, the translator defines the semantics of the 

programming language; it transforms operations specified by the syntax into 

operations of the computational model [18]. 

1.2 Interpreters 

Interpreter is a program that executes the source code partially. For example, 

Interpreter takes a line from the source text and establishes the action and processes 

it. In other words, the process that executes at operating system’s level is actually 

interpreter program. Interpreter realizes the meaning of source code and processes 

the code. Some traditional languages work with interpreters. For example; Basic, 
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Pascal, APL. Several script languages like Matlab, AWK are also processed with 

interpreters.  

1.3 Comparison of Compilers and Interpreters 

Compilers and Interpreters are complex programs. It is generally believed that only 

most advanced system programmers are privacy to this arcane art . That is the part of 

the mystique of being considered the Grand Guru of the programming department 

[2]. 

 

Interpreters are normally written in high-level language and will therefore run on 

most machines, whereas compilers generate object code for specific machine 

architecture. In other words portability is increased for interpreters. As interpreters 

interpret the code line by line, they cannot completely control the error. Generally, 

when they first encounter an error, they terminate the program.   

 

Since interpreters do not generate target code, they are not considered as translators. 

There is no difference between using compiler and interpreter. In both cases the 

program text is processed into an intermediate form which is then interpreted by 

some interpreting mechanism. As the interpreters are programs that interpret the 

source code, the execution of the code is relatively slower than compiler [1]. 
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1.4 Phases of compilation process 

In fact, compiler makes analysis and syntheses. Compiler first analyzes the source 

code, then makes processes for generating target code. The following paragraphs 

define the general phases of the compilation process: 

 

1. Lexical analysis or scanning: This phase analyses the character string 

presented to it and divides up into tokens that are legal members of the 

vocabulary of the language in which the program is written. In this phase, 

compiler can generate error messages if the character string is not pursuable 

into a string of legal tokens [3].  

2. Syntactic Analysis or parsing: This phase processes the sequence of tokens 

and produces an intermediate-level representation, such as abstract parse tree 

or abstract syntax tree and a symbol table that records the identifiers used in 

the program and their attributes. Parsing can occur in two basic fashions: top-

down and bottom-up [17]. In this phase compiler can generate error messages 

if the token string contains syntax errors or the misuse of the operator [3]. For 

parse trees, there is an additional phase called context handling that 

determines and place annotations or attributes for any node in tree. This 

version of the tree is generally called Annotated Abstract Syntax Tree. 

Abstract Syntax Tree (AST) is often called for Annotated Abstract Syntax 

Tree [1].  

3. Semantic Analysis; this phase processes the tasks using the symbol table and 

AST. In this phase; compiler can produce error messages such as type 

compatibility problem in the language.  
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4. Intermediate Code Generation: The code generation begins at this stage. This 

code is used for optimization. Optimizing phase is called code optimization. 

5. Code Generation: This phase produces the target code from intermediate or 

optimized intermediate code. 

 

The 1st, 2nd, and 3rd phases are called the front-end of the compilation process others 

are called back-end of the compilation process. There are additional tasks in the 

middle of these phases. These are the general ones. Phases of compilation process are 

shown in Figure 1.1. 

 
Figure 1.1 The general phases of compilation process [4]. 
 

1.5 Importance of interpreter / compiler design 

Studying compiler construction is a good idea because: 

• Given its close relation to file conversion, it has wider application than just 

compilers. 

• It contains many generally useful algorithms in a realistic setting. 
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1.5.1 Wide applicability of interpreter / compiler construction 

Interpreter / compiler construction paradigm can be applied to many other problems. 

Many problem can easily be solved effectively by using this technique. For example, 

when creating new file formats, file conversion problems, etc. If the data can be 

obtained by writing a grammar for it, it can be useful to obtain this data by using this 

technique as a parser generator. Then parser can be generated automatically. Such 

techniques can for example, be applied to rapidly create ‘read’ routines for HTML 

files, Postscript files, etc. Examples of file conversion systems that have profited 

considerably from compiler construction techniques are TeX text formatters which 

convert TeX text to dvi format and Postscript interpreters which convert PostScript 

text to instructions for a specific printer [1].   

1.5.2 Useful algorithms while constructing Interpreter / Compiler  

Interpreter / compiler construction techniques contain useful data structures and 

algorithms. Examples include hashing, garbage collections, graph algorithms, and 

trees etc. Using of these algorithms is educationally more valuable than their isolated 

study [1].  

1.6 History of Interpreter / Compiler Design And Implementation 

 

Three periods can be distinguished in the history of interpreter / compiler design and 

implementation [1]:1945 – 1960, 1960-1975 and 1975-present. 

1.6.1 1945-1960: 

In the 1950s, the earliest programmers prided themselves on doing their work 

without any assistance, and their work was tedious—in the extreme [16]. 
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During this period languages have been developed relatively slow and machines 

were idiosyncratic. The primary problem was how to generate code for a given 

machine. Proponents of high-level languages feared, not without reason that idea of 

high-level programming would never catch on if compilers produced code that was 

less efficient than what assembly programmers produced by hand. The first Fortran 

compiler (Sheridan, 1959) optimized heavily and was far ahead of its time in that 

respect [1]. 

1.6.2 1960-1975: 

During this period language designers believed that having a compiler for a new 

language was more important than having one that generated very efficient code. At 

the same time, studies in formal languages revealed a number of powerful techniques 

that could be applied profitably in front-end construction, notably in parser 

generation [1]. 

1.6.3 1975-Present: 

From 1975 to the present, both the number of new languages proposed and the 

number of different machine types in regular use decreased, which reduced the need 

for quick –and – simple compilers for new languages and / or machines. The greatest 

turmoil in language and machine design being over, people began to demand 

professional compilers that were reliable, efficient, both in use and in generated code, 

and preferably with pleasant user interfaces. This called for more attention to the 

quality of the generated code, which was easier now, since with the slower change in 

machines the expected lifetime of a code generator increased [1].  
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1.7 Notations of Syntax Definition 

There are number of grammar forms recommended for describing the syntax of 

programming languages. Most popular one is the BNF (Buckes Naur Form) notation. 

BNF notation first was designed in 1958 by John Buckes. BNF notation was used for 

describing the syntax of Algol58. Peter Naur improved this notation. For this reason, 

this notation is called BNF. BNF and its derivations are used for describing the most 

programming languages. Improved version of the BNF is called EBNF (Extended 

BNF). EBNF was standardized by ISO with the reference number ISO / IEC 

14977:1996(E).  

1.8 BNF Notation 

BNF notation contains three components: 

 

1. Production 

2. Non-terminal symbols 

3. Terminal symbols (atoms) 

 

Any line of the syntax rule is called production. In BNF notation all non-terminal 

symbols replaced as long as the atom encounters. For example 

 

S ::= S digit | digit 

 

Left - hand side of the symbol (S) ::= is the symbol that is described. Right – hand 

side is the syntactic construct. All of the line is called production. In some BNF 

derivations, symbol “:” is called for instead of symbol “::=”.  

In BNF notation symbol “|” (pipe) means or. For example, for 
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S ::= S digit | digit 

 

S can be a digit or S digit. The BNF production can be recursive. In some BNF 

derivation, instead of “|” for or the part of or is written to the below. For example 

 

S ::= digit 
        S digit 
 

This kind of notation is used in C/C++ standards. 

 

A non-terminal symbol can be described by another or directly by using a terminal 

symbol. For 

 

S ::= S digit | digit, 

 

digit is also a non-terminal symbol. All non-terminal symbols must be described. For 

production, the syntax must be of the following form: 

 

S :  
S digit 
digit 

 
digit: 
 0 
 1 
 3 

4 
5 
6 
7 
8 
9 
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For this rule, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are terminal symbols (atoms).  

 

For any rule, terminal symbols must be distinguished from non-terminal symbols. In 

original BNF notation terminal symbols are directly written and non-terminal 

symbols are written in the middle of the angular parentheses. For example: 

 

S ::= <S> <digit> | <digit>  

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

 

Some BNF derivations (C/C++/C# standards) any symbol are written directly but 

atoms are written in bold or italic. 

 

Optional elements are written in the middle of []. In C/C++ standards optional 

elements are written including opt sub index. Original BNF contains no optional 

element concept. 

 

For example, typical Pascal program can be written in BNF notation as follows. 

 

<program> ::= program 
  <decleration-sequence> 

begin 
<statement-sequence> 
end. 
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1.9 Abstract Syntax Tree and Annotated Abstract Syntax Tree 

The syntax tree of a program text is a data structure which shows precisely how the 

various segments of the program text should be viewed in terms of the grammar [1].  

 

The output of the syntax analyser and semantic analyser phases is sometimes 

expressed in the form of a decorated AST. This is a very useful representation, as it 

can be used in clever ways to optimize code generation at a later stage. [21].  

 

Since this tree is used for parsing, it is also called parse tree. Parsing is also called 

syntax analysis. Nodes of the parse tree are the non-terminal symbols and the leaves 

of these are the terminal symbols. For example a for grammar rule below; 

expression:  
 additive_expression 
 | factor_expression 
additive_expression: 
 additive_expressipn ‘+’ factor_expression 
 | factor_expression 
 
factor_expression: 
 T ‘*’ T 
 | T 
 
Derivation of the syntax tree, 
 
 
T * T + T * T 
 

is shown in Figure 1.2: 
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Figure 1.2 Syntax tree of the grammar rule as given above 

The exact form of the parse tree as required by the grammar is rarely the most 

convenient one for further processing, so usually a modified form of it is used, called 

an abstract syntax tree or AST.  Detailed information about the semantics can be 

attached to the nodes in this tree through annotations, which are stored in additional 

data fields in the nodes; therefore the term annotated abstract syntax tree. Since un 

annotated   ASTs are of limited use, ATSs are always more or less annotated in 

practice, and the abbreviation AST is used also for annotated ASTs [1].  

1.10 Symbol Table 

Compilers and Interpreters build and maintain a data structure used throughout the 

translation process. This structure is commonly called the symbol table and it is 

where information about many of the source program’s token is kept [2]. 
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Symbol table is used for recording the name, current value and other attributes of any 

variable. Symbol table must also able to design for adding or getting variable data 

when a variable is encountered.  

A C compiler, for example, stores the variable and structure names, labels, 

enumeration tags, and all other names used in the in its symbol table [19].  

 

There are three operations on symbol table: 

- Add (Insert)  

- Delete 

- Search 

Generally search operation is processed frequently than the add operation. For this 

reason, data structure must be effective for search operation. Hash Table is a good 

solution for this problem. Hashing with chain method can be used.  

Chains provide a good solution to the overflow problem that arises when hashing is 

used. Rather than placing an element into a bucket other than its home bucket, it is 

maintained as chains of elements that have the same home buckets [20]. 

First, variable name is passed to hash function the result is the hash index,  then is 

searched in the related linked list. Also binary trees can also be used for symbol 

tables.  
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2. A SIMPLE MANUAL CALCULATOR (SIMPLE DEMO 
INTERPRETER/COMPILER) 

 
Implementation of the simple manual calculator project consists of four modules. 

These are scanner.c, parser.c, backend.c and main.c. All modules except main.c 

have their own headers, scanner.h, parser.h, backend.h.  

2.1 The Grammar for the simple manual calculator 

For a simple manual calculator, the expressions are based on a fully parenthesized 

expression with operands of one digit. This makes parsing/syntax analysis simple 

rand avoids details. The grammar of this calculator is shown in Figure 2.1. 

 
expression: 
 digit  
 | ‘(‘ expression operator expression ‘)’ 
 
operator: 
 ‘+’ 

 | ‘*’ 
 
digit: 
 0 | 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
 
 
Figure 2.1 Grammar for simple manual calculator 
 
 
To simplify things even further, this calculator has only two operators [1]. Sample 

derivations that the grammar produces in Figure 1.3 are 

 
3 
(1 + 2) 
(1 * ((3 + 5) * 7)) 
etc. 
 
Also this allows white space, including tabs and new lines, in the input.  
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2.2 Main module for the simple manual calculator 

The main module of the program file is main.c as shown in Appendix A.1. In this 

project, source type can be either a string from console or a file. For the file is shown 

in Appendix A.1, the source type is file (sample.dat). For this reason the sourceType 

field of the g_source global variable, which is defined in scanner.c and has a type 

SOURCE type that is declared in scanner.h, must be assigned to the appropriate type 

either string form console or a file in main module.  

 
After the initializations of the variable g_source, Parse function which is defined in 

parser.c and declared in parser.h, is called with a node variable. Afterwards Process 

function called for interpreting code or generating an executable code.  

2.3 Scanning or Lexical Analysis for the simple manual calculator 

The scanning module of the simple manual calculator program is scanner.c and its 

own header is scanner.h. The contents of the scanner.h file are shown in Appendix 

A.2, and the contents of the scanner.c file are shown in Appendix A.3. In this 

program there are 14 tokens. These are (, ), +, * and digit that contains ten tokens.  

 

The institution is based on the fact that the parser does not care exactly which digit it 

sees, so as far as the parser is concerned, all digits are one and the same token: they 

form a token class [1].   

 
It was said that the source type of the input can be string from console or file. The 

symbolic constants ST_STRING and ST_FILE are used for this reason respectively. 

For the sourceType field of the SOURCE structure it is initialized the appropriate one 

of these constants. Any token is represented by the TOKEN structure. If the type of 

the token is a digit, then the type field of this structure is TT_DIGIT, otherwise it is 
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the ASCII code of the token. The token field of the TOKEN structure is the 

representation of the token. SOURCE structure also contains union called uBuf. This 

is used with according to the sourceType field. uBuf union contains two fields, f and 

pStr. f used when the sourceType is ST_FILE, pStr is used when the sourceType is 

ST_STRING. 

 

Furthermore, this file contains only one function prototype, GetNextToken. This 

function gets the next token according to the sourceType field of the SOURCE 

structure.  

 

g_token global variable which has type of TOKEN, contains tokens. Since all the 

modules have to access this variable, it was defined global. Likewise, g_source 

global variable which has a type SOURCE, contains the source.  

 

scanner.c file contains two static functions and one global function. Furthermore, 

this file contains two global variables, are g_token and g_source. 

getNextTokenFromFile and getNextTokenFromString functions are called from 

GetNextToken function according to the sourceType  value of the g_source variable. 

These static functions get the next token and replace the g_token variable with the 

appropriate values.  

2.4 Parsing or Syntax Analysis for the simple manual calculator 

The parsing module of the simple manual calculator program is parser.c and its own 

header is parser.h. The contents of the parser.h file are shown in Appendix A.4 and 

the contents of the parser.c file are shown in Appendix A.5.  

 



 16

parser.h contains three symbolic constants that are used for the states of the return 

values of the functions. This file also contains two additional symbolic constants, 

NT_DIGIT, NT_PARAN for the type value of the EXPRESSION structure. NT_DIGIT 

is defined as ‘D’ which is used for the digits. NT_PARAN is used for parenthesis 

and for operators. This file also contains function prototypes and declaration of the 

EXPRESSION structure.  

 
 
parser.c file contains several static functions, allocNode, freeNode, parseOperator, 

and parseExpression. allocNode function allocates an EXPRESSION which is the 

node of the AST and freeNode function frees the EXPRESSION object. 

parseOperator is called for parsing the operators. parseExpression is a recursive 

function that produces the AST by calling the appropriate function. Furthermore, 

there are two global functions, DisplayErrorMessage and Parse. 

DisplayErrorMessage is called when any of the function returns error. Parse 

function is called for parsing the all source text.  

 

AST for the expression (2 * ((3 * 4) + 5)) is shown in Figure 2.7.  
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Figure 2.2 AST for the expression (2 * ((3 * 4) + 5)) 

2.5 Interpretation and code generation for the simple manual calculator 

The Interpretation and code generation module of the simple manual calculator 

program is backend.c, and its own header is backend.h. The contents of the 

backend.h file are shown in Appendix A.6 and the contents of the backend.c file are 

shown in Appendix A.7. 

 

backend.h file contains two function prototypes, GenerateCode and Process. 

GenerateCode function genetares the appropriate code for the machine. Process 

function interprets the code.  

 

backend.c file contains two static functions, generateCode and interpret. 

generateCode function generates the appropriate machine code. Since this project is 

simple, generateCode only prints the machine codes. interpret function interprets the 

operation and returns the result. These functions are called from GenerateCode and 

Process respectively.  
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3. LEXICAL ANALYSIS OR SCANNING 

The first process of the interpreters / compilers is the lexical analysis or scanning. 

Atoms or terminal symbols are used by the parser module. Several tools for scanning 

exists for example. Traditionally in UNIX systems there is a tool called lex. The 

GNU licensed version of the lex is called flex. For example in LINUX systems lex 

and flex are the same programs. The scanning module can also be written by the 

programmer. If it is written by the programmer, it will be particular for the language. 

It can be general only when the programmer writes a general tool like lex or flex.  

3.1 Regular Expressions 

Regular expression concept came from mathematics. Regular expressions are 

powerful language for describing and manipulating text [15]. In software, regular 

expressions are used to obtain the appropriate part of the string that ensures the given 

rule. Tools or programs that are used for this reason are called regular expression 

engines. There are several tools that use regular expressions. For example some 

editor programs can search by using regular expressions. grep command in 

UNIX/LINUX systems also use regular expressions for searching. Regular 

expression concept is abbreviated as regex.  

 

In regular expressions, data that is appropriate for the given rule can be obtained. If 

we want to obtain the numbers in the text, we must use regular expressions. Also for 

example if we want to obtain date that has a format dd/mm/yyyy, we must use regular 

expression.  

 

There are no standard in regex engines [5]. But they have few differences .In C and 

C++, there are no standard functions or classes that process the regular expressions; 
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however; in Java and .NET platforms standard classes about regular expressions 

exists.  

 

Regular expressions are context-independent syntax that can represent a wide variety 

of character sets and character set orderings, where these character sets are 

interpreted according to the locale [14]. 

3.1.1 Using the Regular Expressions 

The searching pattern is written by using some meta characters. If no meta character 

is used, exact match of the pattern is obtained.  

 

‘[‘and ‘] ‘are meta characters. They represent a one character. For example, the for 

the pattern: 

 
“h[ea]llo” 

 

“hello” or “hallo” can be obtained. Meta characters are not normal character itself. If 

we want to use any meta character as a normal character, we must use ‘\’ before the 

meta character. For example; 

 

“h\[x\]a” 

 

In this example ‘[‘ and ‘]’ are not meta characters, they are normal. An interval can 

be pointed out by using ‘-‘ between ‘[‘ and ‘]’. For example; 

 

“[0-9]” 
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In this example, the number between 0 and 9 can be obtained. Notice that again it 

represents only a one character. ‘-‘ is also a meta character. For example, the pattern 

above can be used to obtain a date that has a format dd/mm/yyyy. 

 

“[0-9] [0-9]/ [0-9] [0-9]/ [0-9] [0-9] [0-9] [0-9]” 

 

More than one interval can be written between ‘[’ and ’]’. For example; 

 

“[0-9a-zx]” 

 

In this form, a one character that can be between 0 and 9 or can be between ‘a’ and 

‘z’ or only x can be obtained [5].  

 

‘^’ is also a meta character and it means “not”. For example; 

 

“[^a]” 

 

means any character that is “not” ‘a’ [6].  

 

Some characters begining with ‘\’ mean some group of characters. For example,  

 

“\d” and “[0-9]”, “\w” and “[a-z]”, “\s” and “[ \t\r\n]”  

 

have the same meanings [5]. The capital letter version of these characters means 

“not”. For example, “\D“ and “[^0-9]” are similar.  
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‘.’ is a meta character and means any character.  For example; 

 

“[a-z]..b” 

 

With this form a pattern - that has first character is between ‘a’ and ‘z’, then any two 

characters then character ‘b’ - can be obtained.  

 

‘?’ is a meta character and means that left of this character is optional. For example, 

 

“ab?c” 

 

With this form, “ac” or “abc” can be obtained.  

 

‘(‘ and ’)’ are also meta characters. They are used for grouping. For example; 

 

“a(bc)?d” 

 

In this example, “abcd” or “ad” can be obtained. ‘?’ can be used in ‘[]’. For example, 

 

“a[0-9]?b” 

 

With this form “ab” or “a-any number-b” can be obtained [6].  

‘|’ is also a meta character and means “or”. For example; 
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“ab?c|a.b” 

 

In this form, ‘|’ produces a two condition. “abc”, “ac”, “a-any character-b” can be 

obtained [5].  

 

‘*’ and ‘+’ are important meta characters. They are very important. The little 

difference between there two characters is subtle. ‘*’ means, if there is zero or more 

left character of the ‘*’, all can be obtained. ‘+’ means, if there is one or more left 

character of the ‘+’, all can be obtained. For example; 

 

“f+” 

 

With this form, all contiguous ‘f’ characters can be obtained.  

 

For a text , 

 

“yyyyyaaaacccc” 

 

If we use “a*” form, we will get no character. Because when the search begins, zero 

character was found. If we use “a+”, ‘a’ character will found and all contiguous ‘a’ 

will be obtained.  

 

“.*” or “.+” are frequently used. This form means “all character up to the end of 

line”. For example; 
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“okrn.*”  

 

With this form,  all characters from first occurrence of okrn  to end of line  can be 

obtained. For example; 

 

“(abc)+” 

 

With this form, contiguous “abc”s can be obtained. 

 

There are of course a lot of meta characters and details.  

3.1.2 Theory of Regular Expressions 

Using regular expressions, we can specify patterns to lex that allow it to scan and 

match strings in the input. Each pattern in lex has an associated action. Typically an 

action returns a token, representing the matched string, for subsequent use by the 

parser.To begin with, however, it is simply printed the matched string rather than 

return a token value. It may be scanned for identifiers using the regular expression 

 

letter(letter|digit)* 

 

This pattern matches a string of characters that begins with a single letter, and is 

followed by zero or more letters or digits. This example nicely illustrates operations 

allowed in regular expressions: 
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- repetition, expressed by the “*” operator 

- alternation, expressed by the “|” operator 

- concatenation 

 

Any regular expression expressions may be expressed as a finite state automaton 

(FSA). FSA can be represented using states, and transitions between states. There is 

one start state, and one or more final or accepting states. 

 

Figure 3.1 Finite State Automaton 
 

In Figure 3.1, state 0 is the start state, and state 2 is the accepting state. As characters 

are read, Transition is made from one state to another. When the first letter is read,  it 

is transit to state 1. When character is read other than a letter or digit, we transition to 

state 2, the accepting state. AnyFSA may be expressed as a computer program. For 

example, 3-state machine is easily programmed [9]: 
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start: goto state0 

 

state0: read c 

if c = letter goto state1 

goto state0 

 

state1: read c 

if c = letter goto state1 

if c = digit goto state1 

goto state2 

 

state2: accept string 

3.1.3 Regular Expressions in C and C++ 

There are no standard functions or classes about regex in C and C++, however, there 

are several libraries written by anyone or company. There are POSIX functions about 

regex. These functions are standard for POSIX systems, UNIX, LINUX, MAC OS 

etc. Declarations of all these functions are in regex.h file. When these POSIX 

functions are used, fist regcomp function must be called with the parameter of the 

regular expression form. Then regexec function is called for searching. At last, 

regfree function called for changing the regex form. These functions interpret basic 

and extended Regular expressions [13]. A very simple use of these functions is 

shown in Appendix B.1. 
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3.2 Lex / Flex programs 

lex file which is the input file for the lex/flex programs can be separated into three 

sections [7].  

 

- definitions  

- rules  

- subroutines (user codes, C codes) 

 

The format for this file is shown in Figure 3.1 

Definitions 
%% 
Rules 
%% 
C codes 
 
Figure 3.2 Format of the lex file [7]. 
 
Lex is designed to simplify interfacing with Yacc, for those with access to this 

compiler-compiler system [11].  

 

In this format %% characters distinguish the sections. Definition section can consist 

of macros and/or C declarations. C declarations are written between %{ and %} like 

this: 

 
 
%{ 
 int g_x; 
 /*…*/ 
%} 
 
Macros are the text representations of the regular expressions. For example, 

 

DIGIT  [0-9]+ 
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ALPHA  [a-zA-z]+ 

 

So, typical definitions sections can be like this [7]: 

 

DIGIT  [0-9]+ 

ALPHA  [a-zA-Z]+ 

 
%{ 
 int g_x; 
 /*…*/ 
%} 
When macros are used in any other section they must be written between ‘{’ and ’}’ 

like this: 

 

{ALPHA} 

It is not mandatory that lex file contains definitions section. C declarations in 

definitions section is exactly written to the code file that lex or flex program 

produces. 

 

3.2.1 Rules Section 

Every rule must be written in a line and the following way [7]: 

 

<Pattern> <action> 

 

Pattern must be aligned to left. Action part consists of the C codes that are processed 

when the related atom found. If there are more than one C expression for the action, 

then the code must be written in the {}. For example; 
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DIGIT  [0-9]+ 

ALPHA [a-zA-z]+ 

 
%{ 
 int g_digitNo = 0; 
 int g_variableNo = 0; 
%} 
 
%% 
 
{DIGIT} {++g_digitNo;} 
{ALPHA} {++g_variableNo;} 
 
If the there is no action for the pattern, the related item is wasted. If the rules section 

is empty, all characters are passed to stream.  

 

3.2.2 Codes Section  

 

Codes section consists of the C codes that are passed to the code file that the lex or 

flex programs produce. In this section there main or yywrap functions must be exist 

at least. If these are not written, and the libfl.a library is included the link phase, 

default version of these functions are written automatically. The default main 

function only calls the yylex function.  

 

It is not mandatory that the code which is produced by lex/flex consists of the main 

function. In fact, the chief function is the yylex function. This function is defined by 

the lex/flex program. Also yylex function needs the yywrap function. yywrap 

function must be written by the programmer or must be declared as “not written“ via 

an exclusive directive [7]: 

 

%option noyywrap 
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However, there is a yywrap function defined as follows [7]; 

 
int yywrap(void) 
{ 
 return 1; 
} 
 
yylex is the chief function of the lex/flex. If the programmer uses the return in the 

action part, the code returns from the yylex function.  

 

3.2.3 Important Global Variables in the lex/flex Source Code 

yytext variable consists of the current atom. yyleng consists of the length of the 

current character.  

 

Two significant global variables are yyin and yyout that has a type FILE *. Lex/flex 

program use the file that yyin points to as a source (input) file [7]. The default file is 

the stdin for yyin. . Lex/flex program use the file that yyout points to as a destination 

(output) file. The default file is the stdout for yyout [7].  

3.2.4 Compiling and Executing the lex/flex source file 

Lex/flex source file is not a C code file. Lex/flex writes a C code that tokenizes. As a 

result of this process, lex.yy.c file is produced. This file is C code file. This file must 

be compiled by gcc. These processes are; 

 

1. Lex/flex source file is written with an extension .lex or .flex or .l.  

2. Lex/flex source file is processed with the lex/flex as: 

 

flex test.c 
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Afterwards lex.yy.c file is produced. 

3. lex.yy.c file is compiled with gcc; 

 

gcc –o test lex.yy.c –lfl 

 

3.2.5 Lexical Analysis Process with yylex Function 

yylex function that is written by lex/flex behaves as: 

 

1. Takes the characters from the file that the yyin points to. Then analyze them. 

2. If the characters that are taken from the source file (yyin) ensures the regex 

rule, they are copied to the array which is pointed to by yytext. Then the 

action related to the regex rule is processed.  

3. If the characters that are taken from the source file (yyin) does not ensure the 

regex rule, these characters are passed to the yyout file.  

 

yylex function conserves the state. In other words, if yylex function is terminated by 

return expression, when it is called again it continues from before state.  

3.2.6 Using lex/flex in Projects 

The aim of using the lex/flex is to leave the scanning process to this program. yylex 

function must be called for each atom. A typical arrangement must be as follows: 

 

1. In action parts of the lex/flex source file the programmer must use return for 

terminating the yylex function. Programmer takes the atom from yytext after 

terminating yylex.  
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2. yylex function is returned with the type of the atom. So that, it can be possible 

to establish the type of the atom.  

3. At the end of the file, yylex function calls yywrap automatically then return 

with 0.  

 

3.3 Manual Lexical Analysis 

Lexical Analysis can be done without using any tool (manually, programmatically). 

Lexical Analysis can be processed as follows: 

 

1. White spaces are skipped. The first character that is not a white space is 

taken. 

2. This character is related to the atoms type whether it is numerical or 

alphanumerical etc. 

3. Contiguous characters are taken with respect to this character.  

 

3.4 Object Oriented Manual Lexical Analysis by using C++ 

Lexical Analysis process can be implemented manually by using C++ and its classes. 

This method is less effective because of the level of C++ programming Language. 

The class diagram of this design is shown in Figure 3.2. 
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Figure 3.3 Class diagram of Object Oriented Lexical Analysis Process 
 
Scanner class tokenizes the atoms. As  the main class for lexical analysis. Tokens are 

represented by classes that are inherited from Token class. For example, 

VariableToken class represents the variables, whereas Token class has a GetToken 

function. This function is pure virtual. This function is overridden in derived classes. 

Token class is used by Scanner class with the association technique in Object 

Oriented Paradigm. The main function that gets the atom is the GetNextToken 

member function of the Scanner class. GetNextToken first skips the white space 

characters. It gets the first character except white space, creates the appropriate 

token object. Then it calls the GetToken function of the token object.  

 

Input source can be file or memory. TextSource class is the base of the 

TextSourceFile and TextSourceMemory classes. The former class represents the file 

input, latter represents the memory input. TextSource class has two pure virtual 
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functions which are named as GetChar and ReadChar. These functions are 

overridden in derived classes.  

 

Dynamic Allocation for any token variable is not effective. For this reason, pre-

created token variables can be used.  

 

The implementation file scanner.h and scanner.cpp are shown in Appendix B.2 and 

Appendix B.3 respectively.  

 
scanner.h file consists of the declarations of the classes which are shown in Figure 

3.2 and any ScannerException class that is the exception class of the Scanner class. 

ScannerException class is used for exception handling. Also, scanner.c file consists 

of the implementations of the classes which are shown in Figure 3.2 and any 

ScannerException class that is the exception class of the Scanner class. 
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4. SYNTAX ANALYSIS OR PARSING 

 

The other process of the interpreter / compiler is the syntax analysis or parsing. 

Several tools for parsing exist. Traditionally in UNIX systems there is a tool called 

yacc. The GNU licensed version of the yacc is called bison. bison is also the 

extended version of the yacc. The parsing module also can be written by the 

programmer. If it is written by the programmer, it will be particular for the language. 

It can be general only when the programmer writes a general tool like yacc or bison.  

 

In the syntax-analysis phase, a compiler verifies whether or not the tokens generated 

by the lexical analyzer are grouped according to the syntactic rules of the language. 

If the tokens in a string are grouped according to the language's rules of syntax, then 

the string of tokens generated by the lexical analyzer is accepted as a valid construct 

of the language; otherwise, an error handler is called [12]. 

4.1 yacc/bison Programs 

yacc and bison are programs that make syntax analysis/parsing by using BNF 

notation. yacc and bison are compatible with lex and flex. Bison is the extended and 

GNU version of yacc. There is an open source version of the bison for Linux and 

Windows operating systems.  

4.1.1 Organization of yacc/bison source (input) file 

yacc/bison source file can be separated into three sections [8].  

- Definitions  

- Rules  

- Subroutines (user codes, C codes) 



 35

The format for this file is shown in Figure 4.1 

 
Definitions 
%% 
Rules 
%% 
C codes 
 
Figure 4.1 Format of the lex file [8]. 
 
Definitions section can consists of the exclusive declarations of yacc/bison or C 

declarations. C declarations must be written between %{ and %}. Rules section 

consists of the BNF productions. All productions must be terminated with ‘;’ 

character. Code of productions (action) can be defined for all options that separated 

by ‘|’ [8].   

Names refer to either tokens or nonterminal symbols. Yacc requires token names to 

be declared as such. [10] . 

 
A sample rules section can be as follows: 
 
expression: 
 expression ‘+’ factor {$$ = $1 + $3;} 

| expression ‘-‘factor {$$ = $1 - $3;} 
; 
factor: 

factor ‘*’ NUMBER {$$ = $1 * $3;} 
| NUMBER  {$$ = $1;} 

; 
 
If the terminal symbol includes one characters, it is written in ‘ and ‘. Otherwise, it 

must be declared with %token in the declarations section. For the example, above +, 

-, * and NUMBER are atoms. Derivations for this example are; 

 

NUMBER * NUMBER + NUMBER * NUMBER 

 

or 
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NUMBER 

 

For productions, $1 represents the first symbol, $2 represents the second symbol etc. 

$$ represents the result of production. 

4.1.2 Process of yacc/bison 

 

When the source code of the yacc/bison is compiled, if the source file’s name is 

test.y, test.tab.c C code file is generated. In this C code file parsing processes are 

done with the yyparse function, therefore a programmer must write a main function 

and must call yyparse to excute that code. Algorithm of the yyparse function is 

written as follows: 

 

1. yyparse needs atoms for root production. It gets the atoms and derives the 

production 

2. yyparse gets atoms by using yylex. For that reason, yylex function must be 

written by programmer or by lex/flex. 

3. yyparse calls the yylex function then retrieves the numeric value of the atom 

from yyval variable. If lex/flex is used, programmer must assign the value to 

the yylval variable before yylex returns. 

4. yylex function establishes the type of the atom from yylex function. If the 

return value of the yylex function is between 0 and 255, atom includes one 

character. The return value is the ASCII code of this character. If this value is 

greater than 255 it is a multi-character atom. The type of the atom can be 

established by this value [10]. 
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5. When yacc/bison programs are executed with –d command line, it produces 

also a .tab.h header file; test.tab.h i.e. This file includes the symbolic 

constants that are declared as %token. For this reason, these constants must 

be returned from yylex by programmer. Therefore, this file must be included 

in the lex/flex source file. 

4.1.3 Expression and Atom Types in yacc/bison  

The types of yylval that consists of found atom, $n that consists of the related non-

terminal and terminal symbols isYYSTYPE. If YYSTYPE  is not defined with #define 

declaration in the generated C code file, YYSTYPE is defined as int by yacc/bison. If 

the programmer wants the YYSTYPE as double for example, he/she have to define 

YYSTYPE as double in the definitions section as follows: 

 
 
 
%{ 
 #define YYSTYPE double 
%} 
 
 
It is possible to differentiate the type of atoms by using %union declaration. A 

sample %union declaration  is shown in Figure 4.2; 

%union { 
 double val; 
 char *name; 
} 
 
Figure 4.2 Sample %union declaration. 
 
It is also possible to declare type for non-terminal and terminal symbols by using 

%type and %token declarations, respectively. Types are written in < and >. For 

example; 
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%token <val> NUMBER 
%token <name> NAME 
%type <val> expression 
 
With the %union declaration type of the yyval becomes a union as shown in Figure 

4.2.  When we use yacc/bison with –d command option, YYSTYPE is defined with 

#define declaration  as union that is declared with %union in source file of the 

yacc/bison program. Also an extern declaration is declared in the generated header 

file. Briefly, 

 

1. Type of the yyval is always YYSTYPE. 

2. Default type of the YYSTYPE is int 

3. If YYSTYPE is defined with #define, YYSTYPE become type as defined 

4. If YYSTYPE is defined as %union declaration, YYSTYPE become this union 

type. 

4.1.4 Using C++ codes with lex/flex and yacc/bison 

Lex/flex and yacc/bison program generates C codes. If the extensions of these files 

are renamed as .cpp then are compiled by C++ compiler, C and C++ compatibility 

problems can be occurred. Therefore, these codes must be compiled with C compiler, 

and other C++ codes must be compiled with C++ compiler. Then all the object codes 

must be linked together, however, the following problems can be occurred: 

 

1. Name decoration of the compilers can be different. Therefore, C and C++ 

codes must be compiled by the compiler that belongs to the same compiler 

family.  

2. C++ functions are called by the C modules must be declared and defined 

with “extern C” declaration.  
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3. For dynamic memory allocation in C++ operator new and operator delete 

must call malloc and free functions respectively. Therefore, operator new and 

operator delete must be implemented (defined) again. 

4.2 Representing the Syntax Tree by Using C 

Syntax Tree must be expressed as a data structure by using C. It is aimed to be 

expressed as a data structure in memory not to draw the figure of the tree. For the 

Figure 1.2, nodes may have various elements. For effective and comfortable usage, 

nodes must be represented homogenously. One field of the structure of the node can 

be used for determining the type of the node. For example, node belongs to binary or 

unary operator. Furthermore, node belongs to a non-terminal symbol. If the node 

belongs to an operator, all operands will be pointers that have the same types. A 

sample node structure is shown in Figure 4.3: 

 
typedef struct _tagNODE { 
 int nodeType; 
 union { 
  OPERATOR_NODE opNode; 
  VARIABLE_NODE opNode; 
  CONSTANT_NODE constNode; 

} type; 
} NODE, *PNODE;; 
 
Figure 4.3 Sample node structure 
 
The nodeType field of the structure represents the active field in the type union. 

nodeType can be the enumeration that can be declared as follows: 

enum { 
 NT_OPERATOR, 
 NT_VARIABLE, 
 NT_CONSTANT 
};  
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There are some unnecessary nodes in the tree that is shown in Figure 1.2. For 

example; additive_expression below the expression is unnecessary. No element 

exists for these unnecessary nodes in the NODE structure.  

4.3 Constructing a Syntax Tree by using yacc/bison 

Syntax Tree for expressions can be constructed easily by using yacc/bison. Syntax 

Tree is constructed by allocating nodes in productions. For example, definitions 

sections of the yacc/bison source file for a calculator that supports +, -, *, / is written 

as follows: 

expression: 
 additive  {$$ = processExp($1);  /*Code 1*/}  
; 
additive: 
 additive ‘+’ factor {$$ = processBinaryOp(OP_ADD, $1, $3); /*Code 
2*/} 

| additive ‘-’ factor {$$ = processBinaryOp(OP_SUB, $1, $3); /*Code 3*/} 
| factor   {$$ = $1; /*Code 4*/} 

; 
factor: 
 factor ‘*’ NUMBER  {$$ = processBinaryOp(OP_MUL, $1, $3); /*Code 
5*/} 

| factor ‘/’ NUMBER  {$$ = processBinaryOp(OP_DIV, $1, $3); /*Code 6*/} 
| NUMBER  {$$ = processNumber($1); /*Code 7*/} 

; 
yacc/bison executes the C codes for productions from bottom to top. For example, 

for the derivation below for the above example: 

 

NUMBER * NUMBER + NUMBER + NUMBER 

 

 

The C codes are executed as follows: 

 



 41

1. This is an expression and this is also an additive. The C code in the additive 

excuted at last. 

2. C codes for the NUMBER are executed first.  

 

Process Order of NUMBER * NUMBER + NUMBER + NUMBER is as follows: 

 

1. Code 7 

2. Code 7 

3. Code 7 

4. Code 7 

5. Code 5 

6. Code 5 

7. Code 2 

8. Code 1 

 

 

To construct syntax tree, all the codes above allocates a NODE structure. For 

example, Code 7 can allocate a NODE structure for NUMBER and can assign the 

related number. factor can get the two NODE structures represents two NUMBER 

atoms (terminal symbol), then allocates another NODE structure. additive can get the 

two NODE structures represents two factor non-terminal symbol, then allocates 

another NODE. When expression is encountered, syntax tree is being constructed. To 

calculate the related expression, a recursive function that gets a NODE as parameter 

can be implemented.  In this method, the result is calculated at the top of the 
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productions. From bottom to top, data of the symbols are recorded and the syntax 

tree is constructed.  

 

4.4 Error Handling in yacc/bison 

A nice compiler gives the user meaningful error messages [9]. When the error is 

encountered, default behavior of the yacc/bison is to terminate the program. yyparse 

function calls yyerror by default. yyerror is compatible with lex/flex. yyparse 

function terminates the program after yyerror returns. For effective error handling 

the built in error non-terminal symbol is used. This symbol is processed as a normal 

non-terminal symbol. For example: 

 

 
statement: 
 null_statement  /**/ 
 | if_statement { $$ = processStatement($1, STM_IF); } 
 | error  { /*Error Code*/ }; 
; 

4.5 Manual Syntax Analysis 

Syntax Anaysis can be done without using any tool. Of course, for syntax analysis 

the module that gives the next atom can be used as input. Indeed, yacc/bison call the 

yylex function for getting the next atom from the output of the lex/flex program.  

 

Some typical algorithms can be used for syntax analysis. The popular algorithm is to 

process the infix operators as postfix via a stack. In this method, the opearation with 

two operands processes as follows: 

 

1. Left operand is pushed to stack 

2. Right operand is pushed to stack 



 43

3. Two of these operands are popped from the stack and processed 

4. Result is pushed to stack 

4.6 Object Oriented Manual Syntax Analysis by using C++ 

Syntax Analysis process can be implemented manually by using C++. This method is 

less effective because of the level of C++ programming Language.  

 

For syntax analysis, Parser class can be implemented that use the Scanner class as a 

variable that is written in the previous chapter.  parser.cpp file that contains the 

implementation of Parse class is shown in Appendix C.2, and also its header file 

parse.h is shown in Appendix C.1. 

 
This skeletal Parser class is implemented in parser.cpp file and declared in parser.h 

file. getNextToken function gets the next atom by using Scanner class object. 

m_pToken member variable contains the atom and m_pTokenType variable contains 

the type of the atom. Parse operation is started by calling the function that parse the 

least precedence operator. This function is named as doAdditiveExpression. All 

functions that parse operators call the function that belongs to higher precedence 

operator. All results are pushed to stack. The atom is get by getNextToken function 

when the type of the atom is established. 
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5. SAMPLE INTERPRETER 

 

This sample interpreter is the detailed skeletal code of interpreter. Interpreter 

supports loops, if statements, several various operators etc. With this code, advanced 

compiler or interpreter can be improved. This is not the introduction to the advanced 

compiler. This is big part of the advanced compiler / interpreter.  

5.1 Design of Sample Interpreter 

In this project, all terminal symbols and non-terminal symbols represented as NODE 

structure that is declared as follows: 

 
typedef struct tagNODE { 
 int nodeType; 
 union { 
  NODE_CONSTANT nodeConstant; 
  NODE_VARIABLE nodeVariable; 
  NODE_OPERATOR nodeOperator; 
  NODE_STATEMENT nodeStatement; 
  NODE_STATEMENT_IF nodeStatementIf; 
  NODE_STATEMENT_WHILE nodeStatementWhile; 
  /*…*/ 
 } type; 
} NODE, *PNODE;  
 
Parse Tree is constructed with this NODE structure. After that, all operations are 

done by using this tree with a recursive function. Any node in the Parse Tree belongs 

to a different terminal symbol or non-terminal symbol but all the nodes are 

represented as a NODE structure. NODE structure can consist of constant, variable, 

operator or statement. Constants can be represented as NODE_CONSTANT structure. 

This structure consists of the value of the constant. NODE_CONSTANT structure is 

declared as follows: 

typedef struct tagNODE_CONSTANT { 
 double value; 
} NODE_CONSTANT, *PNODE_CONSTANT;  
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Names, values and types of the variables are saved in the symbol table. 

NODE_VARIABLE consists of the index of the variable in the symbol table. NODE_ 

VARIABLE structure is declared as follows: 

 
typedef struct tagNODE_VARIABLE { 
 int index; 
} NODE_ VARIABLE, *PNODE_ VARIABLE;  
 
The structure that represents the operator which is named as NODE_OPERATOR 

consists of the operator type and the operands. Operands of the operators are 

represented as NODE structure. For operands array with three elements is allocated. 

All the slots of this array is not always used. They are used according to the  type of 

the operator. NODE_OPERATOR structure is declared as follows: 

 

typedef struct tagNODE_OPERATOR { 
 int opType 
 PNODE operands[3]; 
} NODE_OPERATOR, *PNODE_OPERATOR;  
 
Any statement is represented as NODE_STATEMENT structure. 

NODE_STATEMENT structure is declared as follows: 

 
typedef struct tagNODE_STATEMENT { 
 int stmType; 
 int stmInfo; 
 PNODE pNode; 
} NODE_STATEMENT, *PNODE_STATEMENT;  
 
 
Some statements are represented as exclusive structures. For example, if statements 

are represented as NODE_STATEMENT_IF, while statements are represented as 

NODE_STATEMENT_WHILE etc. NODE_STATEMENT_IF and 

NODE_STATEMENT_WHILE structures are declared as follows: 
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typedef struct tagNODE_STATEMENT_IF { 
 PNODE pNodeExpression; 
 PNODE pNodeTrue; 
 PNODE pNodeFalse; 
} NODE_STATEMENT_IF, *PNODE_STATEMENT_IF;  
 
typedef struct tagNODE_STATEMENT_WHILE { 
 PNODE pNodeExpression; 
 PNODE pNodeTrue; 
} NODE_STATEMENT_WHILE, *PNODE_STATEMENT_WHILE;  
 
The main grammar structure of the sample interpreter is shown in Figure 5.1: 
 
 
input: 
 | input_statement 
; 
statement: 
 null_statment 
 | simple_statement 
 | compound_statement 
 | command_statement 
 | if_statement 
 | while_statement 
; 
null_statment: 
 ‘;’ 
; 
simple_statement: 
 expression ‘;’ 
; 
compound_statement: 
 ‘{’ ’}’ 
 | ‘{’ statement_list ’}’ 
; 
statement_list: 
 statement statement_list 
 | statement 
; 
command_statement: 
 print_command_statement: 

| exit_command_statement 
; 
 
Figure 5.1 Grammar structure of the sample interpreter 
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print_command_statement: 
 TOKEN_PRINT_COMMAND expression ‘;’ 
; 
exit_command_statement: 
 TOKEN_EXIT_COMMAND ‘;’ 
; 
if_statement: 
 TOKEN_IF_STATEMENT ‘(‘ expression ‘)’ statement 
 | TOKEN_IF_STATEMENT ‘(‘ expression ‘)’ statement  
    TOKEN_ELSE_STATEMENT statement 
; 
while_statement: 
 TOKEN_WHILE_STATEMENT ‘(’ expression ‘)’ statement  
; 
expression: 
 assignment_expression 
; 
 
/*…*/ 
 
Figure 5.1 Grammar structure of the sample interpreter (continued) 
 
Types of non_terminal symbols are represented as NODE * (PNODE) in yacc/bison 

source code file. Number or variable  are represented as NODE. For example, the 

syntax tree of a statement  

 

a = b + 10 * 20; 

 

is shown in Figure 5.2 
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Figure 5.2 Syntax tree of a = b + 10 * 20; 
 
The most important function of this interpreter code is the execute function. This 

function fetches the first node of the syntax tree as a parameter and calculates the 

statement in a recursive manner. Prototype of this function is as follows: 

 

double execute(PNODE pNode); 

 

Another important function is freeNode function. This function frees the tree. 

Prototype of this function is as follows: 

 

static void freeNode(PNODE pNode); 
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5.2 Implementation of Sample Interpreter 

Sample interpreter project consists of several code files. Lex/flex source file is named 

as interpreter.l. This file is used for acquiring the atoms. interpreter.l file is shown in 

Appendix D.1. 

 
yacc/bison code file is named as interpreter.y. This file is used for syntax analysis. 

This file is shown in Appendix D.2.  

 
 
When lex/flex and yacc/bison programs are used for interpreter.l and interprter.y 

files respectively. Interpreter.tab.c and lex.yy.c files are generated respectively. 

Furthermore, interpreter.tab.h file is also generated. These files are compiled and 

linked together with other files.  

 

interpreter.h file contains thedeclarations of essential structures for the grammar. For 

example: NODE, NODE_VARIABLE etc. This file also contains the essential 

enumerations and function prototypes. This file is included by both interpreter.l and 

interpreter.y. Also, automatically this file is included by interpreter.tab.c and 

lex.yy.c. interpreter.h file is shown in Appendix D.3: 

 
interpreter.cpp file contains the implementation of symbol table data structure. 

interpreter.hpp file contains the declaration of this data structure. interpreter.cpp and 

interpreter.hpp files are shown in Appendix D.4 and Appendix D.5 respectively. 

5.3 Properties of Sample Interpreter 

Sample interpreter supports the C programming syntax but not all of them. For 

example, Control statements like if statement is supported. Loop statements of the C 
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are supported by Sample Interpreter etc. A sample code belongs to Sample 

Interpreter is as follows: 

 
x = 12; 
 
iken (x >0) { 
 eger (x % 2 == 0) 
 yazdir x; 
 x = x – 1;  
} 
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6.1 APPENDIX A 

 

6.1.1. main.c file  

 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "scanner.h" 
#include "parser.h" 
#include "backend.h" 
 
int main(void) 
{  
 PNODE pNode; 
 
 g_source.sourceType = ST_FILE; 
 if ((g_source.uBuf.f = fopen("deneme.c", "r")) == NULL) { 
  fprintf(stderr, "Cannot open file..\n"); 
  exit(EXIT_FAILURE); 
 } 
 
 if (Parse(&pNode) != SUCCESS) 
  DisplayErrorMessage("Error in Expression"); 
 
 Process(pNode); 
  
 return 0;  
} 
 

6.1.2. scanner.h file  

 
#ifndef _SCANNER_H_ 
#define _SCANNER_H_ 
 
/*Include Files*/ 
 
#include <stdio.h> 
 
/* Symbolic Constants*/ 
 
#define ST_FILE  1 
#define ST_STRING 2 
 
#define TT_DIGIT 257 
#define TT_EOF  256 
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/*Type definitons*/ 
 
typedef struct tagSOURCE { /*Source Structure*/ 
 int sourceType; 
 union { 
  FILE *f; 
  char *pStr; 
 } uBuf; 
} SOURCE, *PSOURCE; 
 
typedef struct tagTOKEN { /*Token structure*/ 
 int type; 
 char token; 
} TOKEN; 
 
/*Function Prototypes*/ 
 
void GetNextToken(void); 
 
/*extern declerations*/ 
 
extern TOKEN g_token; 
extern SOURCE g_source; 
 
#endif 
 
 

6.1.3. scanner.c file  

 
#include <stdio.h> 
#include "scanner.h" 
 
/*Static Function Prototypes*/ 
 
static void getNextTokenFromFile(void); 
static void getNextTokenFromString(void); 
 
TOKEN g_token; 
SOURCE g_source; 
 
static void getNextTokenFromFile(void) 
{ 
 int ch; 
 static long curOffset = 0; 
  
 fseek(g_source.uBuf.f, curOffset, SEEK_SET); 
 
 while ((ch = fgetc(g_source.uBuf.f)) != EOF) 
  if (ch != ' ' && ch != '\n' && ch != '\t') 
   break; 
  
 if (ch == EOF) { 
  g_token.type = TT_EOF; 
  g_token.token = '#'; 
 
  return; 
 } 
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 if (ch >= '0' && ch <= '9') 
  g_token.type = TT_DIGIT; 
 else 
  g_token.type = ch; 
 
 g_token.token = ch; 
 curOffset = ftell(g_source.uBuf.f); 
} 
 
static void getNextTokenFromString(void) 
{ 
 static int offset = 0; 
 
 /*Skip white spaces*/ 
 for (; g_source.uBuf.pStr[offset] != '\0'; ++offset) 
  if (g_source.uBuf.pStr[offset] != ' ' && 
g_source.uBuf.pStr[offset] != '\n' && g_source.uBuf.pStr[offset] != 
'\t') 
   break; 
 
 /*EOF encountered*/ 
 if (g_source.uBuf.pStr[offset] == '\0') { 
  g_token.type = TT_EOF; 
  g_token.token = '#'; 
 
  return; 
 } 
 
 if (g_source.uBuf.pStr[offset] >= '0' && 
g_source.uBuf.pStr[offset] <= '9') 
  g_token.type = TT_DIGIT; 
 else 
  g_token.type = g_source.uBuf.pStr[offset]; 
 
 g_token.token = g_source.uBuf.pStr[offset]; 
 offset++; 
} 
 
void GetNextToken(void) 
{ 
 static int offset = 0; 
 
 if (g_source.sourceType == ST_FILE) 
  getNextTokenFromFile(); 
 else 
  getNextTokenFromString(); 
} 
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6.1.4. parser.h file  

 
#ifndef _PARSER_H_ 
#define _PARSER_H_ 
 
/*Symbolic Constants*/ 
 
#define SUCCESS   1 
#define FAILED   0 
#define ERROR   -1 
 
#define NT_DIGIT  'D' 
#define NT_PARAN  'P' 
 
/*Type definitions*/ 
 
typedef struct tagEXPRESSION { /*Expression structure*/ 
 int type; 
 int val; 
 int op; 
 struct tagEXPRESSION *pLeft, *pRight;  
} EXPRESSION, *PEXPRESSION, NODE, *PNODE; 
 
/*Function Prototypes*/ 
 
void DisplayErrorMessage(const char *str); 
int Parse(PNODE *ppNode); 
 
 
#endif 
 
 

6.1.5. parser.c file  

 
#include <stdio.h> 
#include <stdlib.h> 
#include "parser.h" 
#include "scanner.h" 
 
/*Static Function Prototypes*/ 
 
static PEXPRESSION allocNode(void); 
static void freeNode(PEXPRESSION pExp); 
static int parseOperator(int *pOp); 
static int parseExpression(EXPRESSION **ppExp); 
 
/*Function Definitions*/ 
 
static PEXPRESSION allocNode(void) 
{ 
 return (PEXPRESSION) malloc(sizeof(EXPRESSION)); 
} 
 
static void freeNode(PEXPRESSION pExp) 
{ 
 free(pExp); 
} 
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static int parseOperator(int *pOp) 
{ 
 if (g_token.type == '+') { 
  *pOp = '+'; 
  GetNextToken(); 
 
  return SUCCESS; 
 } 
 if (g_token.type == '*') { 
  *pOp = '*'; 
  GetNextToken(); 
 
  return SUCCESS; 
 } 
 
 return FAILED; 
} 
 
static int parseExpression(PEXPRESSION *ppExp) 
{ 
 PEXPRESSION pExp; 
  
 if ((pExp = allocNode()) == NULL) 
  return ERROR; 
 
 *ppExp = pExp; 
  
 if (g_token.type == TT_DIGIT) { 
  pExp->type = NT_DIGIT; 
  pExp->val = g_token.token - '0'; 
  GetNextToken(); 
 
  return SUCCESS; 
 } 
 
 if (g_token.type == '(') { 
  pExp->type = NT_PARAN; 
  GetNextToken(); 
  if (parseExpression(&pExp->pLeft) == FAILED) 
   DisplayErrorMessage("Missing Expression"); 
 
  if (parseOperator(&pExp->op) == FAILED) 
   DisplayErrorMessage("Missing Operator"); 
 
  if (parseExpression(&pExp->pRight) == FAILED) 
   DisplayErrorMessage("Missing Expression"); 
   
  if (g_token.type != ')') 
   DisplayErrorMessage("Missing )"); 
 
  GetNextToken(); 
 
  return SUCCESS; 
 } 
 
 freeNode(pExp); 
 
 return FAILED; 
} 
 
void DisplayErrorMessage(const char *str) 
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{ 
 fprintf(stderr, "%s\n", str); 
} 
 
int Parse(PNODE *ppNode) 
{ 
 PEXPRESSION pExp; 
 
 GetNextToken(); 
 if (parseExpression(&pExp) == SUCCESS) { 
  if (g_token.type != TT_EOF) 
   DisplayErrorMessage("Garbage After end of 
program"); 
 
  *ppNode = pExp; 
 
  return SUCCESS; 
 } 
 
 return FAILED; 
} 
 
 

6.1.6. backend.h file  

 
#ifndef _BACKEND_H_ 
#define _BACKEND_H_ 
 
/*Function Prototypes*/ 
 
void GenerateCode(const PNODE pNode); 
void Process(const PNODE pNode); 
 
 
#endif 
 

6.1.7. backend.c file  

#include <stdio.h> 
#include "parser.h" 
#include "backend.h" 
 
/*Static Function Prototypes*/ 
 
static void generateCode(const PEXPRESSION pExp); 
static int interpret(const PEXPRESSION pExp); 
 
static void generateCode(const PEXPRESSION pExp) 
{ 
 switch (pExp->type) { 
  case NT_DIGIT: 
   printf("PUSH %d\n", pExp->val); 
   break; 
  case NT_PARAN: 
   generateCode(pExp->pLeft); 
   generateCode(pExp->pRight); 
   switch (pExp->op) { 
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    case '+': 
     printf("ADD\n");    
  
     break; 
    case '*': 
     printf("ADD\n"); 
     break; 
   } 
   break; 
 } 
} 
 
static int interpret(const PEXPRESSION pExp) 
{ 
 switch (pExp->type) { 
  case NT_DIGIT: 
   return pExp->val;    
  case NT_PARAN: 
   { 
    int leftExp = interpret(pExp->pLeft); 
    int rightExp = interpret(pExp->pRight); 
    
    switch (pExp->op) { 
     case '+': 
      return leftExp + rightExp; 
     
     case '*': 
      return leftExp * rightExp; 
      
    } 
   } 
   break; 
 } 
 
 return 0; 
} 
 
void GenerateCode(const PNODE pNode) 
{ 
 generateCode(pNode); 
} 
 
void Process(const PNODE pNode) 
{ 
 printf("%d\n", interpret(pNode)); 
} 
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6.2 APPENDIX B 

 

6.2.1. Simple use of POSIX regex functions 

 
#include <stdio.h> 
#include <stdlib.h> 
#include <sys/types.h> 
#include <regex.h> 
 
int main(int argc, char *argv[]) 
{ 
 FILE *f; 
 long fileSize; 
 char *pString; 
 regex_t reg; 
 regmatch_t pMatch[10]; 
 int i, j; 
  
 if (argc != 3) { 
  fprintf(stderr, "Wrong number of arguments\nUsage: 
sampleregex filename regex"); 
  exit(EXIT_FAILURE); 
 } 
 
 if ((f = fopen(argv[1], "r")) == NULL) { 
  fprintf(stderr, "Cannot open file...\n"); 
  exit(EXIT_FAILURE); 
 } 
 
 fseek(f, 0, SEEK_END); 
 fileSize = ftell(f); 
 fseek(f, 0, SEEK_SET); 
 
 pString = (char *) malloc(fileSize * sizeof(char) + 1); 
 if (pString == NULL) { 
  fclose(f); 
  fprintf(stderr, "Cannot allocate memory...\n"); 
  exit(EXIT_FAILURE); 
 } 
 if (fread(pString, sizeof(char), fileSize, f) <= 0) { 
  free(pString); 
  fclose(f); 
  fprintf(stderr, "cannot read from file...\n"); 
  exit(EXIT_FAILURE); 
 } 
 pString[fileSize] = '\0';   

if (regcomp(&reg, argv[2], REG_EXTENDED) != 0) { 
  free(pString); 
  fclose(f); 
  fprintf(stderr, "cannot compile regex...\n"); 
  exit(EXIT_FAILURE); 
 } 
 
 if (regexec(&reg, pString, 10, pMatch, 0) != 0) { 
  regfree(&reg); 
  free(pString); 
  fclose(f); 
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  fprintf(stderr, "cannot match regex...\n"); 
  exit(EXIT_FAILURE); 
 } 
 
 for (i = 0; pMatch[i].rm_eo != -1; ++i) { 
  for (j = pMatch[i].rm_so; j < pMatch[i].rm_eo; ++j) 
   printf("%c", pString[j]); 
 
  putchar('\n'); 
 } 
  
 regfree(&reg); 
 free(pString); 
 fclose(f); 
 
 return 0; 
} 
 
 

6.2.2. scanner.h file 

 
#ifndef _SCANNER_H_ 
#define _SCANNER_H_ 
 
#include <fstream> 
#include <sstream> 
#include <exception> 
 
//ScannerException class 
class ScannerException : public exception { 
public: 
 ScannerException(const char *pText) : m_text(pText) 
 {} 
 virtual const char *what() 
 { 
  return m_text.c_str(); 
 } 
private: 
 std::string m_text; 
}; 
 
 
 
//TextSource class 
 
class TextSource { 
public: 
 virtual int GetChar() = 0; 
 virtual int ReadChar() = 0; 
 virtual void PutBackChar() = 0; 
}; 
 
class TextSourceFile : public TextSource { 
public: 
 TextSourceFile(const char *pFileName); 
 virtual int GetChar() 
 { 
  int ch = m_f.rdbuf()->sgetc(); 
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  return (ch == std::char_traits<char>::eof()) ? 0 : ch; 
 } 
 virtual int ReadChar() 
 { 
  int ch = m_f.rdbuf()->sbumpc(); 
 
  return (ch == std::char_traits<char>::eof()) ? 0 : ch; 
 } 
  
 virtual void PutBackChar() 
 { 
  m_f.rdbuf()->sungetc(); 
 } 
private: 
 std::ifstream m_f; 
}; 
 
// TextSourceMemory class 
 
class TextSourceMemory : public TextSource { 
public: 
 TextSourceMemory(const char *pString) : m_str(pString) 
 {} 
 virtual int GetChar() 
 { 
  int ch; 
 
  ch = m_str.rdbuf()->sgetc(); 
 
  return (ch == -1) ? 0 : ch; 
 } 
 virtual int ReadChar() 
 { 
  int ch; 
 
  ch = m_str.rdbuf()->sbumpc(); 
 
  return (ch == -1) ? 0 : ch; 
 } 
 
 virtual void PutBackChar() 
 { 
  m_str.rdbuf()->sungetc(); 
 } 
  
private: 
 std::istringstream m_str; 
}; 
 
class Token { 
public: 
 virtual void GetToken(TextSource *pTextSource) = 0; 
 virtual void Print() const = 0; 
 
 enum TokenType {TT_Variable, TT_Constant, 
TT_PunctuatorLeftParan, TT_PunctuatorRightParan,  
  TT_PunctuatorSemicolon, TT_OperatorMinus, 
TT_OperatorPlus, TT_OperatorMultiply,  
  TT_OperatorDivision, TT_OperatorNot}; 
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 TokenType GetTokenType() const 
 { 
  return m_tokenType; 
 } 
 const char *GetTokenString() const 
 { 
  return m_tokenString; 
 } 
 
protected: 
 enum {MAX_TOKEN_STRING = 1024}; 
 
 TokenType m_tokenType; 
 char m_tokenString[MAX_TOKEN_STRING]; 
}; 
 
//TokenVariable class 
 
class TokenVariable : public Token { 
public: 
 virtual void GetToken(TextSource *pTextSource); 
 virtual void Print() const; 
}; 
 
//TokenConstant class 
 
class TokenConstant : public Token { 
public: 
 virtual void GetToken(TextSource *pTextSource); 
 virtual void Print() const; 
}; 
 
// TokenPunctuator class 
 
class TokenPunctuator : public Token { 
public: 
 virtual void GetToken(TextSource *pTextSource); 
 virtual void Print() const; 
}; 
 
 
 
 
 
 
 
// TokenOperator class 
 
class TokenOperator : public Token { 
public: 
 virtual void GetToken(TextSource *pTextSource); 
 virtual void Print() const; 
}; 
 
//Scanner class 
 
class Scanner { 
public: 
 Scanner(TextSource *pTextSource); 
 Token *GetNextToken(); 
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 enum CharCodeMask {CM_TypeMask = 0x0F, CM_AlNumMask = 0x10 }; 
 enum CharCode {CC_EOF, CC_Alpha, CC_Digit, CC_WhiteSpace, 
CC_Punctuator,  
       CC_Operator, CC_Error, 
CC_AlNum = 0x10}; 
 
 static char ms_charMap[256]; 
private: 
 void skipWS(); 
 TextSource *m_pTextSource; 
 
 TokenVariable m_tokenVariable; 
 TokenConstant m_tokenConstant; 
 TokenPunctuator m_tokenPunctuator; 
 TokenOperator m_tokenOperator; 
}; 
 
#endif 
 
 

6.2.3. scanner.cpp file 

 
#include <iostream> 
#include <cstdlib> 
#include "scanner.h" 
 
using namespace std; 
 
// Global Definitions  
 
char Scanner::ms_charMap[256]; // Character Map array 
 
// TextSourceFile class 
 
TextSourceFile::TextSourceFile(const char *pFileName) 
{ 
 m_f.open(pFileName); 
 if (!m_f) 
  throw ScannerException("File cannot open"); 
} 
 
// TokenVariable class 
 
void TokenVariable::GetToken(TextSource *pTextSource) 
{ 
 int i = 0; 
 
 while ((Scanner::ms_charMap[pTextSource->GetChar()] & 
Scanner::CM_AlNumMask) == Scanner::CC_AlNum) 
  m_tokenString[i++] = pTextSource->ReadChar(); 
 m_tokenString[i] = '\0'; 
 
} 
 
void TokenVariable::Print() const 
{ 
 cout << "Variable: " << m_tokenString << endl; 
} 
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// TokenConstant class 
 
void TokenConstant::GetToken(TextSource *pTextSource) 
{ 
 int i = 0; 
 
 while ((Scanner::ms_charMap[pTextSource->GetChar()] & 
Scanner::CM_TypeMask) == Scanner::CC_Digit)  
  m_tokenString[i++] = pTextSource->ReadChar(); 
 m_tokenString[i] = '\0'; 
 
 m_tokenType = TT_Constant; 
} 
 
void TokenConstant::Print() const 
{ 
 cout << "Constant: " << m_tokenString << endl; 
} 
 
// TokenPunctuator class 
 
void TokenPunctuator::GetToken(TextSource *pTextSource) 
{ 
 switch (pTextSource->GetChar()) { 
  case '(': 
   m_tokenType = TT_PunctuatorLeftParan; 
   break; 
  case ')': 
   m_tokenType = TT_PunctuatorRightParan; 
   break; 
  case ';': 
   m_tokenType = TT_PunctuatorSemicolon; 
   break; 
 } 
 m_tokenString[0] = pTextSource->ReadChar(); 
 m_tokenString[1] = '\0'; 
} 
 
void TokenPunctuator::Print() const 
{ 
 cout << "Punctuator: " << m_tokenString << endl; 
} 
 
// TokenOperator class 
 
void TokenOperator::GetToken(TextSource *pTextSource) 
{ 
  switch (pTextSource->GetChar()) { 
   case '+': 
    m_tokenType = TT_OperatorPlus; 
    break; 
   case '-': 
    m_tokenType = TT_OperatorMinus; 
    break; 
   case '*': 
    m_tokenType = TT_OperatorMultiply; 
    break; 
   case '/': 
    m_tokenType = TT_OperatorDivision; 
    break; 
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   case '!': 
    m_tokenType = TT_OperatorNot; 
    break; 
  } 
   
  m_tokenString[0] = pTextSource->ReadChar(); 
  m_tokenString[1] = '\0'; 
} 
 
void TokenOperator::Print() const 
{ 
 cout << "Operator: " << m_tokenString << endl; 
} 
 
// Scanner class 
 
Scanner::Scanner(TextSource *pTextSource) : 
m_pTextSource(pTextSource) 
{ 
 if (ms_charMap[0] != CC_Error) { 
  for (int i = 0; i < 256; ++i) 
   ms_charMap[i] = CC_Error; 
 
  for (int i = 'a'; i <= 'z'; ++i) 
   ms_charMap[i] = CC_Alpha | CC_AlNum; 
  for (int i = 'A'; i <= 'Z'; ++i) 
   ms_charMap[i] = CC_Alpha | CC_AlNum; 
  for (int i = '0'; i <= '9'; ++i) 
   ms_charMap[i] = CC_Digit | CC_AlNum; 
   
  ms_charMap[' '] = ms_charMap['\t'] = ms_charMap['\n'] = 
ms_charMap['\r'] = CC_WhiteSpace; 
 
  ms_charMap['_'] = CC_Alpha | CC_AlNum; 
   
  ms_charMap[';'] = ms_charMap['('] =  ms_charMap[')'] = 
CC_Punctuator; 
   
  ms_charMap['+'] = ms_charMap['-'] = ms_charMap['*'] =  
  ms_charMap['/'] = ms_charMap['!'] = CC_Operator; 
 
  ms_charMap[0] = CC_EOF; 
 } 
} 
 
void Scanner::skipWS() 
{ 
 int ch = m_pTextSource->GetChar(); 
 
 while ((ms_charMap[ch] & CM_TypeMask) == CC_WhiteSpace) { 
  m_pTextSource->ReadChar(); 
  ch = m_pTextSource->GetChar(); 
 } 
} 
 
Token *Scanner::GetNextToken() 
{ 
 Token *pToken; 
  
 skipWS(); 
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 int a = m_pTextSource->GetChar(); 
 switch (ms_charMap[m_pTextSource->GetChar()] & CM_TypeMask) { 
  case CC_Alpha: 
   pToken = &m_tokenVariable; 
   break; 
  case CC_Digit: 
   pToken = &m_tokenConstant; 
   break; 
  case CC_Punctuator: 
   pToken = &m_tokenPunctuator; 
   break; 
  case CC_Operator: 
   pToken = &m_tokenOperator; 
   break; 
  case CC_EOF: 
   return 0; 
 } 
 
 pToken->GetToken(m_pTextSource); 
 
 return pToken; 
} 
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6.3 APPENDIX C 

 

6.3.1. parser.h file 

#ifndef _PARSER_H_ 
#define _PARSER_H_ 
 
#include <stack> 
#include "scanner.h" 
 
//Parser class 
 
class Parser { 
public: 
 Parser(Scanner *pScanner) : m_pScanner(pScanner) 
 {} 
 double Calculate(); 
 
private: 
 void getNextToken() 
 { 
  m_pToken = m_pScanner->GetNextToken(); 
  if (!m_pToken) 
   return; 
  m_tokenType = m_pToken->GetTokenType(); 
 } 
 void doExpression(); 
 void doAdditiveExpression(); 
 void doFactorExpression(); 
 void doUnaryExpression(); 
 void doPrimaryExpression(); 
  
 Scanner *m_pScanner; 
 std::stack<double> m_stack; 
 Token *m_pToken; 
 Token::TokenType m_tokenType;  
}; 
 
 
 
#endif 
 
 

6.3.2. parser.cpp file 

#include <iostream> 
#include <cstdio> 
#include <fstream> 
#include <cstdlib> 
#include "parser.h" 
 
using namespace std; 
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double Parser::Calculate() 
{ 
 double result; 
 
 getNextToken(); 
 doExpression(); 
 result = m_stack.top(); 
 m_stack.pop(); 
 
 return result; 
} 
 
void Parser::doExpression() 
{ 
    doAdditiveExpression(); 
} 
 
void Parser::doAdditiveExpression() 
{ 
 doFactorExpression(); 
  
 while (m_tokenType == Token::TT_OperatorPlus || m_tokenType == 
Token::TT_OperatorMinus)  { 
  Token::TokenType tokenType = m_tokenType; 
 
  getNextToken(); 
  doFactorExpression(); 
  double val1 = m_stack.top(); 
  m_stack.pop(); 
  double val2 = m_stack.top(); 
  m_stack.pop(); 
  m_stack.push((tokenType == Token::TT_OperatorPlus) ? 
val1 + val2 : val2 - val1); 
 } 
} 
 
void Parser::doFactorExpression() 
{ 
 doUnaryExpression(); 
  
 while (m_tokenType == Token::TT_OperatorMultiply || 
m_tokenType == Token::TT_OperatorDivision)  { 
  Token::TokenType tokenType = m_tokenType; 
         
  getNextToken(); 
  doUnaryExpression(); 
  double val1 = m_stack.top(); 
  m_stack.pop(); 
  double val2 = m_stack.top(); 
  m_stack.pop(); 
  m_stack.push((tokenType == Token::TT_OperatorMultiply) ? 
val1 * val2 : val2 / val1); 
 } 
} 
 
void Parser::doUnaryExpression() 
{ 
 doPrimaryExpression(); 
 
 if (m_tokenType == Token::TT_OperatorNot)  { 
  Token::TokenType tokenType = m_tokenType; 
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  getNextToken(); 
  doUnaryExpression(); 
  double val = m_stack.top(); 
  m_stack.pop(); 
  m_stack.push(!val); 
 }    
} 
 
void Parser::doPrimaryExpression() 
{ 
 double number; 
 
 switch (m_tokenType) { 
  case Token::TT_Constant: 
   number = atof(m_pToken->GetTokenString()); 
   m_stack.push(number); 
   getNextToken(); 
   break; 
  case Token::TT_PunctuatorLeftParan: 
   getNextToken(); 
   doExpression(); 
   if (m_pToken->GetTokenType() != 
Token::TT_PunctuatorRightParan) { 
    fprintf(stderr, "Fatal error: Paranthesis 
mismatch!..\n"); 
    exit(EXIT_FAILURE); 
   } 
   getNextToken(); 
   break; 
 } 
} 
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6.4 APPENDIX D 

 

6.4.1. interpreter.l file  

/* ----------------------------------------------------------------- 
 Flex Source Code of the Sample Interpreter(interpreter.l) 
------------------------------------------------------------------*/ 
PRINT_COMMAND   yazdir 
EXIT_COMMAND   cikis 
IF_STATEMENT   eger 
ELSE_STATEMENT   degilse 
WHILE_STATEMENT   iken 
NUMBER     (([0-9]+)|[0-9]*\.[0-9]+) 
MULTI_OPERATORS_INC  \+\+  
MULTI_OPERATORS_DEC  --  
SINGLE_OPERATORS   [\+\-\*\/\^\(\)!=><\?:]  
VARIABLES    [_a-zA-Z][_a-zA-Z0-9]* 
PUNCTUATORS    ,|;|\{|\} 
WHITESPACE    [ \t\n] 
 
%{ 
 #include <stdio.h> 
 #include <string.h> 
 #include <stdlib.h> 
 #include <math.h> 
 #include "interpreter.h" 
 #include "interpreter.tab.h" 
 
 /* static Function Prototypes */ 
 
 static int processPrintCommandLex(void); 
 static int processExitCommandLex(void); 
 static int processIfStatementLex(void); 
 static int processElseStatementLex(void); 
 static int processWhileStatementLex(void); 
 static int processNumberLex(void); 
 static int processMultiOperatorsIncLex(void); 
 static int processMultiOperatorsDecLex(void); 
 static int processSingleOperatorLex(void); 
 static int processVariableLex(void); 
 static int processPunctuatorsLex(void); 
%} 
 
%% 
 
{PRINT_COMMAND}  { return processPrintCommandLex(); } 
{EXIT_COMMAND}  { return processExitCommandLex(); } 
{IF_STATEMENT}  { return processIfStatementLex(); } 
{ELSE_STATEMENT}  { return processElseStatementLex(); } 
{WHILE_STATEMENT}  { return processWhileStatementLex(); } 
{NUMBER}   { return processNumberLex(); } 
{MULTI_OPERATORS_INC} { return processMultiOperatorsIncLex(); } 
{MULTI_OPERATORS_DEC} { return processMultiOperatorsDecLex(); } 
{SINGLE_OPERATORS} { return processSingleOperatorLex(); } 
{VARIABLES}   { return processVariableLex(); } 
{PUNCTUATORS}  { return processPunctuatorsLex(); } 
{WHITESPACE}  /* Skip whitespace */   
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.     { printf("Fatal error!..\n"); exit(1); 
}  
%% 
 
/* Function Definitions */ 
 
static int processPrintCommandLex(void) 
{ 
 return TOKEN_PRINT_COMMAND; 
} 
 
static int processExitCommandLex(void) 
{ 
 return TOKEN_EXIT_COMMAND; 
} 
 
static int processIfStatementLex(void) 
{ 
 return TOKEN_IF_STATEMENT; 
} 
 
static int processElseStatementLex(void) 
{ 
 return TOKEN_ELSE_STATEMENT; 
} 
 
static int processWhileStatementLex(void) 
{ 
 return TOKEN_WHILE_STATEMENT; 
} 
 
static int processNumberLex(void) 
{ 
 yylval.value = atof(yytext); 
  
 return TOKEN_NUMBER;  
} 
 
static int processMultiOperatorsIncLex(void) 
{ 
 return TOKEN_OPERATOR_INC;  
} 
 
static int processMultiOperatorsDecLex(void) 
{ 
 return TOKEN_OPERATOR_DEC;  
} 
 
static int processSingleOperatorLex(void) 
{ 
 return *yytext; 
} 
 
static int processVariableLex(void) 
{ 
 yylval.name = (char *) malloc(yyleng + 1); 
 strcpy(yylval.name, yytext); 
 
 return TOKEN_VARIABLE; 
} 
 



 73

static int processPunctuatorsLex(void) 
{ 
 return *yytext; 
} 
 

6.4.2. interpreter.y file  

/* ----------------------------------------------------------------- 
  Bison Source Code of Sample Interpreter (interpreter.y) 
------------------------------------------------------------------*/ 
 
%{ 
  #include <stdio.h> 
  #include <string.h> 
  #include <stdlib.h> 
  #include <math.h> 
  #include <assert.h> 
  #include "interpreter.h" 
%} 
 
%union { 
 double value; 
 char *name; 
 NODE *pNode; 
}; 
 
%token <name> TOKEN_PRINT_COMMAND 
%token <name> TOKEN_EXIT_COMMAND 
%token <name> TOKEN_IF_STATEMENT 
%token <name> TOKEN_ELSE_STATEMENT 
%token <name> TOKEN_WHILE_STATEMENT 
%token <value> TOKEN_NUMBER  
%token <name>  TOKEN_VARIABLE  
%token <name> TOKEN_OPERATOR_INC 
%token <name> TOKEN_OPERATOR_DEC  
%type <pNode> statement statement_list null_statement 
simple_statement compound_statement  
%type <pNode> command_statement if_statement while_statement 
print_command_statement exit_command_statement 
%type <pNode> expression assignment_expression 
conditional_expression relational_expression  
%type <pNode> additive_expression factor_expression  
%type <pNode> unary_expression primary_expression power_expression  
 
%% 
 
input: /* empty */ 
  | input statement  { execute($2); 
/*freeNodes($2); */} 
; 
 
statement: 
  null_statement   { $$ = $1; } 
 | simple_statement  { $$ = processStatement($1, 
STM_SIMPLE); } 
 | compound_statement  { $$ = processStatement($1, 
STM_COMPOUND); } 
 | command_statement  { $$ = $1; } 
 | if_statement   { $$ = processStatement($1, 
STM_IF); } 
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 | while_statement   { $$ = processStatement($1, 
STM_WHILE); } 
; 
 
null_statement: 
 ';'        { $$ = NULL; } 
; 
 
compound_statement: 
  '{' '}'      { $$ = NULL; } 
 | '{' statement_list '}'  { $$ = $2;  } 
; 
 
statement_list: 
  statement    statement_list { $$ = 
processStatementList($1, $2); } 
 | statement     { $$ = 
processStatementList($1, 0);  } 
; 
 
simple_statement: 
 expression ';'        { 
$$ = $1; } 
; 
 
command_statement: 
  print_command_statement     { $$ = 
processPrintCommand($1); } 
 | exit_command_statement     { $$ = 
processExitCommand(); } 
; 
 
print_command_statement: 
  TOKEN_PRINT_COMMAND  expression ';'  { $$ = 
$2; } 
; 
 
exit_command_statement: 
  TOKEN_EXIT_COMMAND ';'     { } 
;  
 
if_statement: 
  TOKEN_IF_STATEMENT '(' expression ')' statement { 
$$ = processIfNode($3, $5, 0); }  
 | TOKEN_IF_STATEMENT '(' expression ')' statement 
 TOKEN_ELSE_STATEMENT statement {$$ = processIfNode($3, $5, 
$7); } 
; 
 
while_statement: 
 TOKEN_WHILE_STATEMENT '(' expression ')' statement { $$ = 
processWhileNode($3, $5); } 
; 
 
expression: 
  assignment_expression      
 { $$ = $1; } 
; 
 
assignment_expression: 
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  TOKEN_VARIABLE '=' assignment_expression  { NODE 
*pNode = processSymbol($1); free($1); $$ = 
processBinaryOperator(OP_ASSIGN, pNode, $3); } 
 | conditional_expression      
 { $$ = $1; } 
; 
 
conditional_expression: 
  relational_expression '?' conditional_expression ':' 
conditional_expression { $$ = processTernaryOperator(OP_CONDITIONAL, 
$1, $3, $5); } 
 | relational_expression      
 { $$ = $1; } 
; 
 
relational_expression: 
  relational_expression '>' additive_expression {$$ = 
processBinaryOperator(OP_GREATER, $1, $3); } 
 | relational_expression '<' additive_expression {$$ = 
processBinaryOperator(OP_LESS, $1, $3); } 
 | additive_expression      
  { $$ = $1; } 
; 
 
additive_expression: 
  additive_expression '+' factor_expression  { $$ = 
processBinaryOperator(OP_ADD, $1, $3); } 
 | additive_expression '-' factor_expression  { $$ = 
processBinaryOperator(OP_SUB, $1, $3); } 
 | factor_expression       
 { $$ = $1; } 
; 
 
factor_expression: 
  factor_expression '*' power_expression  { $$ = 
processBinaryOperator(OP_MUL, $1, $3); } 
 | factor_expression '/' power_expression  { $$ = 
processBinaryOperator(OP_DIV, $1, $3); } 
 | power_expression       { 
$$ = $1; } 
; 
 
power_expression: 
  power_expression '^' unary_expression  { $$ = 
processBinaryOperator(OP_POW, $1, $3); } 
 | unary_expression       { 
$$ = $1; } 
 
; 
 
unary_expression: 
  '-' unary_expression      { 
$$ = processUnaryOperator(OP_NEGATE, $2); } 
 | '!' unary_expression      { 
$$ = processUnaryOperator(OP_NOT, $2); } 
 | TOKEN_OPERATOR_INC TOKEN_VARIABLE   { NODE 
*pNode = processSymbol($2); free($2); $$ = 
processUnaryOperator(OP_INC_PREFIX, pNode);}  
 | TOKEN_OPERATOR_DEC TOKEN_VARIABLE   { NODE 
*pNode = processSymbol($2); free($2); $$ = 
processUnaryOperator(OP_DEC_PREFIX, pNode);}  
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 | TOKEN_VARIABLE TOKEN_OPERATOR_INC    { NODE 
*pNode = processSymbol($1); free($1); $$ = 
processUnaryOperator(OP_INC_POSTFIX, pNode);}  
 | TOKEN_VARIABLE TOKEN_OPERATOR_DEC   { NODE 
*pNode = processSymbol($1); free($1); $$ = 
processUnaryOperator(OP_DEC_POSTFIX, pNode);}  
 | primary_expression      
 {$$ = $1; } 
; 
 
primary_expression: 
  '(' expression ')'      
 { $$ = $2; } 
 | TOKEN_NUMBER       
 { $$ = processNumber($1); } 
 | TOKEN_VARIABLE       
 { $$ = processSymbol($1); free($1); } 
; 
 
%% 
 
int yywrap(void) 
{ 
 return 1; 
} 
 
void yyerror(const char *str) 
{ 
 printf("Fatal error: %s\n", str); 
} 
 
static NODE *getNode(void) 
{ 
 NODE *pNode = (NODE *) malloc(sizeof(NODE)); 
  
 if (pNode == NULL)  { 
  fprintf(stderr, "Fatal error: Not enouh memory!..\n"); 
  exit(EXIT_FAILURE); 
 } 
  
 return pNode; 
} 
       
static NODE *processPrintCommand(NODE *pNode) 
{ 
 NODE *pNewNode = processStatement(pNode, STM_COMMAND); 
  
 pNewNode->type.nodeStatement.extraInfo = COMSTM_PRINT; 
  
 return pNewNode; 
} 
 
static NODE *processExitCommand(void) 
{ 
 NODE *pNewNode = processStatement(NULL, STM_COMMAND); 
  
 pNewNode->type.nodeStatement.extraInfo = COMSTM_EXIT; 
  
 return pNewNode; 
} 
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static NODE *processSymbol(const char *name) 
{ 
 NODE *pNode = getNode(); 
  
 pNode->nodeType = NT_VARIABLE; 
 pNode->type.nodeVariable.index = GetSetSymbol(name); 
   
 return pNode; 
} 
 
static NODE *processNumber(double value) 
{ 
 NODE *pNode = getNode(); 
  
 pNode->nodeType = NT_CONSTANT; 
 pNode->type.nodeConstant.value = value; 
  
 return pNode; 
} 
 
static NODE *processStatement(NODE *pNode, int stmType) 
{ 
 NODE *pNewNode = getNode(); 
 
 pNewNode->nodeType = NT_STATEMENT; 
 pNewNode->type.nodeStatement.stmType = stmType; 
 pNewNode->type.nodeStatement.pFirstNode = pNode; 
 
 return pNewNode; 
} 
 
static NODE *processStatementList(NODE *pNode1, NODE *pNode2) 
{ 
 pNode1->type.nodeStatement.pNextCompoundNode = pNode2; 
  
 return pNode1; 
} 
 
static NODE *processIfNode(NODE *pNode1, NODE *pNode2, NODE *pNode3) 
{ 
 NODE *pNewNode = getNode(); 
 
 pNewNode->nodeType = NT_STATEMENT_IF; 
 pNewNode->type.nodeStatementIf.pNodeExpression = pNode1; 
 pNewNode->type.nodeStatementIf.pNodeTrue = pNode2; 
 pNewNode->type.nodeStatementIf.pNodeFalse = pNode3; 
  
 return pNewNode;  
} 
 
static NODE *processWhileNode(NODE *pNode1, NODE *pNode2) 
{ 
 NODE *pNewNode = getNode(); 
 
 pNewNode->nodeType = NT_STATEMENT_WHILE; 
 pNewNode->type.nodeStatementIf.pNodeExpression = pNode1; 
 pNewNode->type.nodeStatementIf.pNodeTrue = pNode2; 
   
 return pNewNode;  
} 
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static NODE *processUnaryOperator(int opType, NODE *pNode1) 
{ 
 NODE *pNode = getNode(); 
  
 pNode->nodeType = NT_OPERATOR; 
 pNode->type.nodeOperator.opType = opType; 
 pNode->type.nodeOperator.operands[0] = pNode1; 
    
 return pNode; 
} 
 
static NODE *processBinaryOperator(int opType, NODE *pNode1, NODE 
*pNode2) 
{ 
 NODE *pNode = getNode(); 
   
 pNode->nodeType = NT_OPERATOR; 
 pNode->type.nodeOperator.opType = opType; 
 pNode->type.nodeOperator.operands[0] = pNode1; 
 pNode->type.nodeOperator.operands[1] = pNode2; 
 
 return pNode; 
} 
 
static NODE *processTernaryOperator(int opType, NODE *pNode1, NODE 
*pNode2, NODE *pNode3) 
{ 
 NODE *pNode = getNode(); 
  
 pNode->nodeType = NT_OPERATOR; 
 pNode->type.nodeOperator.opType = opType; 
 pNode->type.nodeOperator.operands[0] = pNode1; 
 pNode->type.nodeOperator.operands[1] = pNode2; 
 pNode->type.nodeOperator.operands[2] = pNode3; 
  
 return pNode; 
} 
 
static double execute(NODE *pNode) 
{ 
 if (pNode == NULL) 
  return 0; 
  
 switch (pNode->nodeType) { 
  case NT_CONSTANT: 
   return pNode->type.nodeConstant.value;  
  
  case NT_VARIABLE: 
   return GetSymbolByIndex(pNode-
>type.nodeVariable.index);    
  case NT_OPERATOR: 
   switch (pNode->type.nodeOperator.opType) { 
    case OP_ADD: 
     return execute(pNode-
>type.nodeOperator.operands[0]) + execute(pNode-
>type.nodeOperator.operands[1]); 
    case OP_SUB: 
     return execute(pNode-
>type.nodeOperator.operands[0]) - execute(pNode-
>type.nodeOperator.operands[1]); 
    case OP_MUL: 
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     return execute(pNode-
>type.nodeOperator.operands[0]) * execute(pNode-
>type.nodeOperator.operands[1]); 
    case OP_DIV: 
     return execute(pNode-
>type.nodeOperator.operands[0]) / execute(pNode-
>type.nodeOperator.operands[1]); 
    case OP_POW: 
     return pow (execute(pNode-
>type.nodeOperator.operands[0]), execute(pNode-
>type.nodeOperator.operands[1])); 
    case OP_NEGATE: 
     return -execute(pNode-
>type.nodeOperator.operands[0]); 
    case OP_NOT: 
     return !execute(pNode-
>type.nodeOperator.operands[0]); 
    case OP_INC_PREFIX: 
     { 
      NODE *pIncNode; 
      double result; 
       
      pIncNode = pNode-
>type.nodeOperator.operands[0]; 
      result = 
GetSymbolByIndex(pIncNode->type.nodeVariable.index); 
      ++result; 
      SetSymbolByIndex(pIncNode-
>type.nodeVariable.index, result); 
      return result; 
     } 
    case OP_DEC_PREFIX: 
     { 
      NODE *pIncNode; 
      double result; 
       
      pIncNode = pNode-
>type.nodeOperator.operands[0]; 
      result = 
GetSymbolByIndex(pIncNode->type.nodeVariable.index); 
      --result; 
      SetSymbolByIndex(pIncNode-
>type.nodeVariable.index, result); 
      return result; 
     } 
    case OP_INC_POSTFIX: 
     { 
      NODE *pIncNode; 
      double result; 
       
      pIncNode = pNode-
>type.nodeOperator.operands[0]; 
      result = 
GetSymbolByIndex(pIncNode->type.nodeVariable.index); 
      SetSymbolByIndex(pIncNode-
>type.nodeVariable.index, result + 1); 
      return result; 
     } 
    case OP_DEC_POSTFIX: 
     { 
      NODE *pIncNode; 
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      double result; 
       
      pIncNode = pNode-
>type.nodeOperator.operands[0]; 
      result = 
GetSymbolByIndex(pIncNode->type.nodeVariable.index); 
      SetSymbolByIndex(pIncNode-
>type.nodeVariable.index, result - 1); 
      return result; 
     } 
    case OP_GREATER: 
     return execute(pNode-
>type.nodeOperator.operands[0]) > execute(pNode-
>type.nodeOperator.operands[1]); 
    case OP_LESS: 
     return execute(pNode-
>type.nodeOperator.operands[0]) < execute(pNode-
>type.nodeOperator.operands[1]); 
    case OP_ASSIGN: 
     { 
      NODE *pLeftNode = pNode-
>type.nodeOperator.operands[0];  
      NODE *pRightNode = pNode-
>type.nodeOperator.operands[1]; 
      double result; 
       
      result = execute(pRightNode); 
       
      SetSymbolByIndex(pLeftNode-
>type.nodeVariable.index, result); 
       
      return result; 
     } 
   } 
   break; 
  case NT_STATEMENT: 
   switch (pNode->type.nodeStatement.stmType) { 
    case STM_SIMPLE: 
     return execute(pNode-
>type.nodeStatement.pFirstNode); 
    case STM_COMMAND: 
     if (pNode-
>type.nodeStatement.extraInfo == COMSTM_PRINT) { 
      printf("%f\n", execute(pNode-
>type.nodeStatement.pFirstNode)); 
      return 0; 
     } 
     else if (pNode-
>type.nodeStatement.extraInfo == COMSTM_EXIT) 
      exit(0); 
     break; 
    case STM_IF: 
     { 
      NODE *pNodeIf = pNode-
>type.nodeStatement.pFirstNode; 
       
      if (execute(pNodeIf-
>type.nodeStatementIf.pNodeExpression)) 
       execute(pNodeIf-
>type.nodeStatementIf.pNodeTrue); 
      else 
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       execute(pNodeIf-
>type.nodeStatementIf.pNodeFalse); 
        
      return 0; 
     } 
    case STM_WHILE: 
     { 
      NODE *pNodeWhile = pNode-
>type.nodeStatement.pFirstNode; 
       
      while (execute(pNodeWhile-
>type.nodeStatementWhile.pNodeExpression)) 
       execute(pNodeWhile-
>type.nodeStatementWhile.pNodeTrue); 
      return 0; 
     } 
    case STM_COMPOUND: 
     { 
     NODE *pNodeComp; 
      
      for (pNodeComp = pNode-
>type.nodeStatement.pFirstNode; pNodeComp != NULL;  
          
 pNodeComp = pNodeComp->type.nodeStatement.pNextCompoundNode) 
       execute(pNodeComp); 
       
      return 0; 
     } 
      
   } 
 } 
  
 return 0;   
} 
 
static void freeNodes(NODE *pNode) 
{ 
 int i; 
  
 if (pNode == NULL) 
  return; 
   
 /* ... */ 
} 
 

6.4.3. interpreter.h file  

#ifndef _INTERPRETER_H_ 
#define _INTERPRETER_H_ 
 
enum {NT_CONSTANT, NT_VARIABLE, NT_OPERATOR, NT_STATEMENT, 
NT_STATEMENT_IF,  
    NT_STATEMENT_WHILE}; 
 
enum {OP_NEGATE, OP_NOT, OP_INC_PREFIX, OP_DEC_PREFIX, 
OP_INC_POSTFIX, OP_DEC_POSTFIX, 
 OP_POW, OP_MUL, OP_DIV, OP_ADD, OP_SUB, OP_GREATER, OP_LESS, 
OP_CONDITIONAL, OP_ASSIGN 
}; 
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enum {STM_NULL, STM_SIMPLE, STM_COMPOUND, STM_COMMAND, STM_IF, 
STM_WHILE }; 
 
enum {COMSTM_PRINT, COMSTM_EXIT }; 
 
/*Structure Declarations*/ 
 
typedef struct tagNODE_CONSTANT {  
 double value; 
} NODE_CONSTANT; 
 
typedef struct tagNODE_VARIABLE { 
 int index; 
} NODE_VARIABLE; 
 
typedef struct tagNODE_OPERATOR { 
 int opType;  
 struct tagNODE *operands[3]; 
} NODE_OPERATOR; 
 
typedef struct tagNODE_STATEMENT { 
 int stmType; 
 int extraInfo; 
 struct tagNODE *pFirstNode; 
 struct tagNODE *pNextCompoundNode; 
} NODE_STATEMENT; 
 
typedef struct tagNODE_STATEMENT_IF { 
 struct tagNODE *pNodeExpression; 
 struct tagNODE *pNodeTrue; 
 struct tagNODE *pNodeFalse; 
} NODE_STATEMENT_IF; 
 
typedef struct tagNODE_STATEMENT_WHILE { 
 struct tagNODE *pNodeExpression; 
 struct tagNODE *pNodeTrue; 
} NODE_STATEMENT_WHILE; 
 
typedef struct tagNODE { 
 int nodeType; 
 union { 
  NODE_CONSTANT nodeConstant; 
  NODE_VARIABLE nodeVariable; 
  NODE_OPERATOR nodeOperator; 
  NODE_STATEMENT nodeStatement; 
  NODE_STATEMENT_IF nodeStatementIf; 
  NODE_STATEMENT_WHILE nodeStatementWhile; 
 } type; 
} NODE; 
 
/* Function Prototypes */ 
 
int yylex(void); 
void yyerror(const char *str); 
static NODE *getNode(void); 
static NODE *processPrintCommand(NODE *pNode); 
static NODE *processExitCommand(void); 
static NODE *processSymbol(const char *str); 
static NODE *processNumber(double value); 
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static NODE *processUnaryFunction(const char *fname, NODE 
*pNodeArg); 
static NODE *processBinaryFunction(const char *fname, NODE 
*pNodeArg1, NODE *pNodeArg2); 
 
static NODE *processStatement(NODE *pNode, int stmType); 
static NODE *processStatementList(NODE *pNode1, NODE *pNode2); 
static NODE *processIfNode(NODE *pNode1, NODE *pNode2, NODE 
*pNode3); 
static NODE *processWhileNode(NODE *pNode1, NODE *pNode2); 
static NODE *processUnaryOperator(int opType, NODE *pNode1); 
static NODE *processBinaryOperator(int opType, NODE *pNode1, NODE 
*pNode2); 
static NODE *processTernaryOperator(int opType, NODE *pNode1, NODE 
*pNode2, NODE *pNode3); 
static double execute(NODE *pNode); 
static void freeNodes(NODE *pNode); 
 
int GetSetSymbol(const char *name); 
double SetSymbolByIndex(int index, double val); 
double GetSymbolByName(const char *name); 
double GetSymbolByIndex(int index); 
 
#endif 
 
 

6.4.4. interpreter.cpp file  

 
#include <iostream> 
#include <fstream> 
#include <iomanip> 
#include <algorithm> 
#include <list> 
#include <cstdlib> 
#include <cassert> 
#include "interpreter.hpp" 
 
using namespace std; 
 
/*------------------------------------------ 
Global Data Definitions 
-------------------------------------------*/ 
 
list<Symbol> g_variableList; 
 
/*------------------------------------------ 
Function Definitions  
-------------------------------------------*/ 
 
extern "C" int GetSetSymbol(const char *name) 
{ 
 list<Symbol>::iterator iter; 
 int index; 
 Symbol symbol(name); 
  
 iter = find(g_variableList.begin(), g_variableList.end(), 
symbol); 
 if (iter == g_variableList.end()) { 
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  g_variableList.push_back(symbol); 
  index = g_variableList.size() - 1; 
 } 
 else 
  index = distance(g_variableList.begin(), iter); 
 
 return index; 
} 
 
extern "C" double SetSymbolByIndex(int index, double val) 
{ 
 list<Symbol>::iterator iter = g_variableList.begin(); 
 
 advance(iter, index); 
 iter->m_val = val; 
 
 return val; 
} 
 
extern "C" double GetSymbolByName(const char *name) 
{ 
 list<Symbol>::iterator iter; 
 Symbol symbol(name); 
  
 iter = find(g_variableList.begin(), g_variableList.end(), 
symbol); 
 assert(iter != g_variableList.end()); 
 
 return iter->m_val; 
} 
 
extern "C" double GetSymbolByIndex(int index) 
{ 
 list<Symbol>::iterator iter = g_variableList.begin(); 
 advance(iter, index); 
 
 return iter->m_val; 
} 
 
int main(void) 
{ 
 yyparse(); 
 
 return 0; 
} 
 

6.4.5. interpreter.hpp file  

 
#ifndef _INTERPRETER_HPP_ 
#define _INTERPRETER_HPP_ 
 
#include <string> 
 
struct Symbol { 
 Symbol() 
 {} 
 Symbol(const char *name, double val = 0) : m_name(name), 
m_val(val) 
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 {} 
 bool operator ==(const Symbol &r) const 
 { 
  return r.m_name == m_name; 
 } 
 std::string m_name; 
 double m_val; 
}; 
 
/* Function Prototypes */ 
 
extern "C" int yyparse(void); 
extern "C" int SetSymbol(const char *name); 
extern "C" double SetSymbolByIndex(int index, double val); 
extern "C" double GetSymbolByName(const char *name); 
extern "C" double GetSymbolByIndex(int index); 
 
#endif 
 


