
T. C.
HALIC UNIVERSITY

THE INSTITUDE OF SCIENCE
COMPUTER ENGINEERING

DESIGN AND IMPLEMENTATION OF INTERPRETERS

MASTER THESIS

Oğuz KARAN

Supervisor
Prof. Dr. Ali OKATAN

ISTANBUL 2005

T. C.
HALIC UNIVERSITY

THE INSTITUDE OF SCIENCE
COMPUTER ENGINEERING

DESIGN AND IMPLEMENTATION OF INTERPRETERS

MASTER THESIS

Oğuz KARAN

Supervisor
Prof. Dr. Ali OKATAN

ISTANBUL 2005

To My Parents

 i

TABLE OF CONTENTS

TABLE OF CONTENTS i
PREFACE iii
ACKNOWLEDGEMENTS iv
ÖZET v
ABSTRACT vi
LIST OF FIGURES vii

1. INTRODUCTION 1
1.1 Translators and Compilers 1
1.2 Interpreters 1
1.3 Comparison of Compilers and Interpreters 2
1.4 Phases of compilation process 3
1.5 Importance of interpreter / compiler design 4
1.5.1 Wide applicability of interpreter / compiler construction 5
1.5.2 Useful algorithms while constructing Interpreter / Compiler 5
1.6 History of Interpreter / Compiler Design And Implementation 5
1.6.1 1945-1960: 5
1.6.2 1960-1975: 6
1.6.3 1975-Present: 6
1.7 Notations of Syntax Definition 7
1.8 BNF Notation 7
1.9 Abstract Syntax Tree and Annotated Abstract Syntax Tree 10
1.10 Symbol Table 11
2. A SIMPLE MANUAL CALCULATOR (SIMPLE DEMO
INTERPRETER/COMPILER) 13
2.1 The Grammar for the simple manual calculator 13
2.2 Main module for the simple manual calculator 14
2.3 Scanning or Lexical Analysis for the simple manual calculator 14
2.4 Parsing or Syntax Analysis for the simple manual calculator 15
2.5 Interpretation and code generation for the simple manual calculator 17
3. LEXICAL ANALYSIS OR SCANNING 18
3.1 Regular Expressions 18
3.1.1 Using the Regular Expressions 19
3.1.2 Theory of Regular Expressions 23
3.1.3 Regular Expressions in C and C++ 25
3.2 Lex / Flex programs 26
3.2.1 Rules Section 27
3.2.2 Codes Section 28
3.2.3 Important Global Variables in the lex/flex Source Code 29
3.2.4 Compiling and Executing the lex/flex source file 29
3.2.5 Lexical Analysis Process with yylex Function 30
3.2.6 Using lex/flex in Projects 30
3.3 Manual Lexical Analysis 31
3.4 Object Oriented Manual Lexical Analysis by using C++ 31
4. SYNTAX ANALYSIS OR PARSING 34
4.1 yacc/bison Programs 34
4.1.1 Organization of yacc/bison source (input) file 34
4.1.2 Process of yacc/bison 36

 ii

4.1.3 Expression and Atom Types in yacc/bison 37
4.1.4 Using C++ codes with lex/flex and yacc/bison 38
4.2 Representing the Syntax Tree by Using C 39
4.3 Constructing a Syntax Tree by using yacc/bison 40
4.4 Error Handling in yacc/bison 42
4.5 Manual Syntax Analysis 42
4.6 Object Oriented Manual Syntax Analysis by using C++ 43
5. SAMPLE INTERPRETER 44
5.1 Design of Sample Interpreter 44
5.2 Implementation of Sample Interpreter 49
5.3 Properties of Sample Interpreter 49
REFERENCES 51
6.1 APPENDIX A 53
6.1.1. main.c file 53
6.1.2. scanner.h file 53
6.1.3. scanner.c file 54
6.1.4. parser.h file 56
6.1.5. parser.c file 56
6.1.6. backend.h file 58
6.1.7. backend.c file 58
6.2 APPENDIX B 60
6.2.1. Simple use of POSIX regex functions 60
6.2.2. scanner.h file 61
6.2.3. scanner.cpp file 64
6.3 APPENDIX C 68
6.3.1. parser.h file 68
6.3.2. parser.cpp file 68
6.4 APPENDIX D 71
6.4.1. interpreter.l file 71
6.4.2. interpreter.y file 73
6.4.3. interpreter.h file 81
6.4.4. interpreter.cpp file 83
6.4.5. interpreter.hpp file 84

 iii

PREFACE

Interpreter programs are system programming softwares and also design and

implementation needs advanced knowledge and experience. These developments were

driven by the advent of new programming paradigms. Learning this paradigm is

important for solving other kinds of problems. For example; programs that convert any

file format into another can be written by using the compiler/interpreter design

paradigm. Furthermore, with this paradigm, important and advanced data structures

must be used. For that reason, programmers have a good experience in data structures.

In this thesis, it is aimed learning design and implementation of compilers/interpreters.

Furthermore, sample interpreter uses this paradigm in details. This interpreter is the

detailed generic (skeletan) interpreter and also shows the way to design another

compilers/interpreters for any programmer.

 iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Prof.Dr.Ali OKATAN for his

supervision and encouragement during my thesis study. He has been so kind and patient

in all my desperate times. His trust, support, contributions and understanding motivated

me and let this thesis come to end.

I am grateful to my parents for their support and encouragement throughout my

graduate study.

Last but not least, I would like to thank to Barış Ağca, Ersin Turgut, Kadir Kurt, Kayra

Önder, Sercan Uzun, Yavuz Karan, Prof.Dr. Yavuz Gündüzalp and Öğr.Gör.Dr.Bülent

Ayanlar for all their friendship, encouragement, support and all the nice times we spent

together.

 v

ÖZET

YORUMLAYICI TASARIMI VE KODLANMASI

Karan, Oğuz

Tez Yoneticisi: Prof. Dr. Ali Okatan

İstanbul 2005, 85 sayfa

Bu tezde yorumlayıcı tasarımı detaylı olarak ele alınmış ve her aşaması ayrı ayrı
anlatılmıştır. Yorumlayıcı, programın kaynak kodunu anlamlandırıp çalıştıran
programdır. Bu yazılım, makineden bağımsız olarak kod yazmaya ve geliştirilmesine
olanak sağlar. Bu tarz yazılan programlar için işletim sistemi düzeyinde çalışan aslında
yorumlayıcı programın kendisidir. Bu duruma örnek; Java programlama dili ve .NET
platformunda geliştirilen programlar verilebilir.

Yorumlayıcı sistem programlama yazılımlarından biri olup, tasarımı ve geliştirilmesi
ileri düzeyde bilgi birikimi ve tecrübe gerektirmektedir. Karışık bir yapısı olan
yorumlayıcıyı tasarlamak ve geliştirmek için teorik bilginin yanı sıra pratik bilgi de
gerekmektedir.

Bu çalışmada ayrıca detaylı (genel) iskelet yorumlayıcı oluşturulmuş ve son bölümde
tasarımı ve kodları anlatılmıştır.

Anahtar Kelimeler: Derleyici, Yorumlayıcı

 vi

ABSTRACT

DESIGN AND IMPLEMENTATION OF INTERPRETERS

Karan, Oğuz

Supervisor: Prof. Dr. Ali Okatan

Istanbul 2005, 85 pages

In this thesis, interpreter design is discussed in details and all phases are explained one
by one. Interpreter is a program that meaning and executes the source code. For this
kind of programs, real process in operating system’s level is the interpreter. Programs
that are implemented in Java programming language and in .NET platform can be
given as example.

Interpreter programs are system programming softwares and also design and
implemantation needs advanced knowledge and exprience. There should be applied
knowledge as well as theoretical information for designing and implementing of an
interpreter.

In this study, additionally detailed generic(skeletal) interpreter is developed and in last
chapter design and implementation of this interpreter is explained.

Key words: Compiler, Interpreter

 vii

LIST OF FIGURES

1. Figure 1.1……………………………………………………………………………...4
2. Figure 1.2…………………………………………………………………………….11
3. Figure 2.1…………………………………………………………………………….13
4. Figure 2.2…………………………………………………………………………….17
5. Figure 3.1…………………………………………………………………………….25
6. Figure 3.2…………………………………………………………………………….27
7. Figure 3.3…………………………………………………………………………….33
8. Figure 4.1…………………………………………………………………………….49
9. Figure 4.2…………………………………………………………………………….51
10. Figure 4.3…………………………………………………………………………...53
11. Figure5.1……………………………………………………………………......63, 64
12. Figure5.2……………………………………………………………………………65

 1

1. INTRODUCTION

1.1 Translators and Compilers

Software that transforms one program code that is written in any programming

language into another programming language is called translator program or

translator. The language that is being transformed is called source language and the

resulting one is called target language [1].

For example, a program that transforms Pascal code to C code is a translator.

Particularly, if the source is the high level or mid level language and the target is the

low level language, (Assembly language or pure machine language), then the

translator is called compiler, however the program that translates the assembly

language to pure machine language is called assembler. Although assemblers

transform source to target language, they are not technically translators. Linkers that

link the object codes are similar to translators. Also, the loader of the operating

system is similar to translators.

From the pragmatic point of view, the translator defines the semantics of the

programming language; it transforms operations specified by the syntax into

operations of the computational model [18].

1.2 Interpreters

Interpreter is a program that executes the source code partially. For example,

Interpreter takes a line from the source text and establishes the action and processes

it. In other words, the process that executes at operating system’s level is actually

interpreter program. Interpreter realizes the meaning of source code and processes

the code. Some traditional languages work with interpreters. For example; Basic,

 2

Pascal, APL. Several script languages like Matlab, AWK are also processed with

interpreters.

1.3 Comparison of Compilers and Interpreters

Compilers and Interpreters are complex programs. It is generally believed that only

most advanced system programmers are privacy to this arcane art . That is the part of

the mystique of being considered the Grand Guru of the programming department

[2].

Interpreters are normally written in high-level language and will therefore run on

most machines, whereas compilers generate object code for specific machine

architecture. In other words portability is increased for interpreters. As interpreters

interpret the code line by line, they cannot completely control the error. Generally,

when they first encounter an error, they terminate the program.

Since interpreters do not generate target code, they are not considered as translators.

There is no difference between using compiler and interpreter. In both cases the

program text is processed into an intermediate form which is then interpreted by

some interpreting mechanism. As the interpreters are programs that interpret the

source code, the execution of the code is relatively slower than compiler [1].

 3

1.4 Phases of compilation process

In fact, compiler makes analysis and syntheses. Compiler first analyzes the source

code, then makes processes for generating target code. The following paragraphs

define the general phases of the compilation process:

1. Lexical analysis or scanning: This phase analyses the character string

presented to it and divides up into tokens that are legal members of the

vocabulary of the language in which the program is written. In this phase,

compiler can generate error messages if the character string is not pursuable

into a string of legal tokens [3].

2. Syntactic Analysis or parsing: This phase processes the sequence of tokens

and produces an intermediate-level representation, such as abstract parse tree

or abstract syntax tree and a symbol table that records the identifiers used in

the program and their attributes. Parsing can occur in two basic fashions: top-

down and bottom-up [17]. In this phase compiler can generate error messages

if the token string contains syntax errors or the misuse of the operator [3]. For

parse trees, there is an additional phase called context handling that

determines and place annotations or attributes for any node in tree. This

version of the tree is generally called Annotated Abstract Syntax Tree.

Abstract Syntax Tree (AST) is often called for Annotated Abstract Syntax

Tree [1].

3. Semantic Analysis; this phase processes the tasks using the symbol table and

AST. In this phase; compiler can produce error messages such as type

compatibility problem in the language.

 4

4. Intermediate Code Generation: The code generation begins at this stage. This

code is used for optimization. Optimizing phase is called code optimization.

5. Code Generation: This phase produces the target code from intermediate or

optimized intermediate code.

The 1st, 2nd, and 3rd phases are called the front-end of the compilation process others

are called back-end of the compilation process. There are additional tasks in the

middle of these phases. These are the general ones. Phases of compilation process are

shown in Figure 1.1.

Figure 1.1 The general phases of compilation process [4].

1.5 Importance of interpreter / compiler design

Studying compiler construction is a good idea because:

• Given its close relation to file conversion, it has wider application than just

compilers.

• It contains many generally useful algorithms in a realistic setting.

 5

1.5.1 Wide applicability of interpreter / compiler construction

Interpreter / compiler construction paradigm can be applied to many other problems.

Many problem can easily be solved effectively by using this technique. For example,

when creating new file formats, file conversion problems, etc. If the data can be

obtained by writing a grammar for it, it can be useful to obtain this data by using this

technique as a parser generator. Then parser can be generated automatically. Such

techniques can for example, be applied to rapidly create ‘read’ routines for HTML

files, Postscript files, etc. Examples of file conversion systems that have profited

considerably from compiler construction techniques are TeX text formatters which

convert TeX text to dvi format and Postscript interpreters which convert PostScript

text to instructions for a specific printer [1].

1.5.2 Useful algorithms while constructing Interpreter / Compiler

Interpreter / compiler construction techniques contain useful data structures and

algorithms. Examples include hashing, garbage collections, graph algorithms, and

trees etc. Using of these algorithms is educationally more valuable than their isolated

study [1].

1.6 History of Interpreter / Compiler Design And Implementation

Three periods can be distinguished in the history of interpreter / compiler design and

implementation [1]:1945 – 1960, 1960-1975 and 1975-present.

1.6.1 1945-1960:

In the 1950s, the earliest programmers prided themselves on doing their work

without any assistance, and their work was tedious—in the extreme [16].

 6

During this period languages have been developed relatively slow and machines

were idiosyncratic. The primary problem was how to generate code for a given

machine. Proponents of high-level languages feared, not without reason that idea of

high-level programming would never catch on if compilers produced code that was

less efficient than what assembly programmers produced by hand. The first Fortran

compiler (Sheridan, 1959) optimized heavily and was far ahead of its time in that

respect [1].

1.6.2 1960-1975:

During this period language designers believed that having a compiler for a new

language was more important than having one that generated very efficient code. At

the same time, studies in formal languages revealed a number of powerful techniques

that could be applied profitably in front-end construction, notably in parser

generation [1].

1.6.3 1975-Present:

From 1975 to the present, both the number of new languages proposed and the

number of different machine types in regular use decreased, which reduced the need

for quick –and – simple compilers for new languages and / or machines. The greatest

turmoil in language and machine design being over, people began to demand

professional compilers that were reliable, efficient, both in use and in generated code,

and preferably with pleasant user interfaces. This called for more attention to the

quality of the generated code, which was easier now, since with the slower change in

machines the expected lifetime of a code generator increased [1].

 7

1.7 Notations of Syntax Definition

There are number of grammar forms recommended for describing the syntax of

programming languages. Most popular one is the BNF (Buckes Naur Form) notation.

BNF notation first was designed in 1958 by John Buckes. BNF notation was used for

describing the syntax of Algol58. Peter Naur improved this notation. For this reason,

this notation is called BNF. BNF and its derivations are used for describing the most

programming languages. Improved version of the BNF is called EBNF (Extended

BNF). EBNF was standardized by ISO with the reference number ISO / IEC

14977:1996(E).

1.8 BNF Notation

BNF notation contains three components:

1. Production

2. Non-terminal symbols

3. Terminal symbols (atoms)

Any line of the syntax rule is called production. In BNF notation all non-terminal

symbols replaced as long as the atom encounters. For example

S ::= S digit | digit

Left - hand side of the symbol (S) ::= is the symbol that is described. Right – hand

side is the syntactic construct. All of the line is called production. In some BNF

derivations, symbol “:” is called for instead of symbol “::=”.

In BNF notation symbol “|” (pipe) means or. For example, for

 8

S ::= S digit | digit

S can be a digit or S digit. The BNF production can be recursive. In some BNF

derivation, instead of “|” for or the part of or is written to the below. For example

S ::= digit
 S digit

This kind of notation is used in C/C++ standards.

A non-terminal symbol can be described by another or directly by using a terminal

symbol. For

S ::= S digit | digit,

digit is also a non-terminal symbol. All non-terminal symbols must be described. For

production, the syntax must be of the following form:

S :
S digit
digit

digit:
 0
 1
 3

4
5
6
7
8
9

 9

For this rule, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are terminal symbols (atoms).

For any rule, terminal symbols must be distinguished from non-terminal symbols. In

original BNF notation terminal symbols are directly written and non-terminal

symbols are written in the middle of the angular parentheses. For example:

S ::= <S> <digit> | <digit>

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Some BNF derivations (C/C++/C# standards) any symbol are written directly but

atoms are written in bold or italic.

Optional elements are written in the middle of []. In C/C++ standards optional

elements are written including opt sub index. Original BNF contains no optional

element concept.

For example, typical Pascal program can be written in BNF notation as follows.

<program> ::= program
 <decleration-sequence>

begin
<statement-sequence>
end.

 10

1.9 Abstract Syntax Tree and Annotated Abstract Syntax Tree

The syntax tree of a program text is a data structure which shows precisely how the

various segments of the program text should be viewed in terms of the grammar [1].

The output of the syntax analyser and semantic analyser phases is sometimes

expressed in the form of a decorated AST. This is a very useful representation, as it

can be used in clever ways to optimize code generation at a later stage. [21].

Since this tree is used for parsing, it is also called parse tree. Parsing is also called

syntax analysis. Nodes of the parse tree are the non-terminal symbols and the leaves

of these are the terminal symbols. For example a for grammar rule below;

expression:
 additive_expression
 | factor_expression
additive_expression:
 additive_expressipn ‘+’ factor_expression
 | factor_expression

factor_expression:
 T ‘*’ T
 | T

Derivation of the syntax tree,

T * T + T * T

is shown in Figure 1.2:

 11

Figure 1.2 Syntax tree of the grammar rule as given above

The exact form of the parse tree as required by the grammar is rarely the most

convenient one for further processing, so usually a modified form of it is used, called

an abstract syntax tree or AST. Detailed information about the semantics can be

attached to the nodes in this tree through annotations, which are stored in additional

data fields in the nodes; therefore the term annotated abstract syntax tree. Since un

annotated ASTs are of limited use, ATSs are always more or less annotated in

practice, and the abbreviation AST is used also for annotated ASTs [1].

1.10 Symbol Table

Compilers and Interpreters build and maintain a data structure used throughout the

translation process. This structure is commonly called the symbol table and it is

where information about many of the source program’s token is kept [2].

 12

Symbol table is used for recording the name, current value and other attributes of any

variable. Symbol table must also able to design for adding or getting variable data

when a variable is encountered.

A C compiler, for example, stores the variable and structure names, labels,

enumeration tags, and all other names used in the in its symbol table [19].

There are three operations on symbol table:

- Add (Insert)

- Delete

- Search

Generally search operation is processed frequently than the add operation. For this

reason, data structure must be effective for search operation. Hash Table is a good

solution for this problem. Hashing with chain method can be used.

Chains provide a good solution to the overflow problem that arises when hashing is

used. Rather than placing an element into a bucket other than its home bucket, it is

maintained as chains of elements that have the same home buckets [20].

First, variable name is passed to hash function the result is the hash index, then is

searched in the related linked list. Also binary trees can also be used for symbol

tables.

 13

2. A SIMPLE MANUAL CALCULATOR (SIMPLE DEMO
INTERPRETER/COMPILER)

Implementation of the simple manual calculator project consists of four modules.

These are scanner.c, parser.c, backend.c and main.c. All modules except main.c

have their own headers, scanner.h, parser.h, backend.h.

2.1 The Grammar for the simple manual calculator

For a simple manual calculator, the expressions are based on a fully parenthesized

expression with operands of one digit. This makes parsing/syntax analysis simple

rand avoids details. The grammar of this calculator is shown in Figure 2.1.

expression:
 digit
 | ‘(‘ expression operator expression ‘)’

operator:
 ‘+’

 | ‘*’

digit:
 0 | 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 2.1 Grammar for simple manual calculator

To simplify things even further, this calculator has only two operators [1]. Sample

derivations that the grammar produces in Figure 1.3 are

3
(1 + 2)
(1 * ((3 + 5) * 7))
etc.

Also this allows white space, including tabs and new lines, in the input.

 14

2.2 Main module for the simple manual calculator

The main module of the program file is main.c as shown in Appendix A.1. In this

project, source type can be either a string from console or a file. For the file is shown

in Appendix A.1, the source type is file (sample.dat). For this reason the sourceType

field of the g_source global variable, which is defined in scanner.c and has a type

SOURCE type that is declared in scanner.h, must be assigned to the appropriate type

either string form console or a file in main module.

After the initializations of the variable g_source, Parse function which is defined in

parser.c and declared in parser.h, is called with a node variable. Afterwards Process

function called for interpreting code or generating an executable code.

2.3 Scanning or Lexical Analysis for the simple manual calculator

The scanning module of the simple manual calculator program is scanner.c and its

own header is scanner.h. The contents of the scanner.h file are shown in Appendix

A.2, and the contents of the scanner.c file are shown in Appendix A.3. In this

program there are 14 tokens. These are (,), +, * and digit that contains ten tokens.

The institution is based on the fact that the parser does not care exactly which digit it

sees, so as far as the parser is concerned, all digits are one and the same token: they

form a token class [1].

It was said that the source type of the input can be string from console or file. The

symbolic constants ST_STRING and ST_FILE are used for this reason respectively.

For the sourceType field of the SOURCE structure it is initialized the appropriate one

of these constants. Any token is represented by the TOKEN structure. If the type of

the token is a digit, then the type field of this structure is TT_DIGIT, otherwise it is

 15

the ASCII code of the token. The token field of the TOKEN structure is the

representation of the token. SOURCE structure also contains union called uBuf. This

is used with according to the sourceType field. uBuf union contains two fields, f and

pStr. f used when the sourceType is ST_FILE, pStr is used when the sourceType is

ST_STRING.

Furthermore, this file contains only one function prototype, GetNextToken. This

function gets the next token according to the sourceType field of the SOURCE

structure.

g_token global variable which has type of TOKEN, contains tokens. Since all the

modules have to access this variable, it was defined global. Likewise, g_source

global variable which has a type SOURCE, contains the source.

scanner.c file contains two static functions and one global function. Furthermore,

this file contains two global variables, are g_token and g_source.

getNextTokenFromFile and getNextTokenFromString functions are called from

GetNextToken function according to the sourceType value of the g_source variable.

These static functions get the next token and replace the g_token variable with the

appropriate values.

2.4 Parsing or Syntax Analysis for the simple manual calculator

The parsing module of the simple manual calculator program is parser.c and its own

header is parser.h. The contents of the parser.h file are shown in Appendix A.4 and

the contents of the parser.c file are shown in Appendix A.5.

 16

parser.h contains three symbolic constants that are used for the states of the return

values of the functions. This file also contains two additional symbolic constants,

NT_DIGIT, NT_PARAN for the type value of the EXPRESSION structure. NT_DIGIT

is defined as ‘D’ which is used for the digits. NT_PARAN is used for parenthesis

and for operators. This file also contains function prototypes and declaration of the

EXPRESSION structure.

parser.c file contains several static functions, allocNode, freeNode, parseOperator,

and parseExpression. allocNode function allocates an EXPRESSION which is the

node of the AST and freeNode function frees the EXPRESSION object.

parseOperator is called for parsing the operators. parseExpression is a recursive

function that produces the AST by calling the appropriate function. Furthermore,

there are two global functions, DisplayErrorMessage and Parse.

DisplayErrorMessage is called when any of the function returns error. Parse

function is called for parsing the all source text.

AST for the expression (2 * ((3 * 4) + 5)) is shown in Figure 2.7.

 17

Figure 2.2 AST for the expression (2 * ((3 * 4) + 5))

2.5 Interpretation and code generation for the simple manual calculator

The Interpretation and code generation module of the simple manual calculator

program is backend.c, and its own header is backend.h. The contents of the

backend.h file are shown in Appendix A.6 and the contents of the backend.c file are

shown in Appendix A.7.

backend.h file contains two function prototypes, GenerateCode and Process.

GenerateCode function genetares the appropriate code for the machine. Process

function interprets the code.

backend.c file contains two static functions, generateCode and interpret.

generateCode function generates the appropriate machine code. Since this project is

simple, generateCode only prints the machine codes. interpret function interprets the

operation and returns the result. These functions are called from GenerateCode and

Process respectively.

 18

3. LEXICAL ANALYSIS OR SCANNING

The first process of the interpreters / compilers is the lexical analysis or scanning.

Atoms or terminal symbols are used by the parser module. Several tools for scanning

exists for example. Traditionally in UNIX systems there is a tool called lex. The

GNU licensed version of the lex is called flex. For example in LINUX systems lex

and flex are the same programs. The scanning module can also be written by the

programmer. If it is written by the programmer, it will be particular for the language.

It can be general only when the programmer writes a general tool like lex or flex.

3.1 Regular Expressions

Regular expression concept came from mathematics. Regular expressions are

powerful language for describing and manipulating text [15]. In software, regular

expressions are used to obtain the appropriate part of the string that ensures the given

rule. Tools or programs that are used for this reason are called regular expression

engines. There are several tools that use regular expressions. For example some

editor programs can search by using regular expressions. grep command in

UNIX/LINUX systems also use regular expressions for searching. Regular

expression concept is abbreviated as regex.

In regular expressions, data that is appropriate for the given rule can be obtained. If

we want to obtain the numbers in the text, we must use regular expressions. Also for

example if we want to obtain date that has a format dd/mm/yyyy, we must use regular

expression.

There are no standard in regex engines [5]. But they have few differences .In C and

C++, there are no standard functions or classes that process the regular expressions;

 19

however; in Java and .NET platforms standard classes about regular expressions

exists.

Regular expressions are context-independent syntax that can represent a wide variety

of character sets and character set orderings, where these character sets are

interpreted according to the locale [14].

3.1.1 Using the Regular Expressions

The searching pattern is written by using some meta characters. If no meta character

is used, exact match of the pattern is obtained.

‘[‘and ‘] ‘are meta characters. They represent a one character. For example, the for

the pattern:

“h[ea]llo”

“hello” or “hallo” can be obtained. Meta characters are not normal character itself. If

we want to use any meta character as a normal character, we must use ‘\’ before the

meta character. For example;

“h\[x\]a”

In this example ‘[‘ and ‘]’ are not meta characters, they are normal. An interval can

be pointed out by using ‘-‘ between ‘[‘ and ‘]’. For example;

“[0-9]”

 20

In this example, the number between 0 and 9 can be obtained. Notice that again it

represents only a one character. ‘-‘ is also a meta character. For example, the pattern

above can be used to obtain a date that has a format dd/mm/yyyy.

“[0-9] [0-9]/ [0-9] [0-9]/ [0-9] [0-9] [0-9] [0-9]”

More than one interval can be written between ‘[’ and ’]’. For example;

“[0-9a-zx]”

In this form, a one character that can be between 0 and 9 or can be between ‘a’ and

‘z’ or only x can be obtained [5].

‘^’ is also a meta character and it means “not”. For example;

“[^a]”

means any character that is “not” ‘a’ [6].

Some characters begining with ‘\’ mean some group of characters. For example,

“\d” and “[0-9]”, “\w” and “[a-z]”, “\s” and “[\t\r\n]”

have the same meanings [5]. The capital letter version of these characters means

“not”. For example, “\D“ and “[^0-9]” are similar.

 21

‘.’ is a meta character and means any character. For example;

“[a-z]..b”

With this form a pattern - that has first character is between ‘a’ and ‘z’, then any two

characters then character ‘b’ - can be obtained.

‘?’ is a meta character and means that left of this character is optional. For example,

“ab?c”

With this form, “ac” or “abc” can be obtained.

‘(‘ and ’)’ are also meta characters. They are used for grouping. For example;

“a(bc)?d”

In this example, “abcd” or “ad” can be obtained. ‘?’ can be used in ‘[]’. For example,

“a[0-9]?b”

With this form “ab” or “a-any number-b” can be obtained [6].

‘|’ is also a meta character and means “or”. For example;

 22

“ab?c|a.b”

In this form, ‘|’ produces a two condition. “abc”, “ac”, “a-any character-b” can be

obtained [5].

‘*’ and ‘+’ are important meta characters. They are very important. The little

difference between there two characters is subtle. ‘*’ means, if there is zero or more

left character of the ‘*’, all can be obtained. ‘+’ means, if there is one or more left

character of the ‘+’, all can be obtained. For example;

“f+”

With this form, all contiguous ‘f’ characters can be obtained.

For a text ,

“yyyyyaaaacccc”

If we use “a*” form, we will get no character. Because when the search begins, zero

character was found. If we use “a+”, ‘a’ character will found and all contiguous ‘a’

will be obtained.

“.*” or “.+” are frequently used. This form means “all character up to the end of

line”. For example;

 23

“okrn.*”

With this form, all characters from first occurrence of okrn to end of line can be

obtained. For example;

“(abc)+”

With this form, contiguous “abc”s can be obtained.

There are of course a lot of meta characters and details.

3.1.2 Theory of Regular Expressions

Using regular expressions, we can specify patterns to lex that allow it to scan and

match strings in the input. Each pattern in lex has an associated action. Typically an

action returns a token, representing the matched string, for subsequent use by the

parser.To begin with, however, it is simply printed the matched string rather than

return a token value. It may be scanned for identifiers using the regular expression

letter(letter|digit)*

This pattern matches a string of characters that begins with a single letter, and is

followed by zero or more letters or digits. This example nicely illustrates operations

allowed in regular expressions:

 24

- repetition, expressed by the “*” operator

- alternation, expressed by the “|” operator

- concatenation

Any regular expression expressions may be expressed as a finite state automaton

(FSA). FSA can be represented using states, and transitions between states. There is

one start state, and one or more final or accepting states.

Figure 3.1 Finite State Automaton

In Figure 3.1, state 0 is the start state, and state 2 is the accepting state. As characters

are read, Transition is made from one state to another. When the first letter is read, it

is transit to state 1. When character is read other than a letter or digit, we transition to

state 2, the accepting state. AnyFSA may be expressed as a computer program. For

example, 3-state machine is easily programmed [9]:

 25

start: goto state0

state0: read c

if c = letter goto state1

goto state0

state1: read c

if c = letter goto state1

if c = digit goto state1

goto state2

state2: accept string

3.1.3 Regular Expressions in C and C++

There are no standard functions or classes about regex in C and C++, however, there

are several libraries written by anyone or company. There are POSIX functions about

regex. These functions are standard for POSIX systems, UNIX, LINUX, MAC OS

etc. Declarations of all these functions are in regex.h file. When these POSIX

functions are used, fist regcomp function must be called with the parameter of the

regular expression form. Then regexec function is called for searching. At last,

regfree function called for changing the regex form. These functions interpret basic

and extended Regular expressions [13]. A very simple use of these functions is

shown in Appendix B.1.

 26

3.2 Lex / Flex programs

lex file which is the input file for the lex/flex programs can be separated into three

sections [7].

- definitions

- rules

- subroutines (user codes, C codes)

The format for this file is shown in Figure 3.1

Definitions
%%
Rules
%%
C codes

Figure 3.2 Format of the lex file [7].

Lex is designed to simplify interfacing with Yacc, for those with access to this

compiler-compiler system [11].

In this format %% characters distinguish the sections. Definition section can consist

of macros and/or C declarations. C declarations are written between %{ and %} like

this:

%{
 int g_x;
 /*…*/
%}

Macros are the text representations of the regular expressions. For example,

DIGIT [0-9]+

 27

ALPHA [a-zA-z]+

So, typical definitions sections can be like this [7]:

DIGIT [0-9]+

ALPHA [a-zA-Z]+

%{
 int g_x;
 /*…*/
%}
When macros are used in any other section they must be written between ‘{’ and ’}’

like this:

{ALPHA}

It is not mandatory that lex file contains definitions section. C declarations in

definitions section is exactly written to the code file that lex or flex program

produces.

3.2.1 Rules Section

Every rule must be written in a line and the following way [7]:

<Pattern> <action>

Pattern must be aligned to left. Action part consists of the C codes that are processed

when the related atom found. If there are more than one C expression for the action,

then the code must be written in the {}. For example;

 28

DIGIT [0-9]+

ALPHA [a-zA-z]+

%{
 int g_digitNo = 0;
 int g_variableNo = 0;
%}

%%

{DIGIT} {++g_digitNo;}
{ALPHA} {++g_variableNo;}

If the there is no action for the pattern, the related item is wasted. If the rules section

is empty, all characters are passed to stream.

3.2.2 Codes Section

Codes section consists of the C codes that are passed to the code file that the lex or

flex programs produce. In this section there main or yywrap functions must be exist

at least. If these are not written, and the libfl.a library is included the link phase,

default version of these functions are written automatically. The default main

function only calls the yylex function.

It is not mandatory that the code which is produced by lex/flex consists of the main

function. In fact, the chief function is the yylex function. This function is defined by

the lex/flex program. Also yylex function needs the yywrap function. yywrap

function must be written by the programmer or must be declared as “not written“ via

an exclusive directive [7]:

%option noyywrap

 29

However, there is a yywrap function defined as follows [7];

int yywrap(void)
{
 return 1;
}

yylex is the chief function of the lex/flex. If the programmer uses the return in the

action part, the code returns from the yylex function.

3.2.3 Important Global Variables in the lex/flex Source Code

yytext variable consists of the current atom. yyleng consists of the length of the

current character.

Two significant global variables are yyin and yyout that has a type FILE *. Lex/flex

program use the file that yyin points to as a source (input) file [7]. The default file is

the stdin for yyin. . Lex/flex program use the file that yyout points to as a destination

(output) file. The default file is the stdout for yyout [7].

3.2.4 Compiling and Executing the lex/flex source file

Lex/flex source file is not a C code file. Lex/flex writes a C code that tokenizes. As a

result of this process, lex.yy.c file is produced. This file is C code file. This file must

be compiled by gcc. These processes are;

1. Lex/flex source file is written with an extension .lex or .flex or .l.

2. Lex/flex source file is processed with the lex/flex as:

flex test.c

 30

Afterwards lex.yy.c file is produced.

3. lex.yy.c file is compiled with gcc;

gcc –o test lex.yy.c –lfl

3.2.5 Lexical Analysis Process with yylex Function

yylex function that is written by lex/flex behaves as:

1. Takes the characters from the file that the yyin points to. Then analyze them.

2. If the characters that are taken from the source file (yyin) ensures the regex

rule, they are copied to the array which is pointed to by yytext. Then the

action related to the regex rule is processed.

3. If the characters that are taken from the source file (yyin) does not ensure the

regex rule, these characters are passed to the yyout file.

yylex function conserves the state. In other words, if yylex function is terminated by

return expression, when it is called again it continues from before state.

3.2.6 Using lex/flex in Projects

The aim of using the lex/flex is to leave the scanning process to this program. yylex

function must be called for each atom. A typical arrangement must be as follows:

1. In action parts of the lex/flex source file the programmer must use return for

terminating the yylex function. Programmer takes the atom from yytext after

terminating yylex.

 31

2. yylex function is returned with the type of the atom. So that, it can be possible

to establish the type of the atom.

3. At the end of the file, yylex function calls yywrap automatically then return

with 0.

3.3 Manual Lexical Analysis

Lexical Analysis can be done without using any tool (manually, programmatically).

Lexical Analysis can be processed as follows:

1. White spaces are skipped. The first character that is not a white space is

taken.

2. This character is related to the atoms type whether it is numerical or

alphanumerical etc.

3. Contiguous characters are taken with respect to this character.

3.4 Object Oriented Manual Lexical Analysis by using C++

Lexical Analysis process can be implemented manually by using C++ and its classes.

This method is less effective because of the level of C++ programming Language.

The class diagram of this design is shown in Figure 3.2.

 32

Figure 3.3 Class diagram of Object Oriented Lexical Analysis Process

Scanner class tokenizes the atoms. As the main class for lexical analysis. Tokens are

represented by classes that are inherited from Token class. For example,

VariableToken class represents the variables, whereas Token class has a GetToken

function. This function is pure virtual. This function is overridden in derived classes.

Token class is used by Scanner class with the association technique in Object

Oriented Paradigm. The main function that gets the atom is the GetNextToken

member function of the Scanner class. GetNextToken first skips the white space

characters. It gets the first character except white space, creates the appropriate

token object. Then it calls the GetToken function of the token object.

Input source can be file or memory. TextSource class is the base of the

TextSourceFile and TextSourceMemory classes. The former class represents the file

input, latter represents the memory input. TextSource class has two pure virtual

 33

functions which are named as GetChar and ReadChar. These functions are

overridden in derived classes.

Dynamic Allocation for any token variable is not effective. For this reason, pre-

created token variables can be used.

The implementation file scanner.h and scanner.cpp are shown in Appendix B.2 and

Appendix B.3 respectively.

scanner.h file consists of the declarations of the classes which are shown in Figure

3.2 and any ScannerException class that is the exception class of the Scanner class.

ScannerException class is used for exception handling. Also, scanner.c file consists

of the implementations of the classes which are shown in Figure 3.2 and any

ScannerException class that is the exception class of the Scanner class.

 34

4. SYNTAX ANALYSIS OR PARSING

The other process of the interpreter / compiler is the syntax analysis or parsing.

Several tools for parsing exist. Traditionally in UNIX systems there is a tool called

yacc. The GNU licensed version of the yacc is called bison. bison is also the

extended version of the yacc. The parsing module also can be written by the

programmer. If it is written by the programmer, it will be particular for the language.

It can be general only when the programmer writes a general tool like yacc or bison.

In the syntax-analysis phase, a compiler verifies whether or not the tokens generated

by the lexical analyzer are grouped according to the syntactic rules of the language.

If the tokens in a string are grouped according to the language's rules of syntax, then

the string of tokens generated by the lexical analyzer is accepted as a valid construct

of the language; otherwise, an error handler is called [12].

4.1 yacc/bison Programs

yacc and bison are programs that make syntax analysis/parsing by using BNF

notation. yacc and bison are compatible with lex and flex. Bison is the extended and

GNU version of yacc. There is an open source version of the bison for Linux and

Windows operating systems.

4.1.1 Organization of yacc/bison source (input) file

yacc/bison source file can be separated into three sections [8].

- Definitions

- Rules

- Subroutines (user codes, C codes)

 35

The format for this file is shown in Figure 4.1

Definitions
%%
Rules
%%
C codes

Figure 4.1 Format of the lex file [8].

Definitions section can consists of the exclusive declarations of yacc/bison or C

declarations. C declarations must be written between %{ and %}. Rules section

consists of the BNF productions. All productions must be terminated with ‘;’

character. Code of productions (action) can be defined for all options that separated

by ‘|’ [8].

Names refer to either tokens or nonterminal symbols. Yacc requires token names to

be declared as such. [10] .

A sample rules section can be as follows:

expression:
 expression ‘+’ factor {$$ = $1 + $3;}

| expression ‘-‘factor {$$ = $1 - $3;}
;
factor:

factor ‘*’ NUMBER {$$ = $1 * $3;}
| NUMBER {$$ = $1;}

;

If the terminal symbol includes one characters, it is written in ‘ and ‘. Otherwise, it

must be declared with %token in the declarations section. For the example, above +,

-, * and NUMBER are atoms. Derivations for this example are;

NUMBER * NUMBER + NUMBER * NUMBER

or

 36

NUMBER

For productions, $1 represents the first symbol, $2 represents the second symbol etc.

$$ represents the result of production.

4.1.2 Process of yacc/bison

When the source code of the yacc/bison is compiled, if the source file’s name is

test.y, test.tab.c C code file is generated. In this C code file parsing processes are

done with the yyparse function, therefore a programmer must write a main function

and must call yyparse to excute that code. Algorithm of the yyparse function is

written as follows:

1. yyparse needs atoms for root production. It gets the atoms and derives the

production

2. yyparse gets atoms by using yylex. For that reason, yylex function must be

written by programmer or by lex/flex.

3. yyparse calls the yylex function then retrieves the numeric value of the atom

from yyval variable. If lex/flex is used, programmer must assign the value to

the yylval variable before yylex returns.

4. yylex function establishes the type of the atom from yylex function. If the

return value of the yylex function is between 0 and 255, atom includes one

character. The return value is the ASCII code of this character. If this value is

greater than 255 it is a multi-character atom. The type of the atom can be

established by this value [10].

 37

5. When yacc/bison programs are executed with –d command line, it produces

also a .tab.h header file; test.tab.h i.e. This file includes the symbolic

constants that are declared as %token. For this reason, these constants must

be returned from yylex by programmer. Therefore, this file must be included

in the lex/flex source file.

4.1.3 Expression and Atom Types in yacc/bison

The types of yylval that consists of found atom, $n that consists of the related non-

terminal and terminal symbols isYYSTYPE. If YYSTYPE is not defined with #define

declaration in the generated C code file, YYSTYPE is defined as int by yacc/bison. If

the programmer wants the YYSTYPE as double for example, he/she have to define

YYSTYPE as double in the definitions section as follows:

%{
 #define YYSTYPE double
%}

It is possible to differentiate the type of atoms by using %union declaration. A

sample %union declaration is shown in Figure 4.2;

%union {
 double val;
 char *name;
}

Figure 4.2 Sample %union declaration.

It is also possible to declare type for non-terminal and terminal symbols by using

%type and %token declarations, respectively. Types are written in < and >. For

example;

 38

%token <val> NUMBER
%token <name> NAME
%type <val> expression

With the %union declaration type of the yyval becomes a union as shown in Figure

4.2. When we use yacc/bison with –d command option, YYSTYPE is defined with

#define declaration as union that is declared with %union in source file of the

yacc/bison program. Also an extern declaration is declared in the generated header

file. Briefly,

1. Type of the yyval is always YYSTYPE.

2. Default type of the YYSTYPE is int

3. If YYSTYPE is defined with #define, YYSTYPE become type as defined

4. If YYSTYPE is defined as %union declaration, YYSTYPE become this union

type.

4.1.4 Using C++ codes with lex/flex and yacc/bison

Lex/flex and yacc/bison program generates C codes. If the extensions of these files

are renamed as .cpp then are compiled by C++ compiler, C and C++ compatibility

problems can be occurred. Therefore, these codes must be compiled with C compiler,

and other C++ codes must be compiled with C++ compiler. Then all the object codes

must be linked together, however, the following problems can be occurred:

1. Name decoration of the compilers can be different. Therefore, C and C++

codes must be compiled by the compiler that belongs to the same compiler

family.

2. C++ functions are called by the C modules must be declared and defined

with “extern C” declaration.

 39

3. For dynamic memory allocation in C++ operator new and operator delete

must call malloc and free functions respectively. Therefore, operator new and

operator delete must be implemented (defined) again.

4.2 Representing the Syntax Tree by Using C

Syntax Tree must be expressed as a data structure by using C. It is aimed to be

expressed as a data structure in memory not to draw the figure of the tree. For the

Figure 1.2, nodes may have various elements. For effective and comfortable usage,

nodes must be represented homogenously. One field of the structure of the node can

be used for determining the type of the node. For example, node belongs to binary or

unary operator. Furthermore, node belongs to a non-terminal symbol. If the node

belongs to an operator, all operands will be pointers that have the same types. A

sample node structure is shown in Figure 4.3:

typedef struct _tagNODE {
 int nodeType;
 union {
 OPERATOR_NODE opNode;
 VARIABLE_NODE opNode;
 CONSTANT_NODE constNode;

} type;
} NODE, *PNODE;;

Figure 4.3 Sample node structure

The nodeType field of the structure represents the active field in the type union.

nodeType can be the enumeration that can be declared as follows:

enum {
 NT_OPERATOR,
 NT_VARIABLE,
 NT_CONSTANT
};

 40

There are some unnecessary nodes in the tree that is shown in Figure 1.2. For

example; additive_expression below the expression is unnecessary. No element

exists for these unnecessary nodes in the NODE structure.

4.3 Constructing a Syntax Tree by using yacc/bison

Syntax Tree for expressions can be constructed easily by using yacc/bison. Syntax

Tree is constructed by allocating nodes in productions. For example, definitions

sections of the yacc/bison source file for a calculator that supports +, -, *, / is written

as follows:

expression:
 additive {$$ = processExp($1); /*Code 1*/}
;
additive:
 additive ‘+’ factor {$$ = processBinaryOp(OP_ADD, $1, $3); /*Code
2*/}

| additive ‘-’ factor {$$ = processBinaryOp(OP_SUB, $1, $3); /*Code 3*/}
| factor {$$ = $1; /*Code 4*/}

;
factor:
 factor ‘*’ NUMBER {$$ = processBinaryOp(OP_MUL, $1, $3); /*Code
5*/}

| factor ‘/’ NUMBER {$$ = processBinaryOp(OP_DIV, $1, $3); /*Code 6*/}
| NUMBER {$$ = processNumber($1); /*Code 7*/}

;
yacc/bison executes the C codes for productions from bottom to top. For example,

for the derivation below for the above example:

NUMBER * NUMBER + NUMBER + NUMBER

The C codes are executed as follows:

 41

1. This is an expression and this is also an additive. The C code in the additive

excuted at last.

2. C codes for the NUMBER are executed first.

Process Order of NUMBER * NUMBER + NUMBER + NUMBER is as follows:

1. Code 7

2. Code 7

3. Code 7

4. Code 7

5. Code 5

6. Code 5

7. Code 2

8. Code 1

To construct syntax tree, all the codes above allocates a NODE structure. For

example, Code 7 can allocate a NODE structure for NUMBER and can assign the

related number. factor can get the two NODE structures represents two NUMBER

atoms (terminal symbol), then allocates another NODE structure. additive can get the

two NODE structures represents two factor non-terminal symbol, then allocates

another NODE. When expression is encountered, syntax tree is being constructed. To

calculate the related expression, a recursive function that gets a NODE as parameter

can be implemented. In this method, the result is calculated at the top of the

 42

productions. From bottom to top, data of the symbols are recorded and the syntax

tree is constructed.

4.4 Error Handling in yacc/bison

A nice compiler gives the user meaningful error messages [9]. When the error is

encountered, default behavior of the yacc/bison is to terminate the program. yyparse

function calls yyerror by default. yyerror is compatible with lex/flex. yyparse

function terminates the program after yyerror returns. For effective error handling

the built in error non-terminal symbol is used. This symbol is processed as a normal

non-terminal symbol. For example:

statement:
 null_statement /**/
 | if_statement { $$ = processStatement($1, STM_IF); }
 | error { /*Error Code*/ };
;

4.5 Manual Syntax Analysis

Syntax Anaysis can be done without using any tool. Of course, for syntax analysis

the module that gives the next atom can be used as input. Indeed, yacc/bison call the

yylex function for getting the next atom from the output of the lex/flex program.

Some typical algorithms can be used for syntax analysis. The popular algorithm is to

process the infix operators as postfix via a stack. In this method, the opearation with

two operands processes as follows:

1. Left operand is pushed to stack

2. Right operand is pushed to stack

 43

3. Two of these operands are popped from the stack and processed

4. Result is pushed to stack

4.6 Object Oriented Manual Syntax Analysis by using C++

Syntax Analysis process can be implemented manually by using C++. This method is

less effective because of the level of C++ programming Language.

For syntax analysis, Parser class can be implemented that use the Scanner class as a

variable that is written in the previous chapter. parser.cpp file that contains the

implementation of Parse class is shown in Appendix C.2, and also its header file

parse.h is shown in Appendix C.1.

This skeletal Parser class is implemented in parser.cpp file and declared in parser.h

file. getNextToken function gets the next atom by using Scanner class object.

m_pToken member variable contains the atom and m_pTokenType variable contains

the type of the atom. Parse operation is started by calling the function that parse the

least precedence operator. This function is named as doAdditiveExpression. All

functions that parse operators call the function that belongs to higher precedence

operator. All results are pushed to stack. The atom is get by getNextToken function

when the type of the atom is established.

 44

5. SAMPLE INTERPRETER

This sample interpreter is the detailed skeletal code of interpreter. Interpreter

supports loops, if statements, several various operators etc. With this code, advanced

compiler or interpreter can be improved. This is not the introduction to the advanced

compiler. This is big part of the advanced compiler / interpreter.

5.1 Design of Sample Interpreter

In this project, all terminal symbols and non-terminal symbols represented as NODE

structure that is declared as follows:

typedef struct tagNODE {
 int nodeType;
 union {
 NODE_CONSTANT nodeConstant;
 NODE_VARIABLE nodeVariable;
 NODE_OPERATOR nodeOperator;
 NODE_STATEMENT nodeStatement;
 NODE_STATEMENT_IF nodeStatementIf;
 NODE_STATEMENT_WHILE nodeStatementWhile;
 /*…*/
 } type;
} NODE, *PNODE;

Parse Tree is constructed with this NODE structure. After that, all operations are

done by using this tree with a recursive function. Any node in the Parse Tree belongs

to a different terminal symbol or non-terminal symbol but all the nodes are

represented as a NODE structure. NODE structure can consist of constant, variable,

operator or statement. Constants can be represented as NODE_CONSTANT structure.

This structure consists of the value of the constant. NODE_CONSTANT structure is

declared as follows:

typedef struct tagNODE_CONSTANT {
 double value;
} NODE_CONSTANT, *PNODE_CONSTANT;

 45

Names, values and types of the variables are saved in the symbol table.

NODE_VARIABLE consists of the index of the variable in the symbol table. NODE_

VARIABLE structure is declared as follows:

typedef struct tagNODE_VARIABLE {
 int index;
} NODE_ VARIABLE, *PNODE_ VARIABLE;

The structure that represents the operator which is named as NODE_OPERATOR

consists of the operator type and the operands. Operands of the operators are

represented as NODE structure. For operands array with three elements is allocated.

All the slots of this array is not always used. They are used according to the type of

the operator. NODE_OPERATOR structure is declared as follows:

typedef struct tagNODE_OPERATOR {
 int opType
 PNODE operands[3];
} NODE_OPERATOR, *PNODE_OPERATOR;

Any statement is represented as NODE_STATEMENT structure.

NODE_STATEMENT structure is declared as follows:

typedef struct tagNODE_STATEMENT {
 int stmType;
 int stmInfo;
 PNODE pNode;
} NODE_STATEMENT, *PNODE_STATEMENT;

Some statements are represented as exclusive structures. For example, if statements

are represented as NODE_STATEMENT_IF, while statements are represented as

NODE_STATEMENT_WHILE etc. NODE_STATEMENT_IF and

NODE_STATEMENT_WHILE structures are declared as follows:

 46

typedef struct tagNODE_STATEMENT_IF {
 PNODE pNodeExpression;
 PNODE pNodeTrue;
 PNODE pNodeFalse;
} NODE_STATEMENT_IF, *PNODE_STATEMENT_IF;

typedef struct tagNODE_STATEMENT_WHILE {
 PNODE pNodeExpression;
 PNODE pNodeTrue;
} NODE_STATEMENT_WHILE, *PNODE_STATEMENT_WHILE;

The main grammar structure of the sample interpreter is shown in Figure 5.1:

input:
 | input_statement
;
statement:
 null_statment
 | simple_statement
 | compound_statement
 | command_statement
 | if_statement
 | while_statement
;
null_statment:
 ‘;’
;
simple_statement:
 expression ‘;’
;
compound_statement:
 ‘{’ ’}’
 | ‘{’ statement_list ’}’
;
statement_list:
 statement statement_list
 | statement
;
command_statement:
 print_command_statement:

| exit_command_statement
;

Figure 5.1 Grammar structure of the sample interpreter

 47

print_command_statement:
 TOKEN_PRINT_COMMAND expression ‘;’
;
exit_command_statement:
 TOKEN_EXIT_COMMAND ‘;’
;
if_statement:
 TOKEN_IF_STATEMENT ‘(‘ expression ‘)’ statement
 | TOKEN_IF_STATEMENT ‘(‘ expression ‘)’ statement
 TOKEN_ELSE_STATEMENT statement
;
while_statement:
 TOKEN_WHILE_STATEMENT ‘(’ expression ‘)’ statement
;
expression:
 assignment_expression
;

/*…*/

Figure 5.1 Grammar structure of the sample interpreter (continued)

Types of non_terminal symbols are represented as NODE * (PNODE) in yacc/bison

source code file. Number or variable are represented as NODE. For example, the

syntax tree of a statement

a = b + 10 * 20;

is shown in Figure 5.2

 48

Figure 5.2 Syntax tree of a = b + 10 * 20;

The most important function of this interpreter code is the execute function. This

function fetches the first node of the syntax tree as a parameter and calculates the

statement in a recursive manner. Prototype of this function is as follows:

double execute(PNODE pNode);

Another important function is freeNode function. This function frees the tree.

Prototype of this function is as follows:

static void freeNode(PNODE pNode);

 49

5.2 Implementation of Sample Interpreter

Sample interpreter project consists of several code files. Lex/flex source file is named

as interpreter.l. This file is used for acquiring the atoms. interpreter.l file is shown in

Appendix D.1.

yacc/bison code file is named as interpreter.y. This file is used for syntax analysis.

This file is shown in Appendix D.2.

When lex/flex and yacc/bison programs are used for interpreter.l and interprter.y

files respectively. Interpreter.tab.c and lex.yy.c files are generated respectively.

Furthermore, interpreter.tab.h file is also generated. These files are compiled and

linked together with other files.

interpreter.h file contains thedeclarations of essential structures for the grammar. For

example: NODE, NODE_VARIABLE etc. This file also contains the essential

enumerations and function prototypes. This file is included by both interpreter.l and

interpreter.y. Also, automatically this file is included by interpreter.tab.c and

lex.yy.c. interpreter.h file is shown in Appendix D.3:

interpreter.cpp file contains the implementation of symbol table data structure.

interpreter.hpp file contains the declaration of this data structure. interpreter.cpp and

interpreter.hpp files are shown in Appendix D.4 and Appendix D.5 respectively.

5.3 Properties of Sample Interpreter

Sample interpreter supports the C programming syntax but not all of them. For

example, Control statements like if statement is supported. Loop statements of the C

 50

are supported by Sample Interpreter etc. A sample code belongs to Sample

Interpreter is as follows:

x = 12;

iken (x >0) {
 eger (x % 2 == 0)
 yazdir x;
 x = x – 1;
}

 51

REFERENCES

[1] Grune, D., Bal, H., E., Jacobs, C. and J., H., Langendoen, K., G. Modern
Compiler Design: John Wiley & Sons, Ltd, New York, (2003)

[2] Mak, R. Writing Compilers and Interpreters: An Applied Approach Using C++.
John Wiley & Sons, Ltd, United States of America, Second Edition, (1996)

[3] Muchnick, S., S. Advanced Compiler Design and Implementation: Academic
Press, United States of America, (1997).

[4] Aho, A., V, and Ullman, J., D. Compilers: Principles of Compiler Design:
Addison_Wesley, Massachusetts., (1977)

[5] Friedl J., E., F. Mastering Regular Expressions: O'Reilly & Associates,
Cambridge, Second Edition (2003)

[6] Stubblebine T.Regular Expression: Pocket Refence. O'Reilly & Associates,
Cambridge, (2003)

[7] Paxon V. FLEX(1): Internet WWW-page, URL:
http://www.hmug.org/man/1/lex.html (24.04.2005).

[8] Donnelly C., Stallman R., M. Bison Manual for Version 1.875: Free Software
Foundation, USA, 8th edition (2003).

[9] Niemann T., A Compact Guide to Lex&Yacc: Internet WWW-page, URL:
www.epapers.com, (20.4.2005)

[10] Johnson, C., J., Yacc: Yet Another Compiler-Compiler: Internet WWW-page,
URL: http://www.cs.rpi.edu/~moorthy/Courses/compilerf05/yacc.pdf (19.05.2005)

[11] Lesk M., E., and Schmidt E. Lex – A Lexical Analyzer Generator: Internet
WWW-page, URL: http://wolfram.schneider.org/bsd/7thEdManVol2/lex/lex.pdf
(19.05.2005)

[12] Kakde O., D. Algorithms for Compiler Design: Laxmi Publication,
Massachusetts, (2003)

[13] Standard for Information Technology—Portable Operating System Interface
(POSIX)
System Interfaces, Issue 6. Institute of Electrical and Electronics Engineers, Inc. and
The Open Group, USA (2001)

[14] Standard for Information Technology—Portable Operating System Interface
(POSIX)
Base Definitions, Issue 6. Institute of Electrical and Electronics Engineers, Inc. and
The Open Group, USA (2001)

 52

[15] Liberty J., Programming C#: O'Reilly & Associates, Cambridge, Second
Edition (2002)

[16] Nilges E., G. Build Your Own .NET Language and Compiler: A Press, USA,
(2004)

[17] Benders, F., J. ,F., Haaring, J., W., Janssen, T., H., Meffert, D. and Oostenrijk, A., C. Compiler
Construction : A Practical Approach., University of Arnhem and Nijmegen,
 (2003)

[18] Aaby, A, A, Compiler Construction using Flex and Bison: Internet WWW-page,
URL: http://cs.wwc.edu/~aabyan/Linux/compiler.pdf (10.10.2005).

[19] Levine J., R., Mason T., and Brown D., lex & yacc: O ‘Reilly and Associates,
Inc, United States of America, (1992).

[20] Sahni S., Data Structures, Algorithms, and Applications in C++: McGraw-Hill,
USA, (1998).

[21] Terry P., D., Compilers and Compiler Generators an introduction with C++:
International Thomson Computer Press, USA, Book & Disk Edition1997

 53

6.1 APPENDIX A

6.1.1. main.c file

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "scanner.h"
#include "parser.h"
#include "backend.h"

int main(void)
{
 PNODE pNode;

 g_source.sourceType = ST_FILE;
 if ((g_source.uBuf.f = fopen("deneme.c", "r")) == NULL) {
 fprintf(stderr, "Cannot open file..\n");
 exit(EXIT_FAILURE);
 }

 if (Parse(&pNode) != SUCCESS)
 DisplayErrorMessage("Error in Expression");

 Process(pNode);

 return 0;
}

6.1.2. scanner.h file

#ifndef _SCANNER_H_
#define _SCANNER_H_

/*Include Files*/

#include <stdio.h>

/* Symbolic Constants*/

#define ST_FILE 1
#define ST_STRING 2

#define TT_DIGIT 257
#define TT_EOF 256

 54

/*Type definitons*/

typedef struct tagSOURCE { /*Source Structure*/
 int sourceType;
 union {
 FILE *f;
 char *pStr;
 } uBuf;
} SOURCE, *PSOURCE;

typedef struct tagTOKEN { /*Token structure*/
 int type;
 char token;
} TOKEN;

/*Function Prototypes*/

void GetNextToken(void);

/*extern declerations*/

extern TOKEN g_token;
extern SOURCE g_source;

#endif

6.1.3. scanner.c file

#include <stdio.h>
#include "scanner.h"

/*Static Function Prototypes*/

static void getNextTokenFromFile(void);
static void getNextTokenFromString(void);

TOKEN g_token;
SOURCE g_source;

static void getNextTokenFromFile(void)
{
 int ch;
 static long curOffset = 0;

 fseek(g_source.uBuf.f, curOffset, SEEK_SET);

 while ((ch = fgetc(g_source.uBuf.f)) != EOF)
 if (ch != ' ' && ch != '\n' && ch != '\t')
 break;

 if (ch == EOF) {
 g_token.type = TT_EOF;
 g_token.token = '#';

 return;
 }

 55

 if (ch >= '0' && ch <= '9')
 g_token.type = TT_DIGIT;
 else
 g_token.type = ch;

 g_token.token = ch;
 curOffset = ftell(g_source.uBuf.f);
}

static void getNextTokenFromString(void)
{
 static int offset = 0;

 /*Skip white spaces*/
 for (; g_source.uBuf.pStr[offset] != '\0'; ++offset)
 if (g_source.uBuf.pStr[offset] != ' ' &&
g_source.uBuf.pStr[offset] != '\n' && g_source.uBuf.pStr[offset] !=
'\t')
 break;

 /*EOF encountered*/
 if (g_source.uBuf.pStr[offset] == '\0') {
 g_token.type = TT_EOF;
 g_token.token = '#';

 return;
 }

 if (g_source.uBuf.pStr[offset] >= '0' &&
g_source.uBuf.pStr[offset] <= '9')
 g_token.type = TT_DIGIT;
 else
 g_token.type = g_source.uBuf.pStr[offset];

 g_token.token = g_source.uBuf.pStr[offset];
 offset++;
}

void GetNextToken(void)
{
 static int offset = 0;

 if (g_source.sourceType == ST_FILE)
 getNextTokenFromFile();
 else
 getNextTokenFromString();
}

 56

6.1.4. parser.h file

#ifndef _PARSER_H_
#define _PARSER_H_

/*Symbolic Constants*/

#define SUCCESS 1
#define FAILED 0
#define ERROR -1

#define NT_DIGIT 'D'
#define NT_PARAN 'P'

/*Type definitions*/

typedef struct tagEXPRESSION { /*Expression structure*/
 int type;
 int val;
 int op;
 struct tagEXPRESSION *pLeft, *pRight;
} EXPRESSION, *PEXPRESSION, NODE, *PNODE;

/*Function Prototypes*/

void DisplayErrorMessage(const char *str);
int Parse(PNODE *ppNode);

#endif

6.1.5. parser.c file

#include <stdio.h>
#include <stdlib.h>
#include "parser.h"
#include "scanner.h"

/*Static Function Prototypes*/

static PEXPRESSION allocNode(void);
static void freeNode(PEXPRESSION pExp);
static int parseOperator(int *pOp);
static int parseExpression(EXPRESSION **ppExp);

/*Function Definitions*/

static PEXPRESSION allocNode(void)
{
 return (PEXPRESSION) malloc(sizeof(EXPRESSION));
}

static void freeNode(PEXPRESSION pExp)
{
 free(pExp);
}

 57

static int parseOperator(int *pOp)
{
 if (g_token.type == '+') {
 *pOp = '+';
 GetNextToken();

 return SUCCESS;
 }
 if (g_token.type == '*') {
 pOp = '';
 GetNextToken();

 return SUCCESS;
 }

 return FAILED;
}

static int parseExpression(PEXPRESSION *ppExp)
{
 PEXPRESSION pExp;

 if ((pExp = allocNode()) == NULL)
 return ERROR;

 *ppExp = pExp;

 if (g_token.type == TT_DIGIT) {
 pExp->type = NT_DIGIT;
 pExp->val = g_token.token - '0';
 GetNextToken();

 return SUCCESS;
 }

 if (g_token.type == '(') {
 pExp->type = NT_PARAN;
 GetNextToken();
 if (parseExpression(&pExp->pLeft) == FAILED)
 DisplayErrorMessage("Missing Expression");

 if (parseOperator(&pExp->op) == FAILED)
 DisplayErrorMessage("Missing Operator");

 if (parseExpression(&pExp->pRight) == FAILED)
 DisplayErrorMessage("Missing Expression");

 if (g_token.type != ')')
 DisplayErrorMessage("Missing)");

 GetNextToken();

 return SUCCESS;
 }

 freeNode(pExp);

 return FAILED;
}

void DisplayErrorMessage(const char *str)

 58

{
 fprintf(stderr, "%s\n", str);
}

int Parse(PNODE *ppNode)
{
 PEXPRESSION pExp;

 GetNextToken();
 if (parseExpression(&pExp) == SUCCESS) {
 if (g_token.type != TT_EOF)
 DisplayErrorMessage("Garbage After end of
program");

 *ppNode = pExp;

 return SUCCESS;
 }

 return FAILED;
}

6.1.6. backend.h file

#ifndef _BACKEND_H_
#define _BACKEND_H_

/*Function Prototypes*/

void GenerateCode(const PNODE pNode);
void Process(const PNODE pNode);

#endif

6.1.7. backend.c file

#include <stdio.h>
#include "parser.h"
#include "backend.h"

/*Static Function Prototypes*/

static void generateCode(const PEXPRESSION pExp);
static int interpret(const PEXPRESSION pExp);

static void generateCode(const PEXPRESSION pExp)
{
 switch (pExp->type) {
 case NT_DIGIT:
 printf("PUSH %d\n", pExp->val);
 break;
 case NT_PARAN:
 generateCode(pExp->pLeft);
 generateCode(pExp->pRight);
 switch (pExp->op) {

 59

 case '+':
 printf("ADD\n");

 break;
 case '*':
 printf("ADD\n");
 break;
 }
 break;
 }
}

static int interpret(const PEXPRESSION pExp)
{
 switch (pExp->type) {
 case NT_DIGIT:
 return pExp->val;
 case NT_PARAN:
 {
 int leftExp = interpret(pExp->pLeft);
 int rightExp = interpret(pExp->pRight);

 switch (pExp->op) {
 case '+':
 return leftExp + rightExp;

 case '*':
 return leftExp * rightExp;

 }
 }
 break;
 }

 return 0;
}

void GenerateCode(const PNODE pNode)
{
 generateCode(pNode);
}

void Process(const PNODE pNode)
{
 printf("%d\n", interpret(pNode));
}

 60

6.2 APPENDIX B

6.2.1. Simple use of POSIX regex functions

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <regex.h>

int main(int argc, char *argv[])
{
 FILE *f;
 long fileSize;
 char *pString;
 regex_t reg;
 regmatch_t pMatch[10];
 int i, j;

 if (argc != 3) {
 fprintf(stderr, "Wrong number of arguments\nUsage:
sampleregex filename regex");
 exit(EXIT_FAILURE);
 }

 if ((f = fopen(argv[1], "r")) == NULL) {
 fprintf(stderr, "Cannot open file...\n");
 exit(EXIT_FAILURE);
 }

 fseek(f, 0, SEEK_END);
 fileSize = ftell(f);
 fseek(f, 0, SEEK_SET);

 pString = (char *) malloc(fileSize * sizeof(char) + 1);
 if (pString == NULL) {
 fclose(f);
 fprintf(stderr, "Cannot allocate memory...\n");
 exit(EXIT_FAILURE);
 }
 if (fread(pString, sizeof(char), fileSize, f) <= 0) {
 free(pString);
 fclose(f);
 fprintf(stderr, "cannot read from file...\n");
 exit(EXIT_FAILURE);
 }
 pString[fileSize] = '\0';

if (regcomp(®, argv[2], REG_EXTENDED) != 0) {
 free(pString);
 fclose(f);
 fprintf(stderr, "cannot compile regex...\n");
 exit(EXIT_FAILURE);
 }

 if (regexec(®, pString, 10, pMatch, 0) != 0) {
 regfree(®);
 free(pString);
 fclose(f);

 61

 fprintf(stderr, "cannot match regex...\n");
 exit(EXIT_FAILURE);
 }

 for (i = 0; pMatch[i].rm_eo != -1; ++i) {
 for (j = pMatch[i].rm_so; j < pMatch[i].rm_eo; ++j)
 printf("%c", pString[j]);

 putchar('\n');
 }

 regfree(®);
 free(pString);
 fclose(f);

 return 0;
}

6.2.2. scanner.h file

#ifndef _SCANNER_H_
#define _SCANNER_H_

#include <fstream>
#include <sstream>
#include <exception>

//ScannerException class
class ScannerException : public exception {
public:
 ScannerException(const char *pText) : m_text(pText)
 {}
 virtual const char *what()
 {
 return m_text.c_str();
 }
private:
 std::string m_text;
};

//TextSource class

class TextSource {
public:
 virtual int GetChar() = 0;
 virtual int ReadChar() = 0;
 virtual void PutBackChar() = 0;
};

class TextSourceFile : public TextSource {
public:
 TextSourceFile(const char *pFileName);
 virtual int GetChar()
 {
 int ch = m_f.rdbuf()->sgetc();

 62

 return (ch == std::char_traits<char>::eof()) ? 0 : ch;
 }
 virtual int ReadChar()
 {
 int ch = m_f.rdbuf()->sbumpc();

 return (ch == std::char_traits<char>::eof()) ? 0 : ch;
 }

 virtual void PutBackChar()
 {
 m_f.rdbuf()->sungetc();
 }
private:
 std::ifstream m_f;
};

// TextSourceMemory class

class TextSourceMemory : public TextSource {
public:
 TextSourceMemory(const char *pString) : m_str(pString)
 {}
 virtual int GetChar()
 {
 int ch;

 ch = m_str.rdbuf()->sgetc();

 return (ch == -1) ? 0 : ch;
 }
 virtual int ReadChar()
 {
 int ch;

 ch = m_str.rdbuf()->sbumpc();

 return (ch == -1) ? 0 : ch;
 }

 virtual void PutBackChar()
 {
 m_str.rdbuf()->sungetc();
 }

private:
 std::istringstream m_str;
};

class Token {
public:
 virtual void GetToken(TextSource *pTextSource) = 0;
 virtual void Print() const = 0;

 enum TokenType {TT_Variable, TT_Constant,
TT_PunctuatorLeftParan, TT_PunctuatorRightParan,
 TT_PunctuatorSemicolon, TT_OperatorMinus,
TT_OperatorPlus, TT_OperatorMultiply,
 TT_OperatorDivision, TT_OperatorNot};

 63

 TokenType GetTokenType() const
 {
 return m_tokenType;
 }
 const char *GetTokenString() const
 {
 return m_tokenString;
 }

protected:
 enum {MAX_TOKEN_STRING = 1024};

 TokenType m_tokenType;
 char m_tokenString[MAX_TOKEN_STRING];
};

//TokenVariable class

class TokenVariable : public Token {
public:
 virtual void GetToken(TextSource *pTextSource);
 virtual void Print() const;
};

//TokenConstant class

class TokenConstant : public Token {
public:
 virtual void GetToken(TextSource *pTextSource);
 virtual void Print() const;
};

// TokenPunctuator class

class TokenPunctuator : public Token {
public:
 virtual void GetToken(TextSource *pTextSource);
 virtual void Print() const;
};

// TokenOperator class

class TokenOperator : public Token {
public:
 virtual void GetToken(TextSource *pTextSource);
 virtual void Print() const;
};

//Scanner class

class Scanner {
public:
 Scanner(TextSource *pTextSource);
 Token *GetNextToken();

 64

 enum CharCodeMask {CM_TypeMask = 0x0F, CM_AlNumMask = 0x10 };
 enum CharCode {CC_EOF, CC_Alpha, CC_Digit, CC_WhiteSpace,
CC_Punctuator,
 CC_Operator, CC_Error,
CC_AlNum = 0x10};

 static char ms_charMap[256];
private:
 void skipWS();
 TextSource *m_pTextSource;

 TokenVariable m_tokenVariable;
 TokenConstant m_tokenConstant;
 TokenPunctuator m_tokenPunctuator;
 TokenOperator m_tokenOperator;
};

#endif

6.2.3. scanner.cpp file

#include <iostream>
#include <cstdlib>
#include "scanner.h"

using namespace std;

// Global Definitions

char Scanner::ms_charMap[256]; // Character Map array

// TextSourceFile class

TextSourceFile::TextSourceFile(const char *pFileName)
{
 m_f.open(pFileName);
 if (!m_f)
 throw ScannerException("File cannot open");
}

// TokenVariable class

void TokenVariable::GetToken(TextSource *pTextSource)
{
 int i = 0;

 while ((Scanner::ms_charMap[pTextSource->GetChar()] &
Scanner::CM_AlNumMask) == Scanner::CC_AlNum)
 m_tokenString[i++] = pTextSource->ReadChar();
 m_tokenString[i] = '\0';

}

void TokenVariable::Print() const
{
 cout << "Variable: " << m_tokenString << endl;
}

 65

// TokenConstant class

void TokenConstant::GetToken(TextSource *pTextSource)
{
 int i = 0;

 while ((Scanner::ms_charMap[pTextSource->GetChar()] &
Scanner::CM_TypeMask) == Scanner::CC_Digit)
 m_tokenString[i++] = pTextSource->ReadChar();
 m_tokenString[i] = '\0';

 m_tokenType = TT_Constant;
}

void TokenConstant::Print() const
{
 cout << "Constant: " << m_tokenString << endl;
}

// TokenPunctuator class

void TokenPunctuator::GetToken(TextSource *pTextSource)
{
 switch (pTextSource->GetChar()) {
 case '(':
 m_tokenType = TT_PunctuatorLeftParan;
 break;
 case ')':
 m_tokenType = TT_PunctuatorRightParan;
 break;
 case ';':
 m_tokenType = TT_PunctuatorSemicolon;
 break;
 }
 m_tokenString[0] = pTextSource->ReadChar();
 m_tokenString[1] = '\0';
}

void TokenPunctuator::Print() const
{
 cout << "Punctuator: " << m_tokenString << endl;
}

// TokenOperator class

void TokenOperator::GetToken(TextSource *pTextSource)
{
 switch (pTextSource->GetChar()) {
 case '+':
 m_tokenType = TT_OperatorPlus;
 break;
 case '-':
 m_tokenType = TT_OperatorMinus;
 break;
 case '*':
 m_tokenType = TT_OperatorMultiply;
 break;
 case '/':
 m_tokenType = TT_OperatorDivision;
 break;

 66

 case '!':
 m_tokenType = TT_OperatorNot;
 break;
 }

 m_tokenString[0] = pTextSource->ReadChar();
 m_tokenString[1] = '\0';
}

void TokenOperator::Print() const
{
 cout << "Operator: " << m_tokenString << endl;
}

// Scanner class

Scanner::Scanner(TextSource *pTextSource) :
m_pTextSource(pTextSource)
{
 if (ms_charMap[0] != CC_Error) {
 for (int i = 0; i < 256; ++i)
 ms_charMap[i] = CC_Error;

 for (int i = 'a'; i <= 'z'; ++i)
 ms_charMap[i] = CC_Alpha | CC_AlNum;
 for (int i = 'A'; i <= 'Z'; ++i)
 ms_charMap[i] = CC_Alpha | CC_AlNum;
 for (int i = '0'; i <= '9'; ++i)
 ms_charMap[i] = CC_Digit | CC_AlNum;

 ms_charMap[' '] = ms_charMap['\t'] = ms_charMap['\n'] =
ms_charMap['\r'] = CC_WhiteSpace;

 ms_charMap['_'] = CC_Alpha | CC_AlNum;

 ms_charMap[';'] = ms_charMap['('] = ms_charMap[')'] =
CC_Punctuator;

 ms_charMap['+'] = ms_charMap['-'] = ms_charMap['*'] =
 ms_charMap['/'] = ms_charMap['!'] = CC_Operator;

 ms_charMap[0] = CC_EOF;
 }
}

void Scanner::skipWS()
{
 int ch = m_pTextSource->GetChar();

 while ((ms_charMap[ch] & CM_TypeMask) == CC_WhiteSpace) {
 m_pTextSource->ReadChar();
 ch = m_pTextSource->GetChar();
 }
}

Token *Scanner::GetNextToken()
{
 Token *pToken;

 skipWS();

 67

 int a = m_pTextSource->GetChar();
 switch (ms_charMap[m_pTextSource->GetChar()] & CM_TypeMask) {
 case CC_Alpha:
 pToken = &m_tokenVariable;
 break;
 case CC_Digit:
 pToken = &m_tokenConstant;
 break;
 case CC_Punctuator:
 pToken = &m_tokenPunctuator;
 break;
 case CC_Operator:
 pToken = &m_tokenOperator;
 break;
 case CC_EOF:
 return 0;
 }

 pToken->GetToken(m_pTextSource);

 return pToken;
}

 68

6.3 APPENDIX C

6.3.1. parser.h file

#ifndef _PARSER_H_
#define _PARSER_H_

#include <stack>
#include "scanner.h"

//Parser class

class Parser {
public:
 Parser(Scanner *pScanner) : m_pScanner(pScanner)
 {}
 double Calculate();

private:
 void getNextToken()
 {
 m_pToken = m_pScanner->GetNextToken();
 if (!m_pToken)
 return;
 m_tokenType = m_pToken->GetTokenType();
 }
 void doExpression();
 void doAdditiveExpression();
 void doFactorExpression();
 void doUnaryExpression();
 void doPrimaryExpression();

 Scanner *m_pScanner;
 std::stack<double> m_stack;
 Token *m_pToken;
 Token::TokenType m_tokenType;
};

#endif

6.3.2. parser.cpp file

#include <iostream>
#include <cstdio>
#include <fstream>
#include <cstdlib>
#include "parser.h"

using namespace std;

 69

double Parser::Calculate()
{
 double result;

 getNextToken();
 doExpression();
 result = m_stack.top();
 m_stack.pop();

 return result;
}

void Parser::doExpression()
{
 doAdditiveExpression();
}

void Parser::doAdditiveExpression()
{
 doFactorExpression();

 while (m_tokenType == Token::TT_OperatorPlus || m_tokenType ==
Token::TT_OperatorMinus) {
 Token::TokenType tokenType = m_tokenType;

 getNextToken();
 doFactorExpression();
 double val1 = m_stack.top();
 m_stack.pop();
 double val2 = m_stack.top();
 m_stack.pop();
 m_stack.push((tokenType == Token::TT_OperatorPlus) ?
val1 + val2 : val2 - val1);
 }
}

void Parser::doFactorExpression()
{
 doUnaryExpression();

 while (m_tokenType == Token::TT_OperatorMultiply ||
m_tokenType == Token::TT_OperatorDivision) {
 Token::TokenType tokenType = m_tokenType;

 getNextToken();
 doUnaryExpression();
 double val1 = m_stack.top();
 m_stack.pop();
 double val2 = m_stack.top();
 m_stack.pop();
 m_stack.push((tokenType == Token::TT_OperatorMultiply) ?
val1 * val2 : val2 / val1);
 }
}

void Parser::doUnaryExpression()
{
 doPrimaryExpression();

 if (m_tokenType == Token::TT_OperatorNot) {
 Token::TokenType tokenType = m_tokenType;

 70

 getNextToken();
 doUnaryExpression();
 double val = m_stack.top();
 m_stack.pop();
 m_stack.push(!val);
 }
}

void Parser::doPrimaryExpression()
{
 double number;

 switch (m_tokenType) {
 case Token::TT_Constant:
 number = atof(m_pToken->GetTokenString());
 m_stack.push(number);
 getNextToken();
 break;
 case Token::TT_PunctuatorLeftParan:
 getNextToken();
 doExpression();
 if (m_pToken->GetTokenType() !=
Token::TT_PunctuatorRightParan) {
 fprintf(stderr, "Fatal error: Paranthesis
mismatch!..\n");
 exit(EXIT_FAILURE);
 }
 getNextToken();
 break;
 }
}

 71

6.4 APPENDIX D

6.4.1. interpreter.l file

/* ---
 Flex Source Code of the Sample Interpreter(interpreter.l)
--*/
PRINT_COMMAND yazdir
EXIT_COMMAND cikis
IF_STATEMENT eger
ELSE_STATEMENT degilse
WHILE_STATEMENT iken
NUMBER (([0-9]+)|[0-9]*\.[0-9]+)
MULTI_OPERATORS_INC \+\+
MULTI_OPERATORS_DEC --
SINGLE_OPERATORS [\+\-*\/\^\(\)!=><\?:]
VARIABLES [_a-zA-Z][_a-zA-Z0-9]*
PUNCTUATORS ,|;|\{|\}
WHITESPACE [\t\n]

%{
 #include <stdio.h>
 #include <string.h>
 #include <stdlib.h>
 #include <math.h>
 #include "interpreter.h"
 #include "interpreter.tab.h"

 /* static Function Prototypes */

 static int processPrintCommandLex(void);
 static int processExitCommandLex(void);
 static int processIfStatementLex(void);
 static int processElseStatementLex(void);
 static int processWhileStatementLex(void);
 static int processNumberLex(void);
 static int processMultiOperatorsIncLex(void);
 static int processMultiOperatorsDecLex(void);
 static int processSingleOperatorLex(void);
 static int processVariableLex(void);
 static int processPunctuatorsLex(void);
%}

%%

{PRINT_COMMAND} { return processPrintCommandLex(); }
{EXIT_COMMAND} { return processExitCommandLex(); }
{IF_STATEMENT} { return processIfStatementLex(); }
{ELSE_STATEMENT} { return processElseStatementLex(); }
{WHILE_STATEMENT} { return processWhileStatementLex(); }
{NUMBER} { return processNumberLex(); }
{MULTI_OPERATORS_INC} { return processMultiOperatorsIncLex(); }
{MULTI_OPERATORS_DEC} { return processMultiOperatorsDecLex(); }
{SINGLE_OPERATORS} { return processSingleOperatorLex(); }
{VARIABLES} { return processVariableLex(); }
{PUNCTUATORS} { return processPunctuatorsLex(); }
{WHITESPACE} /* Skip whitespace */

 72

. { printf("Fatal error!..\n"); exit(1);
}
%%

/* Function Definitions */

static int processPrintCommandLex(void)
{
 return TOKEN_PRINT_COMMAND;
}

static int processExitCommandLex(void)
{
 return TOKEN_EXIT_COMMAND;
}

static int processIfStatementLex(void)
{
 return TOKEN_IF_STATEMENT;
}

static int processElseStatementLex(void)
{
 return TOKEN_ELSE_STATEMENT;
}

static int processWhileStatementLex(void)
{
 return TOKEN_WHILE_STATEMENT;
}

static int processNumberLex(void)
{
 yylval.value = atof(yytext);

 return TOKEN_NUMBER;
}

static int processMultiOperatorsIncLex(void)
{
 return TOKEN_OPERATOR_INC;
}

static int processMultiOperatorsDecLex(void)
{
 return TOKEN_OPERATOR_DEC;
}

static int processSingleOperatorLex(void)
{
 return *yytext;
}

static int processVariableLex(void)
{
 yylval.name = (char *) malloc(yyleng + 1);
 strcpy(yylval.name, yytext);

 return TOKEN_VARIABLE;
}

 73

static int processPunctuatorsLex(void)
{
 return *yytext;
}

6.4.2. interpreter.y file

/* ---
 Bison Source Code of Sample Interpreter (interpreter.y)
--*/

%{
 #include <stdio.h>
 #include <string.h>
 #include <stdlib.h>
 #include <math.h>
 #include <assert.h>
 #include "interpreter.h"
%}

%union {
 double value;
 char *name;
 NODE *pNode;
};

%token <name> TOKEN_PRINT_COMMAND
%token <name> TOKEN_EXIT_COMMAND
%token <name> TOKEN_IF_STATEMENT
%token <name> TOKEN_ELSE_STATEMENT
%token <name> TOKEN_WHILE_STATEMENT
%token <value> TOKEN_NUMBER
%token <name> TOKEN_VARIABLE
%token <name> TOKEN_OPERATOR_INC
%token <name> TOKEN_OPERATOR_DEC
%type <pNode> statement statement_list null_statement
simple_statement compound_statement
%type <pNode> command_statement if_statement while_statement
print_command_statement exit_command_statement
%type <pNode> expression assignment_expression
conditional_expression relational_expression
%type <pNode> additive_expression factor_expression
%type <pNode> unary_expression primary_expression power_expression

%%

input: /* empty */
 | input statement { execute($2);
/*freeNodes($2); */}
;

statement:
 null_statement { $$ = $1; }
 | simple_statement { $$ = processStatement($1,
STM_SIMPLE); }
 | compound_statement { $$ = processStatement($1,
STM_COMPOUND); }
 | command_statement { $$ = $1; }
 | if_statement { $$ = processStatement($1,
STM_IF); }

 74

 | while_statement { $$ = processStatement($1,
STM_WHILE); }
;

null_statement:
 ';' { $$ = NULL; }
;

compound_statement:
 '{' '}' { $$ = NULL; }
 | '{' statement_list '}' { $$ = $2; }
;

statement_list:
 statement statement_list { $$ =
processStatementList($1, $2); }
 | statement { $$ =
processStatementList($1, 0); }
;

simple_statement:
 expression ';' {
$$ = $1; }
;

command_statement:
 print_command_statement { $$ =
processPrintCommand($1); }
 | exit_command_statement { $$ =
processExitCommand(); }
;

print_command_statement:
 TOKEN_PRINT_COMMAND expression ';' { $$ =
$2; }
;

exit_command_statement:
 TOKEN_EXIT_COMMAND ';' { }
;

if_statement:
 TOKEN_IF_STATEMENT '(' expression ')' statement {
$$ = processIfNode($3, $5, 0); }
 | TOKEN_IF_STATEMENT '(' expression ')' statement
 TOKEN_ELSE_STATEMENT statement {$$ = processIfNode($3, $5,
$7); }
;

while_statement:
 TOKEN_WHILE_STATEMENT '(' expression ')' statement { $$ =
processWhileNode($3, $5); }
;

expression:
 assignment_expression
 { $$ = $1; }
;

assignment_expression:

 75

 TOKEN_VARIABLE '=' assignment_expression { NODE
*pNode = processSymbol($1); free($1); $$ =
processBinaryOperator(OP_ASSIGN, pNode, $3); }
 | conditional_expression
 { $$ = $1; }
;

conditional_expression:
 relational_expression '?' conditional_expression ':'
conditional_expression { $$ = processTernaryOperator(OP_CONDITIONAL,
$1, $3, $5); }
 | relational_expression
 { $$ = $1; }
;

relational_expression:
 relational_expression '>' additive_expression {$$ =
processBinaryOperator(OP_GREATER, $1, $3); }
 | relational_expression '<' additive_expression {$$ =
processBinaryOperator(OP_LESS, $1, $3); }
 | additive_expression
 { $$ = $1; }
;

additive_expression:
 additive_expression '+' factor_expression { $$ =
processBinaryOperator(OP_ADD, $1, $3); }
 | additive_expression '-' factor_expression { $$ =
processBinaryOperator(OP_SUB, $1, $3); }
 | factor_expression
 { $$ = $1; }
;

factor_expression:
 factor_expression '*' power_expression { $$ =
processBinaryOperator(OP_MUL, $1, $3); }
 | factor_expression '/' power_expression { $$ =
processBinaryOperator(OP_DIV, $1, $3); }
 | power_expression {
$$ = $1; }
;

power_expression:
 power_expression '^' unary_expression { $$ =
processBinaryOperator(OP_POW, $1, $3); }
 | unary_expression {
$$ = $1; }

;

unary_expression:
 '-' unary_expression {
$$ = processUnaryOperator(OP_NEGATE, $2); }
 | '!' unary_expression {
$$ = processUnaryOperator(OP_NOT, $2); }
 | TOKEN_OPERATOR_INC TOKEN_VARIABLE { NODE
*pNode = processSymbol($2); free($2); $$ =
processUnaryOperator(OP_INC_PREFIX, pNode);}
 | TOKEN_OPERATOR_DEC TOKEN_VARIABLE { NODE
*pNode = processSymbol($2); free($2); $$ =
processUnaryOperator(OP_DEC_PREFIX, pNode);}

 76

 | TOKEN_VARIABLE TOKEN_OPERATOR_INC { NODE
*pNode = processSymbol($1); free($1); $$ =
processUnaryOperator(OP_INC_POSTFIX, pNode);}
 | TOKEN_VARIABLE TOKEN_OPERATOR_DEC { NODE
*pNode = processSymbol($1); free($1); $$ =
processUnaryOperator(OP_DEC_POSTFIX, pNode);}
 | primary_expression
 {$$ = $1; }
;

primary_expression:
 '(' expression ')'
 { $$ = $2; }
 | TOKEN_NUMBER
 { $$ = processNumber($1); }
 | TOKEN_VARIABLE
 { $$ = processSymbol($1); free($1); }
;

%%

int yywrap(void)
{
 return 1;
}

void yyerror(const char *str)
{
 printf("Fatal error: %s\n", str);
}

static NODE *getNode(void)
{
 NODE *pNode = (NODE *) malloc(sizeof(NODE));

 if (pNode == NULL) {
 fprintf(stderr, "Fatal error: Not enouh memory!..\n");
 exit(EXIT_FAILURE);
 }

 return pNode;
}

static NODE *processPrintCommand(NODE *pNode)
{
 NODE *pNewNode = processStatement(pNode, STM_COMMAND);

 pNewNode->type.nodeStatement.extraInfo = COMSTM_PRINT;

 return pNewNode;
}

static NODE *processExitCommand(void)
{
 NODE *pNewNode = processStatement(NULL, STM_COMMAND);

 pNewNode->type.nodeStatement.extraInfo = COMSTM_EXIT;

 return pNewNode;
}

 77

static NODE *processSymbol(const char *name)
{
 NODE *pNode = getNode();

 pNode->nodeType = NT_VARIABLE;
 pNode->type.nodeVariable.index = GetSetSymbol(name);

 return pNode;
}

static NODE *processNumber(double value)
{
 NODE *pNode = getNode();

 pNode->nodeType = NT_CONSTANT;
 pNode->type.nodeConstant.value = value;

 return pNode;
}

static NODE *processStatement(NODE *pNode, int stmType)
{
 NODE *pNewNode = getNode();

 pNewNode->nodeType = NT_STATEMENT;
 pNewNode->type.nodeStatement.stmType = stmType;
 pNewNode->type.nodeStatement.pFirstNode = pNode;

 return pNewNode;
}

static NODE *processStatementList(NODE *pNode1, NODE *pNode2)
{
 pNode1->type.nodeStatement.pNextCompoundNode = pNode2;

 return pNode1;
}

static NODE *processIfNode(NODE *pNode1, NODE *pNode2, NODE *pNode3)
{
 NODE *pNewNode = getNode();

 pNewNode->nodeType = NT_STATEMENT_IF;
 pNewNode->type.nodeStatementIf.pNodeExpression = pNode1;
 pNewNode->type.nodeStatementIf.pNodeTrue = pNode2;
 pNewNode->type.nodeStatementIf.pNodeFalse = pNode3;

 return pNewNode;
}

static NODE *processWhileNode(NODE *pNode1, NODE *pNode2)
{
 NODE *pNewNode = getNode();

 pNewNode->nodeType = NT_STATEMENT_WHILE;
 pNewNode->type.nodeStatementIf.pNodeExpression = pNode1;
 pNewNode->type.nodeStatementIf.pNodeTrue = pNode2;

 return pNewNode;
}

 78

static NODE *processUnaryOperator(int opType, NODE *pNode1)
{
 NODE *pNode = getNode();

 pNode->nodeType = NT_OPERATOR;
 pNode->type.nodeOperator.opType = opType;
 pNode->type.nodeOperator.operands[0] = pNode1;

 return pNode;
}

static NODE *processBinaryOperator(int opType, NODE *pNode1, NODE
*pNode2)
{
 NODE *pNode = getNode();

 pNode->nodeType = NT_OPERATOR;
 pNode->type.nodeOperator.opType = opType;
 pNode->type.nodeOperator.operands[0] = pNode1;
 pNode->type.nodeOperator.operands[1] = pNode2;

 return pNode;
}

static NODE *processTernaryOperator(int opType, NODE *pNode1, NODE
*pNode2, NODE *pNode3)
{
 NODE *pNode = getNode();

 pNode->nodeType = NT_OPERATOR;
 pNode->type.nodeOperator.opType = opType;
 pNode->type.nodeOperator.operands[0] = pNode1;
 pNode->type.nodeOperator.operands[1] = pNode2;
 pNode->type.nodeOperator.operands[2] = pNode3;

 return pNode;
}

static double execute(NODE *pNode)
{
 if (pNode == NULL)
 return 0;

 switch (pNode->nodeType) {
 case NT_CONSTANT:
 return pNode->type.nodeConstant.value;

 case NT_VARIABLE:
 return GetSymbolByIndex(pNode-
>type.nodeVariable.index);
 case NT_OPERATOR:
 switch (pNode->type.nodeOperator.opType) {
 case OP_ADD:
 return execute(pNode-
>type.nodeOperator.operands[0]) + execute(pNode-
>type.nodeOperator.operands[1]);
 case OP_SUB:
 return execute(pNode-
>type.nodeOperator.operands[0]) - execute(pNode-
>type.nodeOperator.operands[1]);
 case OP_MUL:

 79

 return execute(pNode-
>type.nodeOperator.operands[0]) * execute(pNode-
>type.nodeOperator.operands[1]);
 case OP_DIV:
 return execute(pNode-
>type.nodeOperator.operands[0]) / execute(pNode-
>type.nodeOperator.operands[1]);
 case OP_POW:
 return pow (execute(pNode-
>type.nodeOperator.operands[0]), execute(pNode-
>type.nodeOperator.operands[1]));
 case OP_NEGATE:
 return -execute(pNode-
>type.nodeOperator.operands[0]);
 case OP_NOT:
 return !execute(pNode-
>type.nodeOperator.operands[0]);
 case OP_INC_PREFIX:
 {
 NODE *pIncNode;
 double result;

 pIncNode = pNode-
>type.nodeOperator.operands[0];
 result =
GetSymbolByIndex(pIncNode->type.nodeVariable.index);
 ++result;
 SetSymbolByIndex(pIncNode-
>type.nodeVariable.index, result);
 return result;
 }
 case OP_DEC_PREFIX:
 {
 NODE *pIncNode;
 double result;

 pIncNode = pNode-
>type.nodeOperator.operands[0];
 result =
GetSymbolByIndex(pIncNode->type.nodeVariable.index);
 --result;
 SetSymbolByIndex(pIncNode-
>type.nodeVariable.index, result);
 return result;
 }
 case OP_INC_POSTFIX:
 {
 NODE *pIncNode;
 double result;

 pIncNode = pNode-
>type.nodeOperator.operands[0];
 result =
GetSymbolByIndex(pIncNode->type.nodeVariable.index);
 SetSymbolByIndex(pIncNode-
>type.nodeVariable.index, result + 1);
 return result;
 }
 case OP_DEC_POSTFIX:
 {
 NODE *pIncNode;

 80

 double result;

 pIncNode = pNode-
>type.nodeOperator.operands[0];
 result =
GetSymbolByIndex(pIncNode->type.nodeVariable.index);
 SetSymbolByIndex(pIncNode-
>type.nodeVariable.index, result - 1);
 return result;
 }
 case OP_GREATER:
 return execute(pNode-
>type.nodeOperator.operands[0]) > execute(pNode-
>type.nodeOperator.operands[1]);
 case OP_LESS:
 return execute(pNode-
>type.nodeOperator.operands[0]) < execute(pNode-
>type.nodeOperator.operands[1]);
 case OP_ASSIGN:
 {
 NODE *pLeftNode = pNode-
>type.nodeOperator.operands[0];
 NODE *pRightNode = pNode-
>type.nodeOperator.operands[1];
 double result;

 result = execute(pRightNode);

 SetSymbolByIndex(pLeftNode-
>type.nodeVariable.index, result);

 return result;
 }
 }
 break;
 case NT_STATEMENT:
 switch (pNode->type.nodeStatement.stmType) {
 case STM_SIMPLE:
 return execute(pNode-
>type.nodeStatement.pFirstNode);
 case STM_COMMAND:
 if (pNode-
>type.nodeStatement.extraInfo == COMSTM_PRINT) {
 printf("%f\n", execute(pNode-
>type.nodeStatement.pFirstNode));
 return 0;
 }
 else if (pNode-
>type.nodeStatement.extraInfo == COMSTM_EXIT)
 exit(0);
 break;
 case STM_IF:
 {
 NODE *pNodeIf = pNode-
>type.nodeStatement.pFirstNode;

 if (execute(pNodeIf-
>type.nodeStatementIf.pNodeExpression))
 execute(pNodeIf-
>type.nodeStatementIf.pNodeTrue);
 else

 81

 execute(pNodeIf-
>type.nodeStatementIf.pNodeFalse);

 return 0;
 }
 case STM_WHILE:
 {
 NODE *pNodeWhile = pNode-
>type.nodeStatement.pFirstNode;

 while (execute(pNodeWhile-
>type.nodeStatementWhile.pNodeExpression))
 execute(pNodeWhile-
>type.nodeStatementWhile.pNodeTrue);
 return 0;
 }
 case STM_COMPOUND:
 {
 NODE *pNodeComp;

 for (pNodeComp = pNode-
>type.nodeStatement.pFirstNode; pNodeComp != NULL;

 pNodeComp = pNodeComp->type.nodeStatement.pNextCompoundNode)
 execute(pNodeComp);

 return 0;
 }

 }
 }

 return 0;
}

static void freeNodes(NODE *pNode)
{
 int i;

 if (pNode == NULL)
 return;

 /* ... */
}

6.4.3. interpreter.h file

#ifndef _INTERPRETER_H_
#define _INTERPRETER_H_

enum {NT_CONSTANT, NT_VARIABLE, NT_OPERATOR, NT_STATEMENT,
NT_STATEMENT_IF,
 NT_STATEMENT_WHILE};

enum {OP_NEGATE, OP_NOT, OP_INC_PREFIX, OP_DEC_PREFIX,
OP_INC_POSTFIX, OP_DEC_POSTFIX,
 OP_POW, OP_MUL, OP_DIV, OP_ADD, OP_SUB, OP_GREATER, OP_LESS,
OP_CONDITIONAL, OP_ASSIGN
};

 82

enum {STM_NULL, STM_SIMPLE, STM_COMPOUND, STM_COMMAND, STM_IF,
STM_WHILE };

enum {COMSTM_PRINT, COMSTM_EXIT };

/*Structure Declarations*/

typedef struct tagNODE_CONSTANT {
 double value;
} NODE_CONSTANT;

typedef struct tagNODE_VARIABLE {
 int index;
} NODE_VARIABLE;

typedef struct tagNODE_OPERATOR {
 int opType;
 struct tagNODE *operands[3];
} NODE_OPERATOR;

typedef struct tagNODE_STATEMENT {
 int stmType;
 int extraInfo;
 struct tagNODE *pFirstNode;
 struct tagNODE *pNextCompoundNode;
} NODE_STATEMENT;

typedef struct tagNODE_STATEMENT_IF {
 struct tagNODE *pNodeExpression;
 struct tagNODE *pNodeTrue;
 struct tagNODE *pNodeFalse;
} NODE_STATEMENT_IF;

typedef struct tagNODE_STATEMENT_WHILE {
 struct tagNODE *pNodeExpression;
 struct tagNODE *pNodeTrue;
} NODE_STATEMENT_WHILE;

typedef struct tagNODE {
 int nodeType;
 union {
 NODE_CONSTANT nodeConstant;
 NODE_VARIABLE nodeVariable;
 NODE_OPERATOR nodeOperator;
 NODE_STATEMENT nodeStatement;
 NODE_STATEMENT_IF nodeStatementIf;
 NODE_STATEMENT_WHILE nodeStatementWhile;
 } type;
} NODE;

/* Function Prototypes */

int yylex(void);
void yyerror(const char *str);
static NODE *getNode(void);
static NODE *processPrintCommand(NODE *pNode);
static NODE *processExitCommand(void);
static NODE *processSymbol(const char *str);
static NODE *processNumber(double value);

 83

static NODE *processUnaryFunction(const char *fname, NODE
*pNodeArg);
static NODE *processBinaryFunction(const char *fname, NODE
*pNodeArg1, NODE *pNodeArg2);

static NODE *processStatement(NODE *pNode, int stmType);
static NODE *processStatementList(NODE *pNode1, NODE *pNode2);
static NODE *processIfNode(NODE *pNode1, NODE *pNode2, NODE
*pNode3);
static NODE *processWhileNode(NODE *pNode1, NODE *pNode2);
static NODE *processUnaryOperator(int opType, NODE *pNode1);
static NODE *processBinaryOperator(int opType, NODE *pNode1, NODE
*pNode2);
static NODE *processTernaryOperator(int opType, NODE *pNode1, NODE
*pNode2, NODE *pNode3);
static double execute(NODE *pNode);
static void freeNodes(NODE *pNode);

int GetSetSymbol(const char *name);
double SetSymbolByIndex(int index, double val);
double GetSymbolByName(const char *name);
double GetSymbolByIndex(int index);

#endif

6.4.4. interpreter.cpp file

#include <iostream>
#include <fstream>
#include <iomanip>
#include <algorithm>
#include <list>
#include <cstdlib>
#include <cassert>
#include "interpreter.hpp"

using namespace std;

/*--
Global Data Definitions
---*/

list<Symbol> g_variableList;

/*--
Function Definitions
---*/

extern "C" int GetSetSymbol(const char *name)
{
 list<Symbol>::iterator iter;
 int index;
 Symbol symbol(name);

 iter = find(g_variableList.begin(), g_variableList.end(),
symbol);
 if (iter == g_variableList.end()) {

 84

 g_variableList.push_back(symbol);
 index = g_variableList.size() - 1;
 }
 else
 index = distance(g_variableList.begin(), iter);

 return index;
}

extern "C" double SetSymbolByIndex(int index, double val)
{
 list<Symbol>::iterator iter = g_variableList.begin();

 advance(iter, index);
 iter->m_val = val;

 return val;
}

extern "C" double GetSymbolByName(const char *name)
{
 list<Symbol>::iterator iter;
 Symbol symbol(name);

 iter = find(g_variableList.begin(), g_variableList.end(),
symbol);
 assert(iter != g_variableList.end());

 return iter->m_val;
}

extern "C" double GetSymbolByIndex(int index)
{
 list<Symbol>::iterator iter = g_variableList.begin();
 advance(iter, index);

 return iter->m_val;
}

int main(void)
{
 yyparse();

 return 0;
}

6.4.5. interpreter.hpp file

#ifndef _INTERPRETER_HPP_
#define _INTERPRETER_HPP_

#include <string>

struct Symbol {
 Symbol()
 {}
 Symbol(const char *name, double val = 0) : m_name(name),
m_val(val)

 85

 {}
 bool operator ==(const Symbol &r) const
 {
 return r.m_name == m_name;
 }
 std::string m_name;
 double m_val;
};

/* Function Prototypes */

extern "C" int yyparse(void);
extern "C" int SetSymbol(const char *name);
extern "C" double SetSymbolByIndex(int index, double val);
extern "C" double GetSymbolByName(const char *name);
extern "C" double GetSymbolByIndex(int index);

#endif

