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ABSTRACT  
 

 

 

While the benefits of organizing machines in form of manufacturing cells are highly 

praised, certain industrials do not want a comprehensive transformation due to the 

possible changes that may occur, for example, in the parts’ demands or routings.  A 

hybrid manufacturing system that associates functional departments and machine cells 

may then appear much more attractive given that it would takes advantages of both.  

Nevertheless, the design of such systems is a much less researched issue compared to the 

effort spent to the efficient design of each mentioned organization separately.  In this 

work, we suggest an approach that penalizes the allocation of parts that are less stable to 

manufacturing cells, and highly stable to functional departments.  The abstract concept of 

part stability is associated with two part characteristics: routing similarity and demand 

variability.  In order to determine the similarities between parts, sequence based similarity 

principles and alternative process routings are considered simultaneously.  Meanwhile, 

demand variability is assumed to be related with the coefficient of variation.  While such 

a discrimination of parts between manufacturing cells and functional departments is 

desired, the flow of materials in the planned cells should also be appropriate.  Suitable 

machine investment is another issue to consider.  Hence, the hybrid manufacturing system 

design problem is formulated as a constrained multiobjective optimization problem.  

Evolutionary algorithms present important features for the solution of this type of 

problems.  Among them, a very efficient algorithm which incorporates pareto dominance 

and elitism, namely SPEA2, is adapted.  Both the proposed optimization model and the 

solution method are illustrated with an artificially generated example. 



RESUME 

 

 

 

Même si les bénéfices d'organiser l'atelier sous forme des ilots de machines sont 

largement manifestés, les industriels ne veulent pas une transformation totale à cause des 

changements probables, comme par exemple la fluctuation de la demande ou 

changements de gammes.  Alors, un atelier hybride où les sections homogènes et les ilots 

coexisteront pourrait être plus attractif en tant compte qu'il en tirera ses avantages.  

Malheureusement, la conception du compromis est un sujet moins abordé par rapport aux 

efforts engagés à la conception efficace des deux systèmes séparément.  Dans ce travail, 

nous proposons une approche qui défavorise l'affectation des produits qui sont moins 

stable aux ilots, et ceux qui sont très stable aux sections homogènes.  Le concept abstrait 

de stabilité est associé avec deux caractéristiques du produit: similarité de gammes de 

production et variation de la demande.  Pour établir la similarité des produits, les principes 

concernant la similarité des séquences d'opérations et gammes alternatives sont considérés 

simultanément.  Cependant, on suppose que la variation de la demande est liée au 

coefficient de variation.  Même une telle séparation des produits entre les ilots et sections 

homogènes est souhaitable, le flux du matériel dans les ilots doit être aussi adéquat.  

L'investissement dans les nouvelles machines est un autre sujet à envisager.  Ainsi, le 

problème de conception de l'atelier hybride est formulé comme un problème 

d'optimisation multiobjectif sous contraintes.  Les algorithmes évolutionnistes présentent 

des aspects très intéressants pour la résolution de ce type de problèmes.  Parmi eux, un 

algorithme très efficace qui intègre la dominance Pareto et l'élitisme, ou SPEA2, est 

adapté.  Le modèle d'optimisation proposé ainsi que la méthode de résolution sont 

illustrés a l'aide d'un exemple artificiel.   



ÖZET 

 

 

 

Üretim araçlarının imalat hücreleri biçiminde düzenlenmesinin faydaları çokça 

vurgulanmıştır.  Ancak pek çok üretici, ürün talebi veya rotası gibi konularda zamanla 

oluşabilecek değişikliklerden dolayı toptan bir düzenleme arzu etmemektedir.  Bu 

durumda işlevsel bölümlerin ve imalat hücrelerinin bir arada bulunduğu karma imalat 

sistemleri daha çekici olabilmektedir.  Bununla birlikte, karma imalat sistemlerinin 

tasarımı konusunda yapılan çalışmalar işlevsel bölümlerin ve imalat hücrelerinin ayrık 

sistemler olarak ele alınarak tasarımın bu sistemlerden sadece birine göre yapıldığı 

çalışmalarla karşılaştırıldığında oldukça sınırlı sayıda kalmaktadır.  Bu çalışmada, 

değişken parçaların hücrelerde ve sabit parçaların işlevsel bölümlerde işlenmesinin 

cezalandırıldığı bir yaklaşım önerilmektedir.  Soyut parça değişkenliği kavramı, parçanın 

iki karakteristik özelliği ile ilişkilidir: parça rotası benzerliği ve talep değişkenliği.  

Parçalar arasındaki benzerliklerin belirlenmesi için, operasyon sıralarının göz önünde 

bulundurulduğu benzerlik prensipleri ve alternatif operasyon rotaları bir arada dikkate 

alınmıştır.  Bu arada talep değişkenliğinin de değişkenlik katsayısı ile ilişkili olduğu 

varsayılmıştır.  Ürünlerin bu sayede imalat hücreleri ve işlevsel bölümler arasında 

paylaşılması istenen bir unsur olmakla beraber, oluşturulan imalat hücreleri içindeki 

malzeme akışının da düzgün olması gereklidir.  İhtiyaç duyulan makineler için yapılan 

yatırımlar dikkate alınması gereken bir başka unsurdur.  Bu nedenle karma imalat 

sistemleri tasarımı problemi, kısıtlı çok amaçlı eniyileme problemi olarak düzenlenmiştir.  

Evrimsel algoritmalar bu tipteki problemlerin çözümünde faydalı olan önemli özellikler 

barındırmaktadır.  Bu çalışmada, pareto etkinlik ile seçicilik özelliklerini bir arada 

bulunduran SPEA2 algoritması etkin bir evrimsel algoritma olarak uyarlanmıştır.  

Önerilmekte olan eniyileme modeli ve çözüm yöntemi yapay biçimde oluşturulan bir 

örnekle açıklanmaktadır.   
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1. INTRODUCTION 

 

 

 

To suppress some disadvantages of job shops –where the most notables are complicated 

part flows and increased waiting times, which in result cause large manufacturing cycle 

times and production costs– group technology (GT) is proposed. The benefits of cellular 

manufacturing (CM) systems have been widely reported in GT literature [1, 2, 3, 4, 5]. By 

organizing independent machine groups a reduction of work in process, a reduction of 

lead-times and an improvement of quality are expected. On the other hand, in some 

circumstances –for example where the variation in the product mix and demand pattern is 

high– cellularized organization can lead to a great disorder in the flow of parts, and severe 

bottlenecks in some cells while idle machines in others therefore yield poor performances. 

Many practices have proved that, in some cases, a hybrid system, where both 

manufacturing cells and functional departments reside within the same shop, can be more 

efficient [6, 7, 8, 9].  

 

There are few studies concerning the performance of hybrid shops [10, 11, 12, 13], and 

less attention is paid on how to find intermediate solutions [6, 14, 15, 16, 17]. In this 

study, we propose a new approach to form hybrid manufacturing systems where CM cells 

and functional layout (FL) departments can reside at the same shop, and thus intend to 

achieve the benefits of both organizations.  

 

The proposed approach is mainly inspired by the work due to Viguier and Pierreval [9], 

but differs from it in many different aspects. The main idea in this work is that parts that 

are "stable" enough are encouraged to be processed in CM cells while the remaining ones 

in functional departments. It is argued that the idea of stability can be associated with the 

parts that are expected to be produced on the long-term, and to the strategic character of 

certain parts in particular cases [9]. Consequently, an index which aims to measure the 

part stability is proposed and an objective function is designed to penalize undesired 

allocations. Meanwhile, not much is explicitly given on how to determine the index value 
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of each part, and most probably, it relies on the shop planner experience. Here, we attempt 

to better formulize this stability idea by incorporating demand variability and part 

similarity.   

 

Production volumes, operation times, machine capacities, alternative routings and 

operational sequences are mentioned as important factors in the design of cellular systems 

[18, 19].  All of these factors are also taken into account in this study.  

 

This study is organized as follows. Chapter 2 reviews the contemporary literature on the 

design and performance evaluation of some traditional manufacturing systems, and also 

various approach to design hybrid manufacturing systems. This design problem is 

modeled as a constrained multiobjective integer programming problem and Chapter 3 

mainly provides the ingredients to arrive such an optimization model.  Chapter 4 is 

devoted to model formulation. As multiobjective optimization problems differ 

significantly form the mono objective problems, basic definitions are first introduced in 

Chapter 5. Then, evolutionary programming strategies available in the literature to solve 

this type of problems are investigated in details. Among them, a superior performance 

algorithm, namely SPEA2, is further analyzed and the ways how it is adapted to solve our 

problem are presented. To both illustrate the proposed model and the associate solution 

method, an artificial example is given in Chapter 6 such that the single feasible shop setup 

is efficient in all objectives and dominates all remaining solutions. It is shown that the 

method is able to find this single solution. Finally in the last chapter, conclusions are 

given and research directions are suggested.          

 



2. LITERATURE REVIEW: HYBRID MANUFACTURING 

SYSTEMS 

 

 

 

2.1. TRADITIONAL TYPES OF MANUFACTURING FACILITY LAYOUTS  

 

Traditionally, three types of layouts are considered appropriate for a manufacturing 

facility.  These are flow line (product), cellular (group) and functional (process) layouts, 

as shown in Figure 2.1.  The difference between these layout patterns is mostly based on 

the material flow between departments or workstations.   

 

In a flow line manufacturing system, all of the machines and support services required to 

make a single part (or a family of variants of product) are located in a single department.  

Flow line layouts have advantages over other types of layouts including high potential 

production volume, low throughput time, and low work in process inventories.  However, 

product lines cannot be justified for companies that make frequent changes in the 

production mix since the cost to rearrange machine is significant [19].   

 

In a functional layout, machines with identical manufacturing capabilities are grouped 

into a single department.  The different process-specialized departments are located 

relative to each other.   

 

A functional manufacturing organization has a high degree of adaptability to changes in 

the work mix [20].  This manufacturing system is useful for firms that produce a large 

mix of products at low volumes.  Since each part in a process layout is assumed to have 

its own routing, the challenge is to determine the relative location of departments to 

reduce the total volume-distance of products.  However, it results in complicated part 

flows and increased waiting times, hence large manufacturing cycle times and production 

costs [21].   
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Figure 2.1: Traditional Types of Manufacturing Facility Layouts 

 

 

To reduce inefficiencies and difficulties arising from the management of large functional 

job shops, similar products are grouped into part families and production cells with a 

group of dissimilar machines and processes which are dedicated to produce just this 

family of parts [9].  In essence, a functional layout has a process focus whereas a cellular 

layout has a part family focus.   

 

2.2. PERFORMANCE OF MANUFACTURING CELLS AND FUNCTIONAL 

LAYOUT 

 

In this section, an overview of the researches that focuses on the performances of 

manufacturing systems is given.  There are several studies in which cellular and 

functional manufacturing system performances are compared.  A number of researchers 

support the relative performance supremacy of cellular layout over functional layout, 

while others doubt this supremacy.   
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The pioneers of cellular manufacturing, Burbidge, Durie, Gombinski, Mc Auley, Opitz 

have promoted the viability of completely independent cells.  On the other hand; 

experiences and practices have made this concept open to discussions [22].  As observed 

in some practices, a comprehensive transformation to cellular layout is not always 

advantageous.  Conversion to cells can reduce some abilities of the organization.  Thus; in 

some cases, these losses counteract the impact of cellular manufacturing system.   

 

Burgress et al. [11] compare a factory structured as a traditional job shop with the same 

factory structured as a hybrid factory containing a cellular manufacturing unit.  A 

simulation study is conducted, using combinations of the capacities, allocations of jobs 

between the cell and the rest of the plant, and levels of productivity improvements 

achieved in the cell.  Performance is evaluated in terms of flow times and delays for the 

hybrid factory and in a normal factory.  The conclusions show that for a cell using 37.5 % 

of the theoretical capacity (in terms of machines and operators) and loaded with 40 or 

45% of the demand the plant experienced lower job flow times than in the traditional job 

shop.  For job mixes of 30% and 35% of cell family parts, the flow times achieved were 

higher than the traditional Job shop setting.  The authors note that the hybrid factory with 

a manufacturing cell performs better than the traditional job shop.  The productivity gains 

allow the hybrid factory to achieve lower optimum flow times than the traditional JS 

when the cell is operated at a relatively high operating level than the non-cell work 

centers.  They stress the importance of measuring the overall hybrid factory impact 

instead of measuring the effectiveness of a cell by itself.   

 

Wemmerlöv and Hyer [23], in their research study, give the reasons that affect the 

performance of cellular organization.  In conclusion he points out numerous factors which 

threaten independent structure of cells and force inter-cellular part flows among these 

cells.  Some of these factors are machine breakdowns, the need to keep expensive one-off 

type machines loaded, parts visiting vendors for some operations, changes in part mix or 

production quantities for part families, non-integer machine requirements of bottleneck 

machines required by two or more part families, feasibility of using handling systems to 

make inter-cell moves between adjacent cells, alternative routings for parts when identical 
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machines get duplicated in cells, etc.  Hence, the need for a new hybrid manufacturing 

organization design concept and appropriate algorithms is enounced. 

 

Shambu and Suresh [13] make another comparison.  They present a computer simulation 

investigation of a single data problem with 12 machine types (63 machines in total) and 6 

families of parts, covering a pure functional layout (but two scheduling rules are used: 

traditional job shop and part family oriented).  Unlike most of the past researches in group 

technology, their work examines the entire shop floor, in which the Cellular 

manufacturing systems have cells and another workshop as a functional layout.  They use 

5 hybrid systems, from 1 cell dedicated to a part family, to 5 cells dedicated to 5 part 

families, with the 6
th

 family (formed by a collection of parts with little similarity) 

processes in the remaining cell (last machines still on the functional layout).  Their 

experimental design employs four experimental factors: (i) SYS, representing the extent 

of cellularization and group technology application; (ii) d, the degree of setup reduction in 

cells; (iii) RULE, the dispatching rule used; (iv) Q, lot size.  The performance measures 

used are flow time, work-in-process inventory, machine utilization and flow ratio.  Flow 

ratio is defined by Suresh [13] as the ratio of the flow time of a cellular layout to the time 

(or work in process) of a functional layout performing at peak performance, and flow ratio 

is used to report the results of these experiments.  In terms of results, for small savings of 

setup times in the cells, there is little difference between the overall flow ratios among the 

hybrid systems.  They show that part family oriented system significantly outperformed 

job shop.   

 

The study presented by Molleman et al. [24] concerns a longitudinal case study covering 

13 years of experience with a cellular manufacturing system.  They consider three factors, 

which may drive a redesign of the cellular manufacturing system on the impact of 

redesign decisions on the entire cellular manufacturing system.  These factors are the 

market, manufacturing technology and managerial choices.  While many plants were 

converting the system gradually and implementing cells sequentially, the cells in the 

selected plant were created in a one-time factory conversation.  During the period; 

changes in customer demands, changing management strategy to strengthen the market 

orientation of the firm and focusing on decreasing costs led managers to redesign of the 
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cellular manufacturing system not less then nine times.  An audit showed advantages as 

well as disadvantages of the remaining cellular manufacturing system design.  Most of the 

advantages were connected to the controllability of the manufacturing process, such as a 

good delivery performance, short throughput times and low inventory levels.  However, it 

was striking that there proved to be several disadvantages concerning the quality of 

working life, machine load and efficiency.  Some of the operators no longer viewed the 

induced job enrichment and job enlargement as an improvement.  It was shown that the 

poor performance of the cutting department was closely related to fluctuating machine 

loads and low efficiency.  Further analysis indicated that most of the problems causing 

these deficiencies were related to the grouping of resources.  Although, according to the 

existing grouping it is mostly possible to move part types to another cell for a particular 

process, in practice it is not that easy and requires much coordination effort.  These 

experiences led to the decision to merge some of the cells to remain bigger cells of which 

the functionality was higher.  Approximately by the 13 years’ CM experience, as the 

result, number of cells reduced from 16 to 6.  Although management decided to stop 

producing a large number of parts, the total number of part types grew slightly, from 9053 

to 9516 (+5.1%).  The total number of machines decreased substantially, from 206 to 111 

(−46.1%), as did the number of workers (from 162 to 95; −41.4%).  In many situations, 

the rearrangements were consisting of fusion of cells. As the result of their study, 

Molleman et al.  [24] conclude that a CM system is vulnerable to changes in markets, 

while functional layouts are less sensitive to such changes.  According to the authors, 

their findings support the statement that a CM system is especially unstable in dynamic 

markets in which the demand pattern is highly variable.  The need of a market-oriented 

CM design method and a hybrid structure with independent cells and identical machine 

pools is emphasized.   

 

Asssad et al. [25] compares functional and cellular layout performances across a test bed 

from the literature by using a single simulation model.  They examine many analytical or 

simulation conversion studies in using flow time as the primary performance measure for 

comparing job shop and cellular manufacturing layouts.  For the simulation model, they 

suppose that they pay attention to select studies from the literature that provides 

sufficiently specific information in terms of the parts, machines and operations.  They 
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study on examining the benefits of conversion of job shops to cellular layouts.  They use 

the term pooling loss to refer to the reduced efficiency due to segregating into individual 

cells the resources commonly shared in the job shop.  The key trade-off in the study is 

between pooling loss and set-up reduction.  Based on simulation studies, they conclude 

that cellular manufacturing is not efficient in every case: According to the simulation 

results, conversation to cells improves flow time.  Some additional factors as reduced 

batch sizes, transfer batches or move times provide a higher performance.  As the result, 

set-up reduction can overcome the effects of pooling loss as long as the magnitude of the 

set-ups is not too small and no significant bottlenecks are developed in the cells upon 

conversations.  Meanwhile, the tests indicate that conversion to cellular manufacturing 

systems may not be advantageous if the utilization level is high or if there is not sufficient 

potential to reduce set-ups.  In their study, they show that total cellularization may not 

always remain effective because of the dynamic nature of environmental factors like 

demand rate and number of product types.  They indicate that the extraction of a few cells 

from the job shop may provide most of the benefits of full conversion in some conditions.  

However, they do not identify these conditions in their proposed study.   

 

A comprehensive transformation to cellular layout is not always desirable [6, 10, 26].  

Often, small and medium companies are skeptical to adopt a total reorganization, since 

the variation in their product mix or demand pattern can render the cellular shop no more 

appropriate.  Johnson and Wemmerlöv [26] make a survey research to identify factors that 

arrest continued implementation of cells in manufacturing plants.  They search the factors 

that prevent firms to continue to cellularization.  They conduct a mail survey.  Among 

responding companies; 79 % of them are cell users.  About two-thirds of these plants have 

cell penetration levels of less then 50 %.  The reasons for stopping implementation of 

additional cells are questioned.  As the result, many of the companies state four dominant 

factors.  These factors are demand volume, demand stability, service processes and cost 

justification.   

 

In conclusion, several studies indicate that a new cell design concept and appropriate 

algorithms, which can enable a company to limit machine grouping and machine 
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duplication by having a semi-functional layout and allowing limited inter-cell flows 

among the cells, is needed.   

 

2.3. CONFIGURING A HYBRID WORKSHOP 

 

Although there are few studies concerning the performance of hybrid shops, very less 

attention is paid on how to find comprise solutions.   

 

Balasubramanian and Panneerselvam [27] describe an integrated method that takes into 

account costs associated with material handling, machine idle times and overtime using a 

covering heuristic developed for warehouse location problems.  Their solution results in 

the definition of the manufacturing cells, plus a “general pool” of machines (a small job 

shop) to cover operations not available in some cells.  Their proposed approach also 

ensures the adoption of process layout, if the production volume is low enough, it is 

capable of defining separate manufacturing cells for each product if the production 

volume justifies this option, even if the products could be grouped in only two cells by 

other methods covered in the literature (e.g., rank order clustering).  The work just 

described is only applicable for a stable demand, for a single definition of cells.  The 

scheduling problem of the jobs is not even considered.   

 

Delaney et al.  [14] suggest a multistage approach to convert FL shop to a hybrid shop.  

The first stage consists in decomposing the set of machines in cells and identifying the 

most appropriate cells.  The other stages address the machine layout problem within and 

between cells.  The proposed cell formation procedure aims at minimizing the normalized 

intercellular traffic.  By first putting each machine in one cell, the objective is evaluated, 

and two cells generating the highest traffic are merged.  This procedure is reiterated until 

the predetermined cell size bound limit further fusion.  It is necessary to make two 

evaluations before implementing the cells proposed at the end of the algorithm: 

calculating the benefit resulting from the configuration of each cell by evaluating the 

decrease in intercellular traffic, and estimating the robustness of the proposed 

organization based on the variation in products and/or the their volume on different time 

horizon.  Then, the most promising cells are select according to this evaluation.   
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Gravel et al. [15, 16] propose forming cells in a functional shop in the particular case 

where the majority of products require most of the equipment types available in the shop.  

Moreover, the same machine type must be used at more than one stage of the 

manufacturing process.  Given that the number of different products is high and the 

production volumes are low in their case, it becomes difficult to use conventional cell 

design techniques that try to create product families to be processed within a single cell.  

The essence of their five-step approach is to assign some common operation sequences of 

products in cells and the remaining ones to non-cellular part of the shop.  The first step 

requires the identification of frequently occurring machine sequences.  Then, candidate 

cells are formed by selecting longest sequences among the most frequently encountered 

ones.  Operation sequences are divided as necessary by withdrawing operations having 

durations significantly above an average (bottleneck operations).  Next, all sequences are 

assigned to previously and newly defined cells with specific capacity concerns 

determined by the authors.  Finally, some least busy machines in cells are either shared 

with non-cellular part of the shop or with another cell.  The approach can partially be 

automated but requires also high user intervention. 

 

Harhalakis et al. [6] pay attention to the fact that cells defined in the past become 

inappropriate when there are modifications in product routings and/or variation in their 

demands.  The authors define a hybrid shop as the coexistence of cells and individual 

machines.  They assume that there is only one routing for each product, the capacity is 

sufficient for the production, machines of the same type are identical, and the number and 

size of the cells are known a priori.  Their approach targets the minimization of material 

handling in the shop and includes four steps: (i) identification of candidate cells, (ii) 

evaluation and selection of the cells to be implemented, (iii) determination of the intra-cell 

layout, and (iv) determination of the shop layout.  In the first step, cell formation aspects 

such as the distribution of functionally identical machines among cells and the 

preservation of setup families are addressed.  The second step retains only the cells that 

yield substantial reductions in material handling.  The traffic is calculated based on the 

long term demand of products.  While respecting all physical constraints, the third step 

determines the layout of cells that minimize a cumulative measure of traffic and distance.  

Finally, the intercellular layout is determined by considering dimensions of the shop, 
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dimensions of manufacturing resources, restrictions to the shop area and realistic flow 

paths.   

 

An interesting cost model is described in Needy el al. [28].  Beginning with all parts being 

processed in a pure job shop environment, an iterative method is used, where parts 

deemed “similar” are placed into a cell.  The total cost of each solution is evaluated 

(including machine investment, machine setup, and material move costs).  The potential 

solutions range from a pure job shop to a pure cellular configuration, but the authors did 

not allow for the sharing of resources between cells or between cell and job shop areas 

like Hybrid Manufacturing Systems do, and concentrate their efforts in a single 

configuration problem, without including scheduling issues.   

 

Based on their experience, Baker and Maropoulos [17] propose to reorganize only a small 

part of the shop floor into cells instead of a complete transformation.  In other words, their 

approach creates a hybrid layout where functional departments and manufacturing cells 

exist concurrently.  Without precisely pointing which one, the authors propose some 

criteria such as inter machine traffic or 80/20 rule to select parts and operations for 

forming cells (80% of the profit is generated by 20% of the products).  With selected 

products, they create the classical product-machine incidence matrix and manipulate it 

according to a clustering algorithm so as to obtain a block diagonal structure.  Each 

machine block consists of a set of machines that will form a new cell.  However, not 

taking account to the whole shop, as in this approach, may lead to disastrous results.  As 

an example, a product that is high demanded but not ranked in the top profitable 20% 

(hence excluded from the cell formation product set) may generate an enormous traffic 

between new cells. 

 

Irani and Huang [29] introduce the concept of layout as a network of basic modules.  

Modular layouts are hybrid layouts for systems with complex material flows that cannot 

be described as functional, flow line, or cellular.  In their research on modular layouts; 

they assume, at least in the short term, a known product mix and fairly stable demand.  As 

the mix and demand change, some modules are eliminated and others added.  With such 

modular layouts, manufacturers can scale their activities up or down quickly.  Irani and 
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Huang [29] seek to answer the following fundamental questions.  Can a layout other than 

the three traditional layouts - perhaps a combination of the three traditional layouts - 

better fit the material flows of multi-product manufacturers?  Can a network of layout 

modules provide a meta-structure for designing multi-product manufacturing facilities in 

general?  Does grouping and arranging resources into modules corresponding to specific 

traditional layouts minimize total flow distances or costs?  They designed a modular 

layout for a Motorola facility.  The company wants to assess the feasibility of changing 

the layout in one of their semiconductor fabrication plant from functional to cellular.  The 

functional layout comprises seven bays (or process departments): diffusion, etching, film 

deposition, implant, photolithography, metrology, and backend.  Motorola provided four 

product routings representative of the plant's product flows.  The authors find that a 

cellular layout is not viable because it requires duplicating equipment and processes.  

However, a visual string-matching analysis of the routings reveals that different pairs of 

routings has substrings of operations that are identical or has many operations in common.  

Based on this observation, they designed a new layout that combines the three traditional 

layouts.  In this layout, all pairs of consecutive operations in all the product routings are 

performed in the same layout module or in adjacent modules, where a layout module is a 

group of machines whose flow pattern is characteristic of a traditional layout. 

 

Irani and Huang [30] propose a new method including design of the cascading flow line 

layout.  This layout depends on the routing similarity between parts.  The cells are 

designed such that simple parts get routed to small cells and complex parts get routed to 

larger, more complex cells.  The complexity of a routing is determined by the number of 

unique work centers (or machines) that are required to make it, regardless of multiple 

non-consecutive occurrences that could result in flow backtracking.  There is no inter-cell 

movement for any part i.e.  every part gets processed in at most one cell.  A novel string-

to-graph aggregation and planar graph embedding method that allows machine 

duplication in the layout is introduced.  Additionally, the designs of modular and 

cascading flow lines hybrid manufacturing methods are discussed.   

 

Viguier and Pierreval [9] propose an approach to organize hybrid shops that aims to 

regroup the parts that will be considered as stable enough into manufacturing cells and the 
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other parts into FL-cells.  This idea of stability can be associated with parts that are 

expected to be produced on the long-term; but it can also be related to the strategic 

character of certain parts in particular cases.  Thus, the hybrid structure tries to combine 

the well-known advantages of group technology where it is possible, and those of the 

flexibility of functional departments, when it is more suited.  However, stability relation is 

associated with a stability index and an objective function is designed so as to penalize 

undesired allocations.  Meanwhile, not much is explicitly given on how to determine the 

index value of each part.  Probably, shop planner estimates the degree of stability by 

choosing between linguistically stated alternatives, which is in fact hard to quantify.   



3. MODEL BASICS AND ASSUMPTIONS 

 

 

 

3.1. FUZZY SETS THEORY 

 

Fuzzy analysis is an important tool to represent vagueness and a kind of imprecision and 

uncertainty.  The term fuzzy [31] is meant to represent expressions and judgments that 

have no clear (crisp) value or boundary.  For example, when it’s needed to express the 

performance of the personnel as outstanding, this linguistic expression is fuzzy since it 

cannot be precisely associated with a real number.  However, it can always be associated 

outstanding to an expression like “performance close to 90”, which is vague (fuzzy). 

 

3.1.1. Fuzzy Sets and Fuzzy Numbers 

 

A fuzzy set is first introduced by Zadeh [31] and is a generalization of crisp sets.  The 

degree of membership of an individual in a fuzzy set expresses the degree of 

compatibility of the individual with the concept represented by the fuzzy set.  Each fuzzy 

set, A, is defined in terms of a relevant universal set, X, by a function called a membership 

function which assigns to each element x of X a number A(x) in the closed interval [0,1].  

This characterizes the degree of membership of x in A.  Therefore, membership functions 

are of the form ( ) : [0,1]
A

x Xµ → . Larger values of  ( )A
xµ  imply higher degrees of set 

membership.  The fuzzy set A is normal, if ( )sup 1
x A

xµ = .  The fuzzy set A is defined as 

convex if and only if ( )( )1 21
A

x xµ λ λ+ −  ≥  ( ) ( ){ }1 2min ,
A A

x xµ µ  for all 1 2,
n

x x ∈ℜ  and for 

all [ ]0,1λ ∈ .  A normal and convex fuzzy set defined on nℜ  whose membership function 

is piecewise continuous is called a fuzzy number.  In other words, a fuzzy number 

represents the conception of a set of real numbers close to x , where x  is the number 

being fuzzified.  As an example, a triangular fuzzy number (l, m, u) is expressed as: 
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( )
0,  or 

( ) ( )

( ) ( )

A

x l x u

x x l m l l x m

u x u m m x u

µ

< >


= − − ≤ ≤
 − − ≤ ≤                                                                             (3.1) 

 

 

3.1.2. Fuzzy Constraints 

 

A fuzzy constraint can be given by the following fuzzy inequality T

i i
a x b<
�

 where T

i
a is 

the row i of A matrix and 
i

b  is the row i of B matrix.  The coefficients of the matrix A are 

crisp and <
�

 implies that the left hand side of the constraint T

i
a x  should be “less or almost 

equal” to the right hand side 
i

b . An example of the membership function ( )T

i i
a xµ  for this 

type of fuzzy inequalities is shown in Figure 3.1.  

 

 

 

Figure 3.1: Example of Fuzzy Set “About 
i

b  or less” 

 

 

where di is the maximum tolerance for the constraints.  The membership function 

represented by ( )T

i i
a xµ , 1,2,...,i m= , can be shown as:   
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1,

( ) 1 ,        

0,

T

i i

T

T Ti i

i i i i i i

i

T

i i i

a x b

a x b
a x b a x b d

d

a x b d

µ

 <


−
= − ≤ ≤ +

 > +                                                                 (3.2) 

 

 

3.1.3. Constraint Aggregation with Fuzzy Logic 

 

Weighted aggregation is used quite extensively especially in fuzzy decision making, 

where the weights are used to represent the relative importance that the decision maker 

attaches to different decision criteria.  Since it is possible to satisfy a constraint partially in 

fuzzy optimization, the weight factors indicate to what degree various constraints can be 

interchanged.   

 

In many cases an averaging operator has been used for the weighted aggregation, such as 

the generalized means, fuzzy integrals or the ordered weighted average operators.  

Consequently, the weighted aggregation of fuzzy sets has been studied with averaging 

type of operators. 

 

Weighted aggregation of fuzzy sets considered by Yager [32] is proposed to modify the 

membership functions with the associated weight factors before the fuzzy aggregation.  

The weighted aggregation is then the aggregation of the modified membership functions.  

A generalized form of this idea leads to the weighted aggregation function [33]  

 

 

 1 1 2 2
( , ) [ ( ( ), ), ( ( ), ),..., ( ( ), )]

m m
D x w T I G x w I G x w I G x w=

 
(3.3) 

 

 

where w is a vector of weight factors [0,1]
i

w ∈ , 1, 2,...,i m=  associated with the 

aggregated membership functions ( )
i

G x , T  is a t-norm and I is a function of two 

variables that transforms the membership functions.  Usually, the power-raising method is 

used for the transformation and the minimum operator for the t-norm, so the aggregation 

function becomes 
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                                                        1
( , ) [ ( )] i

m
w

i
i

D x w G x
=

= ∧
                                               (3.4)                                                                     

 

 

Another weighted aggregation function that fits the general scheme (3.3) is given by [34]  

 

 

                                              1
( , ) [ ( ) (1 )]

m

i i
i

D x w G x w
=

= ∧ ∨ − ,                                           (3.5) 

 

 

where ∨  denotes the maximum operator and the weight factors satisfy 

 

 

                                                               1
1

m

i
i

w
=
∨ =

                                                             
(3.6) 

 

 

3.1.4. Ordered Weighted Average (OWA) Operator 

 

A system needs the knowledge supplied by information sources to be reliable and extend 

on the whole domain of actuation.  However, the information supplied by a single 

information source is often not reliable enough and/or too narrow in relation to the 

working domain.  In this case, the information provided from several sources can be 

combined to improve data reliability and accuracy and to include some features that are 

impossible to perceive with individual sources. 

 

When the objects to synthesize are numeric values (e.g., numbers in the [0, 1] interval) 

two classical aggregation functions are considered: the arithmetic mean and the weighted 

mean.  Alternatively Yager [35] defined an alternative combination function to synthesize 

also numeric values—the OWA operator. 

 

Definition 3.1: Let w be a weighting vector of dimension n 1 2( [ ... ])
n

w w w w=  such that 

 

 

                                                               (i) [0,1]
i

w ∈
                                                      (3.7) 

                                                              (ii) 
1

1
n

i

i

w

=

=∑
                                                       

(3.8)
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In this case, a mapping : n

owa
f →� �  is an Ordered Weighted Averaging (OWA)operator 

[35] of dimension n if 

 

 

                                                
1 ( )

1

( , , )
n

owa n i i

i

f a a w aσ
=

=∑…

                                              (3.9) 

 

 

where { (1), , ( )}nσ σ…  is a permutation of {1,..., }n  such that ( 1) ( )i i
a aσ σ− ≥  for all 

2,...,i n= .  (i.e., ( )iaσ  is the i
th

 largest element in the collection 1,..., n
a a ). 

 

The OWA operator weights the values, because each 
i

w  is attached to the i
th

 value in 

decreasing order without considering from which information source the value comes 

from.  OWA operator is commutative.  This is, all information sources have an equal 

contribution to the final solution.  With this kind of weight, the OWA operator calculates 

the output, for example, without considering extreme values ( 1 0
n

w w= = ); or considering 

only the values that most of the experts give where most is a fuzzy quantifier.   

 

To decide the weighting vector; fuzzy majority is one of the concepts, which can give 

some meaning to weights.  Fuzzy majority is a soft majority concept, which is 

manipulated via a fuzzy logic-based calculus of linguistically quantified propositions.  

Two types of linguistic quantifiers can be distinguished: absolute and proportional.  

Absolute quantifiers are used for representing the amounts that are absolute in nature such 

as about 2 or more than 5.  These absolute linguistic quantifiers are closely related to the 

concept of the count or number of the elements and for any given x +∈ℜ , the membership 

degree ( )Q x  of x  indicates the degree of which the amount x is compatible with the 

quantifier represented by Q  which is a fuzzy subset.  Proportional quantifiers, such as 

most, at least half may be represented by fuzzy subsets of the unit interval [0,1].  Then for 

any [0,1]x ∈ , ( )Q x  indicates the degree to which the proportion x  is compatible with the 

meaning of the quantifier it represents.   
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The weights can be calculated by Yager’s method [35].  The identification of the weights 

of the OWA-type operators is an important concern and there exist numerous methods to 

assist.  For a non decreasing relative quantifier, Q, the weights are obtained as follows: 

 

 

1
,   1, 2,...,

i

i i
w Q Q i m

m m

−   
= − =   

   
                                                                           (3.10) 

 

 

where Q is defined as 

 

 

0              if         x<a

( )        if   a x<b

1              if       x b

x a
Q x

b a


 −

= ≤
−

≥                                                                                       (3.11)  

 

 

with , , [0,1]a b x ∈  and ( )Q x  indicating the degree of which the proportion x  is 

compatible with the meaning of the quantifier it represents.  Some examples for the 

relative quantifiers are “most” (0.3, 0.8), “at least half” (0, 0.5) and “as many as possible” 

(0.5, 1).   

 

3.1.5. Fuzzy Inference System 

 

Fuzzy Logic and Linguistic Variables: Fuzzy sets provide quantitative methods to 

express linguistic variables using the precepts of mathematics [36]. As an example, a 

linguistic term and its quantitative interpretation is shown.  Suppose that a specific term 

“Young” in the universe of natural language is wanted to express in terms of age, y, by 

a membership function that expresses the term young.  A is a fuzzy set and might be 

one interpretation of the term young expressed as a function of age, 

 

 

                                

1
2

25 100

0 25

1 1 25
  "young" = 1

5

y
A

y y

−
 − 

= + +     
∫ ∫

                              (3.12 )
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or alternatively, 

                               

1
2

25
1        25 years

(young, y) = 5

1                                    25 years

M

y
y

y

µ

−  −  + >       


≤                        
(3.13)

 

 

 

IF-THEN rule based form is one of the most common ways to represent human 

knowledge by forming it into the type of language expressions, 

 

 

                           IF premise (antecedent), THEN conclusion (consequent)                 (3.14) 

 

 

IF-THEN can be expressed as, 

 

 

                                                          IF x is A THEN y is B,                                          (3.15) 

 

 

where A and B represent fuzzy propositions. 

 

A rule-based system can involve more than one rule.  The process of obtaining the overall 

consequent (conclusion) from the individual consequents contributed by each rule in the 

rule-base is known as aggregation rules [37].  

 

Conjunctive system of rules is one of the aggregation rules.  In the case of a system of 

rules that must be jointly satisfied, the rules are connected by “and” connectives.  In this 

case of aggregated output (consequent), y, is found by the fuzzy intersection all individual 

rule consequents, y
i
 where i = 1, 2, …, r as 

 

 

                                                     
1 2 and  and ...  r

y y y y=                                            (3.16) 

or 

                                                    1 2 ... r
y y y y= ∩ ∩ ∩                                                  (3.17) 

 

defined by the membership function  

 

                                            
1 2( ) min( ( ), ( ))  for 

y y y
y y y y Yµ µ µ= ∈

                             (3.18) 

 



   21 

Composition: Let R be a relation that relates, or maps elements from universe X to 

universe Y, and let S be a relation that relates, or maps, elements from universe Y to 

universe Z.  A relation T can be found that relates the same elements in the universe X 

that R contains to the same elements in Z that S contains.   

 

Suppose R is a fuzzy relation on the cartesian space X Y× , S is a fuzzy relation on Y Z× , 

and T is a fuzzy relation on X Z× ; then fuzzy max-min composition is defined in terms 

of the set-theoretic notation and membership function-theoretic notation in the following 

manner: 

 

 

                                                
( , ) ( ( , ) ( , ))

T R S
y Y

T R S

x z x y y zµ µ µ
∈

=

= ∨ ∧

�

                                (3.19) 

 

 
Defuzzification: For some situations outputs of a fuzzy process needs to be a single 

quantity as opposed to a fuzzy set.  Defuzzification is the conversion of a fuzzy quantity 

to a precise quantity.  Centroid method (also called center of area, center of gravity) is 

one of the most prevalent and physically appealing of all the defuzzification methods.  It 

is given by the algebraic expression 

 

 

                                                 

*
( ).

( )

Ç

Ç

Z Zdz

Z

Z dz

µ

µ
=
∫
∫                                                          (3.20)

 

 

 

The Mamdani Fuzzy Rule Based System: The Mamdani controller is constituted of a 

group of rules and fuzzy sets in which the inference mechanism is the Mamdani one 

[38].  Designing a Mamdani rule base requires three steps: (i) determine appropriate 

fuzzy sets over the input domain and output range; (ii) determine a set of rules between 

the fuzzy inputs and the fuzzy outputs that model system behavior; (iii) create a 

framework that maps crisp inputs to crisp outputs, given (i) and (ii). 

The operation of the Mamdani rule base can be broken down into four parts: (i) mapping 

each of the crisp inputs into a fuzzy variable (fuzzification); (ii) determining the output of 
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each rule given its fuzzy antecedents; (iii) determining the aggregate output(s) of all of the 

fuzzy rules; (iv) mapping the fuzzy output(s) to crisp output(s) (defuzzification).  Figure 

3.2 illustrates the operation steps of a fuzzy inference system. 

 

 

 

Figure 3.2:  Block diagram for a fuzzy inference system 

 

 

The implication of a fuzzy Mamdani system may be characterized by a rule of the kind: 

 

 

IF [premise 1 is qualification 1] AND [...is...] THEN [consequent is qualification]    (3.21) 

 

 

The formulization of the implication of the kind and aggregated output is given by: 

 

 

                 
1 2

1 2( ) max[min{max[ ( ) ( )],max[ ( ) ( )]}] k k k
B A A

y x x x xµ µ µ µ µ= ∧ ∧            (3.22) 

 

 

3.2. SIMILARITY OF PARTS 

 

By the exploration of group technology; cell formation problem become one of the most 

important issues of cellular manufacturing systems [39]. 
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The cell formation problem can be extremely complex, because of various different 

production factors, such as alternative process routings, operational sequences, production 

volumes, machine capacities, tooling times and others, need to be considered.  Many 

approaches and methods have been developed to solve the cell formation problems.  

These approaches can be classified into three groups: (i) Mathematical Programming 

Models, (ii) (meta-) Heuristic Algorithms, (iii) Similarity Coefficient Methods.   

 

Among these approaches, similarity coefficient method is the application of cluster 

analysis to cell formation procedures.  Since the basic idea of group technology depends 

on the estimation of the similarities between part pairs, the cluster analysis is the most 

basic method for estimating similarities, it is concluded that similarity based method is 

one of the most basic cell formation method and more flexible in incorporating 

manufacturing data into the machine-cells formation process than the others [40]. 

 

Similarity coefficient measures the similarity between two parts’ attributes.  According to 

the similarity coefficient, the parts, which have a larger value of the similarity coefficient, 

can be grouped into the same part-family efficiently.  Therefore, creation of an effective 

similarity or dissimilarity coefficient is very important for the success of the similarity 

based method. 

 

The operation sequence is defined as an ordering of the machines on which the part is 

sequentially processed [39].  According to Choobineh [41] the achievement of the 

purpose and objectives of the group technology task in a production system is dependent 

on the choice of machines and impact of the materials flow.  However, only considering 

the machine requirements can just reflect the choice of the machines.  It is obvious that 

just considering the machine requirement cannot reflect the impact of materials flow.  

Therefore, in recent years, operation sequence, a very important factor in the 

manufacturing system, is emphasized by some researchers, because it can reflect not only 

the machine requirements of the parts but also the flow pattern of the parts.  On the other 

hand, the parts do not have a direct relationship with the machines, but, actually, each part 

and machine is associated with a set of operations [42].  Therefore, considering the 
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operation sequence in the cell formation problem is realistic to integrate the choice of the 

machine and the impact of the materials flow in group technology successfully. 

 

3.2.1. Levenshtein Distance  

 

Levenshtein distance has been the most commonly used measure for comparison of the 

difference (similarity) of two operation sequences.  Levenshtein distance is defined as the 

smallest number of substitutions, deletions and insertions required to change source 

sequence into target sequence [43].  It uses listings as the acceptable analyses of sequence 

difference and a simple length function without weights or parameters.  Considering all 

listings from source sequence to target sequence, let the length of each listing be the 

number of transformations it contains, then the distance is the minimum length of any 

listing.   

 

3.2.2. Selvam’s Similarity Matrix  

 

Selvam and Balasubramanian [44] defined a similarity matrix based on the operation 

sequences and inter-machine movements to solve the cell formation problem.  The values 

of this similarity matrix reflect the similarity between the parts and the main part that have 

been chosen before the cell formation procedure.  The concept of the main part is defined 

as the part based on whose operation sequence the production line is set up, and this 

production line is defined as the main line.  According to Selvam’s definition of this 

similarity matrix, the value of the similarity matrix S can be represented by the following 

mathematical formula: 

 

 

                                                          
[ ]

ij i ij
S S D M= =

                                                  (3.23)                 
 

 

 

where Sij is the i
th

 row and j
th

 column value of the similarity matrix, in which row 

indicates parts and column indicates main lines; Di is the production volume per period 

for part i; Mij  is the number of movements when part i is processed through the main line 

j.  It makes this similarity coefficient reasonable on considering the demand and materials 
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movements simultaneously.  The value of this similarity coefficient depends on the 

selection of main part and main line. 

 

3.2.3. Vakharia and Wemmerlöv’s Similarity Coefficient 

 

Vakharia and Wemmerlöv [39] developed a square, symmetric similarity matrix S for the 

set of the parts group that their operation sequences do not contain backtracking.  This 

similarity matrix can reflect the proportion of machine types used by two part groups in 

the same sequence.  In their method, according to this similarity measure, any two part-

groups are identified for potential merging.  This similarity measure is defined as: 

 

 

                                                   1 1

1

2

pq pq
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i C i C

pq M M

ip iq

i i

A A

S
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∈ ∈
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∑ ∑
                                      (3.24 )

 

 

 

In this formula, Spq is the similarity between part groups p and q; i =1, 2, ..., M is machine 

type index; Aip is equal to 1 if the parts in part-group p need to be processed on machine 

type i, otherwise, Aip is equal to 0; Cpq is the set that contains the machine types which 

exist in both the composite operation sequences of part-group p and q in the same relative 

order.  The range of this similarity coefficient is (0-1).  Bounded and symmetry are two 

important characters of this coefficient, and make it attractive.  Based on this similarity 

coefficient, a clustering procedure is applied to form the part-families. 

 

3.2.4. A Dissimilarity Coefficient integrated with Operation Commonality  

 

Tam [42] presented a dissimilarity coefficient method, based on the difference between 

operation sequences, for part grouping.  In the method used, the dissimilarity coefficient 

denoted by Sc, of two operation sequences i and j is defined as follows:  

 

 

                                            
[ , ] [ , ] (1 [ , ])

c n n c
S i j w d i j w c i j= + −

                                   (3.25) 
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1 and , 0

n c n c
w w w w+ = ≥

                                                  (3.26)
 

 

 

[ , ]
n

d i j
 
is the normalized weighted Levenshtein distance between sequences i and j: 

 

 

                                      

[ , ]
[ , ]

max{ [ , ] 1 , , number of parts}

w

n

w

d i j
d i j

d x y x y
=

≤ ≤
               (3.27) 

 

 

                                     
[ , ] min( )

w z z d d i i
d i j w n w n w n= + +

                                           (3.28)
 

 

 

where wz, wd and wi are non-negative weights assigned to substitutions, deletions and 

insertions respectively; nz, nd and ni are number of substitutions, deletions and insertions 

respectively.   

 

c[i,j] is a coefficient representing the commonality of operations between operation 

sequences i and j.  It is defined as the number of common operations between operation 

sequences i and j divided by the total number of the distinct operations in these two 

sequences.   

 

3.2.5. A Compliant Index based Similarity Coefficient  

 

Ho et al. [45] proposed a heuristic pattern matching algorithm for multi-flow lines layout 

design.  In the proposed algorithm, a similarity coefficient approach is used to compare 

the difference (similarity) between an operation sequence and a flow path.  In order to 

calculate the sequence similarity coefficient, a compliant index based on trace analyses of 

differences between operation sequences is defined first.   

 

The compliant index of the sequence of a part compared with a flow path is determined 

by the number of operations in the sequence that have either “in-sequence” or 

“bypassing” relationship with the sequence of the flow path.  There are two kinds of 

compliant indexes: forward compliant index and backward compliant index.  These two 

compliant indexes can be calculated by comparing the operation sequence of the part with 
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the sequence of the flow path forwards and backwards.  The process of calculating these 

two compliant indexes is illustrated in Figure 3.3  

 

 

 

Figure 3.3: Comparison Process for Compliant Indexes 

 

 

Once the compliant indexes of both directions have been calculated, the sequence 

similarity coefficient of this part can be calculated by dividing the sum of both compliant 

indexes by twice the number of operations in this part:  

 

 

                                                           2

CF CB
CO

N

+
=

                                                   (3.29)
 

 

 

where  

CO: Sequence similarity coefficient of part  

CF: Compliant index of the part in forward direction  

CB: Compliant index of the part in backward direction  

N: Number of operations in the sequence of the part  

 

Obviously, a part with higher sequence similarity coefficient means its sequence is more 

similar to the sequence of the flow path. 
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3.2.6. An LCS based Similarity Coefficient  

 

Askin and Zhou [46] proposed a similarity coefficient based on the longest common 

subsequence (LCS) between parts for forming flow line manufacturing cells.  Like Ho et 

al’s [48] similarity measure, this coefficient is also based on trace analyses of operation 

sequence differences.  The similarity coefficient Sij between two operation sequences Oi 

and Oj is defined as: 

 

 

                                               

max ,
ij ij

ij

i j

LCS LCS
S

O O

  
=  
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where LCSij is the longest common subsequence between Oi and Oj, and |x| is the number 

of operations in sequence x.   

 

3.2.7. Merger Coefficient 

 

Irani and Huang [29] proposed a new similarity measure for string clustering called 

merger coefficient which evaluates the feasibility of merging or absorbing one operation 

sequence completely into another operation sequence.   

 

In order to calculate the merger coefficient between two operation sequences, the merger 

distance and the interruption distance need to be defined first.  In terms of the three types 

of transformations for deriving one operation sequence from another operation sequence    

-substitution, deletion, and insertion- the merger distance for the absorption of sequence x 

into sequence y, denoted by md(x,y), is defined as the smallest number of substitutions 

and insertions required to derive x from y.  Keeping md(x,y) fixed, the smallest number of 

deletions required between two consecutive basic transformations, between two 

consecutive matching operations, and between two consecutive transformation and 

matching operation, is defined as the interruption distance for the absorption of x into y, 

denoted by id(x,y).   
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Once the merger distances and interruption distances between any two operation 

sequences x and y have been identified, the merger coefficient between x and y, denoted 

by mc(x,y), can be calculated as follows: 
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where Nx and Ny represent the number of operations in sequences x and y, respectively.  

Note that 0 ( , ) 1mc x y< ≤ .  The higher the merger coefficient between two operation 

sequences, the more similar are they. 

 

3.3. DEMAND PATTERN  

 

Industry has for many years been dealing with the problem of making batch production 

more efficient and responsive to changes in demand and technology.  Manufacturing cells 

dedicated to families of parts significantly reduce the problem of set-up time.  However, 

conversation to cells can result in a reduced ability to respond to changes in demand and 

range of parts produced since machines, fixtures, tooling and people are dedicated to 

product families.  Dedicating machines to specific parts typically results some 

inconsistencies since the shop cannot respond to even short-term fluctuations in demand.  

These kinds of inconsistencies with the capacities of cells lead to severe bottlenecks in 

some cells and idle machines in others [47, 48, 49, 50].  Thus, variability in the parts’ 
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demand is an important criterion for layout design.  In such cases coefficient of variation 

of demand is used as a demand stability/volatility indicator [51].   

 

Coefficient of variation of demand is the ratio of the standard deviation ( ) to the mean 

( ) of the demand of a product.  If coefficient of variation is high, this would suggest that 

 is very significant compared to , and that the demand is highly variable/volatile.   

 

 

                                                                                                                      (3.32)         

 

 

3.4. ALTERNATIVE ROUTING 

 

In most manufacturing system design methods, parts are assumed to have a unique part 

process plan.  However, it is well known that alternatives may exist in any level of a 

process plan.  In some cases, there may be several alternatives for making a specific part, 

especially when the part is complex [52].   

 

Consideration of alternative process plans generally complicates the grouping problem, 

but lower capital investment in machines, more independent manufacturing cells and 

higher machine utilization can be achieved [53, 54]. A number of methods are proposed 

for cell formation in the presence of alternative routing under the Group Technology 

approaches [55, 56, 57, 58].   

 

Alternative routing arises from two sources: there may be multiple process plans for each 

part type and independently, there may be multiple machines of each type [59].   

 

For the multiple machining cases the process is considered as operation sequence of 

machine types [55, 56, 57, 58].  In this case, the number of identical machines of each 

type is generally given and the problem is to allocate each operation to a machine of the 

required type.   



4. MODEL FORMULATION 

 

Based on the previous discussion, we now formulate the hybrid manufacturing design 

problem in this chapter. Lets define a CM-cell as a group of machines of dissimilar types, 

if possible, dedicated to the production of a set of parts with similar processing 

requirements.  This group has to be defined such that a given set of parts can be 

completed or nearly completed within this group of machines.  A FL-cell is a shop 

department which consists of machines having a common technological capability.  Then, 

a hybrid manufacturing system is assumed to contain both FL and CM-cells concurrently.   

 

4.1. DECISION VARIABLES 

 

Our problem consists of designing a hybrid manufacturing system that is a good 

compromise between the functional layout and CM layout.  We consider that the number 

of CM-cells is not given and must be determined by the method.  To better reflect the real 

situation, we assume that each part’s operation can be carried by identical machines of a 

given type.  Again with practical concerns, we only upper bound the number of similar 

machines.   

 

Let   be the number of distinct machine types and   be the 

number of parts.  Each part is assumed to have   operations where each 

operation can be handled by only one machine type denoted as .  As mentioned 

previously, there can be several machines of the same type within a cell or in different 

cells.  However, the number of FL-cells is known since we can only have a single FL-cell 

for each machine type.  For notational and computational convenience, we assume 

without loss of generality that all FL-cells reside within the cell  and the number of 

CM-cells, C, is set to a large number .   
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To design the system according to a hybrid organization, we have to identify which cells 

should be opened and allocate machines to those cells.  The following variables are 

defined to represent above decisions: 

 

 

 
 

 

                                                                                                  (4.1) 

 

 

                                                                                           (4.2) 

 

 

                                                           (4.3) 

 

 

4.2. CONSTRAINTS 

 

Let 
j

d  be the demand of part j, 
jki

t  be the unit processing time of part j operation k on 

any machine of type i, and 
i

b  be the capacity (in time units) of a machine of type i.  Then, 

the first set of constraints (4.4) is related with the capacity of the machines.  They 

guarantee that there are enough duplicated machines in each cell. 

 

 

 
(4.4) 

 

 

The constraint set (4.5) assures that each operation is surely assigned.  Note that the 

overall operation’s workload can be split among identical machines as long as they reside 

within the same cell. 
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(4.5) 

 

 

Equations (4.6) ensure that no operation is assigned to unopened cells. 

 

 

 
 

(4.6) 

 

 

Here M is a big number.  We also want a CM-cell to contain at least two different 

machine types, since otherwise machines of a single type would be assigned to an FL-cell.  

The set of constraints (4.7) and (4.8) imply this idea. 

 

 

 

 
(4.7) 

 
(4.8) 

 

 

The last two constraint sets involve bounds related to the design: (4.9) limits CM-cell 

sizes (i.e.  the number of machines that a CM-cell can contain) and (4.10) limits the 

number of similar machines.  These bounds are, of course, not easy to quantify.  A CM-

cell, for example, can have one more machine than the limit set.  The result may be less 

agreeable but also acceptable at some extent.  Therefore, instead of hardly bounding cell 

sizes and machine numbers, we can allow to violate them but with a decreasing 

satisfaction level.  There exists, of course, a maximal value that the design would be 

judged not satisfactory at all.  This idea can be implemented with the help of the fuzzy set 

theory.  Let  and  be the soft bounds on the CM-cell size and the number of type i 

machines respectively.  If we define 

 

 

 
(4.9) 
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and 

 

 

 
(4.10) 

 

 

then the related membership functions can have the following forms:   

 

 

                                                       (4.11) 

 

 

                                                        (4.12) 

 

 

In other words, the constraints (4.9) and (4.10) will be considered completely satisfied if 

their LHS are less than  and  (acceptable levels), and not at all satisfied if 

greater than  and  (unacceptable levels), respectively, and decreasing 

satisfied in between. 

 

4.3. OBJECTIVE FUNCTIONS 

 

Since we aim to process stable parts in CM-cells and non-stable parts in FL-cells, we have 

to first define how the stability can be identified.  In this study, stability is associated with 

the maximum similarity (MS) of a part to all other remaining parts, and the coefficient of 

variation (CV) of the demand of that part.  As CM-cells are designed to process similar 

type of products by definition, MS is an important discrimination factor.  If MS is high, 

then this would imply that there exist other parts similar to the one investigated that we 

can put together in a cell.  Otherwise, if MS is low, then the part would hardly fit in a well 

defined CM-cell.  CV is another factor to measure what the demand of a part is likely to 

be.  From previous sections we know that if CV is high, the demand is highly variable and 
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processing this type of part(s) in a CM-cell is not feasible.  Therefore, it is more desirable 

to route these products to FL-cells.  As we want to penalize inadequate allocation of 

products to cells, we will incur a high cost for machining parts with low MS and high CV, 

in other words instable parts, in CM-cells, and again a high cost for machining parts with 

high MS and low CV, in other words stable parts, in FL-cells. 

 

While CV can be figured out with a readily available demand data, maximum similarity 

needs to be defined.  Similarity index (SI) measures the similarity between two parts’ 

attributes.  According to the index, the parts which have a larger value of the similarity 

index can be grouped into the same part-family efficiently.  Therefore, creation of an 

effective SI is very important for the success of the similarity based method.  Here, we 

preferred to work with the operation sequence based SI due to Ho et al.  [45], since the 

sequence can reflect not only the machine requirements of the parts but also the flow 

pattern.  The similarity index proposed in [45] is well suited for the cell formation 

problem [60], but also posses some deficiencies.  For example, SI value of the sequences 

ABC and DEAFGBHIJCKL is 1 (maximum similarity value).  While the first sequence is 

a subsequence of the second, it is clearly difficult to assess such high similarity.  

Meanwhile, sequences ABCD and EFBGCHI have a similarity value of 0.5, which we 

believe not very realistic too.  To overcome this type of situations, we implemented the 

following procedure:  

 

 

compute SI with the method proposed in [45];                                                           

  

if  then  

 

                                 ;                                                  (4.13) 

 

otherwise  

 

                                ;                                                      (4.14) 

 

 

where a is the number of common machines in two sequence, b is the number of 

machines belonging only to one of the sequences and c is the number of machines 

belonging only to the other sequence, m is the size of the longer sequence, and n is the 

size of the sorter sequence.  Consequently, we have a similarity value of 0.8125 for the 
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first mentioned example, while 0.1818 for the second example.  The maximum similarity 

value MS will be the maximum among all pair wise comparison of a given part, i.e.   

 

 

.                                                                         (4.15) 

 

 

Meanwhile, it is not easy to directly quantify whether MS and/or CV values are high or 

low and the resulting cost of allocation too.  On this line, fuzzy set theory is a widely used 

and useful tool.  In this work, fuzzy implications are carried out with Mamdani’s fuzzy 

implication and the max-min composition rule [38]. 

 

All categories including MS, CV, the cost of assigning a product j to a CM-cell ( ) 

and the cost of assigning a product j to a FL-cell ( ) will be composed of five 

linguistic variables: Very Low (VL), Low (L), Moderate (M), High (H) and Very High 

(VH).  The fuzzy numbers which model these situations for MS and CV is given in Figure 

4.1 and Figure 4.2.   MS and CV are the rule antecedents and,  and  are rule 

consequence.  The corresponding rules are given in Table 4.1.   

 

 

 

Figure 4.1: Maximum Similarity – Fuzzy numbers 
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Figure 4.2: Coefficient of Variation – Fuzzy Numbers 

 

 

We are now ready to give our first objective function related to the operation allocation 

costs of cells: 
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Table 4.1: Fuzzy If-Then Rules  
 

Coefficient of 

Variation (CV) 
      

          
VL L M H VH 

VH VL VL L M M 

H VL L L M H 

M L M M M H 

L L M M H VH 

Maximum 

Similarity 

(MS) 

VL M M H VH VH 

 

Coefficient of 

Variation (CV) 
      

          
VL L M H VH 

VH VH VH H M M 

H VH H H M L 

M H M M M L 

H H M M L VL 

Maximum 

Similarity 

(MS) 

VL M M L VL VL 
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We also want well defined CM-cells [5].  At this stage, several criteria are suggested to 

solve the cell formation problem [61].  A suitable criterion in our case can be the amount 

of pieces that is transferred immediately between two machines of a cell, or the 

intracellular transfer.  If all the operations of the parts assigned to a cell are handled only 

with the machines residing in that cell, then we would have an independent cell as 

desired.  Let’s define 

 

 

 

(4.17) 

 

 

In other words,  is set to 1 if operation k of product j is allocated to cell c.  Let also 

 

 

 

 

 

 

(4.18) 

 

 

 

(4.19) 

 

 

Note that Nc denotes the total number of parts that goes in or out of cell c.  Then rc, or the 

intracellular transfer ratio of cell c, can be calculated as 

 

 

 
(4.20) 

 

 

We consider the minimum of all rc, which is associated to the CM-cell in which the 

assigned parts have to travel the most in and out to be completed.  Then, the second 

objective is to maximize the minimum rc, in other words 

 

 

 
(4.21) 
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Since the appropriateness of a cell configuration is measured with the minimum rc, 

solutions with different number of cells can be compared.  This is different from the 

objectives that deal with the minimization of intercellular move, since such objectives 

favor designs with fewer numbers of cells implicitly.  Our last objective is to minimize 

the total machine investment and operating costs related to the design, denoted f3 here.  If 

 is the fixed purchasing cost of a machine of type i, then f3 can be formulated as 

follows: 

 

 

 
(4.22) 

 



5. SOLUTION METHOD 

 

 

 

5.1. MULTIOBJECTIVE OPTIMIZATION 

 

In general, the definition of an optimization problem consists of minimizing an objective 

function considering all the parameters of the problem.  A lot of “classical” optimization 

methods exist to solve such problems.  These methods can be used providing that certain 

mathematical conditions are satisfied: thus, linear programming efficiently solves 

problems where the objective function and constraints are linear with respect to the 

decision variables.  Unfortunately, the situations encountered in practice often include one 

or more difficulties which make these methods inapplicable: for example, the problem 

may have contradictory objective functions.  Two objectives are contradictory when a 

decrease in one objective leads to an increase in the other objective.  To clarify this 

situation; multiobjective optimization is proposed.   

 

The main difficulty in mono objective optimization comes from the fact that modeling a 

problem with just one equation can be a very difficult task.  The goal of modeling the 

problem using just one equation can introduce a bias during the modeling phase.   

 

Multiobjective optimization allows a degree of freedom which is lacking in mono-

objective optimization.  This flexibility is not without consequences for the method used 

to find an optimum for the problem when it is finally modeled.  The search gives not a 

unique solution but a set of solutions.  These solutions are called Pareto solutions, and the 

set of solutions that are found at the end of the search is called the tradeoff surface.   

 

After having found some solutions of the multiobjective optimization problem, some 

difficulties occur: selection of a solution from the set of solutions.  The solution selected 

by the user reflects tradeoffs performed by the user with respect to the various objective 

functions.  The decision maker is “human”; he makes choices, and one of the goals of 
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multiobjective optimization is to model the choices of the decision maker, or rather, his 

preferences.   

 

5.1.1. Domination 

 

When the multiobjective optimization problem is solved, a multitude of solutions is 

found.  Only a small of these solutions are of interest.  For a solution to be interesting; 

there must be a domination relation between the considered solution and the other 

solutions, in the following sense: 

 

Definition 5.1: A vector x1 dominates a vector x2 if: 

x1 is at least good as x2 for all the objectives, and 

x1 is strictly better than x2 for at least one objective. 

 

Solutions which dominate the others but do not dominate themselves are called optimal 

solutions in the Pareto sense.  Local and global optimality in the Pareto sense can be 

defined as follows: 

 

Definition 5.2:  A vector  is locally optimal in the Pareto sense if there exists a 

real 0δ >  such that there is no vector 'x
�

 which dominates the vector x with 

, where  represents a bowl of center x and of radius δ . 

 

A vector x is locally optimal in the Pareto sense if it is optimal in the Pareto sense with a 

restriction on the set .  This definition is illustrated in Figure 5.1  
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Figure 5.1: Local Optimality in Pareto Sense 

  

 

Definition 5.3: A vector x is globally optimal in the Pareto sense (or optimal in the Pareto 

sense) if there does not exist any vector x' such that x' dominates the vector x. 

 

The main difference between the definition of the global optimality and the definition of 

the local optimality lies in the fact that there is not any restriction on the set  anymore.  

A “graphical” version of the preceding definition uses the contact theorem.  The way to 

use the contact theorem is illustrated in Figure 5.2 

 

Definition 5.4: A negative cone is defined in  in the following way:  

 

 

                                                                            (5.1)
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Figure 5.2: Contact Theorem 

 

 

Definition 5.5: A vector x is optimal in the Pareto sense for a multiobjective optimization 

problem if 

 

 

                                                                                                       (5.2)
 

 

 

where F corresponds to the feasible subspace.   

 

When the definition of domination is applied, four areas can be defined.  A preference 

level can also be associated with each area.  These areas are represented in Figure 5.3.  

This figure uses a splitting defined by use of the negative cone introduced above and 

spreads it out over the whole space. 
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Figure 5.3: Preference Level and Domination Relation 

 

 

For example, if this figure is centered on solution A and this solution is compared with 

solution B, there are three possibilities: 

 

If solution B belongs to area 1, then solution A is preferred to solution B; 

 

If solution B belongs to area 3, then solution A is dominated by solution B; 

 

If solution B belongs to area 2 or 4, then we can not say solution A or B is preferable to 

each other.   

 

5.1.2. Relation Derived From Domination 

 

The domination relation does not offer too many degrees of freedom in its definition.  For 

example, it is not possible to include in the definition of the domination relation a 

preference for one objective function against another one.  To overcome this lack of 

flexibility, relations derived from the domination relation have been developed.  Any 

solutions we can find with these relations are always optimal in the Pareto sense.  The 

major change that we find with these relations is that the set of solutions that we obtain 
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with derived relations is a subset of the set of solutions obtained using the domination 

relation.   

 

Let k
S  represents the set of feasible solutions of an optimization problem with k  

objective functions.   

 

Lexicographic Optimality: This definition of optimality allows one to include 

preferences with respect to objective functions [62].   

 

Definition 5.6:  A solution  is optimal in the lexicographic sense if  

 

 

                                                
.                                            (5.3)  

  

 

If , we say that  if there exists an index value *
q  such that 

q q
x y=  for 

*1,..., ( 1)q q= −  and * *
q q

x y< .  The relations between 
q

x  and 
q

y  for *
q q≥  are not taken 

into account because of the stopping at index *
q  (the first index for which 

q q
x y< ). 

 

The definition involves the requirement that the decision maker has sorted the objective 

functions by increasing preference.  The comparison between two solutions is done using 

this sorting of objective functions.   

 

This relation can be illustrated by an example.  Take two points A and B: 

 

 

A = (1, 2, 3, 4, 5, 6),    B = (1, 2, 3, 9, 4, 9)   

 

 

For these two points, we have 
lex

A B≤  because, until the third position, we have 

 and, for the fourth position, we have 4 9< .  We can conclude that 

solution A dominates solution B lexicographically. 
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Extremal Optimality: As with the lexicographic optimality relation, this relation allows 

one to add preferences between objective functions.  This preference is modeled using 

weights.  The more important an objective function, the heavier the weight [62]. 

 

Definition 5.7: A solution  is extreme-optimal if, given a weight vector  

such that ,  is an optimal solution of the mono criterion minimization 

problem with the following objective function: 

 

  

                                                                                                                             (5.4)

 

                               

so, 

                                                                           (5.5) 

 

 

 

For illustrating the notion of extremal optimality, preceding example is considered.  Here, 

objective 6 is considered as a reference objective.  It is also assumed that objectives 1, 3 

and 5 are 20% more important than the reference objective and that objectives 2 and 4 are 

equivalent to the reference objective.  The weight of each objective can be computed: 
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by solving these equations  
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=

=∑  are handled.  So, A extreme-dominates point B. 
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Maximal Optimality: This relation, unlike the preceding relations, does not allow one to 

add preferences between objective functions [62]. 

 

Definition 5.8: A solution  is max-optimal if the value of the worst objective is as 

small as possible: 
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                                                       (5.6)

 

 

 

For illustrating the relation, preceding example is considered.  Here, solution A max-

dominates solution B because max 6 max 9A B= < =  

 

5.1.3. Tradeoff Surface 

 

The small number of solutions that we have selected using the sorting rule based on the 

definition of domination produces what we call the tradeoff surface (or Pareto front).  A 

problem with two objective functions can be imagined as an example (minimize  and 

minimize  under the constraints  and  ).  The set of values of the pair 

 is denoted by S when x respects the constraints  and .  The 

tradeoff surface is denoted by P. 
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Figure 5.4: Representation of Trade-off Surface  

 

S and P are represented in Figure 5.4.  A noticeable property is that certain shapes for the 

tradeoff surface can be obtained, depending on the type of problem.  These common 

shapes of tradeoff surface are shown in Figure 5.5.  These shapes of tradeoff surfaces are 

typical of a multiobjective problem with a convex solution set we often face.   

 

Figure 5.5: Common shapes of tradeoff surface considering two objective functions 
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Definition 5.9: Two characteristic points associated with a tradeoff surface are ideal point 

and nadir point.  The coordinates of the ideal point are obtained by minimizing each 

objective function separately.  The coordinates of Nadir point correspond to the worst 

values obtained for each objective function when the solution set is restricted to the 

tradeoff surface.  

 

The ideal point is used in a lot of optimization methods as a reference point.  The nadir 

point is used to restrict the search space; it is often used in interactive optimization 

methods.  These two definitions are illustrated in Figure 5.6 

 

 

Figure 5.6: Representation of the ideal point and the nadir point 

 

 

5.2. EVOLUTIONARY PROGRAMMING 

 

The formulation proposed in chapter 3 yields a multiobjective combinatorial problem.  

Evolutionary algorithms (EAs) present interesting features to solve multiobjective 

optimization problems, in particular because they deal simultaneously with a set of 

possible solutions [63].  Additionally, EAs are less susceptible to the shape or continuity 

of the Pareto front [64] and have been successfully used in the design and organization of 

manufacturing systems [63].   
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5.2.1. Definitions 

 

Genetic algorithms are inspired by classical genetics [65].  A “population” of points 

spread through the search space is considered.  Before explaining the behavior of a 

genetic algorithm in detail, some words of the genetic algorithms shall be presented.  

These words are often used to describe a genetic algorithm. 

 

•  Genotype or chromosome: This is another way to say “individual”. 

 

•  Individual: Corresponds to the coding, as a gene, of a potential solution of an 

optimization problem. 

 

•  Gene: A chromosome is composed of genes.  With a binary coding, a gene has a value 

of either 0 or 1. 

 

•  Phenotype: Each genotype represents a potential solution of an optimization problem.  

The value of this potential solution is called a phenotype.   

 

Each individual is “coded” as a gene.  For example, most often, a correspondence 

between a binary chain and an individual is used.  To each individual, an efficiency is 

assigned (this value is also known as the “adaptation”).  This efficiency corresponds to the 

performance of an individual in solving a given problem.  For example, if the problem of 

the maximization of a function is considered, the efficiency of the individual will increase 

with its ability to maximize this function.   

 

After having determined the efficiency of the individuals, a reproduction is performed.  

The individuals are copied in proportion to their efficiency.  For example, if individual 1 

is reproduced two times, individual 2 will be reproduced four times and individual 3 will 

be reproduced one time.  This behavior is similar to that in the real life.  The better an 

individual is adapted to its environment (it protects itself better against predators, and it 

eats better), the more is its reproductive capacity. 

  



 51 

After having determined the efficiency function and performing the breeding step, 

“crossovers” between individuals are performed.  The more efficient an individual is in 

solving a problem, the more it shares parts of its chromosome with a large number of 

other individuals.  To select an individual for this operation, a wheel, on which each 

individual fills an area proportional to its efficiency, is used (this process is called roulette 

wheel selection).   

 

Merging the starting individual with the individual, which it is associated with, is 

performed.  This operation is called a crossover.  To do so, a position in the binary code 

of the individuals is selected randomly.  At this position, the code is broken and the right 

hand side parts between the two individuals are swapped.  After repeating this operation 

for all the individuals, two new elements in the results for each pair of individuals are 

obtained.  So, the population increases its size (it doubles its size).  At this point, to keep a 

constant number of individuals in the population; either the whole population is kept or 

less efficient individuals are removed.   

 

Lastly, a mutation operation in a gene of an individual is applied.  To do so, some 

individuals are selected randomly (in general, the probability of selection for a mutation is 

small).  Lastly, at this position, a 0 is changed into 1 or vice versa.   

 

The process is started and repeated until a stopping criterion is reached (for example, 

some maximum number of iterations).   

 

 

 

Algorithm 5.1:  A Genetic Algorithm 

 

 

Population initialization 

Objective function computation 

Computation of the efficiency 

For  i =1 to MaxIter 

   Random selection, 

   Selection proportional to the efficiency, 
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   Crossover, 

   Mutation, 

   Objective function computation, 

   Computation of the efficiency, 

End For 

 

  

An evolutionary algorithm is similar to a genetic algorithm with the exception that it does 

not contain crossover operator.  Genetic algorithms are well adapted to dealing with 

multiobjective optimization problems.  The huge number of papers which have been 

published about this subject testify to this.  Moreover, this domain is very dynamic and 

has not stopped growing.  The steps of a genetic algorithm, when it is used to solve a 

multiobjective optimization problem, are as follows: 

 

•  Population initialization 

•  Computation of the efficiency of the individuals in the population 

•  Vector/efficiency transformation 

•  Crossover 

•  Mutation 

•  Selection 

 

In vector/efficiency transformation step a vector (which contains the objective function 

values of each individual) is transformed into efficiency.  Various strategies, which will 

be described in the following subsections, can be adopted.  All of the genetic algorithms 

which deal with multiobjective optimization problems follow this sequence.   

 

5.2.2. The Vector Evaluated Genetic Algorithm (VEGA) Method 

 

Using this method; a multiobjective optimization problem can be solved without having 

to merge all the objective functions into one [66].  The VEGA algorithm uses a 

population of N individuals.  These N individuals are divided into k groups (k corresponds 

to the number of objective functions of the problem) of /N k  individuals (where N is a 

multiple of k).  At each group, an objective function is computed.  By this objective 
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function, the efficiency of an individual in the group is determined.  Then, individuals are 

mixed and a crossover step is performed with respect to the efficiency of each individual.  

The method is composed of 5 steps.  These steps are: 

 

 Iteration i.  Initialize a population of size N. 

 Create k groups (subpopulations). 

 Compute the efficiencies.  Mix the individuals. 

 Apply the classical genetic algorithm (crossover-mutation-selection). 

 Go on to the next iteration (i+1). 

 

The danger with this method, which can be obtained, is that, at the end of the 

optimization, a population composed of mean individuals with respect to all the objective 

functions.  Such a population does not allow one to obtain a good approximation of the 

tradeoff surface.  Instead, the population will be concentrated around a mean “point”.  

Tricks have been found to overcome this effect (use of species inside a group, etc.).   

 

Moreover, it has been shown that this method is equivalent to the weighted sum of 

objective functions method.  Therefore, it does not allow us to find all of the solutions 

hidden in concavities. 

 

5.2.3. The Multiple Objective Genetic Algorithm (MOGA) Method 

 

This method is presented in [67].  It uses a domination relation to compute the efficiency 

of an individual. This method is based on the relation of domination in the Pareto sense.  

Here, the “rank” of an individual (an order number which allows one to rank an individual 

with respect to the others) is given by the number of individuals which dominate the 

considered individual.  For example, consider an individual at generation which is 

dominated by 
( )t

i
p  individuals, the rank of this considered individual is given by  

 

 

                                              
( )( , ) 1 t

i i
rank x t p= + .                                                           (5.7) 
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Algorithm 5.2:  The MOGA Algorithm 

 

 

Population initialization 

Computation of the values of the objective functions 

Assignment of a rank by use of domination 

Assignment of efficiency by use of the rank 

For i = 1 to G (G represents number of individuals) 

   Random selection in proportion to the efficiency 

   Crossover 

   Mutation 

   Computation of the objective functions 

   Assignment of a rank by use of domination 

   Assignment of efficiency by use of the rank 

End for 

 

 

In some cases the MOGA method does not provide a good diversity of solutions for the 

approximation of the tradeoff surface.   

 

5.2.4. The Nondominated Sorting Genetic Algorithm (NSGA) 

 

This method is based upon MOGA method described in the preceding section.  The main 

difference occurs during the computation of the efficiency of an individual [68].  It is 

based on a classification using many levels of individuals.  In a first step, before 

proceeding to the selection, a rank is assigned to each individual of the population.  All 

the nondominated individuals with the same rank are ranked into this category.  A dummy 

efficiency is assigned to this category.  This efficiency is inversely proportional to the 

Pareto rank of the considered category.   

 

The individuals of the considered category are uniformly spread inside it.  So, a good 

approximation of the trade-off surface or a good diversity of solutions is desired. 
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To maintain this diversity inside the population, a new efficiency value is assigned to 

these ranked individuals.  To do so, following formula is used: 

 

 

                                                      1

( ( , ))
K

i

j

m Sh d i j

=

=∑                                                      (5.8) 

 

 

                           

2

( , )
1               if  ( , )    

( ( , ))

0                                  otherwise              

share

share

d i j
d i j

Sh d i j
σ

σ

  
 − < =   

                    (5.9)

  

 

 

Here, K corresponds to the number of individuals in the considered category, and ( , )d i j  

corresponds to a distance between individual i  and individual j .  
share

σ  is the influence 

distance.  As in the above expression, all the individuals which are sufficiently close (for 

which the distance ( , )d i j  is lower than 
share

σ  ) are taken into account in the computation 

of 
i

m .  The others are ignored.   

 

The efficiency value of individual i  inside the considered category is 

 

 

                                                            
i

i

F
f

m
=

                        

                                       (5.10) 

 

 

where F  is the value of the efficiency assigned to the category to which the individual 

belongs.   

 

After performing computation for individual I, the individuals of this group is ignored.  

The process continues with the remaining individuals, where a new classification, a new 

categorization and a new sharing operation are made.  This process is repeated until all 

the individuals have been treated. Because the individuals which have a Pareto rank equal 

to 1 have the best efficiency, they are reproduced more than the others.  This property 

allows us to obtain a quicker convergence toward the tradeoff surface. 
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Algorithm 5.3: The NSGA Algorithm 

 

 

Population initialization 

 

Computation of the values of the objective functions 

Assignment of a rank by use of the domination for each tradeoff surface 

Computation of the enumeration of the neighboring points 

Assignment of a shared efficiency 

For i = 1 to G 

   Random selection in proportion to the efficiency 

   Crossover 

   Mutation 

   Computation of the values of the objective functions 

   Assignment of a rank by use of the domination for each tradeoff surface 

   Computation of the enumeration of the neighboring points 

   Assignment of the enumeration of the neighboring points 

   Assignment of a shared efficiency 

End For 

 

 

The efficiency of this method lies in the fact that all objective functions are reduced to a 

dummy efficiency value obtained using the ranking with respect to the Pareto rank.  This 

method has the drawback that it is sensitive to the value of 
share

σ . 

 

For this method, the number of comparisons performed on a population for one 

generation is the same as with the MOGA method.  Nevertheless, an excess cost due to 

the sharing appears.  This excess cost is proportional to ( 1)N N× − .   
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5.2.5. The Niched Pareto Genetic Algorithm (NPGA) Method 

 

NPGA is based upon the NSGA method described in the preceding section.  The main 

difference occurs during the selection process [69].   

 

In a classical genetic algorithm, the method of selection between two individuals uses a 

selection wheel.  In the present method, individuals change in the selected way.  Instead 

of comparing two individuals, a group of  I  individuals are used.  If the individuals are 

either dominated or nondominated, a sharing of the efficiency value is used.  The 

selection function chooses an individual from the population S.  The values of 
dom

t  and 

share
σ  must be given by the user.  As this method does not use the Pareto selection on the 

whole population, but just on a part at each run, it is very fast.  Nevertheless, it requires 

from the user the parameters 
dom

t  and 
share

σ , on which the performance of the algorithm 

depends.  In [70] the techniques, which “automatically” tune these parameters, can be 

found.   

 

 

 

Algorithm 5.4: The NPGA Algorithm  

 

  

Population initialization 

Computation of the values of the objective functions 

For i = 1 to G 

   Tournament selection between two individuals (use of 
dom

t ) 

    Only candidate 1 is dominated: Select candidate 2 

    Only candidate 2 is dominated: Select candidate 1 

        Perform an efficiency sharing 

        Select the candidate with the smaller number of neighbors (use of  
share

σ ) 

   Crossover 

   Mutation 

   Computation of the values of the objective functions 

End For 
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5.3. STRENGTH PARETO EVOLUTIONARY ALGORITHM (SPEA2) 

 

In this study, we use SPEA2 algorithm to solve our multiobjective optimization problem 

given in chapter 4.  Apart from the previously presented algorithms in this section, 

SPEA2 uses elitism. 

 

Definition 5.10:  Let t
P , a population obtained from a given genetic algorithm after t 

iterations (generations), be given.  Let ( )t
P x , the probability that an individual t

x P∈  is 

selected for the crossover and/or mutation step during generation t, be given.  Then the 

generic algorithm is said to be “elitist” if and only if, for a given preference relation ≺  for 

a given decision problem, the following condition is satisfied: 

 

 

                                     

with 

 

                                                                              (5.11)  

              
 

                                                                                                                  (5.12)
 

 

 

The operation  corresponds to the merging of all the sets r
P  with r t≤ .  So  

corresponds to the non-dominated individuals of t
P .   

 

The main idea of elitism is not to forget to include the best solution obtained, one 

generation after another.  In mono-objective optimization, it is common to save the best 

solution obtained during the optimization process.  In multiobjective optimization, a 

similar process consists in putting into an archive all the non-dominated individuals 

obtained during the optimization.  This archive represents one of the best approximations 

of the trade-off surface.  Moreover, this archive is used just to save non-dominated 

individuals; it does not change the behavior of the genetic algorithm.   

 

Similar to most of the multiobjective evolutionary methods mentioned, SPEA2 uses a 

Pareto approach, which is based on non-dominated solutions.  In SPEA2, the Pareto set is 
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externally stored and updated after each generation, so that it contains all the non-

dominated solutions detected from the beginning.  The external set of a given iteration is 

obtained by selecting the non-dominated solutions among set formed by the current 

population and the external set of the previous iteration.  If the size of the new archive is 

less than a predefined size, it is then filled with the dominated solutions having best 

fitness values.  If this number is high than allowed, an archive truncation procedure which 

does not loose boundary points is invoked [71]. 

 

The fitness of solutions (external + current population) is obtained by first calculating the 

strength of each individual, i.e.  the number of solutions among the external and current 

population it dominates.  Next, an individual’s raw fitness is set to the sum of the 

strengths of the solutions that dominate it.  Note that zero raw fitness value for a solution 

implies that it is non-dominated.  Although this raw fitness assignment provides a sort of 

niching mechanism based on the concept of Pareto dominance, it may fail when most 

individuals do not dominate each other.  Therefore, additional density information is 

incorporated to discriminate between individuals having identical raw fitness values.  The 

density estimation technique used in SPEA2 is an adaptation of the k
th

 nearest neighbor 

method, where the density at any point is a decreasing function of the distance to the k
th
 

nearest data point.  Then, the density estimate is the inverse of the distance to the k
th
 

nearest neighbor [71].  This value is assured to be less than one.  Finally, the fitness of a 

solution is set to the sum of its raw fitness and density estimate.  This further implies that 

solutions having fitness close to zero are more preferable.   

 

The population of the next generation is obtained by a selection based on binary 

tournaments with replacement; two solutions from the external set are randomly selected, 

the best one is copied, original solutions are returned to the external set and the copy is 

added to the mating pool.  This process is repeated until new population size reaches its 

limit.  At the end of the algorithm, we only keep from the last population the individuals 

that represent a feasible solution.  That means that for all the survivors the value of the 

objective given in equation is strictly positive.   
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Algorithm 5.5: The SPEA II Algorithm 

 

 

Input:   (population size),  (archive size),  

 (maximum number of generations) 

Output:  (non-dominated solutions set)  

Begin 

 t = 0; 

 Generate initial population ; 

 Create the empty archive ;  

 While (t ≤ T) do 

  Calculate fitness of individuals in  and ; 

  Copy all non-dominated individuals in  and  to ; 

  If size  is greater than  then  

   reduce  by means of truncation operator; 

  If size  is less than  then  

   fill  with dominated individuals in  and ; 

  Perform binary tournament with replacement on  in order 

  to fill  up to size ; 

  Apply mutation operators to ; 

  t = t + 1; 

 End; 

 Set A to the set of non-dominated solutions in . 

End. 
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5.4. ADDITIONAL SETTINGS RELATED TO THE PROBLEM 

 

To solve our problem, we use an evolutionary programming approach as defined by [72], 

which has already provided good results on combinatorial optimization problems such as 

Traveling Salesman Problem [73].  The main feature of this evolutionary approach is that 

there is no crossover operator, and all individuals are parents, without any previous 

evaluation. 

 

5.4.1. Solution Encoding 

 

Given that any solution having more machines than necessary compared to the LHS of 

the equation (4.4) can not be optimum, xic variables are directly related how yjkic variables 

are determined.  Moreover, 
ic

x′  is calculated from xic by Equation (4.7) and there is no 

interest to open a cell while there is no operation destined to that cell ( 0
c

z = ) given 

Equation (4.6).  Therefore, it suffices to code yjkic variables for a solution of our 

formulation.  In the vector coding of the yjkic variables, the vector elements are related to 

part  j = 1, …, J and operation k = 1, …, Kj, and hence there are 
1

j

j

j

K

=

∑  elements.  The 

solution vector hold respectively the indices of the cell (c) to which the operation is 

assigned.  Since only one type of machine is allowed to undertake the operation, it is 

determined easily.  With this coding, we can guarantee the feasibility regarding to 

equations  (4.4) – (4.7). 

 

5.4.2. Mutation 

 

From a current solution population, we systematically obtain the offspring by duplicating 

and mutating each individual, and selecting the solutions that will belong to the next 

generation. To modify the cell where a part’s operation is allocated, we only consider 

three mutations. With probability , we randomly select two operations and create a new 

GT-cell with these setting. With probability , we randomly select two operations 

assigned to two different cells (FL-cell or CM-cell) and with probability , we allocate 

one of the operations to the cell of the other operation. With probability , we 
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switch the cells where the operations are allocated. These mutations ensure the 

connectivity of our search space. Moreover, any mutation violating constraints given in 

(4.8) is not allowed by construction. 

 

5.4.3. Constraints 

 

The manner a solution is coded and the mutation operator is used, we can always ensure 

feasibility with respect to constraint sets (4.4) – (4.8).  To take constraint sets (4.9) – 

(4.10) into account, several possibilities exist [74, 75, 76].  In our multi-objective 

approach, the aggregated satisfaction degree of these two constraint sets is considered as a 

supplementary objective which is maximized to attain feasible solutions [77].  We assume 

that the problem addressed has solutions that satisfy these constraints with a positive 

satisfaction degree.  The aggregated satisfaction degree is obtained by means of the 

quantifier guided OWA operator with the quantifier “the most” [35, 78].  Then, our fourth 

objective is given with the equation (5.12) 

 

 

 
(5.13) 

 

where  is the largest element among , and 

 and  are defined as in chapter 4. 



6. ILLUSTRATIVE EXAMPLE 

 

 

 

In order to validate the proposed approach, we created an artificial example for which the 

best solution (best on all objectives) is known by construction, and the algorithm is 

expected to find this solution.  We consider an ideal workshop where the machines can be 

grouped into totally independent CM-cells and totally independent FL-cells.  The 

investigated manufacturing system is to be designed for 30 parts and 10 machine types.  

Important information related to the parts is given in Table 6.1.  Part unit processing times 

for machine types are given in Table 6.2.  The cost of machines ( FIX

i
c ) is selected as 

(0.35, 0.70, 0.49, 0.44, 0.41, 0.37, 0.69, 0.60, 0.61, 0.86), the capacity of each machine 

type is equal to 2400 time units, and the acceptable and unacceptable levels (
1

i
β  and 

2

i
β . 

respectively) for the number of identical machines of each type are selected as  (2-5, 3-7, 

3-7, 5-9, 4-8, 3-7, 5-9, 5-9, 5-9, 5-9).  Similarly, the acceptable and unacceptable cell size 

limits ( 1α  and  2α  respectively) are selected as 15 and 20 respectively. 

 

The EA described in chapter 5 has been implemented in Matlab environment on a PC and 

run with a population of 200 individuals and 20 individuals as the maximum size for the 

external solution set.  We compute the final Pareto set after ten runs of the algorithm, 

where each run consists of 700 iterations.  It is observed that the algorithm was able to 

find the single optimum solution before 500 iterations.  Figure 6.1 illustrates the 

associated optimum solution.  The objectives’ values for the optimum are (23.02, 0.1424, 

1.0, 1.0).  The composition of the cells is given in Table 6.3 .  According to this solution, 

parts 1, 2, 7, 8, 9, 10, 12, 16, 17, 18 and 21 reside in CM-cell 1; parts 3, 4, 11, 15, 19, 20, 

22 and 24 reside in CM-cell 2; parts 5, 6, 13, 14 and 23 reside in CM-cell 3 and finally all 

other parts 25-30 are machined in FL-cells. 
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Table 6.1: Routings, Maximum Similarities, Coefficient of Variations, Demands, Costs of 

Machining in CM-cells, Costs of Machining in FL-cells for the illustrative example 

Parts ROUTING MS CV 
j

d  
CMC

j
c  

CFC

j
c  

1 6 - 5 - 8 - 7 - 9 - 4 - 10 0.9844 0.0750 390 0.0937 0.9100 

2 5 - 8 - 7 - 9 - 4 - 10 0.9796 0.2354 450 0.0973 0.9060 

3 2 - 9 - 6 - 7 - 1 - 3 0.9796 0.0513 315 0.0937 0.9100 

4 8 - 10 - 2 - 4 - 6 - 7 - 1 - 3 0.9877 0.1643 260 0.1120 0.8890 

5 4 - 10 - 9 - 5 - 3 - 4 - 9 - 7 0.9844 0.0929 430 0.0944 0.9090 

6 4 - 10 - 9 - 3 - 4 - 9 - 7 0.9844 0.0837 395 0.0937 0.9100 

7 6 - 8 - 5 - 7 - 9 - 4 - 10 0.9844 0.0557 290 0.0937 0.9100 

8 2 - 8 - 5 - 8 - 7 - 9 - 4 - 10 1.0000 0.0915 350 0.0941 0.9090 

9 2 - 4 - 5 - 8 - 7 - 9 - 10 0.9722 0.0724 385 0.0937 0.9100 

10 2 - 4 - 8 - 5 - 8 - 7 - 9 - 4 - 10 0.9877 0.1678 475 0.1110 0.8900 

11 8 - 2 - 9 - 4 - 6 - 7 - 1 - 3 0.9877 0.2052 430 0.1030 0.8990 

12 6 - 8 - 5 - 8 - 7 - 9 - 4 - 10 0.9877 0.2065 405 0.1030 0.9000 

13 10 - 9 - 3 - 4 - 9 - 7 0.9796 0.0658 100 0.0937 0.9100 

14 9 - 5 - 3 - 4 - 9 - 7 0.9796 0.2034 350 0.1040 0.8990 

15 7 - 8 - 2 - 9 - 4 - 7 - 1 - 3 0.8167 0.1131 480 0.1000 0.9030 

16 8 - 5 - 8 - 7 - 9 - 4 - 10 0.9844 0.0573 165 0.0937 0.9100 

17 2 - 8 - 5 - 8 - 7 - 9 - 4 - 10 1.0000 0.0782 115 0.0937 0.9100 

18 4 - 8 - 5 - 8 - 7 - 9 - 4 - 10 0.9877 0.1390 245 0.1080 0.8940 

19 8 - 10 - 2 - 9 - 4 - 6 - 7 - 1 - 3 1.0000 0.0890 220 0.0937 0.9100 

20 7 - 10 - 9 - 4 - 6 - 7 - 1 - 3 0.7347 0.2351 340 0.3000 0.7000 

21 6 - 4 - 8 - 5 - 8 - 7 - 9 - 4 - 10 0.9877 0.1144 325 0.1010 0.9020 

22 8 - 10 - 2 - 9 - 4 - 6 - 7 - 1 - 3 1.0000 0.0957 430 0.0952 0.9080 

23 10 - 9 - 5 - 3 - 4 - 9 - 7 0.9844 0.2294 450 0.0984 0.9050 

24 2 - 9 - 4 - 6 - 7 - 1 - 3 0.9844 0.1824 300 0.1080 0.8940 

25 8 - 3 - 10 - 8 - 6 - 1 - 8 0.2571 0.6296 405 0.7000 0.3000 

26 7 - 8 - 1 - 8 - 6 - 5 - 6 0.4000 0.7180 125 0.6000 0.4000 

27 3 - 7 - 3 - 7 - 8 - 6 - 9 0.2571 0.6306 480 0.7000 0.3000 

28 3 - 8 - 2 - 1 - 7 - 5 - 2 0.3117 0.8742 120 0.9050 0.0947 

29 1 - 7 - 4 - 1 - 4 - 8 - 6 0.4000 0.8706 360 0.7900 0.2100 

30 3 - 5 - 9 - 3 - 1 - 2 - 5 0.3117 0.6456 420 0.7000 0.3000 
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Table 6.2: Unit processing times on machine types 

Parts Processing times (mn) 

1 2.00 0.52 1.67 1.68 1.52 1.07 1.30   

2 1.83 1.69 0.46 1.17 1.09 1.31    

3 1.23 1.55 0.70 0.64 0.79 0.53    

4 1.70 1.89 0.32 1.09 1.48 0.73 0.78 0.91  

5 1.40 1.98 0.71 1.78 1.10 1.54 1.12 0.74  

6 0.56 1.51 0.67 1.43 0.51 0.41 1.62   

7 1.85 0.73 1.97 1.35 1.45 0.83 1.95   

8 1.65 1.39 1.38 1.60 1.20 0.59 1.49 1.85  

9 1.88 0.63 0.62 1.51 1.35 1.40 1.21   

10 2.00 1.25 1.20 1.77 0.57 1.83 1.32 1.34 1.32 

11 1.14 1.09 1.04 1.28 1.30 0.87 0.92 0.48  

12 1.15 1.89 0.78 0.78 1.46 1.37 0.65 0.31  

13 1.33 0.72 0.95 1.03 0.57 1.36    

14 0.44 1.71 1.58 0.60 1.04 1.65    

15 0.27 1.36 1.23 1.27 0.81 0.59 0.88 1.04  

16 0.49 0.68 1.13 1.40 1.52 0.33 0.88   

17 1.03 1.02 1.72 1.86 1.73 1.46 1.20 0.78  

18 1.01 1.33 1.59 0.64 1.02 1.81 0.97 1.57  

19 0.75 1.67 1.00 0.40 1.60 1.23 0.68 0.75 0.95 

20 1.07 1.78 0.70 1.26 1.12 0.83 0.94 0.98  

21 1.77 0.68 1.59 1.71 1.11 1.34 1.33 1.32 1.75 

22 1.43 1.93 0.93 0.61 0.45 0.72 0.42 0.87 1.03 

23 1.47 0.40 1.93 1.39 0.54 0.71 1.50   

24 0.45 0.61 0.45 0.76 0.73 0.53 0.92   

25 1.12 1.10 1.87 1.04 2.00 1.62 0.94   

26 0.95 1.18 1.41 0.66 0.97 0.70 1.38   

27 1.04 1.26 0.99 1.98 0.92 1.71 1.43   

28 1.48 1.50 1.68 0.90 1.39 0.58 1.44   

29 1.29 0.96 1.78 0.45 1.90 0.75 1.30   

30 1.25 0.94 1.87 0.49 0.82 1.86 1.51   
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Table 6.3: Number of machines of each type for the single optimum 

 

 

 

 

Figure 6.1: Representation of the best solution 

 Machine Types 

 1 2 3 4 5 6 7 8 9 10 

CM-Cell 1 0 1 0 2 2 1 2 3 2 2 

CM-Cell 2 1 1 1 1 0 1 1 1 1 1 

CM-Cell 3 0 0 1 1 1 0 1 0 1 1 

FL-Cells 1 1 1 1 1 1 1 1 1 1 

Total 2 3 3 5 4 3 5 5 5 5 



7. CONCLUSION 

 

 

   

This dissertation has presented a distinct approach to form hybrid manufacturing systems. 

The notion of part stability is introduced and it is associated with the part similarity and 

the coefficient of variation of its demand. The approach is open to incorporate other 

criteria as well to quantify the stability. Then, it is aimed to favor cellular organization of 

machines that process stable parts, and to benefit from the flexibility of the functional 

layout that enables to process less stable parts. We can underline that if all the parts are 

stable enough, our formulation will represent the classical cell formation problem, which 

can be again solved by our approach.  

 

The use of the fuzzy set theory has allowed the imprecision of the data available in the 

industry to be taken into account in a more satisfactory way, in particular when one has to 

evaluate the stability of products.  

 

In this study, three objectives are investigated. One objective aims to separate parts into 

two groups as stables and non-stables by a stability and instability cost of part’s 

operations. The second objective is proposed to keep within manufacturing cell flow 

appropriate. The third and final objective is related with the total machine investment and 

operating costs related to the design.    

 

The hybrid manufacturing design problem is formulated as a constrained multiobjective 

integer programming problem and an evolutionary algorithm is used to solve it. An 

interesting aspect of using an evolutionary approach is that it uses a population of non-

dominated solutions, which offers interesting possibilities to handle several criteria in the 

optimization search. Among various evolutionary strategies, strength pareto evolutionary 

algorithm (SPEA2) is selected due to its efficiency to provide quality solutions. This 

efficiency is related with elitism mechanism, in other words the ability of SPEA2 to keep 
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best non-dominated solutions from iterations to iterations and the generation of the new 

populations based on these elites.  

 

We are now interested in improving the performance of the optimization search in terms 

of the convergence speed, and trying different ways of handling criteria used. Running 

more experiments on other data sets (including concrete industrial cases) is also planned. 

Another perspective is to work on a user friendly graphical interface that can collect data 

easily and present solutions to the designer who can have minor knowledge on the details 

of the evolutionary programming. This will further increase the adoption of the theoretical 

findings. 
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