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Abstract 
 

 

Image categorization has become more and more important in the last decade with the 

development of Internet, digital cameras becoming widespread and the growth in the 

size of image databases.  Image categorization task consists of categorizing real-world 

natural scenes based on different features. The objective is to regroup images into 

semantically meaningful categories.  

 

Computer vision researchers have been working to design computational systems that 

are capable of automatic scene categorization. A computational system that can 

perfectly mimic the human visual system and perception in order to categorize images is 

still missing.  

 

In this work, the categorization task is accomplished using Support Vector Machines 

(SVM) that has been applied to many real-world problems producing state-of-the-art 

results. These include text categorization, biological data mining and handwritten 

character recognition. In other words SVM is a very effective method for general 

purpose pattern recognition and classification.   

 

For an effective use of a classification algorithm, the data that is the subject to the 

classification has to be represented in a suitable way. We insisted on image 

representation using local, global and intermediate representations in order to obtain 

good results and take full advantage of SVM. 



Résumé 
 

 

Catégorisation d’image est devenu de plus en plus important la dernière décade avec les 

progresse of internet, cameras numérique et l’augmentation de taille des bases d’images. 

La catégorisation d’images consiste a catégoriser les scènes naturels selon différents 

caractéristiques d’image. Le but est de regrouper les images dans des catégories 

sémantiques. 

 

Les chercheurs de vision artificielle travaillent pour concevoir un système informatique 

qui est capable de faire la catégorisation automatisée d’images. Un système 

informatique qui peut remplacer parfaitement le système visuel humain et  ses 

capabilités de perception pour le but de catégorisation n’existe pas. 

 

Dans ce travail, la tache de catégorisation est accompli par les Machines de Vecteur a 

Support  (MVS) qui sont utilise dans divers application comme catégorisation de texte, 

data mining biologique et  reconnaissance de caractère manuscrit. Autrement dit, MVS 

est une méthode très efficace pour la reconnaissance de modèle et pour la classification 

en générale. 

 

Pour utiliser un algorithme de classification d’une manière efficace, il faut que la 

donnée qu’on veut classifier soit bien représentée. Nous avons insisté sur le sujet de 

représentation d’image en utilisant les représentations locales, globales et intermédiaires 

pour pouvoir bien se servir des MVS. 

 



Özet 

 

 

İnternetin gelişip büyümesi, dijital fotoğraf makinelerinin yaygınlaşması ve buna bağlı 

olarak resim veri tabanlarının büyümesi ile birlikte resim sınıflandırma son yıllarda 

büyük önem kazandı. Resim sınıflandırma esas olarak verilen bir fotoğrafın farklı 

özelliklere dayalı olarak sınıflandırılmasıdır. Amaç resimlerin anlamlı sınıflara 

ayrılmasıdır. 

Yapay görme alanında çalışan araştırmacılar resim sınıflandırma işini otomatik olarak 

yapabilen bir sistem tasarlamaya çalışmaktadırlar. İnsanın görme ve algı yeteneklerini 

mükemmel bir şekilde taklit ederek resim sınıflandırabilen bir sistem henüz 

bulunmamaktadır. 

Bu çalışmada sınıflandırma işi Destekçi Vektör Makineleri (DVM) kullanılarak 

yapılmıştır. DVM’ler el yazısı tanıma, doküman sınıflandırma ve veri madenciliği 

alanlarında kullanılan bir tekniktir. Başka bir deyişle DVM genel olarak tanıma ve 

sınıflandırma alanlarında kullanılan önemli bir araçtır. 

Herhangi bir sınıflandırma yönteminin etkin bir şekilde kullanılması için 

sınıflandırılacak verinin iyi bir şekilde nitelendirilmesi zorunludur. Biz bu çalışmada 

resimleri niteleme konusuna özellikle önem verdik ve resimleri yerel, genel ve orta 

seviye özellikler olmak üzere farklı seviyelerde niteledik. Bu şekilde DVM 

yönteminden tam anlamıyla fayda sağlamayı amaçladık 
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1 INTRODUCTION 

 

 

1.1 Motivation 
 

The objective of this work is to establish an efficient system that is able to categorize 

pictures into semantically meaningful categories.  Pictures can be regrouped in many 

different classes like portrait, indoor, outdoor etc.  The goal of this work is to 

accomplish this task in real-time or in a period of time comparable to that. Such a 

system can offer great use in numerous areas like, large image databases, digital 

cameras or image classification related operations. 

 

Image classification/categorization has become more and more important in the last 

decade with the development of Internet, digital cameras becoming widespread and the 

growth in the size of image databases.  Image classification task consists of categorizing 

real-world natural scenes based on different features.  This classification’s objective is 

to regroup images into semantically meaningful categories.  

 

Because of the difficulty of the problem, a combined cognitive and computational 

approach is followed to understand and implement scene categorization. Computer 

vision researchers have been working to design computational systems that are capable 

of automatic scene categorization.   

 

In this work, the classification task is accomplished using Support Vector Machines that 

have been applied to many real-world problems producing state-of-the-art results. These 

include text categorization, image classification, biosequence analysis, biological data 

mining, engine knock detection, database marketing and handwritten character 

recognition.
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1.2 Thesis Organization 
 
This thesis is organized as follows: in Introduction (Chapter 1) the subject and the scope 

of this thesis is presented with brief presentation of tools and techniques which are 

needed to be used.  In Related Work (Chapter 2) a detailed survey of literature is 

presented.  And the main algorithms and techniques are studied in detail.  In Image 

Representation Chapter (Chapter3), local, global and intermediate image representation 

approaches are studied and  detailed review of the literature related in these subjects are 

presented as well.  In Image Compression Chapter (Chapter 4) state-of-the-art image 

compression techniques are reviewed.  In Experimentations Chapter (Chapter 5) a series 

of experimentations about image representation, image compression, and image 

classification are presented and the results are discussed.  Finally in Conclusions 

Chapter (Chapter 6) the essential ideas about this work are summarized. 



2 RELATED WORK 

 

 

2.1 Introduction 

In this chapter a detailed survey of literature of image categorization area is presented. 

And the main algorithms and techniques are studied in detail.  Support Vector Machines 

are specifically presented in detail. Multi-class classification strategies using SVM are 

studied as well.  This chapter has an important role for pointing out the reasons why we 

have chosen SVM as a classification tool for our image classification objective. 

2.2 Previous Work on Image Categorization 

The objective of the classification or pattern recognition task is to optimally extract 

patterns based on certain conditions and to separate one class from the others. Pattern 

recognition was often achieved using linear and quadratic discriminants, the k-nearest 

neighbor classifier, template matching and Neural Networks.  These methods are 

basically statistic.  The problem of using these recognition methods has to construct a 

classification rule without having any idea of the distribution of the measurements in 

different groups.  Support Vector Machines (SVMs) have gained prominence in the 

field of pattern classification.  They are competing with other techniques such as 

template matching and Neural Networks for pattern recognition. 

 

The previous works on the image classification subject can be studied by the 

classification approaches that have been preferred.  We can consider different categories 

that correspond to different classification techniques while reviewing these previous 

works.  
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The construction of a classification procedure from a set of data for which the true 

classes are known has been variously termed pattern recognition, discrimination, or 

supervised learning (in order to distinguish it from unsupervised learning or clustering 

in which the classes are inferred from the data).  Classification is studied in two basic 

categories which are supervised classification and unsupervised classification. If a 

labeled set of data points are available, supervised classification is applied. In the 

contrary case unsupervised classification is performed.  In the scope of this work, 

supervised classification will be used. A classifier is a system that performs a mapping 

from a feature space X to a set of labels Y.  Basically what a classifier does is to assign 

a pre-defined class label to a sample.  This should not be confused with clustering 

where the algorithm autonomously partitions the data into clusters in a way so that the 

data in each cluster is grouped in feature space.  Supervised classification is a method 

where you decide the classes while clustering is an unsupervised method where the 

algorithm groups the data automatically. 

 

Three main historical subjects of research can be identified: statistical, machine learning 

and neural network.  These have largely involved different professional and academic 

groups, and emphasized different issues. All groups have however had some objectives 

in common. They have all attempted to derive procedures that would be able:  

• to equal, if not exceed, a human decision-maker’s behavior, but have the 

advantage of consistency and, to a variable extent, explicitness,  

• to handle a wide variety of problems and, given enough data, to be extremely 

general,  

• to be used in practical settings with proven success. 

 

The following is a brief description of each approach. Let c1,c2,…,cn be the finite set of 

n classes for an image scene. The probability P(c,f) gives the likelihood that the correct 

class is c,, for the d-dimensional feature vector f. There are two issues to be considered. 

The first is the a priori probability of each class. Fortunately, this issue is not a critical 

matter since it can be estimated from the design data set or it can be assumed to be 

equal for all classes.  The second and major issue is to estimate the class conditional 
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probability P(c/f), for each class.  Towards that goal, two main directions are usually 

considered parametric and non-parametric estimation. 

2.3 Parametric Methods 

In parametric methods we consider the ideal case in which the probability structure 

underlying the categories is known perfectly.  This sort of situation does not occur 

frequently in real problems 

 

2.3.1 Parametric Bayes Classifier 

In this approach, an a priori form of the class conditional density p(c|fi) where 

i={1,…,n} is assumed; the parameters in this density are to be estimated.  The design 

data are used to estimate these parameters.  In the Gaussian case the only parameters 

needed to describe P(ci|f) are the covariance matrix and the mean vector.  There are 

many approaches in the literature to estimate these two parameters.  One of the most 

common approaches is the maximum likelihood estimator. 

2.3.2 Fisher’s Linear Discriminant 

This is one of the oldest classification procedures, and is the most commonly 

implemented in computer packages. The idea is to divide sample space by a series of 

lines in two dimensions, planes in 3-D and, generally hyper planes in many dimensions. 

The line dividing two classes is drawn to bisect the line joining the centers of those 

classes; the direction of the line is determined by the shape of the clusters of points [1]. 

2.3.3 Naive Bayes Classifier 

A naive Bayes classifier is a basic probabilistic classifier based on the Bayes Theorem 

with strong independence assumptions.  Naïve Bayes classifiers can be trained very 

efficiently in a supervised learning setting.  In many practical applications, parameter 

estimation for naive Bayes models uses the method of maximum likelihood which is a 

statistical method used to calculate the best way of fitting a mathematical model to 
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some data. Modeling real world data by estimating maximum likelihood offers a way of 

tuning the free parameters of the model to provide an optimum fit. 

Despite its simplicity, Naive Bayes can often outperform more sophisticated 

classification methods. Recently, careful analysis of the Bayesian classification problem 

has shown that there are some theoretical reasons for the apparently unreasonable 

efficacy of naive Bayes classifiers [2].  An advantage of the Naive Bayes classifier is 

that it requires a small amount of training data to estimate the parameters (means and 

variances of the variables) necessary for classification.  Because independent variables 

are assumed, only the variances of the variables for each class need to be determined 

and not the entire covariance matrix 

 

2.3.4 The Naive Bayes Probabilistic Model 

Abstractly, the probability model for a classifier is a conditional model 

( )nFFCp ,...,1 over a dependent class variable C with a small number of outcomes or 

classes, conditional on several feature variables F1 through Fn. The problem is that if 

the number of features n is large or when a feature can take on a large number of values, 

then basing such a model on probability tables is infeasible.  Therefore the model is 

reformulated to make it more tractable. 

Using Bayes Theorem, we write: 

 

( ) ( ) ( )
( )n

n
n FFp

CFFpCp
FFCp

,...,
,...,

,...,
1

1
1 =                   (2.1) 

 

In plain English the above equation can be written as: 

 

evidence
likelihoodpriorposterior ×

=      (2.2) 

 

In practice we are only interested in the numerator of that fraction, since the 

denominator does not depend on C and the values of the features Fi are given, so that 

the denominator is effectively constant. The numerator is equivalent to the joint 
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probability model ( )nFFCp ,...,, 1  which can be rewritten as follows, using repeated 

applications of the definition of conditional probability: 

( )nFFCp ,...,, 1  

( ) ( )CFFpCp n,...,1=  

( ) ( ) ( )121 ,,..., FCFFpCFpCp n=  

( ) ( ) ( ) ( )213121 ,,...,, FFCFFpFCFpCFpCp n=                                                             (2.3) 

and so forth.  Now with the naive conditional independence assumptions: each feature 

Fi is conditionally independent of every other feature Fj for i≠j. This means that 

( ) ( )CFpFCFp iji =,                      (2.4) 

and so the joint model can be expressed as: 

( ) ( ) ( ) ( ) ( )...,...,, 3211 CFpCFpCFpCpFFCp n =  

( ) ( )∏
=

=
n

i
i CFpCp

1

                        (2.5) 

This means that under the above independence assumptions, the conditional distribution 

over the class variable C can be expressed like this: 

( ) ( ) ( )∏
=

=
n

i
in CFpCp

Z
FFCp

1
1

1,...,                                          (2.6) 

where Z is a scaling factor dependent only on nFF ,...,1 , i.e., a constant if the values of 

the feature variables are known. 

Models of this form are much more manageable, since they factor into a so-called class 

prior p(C) and independent probability distributions ( )CFp i . If there are k classes and if 
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a model for p(Fi) can be expressed in terms of r parameters, then the corresponding 

naive Bayes model has (k − 1) + n r k parameters. In practice, often k = 2 (binary 

classification) and r = 1 (Bernouilli variables as features) are common, and so the total 

number of parameters of the naive Bayes model is 2n + 1, where n is the number of 

binary features used for prediction. 

Vailaya et al. [3] designed binary Bayesian classifiers for hierarchical classification of 

vacation images based on color and texture representations.  For this study, every image 

belongs to one category.  At the highest level, images are classified as indoor or 

outdoor; outdoor images are further classified into city or landscape; finally, a subset of 

landscape images is classified into sunset, forest, and mountain classes, which have 

90.5%, 95.3%, and 96.6% classification accuracies, respectively. 

2.3.5 Hidden Markov Model 

A hidden Markov model (HMM) is a tool for representing probability distributions over 

sequences of observations.  Let the variable Yt denote the observation at time t.  This 

can be a symbol from a discrete alphabet, a real-valued variable, an integer, or any other 

object, as long as a probability distribution can be defined over it.  The HHM gets its 

name from two defining properties.  First, it assumes that the observation at time t was 

generated by some process whose state St is hidden from the observer.  Second, it 

assumes that the state of this hidden process satisfies the Markov property: that is, given 

the value of St-1, the current state St is independent of all the states prior yo t-1. In other 

words, the state at some time encapsulates all we need to know about the history of the 

process in order to predict the future of the process. The outputs also satisfy a Markov 

property with respect to the states: St, Yt is independent of the states and observations at 

all other time indices.  Statistical model in which the system being modeled is assumed 

to be a Markov process with unknown parameters, and the challenge is to determine the 

hidden parameters from the observable parameters.  The extracted model parameters 

can then be used to perform further analysis, for example for pattern recognition 

applications. A HMM can be considered as the simples Bayesian network. 

 

In a regular Markov model, the state is directly visible to the observer, and therefore the 

state transition probabilities are the only parameters. In a hidden Markov model, the 
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state is not directly visible, but variables influenced by the state are visible. Each state 

has a probability distribution over the possible output tokens.  Therefore the sequence of 

tokens generated by an HMM gives some information about the sequence of states. 

Hidden Markov models are especially known for their application in temporal pattern 

recognition such as speech, handwriting, gesture recognition, musical score following, 

partial discharges and bioinformatics [4]. 

 

2.3.6 Architecture of a Hidden Markov Model 

The diagram below shows the general architecture of an instantiated HMM (Figure 2.1). 

Each oval shape represents a random variable that can adopt a number of values. The 

random variable x(t) is the hidden state at time t (with the model from the above 

diagram, ( ) },,{ 321 xxxtx ∈ ).  The random variable y(t) is the observation at time t 

( ( ) },,,{ 4321 yyyyty ∈ ).  The arrows in the diagram (often called a trellis diagram) 

denote conditional dependencies. 

 

From the diagram, it is clear that the value of the hidden variable x(t) (at time t) only 

depends on the value of the hidden variable x(t − 1) (at time t − 1). This is called the 

Markov property.  Similarly, the value of the observed variable y(t) only depends on the 

value of the hidden variable x(t) (both at time t). 

 

 

 
Figure 2.1 HMM Diagram 

 

 

Li and Wang [5] proposed an automatic linguistic indexing of pictures (ALIP) system 

that uses the 2D multi-resolution hidden Markov model on features of image.  They 

extracted color components of pixels in 4x4 blocks and energy in high-frequency bands 

x(t-1) x(t) x(t+1) 

y(t) y(t-1) y(t+1) 
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of wavelet transforms for texture.  Color features are extracted using LUV color space. 

They applied either Daubechies-4 or Haar transform for extracting texture features. 

 

2.4  Non Parametric Methods 

 Non parametric methods move yet further from the Bayesian ideal, and we assume that 

there is no prior parameterized knowledge about the underlying probability structure; in 

essence our classification will be based on information provided by training samples 

alone.  Classical techniques such as the nearest-neighbor algorithm play an important 

role here. 

 

2.4.1  Non-Parametric Estimation using Parzen Window 

In the non-parametric approach, no a priori structural form is assumed for P(ci|f). The 

Parzen window approach estimates P(ci|f) for any x using the number of samples in a 

hypercube of dimension h around f.  Mahmoud and El-Melegy used this method for 

remote-sensed image classification [6]. 

 

2.4.2   Non-Parametric Estimation using k-Nearest Neighbor 

The approach directly estimates the a posteriori probabilities.  The k-Nearest neighbor 

rule classifies a point f by assigning it to the class that is most frequently represented 

among the k nearest samples. 

 

The k-nearest neighbour algorithm is a supervised classification technique. It functions 

on the intuitive idea that close objects are more likely to be in the same category.  The 

class label of a new instance is found using the majority vote of its k-nearest 

neighbours.  K is a small positive integer number. If k=1 the new instance is assigned to 

the same class with its nearest neighbour. In binary classification problems, it is helpful 

to choose k to be an odd number in order to avoid difficulties that can be caused by the 

same number of vote.  For example if k=4 and if two of these neighbours belong to 

class A, and the other two neighbours belong to the class B, the algorithm cannot decide 

whether the new instance belong to the class A or class B.  The neighbors are taken 

from a set of instances for which the correct class label is known.  One can consider 
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these neighbors as a training set for the algorithm, though no explicit training step is 

required.  k-Nearest Neighbors is a memory-based method that, in contrast to other 

statistical methods, requires no training (i.e., no model to fit).  In order to identify 

neighbors, the instances are represented by position vectors in a multidimensional 

feature space.  A number of distance measures can be used such as the Euclidian 

distance or the Manhattan distance.  The k-nearest neighbor algorithm is sensitive to the 

local structure of the data.  The prototype examples are vectors in a multidimensional 

feature space.  The ‘training’ phase of the algorithm consists only of storing the feature 

vectors and class labels of the prototype samples. In the classification phase, the test 

sample (whose class is not known) is represented as a vector in the feature space. 

Distances from the new vector to all previously stored prototype vectors are computed 

and k closest samples are selected.  There are a number of ways to classify the new 

vector to a particular class; one of the most used techniques is to predict the new vector 

to the most common class amongst the K nearest neighbors. A major drawback to use 

this technique to classify a new vector to a class is that the classes with the more 

frequent examples tend to dominate the prediction of the new vector, as they tend to 

come up in the K nearest neighbors when the neighbors are computed due to their large 

number.   One of the ways to overcome this problem is to take into account the distance 

of each K nearest neighbors with the new vector that is to be classified and predict the 

class of the new vector based on these distances [1]. 

 

 

 
Figure 2.2 Example of k-NN classification 
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An example of k-NN classification is illustrated in the figure 2.2. The test sample (green 

circle) should be classified either to the first class of blue squares or to the second class 

of red triangles. If k = 3 it is classified to the second class because there are 2 triangles 

and only 1 square inside the inner circle.  If k = 5 it is classified to first class (3 squares 

vs. 2 triangles inside the outer circle) [2]. Vogel and Schiele [7] proposed a semantic 

typicality measure using k-nearest neighbor to classify sub regions.  They represent 

images by concept occurrence vectors consisting of the frequencies of local semantic 

concepts like sky, water, grass, trunks, foliage etc. They did the classification task 

measuring the typicality by computing the Mahalanobis distance between the images.  

The features they used to represent image sub regions are 84-bin HIS color histogram 

and 72-bin edge direction histogram. 

 

2.4.3 Artificial Neural Networks 

Artificial neural network (ANN) is a powerful tool widely used in the context of 

classification.  There is an important number of work in image classification where 

ANNs are used as a classification technique.  ANN is basically a mathematical structure 

based on biological neural networks.  This structure consists of interconnected artificial 

neurons which process information.  In the learning phase, ANNs can be adapted to a 

problem by changing its structure based on the information flow through the network. 

ANNs are used to model complex relationships between inputs and outputs or to 

recognize patterns in the flow of data.  An artificial neural network can be considered as 

a function f(x) ANNs have the network characteristic because of the function f(x) is 

defined as a composition of other functions which can further be defined as a 

composition of other functions.  

 

2.4.4 Artificial Neuron 

An artificial neuron is a mathematical representation of a biological neuron.  It has 

multiple input and output that correspond respectively to dendrites and axons of the 

biological one.  Actions of biological neurons are simulated with numerical coefficients 

applied to inputs.  In a mathematical point view, an artificial neuron is a real valued 

function with multiple variables. Consider the general case of an artificial neuron with 

m inputs (x1,…,xm), an artificial neuron model is a calculation rule that associates an 
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output value to these input.  It is effectively a function with m variables. In the model of 

McCulloch and Pitts a synaptic weight wi is associated to each input. The first operation 

of the neuron is to calculate the weighted sum of the input values in the following way: 
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A w0  is added to this, and the result is transformed with nonlinear activation function φ 

called transfer function. The output corresponding to the input x1,…xm is then obtained: 
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Which is simplified adding a fictive input x0=1 : 
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In the original formulation of McCulloch and Pitts, Heaviside function is used as the 

activation function which has 0 or 1 as output value. In this case the output is: 
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If the sum 
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 Then the output is 1. Else it is 0. w0 is then the activation threshold of the neuron. The 

output 0 corresponds to a inactive neuron [8]. 
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2.4.5  Support Vector Machines 

Support vector machines are a core machine learning technology.  They have strong 

theoretical foundations and excellent empirical successes.  We shall consider SVMs in 

the binary classification setting.  SVM can be applied to multi-class problems as well 

using “one against one” approach combining several binary classifiers [9] or “one-

against-all approach” training m SVM classifiers where each classifier distinguishes 

images in one category from all other m–1 categories [10]. 

 

We are given the training data {x1 ... xn} that are vectors in some space X and their 

labels {y1 … yn} where yi in {-1, l}.  In their simplest form, SVMs are hyper planes 

that separate the training data by a maximal margin.  All vectors lying on one side of the 

hyper plane are labeled as -1, and all vectors lying on the other side are labelled as 1. 

The training instances that lie closest to the hyper plane are called support vectors.  If 

the data are linearly non-separable but non-linearly separable, the non-linear SVM 

classifier will be applied [11, 12]. 

 

The basic idea is to transform input vectors into a high dimensional feature space using 

non-linear transformation Φ, and then to do a linear separation in feature space. To 

construct a non-linear SVM classifier, inner product < x, y > is replaced by a kernel 

function K(x, y). 

 

A kernel is a function K(x, y) that given two vectors in input space, returns the dot 

product of their images in feature space [11]. 

 

( ) ( ) ( )yxyxk ΦΦ= .,                                       (2.12) 

 

There are several different kernels; choosing one depends on the task at hand. One of 

the simplest is the polynomial kernel   

 

( ) dyxyxk ., =                                                (2.13) 
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For example, taking d = 2 and x, y in RxR 
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The dual representation of the decision function is: 
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If the decision function is considered for the optimal hyper plane classifier in dual form 

and apply the mapping Φ to each vector it uses, we obtain: 
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Then the kernel function is applied which will provide a non-linear decision function of 

the form: 
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The function f is used to classify a new point x. 
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2.4.6  Multi-class SVMs 

The problem of multi-classification, especially for systems like SVMs, does not present 

an easy solution.  It is generally simpler to construct classifier theory and algorithms for 

two mutually exclusive classes than it is for N mutually exclusive classes. Platt [13] 

claimed that constructing N-class SVMs is still an unsolved research problem. 

Definition of the k-class classification problem is as follows: 

 

 Given l independent and identically distributed sample (x1,y1)…(xl,yl) where xi 

for i=1…l, is a feature vector and yi is the class label of the corresponding x 

 Find a classifier with the decision function, f(x) such that y = f(x), where y is the 

class label for x 

Support vector machine is basically a binary classifier however there exist several 

methods that can be applied to the original SVM algorithm to deal with k-class 

classification problem.  It is possible to extend binary SVMs to multi-class problems by 

combining them or modify the original algorithm without combining any SVM. These 

different approaches can be categorized in two major titles.  The first one is called ‘all-

in-one’ where all the data is considered in one optimization formulation. This approach 

consists of modifying the original algorithm.  The second one is called ‘divide-and-

combine’ which consists of dividing the multi-class problem into several sub-problems 

that can be solved by binary SVMs. 

 

The methods which have been proposed for solving the k-class problem are listed 

below: 

 Divide-and-combine 

• Using k one-against-all classifiers.  

• Using k(k-1)/2 one-against-one classifiers with one of the voting scheme 

listed below:  

o Majority Voting  

o Pairwise Coupling  

• Decision Directed Acyclic Graph (DDAG) 

• Divide-By-2 (DB2) 
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 All-in-one 

• Construct the decision function by considering all classes at once.  

• Construct a decision function for each class by only considering the 

training data points belong to that particular class. 

2.4.7  Divide-and-combine Methods 

The multi-class classification problem refers to assigning each of the observations into 

one of k-classes.  As two-class problems are much easier to solve, many authors 

propose to use two-class classifiers for multi-class classification.  The methods 

described in the following are used to transform multi-class problems to two-class 

problems. 

 

2.4.7.1  One-against-all 

This is the simplest scheme.  K classifiers will be constructed, one for each class. The 

ith classifier will be trained to classify the training data of class i against all other 

training data.  The decision function for each of the classifier will be combined to give 

the final classification decision on the K-class classification problem. Mathematically 

the ith SVM solves the following problem that yields the ith decision function: 

 

( ) i
T
ii bxwxf +Φ= )(                                      (2.19)     

∑
=

+=
N

j

i
ji

i
ji CwwL

1

2

2
1),(min ξξ                        (2.19a) 

Subject to ( )( ) ,0,1 ≥−≥+ i
j

i
jij

T
ij bxwy ξξφ                          (2.19b)                  

 

Where jy  = 1 if jy = i and jy =-1 otherwise. 

At the classification phase, a sample x is classified as in class i* for which fi* produces 

the largest value 

 

I* = )(maxarg
...1

xfi
K  = K...1

maxarg  ( i
T
i bxw +Φ )( )                     (2.20) 

 



 18

For each point, we have K SVM decision outputs ( ) Kkxfk ≤≤1, .  The class of a point 

is given as ( )xfkkmaxarg .  The final output is the class that corresponds to the SVM 

with the highest output value.  The disadvantage of this method is that the number of 

training samples is too large, so it is difficult to train. 

 

 

 
Figure 2.3 Four one-against-all classifiers. 

 

 

The instances of the class labeled as 1 are separated from the other instances to build the 

first classifier shown in Figure 2.3.  Xuchan Li et al. [14] classified artificial and real 

world images, they represented images by feature vectors of color moments consisting 

of the mean, variance and skewness. They used multi-label SVM, one-versus-all 

method to combine predictions of multiple binary SVM classifiers.  Chen and Wang 

[15] have a region-based approach for image representation. They described regions by 

color, texture and shape attributes.  For color they used LUV color space and for texture 

they used square root of the second order moment in high frequency bands.  Tsai et al. 

[16] chose to represent images with HSV and 3 level Daubechies-4 wavelet 

decompositions which contain texture information. They have region based approach 

and they used SVM with one-against-all method for classification.  Williamowski et al. 

[17] preferred to work with Harris affine detector and SIFT descriptor to represent 

images and they compared Naïve Bayes and SVM classifiers based on these features.  

Fan et al. [18] proposed concept sensitive salient objects to enable more expressive 

representation of image contents that can be obtained by wavelet transformation.  

1vs{2,3,4} 

2vs{1,3,4} 

3vs{1,2,4} 

4vs{1,2,3} 
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Chapelle et al. [19] restricted themselves to global and low-level features; they use HSV 

color histogram (16 bins per color) and chose SVM for classification purpose. 

 

2.4.7.2  One-against-one 

Another major method is called the one-against-one method. It is also called the 

pairwise coupling.  Pairwise coupling is a popular multi-class classification method that 

combines all comparisons for each pair of classes. The total number of classifiers for a 

K-class problem will then be K(K-1)/2 where each one is trained on data from two 

classes.  The training data for each classifier is a subset of the available training data, 

and it will only contain the data for the two involved classes.  The data will be reliable, 

i.e. one will be labeled as +1 while the other as -1.  For training data from ith and jth 

classes, the following binary classification problem is solved: 
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There are different methods for doing the future testing after all the k(k–1)/2 classifiers 

are constructed.  A common way to combine pairwise comparisons is by voting. It 

constructs a rule for discriminating between every pair of classes and then selecting the 

class with the most winning two-class decisions.  Though the voting procedure requires 

just pairwise decisions, it only predicts a class label. Each of the K(K – 1)/2 binary 

SVM classifiers provides a partial decision for classifying a point.  The study of [33] 

shows that combining these decision outputs differently may yield different class 

decisions.  To combine these classifiers, it naturally adopts Max Wins Algorithm that 

finds the resultant class by first voting the classes according to the results of each 

classifier and then choosing the class that is voted most.  Friedman shows circumstances 

in which this algorithm is Bayes optimal.  Kreßel applies the Max Wins algorithm to 

Support Vector Machines with excellent results [20].  The disadvantage of this method 

is that the number of classifiers is too many for every two classes need to be compared. 

So the time of testing is slow.  In many scenarios, probability estimates are desired 

beside the class label. 
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A binary classifier decides whether a point x belongs to class wi or wj. The probability 

that x belongs to class wi, given that x is in either class wi or wj, can be written as: 

 

( )jiiij wwxxwxPp ∪∈∈= ,|                              ( 2.22) 

 

With pij, we can calculate the estimate pi of the a posteriori probability ( )iwxp ∈  by 

using a matrix of pij and pji = l-pij to compute pi as follows: 

 

∑
≠−

=
ij

iji p
KK

p
)1(

2
                                                  (2.23) 

 

and the classification is given by: 
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We can write the following decision function: 
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Figure 2.4 Six one-against-one classifiers 

 

 

In order to build the six classifiers (in Figure 2.4) the training examples are taken one 

versus one for each couple (i,j) i≠j.   Gao and Fan [21] represented images with the 

following features: 3-dimensional R,G,B average color; 4-dimensional R,G,B color 

variance; 3-dimensional L,U,V average color; 4-dimensional L,U,V color variance; 2-

dimensional average & standard deviation of Gabor filter bank channel energy; 30-

dimensional Gabor average channel energy; 30-dimensional Gabor channel energy 

deviation; 2-dimensional Coarse & Contrast Tamura texture feature and 5-dimensional 

angle histogram derived from Tamura texture.  They decompose the multi class problem 

into a set of one-against-one binary problems.  Class labels used in their experiments are 
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as follows: battle, plane, elephant, remnant, leaf, cloud, ship, purple, flower, brown, 

horse, tree, sail, cloth, sky, snow, rock, red flower, sand field, yellow flower, grass, sea, 

water.  Their method yields a mean accuracy 87.07% with 7.28% standard deviation 

across all binary problems with the range as (67.64%, 99.44%). Zhu et al. [22] used 

frequency distribution, edge orientation and color histograms as global features and they 

incorporated these features with embedded text lines to improve the image classification 

accuracy.  

 

2.4.7.3 Decision Directed Acyclic Graph (DDAG) 

The Decision Directed Acyclic Graph (DDAG) is used to combine many two-class 

classifiers into a multi-class classifier.  For an N-class problem, the DDAG contains 

N(N-1)/2 classifiers, one for each pair of classes.  The DDAG contains N(N-1)/2 nodes, 

each with an associated 1-v-1 classifier. The algorithm designed for multi-class 

classification based on placing 1-v-1 SVMs into nodes of a DDAG is called DAGSVM, 

it is efficient to train and evaluate.  A Directed Acyclic Graph (DAG) is a graph whose 

edges have an orientation and no cycles. A Rooted DAG has a unique node such that it 

is the only node which has no arcs pointing into it. A Rooted Binary DAG has nodes 

which have either 0 or 2 arcs leaving them.  We will use Rooted Binary DAGs in order 

to define a class of functions to be used in classification tasks.  The class of functions 

computed by Rooted Binary DAGs is formally defined as follows: given a space X and 

a set of Boolean functions F={f: X  {0.1} }, the class DDAG(F) of Decision DAGs on 

N classes over F are functions which can be implemented using a rooted binary DAG 

with N leaves labeled by the classes where each of the K=N(N-1)/2 internal nodes is 

labeled with an element of F.  The nodes are arranged in a triangle with the single root 

node at the top, two nodes in the second layer and so on until the final layer of N leaves. 

The i-th node in layer j<N is connected to the j-th and (i+1)-st node in the (j+1)-st layer. 
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Figure 2.5 The decision DAG for finding the best class out of four classes. 

 

 

To evaluate a particular DDAG G on input x, starting at the root node, the binary 

function at a node is evaluated.  The node is then exited via the left edge, if the binary 

function is zero; or the right edge, if the binary function is one.  The next node’s binary 

function is then evaluated.  The value of the decision function D(x) is the value 

associated with the final leaf node (see Figure 2.5).  The path taken through the DDAG 

is known as the evaluation path. The input x reaches a node of the graph, if that node is 

on the evaluation path for x.  We refer to the decision node distinguishing classes i and j 

as the ij-node. Assuming that the number of a leaf is its class, this node is the i-th node 

in the (N-j+i)-th layer provided i<j.  Similarly the j-nodes are those nodes involving 

class j that is, the internal nodes on the two diagonals containing the leaf labeled by j. 

 

For the DAGSVM, the choice of the class order in the list (or DDAG) is arbitrary. We 

simply use a list of classes in the natural numerical (or alphabetical) order. Limited 

experimentation with re-ordering the list did not yield significant changes in accuracy 

performance. 

 

2.4.7.4 Divide-By-2 (DB2) 

Starting from the whole data set, DB2 hierarchically divides the data into two subsets 

until every subset consists of only one class.  DB2 divides the data such that instances 

belonging to the same class are always grouped together in the same subset.  Thus, DB2 

requires only N −1 classifiers.  The basic strategy is to divide the data into two subsets 

at every hierarchical level.  To group the N classes into two, different criteria can be 
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  2vs4 1vs3 

3vs4 2vs3 1vs2 

1 2 3 4 



 24

used.  The division step can be considered as a clustering problem.  One method is to 

use k-means clustering.  An even simpler method is to divide them based on their class 

mean distances from the origin.  Figure 2.6 illustrates the algorithm flow of the training 

process for a five class data sample. 

 

 

 
Figure 2.6 An example training phase of DB2 for 5 classes 

 

The training phase can be summarized as follows: 

1. Divide all the data samples into two subsets, A and B. 

2. Apply SVM to A and B and find the parameters of the decision boundary separating 

them. 

3. Repeat the steps for both A and B until all the subclasses include only one class. 

DB2 training leads to a binary decision tree structure for testing.  

 

 

 
 

Figure 2.7 DB2 decision tree 
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Figure 2.7 illustrates the decision tree that we built for the testing phase of the five class 

problem.  At the beginning, all the classes are assumed to be nominees of the true class.  

At every node, after applying the corresponding decision function to the test input, the 

nominees that do not exist in the region (positive or negative) in which the test input 

belongs, are eliminated.  Following the branches that indicate the same labels as the 

result of the decisions, we end up with the predicted class.  The best case occurs if we 

find the predicted class at the first node, and the worst case occurs if we find the 

predicted class after applying all the N − 1 decision functions.  In one-against-one, a test 

data is applied to all N × (N − 1)/2 classifiers.  For one against-rest exactly N classifiers 

and for DAGSVM exactly N − 1 classifiers are applied. 

 

2.4.8 All-in-one Method 

It has been observed that there are certain limitations of the approaches that extend 

binary SVMs to multi-class problems.  One of these limitations is that they do not 

consider the full problem directly.  Particularly, the one-against-all approach degrade 

the balance of the training sets (there are far more negative training examples in each 

binary classifier’s training set), and the one-against-one method uses only information 

from the two classes that it works with.  Each one-against-one classifier loses the 

information from all the remaining classes.  On the other hand, there exists a more 

natural approach that considers the multi-class problem directly as a generalization of 

the binary classification algorithm [23, 24]. This more natural way to solve k-class 

problems is to construct a piecewise linear separation of the k classes in a single 

optimization.  In the first approach, one decision function will be constructed for each 

class (similar to the K 1-to-rest classifiers method).  The optimization problem in the 

SVM formulation can be generalized to consider all the decision functions at once. The 

constraint is also relaxed.  Instead of enforcing all decision functions to give zero value 

at the decision boundary, it is sufficient that the output of the decision function for the 

correct class is greater than the rest of the decision function by a margin of 2.  The 

binary SVM optimization problem is generalized to the following:  
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Minimize    
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This gives the decision function: 

 

( ) ( )[ ] .,...;1,maxarg knbxwxf nnn
=+⋅=                                   (2.32) 

This approach is very interesting because it considers all the examples and classes at the 

same time, without losing any important information for finding to the best solution for 

each problem.  Besides, the SVM obtained that way does not need as much support 

vectors as the others do [25] and performs better in the cases where the training set is 

separable.  If not, the misclassified examples can be penalized leading to solutions that 

are biased towards these examples. 

 

The difference between binary classification and k-class problem is that in the binary 

classification case the labels yi belonged to {-1, +1}, which now belong to {1, 2, …, k} 

in k-class problem.  Therefore, the binary SVM can be generalized to multi-class by 

using a different weight vector and bias for each class (wj and bj for j E {1,2,. . . , k}). 

So, this classifier computes k outputs to classify any pattern.  The classification function 

is then: 
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Where x is the vector to be classified. 

 

Barla et al. [26] used HSV color histograms and co-occurrence matrices to built SVM 

classifiers. They worked on indoor-outdoor images and cityscapes.  Some other 
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techniques are used in image classification: Guan et al. [27] proposed an automatic 

statistical approach to categorize traditional Chinese paintings in three classes: figure 

painting, landscapes and flower-and-bird paintings.  They integrated texture and color 

information used Gabor wavelet to extract texture information and color histogram for 

color (they work on 8x8x8 RGB color space).  They used relative-distance based voting 

rule to categorize images.  Oliva and Torralba [28] proposed a technique which is based 

on a very low dimensional representation of the scene, that they term the Spatial 

Envelope.  They proposed a set of perceptual dimensions (naturalness, openness, 

roughness, expansion, ruggedness) that represent the dominant spatial structure of a 

scene.  The model generates a multidimensional space in which scenes sharing 

membership in semantic categories (e.g. streets, highways, and coasts) are projected 

closed together.  Barnard and Forsyth [29] applied a hierarchical statistic model to 

generate keywords for classification based on semantically meaningful regions. 

 

The goal of classifier ensembles and multiple classifier systems is to improve the 

classification accuracy of a single classifier by using the results of many.  Szummer and 

Picard [30] use k-nearest neighbor and SVM classifiers, respectively, for separately 

classifying color and texture features into indoor and outdoor classes, and then design a 

combiner to vote or the output classes produced by the first-level classifiers so as to 

make the final decision.  They show that their classifiers have 90.3% and 90.2% 

classification accuracies, respectively. 

 

2.5 Conclusion 

This chapter has been very useful for further work.  We have seen all the tools that can 

be used for our image categorization objective.  It is very important to know what other 

researchers have done before starting to work. We have seen in the literature survey 

how researcher used different classification techniques other then SVM, and how SVM 

is used in different works on image categorization or other categorization problems. It 

has been very important to study different approaches for the use of SVM as a multi-

class classification method. There is a certain number of combination approaches for 

SVM to build multi-class classifiers which are all presented in detail with examples. 



3   IMAGE REPRESENTATION 

 

 

3.1  Introduction  

This chapter is dedicated to image representation subject.  Image representation has an 

essential role for image processing and for image classification.  Now that the objective 

of this thesis is make some progress in image classification, one of the focus of this 

work has to be the image representation issue.  It will be shown in this chapter that for 

image representation there is three different approaches namely global, local and 

intermediate image representation each of which will be discussed in detail. 

 

3.2 Local and Global Features 

Having an automatic system categorize a scenery image is not a trivial task.  A good 

understanding of human categorization capability is required in order to simulate it on a 

computer system.  Therefore automatic scene categorization is closely related to 

cognitive sciences.  

 

Early research (Barrow and Tannenbaum, 1978 [31]; Marr, 1982 [32]) in this area, have 

described the scene recognition task as a progressive reconstruction of local 

measurements successively to integrate those into decision layers in order to decide the 

category of scene.  In contrast, some experimental studies have suggested that 

recognition of real world scenes may be initiated from the global configuration (like 

spatial layout), ignoring most of the details and object information (Biederman, 1988 

[33]; Potter, 1976 [34]).   In their work, Renniger and Malik discuss the same matter as 
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Oliva and Torralba do in their work [28]. In the latter the authors propose a 

computational model of the recognition of scene categories that bypasses the 

segmentation and the processing of objects. With this point of view, they estimate the 

structure or “shape of a scene” using a few perceptual dimensions specifically dedicated 

to describe spatial properties of the scene.  They show that holistic spatial scene 

properties, that they termed Spatial Envelope properties, may be reliably estimated 

using spectral and coarsely localized information. They claim that the scene 

representation characterized by the set of spatial envelope properties provides a 

meaningful description of the scene picture and its semantic category. 

 

A remarkable characteristic of human visual system is that we are able to understand the 

meaning of a complex novel scene very quickly even when the image is blurred [35] or 

presented for only 20 msec [36].  In a study of Oliva and Torralba [37] the authors 

reference a work of Mary Potter [38,39] who demonstrated that during a rapid 

presentation of a stream of images, observers were able to identify the semantic 

category of each image as well as a few objects and their attributes.  The amount of 

perceptual and semantic information that observers comprehend within a glance (about 

200 msec) refers to the gist of the scene [40]. It is fundamental to understand what 

visual information is perceived during the course of this glance.  

 

There has been numerous work and investigation in the domain of cognitive science 

focusing on rapidness and robustness of human scene categorization.  There has been 

much work on scene understanding domain too. Research on the scene understanding 

domain has considered objects as atoms of recognition.  On the other hand behavioral 

experiments on fast scene perception suggest an alternative view: that we do not need to 

perceive the objects in a scene to identify its semantic category.  Humans can 

understand the semantic category of a real world scene from its spatial layout (a number 

of previous work about the spatial layout of a scene is referenced in [37]).  
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Figure 3.1 Spatial Layout 

 

 

Figure 3.1 illustrates that the spatial layout (‘spatial arrangement’ or ‘spatial 

relationships’) of regions for scene and object recognition is very important.  When 

looking at the image on the left, viewers describe the scene as a street with cars, 

buildings and the sky.  The local information available in the image is insufficient for 

reliable object recognition; even so viewers are confident and highly consistent in their 

descriptions.  Indeed, the blurred scene has the spatial layout of a street. When the 

image is shown in high resolution, new details reveal that the image has been 

manipulated and that the buildings are in fact pieces of furniture. Almost 30% of the 

image pixels correspond to an indoor scene.  The misinterpretation of the low-resolution 

image is not a defect of the visual system.  Instead, it illustrates the strength of spatial 

layout information in constraining the identity of the objects in normal conditions, 

which is especially evident in degraded conditions in which object identities cannot be 

inferred based on local information.  This experiment demonstrates that global 

information of the image is very important for human perception and cognition. We use 

the global information for identifying a real world scene and the objects in it. 

 

Based on the previous research of Navon [41] and the review of Kimchi [42] Oliva and 

Torralba point out that the processing of the global structure and the spatial 
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relationships between components precede the analysis of local details.  The global 

precedence effect is particularly strong for images constituted of many element patterns 

[43] as it is the case of most real world scene pictures.  Authors define a ‘holistic cue’ as 

‘one that is processed over the entire visual field and does not require attention to 

analyze local details’. 

 

Renninger and Malik [44] conducted a research on scene perception. Their objective 

was to find out what sort of representation or information we are using to identify 

scenes so quickly.   According to their literature survey, Friedman (1979) [45] proposed 

that the visual system might first recognize a ‘‘diagnostic object’’ that in turn triggers 

recognition of the scene. For example, a toaster would be diagnostic of a kitchen scene. 

Others argue that scenes may have distinctive holistic properties. For example, 

Biederman (1972) [46] found that subjects have more difficulty recognizing and 

locating objects in a jumbled scene than in a coherent one, even when the objects 

remain intact. Loftus, Nelson, and Kallman (1983) [47] studied the availability of 

holistic versus specific feature cues in picture recognition experiments. For brief 

presentations, subjects performed better when their response depended on the holistic 

cue.  The arguments for a holistic property are consistent with the fact that we do not 

need to scan an image with our eyes or apply attention to particular objects in order to 

get the gist of the scene and most research supports this theory (Loftus et al., 1983; 

Metzger & Antes, 1983 [48] ; Schyns & Oliva, 1994 [35] ). Renninger and Malik focus 

on the role of texture as a holistic cue.  

 

One of the studies that focus on automatic scene categorization is the one of Vogel et al.  

They investigated on processing of local and global information in scene categorization. 

Their research focused on the processes underlying human scene categorization that 

would enable efficient computer vision systems.  In a set of human experiments, 

categorization performance is tested when only local or only global image information 

is present.  In the experiment focusing on local information, global configural 

information was eliminated by cutting the scenes into local image regions and randomly 

relocating, i.e. scrambling, those local regions (see Figure 3.2).  In the experiment 

focusing on global information, local information was eliminated not only by low pass 
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filtering the images but also gray-scaling those to create stimuli that contain only global 

configural information (Figure 3.2). 

 

 

 
         Figure 3.2  a)  intact                  b) scrambled                      c)blurred 

 

 

Their 3 experiments are as follows: In the first experiments they present intact images to 

the participants, in the second and the third they present respectively scrambled and 

blurred images.  Participants are required to check one of the five checkboxes labeled 

coasts, rivers/lakes, forests, plains, and mountains.  Display time was 4 seconds after 

which subjects were forced to make a choice. 

 

Table 3.1 shows the confusion matrix for categorization for intact images.  The 

averaged over all subjects and all scene categories, the categorization rate was 89.7% 

 

 

Table 3.1 Confusion matrix for categorization of intact images. 

89.7% coast rivers forest plains mountains 

coast 90.4% 8.3% 0.3% 0.3% 0.6% 

rivers 6% 82.9% 2.1% 0.4% 8.7% 

forest 0.4% 1.6% 91.5% 4.7% 1.8% 

1plains 0.4% 0% 0.8% 92.7% 6.1% 

mountains 0.2% 2.9% 1.4% 5.0% 90.6% 
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Table 3.2 shows the confusion matrix of the categorization (see also Figure 3.2).  The 

categorization performance is surprisingly good given that the important configural 

information has been eliminated. 

 

 

Table 3.2 Confusion matrix for categorization of scrambled images. 

72.7% coast rivers forest plains mountains 

coast 71.8% 14.2% 2.6% 3.5% 8.0% 

rivers 18.8% 36.8% 16.3% 5.0% 23.1% 

forest 0.9% 1.5% 91.3% 5.3% 1.1% 

plains 0.8% 0.8% 2.8% 87.0% 8.7% 

mountains 4.6% 2.7% 6.9% 12.3% 73.4% 
 

 

 

Table 3.3 reveals that compared to table 3.2 there are fewer confusions between 

rivers/lakes and coasts, rivers/lakes and forests, and mountains and plains, but that there 

are now more confusions between coasts and mountains, plains and mountains, and 

plains and rivers/lakes. 

 

 

Table 3.3 Confusion matrix for categorization of blurred images 

71.6% coast rivers forest plains mountains 

coast 63.3% 14.0% 3.8% 5.6% 13.4% 

rivers 8.7% 53.9% 8.7% 5.8% 22.9% 

forest 0.9% 4.9% 86.4% 2.4% 5.4% 

plains 4.0% 7.5% 3.8% 72.1% 12.6% 

mountains 2.6% 5.2% 5.1% 6.2% 81.0% 
 

 

 

Their results suggest that local and global information is integrated differently 

depending on the category.  Categories with many different local semantic concepts 
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present in an image (such as mountains or rivers/lakes) require global context 

information for categorization.  In contrast, categories such as forests, plains, or coasts 

with local semantic concepts that are discriminant without global configural information 

are categorized better using local information.  Interestingly, the performance for intact 

scenes was higher than the performance in the scrambled and blurred conditions.  This 

is consistent with the view that processing of local and global information are integrated 

resulting in higher categorization performance (see Figure 3.3) 

 

 

 
Figure 3.3 Comparison of categorization rates between blurred (blr), scrambled (scr), 

and intact (int) display condition (in%). 
 

 

3.3 Intermediate Representation of Images 

Efficient representation of images is a very important issue for various topics in image 

processing including scene understanding and categorization.  In the previous section 

we have seen global and local representation of images.  Another approach to image 

representation is namely intermediate representation which consists of building a 

dictionary for image categories.  This dictionary (also called visual vocabulary) contains 

image patches (visual words) as words.  An image is represented in terms of indexes of 
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this dictionary.  Much of the previous work on image classification is based on this 

representation approach analogous to the bag-of-words model for text document 

retrieval. An illustration of this model is shown in figure 3.4.  In the left side of the 

figure we see a face, in the right side; we see the parts of the face image. 

 

 

 
Figure 3.4 A face image and the parts of it 

 

 

For the sake of clarity, here is an example of three images (figure 3.5) and the 

dictionary (figure 3.6) made of the parts of this these images: 

 

 

 
Figure 3.5 Face, Bicycle, Violin  

 

 

 
Figure 3.6 A dictionary containing parts of face, bicycle and violin. 

 



 36

 
Figure 3.7 Histograms of the images 

 

 
Figure 3.7 shows the histogram representation of the three images. Details of the 

method and the detail about obtaining image patches are presented in section 3.8. 

 

In [49], Fei-Fei and Perrona have studied the literature on natural scene categorization; 

they are particularly interested in works where experiments showing that humans are 

capable of categorizing complex natural scenes very quickly.  In their survey they cited 

works where categorization is performed using global cues (e.g. power spectrum, color 

histogram information [30,50]).  In turn they represented images as a collection of 

patches each assigned membership to a large dictionary of codewords. Their image 

dataset contains the following categories of natural scenes: Highway, inside of cities, 

tall buildings, streets, suburb residence, forest, coast, mountain, open country, bedroom 

kitchen, living room and office.  And they use 40 intermediate themes to represent 

images (e.g. sky, foliage, rock, etc.)  

 

Vogel and Schiele [7] also used an intermediate representation obtained from human 

observers.  They work on coasts, rivers/lakes, forests, plains, mountains and sky/clouds 

categories and they use sky, water, grass, trunks, foliage, field, rocks, flowers and sand 

as semantic concepts to represent an image.  Each image is represented by a concept 

occurrence vector which tabulates the frequency of occurrence of each local semantic 

concept.  In [7], human subjects are asked to classify 59, 582 local patches from the 

training images into one of 9 different “semantic concepts” (e.g. water, foliage, sky, 

etc.).  In [51] Bosh et al. applied to a bag of visual words representation for images.  

They used the same datasets in [7,28,49].  They term the intermediate representation as 

‘topic’.  In their case, they discover between 22 and 30 topics for 8 categories.  These 
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topics can vary depending the color features (where topics can distinguish objects with 

deferent colors like light sky, blue sky, orange sky, orange foliage, green foliage etc...) 

or only grey SIFT features (objects like trees and foliage, sea, buildings etc...). These 

works clearly point to the usefulness of these intermediate representations. 

 

3.4 Color Features 

Color is usually the first descriptor used to represent an image.  A widely used 

technique for color descriptor is the color histogram.  Histograms are easily and rapidly 

calculated and they are robust to rotation and translation.  However the use of 

histograms for image categorization, indexing and retrieval cause some problems [52]. 

First problem is the size of the histograms that makes the use of it difficult.  Secondly 

histograms do not contain spatial information about the positions of the color. Third 

problem is that they are very sensible in little differentiation of the luminosity which 

causes problems comparing images of the same scene taken in different condition (e.g 

day and night).  There has been two approaches to solve these problems one of these 

approaches is to add spatial information to histograms.  Stricker et al. [53] divided the 

image in five blocks fixed superposed and they extracted the three first moments of 

inertia for each block to create descriptor vectors.  Pass and Zabih [54] added the spatial 

coherence in the histograms introducing a color feature called color coherence vector. 

Huang et al [55] proposed the correlogramme and autocorrelogramme. Paschos and 

Radev introduced a feature called chromaticity moment [56].  Shih and Chen described 

color moments as color feature [57]. 

 

The second approach search other color spaces based on the color perception of human. 

The RGB color space is widely used in every computer vision system because of its 

ease of use but it is not the best adapted to human visual system.  In fact the three 

components R, G and B are very dependent between each other.  A slide change of 

luminosity modifies the three components given that the objects in that scene keep their 

original color, but they are simply lightened.  Smeulders et al. presented other color 

spaces in their experimentation.  Park et al. [58] proposed the CIE LUV color space. 

Gong et al. [59] calculated histograms on HSV (Hue Saturation Value) color space. 
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3.4.1 Color Histograms  

In computer graphics a color histogram is representation of the distribution of colors in 

an image. Computationally, the color histogram is formed by discrediting the colors 

within an image and counting the number of pixels of each color.  Let a color space 

321 xxx  discredited in n levels for each ix  i=1 to 3. Then there are n distinct colors for 

each ix .  A color cr  is a vector defined as: cr = x. 1xr  + y. 2xr  + z. 3xr  

Let I an image, the histogram H ( I )of this image is defined as: 

 

 

H=< 1
1hx , 2

1hx ,…, nhx1 , 1
2hx , 2

2hx ,…, nhx2 , 1
3hx , 2

3hx …, nhx3 >                   (3.1) 

 

 

Where each i
jhx  contains the number of pixels of color j of level I  in the image. 

 

3.4.2 Color Correlogram 

The highlights of this feature are:  

(i) it includes the spatial correlation of colors,  

(ii) it can be used to describe the global distribution of local spatial correlation 

of colors;  

(iii)  it is easy to compute, and  

(iv) the size of the feature is fairly small. 

 

Informally, a color correlogram of an image is a table indexed by color pairs, where the 

k-th entry for <i,j> specifies the probability of finding a pixel of color j at a distance k 

from a pixel of color i in the image.  Such an image feature turns out to be robust in 

tolerating large changes in appearance of the same scene caused by changes in viewing 

positions, changes in the background scene, partial occlusions, camera zoom that causes 

radical changes in shape, etc. 

 

A color correlogram expresses how the spatial correlation of pairs of colors changes 

with distance. A color histogram captures only the color distribution in an image and 
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does not include any spatial correlation information. Let I be an nxn image. The colors 

in I are quantized into m colors (c1,…, cm). For a pixel Iyxp ∈= ),( , let I(p) denote its 

color. Let Ic = { p | I(p)=c } Thus, the notation cIp∈  is synonymous with Ip∈ , 

I(p)=c. For convenience, we use the L∞ norm to measure the distance between pixels, 

p1 = (x1,y1), p2 = (x2,y2), we define   |p1-p2|=max{ |x1-x2|, |y1-y2|}. We denote the 

set {1,2,…,n} by [n]. The histogram h of I is defined for ][mi∈ by: 

 

 

( ) [ ]
ii cIpc IpnIh ∈⋅=

∈
Pr2                                               (3.2) 

 

 

For any pixel in the image, ich (I) / n ² gives the probability that the color of the pixel 

is ci. Let a distance [ ]nd ∈ be fixed a priori. Then, the correlogram of I is defined for 

[ ]dk ∈ , [ ]mj∈ as: 

 

 

                   ( ) [ ]kppIpI
j

c
ji cIpIp

k
cc =−∈=

∈∈ 212,, \Pr
21

γ                            (3.3) 

 

 

Given any pixel of color ci in the image, ji
k cc ,)(γ gives the probability that a pixel at 

distance k away from the given pixel is of color cj. Note that the size of the correlogram 

is O(m²d). The autocorrelogram of I captures spatial correlation between identical 

colors only and is defined by: 
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3.4.3 Color Coherence Vector 

Intuitively, a color’s coherence is defined as the degree to which pixels of that color are 

members of large similarly-colored regions.  These significant regions are referred as 

coherent regions, and it has been observed that they are of significant importance in 

characterizing images.  The coherence measure classifies pixels as either coherent or 

incoherent.  Coherent pixels are a part of some sizable contiguous region, while 

incoherent pixels are not. A color coherence vector represents this classification for 

each color in the image.  CCV’s prevent coherent pixels in one image from matching 

incoherent pixels in another.  This allows fine distinctions that cannot be made with 

color histograms. 

 

3.4.3.1 Computation of CCV 

First step is blurring the image in order to eliminate small variations between 

neighboring pixels.  Second step is discrediting the color space, such that there are only 

n distinct colors in the image. The next step is to classify the pixels within a given color 

bucket as either coherent or incoherent.  A coherent pixel is part of a large group of 

pixels of the same color, while an incoherent pixel is not. We determine the pixel 

groups by computing connected components.  A connected component C is a maximal 

set of pixels such that for any two pixels p, p´∈C, there is a path in C between p and p´. 

(Formally, a path in C is a sequence of pixels p=p1,…,p2, pn = p´ such that each pixel pi 

is in C and any two sequential pixels pi, pi+1 are adjacent to each other. We consider two 

pixels to be adjacent if one pixel is among the eight closest neighbors of the other.  In 

other words, we include diagonal neighbors. 

 

When connected components are computed, each pixel will belong to exactly one 

connected component.  We classify pixels as either coherent or incoherent depending on 

the size in pixels of its connected component.  A pixel is coherent if the size of its 

connected component exceeds a fixed value τ, otherwise, the pixel is incoherent. For a 

given discretized color, some of the pixels with that color will be coherent and some 

will be incoherent. Let us call the number of coherent pixels of the jth discretized color 

αj and the number of incoherent pixels βj.  Clearly, the total number of pixels with that 

color is αj+βj, and so a color histogram would summarize an image as:  
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>++< nn βαβα ;...;11                                                   (3.5) 

 

Instead, for each color we compute the pair (αj,βj) which we will call the coherence pair 

for the jth color. The color coherence vector for the image consists of 

 

 

>< ),(),...,,( 11 nn βαβα                                                     (3.6) 

 

 

This is a vector of coherence pairs, one for each discretized color. An example for 

calculation of CCV is given below: 

 

Let τ = 4 and assume that we work with an image in which all 3 color components have 

the same value at every pixel (in the RGB color space this would represent a grayscale 

image). This allows us to represent a pixel’s color with a single number (i.e., the pixel 

with R/G/B values 12/12/12 will be written as 12). Suppose that after we slightly blur 

the input image, the resulting intensities are as follows: 

  

 
  

Let us discretize the colorspace so that bucket 1 contains intensities 10 through 19, 

bucket 2 contains 20 through 29, etc.  Then after discretization we obtain: 
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The next step is to compute the connected components. Individual components will be 

labeled with letters (A, B,…) and we will need to keep a table which maintains the 

discretized color associated with each label, along with the number of pixels with that 

label. Of course, the same discretized color can be associated with different labels if 

multiple contiguous regions of the same color exist.  The image may then become: 

  

 
 

And the connected components table will be: 

 

 

Table 3.4 Connected components 

Label A B C D E 

Color 1 2 1 3 1 

Size 12 15 3 1 5 

 

 

The components A, B, and E have more than pixels, and the components C and D less 

than τ pixels.  Therefore the pixels in A, B and E are classified as coherent, while the 

pixels in C and D are classified as incoherent. The CCV for this image will be: 

 

Table 3.5 CCV example 

Color 1 2 3 

α 17 15 0 

β 3 0 1 
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A given color bucket may thus contain only coherent pixels (as does 2), only incoherent 

pixels (as does 3), or a mixture of coherent and incoherent pixels (as does 1). If we 

assume there are only 3 possible discretized colors, the CCV can also be written: 

 

<(17; 3) ; (15; 0) ; (0; 1)> .  

 

3.4.4 Color Moments 

The color distributions of the R, G and B components of an image can be represented by 

its color moments. The first color moment of the ith color component (i=1, 2, 3) is 

defined by:  
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Where pi,j is the color value of the ith color component of the jth image pixel and N is the 

total number of pixels in the image. The hth moment, h = 2, 3, . . . , of the ith color 

component is then defined as: 
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Take the first H moments of each color component in an image s to form a feature 

vector, CT, which is defined as: 

CT=[ 1ct , 2ct , … Zct ] 

      =[ 1
11Mα , 2

11Mα ,…, HM11α , 1
22Mα , 2

22Mα ,…, HM 22α ,
1
33Mα ,

2
33Mα ,…,

HM 33α ]    

(3.9) 

 

Where Z= 3xH and 1α , 2α , 3α , are the weights for the R,G,B components. Based on 

the above definition, an image is first divided into X non-overlapping blocks. For each 
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block a, its hth color moment of the ith color component is defined by 
h

iaM , Then, the 

feature vector aCB  of block a is represented as: 

 

 

aCB =[ 1,acb , 2,acb ,…, Zacb , ] 

     =[
1

1,1 aMα ,
2

1,1 aMα ,…,
H
aM 1,1α ,

1
2,2 aMα ,

2
2,2 aMα ,…,

H
aM 2,2α ,

1
3,3 aMα ,

2
3,3 aMα ,…,

H
aM 3,3α ] 

(3.10) 

 

 

From the above definition we can obtain X feature vectors for an image.  Color 

moments have been proved to be efficient and effective in representing color 

distribution of images in a very compact way but this compactness can lower the 

discrimination power of these features [4]. 

 

3.4.5 Chromaticity Moments 

The concept of the xy chromaticity diagram is defined within the xyY color space, 

which is an extension of the CIE XY Z space.  From each image pixel a pair of (x,y) 

chromaticity values is derived, thus, leading to a unique set of chromaticities for a given 

image.  This chromaticity set is characterized by two attributes:  

(a) its two dimensional shape on the x - y space, 

(b) its three dimensional distribution (i.e., histogram) over the x - y space (in 

general, the same chromaticity values will be produced by more than one pixels in the 

same image). 

Given that x,y ∈  [0,1], one will need to quantize x and y to appropriately chosen levels, 

Xs and Ys, respectively. Thus, the chromaticity diagram is a two-dimensional 

representation of an image. Each pixel (i.e., each (R,G,B) triplet) produces a pair of 

(x,y) chromaticities. Therefore an image yields a set of distinct (x,y) pairs, its 

chromaticity set. Accordingly, for an image I of dimensions Lx,Ly we define the trace of 

its chromaticity set as: 
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In addition, more than one pixels may produce the same (x,y) pair.  Thus, the 

corresponding two-dimensional distribution (i.e., histogram) is defined as follows: 

 

 

D(x,y) = #pixels yielding (x,y). 

 

 

Each of these two functions T and D can be characterized, within approximation, by a 

set of moments, defined, respectively, as follows: 

 

 

( ) ( )∑∑
−

=

−

=

=
1

0

1

0
,,

s sX

x

Y

y

lm
T yxTyxlmM                                   (3.12) 

 

 

( ) ( )∑∑
−

=

−

=

=
1

0

1

0
,,

s sX

x

Y

y

lm
D yxDyxlmM                                  (3.13) 

 

 

Where m = 0, 1, 2, . . .  , l = 0, 1, 2, . . . , and Xs, Ys are the dimensions of the xy space. 

TM and DM  form the set of chromaticity moments of image I. 

 

3.5 Texture Features 

The texture is a visual feature studied the last two decades. Many techniques have been 

developed in order to analyze the texture. One of these methods is the very well known 

Haralick co-occurrence matrix. Four measures of these matrices are extracted and used. 

These measures are energy, entropy, contrast and homogeneity. There exist other 
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methods for analyzing texture based on Gabor filters.  After applying the Gabor 

transformation to an image, a texture region is characterized with the mean and the 

variance of the coefficients of the transform.  A feature vector is build using these 

features as components.  

 

3.5.1 Co-Occurrence Matrix 

A co-occurrence matrix, also referred to as a co-occurrence distribution, is defined over 

an image to be the distribution of co-occurring values at a given offset.  Mathematically, 

a co-occurrence matrix C is defined over a n x m image I, parameterized by an offset 

(∆x,∆y), as: 
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The elements of this matrix, p(i,j), represent the relative frequency by which two pixels 

with grey levels “i” and “j”, that are at a distance “d” in a given direction, are in the 

image or neighborhood. It is a symmetrical matrix, and its elements are expressed by: 
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Where Ng represents the total number of grey levels.  Using this matrix, Haralick 

(1973) proposed several statistical features representing texture properties, like contrast, 

uniformity, mean, variance, inertia moments, etc. Some of those features were 

calculated, selected and used in this study. 

 

3.5.2 Energy 

Energy is a measure of textural uniformity in an image. Mathematically, it is given as: 
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Where I is the image 

 

3.5.3 Entropy 

Entropy is a measure of disorder or complexity of the image. 
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Where I is the image 

 

3.5.4 Homogeneity 

Homogeneity is a measure of the overall smoothness of an image. 
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Where I is the image 

 

3.5.5 Wavelet Transform 

The use of wavelets has developed in many fields for analyzing, synthesizing, de-

noising, and compressing signals and images.  The use of wavelet transform as a 

multiscale analysis for texture description was first suggested by Mallat [60].  Recent 

developments in the wavelet transform provide good analytical tool for texture analysis 

and can achieve a high accuracy rate.  The discrete wavelet transform (DWT) is a 

simple and intuitive method to discriminate similar images.  The wavelet transform 

provides a robust methodology for texture analysis in different scales.  The wavelet 

transform allows for the decomposition of a signal using a series of elemental functions 
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called wavelets and scaling, which are created by scalings and translations of a base 

function, known as the mother wavelet: 
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where “s” governs the scaling and “u” the translation.   The wavelet decomposition of a 

function is obtained by applying each of the elemental functions or wavelets to the 

original function: 
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In practice, wavelets are applied as high-pass filters, while scalings are equal to low-

pass filters.  As a result of this, the wavelet transform decomposes the original image 

into a series of images with different scales, called trends and fluctuations.  The former 

are averaged versions of the original image, and the latter contain the high frequencies 

at different scales or levels. 

 

3.5.5.1 Discrete Wavelet Transform 

The discrete wavelet transformation (DWT) decomposes an original signal f(x) with a 

family of basis functions ψm,n(x): which are dilatations and translations of a single 

prototype wavelet function known as ψ(x): 
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Cm,n constitutes the DWT coefficients where m and n are integers and referred as the 

dilation and translation parameters.  An efficient way to implement this scheme using 

filters was developed by Mallat [60]. The 2D DWT is computed by a pyramid transform 

scheme using filter banks.  The filter banks are composed of a low pass and a high pass 

filter and each filter bank is then sampled down at a half rate of the previous frequency.  

The input image is convolved by a high pass filter and a low pass filter in horizontal 

direction (rows). After this step another convolution in vertical direction (columns) is 

performed with a high and a low pass filter.  Thus the original image is transformed into 

four sub images after each decomposition step.  A three level decomposition results in 

10 sub images, where th approximation image is the input image for the next level. 

 

3.5.5.2 Texture Feature Extraction Using Gabor Function 

A two dimensional Gabor function g(x, y) and its Fourier transform G(u, v) can be 

written as: 
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Where  xu πσσ 2/1=   and yv πσσ 2/1=  

Gabor functions form a complete but non orthogonal basis set. Expanding a signal using 

this basis provides a localized frequency description. A class of self-similar functions, 

referred to as Gabor wavelets in the following discussion, is now considered. Let g(x, y) 

be the mother Gabor wavelet, then this self-similar filter dictionary can be obtained by 

appropriate dilations and rotations of g(x, y) through the generating function: 
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Where Kn /πθ =  and K is the total number of orientations. The scale factor is ma −  

meant to ensure that the energy is independent of m. Given an image I(x, y), its Gabor 

wavelet transform is then defined to be: 
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where * indicates the complex conjugate.  It is assumed that the local texture regions are 

spatially homogeneous, and the mean and the standard deviation of the magnitude of the 

transform coefficients are used to represent the region for classification and retrieval 

purposes: 
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A feature vector is now constructed using mnµ  and mnσ  as feature components. If we 

use four scales S = 4 and six orientations K = 6, the resulting feature vector is as 

follows: 

 

[ ]3535010000 ... σµµσµ=f                                       (3.29) 
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3.6 Edge Features  

Edge features are very important for image representation.  Two of these different edge 

features are edge histograms and edge direction coherence vectors.  Vailaya et. al point 

out that Man-made objects in the city scenes usually have strong vertical and horizontal 

edges, whereas non-city scenes tend to have edges randomly distributed in various 

directions.  A feature based on the distribution of edge directions can discriminate 

between the two categories of images. 

 

3.6.1 Edge Histogram Description (EHD) 

The edge histogram descriptor (EHD) is defined in the texture part of the MPEG-7 

standard [61].  The distribution of edges is not only a good texture signature; it is also 

useful for image-to- image matching in the absence of any homogeneous texture.  A 

given image is first divided into 16 sub-images 4 x 4; and local edge histograms are 

computed for each sub-image.  To compute the edge histogram, each of the 16 sub-

images is further subdivided into image blocks.  Note that, regardless of the image size, 

we divide the sub-image into a fixed number of image-blocks.  That is, the size of the 

image-block is proportional to the size of original image to deal with the images with 

different resolutions.  The size of each image block is proportional to the size of the 

original image and is assumed to be a multiple of two.  The number of image blocks, 

independent of the original image size, is constant (desired_num_of_blocks) and the 

block size is figured as follows: 
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Where image_width and image_height represent the horizontal and vertical size of the 

image, respectively.  Each image block is then partitioned into four 2 x 2 blocks of 

pixels, and the pixel intensities for these four divisions are computed by averaging the 

luminance values of the existing pixels. In the case of edge images, the luminance takes 

only the value of one or zero.  Edges are grouped into five classes: vertical, horizontal, 

45 diagonal, 135 diagonal and isotropic (non-directional) based on directional edge 

strengths.  These directions are determined for each image block using five 

corresponding 2 x 2 filter masks corresponding to 2 x 2 sub-divisions of the image 

blocks.  If the maximum directional strength is greater than a threshold value Thedge then 

the underlying block is designated to belong to the corresponding edge class.  The 

default value of  Thedge  for grey-scale images is 11 and for binary edge images we set it 

to zero.  The histogram for each sub-image represents the frequency of occurrence of 

the five classes of edges in the corresponding sub-image.  As there are 16 sub-images 

and each has a five-bin histogram, a total of 16 x 5 = 80 bins in the histogram is 

achieved.  For normalization, the number of edge occurrences for each bin is divided by 

the total number of image blocks in the sub-image.  To minimize the overall number of 

bits, the normalized bins are nonlinearly quantized and fixed-length coded with 3 bits 

per bin, resulting in a descriptor of size 240 bits. 

 

3.6.2 Histogram of  Edge Direction 

Histograms of edge directions are translation invariant and capture the general shape 

information in the images.  Because the feature is local, it is robust to partial occlusion 

and local disturbance in the image.  The edges and their directions are calculated using 

“Canny” [62] edge operator and only the strong edges are retained, i.e., edges that lie in 

a segment of a similar direction.  Since the calculated edge directions are not totally 

accurate a quantization is made to the edge directions into a few directions (e.g. four 

directions: horizontal, vertical, and the two diagonals (top right to bottom left and top 

left to bottom right).  In this case the histogram representation for an image or a region 

of the image would have only four bins.). 

The problem with presenting an image with only one histogram of edge directions is 

that it preserves only global information about the directions of the edges in the image. 
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In this case it is possible to have two images with totally different edge patterns and 

have the same histogram of edge directions.  To overcome this problem we decompose 

each image into m x n rectangular regions (N regions) and represent each region by a 

histogram.  Then, each histogram is normalized with respect to the total number of 

edges in the region.  The normalization is important because an image with the same 

content but at a different scale will produce a different histogram but a similar 

normalized histogram [63]. 

 

Vailaya et. al. [3] used edge direction histogram as a texture measure they used edge 

direction histogram quantizing at 5 degree intervals from 0 to 360.  Thus 72 bins are 

used to represent the edge directions.  A 73rd bin is also added which represents the 

non-edge pixels in the image.  The histograms are normalized as follows:  
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Where H(i) is the edge direction histogram and ne is the total number of edge points 

detected in the image. 

 

Brandt et al. calculate the edge direction histogram as follows: At first, the color image 

is transformed to the HSI space from which the hue channel is neglected.  The other two 

channels are convolved with the eight Sobel operators.  The resulting gradient images 

are next thresholded to binary images by a proper threshold value for each channel.  The 

threshold values are manually fixed to certain levels which are the same for all images. 

The thresholded intensity and saturation gradient images are combined by the logical 

OR operation.  The threshold value for the intensity gradient image was manually set to 

15% of the maximum gradient value and for the saturation image to 35%. In the OR 

operation, the direction of the larger gradient value is chosen.  Finally the 8-dimensional 

edge histograms are calculated by counting the edge pixels in each direction.  Still, it is 

necessary to normalize the histograms somehow.  They show by an experiment that it is 
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better to normalize the histograms by the number of pixels in each image rather than by 

number of edge pixels as was done in [58].   They studied also the effect of smoothing 

proposed in [58].  The smoothing makes the histograms more robust to rotation. It is 

performed as follows:  
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Where Is is the smoothed histogram, I is the original normalized histogram and the 

parameter k determines the degree of smoothing. 

 

Jain and Vailaya propose an edge direction histogram for image retrieval [59] and 

employ it for trademark registration process.  Shih and Chen [60] used histograms of 

edge direction to describe the shapes of representative objects in different trademarks 

Yoo et al. [61] apply the same histogram for shape representation in a new proposed 

content-based retrieval system. 

3.6.3 Edge Direction Coherence Vector 

An edge direction coherence vector stores the number of coherent versus incoherent 

edge pixels with the same directions (within a quantization of 5 degree). A threshold 

(0,1% of image size) on the size of every connected component of edges in a given 

direction is used to decide whether the region is coherent or not. This feature is thus 

geared towards discriminating structured edges from randomly distributed edges when 

the edge direction histograms are similar.  Hauptmann et al used this feature to 

distinguished structured edges (like edges of buildings) from arbitrary edge distributions 

[65].  Vailaya et al. show that edge direction coherence vector perform better then edge 

direction histogram, color histogram, and color coherence vector for classifying city vs. 

landscape images 
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3.7 Spectral Features 

3.7.1 Power Spectrum of an Image 

The power spectrum of an image is computed by taking the squared magnitude of its 

Fourier Transform: 

 

( ) ( ){ }2,, yxiFTff yx =Γ    (3.34) 

 

where I(x, y) is the intensity distribution of the image along the spatial variables x and y. 

FT is the Fourier Transform, fx and fy are the spatial frequencies. Power spectrum, 

Γ(fx,fy), encodes the energy density for each spatial frequency and orientations over the 

whole image.  

3.7.2 Gist of an Image 

Gist is a global feature proposed by Oliva and Torralba [62]. It is calculated using 

power spectrum of the image and a series of Gabor filters as follows: 
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An image is represented by a feature vector x = gn, gn being the output energies of a 

set of Gabor filters.   

 

3.8 Scale-Invariant Feature Transform (SIFT) 

David G. Lowe presented a method for image feature generation called the Scale 

Invariant Feature Transform (SIFT).  This approach transforms an image into a large 

collection of local feature vectors, each of which is invariant to image translation, 

scaling, and rotation, and partially invariant to illumination changes and affine or 3D 

projection.  The steps of this method are as follows: 
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Scale-space extrema detection is the first stage of computation searches over all scales 

and image locations. It is implemented efficiently by using a difference-of-Gaussian 

function to identify potential interest points that are invariant to scale and orientation. 

Keypoint localization each candidate location, a detailed model is fit to determine 

location and scale. Keypoints are selected based on measures of their stability.  One or 

more orientations are assigned to each keypoint location based on local image gradient 

directions. All future operations are performed on image data that has been transformed 

relative to the assigned orientation, scale, and location for each feature, thereby 

providing invariance to these transformations.  The local image gradients are measured 

at the selected scale in the region around each keypoint. These are transformed into a 

representation that allows for significant levels of local shape distortion and change in 

illumination. 

 

3.9 Bag of Words 

The Bag-Of-Words (BoW) is a model originated of Natural Language Processing. 

According its original definition, it is a model used representing documents.  It ignores 

the word orders.  For example, the series of words "a beautiful day" and "day a 

beautiful" are exactly identical for this model.  The BoW model produces a dictionary 

based modeling, and each document is similar to a "bag" (therefore the order of words is 

irrelevant), that contains words from the dictionary.  

 

An example of BoW 

Given these two text documents: 

• “Battlestar Galactica has an FTL drive” 

• “FTL drive of Battlestar Pegasus is broken” 

A dictionary is constructed as follows: 

• dictionary={1:" Battlestar ", 2:" Galactica ", 3:" has ", 4:" an ", 5:" FTL ", 

6:"drive", 7:" of ", 8:" Pegasus ", 9:" is ", 10:" broken "},  

This dictionary contains 10 words.  

Using the indexes of the dictionary, The documents are represented by a 10-entry 

vector: 

• [1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:0, 8:0, 9:0, 10:0]  
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• [1:1, 2:0, 3:0, 4:0, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1]  

 

where each indexed component of the vectors refers to count of the corresponding word 

in the dictionary. As it can be seen, the vector representation does not preserve the 

order. An application of this representation using Latent Dirichlet Allocation is 

presented in [70] 

 

In Computer Vision, researchers use the BoW model for image representation. For 

instance, an image can be considered as a document, and features extracted from this 

image are considered as the words that it contains. 

In order to represent an image using BoW model, the image is considered as a 

document.  But the question is what is represented as words?  The answer of this 

question is not trivial.  It is laborious to define ‘words’ of an image.  It includes feature 

detection and feature description steps. According to Fei-Fei et. al. a definition of the 

BoW model can be the "histogram representation based on independent features" [71]. 

 

Feature detection for the BoW model consists of extracting several local patches, which 

are considered as candidates for basic elements, "words".  The feature detection step is 

in fact a selection of key points or regions in an image.  In [49,72] this method is used 

as it is described.  In [74] every pixel is considered as key point.   A dense regular grid 

(10 to 30 pixels) in [86 and 90] shown in figure 3.16 (b) , randomly sampled points, 

segmentation based patches in [49], and sparse sets of interest points or regions, 

including Lowe’s difference-of-Gaussians (DoG) peaks in [69] shown in Figure 3.8 (c).  

 

        
Figure 3.8 (a)original image         (b) regular grid                    (c) interest points 
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As a result of feature detection step, an image is abstracted by a set of locations (see 

Figure 3.8 (a) and (b).  Then feature description methods take over for representation of 

the patches as numerical feature vectors.  In other words, once a set of locations is 

obtained, local descriptors are extracted.   A good descriptor should have the ability to 

handle intensity, rotation, scale and affine variations.   

 

One of the most widely used local descriptors is SIFT [75], which is essentially a 

histogram of intensity gradient orientations, weighted by their magnitude and a 

Gaussian window.  It is computed at different image scales, and the predominant 

gradient orientation is subtracted, to make it scale and rotation invariant.  Descriptors 

are also often computed by passing an image through filter banks, typically comprising 

of Gaussians, Gaussian derivatives, Laplacians, and wavelets [76].  It is demonstrated 

that SIFT descriptors seem are more robust than other descriptors, and dense sampling 

grids outperform other point detectors [77].  After this step, each image is a collection 

of vectors of the same dimension (128 for SIFT), where the order of different vectors is 

of no importance.  Figure 3.9 illustrates SIFT descriptors obtained from an image. 

 

 
Figure 3.9 SIFT descriptor vectors 

The next and final step is to convert vector represented patches (descriptors) to 

codewords. The collection of descriptors is vector-quantized into a dictionary of 

codewords (Shown in Figure 3.10).   

 



 59

    
Figure 3.10 Vector quantization of descriptors and the dictionary 

 

A codeword can be thought of a representative of several similar patches.  One simple 

method is using K-means algorithm over all the vectors. Codewords are then defined as 

the centers of the learned clusters. The number of the clusters is the codebook size. The 

optimal dictionary size and codewords are learned by pairwise merging from an initially 

large dictionary.  An image is the represented using a histogram of the codewords it 

contains (see Figure 3.11). 

 

 
Figure 3.11 Codeword histogram representation of an image 

 

 

A recapitulation of the BoW method:  
 

(i) A set of key points/regions (patches) is selected,  
(ii) Patches are represented using local descriptors,  
(iii) Descriptors are vector quantized into a fixed-size codebook,  
(iv) The image is represented as a histogram of the codewords it contains. 
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3.10 Conclusion 

Three different approaches for image representation namely global, local and 

intermediate were studied and discussed.  We have seen that all these three ways of 

representing images were equally important and that human perception can only be 

modeled by investigating in all these approaches, not neglecting one of them 



4   IMAGE COMPRESSION 

 

 
4.1 Introduction 

Image Compression became more and more important in the last decade with the 

development of Internet and digital cameras becoming widespread.  Uncompressed 

multimedia data like image audio and video requires large and larger storage capacity 

and transmission bandwidth every day.  Despite rapid progress in mass-storage density, 

processor speeds, and digital communication system performance, demand for data 

storage capacity and data-transmission bandwidth continues to outstrip the capabilities 

of available technologies.  This recent growth of multimedia-based web applications has 

not only sustained the need for more efficient ways to compress images but have made 

compression central to storage and communication technology.  

 

There is a certain number of features that an image compression system has to address, 

these features are: Lossless and lossy compression, embedded lossy to lossless coding, 

progressive transmission by pixel accuracy and by resolution, robustness to the presence 

of bit-errors and region-of-interest coding.  An image compression system has to 

provide these features without degrading the image quality.  To address these needs and 

requirements in the specific area of still image compression, many efficient techniques 

with considerably different features have recently been developed [78, 79] 

Lossy CS, which aim at obtaining the best possible fidelity for a given bit-rate (or 

minimizing the bit-rate to achieve a given fidelity measure).  Lossless CS aim at 

minimizing the bit rate of the compressed output without any distortion of the image. 

The decompressed bit-stream is identical to original bit-stream
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4.2 Image Compression Standards 

4.2.1 JPEG and JPEG2000 

Compression is one of the technologies that enable the multimedia revolution to occur. 

However for technology to be effective there has to be some degree of standardization 

so that the equipment designed by different vendors can interoperate. International 

Telecommunication Union (ITU) and the International Organization for Standardization 

(ISO) have been working together to establish a joint international standard for the 

compression of grayscale and color still images.  This effort has been known as JPEG, 

the Joint Photographic Experts Group the “joint” in JPEG refers to the collaboration 

between ITU and ISO). Officially, JPEG corresponds to the ISO/IEC international 

standard 10928-1, digital compression and coding of continuous-tone (multilevel) still 

images or to the ITU-T Recommendation T.81. The text in both these ISO and ITU-T 

documents is identical.  The process was such that, after evaluating a number of coding 

schemes, the JPEG members selected a DCT1-based method in 1988. From 1988 to 

1990, the JPEG group continued its work by simulating, testing and documenting the 

algorithm. JPEG became a Draft International Standard (DIS) in 1991 and an 

International Standard (IS) in 1992.  With the continual expansion of multimedia and 

Internet applications, the needs and requirements of the technologies used, grew and 

evolved. In March 1997 a new call for contributions were launched for the development 

of a new standard for the compression of still images, the JPEG2000.  This project was 

intended to create a new image coding system for different types of still images (bi-

level, gray-level, color, multi-component) [80] JPEG 2000 has been published as an 

ISO standard in 2000. 

 

4.2.2 Other Standards 

4.2.2.1 Graphics Interchange Format (GIF) 

GIF images are compressed using the Lempel-Ziv-Welch (LZW) [81] lossless data 

compression technique to reduce the file size without degrading the visual quality.  This 

compression technique was patented in 1985.  Though the relevant patents have all 

since expired, the controversy over the licensing agreement between the patent holder, 
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Unisys, and CompuServe in 1994 led to the development of the Portable Network 

Graphics (PNG) standard. 

 

4.2.2.2 Portable Network Graphics (PNG) 

Portable Network Graphics (PNG) [82] is a W3C recommendation for coding of still 

images which has been elaborated as a patent free replacement for GIF, while 

incorporating more features than this last one.  It is based on a predictive scheme and 

entropy coding.  The prediction is done on the three nearest causal neighbors and there 

are five predictors that can be selected on a line-by-line basis.  The entropy coding uses 

the Deflate algorithm of the popular Zip file compression utility, which is based on 

LZ77 coupled with Huffman coding.  PNG is capable of lossless compression only and 

supports gray scale, palletized color and true color, an optional alpha plane, interlacing 

and other features. [83] 

 

4.2.2.3 JBIG  

JBIG is a lossless image compression standard from the Joint Bi-level Image Experts 

Group, standardized as ISO/IEC standard 11544 and as  ITU-T recommendation T.82. 

Now that the newer bi-level image compression standard JBIG2 has been released, 

JBIG is also known as JBIG1.  JBIG was designed for compression of binary images, 

particularly for faxes, but can also be used on other images.  In most situations JBIG 

offers between a 20% and 50% increase in compression efficiency over the Fax Group 4 

standard, and in some situations, it offers a 30-fold improvement.  JBIG uses a form of 

arithmetic coding patented by IBM known as the Q-coder. It bases the probabilities of 

each bit on the previous bits and the previous lines of the picture.  In order to allow 

compressing and decompressing images in scanning order, it does not reference future 

bits.  JBIG also supports progressive transmission with small (around 5%) overheads. 

 

4.3 Overview of Image Compression 

A typical image compression system is shown in Figure 4.1.  It consists of three closely 

connected components namely: Source Encoder, Quantizer, and Entropy Encoder. 

Compression is accomplished by applying a linear transform to decorrelate the image 
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data, quantizing the resulting transform coefficients, and entropy coding the quantized 

values. 

 

 

Figure 4.1 A typical image compression system 

 
 
4.3.1 Source Encoder 

A variety of linear transforms have been developed which include Discrete Fourier 

Transform (DFT), Discrete Cosine Transform (DCT) [84], Discrete Wavelet Transform 

(DWT) [85]  and many more, each with its own advantages and disadvantages. DCT is 

the one that is used in JPEG [86].  In JPEG2000, DWT is used as source encoder.  A 

comparison of DWT and DCT is given in 4.5  

4.3.2 Quantizer 

A quantizer simply reduces the number of bits needed to store the transformed 

coefficients by reducing the precision of those values.  Since this is a many-to-one 

mapping, it is a lossy process and is the main source of compression in an encoder. 

Quantization can be performed on each individual coefficient, which is known as Scalar 

Quantization (SQ). Quantization can also be performed on a group of coefficients 

together, and this is known as Vector Quantization (VQ) [87]. 

 

Source 
Encoder 

 
Quantizer 

Entropy 
Encoder 

Input 
Image 

Compressed 
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4.3.3 Entropy Encoder 

An entropy encoder further compresses the quantized values lossless to give better 

overall compression.  It uses a model to accurately determine the probabilities for each 

quantized value and produces an appropriate code based on these probabilities so that 

the resultant output code stream will be smaller than the input stream.  The most 

commonly used entropy encoders are the Huffman encoder and the arithmetic encoder, 

although for applications requiring fast execution, simple run-length encoding (RLE) 

has proven very effective.  An overview on various entropy encoding techniques can be 

found in [88]. 

It is important to note that a properly designed quantizer and entropy encoder are 

absolutely necessary along with optimum signal transformation to get the best possible 

compression. 

4.4. An Image Compression System: JPEG 2000 

Given that the most recently standardized compression system is JPEG2000, this 

section is dedicated to details of this compression technique. 

 

In the baseline mode, the image is divided in 8x8 blocks and each of these is 

transformed with the Discrete Wavelet Transform (DWT).  The transformed blocks 

coefficients are quantized with a uniform scalar quantizer, zig-zag scanned and entropy 

coded with Huffman coding.  The quantization step size for each of the 64 DWT 

coefficients is specified in a quantization table, which remains the same for all blocks. 

The DC coefficients of all blocks are coded separately, using a predictive scheme.  The 

discrete transform is first applied on the source image data. The transform coefficients 

are then quantized and entropy coded, before forming the output codestream 

(bitstream).  The decoder is the reverse of the encoder.  The codestream is first entropy 

decoded, dequantized and inverse discrete transformed, thus resulting in the 

reconstructed image data.  

 

Before proceeding with each block of encoder, a process named tiling is applied to the 

input image.  The term ‘tiling’ refers to the partition of the original (source) image into 
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rectangular non-overlapping blocks (tiles), which are compressed independently, as 

though they were entirely distinct images.  Prior to computation of the forward discrete 

wavelet transform (DWT) on each image tile, all samples of the image tile component 

are DC level shifted by subtracting the same quantity (i.e. the component depth). 

 
The authors recapitulated the encoding procedure as follows: 

 

• The image and its components are decomposed into rectangular tiles. The tile-

component is the basic unit of the original or reconstructed image. 

• The wavelet transform is applied on each tile. The tile is decomposed in 

different resolution levels. 

• These decomposition levels are made up of sub bands of coefficients that 

describe the frequency characteristics of local areas (rather than across the entire 

tile-component) of the tile component. 

• The sub bands of coefficients are quantized and collected into rectangular arrays 

of “codeblocks”. 

• The bit-planes of the coefficients in a “code-block” are entropy coded. 

• The encoding can be done in such a way, so that certain regions of interest can 

be coded in a higher quality than the background. 

• Markers are added in the bitstream to allow error resilience. 

• The codestream has a main header at the beginning that describes the original 

image and the various decomposition and coding styles that are used to locate, 

extract, decode and reconstruct the image with the desired resolution, fidelity, 

region of interest and other characteristics. 

• The optional file format describes the meaning of the image and its components 

in the context of the application. 

 

The artifacts of JPEG 2000 look different from those of JPEG, have a slighter effect on 

the image and take higher compression levels to be visible.  Often a photographic image 

can be compressed to 1/20 of its original (uncompressed bitmap) size without incurring 

visible artifacts.  When the artifacts do appear, they can be seen as smoothing rather 

than squares or mosquito noise.  The image to the right demonstrates the effects of 

JPEG 2000 compression in various ratios. 
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• The basis for JPEG´s lossy compression is two-dimensional DCT. 

• The image is broken into 8 x 8 blocks on which the transform is computed. 

• Image compression is obtained through quantization of these DCT coefficients 

to a small set of values. 

• Values are entropy coded and stored as a compressed version of the image. 

 

4.5 A Comparison of Image Encoding Quality: JPEG vs. JPEG2000 

Ebrahimi et al. compared the two compression systems in [89].  Their work showed 

different artifacts of these compression systems which are blockiness and blur as they 

are described below.  

 

Blockiness is a perceptual measure of the block structure that is common to all block-

DCT based image and video compression techniques, as for example JPEG.  The DCT 

is typically performed on 8×8 pixel blocks in the frame; the coefficients in each block 

are quantized separately. This leads to artificial horizontal and vertical borders between 

these blocks, which can be detected.  Blockiness can also be caused by transmission 

errors, which often affect entire slices of blocks in an image. 

 

Blur is a perceptual measure of the loss of fine detail and the smearing of edges.  It is 

due to the attenuation of high frequencies at some stage of the recording or encoding 

process. It is one of the main artifacts of wavelet based compression techniques such as 

JPEG2000, for which transmission errors or packet loss can also induce blur. DCT-

based compression schemes exhibit blur too, even if it is not the primary distortion. 

Other important sources of blur are low-pass filtering or out-of-focus shots.  Blockiness 

and blur are visible in the JPEG- and JPEG2000 encoded images, respectively. 
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Figure 4.2 (a) Original image     (b) JPEG-encoded image       (c)JPEG2000-encoded 

image 

 

The original image, JPEG compressed and JPEG2000 compressed images at a 

compression ratio of 1%100. The respective artifacts of blockiness and blur are visible 

in the compressed images (Figure 4.2 (b) and (c)) 

 
4.6 Conclusion 

There is certain number of different compression standards all of which are widely used 

in many applications JPEG 2000 is standardized in year 2000 but JPEG is stil the most 

popular and the most used compression technique. 

 

We have seen in this chapter the general idea behind image compression.  There may be 

some differences between the standards but there is set of steps that do not change from 

one standard to other.  At the end, compression is a way to represent an image. 

Investigation needs to be done for understanding the influence of compression on image 

classification. 



5   EXPERIMENTATIONS 

 

 

5.1 Introduction 

This chapter is dedicated to the experimentations. The goals of these experimentations 

are: (1) to find the influence of image compression on image classification.  (2) Choice 

of multi-class SVM method.  (3) Comparison between global and local image 

representation for image classification. 

 

5.2 Image Dataset Description 

Our image database contains 8 categories of natural scenes: Highway, Streets, Forest, 

Open Country, Inside Of Cities, Tall Buildings, Coast and Mountain Images.   

   

 

Figure 5.1 From top left to bottom right: Highway, Tall building, Street, Inside of city, 
Mountain, Open country, Coast, Forest. 

 

The database provided by Oliva and Torralba was collected from a mixture of COREL 

images as well as personal photographs.  All images are colored and sized of 256x256 

pixels. For each classification experiment 100 images of each category are reserved for 
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test purpose and the remaining images are used as training set. A few sample of the 

image database is shown in Figure 5.1. 

 

5.3 Description of Feature Vectors  

A feature vector is a series of real numbers or integers depending on the nature of the 

feature.  For instance if it is a histogram the entries are integers.  

The SVM implementation that we used has a specific input format for learning and 

classification processes [90]. Examples are represented by their labels and feature 

vectors described in section 2.  To be precise, feature vector coordinates follows the 

label by an index preceding each coordinate. For instance, the representation R of an 

image having a feature vector v of length i looks like the following: 

R : <label> 1: v1 2: v2 3: v3 … i: vi 

An example can be labelled as positive, replacing <label> with the number ‘1’ or 

negative with ‘-1’.  Positive or negative labelling is a process done at the learning step. 

If a classification task is being done then test examples may be labelled with number ‘0’ 

so that SVM knows that they are new test examples. If an example is labeled as positive 

and it is classified as positive then the classifier will note that it is a correct 

classification. 

 

5.4 Combination of Feature Vectors 

In Chapter 3 we have presented different ways of representing images like global local 

or intermediate representation.  All of these representation approaches are feasible 

thanks to different sorts of features described in the same chapter as well.  Each time we 

need to represent an image we many choices of features to use.  One can prefer to 

represent an image by a single feature or several features at the same time by combining 

them.  Let an image I and two feature vectors u=<u1,…um> and v=<v1,…vn> extracted 

from I. Then the combination of these features is the concatenation of the feature vector 

u v as follows: 
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W=<w1,w2,…,wm+n>=<u1,u2,…un,v1,v2,…vm>                        (5.1) 

 

This is the most natural and easy way to combine several features.  But because of the 

scale problem due to the nature of the individual features u and v, a normalization phase 

has to be introduced into the feature combination. 

 

5.5 Feature Vector Normalization 

To improve discrimination power of the image representation features can be used 

together.  A common approach is to group the features representing an image in a single 

vector and then this feature vector is used as input to a single SVM classifier for 

obtaining the decision at once.  This is the most natural and easy way to combine 

several features. But because of the scale problem due to the nature of the individual 

features a normalization phase has to be introduced into the feature combination 

process.   

 

Table 5.1 Normalization methods 
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Numerous normalization techniques have been proposed.  A collection of normalization 

methods used in this paper is summarized in Table 5.1. 

 

Min–max normalization retains the original distribution of scores except for a scaling 

factor and transforms all the scores into a common range [0, 1].  This method is highly 

sensitive to outliers in the data used for estimation. Decimal scaling can be applied 

when the scores of different matchers are on a logarithmic scale.  Both mean and 

Standard deviation are sensitive to outliers and, hence, Z-score normalization is not 

robust.  If the input scores are not Gaussian distributed, z-score normalization does not 

retain the input distribution at the output.  Median normalization technique does not 

retain the input distribution and does not transform the scores into a common numerical 

range.  The tanh estimators are known as robust and efficient [91]. 

 

To evaluate the normalization techniques we combined the features in six different 

ways: first without normalization and then using the five normalization functions 

described in 5.5.  Classification results show that normalization improves classification 

performance.  When classification is performed without any normalization on feature 

vectors classification performance is even worse when compared to single feature 

classification performances shown in table 2. For instance even the lowest rate which is 

92% for edge feature is higher than none normalization case with 88% of correct 

classification rate. For this modality the most performing normalization method is the 

decimal normalization. 

 

We tested several combinations of global and local features for the modalities given 

previously. The results confirmed that decimal normalization was the best of the five 

normalization methods tested in this paper. Globally the normalization methods can be 

ranked in this way: Decimal, Tanh, Z-score, Median, Minmax. Based on this results 

decimal normalization is used in remaining experiments. 
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5.6 Performance Measures 

An important aspect of our study is the use of performance criteria to evaluate 

multiclass SVM methods. Classification techniques are now used in many domains, and 

different performance metrics are appropriate for each domain. For example 

Precision/Recall measures are used in information retrieval. Different performance 

criteria measure different tradeoffs in the predictions made by a classifier, and it is 

possible that a learning method performs well on one metric, but be suboptimal on other 

metrics. Because of this it is important to evaluate algorithms on a broad set of 

performance metrics. There exist numerous performance measures in the literature of 

image classification domain. The most widely used methods are correct classification 

rate[92], error rate, classification accuracy in percentage [93,94] and ROC curves 

(sensitivity-specificity curves).  Time of training is also widely used for classification 

techniques that require training. For SVM based classification, performance can also be 

evaluated by number of support vectors and the size of learned model with the other 

performance criteria. 

 

Table 5.2 Confusion Matrix 

 
Predicted Label 

Positive Negative 

Known Label 
Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

 

Almost every performance criteria mentioned above is computed from a confusion 

matrix shown in Table 5.2.  Accuracy is the simplest way to compare two confusion 

matrices because it is a measure that represents the whole classification not only one 

class prediction.  However precision, recall and specificity are measures that represent 

the performance of the prediction of only one class.  That is the reason why accuracy is 
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the most widely used measure.  Kappa statistic is used to compare the degree of 

consensus between raters. In this context it is used to measure the quality of 

classification. Like accuracy, kappa statistic can represent a confusion matrix with a 

single value. It varies in interval [-1,1], 1 for perfect classification and -1 for a classifier 

that  makes wrong decision systematically. 

 

Table 5.3 Performance Measures 

Measure Formula 

Precision TP/(TP+FP) 

Recall TP/TP+FN) 

Specificity TN/(TN+FP) 

Accuracy (TP+TN)/(TP+TN+FP+FN) 

F-measure 2.Precision.Recal/(Precision+Recall) 

Kappa (TP+FN)(TP+FP)/(TP+TN+FP+FN) 

 

5.7 Influence of Image Compression on Image Classification 

The next experiment’s objective is to find out the influence of image compression on 

image classification performances. A binary classification between Forest and Highway 

classes is performed using texture representation. This representation contains energy, 

entropy, homogeneity and inertia attributes calculated from gray level co-occurrence 

matrices. The main idea of the experiment is to repeat the same experiment changing 

each time the compression ratio only. So that results of classification can be compared 

for different compression ratios. First, images are not much compressed; the visual 

quality is kept unchanged. Then the compression is augmented, even degrading visual 

quality. 
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All training and test images used in this experiment are compressed by different 

compression ratios (0.5, 0.2, 0.1, 0.05, and 0.01) and the experiment is conducted using 

the compressed images. Results are stored for each compression ratio. Samples of 

compressed images are shown in figure 5.3.  Classification results are given in Table 

5.4. 

 

Table 5.4 Classification of compressed images 

Compression Rates 1 0.5 0.2 0.1 0.05 0.01 

Classification Accuracy 95.5 95.5 95.5 94.5 94 93 

 

According to the obtained results classification performance remained unchanged for 

0.5 and 0.2. Confusion matrix for the rest of the compression values are given in Tables 

5.7 to 5.9.  According to these results, even if the visual quality is degraded 

classification rates do not decrease much.  The experiment has stopped at 1% 

compression ratio. Continuing the experiment with further compression would be 

unnecessary.  We have demonstrated that when compression is not degrading visual 

quality it cannot possibly degrade the classification performance. 

 

5.8 Choice of Representation 

 

5.8.1 Local Representation 

Local features used are color histograms, 72 bins edge direction histograms and gray 

level co-occurences matrices computed on blocks of 32x 32 pixels. We compared local 

features for four different modalities. For tall building-inside city and mountain-street 

modalities local representation hardly reached 80% correct classification rate.  
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Table 5.5 Classification accuracy for local features 

Modality Color Edge Texture 
Tallbuilding/Insidecity 79% 73,5% 72% 
Mountain/Street 77% 76% 80% 
Forest/Highway 94% 92% 96% 
Opencountry/Street 86% 93% 93% 
Mean Values 84% 83,6% 85,2% 

 

 
For the other modalities (forest-highway and open country-street) local representation 

gave satisfactory results for all the features reaching 96% of correct classification rate. 

Results are shown in Table 5.5.  Texture and edge give better results when classification 

is performed between two classes for which one contains images with an important 

amount of texture like foliage in forest images. That was the case for forest-highway 

and open country-street classification. Overall texture is the most performing feature. 

Classification based on color or edges are as efficient. 

 

5.8.2 Global Representation 

 Color, texture and gist have been compared. For extracting texture information energies 

of Daubechies-4 wavelet transformation applied to the LL component of the image in 

each step of 4 steps has been used.  Color information is measured using 64 bins RGB 

histogram.  Classification performances are given in Table 5.6.  

 

Gist outperformed color and texture in every case. The explanation may be that gist is 

already a combination of basic features (naturalness, openness, roughness, expansion 

and ruggedness). Variations in the performance of gist are in accordance with spectral 

signatures that were proposed in [28]. 

 
 

Table 5.6 Classification accuracy for global features 

Modality Gist Color Texture 
Tallbuilding/Insidecity 86,5% 71% 67% 

Mountain/Street 95% 75,5% 77% 
Forest/Highway 93% 90% 90% 

Opencountry/Street 92% 75% 83% 
Mean Values 91,6% 77,7% 79,25 
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5.8.3 Which Representation: Local or Global? 
 

In this experimentation the objective is to make a choice between the two image 

representation approaches.  

 

Table 5.7 Classification acuracy for the combination of local and three global features. 

Modality Local Global 
Tallbuilding/Insidecity 83 89,5 
Mountain/Street 93 96,5 
Opencountry/Street 96 94 
Forest/Highway 97.5 94 

 
 

We conducted binary classifications between different categories based on a 

combination of local features (color, edge, texture), and then global features (gist, color, 

texture).  

 

For forest/highway and open country/street modalities the local representation 

outperforms the global representation while for the remaining modalities the global 

representation is more efficient. This can be explained by high amount of texture 

information contained in forest and open country images. These results are in 

accordance with knowledge on human vision. It suggests that when one has no 

information about image content both global and local information should be used for 

scene categorization. 

 

5.9 Choice of Multi-class SVM Method 

SVM is basically conceived for binary classification.  The idea is to separate two classes 

by calculating the maximum margin hyperplane between the training examples.  Several 

methods have been proposed to extend SVM in order to classify more than two classes. 

Currently there are two major approaches for extending SVM to multiclass 

classification: (1) combining several binary SVM classifiers; (2) considering all data in 

a single optimization. Generally the first approach is called ‘divide-and-combine’ and 

the second ‘all-in-one’.  The main methods for divide-and-combine are One-Against-
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All, One-Against-One  and Directed Acyclic Graph. There is few work in the literature 

comparing these methods.  In [93] divide-and-combine methods are compared for 

natural images like grass, leaves, sky etc.  They conclude that OAO is most performing 

in terms of accuracy.  In [93] satellite images (water, construction, wood, bare soil etc.) 

are classified using divide-and-combine methods, according to their results OAA is 

more performing then DAG in terms of accuracy.  These comparisons do not cover all-

in-one approaches and the image databases used in these work do not contain natural 

scenes.  In [94], SVM all-in-one approach is compared to other classification techniques 

like neural networks, discriminant analysis and decision trees on database containing 

land cover images.  They show that all-in-one SVM outperforms other techniques.  

Despite these studies there is not a fully complete comparison of multi-class SVM 

classification methods for natural image classification purpose.  We evaluate and 

compare several multiclass SVM methods by following an experimental approach.  We 

compare performance of the methods for natural image categorization task using 

different types of image representations.  We perform an extensive evaluation using a 

multitude of performance measure. 

 

5.9.1 Choice of Modalities 

We use our image database to obtain two groups of images that contain both four 

classes. These groups are arranged in such a way that one group contain the four most 

similar classes and the other the four least similar ones. We use these two groups in the 

remaining experimentations to compare multiclass classification methods. For selection 

of the similar and dissimilar classes we have inspired of [28] where authors calculated 

the spectral signature of natural image categories. We performed binary classifications 

between every possible pair of classes in our image database (C(8,2)=28) based on a 

texture feature that contains four attributes namely energy, entropy, homogeneity and 

inertia extracted from gray level co-occurrence matrices. We sorted the binary 

classification results by accuracy. Keeping in mind that 6 classifiers are needed to build 

a 4-class classifier the 6 best performing classifiers sufficient to construct a 4-class 

classifier are selected; these four classes are the most similar ones according to the 

feature that is used. Following the same procedure the four least similar classes are 
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found. Our texture measure describes the image database in a similar way as it is 

described by spectral signatures.  The four most similar classes are Inside of city, Street, 

Tall building and Mountain and the four least similar classes are Forest, Highway, Cost, 

Street. It has been seen that spectral signature and our measure are in accordance.  We 

have performed binary classification of classes that belong to most similar classes 

between each other and the least similar classes between each other. Results are given in 

Table 5.8 and Table 5.9.  

 

Table 5.8 Classification accuracy (1)Forest, (2)Highway, (3)Coast, (4)Street 

1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

95.5 94.5 87.5 78 93.5 93.5 

 

Table 5.9 Classification accuracy (1)Inside of city (2)Street, (3)Tall building, 
(4)Mountain 

1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

76.5 76.5 76 92 86 71 

 

5.9.2 Classification Based on Texture 

Texture feature that is previously defined is extracted from images on blocks of 64x64 

pixels. The most similar image classes are used (A) for classification. Classification 

results in terms of three performance measure are presented in Table 5.10. OAO with 

MaxWins strategy is noted as MAXWINS and OAO pairwise coupling is noted as 

PWC. 

All three performance measures agree that the methods are ascendant ordered as DAG, 

PWC, MaxWins, OAA, AIO. Correlation coefficients of the performance measures are 

given Table 5. It has been observed that the best performing two strategies (OAA and 
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AIO) have similar training phases. The most discriminating performance measure is 

Kappa statistic because it has a wider range comparing to the others. 

 

Table 5.10 Classification results. (A) Forest-Highway-Coast-Street. 

1 
Texture 

Fm Acc Kappa

 

A 

DAG 0.767 0.767 0.690 

PWC 0.774 0.775 0.700 

MAXWINS 0.779 0.780 0.706 

OAA 0.783 0.785 0.713 

AIO 0.789 0.790 0.720 

 

 

Table 5.11 Classification results. (B) Inside of city-Street-Tall building-Mountain. 

2 
Texture 

Fm Acc Kappa

 

B 

DAG 0.579 0.582 0.443 

PWC 0.592 0.590 0.453 

MAXWINS 0.603 0.600 0.466 

OAA 0.552 0.587 0.450 

AIO 0.598 0.605 0.473 
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The most similar classes have been classified using all the methods based on the texture 

measure; results are shown in Table 5.11. The best performing method is All-In-One 

with agreement of the three performance measures and the worst is DAG according to 

Accuracy and Kappa statistic. F-measure disagreed on that decision. This is due to two 

classes (Inside of city and mountain) to have surprisingly low recall values (0.27 and 

0.34) that decreased the mean F-measure for OAA classification. Accuracy has not been 

influenced by that because the other two classes (street and tall building) have very high 

recall values (0.88 and 0.86) that balanced low values. 

 

5.9.3 Classification Based on Gist 

The most similar classes have been classified using gist feature; results are shown in 

Table 5.12. The methods are ascendant ordered by their performance as DAG, PWC, 

OAA, MaxWins and AIO with agreement of all three performance measure.  An 

increase of performance is observed for all five methods comparing to the classification 

based on texture feature with the same classes. This shows that gist is a more 

discriminative then texture feature.  

 

Table 5.12 Classification results. (A) Forest-Highway-Coast-Street. 

3 
Gist 

Fm Acc Kappa

A 

DAG 0.874 0.875 0.833 

PWC 0.891 0.892 0.856 

MAXWINS 0.914 0.915 0.886 

OAA 0.904 0.905 0.873 

AIO 0.941 0.942 0.923 
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Table 5.13 Classification results (B) Inside of city-Street-Tall building-Mountain 

4 
Gist 

Fm Acc Kappa

B 

DAG 0.773 0.775 0.700 

PWC 0.816 0.817 0.756 

MAXWINS 0.819 0.820 0.760 

OAA 0.845 0.847 0.796 

AIO 0.858 0.860 0.813 

 

Classification results of the four most similar classes using gist feature is shown in 

Table 5.13.  Methods are ordered in ascendant rank as: DAG, PWC, MaxWins, OAA, 

AIO with agreement of all the performance criteria. DAG, PWC and MaxWins that 

have the same binary classifiers are grouped together in performance rank. OAA and 

AIO made a second group with very similar results that can be explained by the 

similarity of their training phases. 

 

Table 5.14 Correlation Coefficients 

 Fm-Acc Fm-Kappa Acc-Kappa 

1 0.9983 0.9987 0.9995 

2 0.6786 0.6581 0.9995 

3 1.0000 0.9999 1.0000 

4 0.9999 1.0000 1.0000 
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Table 5.14 shows the correlation coefficients of performance measures. Correlation 

coefficients vary in interval [-1,1]. 1 is for perfect agreement between measures and -1 

for disagreement. There is perfect agreement between performance measures for all 

experiments except from the second experiment for which the reason of the 

disagreement is explained in 5.9.2. 

 

5.10 Conclusion  

Results show that All-In-One method is the most performing SVM multiclass 

classification strategy for natural scene classification. This conclusion is confirmed with 

all four experiments performed on two separate groups of images using two different 

types of representation, one local, one global. Three of four experiment conclusions 

agreed that One-Against-All is the second best performing method. This result is 

interesting because OAA and AIO methods have very similar training phases where one 

class is considered against the rest of the classes. 



6   CONCLUSION 
 

 

Image categorization involves several contributions.  A very large range of research 

area contributed to image categorization work. Cognitive sciences, Statistics and 

Computer sciences are some of these areas.  Cognitive Sciences have especially an 

important role in image categorization works because categorizing an image is 

obviously a task best performed by human.  Therefore researchers working in this area 

need a good knowledge and understanding of human visual system and human 

perception in order to emulate it with computational system.  Statistics has also a very 

important role because of the classification problem that requires statistical techniques 

and finally computational sciences are inevitable for design and implementation of such 

a system.  This thesis can be classified as a study in both computational domain and 

statistics.   

 

We have surveyed different classification techniques and algorithms besides Support 

Vector Machines, some of these techniques that we have surveyed are: Artificial Neural 

Networks, Naive Bayes Classifier, Hidden Markov Model and K-Nearest Neighbor. 

Among all these techniques Support Vector Machines was the most promising. It is 

relatively a new technique and it is very popular in this domain.  We have concentrated 

on SVMs as a tool for image categorization objective.  We has surveyed multi-class 

classification approaches using SVM in detail.  

 

Image representation was another focus of this work. In fact representation of images 

has certainly the most important role in image categorization. Categorization is possible 

only if images can be discriminated.  So we need discriminative image characteristics to 

achieve this goal.  We have reviewed different kinds of image representations namely 

local, global and intermediate representations.  We have proposed image compression 

as an intermediate image representation. 
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Finally, we have conducted a series of experiments for different objectives which are: 

understanding the influence of image compression in image classification, comparing 

local and global representation and comparing multi-class SVM strategies. 
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