
 

HALTING PREDICTION ON BUSY BEAVER TYPE TURING MACHI NES 

BASED ON INFORMATION ENTROPY 

(BUSY BEAVER TÜRÜ TURING MAKĐNALARINDA B ĐLGĐ ENTROPĐSĐNE 

DAYALI SONLANMA ÖNGÖRÜSÜ) 

by 

Hakan AYRAL, B.S. 

 

 

Thesis 

Submitted in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE 

in 

COMPUTER ENGINEERING 

in the 

INSTITUTE OF SCIENCE AND ENGINEERING 

of 

GALATASARAY UNIVERSITY 

 

May 2008



 

HALTING PREDICTION ON BUSY BEAVER TYPE TURING MACHI NES 

BASED ON INFORMATION ENTROPY 

(BUSY BEAVER TÜRÜ TURING MAKĐNALARINDA B ĐLGĐ ENTROPĐSĐNE 

DAYALI SONLANMA ÖNGÖRÜSÜ) 

by 

Hakan AYRAL, B.S. 

 

 

Thesis 

Submitted in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE 

 

Date of Submission   : 16 May 2008 

Date of Defense Examination : 2 June 2008 

 

Supervisor  : Assoc.Prof. Dr. A. Muhammed ULUDAĞ 

Committee Members : Prof. Dr. Hocine CHERIFI 

        Asst.Prof. Dr. M. Ebru ANGÜN



ii 

Acknowledgements 
 

 

I would like to express my sincere gratitude to my supervisor Assoc. Prof. A. 
Muhammed Uludağ, not only for his academic support he provided during the 
preparation of this thesis but also on many other fields of mathematics. He scientifically 
inspired me not only during the course of preparation of this thesis, but throughout all 
years of my graduate studies, and extended my perspective on many scientific subjects. 

I also would like to express my deepest appreciation and gratitude to my family for their 
infinite support in every possible way. 

Hakan Ayral 

15 May 2008 

 



iii 

Table of Contents 
 
 
 
Acknowledgements........................................................................................................... ii 
Table of Contents.............................................................................................................iii 
List of Figures................................................................................................................... v 
List of Tables ................................................................................................................... vi 
List of Code Listings.......................................................................................................vii 
Abstract ..........................................................................................................................viii 
Résumé............................................................................................................................. ix 
Özet................................................................................................................................... x 
1. Introduction............................................................................................................... 1 

1.1. Quadruple vs. quintuple definition of TM........................................................ 1 
1.2. Halting Problem................................................................................................ 3 
1.3. Undecidability of Halting Problem................................................................... 4 
1.4. Consequences of Undecidability of Halting Problem....................................... 5 
1.5. Proof of Non-computability of ∑(n) ................................................................. 7 

2. Historical Survey of Busy Beavers........................................................................... 8 
2.1. Current Best Candidates ................................................................................... 9 
2.2. Historical evolution of relations ..................................................................... 10 
2.3. Chronological Summary................................................................................. 11 
2.4. Summary Tables ............................................................................................. 13 
2.5. Busy Beaver State Topology Samples............................................................ 13 

3. Search Space ........................................................................................................... 16 
3.1. Size.................................................................................................................. 16 
3.2. Smoothness ..................................................................................................... 16 
3.3. Topology......................................................................................................... 17 

4. Exploring Search Space .......................................................................................... 19 
4.1. Exhaustive Enumeration ................................................................................. 19 
4.2. Random Sampling........................................................................................... 19 
4.3. Evolutionary approaches................................................................................. 20 
4.4. Hill climbing................................................................................................... 21 

5. Implementation ....................................................................................................... 23 
5.1. Data Types ...................................................................................................... 24 
5.2. Emulator.......................................................................................................... 28 
5.3. Enumerator...................................................................................................... 31 

6. Optimizations.......................................................................................................... 35 
6.1. Tree Normal Form .......................................................................................... 35 
6.2. Macro Machines ............................................................................................. 38 
6.3. Tape Compression .......................................................................................... 39 

7. Non-halting prediction............................................................................................ 41 
7.1. An efficiency measure for halting predictors ................................................. 42 
7.2. “Just observe” halting predictor...................................................................... 43 
7.3. State Connectivity Check................................................................................ 45 
7.4. Configuration Exhaustion ............................................................................... 47 
7.5. Slow Loop Fast Loop...................................................................................... 48 

8. Proposed non-halting predictor............................................................................... 50 



iv 

8.1. Ratio of shifts to explored tape space ............................................................. 50 
8.2. Modeling the bounds ...................................................................................... 52 
8.3. Calculating the coefficients ............................................................................ 53 

9. Conclusion .............................................................................................................. 54 
References....................................................................................................................... 55 
Biographical Sketch........................................................................................................ 56 

 

 



v 

List of Figures  
 

fig. 1.1 – Transitions with Quintuple vs. Quadruple Definition ....................................... 2 
fig. 2.1 – 3-State Busy Beaver - Lin and Rado,1965...................................................... 13 
fig. 2.2 – 4-State Busy Beaver – Brady 1975 ................................................................. 14 
fig. 2.3 – 5-State Busy Beaver Candidate – Marxen 1990 ............................................. 14 
fig. 2.4 – Tape trace of first 800 steps of the TM in fig. 2.3........................................... 15 
fig. 2.5 – 6-State Busy Beaver Candidate....................................................................... 15 
fig. 4.1 – A possible genetic encoding for Turing Machine Setup ................................. 20 
fig. 6.1 – Isomorphic Machine Topologies..................................................................... 36 
fig. 6.2 – Reduction Achieved by TNF [8] .................................................................... 37 
fig. 7.1 – Halting Distribution of 2.106 Random Sampled TM ...................................... 43 
fig. 7.2 – Halting Distribution of all TNF enumerated 5,2 TMs..................................... 44 
fig. 8.1 – First 600 shift of “shift vs tape area explored” plot for 5000 randomly sampled 

5,2 Halting TMs on blank tape; each machine’s trace is marked with a unique 
color. ....................................................................................................................... 51 

fig. 8.2 – First 1200 steps of the same plot as fig. 8.1 .................................................... 51 
fig. 8.3 – First 600 shifts of “shift vs tape area explored” plot for 105 randomly sampled 

5,2 TMs not-halting within those shifts; each machine’s trace is marked with a 
unique color. ........................................................................................................... 52 

 



vi 

List of Tables 
 

table 2.1 – Busy beaver best candidates quintuple variant ............................................... 9 
table 2.2 - Busy beaver best candidates quadruple variant ............................................... 9 
table 2.3 – Chronological summary................................................................................ 11 
table 2.4 – S(2-6,2-6) ...................................................................................................... 13 
table 2.5 – ∑(2-6,2-6) ..................................................................................................... 13 
table 3.1 – Number of valid TMs.................................................................................... 16 

 



vii 

List of Code Listings 
 

listing 1 – C# source of main fields defined at the beginning of emulator class ............ 26 
listing 2 – Object Pascal source of main fields defined at the beginning of emulator class

................................................................................................................................ 27 
listing 3 – C# source of Turing Machine class’ emulator methods ................................ 29 
listing 4 – Object Pascal source of Turing Machine class’ emulator methods ............... 30 
listing 5 – C# source of Tree Normal Form TM enumerator method............................. 34 
listing 6 – C# source of connectivity checking function of TM class ............................ 46 
listing 7 – Object Pascal source of connectivity checking function of TM class ........... 47 

 



viii 

Abstract 
 
 
 

 

In this thesis we mainly propose a new asymptotically complete halting predictor 

for Turing Machines of Busy Beaver type which is defined by T.Rado in 1962.  Also we 

propose an efficiency measure to benchmark different halting predictors and finally we 

propose a topological representation for space of valid Turing Machines as a metric 

space with a Manhattan like distance metric allowing us to define a neighborhood 

between Turing Machines.  

 

Our predictor uses the ratio of tape space explored to cycles taken during a point 

in simulation history as a measure of information density for that moment of simulation, 

which allows us to predict the unconstructability of a counting process in terms of 

number of cycles occurred till that point.  We show that a halting Busy Beaver Turing 

Machine has to have the ability to keep track of its temporal position at each point of its 

simulation; and we construct a non-halting predictor using mentioned information 

density measure to show inability to track temporal position. 

 

Our method predicts non-halting of Busy Beaver Turing Machines by incurring 

negligible computational overhead to the regular simulation, while obtaining results 

very early on simulation; even for complicated machine configurations where 

conventional automated non-halting proving is ineffective or unfeasible. 
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Résumé 
 
 
 

 

Dans cette thèse nous proposons principalement une nouvelle prédicteur d’arrêt 

asymptotiquement complet pour machines de Turing de type Busy Beaver qui est défini 

par T. Rado en 1962. Aussi nous proposons une mesure d'efficacité pour différents 

prédicteurs d’arrêt et enfin, nous proposons une représentation topologique pour 

l'espace des machines Turing  comme un espace métrique avec une métrique de  

distance Manhattan. 

  

 

Notre prédicteur utilise le ratio de la bande exploré aux cycles prises au cours d'un point 

de simulation, comme une mesure de densité d'information pour ce moment de la 

simulation; ce qui nous permet de prédire impossibilité de construire un processus 

compteur en termes de nombre de cycles. Nous montrons que une Busy Beaver machine 

Turing doit avoir la capacité de garder la trace de sa position temporelle à chaque point 

de sa simulation, et nous construisons notre prédicteur de non-arrêt utilisant densité 

d’information pour démontrer l'impossibilité de suivre la position temporelle.  
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Özet 
 
 
 

 

Bu tezde Busy Beaver türü Turing Makinaları için asimptotik olarak tam bir 

sonlanma öngörüsü öneriyoruz.  Aynı zamanda farklı sonlanma öngörüsü sistemlerini 

karşılaştırabilmek için bir verimlilik ölçümü sunuyoruz ve son olarak geçerli Turing 

Makinası tanımlarını topolojik anlamda temsil edebilecek Manhattan uzaklık fonksyonu 

türevi bir uzaklık fonksyonuna sahip metrik bir uzay ve bu uzaydaki komşulukları 

tanımlıyoruz. 

 

Sonlanma öngörüsü sistemimiz, benzetim geçmişindeki bir noktada  Turing 

makina teybinin ziyaret edilmiş kısım uzunluğunun, teyp başlığının kaymalarına 

oranını, simülasyon geçmişinde o nokta için bilgi yoğunluğunun bir ölçümü olarak 

kullanarak simülasyon geçmişinin o anı için bir sayma sürecinin üretilip 

üretilemeyeceğini ispatlamaya dayanmaktadır. Busy Beaver Turing Makinalarının 

simülasyon geçmişlerinin her noktasında zamansal konumunu takip edebiliyor olması 

gerektiğini göstererek, önerdiğimiz bilgi yoğunluğu ölçütünü zamansal konum takibinin 

mümkünlüğünü test ederek takibin imkansızlığı halini sonlanmama öngörüsü kanıtı 

olarak kullanıyoruz. Normal makina benzetimine çok az bir hesapsal yük ekleyerek 

verimli bir erken sonlanma/sonlanmama öngörüsüne ulaşabiliyoruz. 
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1. Introduction 
 

In 1962 T.Rado introduced the "busy beaver problem" in his paper “On non-

computable functions” [1] , defined as follows.  Let M be a Turing machine with n 

states (plus an anonymous halting state) and two symbols that is conventionally 

assumed as 1 and 0; no blank symbol is used and tape is assumed to be filled with 

symbol 0 at the beginning.  At each step M has to write a symbol to the tape, move the 

machine head one symbol to the right or left, and change state.  To be a valid Busy 

Beaver machine, M must eventually halt when started on an empty two-way infinite 

tape.  Machine’s score according to the problem is the number of 1's left on the tape 

when M halts.  Thus M tries to write as many 1's on the tape as it can, but it must halt.  

Rado defines his infamous ∑ function as ∑(n) being the maximum possible score for a 

valid n-state entry.  

 

The theoretical interest in this competition arises from the fact that, although 

∑(n) is simply the maximum of a finite set, the ∑ function itself is not computable.1  

Furthermore, ∑ is eventually greater than any given computable functions.  In fact ∑ is 

very valuable to construct a specific non-computable function 

 

1.1. Quadruple vs. quintuple definition of TM 
 

A Turing Machine can be defined by a sextuple (Q,P,G,d,s,f) [2], where : 

 

• Q is a finite set of states 

• P is an alphabet of input symbols 

• G is an alphabet of tape symbols 

• δ is the transition function 

• s in Q is the start state 

                                                 
1 Neither the maximum shift function S is computable; both ∑ and S grows faster than any computable 
function; but it is possible to compute the values of ∑ and S for very small n values. 
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• f in Q is the final state. 

The original definition proposed by Rado [1] for Busy Beavers, considered 

deterministic 5-tuple TMs with n+1 states (n states and an anonymous halting state).  In 

each transition TM writes a symbol to the tape and moves the head left or right.  This is 

the quintuple definition of TM where the state transition function δ for this definition 

has the following form: 

 

δ: Q×Γ → Q×Γ×{L,R} where Γ ∈ P,  P = G  and  s,f ∈ Q 
 
 
There is also the quadruple definition of the TM having the following state 

transition function δ: 
 

δ: Q×Γ → Q×{Γ∪{L,R}} 
 

The Busy Beaver problem defined on Rado’s original paper uses the quintuple 

definition instead of quadruple definition; and through out this paper all definitions and 

statements are made assuming a quintuple definition.  Busy Beaver problem using 

quadruple machine definition is also investigated in the literature. 

 

 

 

fig. 1.1 – Transitions with Quintuple vs. Quadruple Definition 

 

 

According the quintuple definition the total number of valid n-state (n+1 states 

including anonymous halting state) m-symbol TMs is  (m.(n+1).2)n.m  .  According to 

this the space of valid Turing Machines with 5-states and 2-symbols consists of   

(2.6.2)2.5 = 2410  TM instances, including isomorphic machines with equivalent 

behavior and machines with no connectivity between starting and halting states.  The 
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isomorphic machines and machines with disconnected or sub-optimal topologies can be 

omitted during enumeration (before emulation) with a technique named tree normal 

form (commonly abbreviated as TNF) to obtain a complete and effective mapping to a 

solution sub-space of the problem. TNF enumeration is extensively investigated on the 

further sections. 

 

1.2. Halting Problem 
 

Halting problem is a decision problem about properties of computer programs 

given a fixed Turing-complete model of computation.  The problem is to decide, given a 

program and input pair on a chosen computational model, whether this system will 

eventually halt.  No resource limitation of memory or execution time on the program's 

execution is assumed so system’s execution can take arbitrarily long time, and use 

arbitrarily much storage space, till halting.  The problem is simply about whether a 

particular program will ever halt on a given input. 

 

The popularity of the halting problem in literature comes from its undecidable 

nature.  Lack of a computable function that correctly determines whether a program 

halts or not is easy to prove by contraction, and has extensively been referenced on 

literature.  

 

Decision problems are commonly represented by the set of objects having the 

property defined in question.  The halting set 

 

H := { (p, i) | program p halts if run with input i} 

 

represents the halting problem. 

 

Set H is recursively enumerable, so there is at least one computable function F 

that lists all pairs (p,i) that belong to H.  This computable function simulates all 

programs on all inputs in parallel similarly to a multithreaded computer program and 

indicates whenever one of the programs being simulated halts. 
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There are many equivalent formulations of the halting problem; any set whose 

Turing degree2 is the same as that of the halting problem can be thought of as such a 

formulation.  

 

1.3. Undecidability of Halting Problem 

 
Halting problem is provably undecidable.  Undecidability of it is frequently 

proven with a diagonalization proof.  The following common proof from the literature 

shows that there is no total computable function deciding whether an arbitrary program 

p halts on arbitrary input i; thus the following function halt is not computable: 

 

halt(p,i) = 1 iff program p halts when run on input i; 0 other wise 

 
 
Here program p refers to the pth program from the enumeration of all valid 

programs of a specific Turing-complete computation model. 

 

If we can show that every totally computable function having two arguments is 

different from the necessary function halt, the undecidability of halting problem 

becomes established.  Let f be an arbitrary totally computable function with two 

arguments, we construct the following partial function g which is also computable: 

 

 

g(i) = 0 iff f(i,i) = 0; undefined other wise 

 

 

                                                 
2 The Turing degree or degree of unsolvability of a set of natural numbers measures the level of 
algorithmic unsolvability of the set. The concept of Turing degree is fundamental in computability theory, 
where sets of natural numbers are often regarded as decision problems; the Turing degree of a set tells 
how difficult it is to solve the decision problem associated with the set. 
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• As g is partially computable, there exists at least one program p′  that 

gets assigned to it, in the chosen Turing-complete model of computation 

(i.e.  program e computes function g).  

 

Definition of g imposes one of the following cases to hold: 

 

• (g(e)=0 ∧ f(e,e)=0) →  halt(e,e) = 1 (because program e halts on input e) 

• (g(e) is undefined ∧ f(e,e) ≠ 0) →  halt(e,e) = 0 (because program e does 

not halt on input e) 

 

In either case, f cannot be the same function as halt.  Because f is an arbitrary 

totally computable function having two arguments and all such functions must differ 

from function halt. 

 

The diagonalization proof above can also be constructed as a two-dimensional 

array with one column and one row for each natural number.  Where value of  f  for (i,j) 

resides at column i, row j.  As f  is a totally computable function, any element of the 

array can be calculated with f.  The construction of the function g can be visualized as 

the main diagonal of this array.  If the array has 0 at position (i,i), then g(i) is 0,  

otherwise, g(i) is undefined.  The contradiction comes from the fact that there exists a 

column e of the array corresponding to g itself.  If f  was our halting function halt, there 

should be a 1 at position (e,e) iff g(e) is defined, but g is constructed such that g(e) is 

defined iff  there is 0 at position (e,e). 

 
 

1.4. Consequences of Undecidability of Halting Problem 
 

Importance of the halting problem is due to the fact that it is one of the first 

problems proven to be undecidable.  Turing's undecidability proof is sent to press in 

May 1936, while Church's proof of the undecidability of a problem in his lambda 

calculus had already been published as of April 1936.  Later many other similar 

problems have been described.  The typical method of proving a problem to be 
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undecidable is by using the technique of reduction;  by transforming instances of an 

undecidable problem into instances of a new problem, if a solution to a new problem 

would be found it could be used to decide the undecidable problem.  As it’s known that 

there is no method to decide the former problem, no method can decide the new 

problem either. 

 

A consequence of the halting problem's undecidability is that there can’t be a 

general algorithm that decides whether a given statement about natural numbers is true; 

because the proposition stating that a certain algorithm will halt given a certain input 

can be converted into an equivalent statement about natural numbers.  Assuming we had 

an algorithm that could solve every statement about natural numbers, it could solve the 

latter statement; but this would determine whether the former program halts which is 

impossible, since the halting problem is proven to be undecidable. 

 

A second consequence of the undecidability of the halting problem is Rice's 

theorem which states that the truth of any non-trivial statement about the function that is 

defined by an algorithm is undecidable.  The decision problem "will algorithm A halt 

for the input 0" is already undecidable.  This theorem holds for the function defined by 

the algorithm and not the algorithm itself.  It is possible to decide if an algorithm will 

halt within a reasonable number of steps, but this is not a statement about the function 

that is defined by the algorithm. 

 

Gregory Chaitin defined a halting probability, represented by the symbol Ω, a 

type of real number that represents the probability that a randomly produced program 

halts.  Real numbers of this type have the same Turing degree as the halting problem.  It 

is a transcendental number which can be defined, but cannot be computed completely.  

It can be proven that there is no algorithm producing the digits of Ω, although first 

digits of it can be calculated to a precision for simple cases. 

 

Although Turing's proof shows that there can’t be any general method or 

algorithm to determine whether an algorithm halts, individual instances of halting 

problem is susceptible to attack.  For a specific algorithm, it can often be shown that it 
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must halt for any input, and in fact software analysts do that as part of  correctness 

proofs; but each proof has to be developed specifically for a specific algorithm; there 

isn’t an automated, general way to determine whether an algorithm implemented as a 

Turing machine halts.  However, there are some heuristics that can be used in an 

automated fashion to attempt to construct a proof, which succeed frequently on typical 

programs.  This field of research is known as automated termination analysis. 

 

 

1.5. Proof of Non-computability of ∑(n)  
 
 

The non-computability of ∑(n) is proven by contradiction.  The proof is as 

follows: 

 

1. ∀n ∑(n+1) > ∑(n) (Simple to establish by replacing the halting state 

with an intermediate state leading to halting state on all inputs) 

2. Lets suppose a Turing Machine A, on input 1n halts with 1∑(n) on its 

tape.  Let sA denote the number of states of A. 

3. Lets suppose another Turing Machine B that writes 1k on its tape and 

then enters A’s starting state; thus B halts with 1∑(k) on its tape. 

4. It is evident that B can be constructed using √k + sA states, which is 

less than k, for k sufficiently large. 

5. Therefore B must produce fewer than ∑(k)  1’s  

Contradiction 
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2. Historical Survey of Busy Beavers 
 

 

Parts of the information presented on this section is derived from the website of 

Pascal Michel [3] where he keeps track of current record holders of Sigma and Omega 

for different values of state count and tape alphabet size; he also provides peer 

reviewing of machines for the new record contesters by independently simulating their 

proposed machine configurations, which is extremely resource expensive as the 

necessary simulation steps lately became as high as on the order of 1014072 as in the case 

of 4-state, 3-symbol Turing Machine of T. and S. Ligocki proposed on January 2008. 
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2.1. Current Best Candidates 

 
The tables below present the evolution of the lower bounds and values for ∑(N) 

in the quintuple variant of the problem.  The exact value of ∑ is known for up to 4 state 

TMs. 

table 2.1 – Busy beaver best candidates quintuple variant  

n ∑(n) Omega(n) Authors, Date 
1 1 1 Lin and Rado, 1962 
2 4 6 Lin and Rado, 1962 
3 6 21 Lin and Rado,1965 
4 13 107 Brady,1975 
5 ≥ 501 ≥ 134467 U.Schult, 1983 
5 ≥ 1915 ≥ 2133492 G.Uhing,1984 
5 ≥ 4098 ≥ 47176870 Marxen and Buntrock 3 [4], 1990 
6 ≥ 136612 ≥ 13122572797 Marxen and Buntrock [4], 1990  
6 ≥ 95524079 ≥ 86903333816909510 Marxen, 2002 
6 ≥ 6.427499 × 10462 ≥ 6.196913 × 10925 Marxen, 2002 
6 ≥ 1.29149 × 10865 ≥ 3.00233 × 101730 Marxen, 2002 
6 ≥ 2.5 × 10881 ≥ 8.9 × 101762 Terry and Shawn Ligocki, 2007 
6 ≥ 4.6 × 101439 ≥ 2.5 × 102879 Terry and Shawn Ligocki, 2007 

For the quadruple variant the known best candidates are the following: 

table 2.2 - Busy beaver best candidates quadruple variant 

n ∑(n) Omega(n) Authors, Date 
1 1 1 Trivial 
2 2 3 Trivial 
3 3 7 Trivial 
4 5 6 Unknown 
5 ≥ 11 ≥ 52 Unknown 
6 ≥ 21 ≥ 125 Cris Nielsen, 1996 
6 ≥ 25 ≥ 256 Machado and Pereira, 1999 
7 ≥ 37 ≥ 253 Lally, Reineke and Weader, 1997 
7 ≥ 196 ≥ 13683 Machado and Pereira, 2002 
8 ≥ 86 ≥ 1511 Norman, Chick e Marcella, 1996 
8 ≥ 672 ≥ 198340 Machado and Pereira, 2002 

                                                 
3 In 1990 Heiner Marxen took about 240 processor hours to obtain ∑(5) ≥ 4098 with a 33 Mhz Clipper 
CPU. 
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2.2. Historical evolution of relations 
 

• Rado (1962) defined S(n) and ∑(n), and showed that they are non-computable 

functions [1].  He proved that 

S(n) < (n+1) ∑(5n) × 2∑(5n) 

• Julstrom (1992) proved that 

S(n) < ∑(20n) 

• Wang and Xu (1995) proved that 

S(n) < ∑(10n) 

• Yang, Ding and Xu (1997) proved that 

S(n) < ∑(8n) 

and that there is a constant c such that 

S(n) < ∑(3n+c) 

• Ben-Amram, Julstrom and Zwick (1996) proved that  

S(n) < ∑(3n+6)  and  S(n) < (2n-1) ∑(3n+3) 

• Ben-Amram and Petersen (2002) proved that there is a constant c such that  

S(n) < ∑(n + 8n / log2n + c) 



 

11 

 

2.3. Chronological Summary 

 

table 2.3 – Chronological summary 

1963  Rado, Lin  S(2,2) = 6, ∑(2,2) = 4  
S(3,2) = 21, ∑(3,2) = 6  

1964  Brady (4,2)-TM: s = 107, ∑ = 13  
1964  Green  (5,2)-TM: ∑ = 17 

(6,2)-TM: ∑ = 35  
1972  Lynn  (5,2)-TM: s = 435, ∑ = 22 

(6,2)-TM: s = 522, ∑ = 42  
1974  Lynn  (5,2)-TM: s = 7,707, ∑ = 112  
1974  Brady  S(4,2) = 107, ∑(4,2) = 13  
1983  Brady [5]  (6,2)-TM: s = 13,488, ∑ = 117  
January 1983  Schult  (5,2)-TM: s = 134,467, ∑ = 501 

(6,2)-TM: ∑ = 2,075  
December 1984  Uhing  (5,2)-TM: s = 2,133,492, ∑ = 1,915  
February 1986  Uhing  (5,2)-TM: s = 2,358,064  
1988  Brady  (2,3)-TM: s = 38, ∑ = 9  

(2,4)-TM: s = 7,195, ∑ = 90  
February 1990  Marxen, Buntrock  (5,2)-TM: s = 47,176,870, ∑ = 4,098  

(6,2)-TM: s = 13,122,572,797, ∑ = 136,612  
September 1997  Marxen, Buntrock  (6,2)-TM: s = 8,690,333,381,690,951 

∑ = 95,524,079  
August 2000  Marxen, Buntrock  (6,2)-TM: s > 5.3 × 1042, ∑ > 2.5 × 1021  
October 2000  Marxen, Buntrock  (6,2)-TM: s > 6.1 × 10925, ∑ > 6.4 × 10462  
March 2001  Marxen, Buntrock  (6,2)-TM: s > 3.0 × 101730, ∑ > 1.2 × 10865  
October 2004  Michel  (3,3)-TM: s = 40,737, ∑ = 208  
November 2004  Brady  (3,3)-TM: s = 29,403,894, ∑ = 5,600  
December 2004  Brady  (3,3)-TM: s = 92,649,163, ∑ = 13,949  
February 2005  T. and S. Ligocki  (2,4)-TM: s = 3,932,964, ∑ = 2,050  

(2,5)-TM: s = 16,268,767, ∑ = 4,099 
(2,6)-TM: s = 98,364,599, ∑ = 10,574  

April 2005  T. and S. Ligocki  (4,3)-TM: s = 250,096,776, ∑ = 15,008 
(3,4)-TM: s = 262,759,288, ∑ = 17,323 
(2,5)-TM: s = 148,304,214, ∑ = 11,120 
(2,6)-TM: s = 493,600,387, ∑ = 15,828  

July 2005  Souris  (3,3)-TM: s = 544,884,219, ∑ = 36,089  
August 2005  Lafitte, Papazian  (3,3)-TM: s = 4,939,345,068, ∑ = 107,900 

(2,5)-TM: s = 8,619,024,596, ∑ = 90,604  
September 2005  Lafitte, Papazian  (3,3)-TM: s = 987,522,842,126, ∑ = 1,525,688 

(2,5)-TM: ∑ = 97,104 
October 2005  Lafitte, Papazian  (2,5)-TM: s = 233,431,192,481, ∑ = 458,357 

(2,5)-TM: s = 912,594,733,606, ∑ = 1,957,771  
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December 2005  Lafitte, Papazian  (2,5)-TM: s = 924,180,005,181  
April 2006  Lafitte, Papazian  (3,3)-TM: s = 4,144,465,135,614, ∑ = 2,950,149  
May 2006  Lafitte, Papazian  (2,5)-TM: s = 3,793,261,759,791, ∑ = 2,576,467  
June 2006  Lafitte, Papazian  (2,5)-TM: s = 14,103,258,269,249, ∑ = 4,848,239  
July 2006  Lafitte, Papazian  (2,5)-TM: s = 26,375,397,569,930  
August 2006  T. and S. Ligocki  (3,3)-TM: s = 4,345,166,620,336,565 

∑ = 95,524,079 
(2,5)-TM: s > 7.0 × 1021, ∑ = 172,312,766,455  

September 2007  T. and S. Ligocki  (3,4)-TM: s > 5.7 × 1052, ∑ > 2.4 × 1026  

(2,6)-TM: s > 2.3 × 1054, ∑ > 1.9 × 1027  
October 2007  T. and S. Ligocki  (4,3)-TM: s > 1.5 × 101426, ∑ > 1.1 × 10713  

(3,4)-TM: s > 4.3 × 10281, ∑ > 6.0 × 10140  
(3,4)-TM: s > 7.6 × 10868, ∑ > 4.6 × 10434  
(3,4)-TM: s > 3.1 × 101256, ∑ > 2.1 × 10628  
(2,5)-TM: s > 5.2 × 1061, ∑ > 9.3 × 1030  
(2,5)-TM: s > 1.6 × 10211, ∑ > 5.2 × 10105  

November 2007  T. and S. Ligocki  (6,2)-TM: s > 8.9 × 101762, ∑ > 2.5 × 10881  
(3,3)-TM: s = 119,112,334,170,342,540  
∑ = 374,676,383  
(4,3)-TM: s > 7.7 × 101618, ∑ > 1.6 × 10809  
(4,3)-TM: s > 3.7 × 101973, ∑ > 1.6 × 10986  
(4,3)-TM: s > 3.9 × 107721, ∑ > 4.0 × 103860  
(4,3)-TM: s > 3.9 × 109122, ∑ > 2.5 × 104561  
(3,4)-TM: s > 8.4 × 102601, ∑ > 1.7 × 101301  
(3,4)-TM: s > 3.4 × 104710, ∑ > 1.4 × 102355  
(3,4)-TM: s > 5.9 × 104744, ∑ > 2.2 × 102372  
(2,5)-TM: s > 1.9 × 10704, ∑ > 1.7 × 10352  
(2,6)-TM: s > 4.9 × 101643, ∑ > 8.6 × 10821  
(2,6)-TM: s > 2.5 × 109863, ∑ > 6.9 × 104931  

December 2007  T. and S. Ligocki  (6,2)-TM: s > 2.5 × 102879, ∑ > 4.6 × 101439  
(4,3)-TM: s > 7.9 × 109863, ∑ > 8.9 × 104931  
(4,3)-TM: s > 5.3 × 1012068, ∑ > 4.2 × 106034  
(3,4)-TM: s > 5.2 × 1013036, ∑ > 3.7 × 106518  

January 2008  T. and S. Ligocki  (4,3)-TM: s > 1.0 × 1014072, ∑ > 1.3 × 107036  
(2,6)-TM: s > 2.4 × 109866, ∑ > 1.9 × 104933  
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2.4. Summary Tables 
 

S(n state,m symbol) 
 

table 2.4 – S(2-6,2-6) 

6 symbols  > 2.4 × 109866     
5 symbols  > 1.9 × 10704 ?     
4 symbols  ≥ 3,932,964   > 5.2 × 1013036 ?    

3 symbols  ≥ 38  > 1.1 × 1017 > 1.0 × 1014072 ?   

2 symbols  6  21  107  ≥ 47,176,870  > 2.5 × 102879 

 2 states  3 states  4 states  5 states  6 states  
 
 

∑(n state,m symbol) 
 

table 2.5 – ∑(2-6,2-6) 

6 symbols  > 1.9 × 104933      
5 symbols  > 1.7 × 10352  ?     
4 symbols  ≥ 2,050  > 3.7 × 106518 ?    

3 symbols  ≥ 9  ≥ 374,676,383  > 1.3 × 107036 ?   

2 symbols  4  6  13   ≥ 4098    > 4.6 × 101439 

 2 states  3 states  4 states  5 states  6 states  

 

 

2.5. Busy Beaver State Topology Samples 
 

 

 
 

fig. 2.1 – 3-State Busy Beaver - Lin and Rado,1965 
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fig. 2.2 – 4-State Busy Beaver – Brady 1975 

 

 

 

 

 

 

 
 

fig. 2.3 – 5-State Busy Beaver Candidate – Marxen 1990 
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fig. 2.4 – Tape trace of first 800 steps of the TM in fig. 2.3 

 

 

 

 

 

 

fig. 2.5 – 6-State Busy Beaver Candidate 
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3. Search Space 
 

3.1. Size 
 

As mentioned the space of Turing machines for n states and m tape symbols 

consists of  (2m.(n+1))n.m  valid definition of Turing machines.  The space size grows 

exponentially in function of state and symbol count but can be pruned to a much lower 

size using the previously mentioned Tree Normal Form which still grows exponentially.  

The following table shows the number of valid Turing Machines definitions and number 

of TMs enumerated by TNF for several values of n and m.  As there are different ways 

to implement the TNF enumerator with different optimizations included, the values on 

the following table is specific to our implementation detailed in later sections. 

 

table 3.1 – Number of valid TMs 

State Symbol All Valid TMs TNF Enumerated TMs Ratio 

3 2 16.777.216 16.656 0,09928% 
4 2 25.600.000.000 2.902.620 0,01134% 
5 2 63.403.380.965.376 671.859.240 0,00106% 
6 2 232.218.265.089.212.000 ? ? 

2 3 34.012.224  11.340 0,00033% 
3 3 2.641.807.540.224 181.656.744 0,00007% 
4 3 531.441.000.000.000.000 ? ? 
5 3 221.073.919.720.733.000.000.000 ? ? 
2 4 110.075.314.176 4.555.488 0,00414% 
3 4 1.152.921.504.606.850.000 ? ? 

4 4 42.949.672.960.000.000.000.000.000 ? ? 

 

3.2. Smoothness 
 

Like most dynamical and chaotic systems Turing Machines are very sensitive to 

initial conditions, like the contents of the tape at the beginning or the transition function 

of the Turing Machine.  No smooth gradient exists between the outputs of similar 

Turing machines.  Of course in order to talk about similarity, we first need to define a 

topology with a distance function and neighborhoods for Turing Machines. 
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3.3. Topology 
 

Here we propose an alternate topologic representation of sets of Turing 

machines belonging to the same class of tape alphabet size and state count. Such a set of 

valid Turing machines for a given state number and alphabet size can be represented as 

a topological metric space by defining a neighborhood function where neighborhood 

system consists of Turing Machines with their definitions differing from the center 

machine of neighborhood open ball by only a single state transition, a single shift 

direction or a single alphabet character to write.  This definition of neighborhood is the 

most intuitive in terms of both mathematical topology and computational hill climbing 

type evolutionary algorithms. Also an intuitive distance metric for a such topology 

would be a metric distance similar to Manhattan Distance for spaces with more than 3 

dimensions. 

 

A Space of Turing machines having n states and m tape alphabet symbols can be 

represented as follows : Let’s assume each possible transition of the form [n,m,2] (state 

to go, symbol to write, one of two possible directions for head shift) is represented as a 

point in a three dimensional discreet space; and a TM is represented as a vector 

consisting of n × m points (a transition for each possible symbol read at each possible 

state). As each point would have  m+n-1  neighbors4, therefore a vector representing a 

particular TM would have  m2n+n2m-nm  neighbor5 vectors (neighbor TMs).  Assuming 

such neighborhood, the difference of resulting tape configurations for Turing Machines 

of a neighborhood is observed to be far from being smooth.  A single change on 

machine definition commonly changes either the loop behavior of TM or the tape output 

significantly. 

 

This last observation defines one of the significant properties of the TM space in 

context of the choice of how to explore the solution space.  It is known that from the 

range of evolutionary algorithms genetic algorithms are better suited to optimization of 

functions with continuous surfaces with smooth transitions; on the other hand hill 

                                                 
4 (n-1)+(m-1)+1 (change transition to another state, or to write another symbol or to other direction) 
5 (n × m)(m+n-1) (sum of possible transition changes for each transition of machine) 
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climbing doesn’t necessarily impose such a constraint while benefiting from it if 

present.  
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4. Exploring Search Space 
 

4.1. Exhaustive Enumeration 
 

Exhaustive enumeration of the search space is, while being complete neither 

efficient nor feasible, as the number of possible TMs increases exponentially both for 

the number of states and for the number of symbols.  In context of Busy Beaver 

problem this kind of full enumeration is only defendable for cases like comparative 

study, and classification of redundancy classes with their sizes. 

 

 

4.2. Random Sampling 
 

Random sampling of Turing Machines belonging to a set is one of the 

enumeration techniques we have implemented; but obviously as this kind of 

enumeration is not complete, it only serves for statistics gathering purposes to fine-tune 

other algorithms with obtained statistical properties of machine space. 

 

Still random sampling can be implemented with different levels of complexity.  

First of all assigning random values adhering to respective ranges for each variable of a 

machine definition does neither necessarily nor likely produce a possibly halting Turing 

Machine.  Most randomly generated machines suffer from disconnected state transition 

topologies and other sub-optimal machine configurations.  

 

To prevent this we implemented a smarter version of random machine sampler 

code which checks state connectivity and makes sure that each state and transition is 

used and unique.  Another technique for smart random sampler is to force the first 

transition to write a “1” symbol and shift to a specific direction.  This technique 

prevents the enumeration of mirror machines which exhibit the exact same behavior 

mirrored according to starting point on tape. 

 



 

20 

 

4.3. Evolutionary approaches 
 

In order to explore subsets of all possible TMs in context of Busy Beaver 

problem, many evolutionary approaches have been proposed throughout the literature 

[6] [11].  Genetic Algorithm is the most prevalent of the evolutionary computation 

methods; to employ GA on a problem first a suitable encoding for the possible solutions 

of the problem must be chosen.  In the case of the busy beaver problem the state 

transition function of a TM is the proposed solution for which the encoding should be 

built upon.6  GA relies on strings of specific alphabets where genetic operators like 

mutation and cross-over gets applied.  The alphabet of the GA representation for a TM 

should not be confused with the symbols used for the TM actually the most natural way 

to encode the state transition function of a TM with n states and m symbols is to use a 

string of n by m characters from an alphabet.  The Alphabet of the GA can be defined as 

characters consisting of all possible triples of the form [ next state × shift direction × 

TM symbol to write ] which is very similar to the points defined on space topology 

section.  For TMs with 5-state (6 with anonymous halting state), 2-symbol a natural 

encoding for GA have an alphabet consisting of all the 24 possible triples; and each 

encoding defining an individual is a string (also called chromosome in GA jargon) of 10 

characters from that string.   

 

 

Write Shift
New 
State

Write Shift
New 
State

Write Shift
New 
State

Write Shift
New 
State . . .

when read 0 when read 1 when read 0 when read 1

on state 0 on state 1

 

fig. 4.1 – A possible genetic encoding for Turing Machine Setup 

 

 

Genetic Algorithms try to evolve better performing codes or machines at each 

generation according to a fitness function which is the heuristic for picking the better 

                                                 
6 Inherently the number states and symbols of the Busy Beaver problem is necessary to define a possible 
solution but we assume the computation is performed for a specific BB(state,symbol) problem thus these 
numbers are assumed to be constant which don’t require an encoding on GA population. 
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samples.  In the case of Busy Beaver Problem the fitness function can be defined as the 

number of 1s left written on tape if a TM halts before timing out according to a 

specified hard coded shift limit.  A further extension to fitness function can be to 

employ a weighted sum of the shifts taken before halt to favor more productive TMs in 

terms of numbers of 1s written for number of shifts taken.  

 

Employing Genetic Algorithms on executable codes or configurations of 

execution machines is conventionally called Genetic Programming.  Like all 

evolutionary computation optimizations Genetic Algorithms and Genetic Programming 

is not deterministic or complete. 

 

4.4. Hill climbing 
 

Hill climbing is a greedy, local search based, optimization technique.  Hill 

climbing can be used on problems where multiple solutions with different performance 

or fitness exist.  Hill climbing implementations start with random solutions and 

sequentially make small changes to the solution and keeping only the improved ones.  

At some point the algorithm arrives at a solution where no improvement can be seen on 

any solution neighbor to that one on the solution space thus the algorithm terminates.  

Hill climbing is not guaranteed to reach the optimal solution but ideally the final 

solution is close to optimal solution for most of the time, as this is the characteristic of 

greedy algorithms. 

 

Many NP-Complete problems can be tackled with hill climbing easily when sub-

optimal solutions are also acceptable.  Hill climbing operates on a discreet space of 

solutions; the continuous counterpart of hill climbing is called gradient ascend/descent.  

Like genetic algorithms search space topology is important for hill climbing; most 

importantly the connectedness and smoothness of it.  Assuming solution space consists 

of discrete solutions with a neighborhood; search space can naturally be represented as a 

graph with vertices where edges represent the distance metric or similarity of each 

solution.  Hill climbing will explore the graph vertex to vertex by monotonically 

increasing (or decreasing) the fitness function f(v) where v denotes the visited 
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vertex/solution. As intended, the space topology for TMs that we proposed on the 

previous section fits conveniently to the type of discreet space required by Hill 

Climbing. 

 

Hill climbing is very similar to genetic algorithm with no cross-over operator.  

An elitist genetic algorithm running with mutation operator only has an operating mode 

between hill climbing and beam search7. 

                                                 
7 An optimized version of best-first search 
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5. Implementation 
 

Our base Turing Machine emulator’s implementation is pretty much straight 

forward.  We have implemented the emulator both as native code using Borland Delphi 

Compiler to compile Object Pascal source code to native x86 ASM code; and as 

managed code using Microsoft C# compiler to compile C# source code to .Net 2.0 

MSIL code. 

 

The term managed code means executable code that runs under the management 

of a virtual machine, unlike native (unmanaged) code which is executed directly on the 

processor.  The benefits of managed code include automatic memory garbage 

collection, strong type enforcement, advance range and bounds checking, isolation 

between application domains and similar security guarantees at a cost of minimal speed 

overhead. 

  

The most common meaning of the term is the Microsoft’s description of 

programs that execute under the management of Microsoft’s CLR (Common Language 

Runtime) virtual machine of .NET Framework.  Microsoft's main programming 

languages for creating managed code are C# and Visual Basic .NET.  There are open 

source alternatives to Microsoft’s CLR such as MONO project and GNU Portable .Net 

which aims instruction level compatibility with MSIL.  The Java programming 

language also creates managed code which is called bytecode in Java terminology and 

executed by the Java Virtual Machine which is part of Java Runtime Environment 

(JRE). 

 

A common misconception about managed code is whether it is executed by an 

interpreter.  Although managed code requires a set of runtime libraries and a runtime 

engine, neither Java nor Microsoft’s managed languages are interpreted languages 

(although interpreters exist for them); they are both JIT (Just-in time) compiled to native 

code thus exploiting the system architecture and computer state to the furthest extent. 

This is dismisses another widespread misconception about managed code being too 
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slow. After JIT compilation (performed on runtime) managed code is indiscernible from 

native code for processor; when JIT’s benefit of machine architecture exploiting 

compilation and most importantly benefit of re-JIT compilation during runtime based on 

code hot spots detected with live run trace statistics allows the compilation process to 

adapt most perfectly to architecture and run time behavior. Most of time those 

advantages of JIT compilation either compensates the overhead or even make the code 

performance surpass statically compiled native code. 

 

5.1. Data Types 
 

Both managed and native code represent shift directions with enumeration data 

types, while alphabet symbols are represented using unsigned short integer (byte) data 

type in order to make machine tapes (one dimensional array of symbols) as space 

efficient as possible, and state numbers are represented using integer data types. 

 

The transitions and states have been implemented as separate inner classes on 

managed code to exploit pass by reference method call semantics, because managed 

code only allows pointers to be used inside of code sections marked with “unsafe code” 

attribute.  This way while branching on Tree Normal Form enumerator, new machine 

prototype branches use the same references to instances of transitions or states if no 

modification to the values is needed. 

 

On native code, transitions are heap allocated composite data structures and 

accessed using typed pointers, while states are implemented as arrays of transitions with 

symbol read used as index. 

 

For native code a copy of a transition or a state (which is simply a collection of 

transitions with a unique identifier) can be generated with a memory move system call 

which is very efficient in terms of processor cycles as only the size of structure is 

dumbly copied from original variable to the newly allocated heap memory.  On the 

other hand for the managed code creating a copy of a non-primitive, user defined, 

nested data structure, which is a class containing arrays of other classes, has to 

implement system defined ICloneable interface to hand tune the granularity of copy 
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semantics, in order to work around possible errors caused by shallow copy, deep copy 

and memberwise copy which is common on complex structures with circular references.  

In order to mark a class as cloneable with [Cloneable] attribute either all the member 

fields should be of a cloneable type or the implementation of the first ICloneable 

interface should deal with proper copy generation of incompatible members recursively.  

 

Same considerations mentioned above apply for the [Serializable] attribute 

where the persistence of a class to a stream (i.e. a file stream) is handled by 

ISerializable interface, which should be implemented; all member fields of a class 

should be serializable too in order to mark that class as serializable. 

 

During the implementation of Tree Normal Form enumerator a need for a stack 

arised to hold “to be processed” nodes of tree where each node is a Turing Machine 

Prototype Class instance, which is basically a partially defined Turing Machine waiting 

to be incrementally defined in all possible ways with child branches.  In native code the 

stack implementation is straight forward since a regular stack implemented on system 

libraries can hold typed pointers to our data types.  On the other hand for managed code 

implementation, either a regular stack for System.Object type which is the ultimate 

ancestor to all other classes can be used, or a specific typed stack could be implemented.  

We decided to go with the latter because a regular stack required type casting from 

System.Object to our own class type for each pop operation from the stack which has a 

great impact on performance. 

 

Our typed stack for managed code is implemented with the help of generics 

introduced with the second version of .Net framework.  This way a list, queue, stack or 

any class can be generalized to all forms of user classes and data types without the 

performance loss due to object type casting and without the need to have different 

implementations for different types which in turn reduces memory footprint.  Generics 

are very similar to templates in C++ and Java, where a class can be defined with 

declaration of some of the types postponed till instantiations of that class. 
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listing 1 – C# source of main fields defined at the beginning of emulator class 

 

public class turingMachine : ICloneable 
{ 
    public const int MAX_STATE = 5, 
                     ALPHABET_SIZE = 2, 
      
 

    public enum scrollDirections 
    { 
        left, 
        right 
    } 
 
 
    public class State : ICloneable 
    { 
        public byte[] write = new byte[ALPHABET_SIZE]; 
        public State[] nextState = new State[ALPHABET_SIZE]; 
        public scrollDirections[] scrollDirection = new scrollDirections[ALPHABET_SIZE]; 
        public byte flag = 0; 
    } 
 
 
    public State[] states = new State[MAX_STATE + 1]; 

    public byte[] tape = new byte[MAX_TAPE]; 
 
         
    public State currentState; 
         
    public int headPos = CENTER; 
    public int cycle = 0; 
    public int minx = CENTER; 
    public int maxx = CENTER; 
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listing 2 – Object Pascal source of main fields defined at the beginning of emulator class 

 

 

 

unit turingMachineClassU; 
 
interface 
 
const 
 
      MAX_STEP = 2000; //step limiter for turing machines 
      MAX_TAPE = 2000; 
 
      ALPHABET_SIZE       = 2; 
      MAX_STATE           = 5; 
 
      MAX_BLOCKS          = 2*ALPHABET_SIZE*MAX_STATE; 
 

type 
 
     TScrollDirection = (scLeft,scRight); 
     THaltingStatus   = (HUndecided,HHalt,HDisconnectedStates,HStateExhaustion); 
 
     TSymbol = Byte; 
 
 
     Pblock = ^TBlock; //pointer to TBlock 
     TBlock = record 
               write           : TSymbol; 
               nextStateNo     : integer; 
               scrollDirection : TScrollDirection; 
              end; 
 
 
     PState = ^TState; //pointer to TState 

     TState = record 
               write           : array [0..ALPHABET_SIZE-1] of TSymbol; 
               nextStateNo     : array [0..ALPHABET_SIZE-1] of integer; 
               scrollDirection : array [0..ALPHABET_SIZE-1] of TScrollDirection; 
              end; 
 
 
     TturingMachine = class 
      public 
       states : array [0..MAX_STATE-1] of TState; 
       tape   : packed array [-MAX_STEP-1..MAX_STEP+1] of TSymbol; 
 
       headPos        : integer; 
       currentStateNo : integer; 
 
       cycle          : integer; 
       minx,maxx      : integer; 

 
       haltingReason  : THaltingStatus; 
 
       procedure randomizeTM; 
       procedure reinitialize(rnd : boolean = true); 
 
       procedure processStep; 
       function  run : integer; 
 
       procedure DrawTrace; 
     end; 
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5.2. Emulator 
 

 
The implementation of Turing Machine emulator is pretty similar in native and 

managed code.  In both cases the run() method of Turing Machine class call the 

processStep() method continuously in a loop till the simulated machine reaches the halt 

state which is checked from the haltingStatus enumeration field or some cycle limit is 

exceeded. 

 

processStep() method implements a single step of Turing Machine.  When called 

it first reads the tape symbol under the tape head by accessing the tape array with head 

position field as index; then from the current state instance a reference to the respective 

transition instance is retrieved using symbol which is read.  Using this reference to 

current transition, first the symbol to be written to tape is written to tape array; then the 

head position field is either incremented or decremented according to shift direction 

indicated by the current transition reference; and finally current state field is changed 

with the new state to be transitioned to by changing the reference on currentState field 

with the new one as indicated on current transition instance.  Before returning 

processStep() increments a counter field called cycle in order to keep track of the 

number of steps of execution.  Many similar counters are incremented or decremented 

both in processStep() and run() in order to gather statistical data of the execution trace; 

most important of those are the following two indexes. In order to be able to track the 

tape space explored till this shift, when the head position field is changed, two indexes 

showing the left and right bounds of explored section of the tape is updated if a new cell 

is explored from left or right. 
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listing 3 – C# source of Turing Machine class’ emulator methods 

 

 
public void processStep() { 
      
    int symRead = tape[headPos]; 
    byte symWrite = currentState.write[symRead]; 
 
    tape[headPos] = symWrite;        //1.write 
    if (currentState.scrollDirection[symRead] == scrollDirections.left)   //2.scroll tape 
    { 
        headPos--; 
        if (headPos < minx) minx = headPos; 
    } 
    else 
    { 

        headPos++; 
        if (headPos > maxx) maxx = headPos; 
    } 
    currentState = currentState.nextState[symRead];     //3.change state 
    if (currentState == states[MAX_STATE]) haltingReason = haltingStatus.halt; 
 
    cycle++; 
} 
 
 
public haltingStatus run() 
{ 
 
    while ((haltingReason == haltingStatus.undecided) && (cycle < MAX_STEP)) 
    { 
        processStep();           
    }                        

     
    return haltingReason; 
} 
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listing 4 – Object Pascal source of Turing Machine class’ emulator methods 

// --------------------------     PROCESS STEP    -------------------------------- 
procedure TturingMachine.processStep; 
var curSta    : PState; 
    symRead   : TSymbol; 
begin 
 curSta := @states[currentStateNo]; 
 symRead := tape[headPos]; 
 
 tape[headPos] := curSta.write[symRead];                  //1.write 
 
 if curSta.scrollDirection[symRead] = scLeft then begin   //2.scroll Tape 
  dec(headPos); 
  if headPos < minx then minx := headpos; 
 end else begin 

  inc(headPos); 
  if headPos > maxx then maxx := headpos; 
 end; 
 
 currentStateNo := curSta.nextStateNo[symRead];           //3.change State 
 
 inc(cycle); 
end; 
 
 
// --------------------------------    RUN   ------------------------------------ 
function TturingMachine.run : integer; 
begin 
 result := 0; //Undecided 
 haltingReason := HUndecided; 
 
 //         HALT STATE REACHED               TIME OUT                SPACE OUT 

 while (currentStateNo < MAX_STATE) and (cycle < MAX_STEP) and ((maxx-minx) < MAX_TAPE) do 
begin 
  processStep; 
 end; 
 
 if (cycle <> MAX_STEP) and (tapeLen <> MAX_TAPE) then haltingReason := HHalt; 
end; 
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5.3. Enumerator 
 

Our enumerator code is based on the previously mentioned Tree Normal Form 

methodology; since enumerating other valid configurations has no pragmatic value in 

our case.  As previously mentioned, TNF is based on emulation of partially defined 

Turing Machine definitions till an undefined transition is needed, then it recursively 

branches to incrementally defined machines having that transition defined in all possible 

ways.  That’s why an emulation loop is embedded inside the enumeration loop.  In order 

to prevent recursive branching interfere with emulation loop, a recursion removal 

technique (similar to mentioned one on simple connectivity check) is applied on the 

enumerator code.  To implement the recursion removal, the enumeration tree traversal is 

replaced with an enumeration loop. First a partially defined machine is “pop”ed from a 

stack of machines, second it is emulated till an undefined transition is about to be taken, 

then all possible transitions for that case are generated based on number of already 

visited states and number of undefined transitions left. Finally new Turing machine 

prototypes are generated by incrementally defining the first machine for each possible 

transition.  While the newly generated machines get pushed to stack of machines the 

original machine is discarded as all possible new machines for its lineage has been 

derived and pushed to stack for further investigation. 

 

Actual implementation of enumerator contains many further optimizations like 

not building a transition to halting state until only a single undefined transition is left 

and forcing the last transition to be a transition to halting state with writing 1 to tape; 

because any transitions to halting state defined earlier would produce a sub-optimal 

machine topology where halting transition doesn’t benefit from the states to be defined 

or would have multiple transitions to halting state. 

 

During the actual coding of the TNF enumerator, we noticed that fields of 

previously defined transitions which are represented as instances of transition class 

don’t change within a as the traversal of machine space tree gets deeper.  Therefore as 

an optimization we clone the new incrementally defined machines as shallow copies 

(not copying the objects in fields too, but by passing the same references hold on fields 

to copied objects field) of parent machine prototype, except the machine tape field 
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because the machine tape works bi-directionally and its contents can change within that 

branch as deeper nodes are explored.  A shallow copy of machine topology let the new 

machines skip instantiating and cloning the previously defined transitions, and only use 

a reference to them which is more efficient, both processing time wise and memory 

foot-print/fragmentation wise. 

 

At the beginning of TNF enumeration there are  (n × m)-1  undefined transitions8 

so at each deepening level of tree traversal a new transition gets defined; but also at 

each level a not-yet-reached state of the machine topology becomes reachable too.  As a 

result two concurrent branching factor limit applies to recursive traversal which can be 

expressed as   2 × m ×  min(tree depth + 1,n)   9 where n denotes the number of states 

and m denotes the number tape alphabet symbols.  As the number of transitions is 

always greater than the number of states, the first n-1 levels 10 of tree has a branching 

factor of   2 × m ×  (tree depth + 1)   and after that branching factor stabilizes as   2 × m 

× n  till maximum depth, which is the undefined transition count mentioned at the 

beginning. 

 

As the enumerator also contains an intrinsic emulator to keep track of the partial 

simulations of machine prototypes, when a machine reaches the halting state during its 

simulation the respective counter variables are incremented and a callback function is 

called for further statistics gathering if one is provided. 

 
 
 

public void enumerateTNFtree() 
{ 
    TMStack.Clear(); 
    TMStack.Push(new TMPrototype()); // First prototype – only first transition exists in it 
 
    //  ----   enumeration loop   ---- 
    while (TMStack.Count > 0)  
    { 
        TMPrototype tm = (TMPrototype)TMStack.Pop(); 

 
 
        #region emulationLoop 
 
        //  -------------------------   emulation loop   ------------------------------------ 
        while ((tm.currentState != turingMachine.MAX_STATE) && 

                                                 
8 minus one due to first transition being pre-defined 
9 plus one due to a new state becoming reachable at each level 
10 minus one due to starting state being reachable from the start 
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       (tm.cycle < turingMachine.MAX_STEP)) 

        { 
 
            if (tm.nextTransition() != null) 
            { 
                tm.step(); 
                if (tm.nonHaltPrediction) 
                { 
                    predictionCounter++; 
                    break; 
                } 
            } 
            else 
            { 
 
                //1.Enumerate possible transitions to defined states 

                for (byte sym = 0; sym < turingMachine.ALPHABET_SIZE; sym++) 
                    for (int sta = 0; sta < tm.nextAvailableState; sta++) 
                    { 
                        //Shift Left 
                        Transition tr = new Transition(); 
                        tr.nextState = sta; 
                        tr.write = sym; 
                        tr.scrollDirection = turingMachine.scrollDirections.left; 
 
                        TMPrototype tm2 = (TMPrototype)tm.Clone(); 
                        tm2.transitions[tm2.currentState, tm2.tape[tm2.headPosition]] = tr; 
                        tm2.undefinedTransitions--; 
                        TMStack.Push(tm2); 
 
                        //Shift Right 
                        tr = new Transition(); 

                        tr.nextState = sta; 
                        tr.write = sym; 
                        tr.scrollDirection = turingMachine.scrollDirections.right; 
 
                        tm2 = (TMPrototype)tm.Clone(); 
                        tm2.transitions[tm2.currentState, tm2.tape[tm2.headPosition]] = tr; 
                        tm2.undefinedTransitions--; 
                        TMStack.Push(tm2); 
                    } 
 
 
                //2.Enumerate possible transitions to a new state 
                for (byte sym = 0; sym < turingMachine.ALPHABET_SIZE; sym++) 
                { 
                    //Shift Left 
                    Transition tr = new Transition(); 
                    tr.nextState = tm.nextAvailableState; 

                    tr.write = sym; 
                    tr.scrollDirection = turingMachine.scrollDirections.left; 
 
                    TMPrototype tm2 = (TMPrototype)tm.Clone(); 
                    tm2.transitions[tm2.currentState, tm2.tape[tm2.headPosition]] = tr; 
                    if (tm2.nextAvailableState < turingMachine.MAX_STATE) 
tm2.nextAvailableState++; 
                    tm2.undefinedTransitions--; 
                    TMStack.Push(tm2); 
 
                    //Shift Right 
                    tr = new Transition(); 
                    tr.nextState = tm.nextAvailableState; 
                    tr.write = sym; 
                    tr.scrollDirection = turingMachine.scrollDirections.right; 
 
                    tm2 = (TMPrototype)tm.Clone(); 

                    tm2.transitions[tm2.currentState, tm2.tape[tm2.headPosition]] = tr; 
                    if (tm2.nextAvailableState < turingMachine.MAX_STATE) 
tm2.nextAvailableState++;  
                    tm2.undefinedTransitions--; 
                    TMStack.Push(tm2); 
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                } 

 
                break; //  *** end of life of this tm prototype ***  
            } 
 
        } //  ------------------------  emulation loop   ------------------------ 
 
        #endregion 
 
 
        if (tm.undefinedTransitions == 0) 
        { 
 
            if (tm.currentState == turingMachine.MAX_STATE) //---HALTER 
            { 
                haltingcounter++; 

                if (callBack != null) callBack(); 
            }//---HALTER 
            else //---UNDECIDED, MAX_STEP 
            { 
                undecidedcounter++; 
                if (callBack != null) callBack(); 
            }//---UNDECIDED, MAX_STEP 
             
        } 
 
        tm = null; //free the prototype representing this branch 
 
    } // --- enumeration loop --- 
} // void enumerateTNFtree() 

listing 5 – C# source of Tree Normal Form TM enumerator method 
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6. Optimizations 
 
 

In coding part of busy beaver problem (as in all computation problems) 

implementation specific optimizations account for lesser performance gains compared 

to algorithmic optimizations.  A common pitfall for programmers is to apply 

implementation related optimizations instead of devising a better algorithm with 

reduced time and space complexity.  The following optimizations are the most common 

algorithmic improvements over the naïve algorithm of exhaustive enumeration with flat 

memory allocation. 

 

6.1. Tree Normal Form 
 

For any n-state Turing machine there are n! isomorphic machines which are 

functionally equivalent.  Any machine can be reconstructed as permutations of state 

numbers by renaming the states, but as their behavior will remain identical 

concentrating our processing resources on only one instance for each of those 

equivalence classes greatly improves time and space complexity of covering the whole 

machine space. 

 

Presence of multiple valid TMs with isomorphic configurations results on 

multiple equivalence classes of TM subsets with identical functionality.  The most 

important equivalence class in literature is Tree Normal Form (abbreviated TNF) 

described by Heiner Marxen on his paper [4].  Almost all the following attacks to busy 

beaver problem from the literature use some form of machine normalization [7] except 

those which are based on evolutionary techniques instead of enumeration.   

Representing TMs on Tree Normal Form allows functionally equivalent TMs to be 

represented identically in a normalized way.  
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fig. 6.1 – Isomorphic Machine Topologies 

 
 
 
Another benefit of enumerating machines according to Tree Normal Form is to 

conveniently eliminate sub-optimal topologies, like those which have multiple 

transitions to halting state and those which have states with no incoming transitions, 

during the enumeration saving us from unnecessary emulation. 

 

TNF enumeration is based on partially defined Turing Machines topologies 

where not yet encountered transitions are not defined and unvisited states aren’t given a 

number, keeping them equivalent.  While using TNF the emulation and enumeration 

processes are fused to a single process.  During the emulation of available machines 

when undefined transitions are requested, they get defined by forking the emulation to 

many clones of that machine, each having the undefined transition getting defined as 

one of possible valid transitions.  This forking can be implemented as a recursion or 

back tracking.  As long as a state isn’t visited yet it remains anonymous with other 

unvisited states making them indiscernible.  When valid transitions are enumerated 

upon request for definition of a transition, only the previously visited states are 

considered as anonymous states can not be used; but as long as there are still 

anonymous states left this transition is considered as it could also be a transition into the 

subset of undefined states of topology, thus an anonymous state (as all anonymous 

states are indiscernible, any one is as good as any other) is given a unique number 

making it part of the defined subset of topology.  Obviously as there are more 
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transitions than states, the undefined (anonymous) states deplete sooner than undefined 

transitions. 
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fig. 6.2 – Reduction Achieved by TNF [8] 11 

 
 

It can be seen from figure 9 that, as the number of states for considered busy 

beaver problem increases, additional optimizations to enumeration layer only 

marginally increase the effectiveness.  For Turing Machines with 4 or more states the 

branch elimination factor (reduction of machines to consider) of enumerator converges 

to a range less than one percent, independent of the presence of other enumeration time 

optimizations.  In light of this, our implementation of TNF enumeration only contains 

this two first move enforcing optimization on top of it although there many other 

esoteric extensions to TNF exist through out the literature. 

 

It is obvious that the purpose of Busy Beaver problem is to leave a single 

machine which writes the maximum number of “1”s; therefore all kinds of eliminations 

                                                 
11 Chart derived from data on Rensselaer AI & Reasoning (RAIR) Lab Presentation [8] 
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are welcome to researchers; but our argument for our dismissal of these esoteric 

techniques is based on the fact that the processing time resource needed for these 

techniques can be put to better use on different TM elimination techniques like our 

proposed predictor or any other halting/non-halting prover, having a higher efficiency. 

 

 
 

6.2. Macro Machines 
 
 

In his 1990 paper, “Attacking the Busy Beaver 5” Heiner Marxen [4] described a 

tape compression and macro-machine acceleration technique which became 

fundamental to all further busy beaver search implementations through out the 

literature. Later on 2004 Alex Holkner [10] has expanded the idea to k-macro tape 

representations and macro arcs which are advanced techniques of the same nature. 

 
A macro machine is a higher level Turing Machine which groups blocks of  

transitions (state, tape and head position) of a lower TM into a single transition.  Macro 

machine simulations are provably faster than the original lower TM simulations, while  

helping the proof of non-halting.  This is actually an implication of linear speedup 

theorem. 

 

The linear speedup theorem for Turing machines asserts that for any Turing 

machine solving a problem in time t(n), another machine solving the same problem in 

time  kt(n)+n+2  can be constructed for a constant k. 

 

A simple proof for k = ½  is as follows :  

 

Assume a Turing Machine M solving a problem in t(n) shifts with its tape 

alphabet consisting of c symbols and its transition function being defined as a 

deterministic finite automata with s internal states.  We can construct a new machine M' 

having an alphabet with k3 symbols where each symbol represents a combination of 3 

symbols of machine M.  The tape of machine M' is a compact representation of the tape 

of machine M, where cell i of machine M' represents the group of cells 2i-1, 2i and 2i+1 



 

39 

 

of machine M with a single symbol of the new alphabet.  At each computation step, M' 

simulates the computation of M till the head of M' leaves the group of cells from left or 

right (all this simulation can be done in a single step because M can be in no more than 

sk³ states without leaving the group of cells or repeating a state which means a loop).  

Throughout this simulation step M may reach the halting state, in which case M' also 

reaches the halting state; or M may loop, in which case M' does nothing (so also loops).  

A last refinement is that, as group of cells overlap, every transition between groups in M 

must be converted into k transitions between cells in M' to take account of the k 

different symbols that might have been written onto the cell belonging to both groups.  

The construction requires that each computation step in M' corresponds to at least 2 

computation steps of M.  Therefore M' takes no more than ½t(n) steps.  By adding 

delaying steps to M', we can guarantee that it takes exactly ½t(n) steps. 

 

This proof can be generalized to all values of k > 0.  The linear speedup theorem 

is the rationale behind complexity theory ignoring linear factors and representing the 

complexity of algorithms with big O notation. 

 

6.3. Tape Compression 
 

 

A technique similar to the one defined by linear speedup theorem is known as 

the "tape compression theorem" and allows for a similar constant factor reduction in the 

space requirements of a Turing machine.  This theorem is as follows: 

 

Let’s suppose the language L is accepted by a deterministic Turing Machine M 

having space complexity s(n), we can show that for any constant c>0, L is accepted by a 

deterministic Turing Machine M' having space complexity c.s(n). 

 

The same construction from linear speedup theorem is used here.  As many 

symbols from the lower machine is encoded as a single symbol in the macro machine 

(upper machine) the number of tape cells necessary to represent a string is reduced to a 

constant fraction of cells required on the lower machine. 
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Albeit the name “tape compression theorem”, the amount of data necessary to 

store the macro machine’s tape is not reduced even by a single bit.  To the contrary, the 

amount of bits needed to store the tape of macro machine is statistically a little bit 

higher, because the symbols at both edges of tape of macro machine may be partially 

used by lower machine but represented as a full symbol of macro machine alphabet. 

 

Busy beaver problem not only has exponential time complexity but also 

exponential space complexity which burdens the exploration of the machine space.  As 

tape compression theorem doesn’t improve the space complexity in terms of big O 

notation another technique is required to be able to simulate candidate machines.  A 

very common compression technique is run length encoding where repeated 

occurrences of groups of symbols are encoded as a single symbol followed by the 

number of occurrence of symbol.  As long as a string of symbols exposes some sort of 

repetition of a pattern, this string can be encoded more efficiently by using run length 

encoding.  As like all forms of compression, use of run length encoding is prohibitive in 

cases where strings are pseudo-random with no statistically significant distribution; 

where run length encoding results with longer sequences due to encoding overhead. 

 

Most bust beaver candidate Turing machine produce repeating patterns of 

symbols due to nested loops imposed by state topology, rendering them a perfect 

candidate for run length encoding the tape.  Run length encoding of machine tape can 

be more efficient when combined with macro machines described above. Long 

sequences of 1’s or 0’s are rarely encountered; but as macro machine’s symbols 

correspond to combinations of symbols like “00”,”01”,”10”,”11” alternating strings like 

“0101010101010101” or complex repetitive patterns of different periodicity can be 

efficiently encoded too (with 5 bits instead of 16 for that specific example; where first 2 

bits describe one of four macro symbol and next 3 bits describe the number of 

repetition).  Optimal block length for run length encoding and macro machine depends 

on the histogram of blocks present on tape and the mentioned length/periodicity of 

repeating patterns.. 
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7. Non-halting prediction 
 

Through out the investigation of halting problem specific to Turing Machines, 

predicting whether a machine will halt or not by mere inspection of the setup of the 

machine is mostly dismissed because of the inherent complexity underlying in the 

machine topology that isn’t penetrable by simple analysis.  As predicting non-halting 

condition for the complete set of TMs would be equivalent to an oracle12 for halting 

problem; given the previously shown proof of undecidability of halting problem this 

implies that possible predictors have to be incomplete, which means predicting only for 

a subset of valid TMs and leaving the rest undecided.  

 

Although investigation of the setup of a Turing Machine gives some insight for 

possible prediction of halting, like disconnected transitions or obviously infinite loops 

of the starting transition13, it only contains minimal information which leads to a 

predictor leaving most machine definitions undecided.  Obviously if additional 

information can be made available to a possible black box halting predictor, this extra 

information can be used to decrease the number of undecided instances.  As we assume 

that the black box predictor already has complete information about the configuration of 

a particular instance of Turing Machine and the Busy Beaver problem, the only extra 

information that can be made available is the simulation history of that machine for a 

limited number of steps. 

 

In the following sub-sections we will first define our proposed efficiency 

measure for halting/non-halting predictors, then lay our own predictors features layer by 

layer from trivial to complex. 

                                                 
12 An oracle is an abstract machine used to examine decision problems. An oracle is able to decide certain 
decision problems in a single operation, where problem can be of any complexity class including 
undecidable problems, like the halting problem. 
 
The halting paradox is still valid for such machines. Although they can decide whether particular Turing 
machine, input tape pairs will halt, they still can’t decide whether machines with equivalent halting 
oracles are halting or not. This observation creates a hierarchy of machines, namely the arithmetical 
hierarchy, each with a more powerful halting oracle and an even harder halting problem. 
13 Starting transition is the transition taken when a 0 is read by starting state. 
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7.1. An efficiency measure for halting predictors 
 

It is obvious that any correct halting predictor that benefits from the information 

of limited simulation history becomes a complete halting predictor as the limit of 

simulation history size approaches infinity.  It can be seen that this last observation is 

independent of the naivety or the implementation of the predictor; it is solely based on 

correctness.  Given these if we analyze all predictors from a perspective of correctness 

and completeness, we conclude that completeness is unachievable for predictors but 

having correctness property it is asymptotically reachable in terms of simulation history. 

 

Based on these observations we propose an efficiency measure for halting and 

non-halting predictors in terms of the growth rate of ratio of decidable machines to all 

machines. 

 

 

M := { All Turing Machines with n-states and k-symbols} 

H := { All halting Turing Machines with n-states and k-symbols } 

history(m,t) : simulation history of machine m for first t steps 

Pt := { (m) | predictor(history(m,t)) → m∈ H } (or m ∉ H for non-halting pred.) 

 

efficiency(predictor)  =  ∫ (|Pt| / |M|) dt 

 

 

 The explanation of the above expression for efficiency measure of a predictor is 

as follows.  As we have mentioned, any predictor having correctness attribute reaches 

completeness as the number of simulation speeds available for prediction approaches 

infinity.  We define a predictor as more efficient if it can decide more TMs halting 

property with less simulation steps available in comparison to other predictors.  The 

ratio of cardinalities of “so far decided” set Pt to “all machines” set M gives the 

efficiency of a predictor at a fixed point in simulation history; when we integrate this 

ratio in respect to t we obtain a measure to correctly compare the speed of coverage of 

predictors over set M. 
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7.2. “Just observe” halting predictor 
 
For halting Turing machines the number of shifts performed before halting has 

an exponential distribution over steps taken till halting. 
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fig. 7.1 – Halting Distribution of 2.106 Random Sampled TM 

 

 
Figure 10 showing the halting histogram is generated from results obtained by 

our reference C# implementation with a random sampling of a population size of 2.106 

samples over the space of valid 5-state 2-symbol Turing Machines.  The non-linear 

decrease of halting cases shows that a great number of halting instances use very few 

steps before halting.  Specifically %88.7 of halting Turing Machines do so before their 

22nd shift. 
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fig. 7.2 – Halting Distribution of all TNF enumerated 5,2 TMs 

 

 

Figure 11 demonstrates the halting histogram generated from emulations of all 

5-state 2-symbol Turing Machines enumerated using TNF and simulated by the same 

C# code.  For TNF enumerated case 111.201.352 machines out of all 671.859.240 

enumerated machines halted before their 50th step which makes roughly 16.6% of all 

machines.  

 

The difference of percentage of early halting machines between the random 

sampling and the TNF enumeration is the result of effective pruning done by TNF; 

because when using TNF, not only the obviously non-halting machines are pruned, but 

also the non-productive and sub-optimal machines are pruned; which explains the drop 

on the percentage of early halters on TNF enumerated set of machines.  As mentioned 

before, ratio of TNF enumerated machines to all possible machines is in the order of 

1,06 × 10-5 for 5-state and 2-symbol machines, showing the extreme reduction without 

any loss of information. 
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7.3. State Connectivity Check 
 

As stated Turing Machine spaces contain many valid TM definitions with no 

connectivity between the starting state and the anonymous halting state.  In the case of 

the exhaustive enumeration of the TM space (instead of TNF enumeration where 

complete and optimal connectivity is assured by enumeration layer) a connectivity 

check between the states let us prove the non-halting of these defective or sub-optimal 

TMs.  A simple recursive procedure can traverse the state transition graph of Turing 

Machine starting from the halting state, marking each visited state as “visited” and mark 

the connected states as “to be visited”.  This algorithm keeps marking the states till the 

starting state is reached or no more state is marked as “to be visited” which means a 

non-halting TM because of the lack of connectivity between start and halt states. This 

approach is a trivial variant of Dijkstra’s algorithm with no weights assigned to 

connections.  

 

As all possible TMs are tested with this simple initial test, the code for it is kept 

as lightweight as possible.  To minimize function call overhead due to creation of new 

stack frames at each recursive call, recursion removal is applied on our reference 

implementation which replaces the recursive calls with iterative checks over a stack of 

flags.  We begin with only the halting state present at the stack and iterate till either the 

stack gets empty indicating no more state to check (thus halting state being unreachable 

from starting state), or the starting state is pushed which indicates the presence of a path 

between starting and halting state, initial connectivity check returns the respective 

reachability status.  The same can be achieved by beginning with starting state on the 

stack and iterating while checking for halting state. 
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//returns true if halting state is unreachable by topology 
public bool connectivityProblem() 
{ 
    foreach(State st in states) st.flag = 0; 
    states[0].flag = 1; //first state to check 
    states[MAX_STATE].flag = 5; //look for this 
 
                            

    while(true){ 
 
        State stateToCheck = null; 
 
        foreach(State st in states) {    //Find a state marked to be checked 
            if (st.flag == 1) 
            { 
                stateToCheck = st; 
                break; 
            } 
        } 
 
        if (stateToCheck == null) return true;  //no more state marked to check 
        else                                      
        { 
            stateToCheck.flag = 2;              //mark as checked 

            foreach (State nst in stateToCheck.nextState) //all reachable from 
            {                                             //this one 
                if (nst.flag == 5) return false; //Reached final state 
                if (nst.flag == 0) nst.flag = 1; 
            } 
        }               
 
    } 
} 

listing 6 – C# source of connectivity checking function of TM class 
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function TturingMachine.haltingStateReachable : boolean; 
 

var state_stat : array [0..MAX_STATE] of integer; 
    curSta,y,z : integer; 
 
begin 
 result := false; //assume unreachability of halting state 
 
 for y := 0 to MAX_STATE-1 do state_stat[y] := 0; //initialize with 0 
 state_stat[MAX_STATE] := 1; //start from final state 
 
 repeat 
 
  for curSta := 0 to MAX_STATE do if state_stat[curSta] = 1 then begin //Find marked to checked 
   state_stat[curSta] := 2; //mark as processed (2) 
 
   //check for states reachable from current_state 
   for y := 0 to MAX_STATE-1 do begin 
    for z := 0 to ALPHABET_SIZE-1 do begin 

 
      if states[y].nextStateNo[z] = curSta then begin 
       if y = 0 then begin //Reached the starting state -> Connected 
        result := true; 
        exit; 
       end else if state_stat[y] = 0 then state_stat[y] := 1; 
      end; 
 
    end; 
   end; 
   break; 
  end; 
 
 until curSta = MAX_STATE+1; //No state is marked with 1 
 
end; 

listing 7 – Object Pascal source of connectivity checking function of TM class 

 

 

7.4. Configuration Exhaustion 
 

A basic proof of non-halting for a specific sub-group of Turing Machines is for 

machines that is stuck to a limited amount of tape during all its simulation or for 

machines having the amount of tape space explored growing too slowly in respect to 

shift count.  This kind of non-halting can be proven by showing that there are only 

finitely many different configurations that can happen while we run a Turing Machine 

on a limited tape area and after that many steps at least one of them must have been 

repeated; hence we conclude for that particular instance of TM not to halt. 
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For an n-state m-symbol Turing Machine the number of possible configurations 

within a tape range of k-blocks can be expressed as mk × n × k which grows 

exponentially in-terms of tape length.  Let’s define that expression as a function  

 

 

max-config(n,m,k) = mk  ×  n  ×  k 

 

 

Consequently, after every max-config steps of simulation for a specific (n,m)-TM the 

length of explored tape space should expand at least by one cell if it didn’t already; 

failure to perform this behavior results with detection of that machine as a non-halting 

machine due to previously mentioned configuration exhaustion issue. 

 

 The inverse of max-config function is the measure of minimum tape length 

required to be explored till a point in order to avoid an infinite loop due to identical 

configuration.  We can call the inverse of max-config function as min-tape which 

therefore grows logarithmically in terms of number of simulation steps.  We will use 

this min-tape function on the later section “Modeling the Bounds” as the halting lower 

bound of tape space explored vs.  shift count graph. 

 

 

7.5. Slow Loop Fast Loop 
 

An intriguing non-halting detection technique is described by Heiner Marxen  on 

his article [9] with the proof “left as an exercise”.  The technique consists of running 

two independent simulations of the same machine configuration concurrently, 

specifically a slow and a fast one.  For every two simulation steps of the fast simulation 

a single simulation step for the slow one is executed and configurations of two 

simulations are compared.  If the configurations of both simulation instances are 

identical this means the machine is in an endless loop.  To quote him about his 

admiration to this ingenious technique: “The fascinating fact is, that we will detect all 

loops by this procedure. … With this fast/slow approach we need a very limited amount 
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of additional memory, slow down the simulation not even by a factor of 2, and detect 

the loop before the slow machine works on the second round of the cycle.  Yes, there 

are other methods to do it, but I happen to very much like this technique.” 

 

When analyzed this technique of simulation allows us to access “a point in past” 

of the simulation history of a Turing machine, with ever increasing distance, thus 

allowing a comparison over a sliding time window with the cost of very little time and 

space complexity increase.  In this context Heiner Marxen [9] defines the term 

configuration as follows: “A configuration of a TM contains the complete information 

necessary for its further operation: tape contents, head position and state.  While the 

definition of the TM is needed to make use of a configuration, it is normally not 

considered to be part of a configuration.” 

 

Obviously as the tape contents are compared in their entirety and a loop is 

detected only if two configurations are identical including the tapes’ contents, this 

methods only detects endless loops stuck within a limited tape area.  Therefore this 

technique is only an improvement over the mentioned configuration exhaustion method 

which is also stated by Heiner Marxen. 
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8. Proposed non-halting predictor 
 

Here we propose a new non-halting predictor for the Busy Beaver problem.  Our 

predictor uses the ratio of tape space explored to cycles taken during a point in 

simulation history as an indicator of information density of tape for that point of history; 

allowing to predict the unconstructability of a counting process for that many cycles.  

We propose a special kind of indicator plot for TMs based on previous definition 

(which we call “shift vs. tape area explored plot”) and show that all halting Busy Beaver 

Turing Machines must keep explicit track of its temporal position in its simulation 

history; then we construct a predictor based on that measure to show non-halting, based 

on inability to track temporal position. 

  

 

8.1. Ratio of shifts to explored tape space 
 

 

Visual inspection of the figures 12 and 13 confirms the existence of a non-linear 

upper and lower bound on length of tape space explored in function of shifts taken for 

halting machines.  For plotting the halting machines’ traces TMs which haven’t halted 

till a shift limit are discarded, and by re-simulation each simulation step of the halting 

TMs is plotted as a point on a chart, where horizontal axis is the length of tape space 

explored and the vertical axis is the number of shifts performed.  Each TM has been 

assigned a unique color therefore the group of plotted points for a TM creates a line 

showing the trace of mentioned ratio during the course of its simulation.  We used our 

reference C# implementation to plot multiple simulation runs with both randomly 

sampled and TNF enumerated halting TMs under different parameters which all result 

with the same characteristic plot. 
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fig. 8.1 – First 600 shift of “shift vs tape area explored” plot for 5000 randomly sampled 5,2 Halting 
TMs on blank tape; each machine’s trace is marked with a unique color. 

 

 

 

 

 

fig. 8.2 – First 1200 steps of the same plot as fig. 8.1 

 

 

The same plot for non-halting TMs, displayed on figure 14 which is obtained by 

explicitly discarding the halting machines, results with mostly linear traces having a 

very different characteristic than the plot of halting TMs.  This distinct behavior of 

halting Turing Machines allow us to build a non-halting predictor, based on detecting 

machines that cross one of two bounds at any point in their simulation.  Luckily as most 

of the non-halting machines exhibit a linear trace on these plots, most of them cross one 

of the two bounds (mostly the upper bound) pretty early on their simulation history. 

 

 
 

 

Inaccessible Area : tape explored > shift 

Upper-bound due to low information density 

Lower-bound due to high information density, resulting in  
configuration exhaustion based reuse induced loop 
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halting machines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fig. 8.3 – First 600 shifts of “shift vs tape area explored” plot for 105 randomly sampled 5,2 TMs 
not-halting within those shifts; each machine’s trace is marked with a unique color. 

 

8.2. Modeling the bounds 
 

As previously observed, halting Turing Machines exhibit a polynomial relation 

between number of shifts it took and tape length it explored at each point in its 

simulation history.  On the other hand a major proportion of non-halting machines has a 

linear relation between the number of steps (shifts) to tape length explored.  

 

Lets define max-tape(n,m,s) as the function (and as the counter border of min-

tape defined previously) giving an upper bound of allowable  tape space explored in 

terms of shift count for elements of set of halting TMs using the same conventions as 

before where n denotes the number of states and m denotes the number of tape alphabet 

symbols. 

 
Inaccessible Area : tape explored > shift 
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max-tape( n,m,t ) =  (an+bm+c).t1/2  = k.t1/2 

 
 
 
This function along with min-tape function defined on section 7.d respectively 

provide us mathematical expressions of our proposed lower and upper bound for the 

area on the “shift vs. tape length explored” plot which a halting TM can not get out of. 

 

8.3. Calculating the coefficients 
 

In order to derive the coefficients a,b and c required to calculate constant k of 

max-tape function, values of k should be calculated for many pairs of (n:state count, 

m:tape alphabet size) which in turn can be used to model a linear relation that gives k in 

terms of n and m. 

 

The problem with this approach is that calculating the correct value of k even for 

a single pair of n and m requires complete enumeration of TMs for that (n,m) with 

emulation of each to a reasonably large steps.  In our simulations calculating k for (5,2) 

case took several hours of computation which resulted in k5,2 ≈ 2.78 which is the 

coefficient of upperbound curve seen on figure 12. We currently dismissed the 

calculation of k for larger pairs due to limited computational resources at our disposal. 
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9. Conclusion 
 

Some of the many projects that may extend our work is the calculation of 

enough coefficients to derive a complete mathematical expression for the upper-bound 

that can be used on any state count, symbol count pair. Also our predictor can be used 

as the basis of an attack to acquire new upper bounds for (6,2), (7,2), (4,3), (5,3), (2,5), 

and (2,6) cases of busy beaver problem. Another possible extension to our predictor 

would be the linearity analysis of TM traces which doesn’t leave the area limited by our 

bounds; because once a trace is proven to be linearly increasing (in overall), it can be 

proven that this trace would eventually cross our upper bound at a computable 

intersection point without expensive emulation till that point.  

 

This work implies a complex relationship between the computational complexity 

of a system and its spatial or temporal information density; which is exploited as a 

predictor on our case.  This relationship can be further investigated in perspective of 

computation models, algorithmic complexity and information theory.  Also the 

proposed efficiency measure for predictors allows us to create an efficiency hierarchy of 

halting prediction methods; further investigation of what makes a halting predictor more 

efficient would allow us to develop new measurement techniques for computational 

complexity in terms of algorithmic information theory, but most importantly to obtain a 

deeper understanding of the behavior of inherently black box instances of different 

computational models based on short fragments of simulation histories. 
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