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Abstract

In this thesis we mainly propose a new asymptdyicamplete halting predictor
for Turing Machines of Busy Beaver type which iginked by T.Rado in 1962. Also we
propose an efficiency measure to benchmark diftdnattiing predictors and finally we
propose a topological representation for spaceatitl vTuring Machines as a metric
space with a Manhattan like distance metric allgwirs to define a neighborhood
between Turing Machines.

Our predictor uses the ratio of tape space explwreycles taken during a point
in simulation history as a measure of informatiengsity for that moment of simulation,
which allows us to predict the unconstructabiliy 0 counting process in terms of
number of cycles occurred till that point. We shihat a halting Busy Beaver Turing
Machine has to have the ability to keep track @té@mporal position at each point of its
simulation; and we construct a non-halting prediatsing mentioned information

density measure to show inability to track temp@@dition.

Our method predicts non-halting of Busy Beaver AgiiMachines by incurring
negligible computational overhead to the regulanusation, while obtaining results
very early on simulation; even for complicated maeh configurations where

conventional automated non-halting proving is ieefiive or unfeasible.



Résumé

Dans cette thése nous proposons principalementnooeelle prédicteur d'arrét
asymptotiquement complet pour machines de Turintypke Busy Beaver qui est défini
par T. Rado en 1962. Aussi nous proposons une mabefficacité pour différents
prédicteurs d’arrét et enfin, nous proposons ur@ésentation topologique pour
'espace des machines Turing comme un espaceqmeétavec une meétrique de

distance Manhattan.

Notre prédicteur utilise le ratio de la bande erplaux cycles prises au cours d'un point
de simulation, comme une mesure de densité d'ir@om pour ce moment de la
simulation; ce qui nous permet de prédire impok&ibde construire un processus
compteur en termes de nombre de cycles. Nous nmangpee une Busy Beaver machine
Turing doit avoir la capacité de garder la tracesagosition temporelle a chaque point
de sa simulation, et nous construisons notre pediade non-arrét utilisant densité

d’information pour démontrer I'impossibilité dea la position temporelle.



Ozet

Bu tezde Busy Beaver turld Turing Makinalari icinng®otik olarak tam bir
sonlanma 6ngorusu 6neriyoruz. Ayni zamanda fadhlanma 6ngorisu sistemlerini
karsilastirabilmek icin bir verimlilik 6lgimi sunuyoruz veon olarak gecerli Turing
Makinasi tanimlarini topolojik anlamda temsil edetek Manhattan uzaklik fonksyonu
tirevi bir uzaklik fonksyonuna sahip metrik bir yzae bu uzaydaki koguluklar

tanimhyoruz.

Sonlanma 0ngo6rusu sistemimiz, benzetim geiceki bir noktada Turing
makina teybinin ziyaret edilmi kisim uzunlgunun, teyp bgiginin kaymalarina
oranini, simulasyon gecgmde o nokta icin bilgi ygunlugunun bir 6lcimi olarak
kullanarak similasyon gecgmin o0 ani igin bir sayma sdrecinin Uretilip
Uretilemeyecgini ispatlamaya dayanmaktadir. Busy Beaver Turingkidalarinin
similasyon gecmngierinin her noktasinda zamansal konumunu takip iéigeb olmasi
gerektgini gostererek, dnergimiz bilgi yogunlugu 6lcutiinii zamansal konum takibinin
mumkunlEuni test ederek takibin imkansglihalini sonlanmama 6ngérist kaniti
olarak kullaniyoruz. Normal makina benzetimine gk bir hesapsal yuk ekleyerek

verimli bir erken sonlanma/sonlanmama dngoérustashiliyoruz.



1. Introduction

In 1962 T.Rado introduced the "busy beaver probleamhis paper “On non-
computable functions” [1] , defined as follows. tlM be a Turing machine with n
states (plus an anonymous halting state) and twobsls that is conventionally
assumed as 1 and 0; no blank symbol is used amdisapssumed to be filled with
symbol 0 at the beginning. At each step M hasriteva symbol to the tape, move the
machine head one symbol to the right or left, ahdnge state. To be a valid Busy
Beaver machine, M must eventually halt when staclecan empty two-way infinite
tape. Machine’s score according to the problerhésnumber of 1's left on the tape
when M halts. Thus M tries to write as many 1'stmntape as it can, but it must halt.
Rado defines his infamoys function asy (n) being the maximum possible score for a

valid n-state entry.

The theoretical interest in this competition arié@sn the fact that, although
Y(n) is simply the maximum of a finite set, thefunction itself is not computabfe.
Furthermorey is eventually greater than any given computabhetions. In fach is

very valuable to construct a specific non-compwdbhction

1.1. Quadruple vs. quintuple definition of TM

A Turing Machine can be defined by a sextu@eP,G,d,s,f]2], where :

* Q is a finite set of states

* P is an alphabet of input symbols
* G is an alphabet of tape symbols
* dis the transition function

e sin Q is the start state

! Neither the maximum shift function S is computablethy’ and S grows faster than any computable
function; but it is possible to compute the valoé§ and S for very small n values.



 fin Q is the final state.

The original definition proposed by Rado [1] for BuBeavers, considered
deterministic 5-tuple TMs with+1 states (n states and an anonymous halting stette).
each transition TM writes a symbol to the tape mmoves the head left or right. This is
the quintuple definition of TM where the state s#ion functiond for this definition

has the following form:

O QxI" - QxIXL,R} where /" [JP, P =G ands,f//Q

There is also the quadruple definition of the TMihg the following state
transition functiord:

o QX" — Q{/LAL,R}}

The Busy Beaver problem defined on Rado’s origpeger uses the quintuple
definition instead of quadruple definition; anddhgh out this paper all definitions and
statements are made assuming a quintuple definitiBausy Beaver problem using

guadruple machine definition is also investigatethe literature.

O (Read, Write) _‘O
O (Read, Move) _O

fig. 1.1 — Transitions with Quintuple vs. QuadrupleDefinition

O (Read, Write, Move) __O

According the quintuple definition the total numlpérvalid n-stater{+1 states
including anonymous halting state) m-symbol TMs(is.(n+1).2)"™ . According to
this the space of valid Turing Machines with 5ataiand 2-symbols consists of
(2.6.2f° = 24'° TM instances, including isomorphic machines wihuivalent
behavior and machines with no connectivity betwstmting and halting states. The



isomorphic machines and machines with disconnemtestib-optimal topologies can be
omitted during enumeration (before emulation) wathtechnique namettee normal
form (commonly abbreviated as TNF) to obtain a compdete effective mapping to a
solution sub-space of the problem. TNF enumerasaxtensively investigated on the
further sections.

1.2.Halting Problem

Halting problem is a decision problem about praperbf computer programs
given a fixed Turing-complete model of computatidrhe problem is to decide, given a
program and input pair on a chosen computationalehovhether this system will
eventually halt. No resource limitation of memaryexecution time on the program's
execution is assumed so system’s execution can ddkg&arily long time, and use
arbitrarily much storage space, till halting. Teblem is simply about whether a

particular program will ever halt on a given input.

The popularity of the halting problem in literatuwemes from its undecidable
nature. Lack of a computable function that cotyedetermines whether a program
halts or not is easy to prove by contraction, and &xtensively been referenced on

literature.

Decision problems are commonly represented by ¢hefsobjects having the
property defined in question. The halting set

H:={(p, i) | program p halts if run with input

represents the halting problem.

SetH is recursively enumerable, so there is at leastammputable functiof
that lists all pairs(p,i) that belong toH. This computable function simulates all

programs on all inputs in parallel similarly to ailtithreaded computer program and

indicates whenever one of the programs being stedilaalts.



There are many equivalent formulations of the hglproblem; any set whose
Turing degregis the same as that of the halting problem cathbaght of as such a

formulation.

1.3. Undecidability of Halting Problem

Halting problem is provably undecidable. Undecitigbof it is frequently
proven with a diagonalization proof. The followiogmmon proof from the literature
shows that there is no total computable functiotidieg whether an arbitrary program

p halts on arbitrary input thus the following functiomalt is not computable:

halt(p,i) = 1 iff program p halts when run on inputd;other wise

Here programp refers to thepth program from the enumeration of all valid
programs of a specific Turing-complete computatiwodel.

If we can show that every totally computable fumethaving two arguments is
different from the necessary functidmlt, the undecidability of halting problem
becomes established. Létbe an arbitrary totally computable functionith two

arguments, we construct the following partial fumey which is also computable:

g(i) = Oiiff f(i,i) = 0; undefined other wise

2 The Turing degree or degree of unsolvability obet of natural numbers measures the level of
algorithmic unsolvability of the set. The concepfaring degree is fundamental in computabilityahg
where sets of natural numbers are often regardeteeision problems; the Turing degree of a ses tell
how difficult it is to solve the decision problerssaciated with the set.



* As g is partially computable, there exists at least pragramp’ that
gets assigned to it, in the chosen Turing-compiatelel of computation

(i.e. programe computes function).

Definition of g imposes one of the following cases to hold:

* (g(e)=00f(e,e)=0) - halt(e,e) = 1(because programhalts on inpug)
* (g(e)is undefinedIf(e,e)# 0) — halt(e,e) = O(because programdoes

not halt on inpue)

In either casef cannot be the same function fzlt. Becausd is an arbitrary
totally computable function having two argumentsl @l such functions must differ

from functionhalt.

The diagonalization proof above can also be cooduas a two-dimensional
array with one column and one row for each natouahber. Where value df for (i,j)
resides at column row|j. Asf is a totally computable function, any elementhod
array can be calculated with The construction of the functigncan be visualized as
the main diagonal of this array. If the array Basat position(i,i), theng(i) is 0,
otherwiseg(i) is undefined. The contradiction comes from thet fhat there exists a
columne of the array corresponding ¢atself. Iff was our halting functiohalt, there
should be dl at position(e,e)iff g(e) is defined, bug is constructed such thgte) is
definediff there i at position(e,e)

1.4. Consequences of Undecidability of Halting Problem

Importance of the halting problem is due to thet that it is one of the first
problems proven to be undecidable. Turing's umiddxlity proof is sent to press in
May 1936, while Church's proof of the undecidapildgf a problem in his lambda
calculus had already been published as of April6193.ater many other similar

problems have been described. The typical methograving a problem to be



undecidable is by using the technique of reductiday, transforming instances of an
undecidable problem into instances of a new proplém solution to a new problem
would be found it could be used to decide the uinidéxde problem. As it's known that
there is no method to decide the former problem,meihod can decide the new
problem either.

A consequence of the halting problem's undecidghgi that there can’t be a
general algorithm that decides whether a giverestaht about natural numbers is true;
because the proposition stating that a certainrighgo will halt given a certain input
can be converted into an equivalent statement ataiutal numbers. Assuming we had
an algorithm that could solve every statement abatral numbers, it could solve the
latter statement; but this would determine whether former program halts which is

impossible, since the halting problem is provebéaindecidable.

A second consequence of the undecidability of thking problem is Rice's
theorem which states that the truth of any nonadristatement about the function that is
defined by an algorithm is undecidable. The deanigiroblem "will algorithm A halt
for the input 0" is already undecidable. This tle@o holds for the function defined by
the algorithm and not the algorithm itself. Itpessible to decide if an algorithm will
halt within a reasonable number of steps, butithisot a statement about the function

that is defined by the algorithm.

Gregory Chaitin defined a halting probability, repented by the symb6l, a
type of real number that represents the probaltiit a randomly produced program
halts. Real numbers of this type have the samm@uaegree as the halting problem. It
is a transcendental number which can be defined¢cdmnot be computed completely.
It can be proven that there is no algorithm prodgdhe digits ofQ2, although first

digits of it can be calculated to a precision fione cases.

Although Turing's proof shows that there can't bey @eneral method or
algorithm to determine whether an algorithm haitglividual instances of halting

problem is susceptible to attack. For a specifjorithm, it can often be shown that it



must halt for any input, and in fact software astdydo that as part of correctness
proofs; but each proof has to be developed spatiififor a specific algorithm; there
isn’'t an automated, general way to determine whedhealgorithm implemented as a
Turing machine halts. However, there are someisteag that can be used in an
automated fashion to attempt to construct a pnebfch succeed frequently on typical

programs. This field of research is known as aatechtermination analysis.

1.5. Proof of Non-computability of > (n)

The non-computability of’(n) is proven by contradiction. The proof is as

follows:

1. [h Y (n+1) > Y(n) (Simple to establish by replacing the haltingestat
with an intermediate state leading to halting stetall inputs)

2. Lets suppose a Turing Machine A, on inplihalts with ™ on its
tape. Let gdenote the number of states of A.

3. Lets suppose another Turing Machine B that wrifeon its tape and
then enters A’s starting state; thus B halts witff bn its tape.

4. It is evident that B can be constructed usiig+ s, states, which is
less than k, for k sufficiently large.

5. Therefore B must produce fewer thgfk) 1's

Contradiction



2. Historical Survey of Busy Beavers

Parts of the information presented on this seasaterived from the website of
Pascal Michel [3] where he keeps track of currenbrd holders of Sigma and Omega
for different values of state count and tape alphakize; he also provides peer
reviewing of machines for the new record contesbgrindependently simulating their
proposed machine configurations, which is extremedgource expensive as the
necessary simulation steps lately became as high #e order of 1¢"as in the case

of 4-state, 3-symbol Turing Machine of T. and yddki proposed on January 2008.



2.1. Current Best Candidates

The tables below present the evolution of the loaainds and values f0i(N)
in the quintuple variant of the problem. The exatie of) is known for up to 4 state
TMs.

table 2.1 — Busy beaver best candidates quintupl@siant

n > (n) Omega(n) Authors, Date
1 1 1 Lin and Rado, 1962
2 4 6 Lin and Rado, 1962
3 6 21 Lin and Rado,1965
4 13 107 Brady,1975
5 > 501 > 134467 U.Schult, 1983
5 >1915 > 2133492 G.Uhing,1984
5 > 4098 > 4717687C Marxen and BuntrocR [4], 1990
6 > 136612 >13122572797 Marxen and Buntrock [4], 1990
6 >9552407¢ > 8690333381690951 Marxen, 2002
6 > 6.427499 x 14> >6.196913 x 1%° Marxen, 2002
6 >1.29149 x 18° >3.00233 x 1§°° Marxen, 2002
6 >2.5x%x 16" >8.9 x 10> Terry and Shawn Ligocki, 2007
6 > 4.6 x 10°* >25x 163" Terry and Shawn Ligocki, 2007
For the quadruple variant the known best candidateshe following:

table 2.2 - Busy beaver best candidates quadruplesant
n > (n) Omega(n) Authors, Date
1 1 1 Trivial
2 2 3 Trivial
3 3 7 Trivial
4 5 6 Unknown
5 >11 >52 Unknown
6 >21 > 125 Cris Nielsen, 1996
6 > 25 > 256 Machado and Pereira, 1999
7 > 37 > 253 Lally, Reineke and Weader, 1997
7 > 196 > 13683 Machado and Pereira, 2002
8 > 86 > 1511 Norman, Chick e Marcella, 1996
8 >672 > 198340 Machado and Pereira, 2002

% In 1990 Heiner Marxen took about 240 processorsiuobtairy’(5) > 4098with a 33 Mhz Clipper
CPU.
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2.2. Historical evolution of relations

Rado (1962) defined S(n) ad{{n), and showed that they are non-computable
functions [1]. He proved that

S(n) < (n+1)X(5n) x 2=V

Julstrom (1992) proved that

S(n) <X(20n)

Wang and Xu (1995) proved that

S(n) <X(10n)

Yang, Ding and Xu (1997) proved that

S(n) <X(8n)

and that there is a constant c such that

S(n) <X(3n+c)

Ben-Amram, Julstrom and Zwick (1996) proved that
S(n) <X(3n+6) and S(n) < (2n-1)}'(3n+3)
Ben-Amram and Petersen (2002) proved that theae@stant ¢ such that

S(n) <X (n + 8n/logzn + C)
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2.3. Chronological Summary

table 2.3 — Chronological summary

1963 Rado, Lin S(2,2)=6)(2,2) =4
S(3,2)=213(3,2)=6
1964 Brady (4,2)-TM: s =107y, =13
1964 Green (5,2)-TM: > =17
(6,2)-TM:> =35
1972 Lynn (5,2)-TM: s =435y =22
(6,2)-TM: s =522% =42
1974 Lynn (5,2)-TM: s = 7,707y = 112
1974 Brady S(4,2) =107y(4,2) =13
1983 Brady [5] (6,2)-TM: s = 13,488y = 117
January 1983 Schult (5,2)-TM: s = 134,467y, =501
(6,2)-TM: > = 2,075
December 1984 Uhing (5,2)-TM: s = 2,133,492, = 1,915
February 1986 Uhing (5,2)-TM: s = 2,358,064
1988 Brady (2,3)-TM:s=38,> =9
(2,4)-TM: s =7,195) =90
February 1990 Marxen, Buntrock (5,2)-TM: s =47,176,870} = 4,098
(6,2)-TM: s =13,122,572,79%, = 136,612
September 1997 Marxen, Buntrock (6,2)-TM: s = 8,690,333,381,690,951
Y =95,524,079
August 2000 Marxen, Buntrock (6,2)-TM:s>5.3 x 1%,y > 2.5 x 16"
October 2000  Marxen, Buntrock (6,2)-TM: s> 6.1 x 18°, Y > 6.4 x 13%
March 2001 Marxen, Buntrock (6,2)-TM: s >3.0 x 18%° 3 > 1.2 x 16%®
October 2004 Michel (3,3)-TM: s = 40,737y = 208
November 2004 Brady (3,3)-TM: s = 29,403,894, = 5,600
December 2004 Brady (3,3)-TM: s = 92,649,163, = 13,949
February 2005 T.and S. Ligocki (2,4)-TM: s = 3,932,964} = 2,050
(2,5)-TM: s = 16,268,767, = 4,099
(2,6)-TM: s = 98,364,599, = 10,574
April 2005 T. and S. Ligocki (4,3)-TM: s = 250,096,776, = 15,008
(3,4)-TM: s = 262,759,288, = 17,323
(2,5)-TM: s = 148,304,214, = 11,120
(2,6)-TM: s = 493,600,387, = 15,828
July 2005 Souris (3,3)-TM: s = 544,884,219, = 36,089
August 2005 Lafitte, Papazian (3,3)-TM: s = 4,939,345,068, = 107,900
(2,5)-TM: s = 8,619,024,596, = 90,604
September 2005 Lafitte, Papazian (3,3)-TM: s = 987,522,842,12%, = 1,525,688
(2,5)-TM:> =97,104
October 2005 Lafitte, Papazian (2,5)-TM: s = 233,431,192,48%}, = 458,357

(2,5)-TM

:$=912,594,733,608, = 1,957,771
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December 2005 Lafitte, Papazian (2,5)-TM

April 2006 Lafitte, Papazian (3,3)-TM
May 2006 Lafitte, Papazian (2,5)-TM
June 2006 Lafitte, Papazian (2,5)-TM

July 2006 Lafitte, Papazian (2,5)-TM

August 2006 T. and S. Ligocki

September 2007 T. and S. Ligocki

October 2007 T. and S. Ligocki

November 2007 T. and S. Ligocki

December 2007 T. and S. Ligocki

January 2008 T. and S. Ligocki

(3,3)-TM

15 =924,180,005,181

1S =4,144,465,135,61%,= 2,950,149
:$=3,793,261,759,79%,= 2,576,467
:$=14,103,258,269,249,= 4,848,239
1S =26,375,397,569,930

s =4,345,166,620,336,565

Y. =95,524,079

(2,5)-TM
(3,4)-TM
(2,6)-TM
(4,3)-TM
(3,4)-TM
(3,4)-TM
(3,4)-TM
(2,5)-TM
(2,5)-TM
(6,2)-TM
(3,3)-TM

:s>7.0x 1%, Y =172,312,766,455
:s>57x 1%, Y > 2.4 x 16°
:5>23x 1,y >1.9x 16’
:s>1.5x 18y >1.1 x 10"
:5>43x 18y > 6.0 x 167
:5>7.6x18°% Yy >4.6x16*
:5>3.1x15° Yy >21 x 16
:$>52x1% Y >9.3x16°
:5>1.6x 18y >5.2 x 16%
:s>89x%x 1%y >25x 16
:s=119,112,334,170,342,540

Y = 374,676,383

(4,3)-T™
(4,3)-T™
(4,3)-TM
(4,3)-T™
(3,4)-TM
(3,4)-T™
(3,4)-TM
(2,5)-T™M
(2,6)-TM
(2,6)-T™M
(6,2)-T™M
(4,3)-TM
(4,3)-TM
(3,4)-TM
(4,3)-TM
(2,6)-TM

:5>7.7x 158y > 1.6 x 16
:5>3.7x 1072y >1.6 x 16%
:5>3.9x10% Y > 4.0 x 16%%°
:5>3.9x18%y >25x 16°*
:5>84x18% Y >1.7 x 16°*
:5>3.4x10°y >1.4 x 16%°
:5>59x 14"y > 2.2 x 167
:5>1.9x 16" ¥y >1.7 x 16>
:5>4.9x 152y >8.6 x 164
:5>25x 182 ¥ >6.9 x 16°*
:s>25x%x168°° ¥y > 4.6 x 16"
:5>7.9x 18 ¥ >8.9 x 14°*
:5>53x 158y > 4.2 x 16%4
:$>52x16°%%y >37 x 16°°
15> 1.0x 1692y > 1.3 x 16°%°
:5>2.4x16%° >y >1.9x%x14°
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24. Summary Tables

S(n state,m symbol)

table 2.4 — S(2-6,2-6)
6 symbols > 2.4 x 10°®

5 symbols >1.9 x 10 ?

4 symbols > 3,932,964 >5.2 x 10°°%° ?

3 symbols > 38 >1.1x106" >1.0x 10" ?

2 symbols 6 21 107 >47,176,87C > 2.5 x 16°”
2 states 3 states 4 states 5 states 6 states

> (n state,m symbol)

table 2.5 ->(2-6,2-6)
6 symbols > 1.9 x 10°

5symbols > 1.7 x 16> ?

4 symbols > 2,050 > 3.7 x 16™ ?

3 symbols >9 > 374,676,383 > 1.3 x 107 ?

2 symbols 4 6 13 >4098 >4.6 x 10"
2 states 3 states 4 states 5 states 6 states

2.5.Busy Beaver State Topology Samples

BIL L1IR
-—(B”‘ ——()
11L

fig. 2.1 — 3-State Busy Beaver - Lin and Rado,1965
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BIR
11L,
& BIR @ I|BL
BIL

IBR

fig. 2.2 — 4-State Busy Beaver — Brady 1975

BIR B BIR BLR

11L IBL

fig. 2.3 — 5-State Busy Beaver Candidate — MarxerD20
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fig. 2.4 — Tape trace of first 800 steps of the Thh fig. 2.3

fig. 2.5 — 6-State Busy Beaver Candidate




3. Search Space

3.1.Size

As mentioned the space of Turing machines for testand m tape symbols
consists of 2m.(n+1))"" valid definition of Turing machines. The spa&esgrows
exponentially in function of state and symbol cobat can be pruned to a much lower
size using the previously mentioned Tree Normahtahich still grows exponentially.
The following table shows the number of valid Tgridachines definitions and number
of TMs enumerated by TNF for several values of d am As there are different ways
to implement the TNF enumerator with different apations included, the values on

the following table is specific to our implementatidetailed in later sections.

table 3.1 — Number of valid TMs

State Symbol All Valid TMs TNF Enumerated TMs Ratio
3 2 16.777.216 16.656 0,09928%
4 2 25.600.000.000 2.902.620 0,01134%
5 2 63.403.380.965.376 671.859.240 0,00106%
6 2 232.218.265.089.212.000 ? ?
2 3 34.012.224 11.340 0,00033%
3 3 2.641.807.540.224 181.656.744 0,00007%
4 3 531.441.000.000.000.000 ? ?
5 3 221.073.919.720.733.000.000.000 ? 2
2 4 110.075.314.176 4.555.488 0,00414%
3 4 1.152.921.504.606.850.000 ? ?
4 4 42.949.672.960.000.000.000.000.000 ? ?

3.2.Smoothness

Like most dynamical and chaotic systems Turing Ntaeh are very sensitive to
initial conditions, like the contents of the tapdhe beginning or the transition function
of the Turing Machine. No smooth gradient exisetween the outputs of similar
Turing machines. Of course in order to talk abaatilarity, we first need to define a
topology with a distance function and neighborhods uring Machines.
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3.3. Topology

Here we propose an alternate topologic representatif sets of Turing
machines belonging to the same class of tape adplsate and state count. Such a set of
valid Turing machines for a given state number alptiabet size can be represented as
a topological metric space by defining a neighbothéunction where neighborhood
system consists of Turing Machines with their débns differing from the center
machine of neighborhood open ball by only a singjlgte transition, a single shift
direction or a single alphabet character to writdis definition of neighborhood is the
most intuitive in terms of both mathematical togpyland computational hill climbing
type evolutionary algorithms. Also an intuitive w@isce metric for a such topology
would be a metric distance similar to Manhattantédise for spaces with more than 3

dimensions.

A Space of Turing machines havingtates andh tape alphabet symbols can be
represented as follows : Let's assume each pogséisition of the formr,m,3 (state
to go, symbol to write, one of two possible direns for head shift) is represented as a
point in a three dimensional discreet space; antiVais represented as a vector
consisting ofn x m points (a transition for each possible symbol rabéach possible
state). As each point would hava+n-1 neighbor§, therefore a vector representing a
particular TM would haven’n+n?m-nm neighbot vectors (neighbor TMs). Assuming
such neighborhood, the difference of resulting tequefigurations for Turing Machines
of a neighborhood is observed to be far from besngpoth. A single change on
machine definition commonly changes either the lbepavior of TM or the tape output

significantly.

This last observation defines one of the signifiganoperties of the TM space in
context of the choice of how to explore the solutgpace. It is known that from the
range of evolutionary algorithms genetic algorithans better suited to optimization of

functions with continuous surfaces with smooth sidons; on the other hand hill

* (n-1)+(m-1)+1 (change transition to another state,to write another symbol or to other direction)
® (n xm)(m+n-1) (sum of possible transition changesefach transition of machine)
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climbing doesn’t necessarily impose such a condtraihile benefiting from it if

present.



4. Exploring Search Space

4.1. Exhaustive Enumeration

Exhaustive enumeration of the search space is,ewlging complete neither
efficient nor feasible, as the number of possibldsTincreases exponentially both for
the number of states and for the number of symbdts.context of Busy Beaver
problem this kind of full enumeration is only dediable for cases like comparative
study, and classification of redundancy classel thiir sizes.

4.2.Random Sampling

Random sampling of Turing Machines belonging to ed & one of the
enumeration techniqgues we have implemented; butioobly as this kind of
enumeration is not complete, it only serves fotigias gathering purposes to fine-tune
other algorithms with obtained statistical propestof machine space.

Still random sampling can be implemented with défe levels of complexity.
First of all assigning random values adhering &peetive ranges for each variable of a
machine definition does neither necessarily naljilproduce a possibly halting Turing
Machine. Most randomly generated machines suftan fdisconnected state transition

topologies and other sub-optimal machine configonat

To prevent this we implemented a smarter versioranilom machine sampler
code which checks state connectivity and makes thateeach state and transition is
used and unique. Another technique for smart nandampler is to force the first
transition to write a “1” symbol and shift to a sgE direction. This technique
prevents the enumeration of mirror machines whichitst the exact same behavior

mirrored according to starting point on tape.
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4.3. Evolutionary approaches

In order to explore subsets of all possible TMscontext of Busy Beaver
problem, many evolutionary approaches have beepopen throughout the literature
[6] [11]. Genetic Algorithm is the most prevaleoit the evolutionary computation
methods; to employ GA on a problem first a suitadsieoding for the possible solutions
of the problem must be chosen. In the case ofbtiey beaver problem the state
transition function of a TM is the proposed solatior which the encoding should be
built upon® GA relies on strings of specific alphabets whgemetic operators like
mutation and cross-over gets applied. The alphabite GA representation for a TM
should not be confused with the symbols used f@rTik actually the most natural way
to encode the state transition function of a TMhwitstates and m symbols is to use a
string of n by m characters from an alphabet. Alphabet of the GA can be defined as
characters consisting of all possible triples & torm [ next state x shift direction x
TM symbol to write ] which is very similar to theoints defined on space topology
section. For TMs with 5-state (6 with anonymoudihg state), 2-symbol a natural
encoding for GA have an alphabet consisting ofttel 24 possible triples; and each
encoding defining an individual is a string (alstled chromosome in GA jargon) of 10

characters from that string.

. . New . . New . . New . . New

Write Shift State Write Shift State Write Shift State Write Shift State
N AL N N /

Y Y e hd
when read 0 when read 1 when read 0 when read 1
— A _
v YT
on state 0 on state 1

fig. 4.1 — A possible genetic encoding for Turing lsichine Setup

Genetic Algorithms try to evolve better performiogdes or machines at each

generation according to a fitness function whichhis heuristic for picking the better

® Inherently the number states and symbols of tteyBeaver problem is necessary to define a possible
solution but we assume the computation is perforfoed specific BB(state,symbol) problem thus these
numbers are assumed to be constant which don’ireegn encoding on GA population.
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samples. In the case of Busy Beaver Problem thes function can be defined as the
number of 1s left written on tape if a TM halts dref timing out according to a
specified hard coded shift limit. A further extemws to fitness function can be to
employ a weighted sum of the shifts taken befotetbdavor more productive TMs in
terms of numbers of 1s written for number of shidtisen.

Employing Genetic Algorithms on executable codes configurations of
execution machines is conventionally called GendBmgramming. Like all
evolutionary computation optimizations Genetic Aigums and Genetic Programming

IS not deterministic or complete.

4.4. Hill climbing

Hill climbing is a greedy, local search based, mpation technique. Hill
climbing can be used on problems where multipletsmis with different performance
or fitness exist. Hill climbing implementationsasgt with random solutions and
sequentially make small changes to the solution kegping only the improved ones.
At some point the algorithm arrives at a solutidmeve no improvement can be seen on
any solution neighbor to that one on the solutipace thus the algorithm terminates.
Hill climbing is not guaranteed to reach the optirsalution but ideally the final
solution is close to optimal solution for most béttime, as this is the characteristic of
greedy algorithms.

Many NP-Complete problems can be tackled withdtithbing easily when sub-
optimal solutions are also acceptable. Hill clinthbioperates on a discreet space of
solutions; the continuous counterpart of hill climdpis called gradient ascend/descent.
Like genetic algorithms search space topology ipartant for hill climbing; most
importantly the connectedness and smoothness @&ssuming solution space consists
of discrete solutions with a neighborhood; seapate can naturally be represented as a
graph with vertices where edges represent the ntistanetric or similarity of each
solution. Hill climbing will explore the graph u@ex to vertex by monotonically

increasing (or decreasing) the fitness functigw) where v denotes the visited
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vertex/solution. As intended, the space topology Tés that we proposed on the

previous section fits conveniently to the type a$cdeet space required by Hill

Climbing.

Hill climbing is very similar to genetic algorithmith no cross-over operator.
An elitist genetic algorithm running with mutatioperator only has an operating mode
between hill climbing and beam seatch

" An optimized version of best-first search



5. Implementation

Our base Turing Machine emulator’'s implementatisnpietty much straight
forward. We have implemented the emulator bothadre code using Borland Delphi
Compiler to compile Object Pascal source code tiv&iax86 ASM code; and as
managed code using Microsoft C# compiler to comfite source code to .Net 2.0
MSIL code.

The term managed code means executable code tiratinder the management
of a virtual machine, unlike native (unmanaged)ecadhich is executed directly on the
processor. The benefits of managed code includenatic memory garbage
collection, strong type enforcement, advance raageé bounds checking, isolation
between application domains and similar securiigrgntees at a cost of minimal speed

overhead.

The most common meaning of the term is the Micisodescription of
programs that execute under the management of 8tiftte CLR (Common Language
Runtime) virtual machine of .NET Framework. Miooftss main programming
languages for creating managed code are C# anc&aMBasic .NET. There are open
source alternatives to Microsoft's CLR such as MOpiOQject and GNU Portable .Net
which aims instruction level compatibility with MISI The Java programming
language also creates managed code which is dajtedode in Java terminology and
executed by the Java Virtual Machine which is pErtJava Runtime Environment
(JRE).

A common misconception about managed code is whétle executed by an
interpreter. Although managed code requires asetntime libraries and a runtime
engine, neither Java nor Microsoft's managed laggsiaare interpreted languages
(although interpreters exist for them); they arthbBdT (Just-in time) compiled to native
code thus exploiting the system architecture andpeder state to the furthest extent.

This is dismisses another widespread misconce@mwut managed code being too
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slow. After JIT compilation (performed on runtinmepnaged code is indiscernible from
native code for processor; when JIT's benefit ofchi@e architecture exploiting
compilation and most importantly benefit of re-&dmpilation during runtime based on
code hot spots detected with live run trace stesistllows the compilation process to
adapt most perfectly to architecture and run tinehavior. Most of time those
advantages of JIT compilation either compensate®terhead or even make the code

performance surpass statically compiled native code

5.1.Data Types

Both managed and native code represift directiors with enumeration data
types, whilealphabet symbsl are represented using unsigned short integee)(ligta
type in order to make machine tapes (one dimenkiamay of symbo$) as space

efficient as possible, and state numbers are repted using integer data types.

The transitions and states have been implementeg@erate inner classes on
managed code to exploit pass by reference methibderaantics, because managed
code only allows pointers to be used inside of cslions marked with “unsafe code”
attribute. This way while branching on Tree Norrkakm enumerator, new machine
prototype branches use the same references tooestaf transitions or states if no
modification to the values is needed.

On native code, transitions are heap allocated ositg data structures and
accessed using typed pointers, while states arlemgnted as arrays of transitions with
symbol read used as index.

For native code a copy of a transition or a statei¢h is simply a collection of
transitions with a unique identifier) can be getedlavith a memory move system call
which is very efficient in terms of processor cyclas only the size of structure is
dumbly copied from original variable to the newlNoeated heap memory. On the
other hand for the managed code creating a copg nbn-primitive, user defined,
nested data structure, which is a class contaiainmgys of other classes, has to
implement system definelCloneableinterface to hand tune the granularity of copy
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semantics, in order to work around possible ercaxssed by shallow copy, deep copy
and memberwise copy which is common on complextiras with circular references.

In order to mark a class as cloneable VifEffoneable] attribute either all the member

fields should be of a cloneable type or the impletagon of the firstiCloneable

interface should deal with proper copy generatibim@mpatible members recursively.

Same considerations mentioned above apply for[8eializable] attribute
where the persistence of a class to a stream di.éile stream) is handled by
ISerializable interface, which should be implemented; all memfields of a class
should be serializable too in order to mark thasslas serializable.

During the implementation of Tree Normal Form entat@ a need for a stack
arised to hold “to be processed” nodes of tree a/each node is a Turing Machine
Prototype Class instance, which is basically aigartdefined Turing Machine waiting
to be incrementally defined in all possible wayswahild branches. In native code the
stack implementation is straight forward since gutar stack implemented on system
libraries can hold typed pointers to our data typ@s the other hand for managed code
implementation, either a regular stack f8ystem.Objectype which is the ultimate
ancestor to all other classes can be used, orcifisggped stack could be implemented.
We decided to go with the latter because a regtick required type casting from
System.Objedb our own class type for each pop operation ftbenstack which has a

great impact on performance.

Our typed stack for managed code is implemented tie help ofgenerics
introduced with the second version of .Net framdworhis way a list, queue, stack or
any class can be generalized to all forms of utesses and data types without the
performance loss due to object type casting antiontt the need to have different
implementations for different types which in tueduces memory footprint. Generics
are very similar to templates in C++ and Java, wherclass can be defined with
declaration of some of the types postponed tilldinBations of that class.
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public class turingMachine : ICloneable

{

public const int MAX_STATE = 5,
ALPHABET_SIZE = 2,

public enum scrollDirections

{
left,
right

public class State : ICloneable

{
public byte[] write = new byte[ALPHABET_SIZE];
public State[] nextState = new State[ALPHABET_SIZE];
public scrollDirections[] scrollDirection = new scrollDirections[ALPHABET_SIZE];
public byte flag = 0;
¥

public State[] states = new State[MAX_STATE + 1];
public byte[] tape = new byte[MAX_TAPE];

public State currentState;

public int headPos = CENTER;
public int cycle = 0;

public int minx = CENTER;
public int maxx = CENTER;

listing 1 — C# source of main fields defined at thbeginning of emulator class
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unit turingMachineClassU;
interface
const

MAX_STEP = 2000; //step limiter for turing machines
MAX_TAPE = 2000;

ALPHABET_SIZE = 2;
MAX_STATE =5;
MAX_BLOCKS = 2*ALPHABET_SIZE*MAX_STATE;
type
TScrollDirection = (scLeft,scRight);
THaltingStatus = (HUndecided,HHalt,HDisconnectedStates,HStateExhaustion);

TSymbol = Byte;

Pblock = ~TBlock; //pointer to TBlock
TBlock = record

write : TSymbol;
nextStateNo : integer;
scrollDirection : TScrollDirection;
end;

PState = ~TState; //pointer to TState
TState = record

write : array [@..ALPHABET_SIZE-1] of TSymbol;
nextStateNo : array [@..ALPHABET_SIZE-1] of integer;
scrollDirection : array [©..ALPHABET_SIZE-1] of TScrollDirection;
end;

TturingMachine = class

public

states : array [@..MAX_STATE-1] of TState;

tape : packed array [-MAX_STEP-1..MAX_STEP+1] of TSymbol;
headPos : integer;

currentStateNo : integer;

cycle : integer;
minx,maxx : integer;

haltingReason : THaltingStatus;

procedure randomizeTM;
procedure reinitialize(rnd : boolean = true);

procedure processStep;
function run : integer;

procedure DrawTrace;
end;

listing 2 — Object Pascal source of main fields dieled at the beginning of emulator class
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5.2. Emulator

The implementation of Turing Machine emulator istpr similar in native and
managed code. In both cases the() method of Turing Machine class call the
processStep@nethod continuously in a loop till the simulatedahine reaches the halt
state which is checked from thaltingStatusenumeration field or some cycle limit is

exceeded.

processStepnethod implements a single step of Turing Machiwhen called
it first reads the tape symbol under the tape Hwadccessing the tape array with head
position field as index; then from the current stimistance a reference to the respective
transition instance is retrieved using symbol whighread. Using this reference to
current transition, first the symbol to be writtentape is written to tape array; then the
head position field is either incremented or de@weted according to shift direction
indicated by the current transition reference; &indlly current state field is changed
with the new state to be transitioned to by chaggire reference oourrentStatefield
with the new one as indicated on current transitinstance. Before returning
processStep()ncrements a counter field callexycle in order to keep track of the
number of steps of execution. Many similar counee incremented or decremented
both inprocessStep@ndrun() in order to gather statistical data of the exetutrace;
most important of those are the following two indexIn order to be able to track the
tape space explored till this shift, when the hpasition field is changed, two indexes
showing the left and right bounds of explored secof the tape is updated if a new cell

is explored from left or right.
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public void processStep() {

int symRead = tape[headPos];
byte symWrite = currentState.write[symRead];

tape[headPos] = symWrite; //1.write
if (currentState.scrollDirection[symRead] == scrollDirections.left) //2.scroll tape
headPos--;
if (headPos < minx) minx = headPos;
}
else
headPos++;
if (headPos > maxx) maxx = headPos;
currentState = currentState.nextState[symRead]; //3.change state

if (currentState == states[MAX_STATE]) haltingReason = haltingStatus.halt;

cycle++;

public haltingStatus run()

{
while ((haltingReason == haltingStatus.undecided) && (cycle < MAX_STEP))
¢ processStep();
}
return haltingReason;
}

listing 3 — C# source of Turing Machine class’ emakor methods
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[/ =mmmmmm e PROCESS STEP  =------mmmmmmmmmmmmm oo o
procedure TturingMachine.processStep;
var curSta . PState;
symRead : TSymbol;
begin
curSta := @states[currentStateNo];
symRead := tape[headPos];

tape[headPos] := curSta.write[symRead]; //1.write

if curSta.scrollDirection[symRead] = scLeft then begin //2.scroll Tape
dec(headPos);
if headPos < minx then minx := headpos;
end else begin
inc(headPos);
if headPos > maxx then maxx := headpos;
end;

currentStateNo := curSta.nextStateNo[symRead]; //3.change State

inc(cycle);
end;

[/ = e RUN  mmmmmmmm e e e
function TturingMachine.run : integer;
begin

result := 0; //Undecided

haltingReason := HUndecided;

// HALT STATE REACHED TIME OUT SPACE OUT
while (currentStateNo < MAX_STATE) and (cycle < MAX_STEP) and ((maxx-minx) < MAX_TAPE) do
begin
processStep;
end;

if (cycle <> MAX_STEP) and (tapeLen <> MAX_TAPE) then haltingReason := HHalt;
end;

listing 4 — Object Pascal source of Turing Machinelass’ emulator methods
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5.3. Enumerator

Our enumerator code is based on the previouslyioresd Tree Normal Form
methodology; since enumerating other valid configions has no pragmatic value in
our case. As previously mentioned, TNF is basecmmlation of partially defined
Turing Machine definitions till an undefined tratisn is needed, then it recursively
branches to incrementally defined machines hawagttansition defined in all possible
ways. That's why an emulation loop is embeddedienthe enumeration loop. In order
to prevent recursive branching interfere with ertiata loop, a recursion removal
technique (similar to mentioned one on simple cotiviéy check) is applied on the
enumerator code. To implement the recursion remtvaenumeration tree traversal is
replaced with an enumeration loop. First a paytidéfined machine is “pop”ed from a
stack of machines, second it is emulated till agefined transition is about to be taken,
then all possible transitions for that case areeggrd based on number of already
visited states and number of undefined transitifis Finally new Turing machine
prototypes are generated by incrementally defithegfirst machine for each possible
transition. While the newly generated machinespyethed to stack of machines the
original machine is discarded as all possible neachimes for its lineage has been

derived and pushed to stack for further investagati

Actual implementation of enumerator contains mamyhler optimizations like
not building a transition to halting state untillp@a single undefined transition is left
and forcing the last transition to be a transitiorhalting state with writing 1 to tape;
because any transitions to halting state definetieeavould produce a sub-optimal
machine topology where halting transition doesenéfit from the states to be defined
or would have multiple transitions to halting state

During the actual coding of the TNF enumerator, megiced that fields of
previously defined transitions which are represgras instances dfansition class
don’t change within a as the traversal of machipecs tree gets deeper. Therefore as
an optimization we clone the new incrementally miedi machines as shallow copies
(not copying the objects in fields too, but by pagshe same references hold on fields

to copied objects field) of parent machine protetypxcept the machine tape field
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because the machine tape works bi-directionallyitndontents can change within that
branch as deeper nodes are explored. A shalloyw @bmachine topology let the new
machines skip instantiating and cloning the presipdefined transitions, and only use
a reference to them which is more efficient, botbcpssing time wise and memory

foot-print/fragmentation wise.

At the beginning of TNF enumeration there grex m)-1 undefined transitiofis
so at each deepening level of tree traversal a tnawsition gets defined; but also at
each level a not-yet-reached state of the macbip@ldgy becomes reachable too. As a
result two concurrent branching factor limit applte recursive traversal which can be
expressed as2 xm x min(tree depth + 1,n)° wheren denotes the number of states
and m denotes the number tape alphabet symbols. Astinaber of transitions is
always greater than the number of states, therfistevels'® of tree has a branching
factor of 2 xm x (tree depth + 1) and after that branching factor stabilizes 2sxm
x n till maximum depth, which is the undefined trarmiticount mentioned at the

beginning

As the enumerator also contains an intrinsic eroulat keep track of the partial
simulations of machine prototypes, when a macheaehes the halting state during its
simulation the respective counter variables areemented and a callback function is

called for further statistics gathering if one isyaded.

public void enumerateTNFtree()

{
TMStack.Clear();
TMStack.Push(new TMPrototype()); // First prototype - only first transition exists in it

/] ---- enumeration loop ----
while (TMStack.Count > @)

{
TMPrototype tm = (TMPrototype)TMStack.Pop();

#region emulationLoop

[/ memmmmemmmeeeemeemeeeeeee emulation loop  -----------memmmmem -
while ((tm.currentState != turingMachine.MAX_STATE) &&

& minus one due to first transition being pre-define
® plus one due to a new state becoming reachaklechtlevel
% minus one due to starting state being reachabie fhe start
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(tm.cycle < turingMachine.MAX_STEP))

if (tm.nextTransition() != null)
{
tm.step();
if (tm.nonHaltPrediction)
{
predictionCounter++;
break;

else

//1.Enumerate possible transitions to defined states
for (byte sym = @; sym < turingMachine.ALPHABET_SIZE; sym++)
for (int sta = ©; sta < tm.nextAvailableState; sta++)

{
//Shift Left
Transition tr = new Transition();
tr.nextState = sta;
tr.write = sym;
tr.scrollDirection = turingMachine.scrollDirections.left;
TMPrototype tm2 = (TMPrototype)tm.Clone();
tm2.transitions[tm2.currentState, tm2.tape[tm2.headPosition]] = tr;
tm2.undefinedTransitions--;
TMStack.Push(tm2);
//Shift Right
tr = new Transition();
tr.nextState = sta;
tr.write = sym;
tr.scrollDirection = turingMachine.scrollDirections.right;
tm2 = (TMPrototype)tm.Clone();
tm2.transitions[tm2.currentState, tm2.tape[tm2.headPosition]] = tr;
tm2.undefinedTransitions--;
TMStack.Push(tm2);
}

//2.Enumerate possible transitions to a new state
for (byte sym = @; sym < turingMachine.ALPHABET_SIZE; sym++)
{

//Shift Left

Transition tr = new Transition();

tr.nextState = tm.nextAvailableState;

tr.write = sym;

tr.scrollDirection = turingMachine.scrollDirections.left;

TMPrototype tm2 = (TMPrototype)tm.Clone();

tm2.transitions[tm2.currentState, tm2.tape[tm2.headPosition]] = tr;

if (tm2.nextAvailableState < turingMachine.MAX_STATE)
tm2.nextAvailableState++;

tm2.undefinedTransitions--;

TMStack.Push(tm2);

//Shift Right

tr = new Transition();

tr.nextState = tm.nextAvailableState;

tr.write = sym;

tr.scrollDirection = turingMachine.scrollDirections.right;

tm2 = (TMPrototype)tm.Clone();

tm2.transitions[tm2.currentState, tm2.tape[tm2.headPosition]] = tr;

if (tm2.nextAvailableState < turingMachine.MAX_STATE)
tm2.nextAvailableState++;

tm2.undefinedTransitions--;

TMStack.Push(tm2);
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}
break; // *** end of life of this tm prototype ***
}
Y /] e emulation loop  ----------------ooo-o--
#endregion
if (tm.undefinedTransitions == @)
{
if (tm.currentState == turingMachine.MAX_STATE) //---HALTER
{
haltingcounter++;
if (callBack != null) callBack();
}//---HALTER
else //---UNDECIDED, MAX_STEP
{
undecidedcounter++;
if (callBack != null) callBack();
}//---UNDECIDED, MAX_STEP
}

tm = null; //free the prototype representing this branch

} // --- enumeration loop ---
} // void enumerateTNFtree()

listing 5 — C# source of Tree Normal Form TM enumeaitor method




6. Optimizations

In coding part of busy beaver problem (as in almpatation problems)
implementation specific optimizations account fesder performance gains compared
to algorithmic optimizations. A common pitfall foprogrammers is to apply
implementation related optimizations instead of isieg a better algorithm with
reduced time and space complexity. The followipgrizations are the most common
algorithmic improvements over the naive algorithinexhaustive enumeration with flat
memory allocation.

6.1. Tree Normal Form

For any n-state Turing machine there ateisomorphic machines which are
functionally equivalent. Any machine can be retarded as permutations of state
numbers by renaming the states, but as their behawill remain identical
concentrating our processing resources on only imséance for each of those
equivalence classes greatly improves time and spamglexity of covering the whole

machine space.

Presence of multiple valid TMs with isomorphic dgaofations results on
multiple equivalence classes of TM subsets witmtidal functionality. The most
important equivalence class in literature is Treermdal Form (abbreviated TNF)
described by Heiner Marxen on his paper [4]. Altalkthe following attacks to busy
beaver problem from the literature use some forrma€hine normalization [7] except
those which are based on evolutionary techniquesteand of enumeration.
Representing TMs on Tree Normal Form allows fumlly equivalent TMs to be

represented identically in a normalized way.
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fig. 6.1 — Isomorphic Machine Topologies

Another benefit of enumerating machines accordingree Normal Form is to
conveniently eliminate sub-optimal topologies, likkose which have multiple
transitions to halting state and those which haages with no incoming transitions,

during the enumeration saving us from unnecessaunjation.

TNF enumeration is based on partially defined TgirMachines topologies
where not yet encountered transitions are not ddfand unvisited states aren’t given a
number, keeping them equivalent. While using TIRE €émulation and enumeration
processes are fused to a single process. Durmginiulation of available machines
when undefined transitions are requested, theylgied by forking the emulation to
many clones of that machine, each having the uneefiransition getting defined as
one of possible valid transitions. This forkinghdae implemented as a recursion or
back tracking. As long as a state isn't visited yeremains anonymous with other
unvisited states making them indiscernible. Whafidvtransitions are enumerated
upon request for definition of a transition, onlyet previously visited states are
considered as anonymous states can not be usedasblbng as there are still
anonymous states left this transition is considased could also be a transition into the
subset of undefined states of topology, thus amynous state (as all anonymous
states are indiscernible, any one is as good aso#rer) is given a unique number
making it part of the defined subset of topologybviously as there are more
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transitions than states, the undefined (anonymstaggs deplete sooner than undefined
transitions.
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fig. 6.2 — Reduction Achieved by TNF [8}*

It can be seen from figure 9 that, as the numbestaties for considered busy
beaver problem increases, additional optimizatidos enumeration layer only
marginally increase the effectiveness. For Tuiachines with 4 or more states the
branch elimination factor (reduction of machinestmsider) of enumerator converges
to a range less than one percent, independenegirdsence of other enumeration time
optimizations. In light of this, our implementatiof TNF enumeration only contains
this two first move enforcing optimization on top ib although there many other

esoteric extensions to TNF exist through out ttezdiure.

It is obvious that the purpose of Busy Beaver moblis to leave a single

machine which writes the maximum number of “1"srdéfore all kinds of eliminations

! Chart derived from data on Rensselaer Al & Reasp(RAIR) Lab Presentation [8]



38

are welcome to researchers; but our argument fordismissal of these esoteric
techniques is based on the fact that the procedsimg resource needed for these
techniques can be put to better use on different élivhination techniques like our

proposed predictor or any other halting/non-halpngver, having a higher efficiency.

6.2. Macro Machines

In his 1990 paper, “Attacking the Busy Beaver 5'itée Marxen [4] described a
tape compression and macro-machine acceleratiohniteee which became
fundamental to all further busy beaver search implatations through out the
literature. Later on 2004 Alex Holkner [10] has arped the idea t&-macro tape

representationsindmacro arcswhich are advanced techniques of the same nature.

A macro machine is a higher level Turing Machineickhgroups blocks of
transitions (state, tape and head position) ofagetdol' M into a single transition. Macro
machine simulations are provably faster than thgiral lower TM simulations, while
helping the proof of non-halting. This is actualiy implication of linear speedup

theorem.

The linear speedup theorem for Turing machinesriassieat for any Turing
machine solving a problem in timén), another machine solving the same problem in

time kt(n)+n+2 can be constructed for a constlant
A simple proof fork = % is as follows :

Assume a Turing Machin® solving a problem irt(n) shifts with its tape
alphabet consisting ot symbols and its transition function being definad a
deterministic finite automata withinternal states. We can construct a new madtine
having an alphabet witk® symbols where each symbol represents a combinafi@n
symbols of machin®l. The tape of machind' is a compact representation of the tape
of machineM, where celi of machineM' represents the group of cellsl, 2i and2i+1
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of machineM with a single symbol of the new alphabet. At eacmputation stegyl
simulates the computation bf till the head oM’ leaves the group of cells from left or
right (all this simulation can be done in a singiep because M can be in no more than
sk3 states without leaving the group of cells or réipgaa state which means a loop).
Throughout this simulation stdd may reach the halting state, in which cé8ealso
reaches the halting state;rmay loop, in which caskl' does nothing (so also loops).
A last refinement is that, as group of cells oyerkvery transition between groupsMin
must be converted int& transitions between cells iM' to take account of th&
different symbols that might have been written oti® cell belonging to both groups.
The construction requires that each computatiop BteM' corresponds to at least 2
computation steps dfl. ThereforeM' takes no more thatet(n) steps. By adding

delaying steps tdl', we can guarantee that it takes exakit{n) steps.

This proof can be generalized to all value& of 0. The linear speedup theorem
is the rationale behind complexity theory ignoriigear factors and representing the

complexity of algorithms with big O notation.

6.3. Tape Compression

A technique similar to the one defined by lineaeesgup theorem is known as
the "tape compression theorem" and allows for alairnonstant factor reduction in the
space requirements of a Turing machine. This #maas as follows:

Let’'s suppose the languageis accepted by a deterministic Turing MachMe
having space complexig(n), we can show that for any constar0, L is accepted by a
deterministic Turing Machin®' having space complexitys(n)

The same construction from linear speedup theoemsed here. As many
symbols from the lower machine is encoded as dessygmbol in the macro machine
(upper machine) the number of tape cells necedsampresent a string is reduced to a

constant fraction of cells required on the lowerchae.
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Albeit the name “tape compression theorem”, the mh@f data necessary to
store the macro machine’s tape is not reduced kyensingle bit. To the contrary, the
amount of bits needed to store the tape of macrohima is statistically a little bit
higher, because the symbols at both edges of thpgoro machine may be partially
used by lower machine but represented as a fulbsyof macro machine alphabet.

Busy beaver problem not only has exponential tinoenmexity but also
exponential space complexity which burdens theaagibn of the machine space. As
tape compression theorem doesn’t improve the spanglexity in terms of big O
notation another technique is required to be ablsimulate candidate machines. A
very common compression technique is run lengthoding where repeated
occurrences of groups of symbols are encoded dagée ssymbol followed by the
number of occurrence of symbol. As long as a gtahsymbols exposes some sort of
repetition of a pattern, this string can be encoaede efficiently by using run length
encoding. As like all forms of compression, useusf length encoding is prohibitive in
cases where strings are pseudo-random with ncstatatly significant distribution;

where run length encoding results with longer saqes due to encoding overhead.

Most bust beaver candidate Turing machine prodwegeating patterns of
symbols due to nested loops imposed by state tgpoleendering them a perfect
candidate for run length encoding the tape. Ruagtleencoding of machine tape can
be more efficient when combined with macro machimescribed above. Long
sequences of 1's or O0’s are rarely encountered;dsutmacro machine’s symbols
correspond to combinations of symbols like “00”,7010”,”11" alternating strings like
“0101010101010101” or complex repetitive patterdisddferent periodicity can be
efficiently encoded too (with 5 bits instead offb6 that specific example; where first 2
bits describe one of four macro symbol and nextit8 Hescribe the number of
repetition). Optimal block length for run lengthoeding and macro machine depends
on the histogram of blocks present on tape andntkationed length/periodicity of
repeating patterns..



7. Non-halting prediction

Through out the investigation of halting problermeafic to Turing Machines,
predicting whether a machine will halt or not byrménspection of the setup of the
machine is mostly dismissed because of the inherentplexity underlying in the
machine topology that isn’t penetrable by simplalgsis. As predicting non-halting
condition for the complete set of TMs would be &gient to an oraclé for halting
problem; given the previously shown proof of undability of halting problem this
implies that possible predictors have to be incatgplwhich means predicting only for

a subset of valid TMs and leaving the rest undetide

Although investigation of the setup of a Turing Ma® gives some insight for
possible prediction of halting, like disconnecteahsitions or obviously infinite loops
of the starting transitidf, it only contains minimal information which leads a
predictor leaving most machine definitions undedide Obviously if additional
information can be made available to a possiblekblzox halting predictor, this extra
information can be used to decrease the numbenddaided instances. As we assume
that the black box predictor already has complefi@rmation about the configuration of
a particular instance of Turing Machine and theyBBgaver problem, the only extra
information that can be made available is the satmh history of that machine for a

limited number of steps.

In the following sub-sections we will first defineur proposed efficiency
measure for halting/non-halting predictors, thgndar own predictors features layer by

layer from trivial to complex.

12 An oracle is an abstract machine used to exanesision problems. An oracle is able to decide aerta
decision problems in a single operation, where lgrmbcan be of any complexity class including
undecidable problems, like the halting problem.

The halting paradox is still valid for such machin@lthough they can decide whether particular figiri
machine, input tape pairs will halt, they still &adecide whether machines with equivalent halting
oracles are halting or not. This observation ceeatehierarchy of machines, namely the arithmetical
hierarchy, each with a more powerful halting oraole an even harder halting problem.

'3 Starting transition is the transition taken whehia read by starting state.
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7.1. An efficiency measure for halting predictors

It is obvious that any correct halting predictoattbenefits from the information
of limited simulation history becomes a completdtihng predictor as the limit of
simulation history size approaches infinity. Ihdae seen that this last observation is
independent of the naivety or the implementatiohef predictor; it is solely based on
correctness. Given these if we analyze all predicrom a perspective of correctness
and completeness, we conclude that completenegsaishievable for predictors but

having correctness property it is asymptoticalgcteable in terms of simulation history.

Based on these observations we propose an efficier@asure for halting and
non-halting predictors in terms of the growth rateatio of decidable machines to all

machines.

M := { All Turing Machines with n-states and k-syoig}
H := { All halting Turing Machines with n-states ak-symbols }
history(m,t) : simulation history of machine m fost t steps

P; := { (m) | predictor(history(m,t))-» m//H } (or m /7H for non-halting pred.)

efficiency(predictor) =/(|P / [M|) dt

The explanation of the above expression for efficy measure of a predictor is
as follows. As we have mentioned, any predictosirigacorrectness attribute reaches
completeness as the number of simulation speedilateafor prediction approaches
infinity. We define a predictor as more efficightit can decide more TMs halting
property with less simulation steps available imparison to other predictors. The
ratio of cardinalities of “so far decided” st to “all machines” setM gives the
efficiency of a predictor at a fixed point in simtibn history; when we integrate this
ratio in respect té we obtain a measure to correctly compare the speedverage of
predictors over se¥l.
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7.2."Just observe” halting predictor

For halting Turing machines the number of shiftefqrened before halting has

an exponential distribution over steps taken alking.

Random Sample of 5,2 TMs
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fig. 7.1 — Halting Distribution of 2.1 Random Sampled TM

Figure 10 showing the halting histogram is generdtem results obtained by
our reference C# implementation with a random samgpif a population size of 2.10
samples over the space of valid 5-state 2-symboinguMachines. The non-linear
decrease of halting cases shows that a great nuohlbeiting instances use very few
steps before halting. Specifically %88.7 of hatifuring Machines do so before their
22" shift.
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fig. 7.2 — Halting Distribution of all TNF enumerated 5,2 TMs

Q

Figure 11 demonstrates the halting histogram géserfaom emulations of all
5-state 2-symbol Turing Machines enumerated usiNg &nd simulated by the same
C# code. For TNF enumerated case 111.201.352 nexclout of all 671.859.240
enumerated machines halted before theft &@p which makes roughly 16.6% of all

machines.

The difference of percentage of early halting maehibetween the random
sampling and the TNF enumeration is the resultff#fcgve pruning done by TNF;
because when using TNF, not only the obviously halting machines are pruned, but
also the non-productive and sub-optimal machinegpauned; which explains the drop
on the percentage of early halters on TNF enunesge of machines. As mentioned
before, ratio of TNF enumerated machines to alkiimbs machines is in the order of
1,06 x 10° for 5-state and 2-symbol machines, showing theeme reduction without

any loss of information.
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7.3. State Connectivity Check

As stated Turing Machine spaces contain many VBN definitions with no
connectivity between the starting state and thenamous halting state. In the case of
the exhaustive enumeration of the TM space (instgadNF enumeration where
complete and optimal connectivity is assured bynegmation layer) a connectivity
check between the states let us prove the nombatfi these defective or sub-optimal
TMs. A simple recursive procedure can traversestie transition graph of Turing
Machine starting from the halting state, markingreaisited state as “visited” and mark
the connected states as “to be visited”. Thisrélgm keeps marking the states till the
starting state is reached or no more state is rdaske‘to be visited” which means a
non-halting TM because of the lack of connectiagtween start and halt states. This
approach is a trivial variant of Dijkstra’s algdwih with no weights assigned to

connections.

As all possible TMs are tested with this simpleiahitest, the code for it is kept
as lightweight as possible. To minimize functi@il overhead due to creation of new
stack frames at each recursive call, recursion vam@ applied on our reference
implementation which replaces the recursive calth werative checks over a stack of
flags. We begin with only the halting state preéssrthe stack and iterate till either the
stack gets empty indicating no more state to clfguls halting state being unreachable
from starting state), or the starting state is pdsivhich indicates the presence of a path
between starting and halting state, initial connégt check returns the respective
reachability status. The same can be achievedebinbing with starting state on the

stack and iterating while checking for halting stat
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//returns true if halting state is unreachable by topology
public bool connectivityProblem()

{
foreach(State st in states) st.flag = 0;
states[@].flag = 1; //first state to check
states[MAX_STATE].flag = 5; //look for this
while(true){
State stateToCheck = null;
foreach(State st in states) { //Find a state marked to be checked
if (st.flag == 1)
{
stateToCheck = st;
break;
}
}
if (stateToCheck == null) return true; //no more state marked to check
else
{
stateToCheck.flag = 2; //mark as checked
foreach (State nst in stateToCheck.nextState) //all reachable from
{ //this one
if (nst.flag == 5) return false; //Reached final state
if (nst.flag == @) nst.flag = 1;
}
}
}
}

listing 6 — C# source of connectivity checking furtimon of TM class
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function TturingMachine.haltingStateReachable : boolean;

var state_stat : array [0..MAX_STATE] of integer;
curSta,y,z : integer;

begin
result := false; //assume unreachability of halting state

for y := @ to MAX_STATE-1 do state_stat[y] := ©; //initialize with @
state_stat[MAX_STATE] := 1; //start from final state

repeat

for curSta := @ to MAX_STATE do if state_stat[curSta] = 1 then begin //Find marked to checked
state_stat[curSta] := 2; //mark as processed (2)

//check for states reachable from current_state
for y := @ to MAX_STATE-1 do begin
for z := © to ALPHABET_SIZE-1 do begin

if states[y].nextStateNo[z] = curSta then begin
if y = @ then begin //Reached the starting state -> Connected

result := true;
exit;
end else if state_stat[y] = @ then state_stat[y] := 1;
end;
end;
end;
break;
end;

until curSta = MAX_STATE+1; //No state is marked with 1

end;

listing 7 — Object Pascal source of connectivity @tking function of TM class

7.4. Configuration Exhaustion

A basic proof of non-halting for a specific sub-gpoof Turing Machines is for
machines that is stuck to a limited amount of tapeing all its simulation or for
machines having the amount of tape space expla@ding too slowly in respect to
shift count. This kind of non-halting can be provey showing that there are only
finitely many different configurations that can lpap while we run a Turing Machine
on a limited tape area and after that many stepeaat one of them must have been

repeated; hence we conclude for that particuldamte of TM not to halt.
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For ann-statem-symbol Turing Machine the number of possible agufations
within a tape range ok-blocks can be expressed a¥ x n x k which grows

exponentially in-terms of tape length. Let’s defthat expression as a function

max-config(n,m,k) = fnx n x k

Consequently, after evermax-configsteps of simulation for a specific (n,m)-TM the
length of explored tape space should expand at lgasne cell if it didn't already;
failure to perform this behavior results with detec of that machine as a non-halting

machine due to previously mentioned configuratieimagistion issue.

The inverse ofmax-configfunction is the measure of minimum tape length
required to be explored till a point in order tooel an infinite loop due to identical
configuration. We can call the inverse miax-configfunction asmin-tape which
therefore grows logarithmically in terms of numloérsimulation steps. We will use
this min-tapefunction on the later section “Modeling the Bouhds the halting lower
bound of tape space explored vs. shift count graph

7.5. Slow Loop Fast Loop

An intriguing non-halting detection technique isdebed by Heiner Marxen on
his article [9] with the proof “left as an exerciseThe technique consists of running
two independent simulations of the same machinefigumation concurrently,
specifically a slow and a fast one. For every sivoulation steps of the fast simulation
a single simulation step for the slow one is exeduand configurations of two
simulations are compared. If the configurationsboth simulation instances are
identical this means the machine is in an endlesp.l To quote him about his
admiration to this ingenious technique: “The faatimg fact is, that we will detect all

loops by this procedure. ... With this fast/slow aygmh we need a very limited amount
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of additional memory, slow down the simulation eetn by a factor of 2, and detect
the loop before the slow machine works on the s&éconnd of the cycle. Yes, there

are other methods to do it, but | happen to verghniike this technique.”

When analyzed this technique of simulation allowsaiaccess “a point in past”
of the simulation history of a Turing machine, wiglver increasing distance, thus
allowing a comparison over a sliding time windowthwihe cost of very little time and
space complexity increase. In this context HeiMarxen [9] defines the term
configuration as follows: “A configuration of a Tkbntains the complete information
necessary for its further operation: tape contédmsd position and state. While the
definition of the TM is needed to make use of afigumation, it is normally not

considered to be part of a configuration.”

Obviously as the tape contents are compared i tdirety and a loop is
detected only if two configurations are identicatluding the tapes’ contents, this
methods only detects endless loops stuck withirmitdd tape area. Therefore this
technique is only an improvement over the mentiac@mdiguration exhaustion method

which is also stated by Heiner Marxen.



8. Proposed non-halting predictor

Here we propose a new non-halting predictor forBhsy Beaver problem. Our
predictor uses the ratio of tape space exploredytes taken during a point in
simulation history as an indicator of informatioengity of tape for that point of history;
allowing to predict the unconstructability of a oting process for that many cycles.
We propose a special kind of indicator plot for TMased on previous definition
(which we call “shift vs. tape area explored plaf)d show that all halting Busy Beaver
Turing Machines must keep explicit track of its feral position in its simulation
history; then we construct a predictor based onhrtteasure to show non-halting, based

on inability to track temporal position.

8.1. Ratio of shifts to explored tape space

Visual inspection of the figures 12 and 13 confirtims existence of a non-linear
upper and lower bound on length of tape space esghlm function of shifts taken for
halting machines. For plotting the halting mackirteaces TMs which haven'’t halted
till a shift limit are discarded, and by re-simudat each simulation step of the halting
TMs is plotted as a point on a chart, where hottaloaxis is the length of tape space
explored and the vertical axis is the number oftsiperformed. Each TM has been
assigned a uniqgue color therefore the group oftedopoints for a TM creates a line
showing the trace of mentioned ratio during therseuwf its simulation. We used our
reference C# implementation to plot multiple sintiola runs with both randomly
sampled and TNF enumerated halting TMs under @iffeparameters which all result

with the same characteristic plot.
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Lower-bound due to high information density, resgjtin
configuration exhaustion based reuse induced loop
Inaccessible Areatape explored > shift

Upper-bound due to low information density

fig. 8.2 — First 1200 steps of the same plot as fig.1

The same plot for non-halting TMs, displayed omuffegg14 which is obtained by
explicitly discarding the halting machines, resulMgh mostly linear traces having a
very different characteristic than the plot of gt TMs. This distinct behavior of
halting Turing Machines allow us to build a nontimg predictor, based on detecting
machines that cross one of two bounds at any jpoithieir simulation. Luckily as most
of the non-halting machines exhibit a linear traneghese plots, most of them cross one
of the two bounds (mostly the upper bound) prediyyeon their simulation history.
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fig. 8.3 — First 600 shifts of “shift vs tape are@xplored” plot for 10° randomly sampled 5,2 TMs
not-halting within those shifts; each machine’s trae is marked with a unique color.

8.2. Modeling the bounds

As previously observed, halting Turing Machinesibiha polynomial relation
between number of shifts it took and tape lengtlexplored at each point in its
simulation history. On the other hand a major prtpn of non-halting machines has a
linear relation between the number of steps (ghiftsape length explored.

Lets definemax-tape(n,m,sas the function (and as the counter bordemuoi-
tape defined previously) giving an upper bound of alidole tape space explored in
terms of shift count for elements of set of haltiigs using the same conventions as
before where n denotes the number of states anenotes the number of tape alphabet

symbols.
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max-tape( n,m,t) = (an+bm+c}’t = k.t'2

This function along withmin-tapefunction defined on section 7.d respectively
provide us mathematical expressions of our propdeedr and upper bound for the

area on the “shift vs. tape length explored” plbiah a halting TM can not get out of.

8.3. Calculating the coefficients

In order to derive the coefficientsb andc required to calculate constakf
max-tapefunction, values ok should be calculated for many pairs of (n:statento
m:tape alphabet size) which in turn can be usedddel a linear relation that giv&sn

terms ofn andm.

The problem with this approach is that calculatimg correct value df even for
a single pair on and m requires complete enumeration of TMs for t{@m) with
emulation of each to a reasonably large stepsutrsimulations calculatinig for (5,2)
case took several hours of computation which redulh ks, = 2.78 which is the
coefficient of upperbound curve seen on figure ¥2e currently dismissed the

calculation ofk for larger pairs due to limited computational reses at our disposal.



9. Conclusion

Some of the many projects that may extend our wserkhe calculation of
enough coefficients to derive a complete mathemmkégpression for the upper-bound
that can be used on any state count, symbol caintAlso our predictor can be used
as the basis of an attack to acquire new upperdsotor (6,2), (7,2), (4,3), (5,3), (2,5),
and (2,6) cases of busy beaver problem. Anothesilplesextension to our predictor
would be the linearity analysis of TM traces whaiesn’t leave the area limited by our
bounds; because once a trace is proven to be lineareasing (in overall), it can be
proven that this trace would eventually cross opper bound at a computable

intersection point without expensive emulationttitht point.

This work implies a complex relationship betwees tbhmputational complexity

of a system and its spatial or temporal informat@mnsity; which is exploited as a
predictor on our case. This relationship can béhén investigated in perspective of
computation models, algorithmic complexity and mnfiation theory. Also the

proposed efficiency measure for predictors allowsoucreate an efficiency hierarchy of
halting prediction methods; further investigatidnuat makes a halting predictor more
efficient would allow us to develop new measuremichniques for computational
complexity in terms of algorithmic information thrgpbut most importantly to obtain a
deeper understanding of the behavior of inherebliick box instances of different

computational models based on short fragmentswidiation histories.
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