
 2

ROBUST OPTIMIZATION THROUGH RESPONSE SURFACE

METHODOLOGY
(RESPONSE SURFACE KULLANAN SAĞLAMCI ENİYİLEME)

by

Seda EYİGÜN, B.S.

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

 Date of Submission : May 4, 2009

 Date of Defense Examination: June 3, 2009

 Supervisors : Asst. Prof. Dr. M. Ebru ANGÜN

 Assoc. Prof. Dr. Esra ALBAYRAK

 Committee Members: Assoc. Prof. Dr. Temel ÖNCAN

 Assoc. Prof. Dr. Mehmet Mutlu YENİSEY

 Asst. Prof. Dr. Cafer Erhan BOZDAĞ

 ii

ACKNOWLEDGEMENTS

I would like to thank Yrd. Doç. Dr. M. Ebru Angün and Doç. Dr. Esra Albayrak, for

their guidance and support throughout the preparation of this study despite all difficult

conditions around us.

I would also like to thank Rengin Burhanoğlu for her friendship of the past ten years,

her permanent desire to be my colleague in every project at Galatasaray University and

just for being herself any time.

I would also like to extend special thanks to my manager at work; Ayşe Yenidoğan who

provided me with the time I needed to finalize this thesis, and who showed an endless

patience for my mind divided in three for the past six months.

Finally, I would like to thank my family for their love and trust in me and my husband

Yılmaz Cem Şenol.

SEDA EYİGÜN

JUNE 2009

 iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

TABLE OF CONTENTS iii

LIST OF SYMBOLS v

LIST OF FIGURES vi

LISTE OF TABLES vii

ABSTRACT viii

RESUME x

ÖZET xii

1. INTRODUCTION 1

 1.1. Two Stage Stochastic Programming with Recourse 2

 1.2. Chance Constraint or Probabilistic Programming 3

 1.3. Risk Averse Optimization 5

 1.4. Robust Optimization 8

2. TAGUCHIAN APPROACH TO RESPONSE SURFACE METHODOLOGY 10

2.1. Introduction 10

2.2. Literature Review 11

2.3. Taguchi’s Robust Design 17

2.4. Taguchian Response Surface Methodology 21

2.5. (s, S) Inventory Example 26

2.5.1. Problem Definition 27

2.5.2. Application 27

3. CALL CENTER APPLICATION 30

3.1. Problem Definition 30

 3.2. Application #1 33

 3.3. Results #1 34

 3.4. Application #2 35

 iv

 3.5. Results #2 36

4. CONLUSION 38

REFERENCES 40

APPENDIX A 49

APPENDIX B 52

APPENDIX C 55

APPENDIX D 59

APPENDIX E 63

APPENDIX F 66

APPENDIX G 71

APPENDIX H 76

APPENDIX I 80

BIOGRAPHICAL SKETCH 81

 v

LIST OF SYMBOLS

DRS: Dual Response Surface

RSM: Response Surface Methodology

RPD: Robust Parameter Design

CCP: Chance Constrained Programming

CCD: Central Composite Design

OAs: Orthogonal Arrays

SN: Signal-to-noise

OLS: Ordinary Least Squares

 vi

LIST OF FIGURES

Figure 2.1: Taguchi Factors 18

Figure 2.2: Main Steps of Taguchi Robust Design 20

Figure 3.1: Generic Call Center System 31

Figure 3.2: Top-level Model View of the Call Center Model 32

 vii

LIST OF TABLES

Table 2.1.: Optimal regression predictors *ŷ and their risks *ˆvar()y obtained through

solving (13) with s S≤ 29

Table 2.2.: Numerical results for the 0.50 quantile (‘mean’) of 100 estimated solutions

for the inventory problem 29

 viii

ABSTRACT

During the last couple of decades, optimization methods have become one of the most

important research fields and received increasing attention from engineers, product

designers and researchers especially in the field of production and related industries.

The classical optimization approaches assume that the input data of the optimization

model is known with certainty. However, in many areas of application of real world

problems like inventory management, portfolio selection, supply chain optimization and

production planning, it’s needed to integrate the uncertainty of the input data into the

optimization model which refers to optimization under uncertainty.

The increasing interest in simulation optimization for problems that arise in practical

applications becomes relevant where explicit mathematical formulations are too

restrictive. Therefore, for many practical cases one cannot obtain an analytical solution

through those kind of methods. Indeed, simulation optimization has led to the

numerical solution of large-scale, real-world decision-making problems.

A simulation optimization method, Response Surface Methodology (RSM); aims to

achieve optimum operation conditions while minimizing the variability in order to

produce high quality and reliable products and services at the lowest possible cost. As

an extension of Robust Parameter Design (RPD), RSM is a combination methodology

of mathematical and statistical techniques in problem modeling and analysis.

The risk-neutrality problem of the classic simulation optimization problems can be

handled by the Dual Response Surface (DRS) approach within RSM and combining it

with the Taguchi’s RPD enables researchers to cope with the unknown environments.

 ix

In this work, a risk-averse approach to Response Surface Methodology, which explicitly

deals with random environments, is presented. The main contribution of this thesis is to

adapt Taguchian RSM to discrete-event simulation studies.

The thesis introduced the steps of this Taguchian RSM approach and then an application

of these steps to an inventory optimization is provided. The computer program is coded

in Matlab 7.6. , and the optimization is performed through the built-in function fmincon

in Matlab.

Furthermore, Taguchian RSM method is applied to a more complex example which is a

call center problem modeled in Arena. The results taken from the execution of the

model is used in our optimization algorithm coded in Matlab.

Although it’s usefull to increase the number of decision variables in the example,

because of the version limits of Arena, an example with an additional environmental

factor is provided in order to expand the original example. Thus we left this issue as a

future research.

For the future work, this study can be extended to an iterative approach, or the proposed

approach can be developed to handle multiple random responses.

 x

RESUME

Pendant les dernières décades, les méthodes d'optimisation sont devenues une des

régions de recherche les plus importantes et ont reçus l'attention augmentante des

ingénieurs, des créateurs de produit et des chercheurs surtout dans le domaine de la

production.

Les approches d'optimisation classiques supposent que les variables d'entrée du modèle

d'optimisation sont connues avec la certitude. Cependant, dans le monde réel, il est

nécessaire d'intégrer l'incertitude des variables d'entrée dans le modèle d'optimisation

qui se réfère à l'optimisation sous l'incertitude.

L'intérêt croissant sur l'optimisation de simulation pour les problèmes qui se présentent

dans les applications réel devient pertinentes où les formulations mathématiques sont

trop restrictives. Donc, pour ces type de problèmes, l'un ne peut pas obtenir une

solution analytique par ces type de méthodes. En effet, l'optimisation de simulation a

mené à la solution numérique d'aux problèmes de prise de décision à grande échelle.

Une méthode d'optimisation de simulation; La Méthodologie de Surface de Réponse

(RSM) a l'intention d'accomplir des conditions d'opération optimales, en minimisant la

variabilité, pour produire des produits et des services de haute qualité au prix le plus bas

possible. Comme une extension de Plan Paramètre Robuste (RPD), RSM est une

méthodologie de combinaison de techniques mathématiques et statistiques, utilisée pour

le modèle at l’analyse du problème.

Le problème de risque-neutralité des problèmes classiques d'optimisation de simulation

peut être traité par l'approche Dual Response Surface (DRS) dans RSM et la

 xi

combinaison de cette approache avec le Plan Paramètre Robuste (RPD) du Taguchi

permet à chercheurs de faire face aux environnements inconnus.

Dans ce travail, une approche risque-opposé à la Méthodologie de Surface de Réponse,

qui traite explicitement des environnements faits au hasard, est présentée. La

contribution principale de cette thèse est d'adapter Taguchian RSM aux études de

simulation de discret-événement.

L’étude introduit les étapes de cette approach et une application de ces étapes à un

problème d’optimisation d'inventaire est fourni. Le programme informatique est codé

dans Matlab 7.6. , et l'optimisation est exécutée par le fmincon de fonction intégré dans

Matlab.

En outre, la méthode de Taguchian RSM est appliquée à une exemple plus complexe

qui est un problème de centre téléphonique et est modelé dans Arena. Les résultats pris

de l'exécution du modèle sont utilisés dans notre algorithme d'optimisation, codé dans

Matlab.

Bien que c'est utile d’augmenter le nombre de variables de décision dans l'exemple, à

cause des limites de version d'Arena, un exemple avec un facteur ambiant

supplémentaire est fourni pour grandir l'exemple original. Ainsi nous sommes partis ce

problème comme une recherche future.

Pour le travail futur, cette étude peut être étendue à une approche itérative, ou

l'approche proposée peut être développée pour manipuler des réponses multiples faites

au hasard.

 xii

ÖZET

Optimizasyon metodları özellikle üretim ve ilgili endüstrilerde, birçok mühendis,

tasarımcı ve araştırmacı tarafından kullanılan önemli çalışma alanlarından birisidir.

Klasik yaklaşımların çoğunda girdiler bilinir durumda olsa da, gerçek hayattaki birçok

problemde (envanter yönetimi, portfolio seçim, tedarik zinciri ve üretim planlama

problemleri gibi) girdi verilerinin bilinir olmaması, araştırmacıları farklı optimizasyon

tekniklerinin geliştirilmesine yönlendirmiştir.

Gerçek hayattaki birçok problemin çözüm yaklaşımında kısıt ve geçerlilikleri kesin olan

matematiksel formüllerin kullanımı sınırlayıcı olduğundan, bu tip problemlerde

simülasyon-optimizasyon metodlarının kullanılması daha geçerli hale gelmektedir. Bu

tip problemlerde matematiksel formüller kullanarak analitik bir çözüm elde etmek

oldukça zordur. Bu yüzden, simülasyon-optimizasyon yaklaşımı gerçek hayatta

karşılaşılan, büyük ölçekli karar verme problemlerinde sayısal sonuçlar için yol

gösterici olabilmektedir.

Düşük maliyetli, yüksek kaliteli ve güvenilir ürünler üretmek ya da bu ölçülerde hizmet

sağlamak amacıyla uygulanan Sağlamcı Parametre Tasarımı (Robust Parameter Design

- RPD) tekniği , değişkenliği en aza indirerek optimum operasyon koşullarını elde

etmeyi amaçlamaktadır.

Tepki Yüzeyi Metodolojisi (Response Surface Methodology - RSM), Sağlamcı

Parametre Tasarımı tekniğinin bir uzantısı ve bir simülasyon-optimizasyon metodu

olarak, problem analizi ve modellemede matematiksel ve istatistiksel tekniklerin

biraraya gelmesiyle oluşturulmuş bir yöntemdir.

 xiii

Simülasyon optimizasyon problemlerinde kullanılan klasik yaklaşımların risk-nötr

olması problemi ve bu problemlerin raslantısal çevrelerde çözümlenebilmeleri çift tepki

yüzeyi yaklaşımı ve bu yaklaşımın Taguchi’nin Sağlamcı Parametre tasarımı ile

birleştirilmesi ile çözümlenebilmektedir.

Bu çalışmada, Tepki Yüzeyi Metodolojisi yöntemi; raslantısal çevrelerde riskten

kaçınma yöntemi ile incelenerek, yeni bir yaklaşım önerilmiştir. Çalışmanın temel

katkısı, önerilen yöntemin ayrık olaylı simülasyon örneklerine uygulanmasıdır.

Çalışmanın genelinde, bu yaklaşımın adımları belirtilmiş ve bu adımlar bir envanter

optimizasyon problemine uygulanarak sonuçları analiz edilmiştir. İlgili bilgisayar

programı Matlab 7.6.’da yazılmış, optimizasyon da Matlab’ın fmincon fonksiyonu ile

uygulanmıştır.

Daha sonra, sözkonusu metod daha kompleks bir örnek olan ve Arena programı

üzerinde modellenen çağrı merkezi problemine iki farklı durumda uygulanmıştır.

Modelin çalışması sonucu elde edilen sonuçlar Matlab’da yazılan optimizasyon

algoritmasında kullanılmıştır.

Örnekteki karar değişkelerinin sayısını arttırmak uygulama için faydalı olacaktır.

Ancak simülasyon çalışması için kullanılan Arena programının öğrenci versiyonu, bu

artırımı kısıtladığından, örneği geliştirmek için çevresel faktör eklenmiştir. Bu durum,

ileriki bir uygulama olarak bırakılmıştır.

Çalışma sonucunda, önerilen bir kerelik yaklaşımın yinelemeli bir yaklaşıma

dönüştürülebileceği, ya da çoklu raslantısal tepki problemleri için geliştirilebileceği

belirtilmiştir.

 1

1. INTRODUCTION

In this chapter, we will present an overview on different approaches to optimization

under uncertainty, including two-stage stochastic programming with recourse,

probabilistic (or chance constraint) programming, risk-averse optimization and robust

optimization; reviews for stochastic programming with recourse, probabilistic

programming, and robust optimization are given in recent papers of Sahinidis [1] and

Beyer and Sendhoff [2]. Risk-averse optimization is explained in detail in Shapiro and

Ruszczyński’s comprehensive survey about stochastic programming [3].

For real-world optimization problems, the decision environment is usually characterized

by the following facts:

• The parameters (e.g., cost vector) are estimated through historical data. Hence, they

are uncertain.

• The optimal solution, even if computed very accurately, may be difficult to be

implemented accurately.

• The problem must remain feasible for all meaningful realizations of the parameters.

• Problems are large-scale. There are in general many variables and/or constraints.

• Bad optimal solutions (those that become severely infeasible when the parameters of

the problem are slightly changed) are quite common.

These facts imply that in many cases we deal with optimization problems under

uncertainty; see also many application papers on, for example, inventory management,

portfolio selection, facility planning, supply chain optimization, and production

planning and scheduling. The classical approaches to linear and nonlinear optimization

problems, on the other hand, assume that the parameters of the optimization problem are

known with certainty. Therefore, it is important to present the methodologies that can

 2

cope with optimization problems under uncertainty, as well as their advantages and

shortcomings.

1.1. TWO STAGE STOCHASTIC PROGRAMMING WITH RECOURSE:

In the standard two-stage stochastic programming, the decision variables are partitioned

into two sets. The first-stage variables are those that have to be decided before the

actual realizations of the random parameters occur. Subsequently, once the realizations

of the random parameters are obtained, the second-stage variables are determined as

corrective measures or recourse against any infeasibilities arising due to these particular

realizations of the random parameters at certain costs. Due to uncertainty, the second-

stage cost is a random variable. Therefore, the objective is to select the first-stage

variables such that the sum of the first-stage costs and the expected value of the random

second-stage costs is minimized.

A standard formulation of the two-stage stochastic linear programming problem is as

follows; for further information, standard textbooks on stochastic programming such as

Kall and Wallace’s, Birge and Louveaux’s, and Shapiro and Ruszczyński’s can be

investigated [4, 5, 3].

[]minimize (,)
subject to

Tc x Q x w
x X

+Ε

∈

with (1.1)

(,) minimize ()
subject to () () ()

TQ x w f w y
D w y h w T w x
y Y

=
≥ +

∈

c is the cost vector for the vector x of the first-stage variables, X and Y are

polyhedral sets, w is the vector of random variables from a probability space, ()f w is

the random cost vector for the vector y of the second-stage variables whose values

depend on x , and ()D w , ()T w , and ()h w are, respectively, random matrices and

 3

random right-hand-side of the second-stage problem. The concept of recourse has been

applied also to integer and non-linear programming, and to problems with multi-stages.

The main advantage of the two-stage stochastic linear programming problem is that

under the assumption that w has a joint discrete distribution, the problem can be

equivalently formulated as a large-scale linear programming problem which can be

solved using standard linear programming technology. On the other hand, the main

shortcoming of this approach is that infeasibilities at the second-stage are allowed at a

certain penalty. The approach thus focusses on the minimization of the expected

recourse costs without taking into account the system's reliability.

There have been many successful applications of stochastic programming in very

diverse areas such as fleet assignment by Ferguson and Dantzig [6]; production of

heating oil with constraints on demands and capacities by Charnes and Cooper [7];

water management systems by Dupačová, Gairovonski, Kos and Szantai [8]; energy

planning by Manne; Louveaux; Pereira and Pinto; Manne and Richels; Morton; Takriti

Birge and Long; Carøe, Ruszczyński, and Schultz [9, 10, 11, 12, 13, 14, 15]; forestry

planning by Gassmann [16]; hospital staffing by Kao and Queyranne [17]; financial

decision-making by Mulvey and Vladimirou; Ziemba and Vickson; Kallberg, White and

Ziemba; Zenios; Dert; Carino and Ziemba; Kouwenberg and Zenios [18, 19, 20, 21, 22,

23, 24, 25, 26]; and capacity expansion problems by Sherali, Soyster, Murphy and Sen;

Davis, Dempster, Sethi and Vermes; Bienstock and Shapiro; Eppen, Martin and

Schrage; Berman, Ganz and Wagner; Malcom and Zenios; Ahmet, King and Parija [27,

28, 29, 30, 31, 32, 33].

1.2. CHANCE CONSTRAINT OR PROBABILISTIC PROGRAMMING:

In the recourse-based approach, decision-makers assign costs (penalties) to recourse

activities that are taken to ensure feasibility of the second-stage problem. The focus is

on the minimization of the expected recourse costs. In the probabilistic or chance

constraint programming, however, the focus is on the reliability of the system; that is,

the system's reliability to meet feasibility constraints in a random environment. This

 4

reliability is expressed through one or many probability functions, which require that

constraints are satisfied at a prespecified level.

Consider the following classical linear programming problem:

minimize
subject to
 0

Tc x
Ax b
x

≥
≥

 (1.2)

where c is the cost vector, x is the vector of decision variables, b is the right-hand-

side vector, and A is the constraint matrix. Suppose that some entries in A are random

and the constraints Ax b≥ have to be satisfied with some probability (0,1)p∈ . Now,

the corresponding probabilistic programming problem can be given as [4, 5, 3]:

minimize
subject to ()
 x 0

Tc x
P Ax b p≥ ≥
≥

 (1.3)

Suppose that in (1.3), there is only one constraint (hence, we have ()TP a x b p≥ ≥) and

randomness occurs in b . Suppose also that F is the cumulative density function of b .

Then the problem with a single probabilistic constraint becomes a simple linear

programming problem after replacing ()P a .

The main advantage of probabilistic programming is that it replaces the subjective

penalties in the recourse-based approaches by probabilities. However, this objectivity

has a price. In general, the feasible area of (1.3) is not convex, which makes (1.3) very

difficult to be solved. The feasible set in (1.3) is convex only under restrictive

assumptions [4, 5, 3].

 5

Charnes and Cooper [34, 35] first introduced chance-constrained formulation of

stochastic programs. The classic book by Vajda provides an excellent introduction to

the formulation as well as various interpretations [36].

Applications of chance constraint programming (CCP) to capital rationing problems can

be found in [37, 38]. An extensive review of stochastic investment planning is

presented by Kelle, and Sarper [39, 40].

1.3. RISK AVERSE OPTIMIZATION:

In the following, we will explain risk averse optimization using the following simplest

form of the newsvendor problem taken from Sylver, Pyke, and Peterson [41].

A newsvendor orders a fixed quantity x of newspapers to be sold each day. The daily

demand D is assumed to be random, and the ordering decision should be made before a

realization d of demand occurs. The per unit acquisition cost is c . Unsold newspapers

are salvaged each day at the unit price w . A back order penalty cost of b per unit is

incurred if d exceeds x . The question is to find an ordering quantity x that optimizes

a selected performance measure, for example, the total cost. For a particular realization

d , this total cost function can be formulated as

() () (),G x d cx b d x w x d
+ +

= + − − − (1.4)

where ()d x
+

− and ()x d
+

− correspond to the maximum of d x− and 0, and x d− and

0, respectively.

If it makes sense to assume that the distribution function of D can be estimated from

historical data, then one of the possible ways to formulate the newsvendor problem is to

minimize the expected total cost, where the expectation is taken with respect to the

distribution function of D :

 6

()
x 0

minimize ,G x D
≥

Ε ⎡ ⎤⎣ ⎦ (1.5)

This classic formulation causes two well-known problems: First, it minimizes the total

cost on average, and hence it does not take the decision-maker's attitude toward risk into

account. Second, it is almost impossible to quantify the penalty cost b in (),G x d .

These two problems can be overcome by the following chance constraint formulation of

the newsvendor problem:

()
{ }

0
minimize ,

subject to
x

H x D

P D x τ α
≥

Ε ⎡ ⎤⎣ ⎦

− > ≤
 (1.6)

where for a particular realization d , (),H x d is the difference between the total

acquisition cost and the revenue from the salvaged newspapers, if there are any, (that is,

() (),H x d cx w x d
+

= − − , and { }P D x τ α− > ≤ is the so-called probabilistic (or

chance) constraint, which means that the probability of the demand exceeding the

ordering quantity x by a predetermined threshold τ should not be greater than a

predetermined significance level ()0,1α ∈ . Hence, this approach minimizes a form of

the cost function on average while making sure that the risk of the demand being larger

than the ordering quantity is small. The problem type in (1.6) can be solved only after

finding a deterministic equivalent of the probabilistic constraint. As we already

mentioned in the previous subsection, the main disadvantages of having such a

constraint is that its deterministic equivalent gives rise to a convex feasible set for the

decision variable x (or vector in multi-dimensional case) only under restrictive

assumptions on the distribution function of D . Otherwise, one has to deal with a

nonconvex optimization problem.

Nemirovski and Shapiro construct convex approximations to probabilistic constraints.

These approximations are conservative in the sense that the feasible sets defined by

 7

these approximations are contained in the feasible sets defined by the probabilistic

constraints [42]. Denoting the convex approximation of the probabilistic constraint by

()1 ,x Dαρ − , the problem in (1.6) becomes

()
()1

minimize ,

subject to ,

H x D

x Dαρ α−

Ε ⎡ ⎤⎣ ⎦
≤

 (1.7)

The problem type in (1.7) is called risk averse optimization in the stochastic

programming literature [3]. As in (1.6), the problem in (1.7) minimizes the cost on

average while reducing the risk of having more than τ backordered items to an

acceptable level, namely 1 α− . Some more properties of the problem in (1.7) are: (i) It

is a convex optimization problem, and hence it is easily solvable by any optimization

software; (ii) since the feasible set of (1.7) is contained in the feasible set of (1.6) and

both problems have the same objective function, the minimum objective value of (1.7)

provides an upper bound for the minimum objective value of (1.6).

This 1 αρ − has to satisfy some mathematical conditions which can be found in Artzner,

Delbaen, Eber and Heath [43]. Furthermore, classic risk measures such as variance and

standard deviation introduced in a portfolio selection problem by Markowitz do not

satisfy some of these conditions [44, 45].

Risk averse optimization has applications in many fields; for example, Ahmed,

Cakmak, and Shapiro apply this approach for inventory models [46], Rockafellar and

Uryasev for portfolio optimization [47], and Garcia-Gonzalez, Parrilla, and Mateo for

profit-based optimal scheduling of a hydro-chain [48].

Finally, in minimization problems, the risk aversion has been classically dealt with

through disutility functions. The existence of such functions is derived axiomatically in

Von Neumann and Morgenstern [49], but these disutility functions are very difficult to

elicit in practice. With the risk averse approach, this problem disappears.

 8

The main advantage of risk averse optimization is that it can be easily solved by

standard convex optimization softwares. However, there are many different types for

1 αρ − such as semi-deviations and conditional-value-at-risk, and the choice for one of

them introduces subjectivity to the problem.

1.4. ROBUST OPTIMIZATION:

Robust optimization is a modeling methodology, combined with computational tools, to

process optimization problems in which the data are uncertain and is only known to

belong to some uncertainty set.

There are two different approaches to robust optimization problems. The first approach

is originated from Soyster [50], and further popularized by Ben-Tal and Nemirovski

[51]. In this approach, the focus is on feasibility uncertainties; that is, uncertainties

concerning the fulfillment of constraints the design variables must obey. This approach

assumes certain types for the uncertainty sets and obtains a computationally tractable

robust counterpart of the original problem. This approach also assumes that

mathematical expressions for the objective and/or constraint functions are available,

which is not the case for our problem. Therefore, in the rest of this work, we will not

consider Ben-Tal and Nemirovski 's approach to robust optimization.

The second approach is originated from Taguchi. The main difference of Taguchi's

method compared to ordinary optimization lies in the accounting for performance

variations due to noise factors beyond the control of the designer. That is, there are two

kinds of parameters entering the objective and/or constraint functions: control

parameters which are to be tuned to optimality, and noise factors (e.g., environmental

conditions) which are difficult to be controled by the designer [52].

Taguchi does not really use an automated optimization procedure. Instead, he uses

design of experiments in order to evaluate different design (control) parameters. To this

end, the design parameters are systematically changed taking values on a predefined

(orthogonal) lattice, the so-called inner array. At each design point, the noise variables

 9

are systematically changed according to an outer array. The outputs of the performance

measures are obtained through real-life experimentation. Consequently, a statistical

data analysis can be performed to identify the design variable producing the best

performance.

From viewpoint of optimization efficiency, Taguchi's optimization approach suffers

from the curse of dimensions. Suppose that we have a k-dimensional design vector and

g-dimensional noise vector. Then, considering only the design vector, we already need

2k experiments (either real-life or simulation runs). Adding also the noise vector, we

will need a minimum of 2kg experiments. As pointed out by Trosset: “the Taguchi

approach violates a fundamental tenet of numerical optimization-that one should avoid

doing too much work until one nears a solution" [53]. Besides these efficiency

considerations, there are other aspects of Taguchi's method which are subject to

controversial debates summarized in a panel discussion [54].

In our approach, we will use the idea of partitioning parameters into two sets, namely

design and noise parameters. However, like Myers and Montgomery [55], and Dellino,

Kleijnen, and Meloni [56], we will use Response Surface Methodology (RSM), which is

a black box simulation optimization technique. RSM is a computationally efficient

technique, which can cope with the curse of dimensions problem. However, our RSM

is different than the one in classic simulation optimization literature, where one usually

assumes known environments; for example, in an inventory optimization problem,

demands and lead times follow some distributions with some estimated parameters.

This estimation is usually achieved through the analysis of historical data. Then,

considering a specific environment (that is, distributions with specific parameters), one

finds the optimal operating conditions for this inventory system, without exploring

systematically other possible environments. Obviously, if the true environment happens

to be different from the one considered in simulation optimization procedure, then the

optimal operating conditions may become sub-optimal. In the chapters to follow, we

explain our Taguchian RSM, which takes into account several possible environments in

a systematic way.

 10

2. TAGUCHIAN APPROACH TO RESPONSE SURFACE METHODOLOGY

2.1. INTRODUCTION

In classic simulation optimization, we usually minimize the expectation of a random

response, say w , for which an explicit mathematical formulation is not available, and

therefore the expectation is estimated through simulation [57].

This type of problems can be formulated as follows:

minimize w dΕ ⎡ ⎤⎣ ⎦ (2.1)

where d is the vector of control variables. An example of (2.1) is an inventory

problem, where w is the sum of ordering, inventory-carrying, and penalty costs for

back-ordered demands.

There are two disadvantages related to the formulation in (2.1). First, (2.1) is risk-

neutral; that is, w is minimized on average without taking into account, for example, its

estimated variance. To introduce the second disadvantage, we need to consider the

simulation study that estimates w -for example, an inventory simulation where we

assume demands follow an exponential distribution with mean 1 λ . Now the second

disadvantage is that the simulation study is done considering a single point estimate for

this λ (known environment).

In Response Surface Methodology (RSM), the risk-neutrality problem of (2.1) was

detected by Myers and Carter [58] who introduced the dual response surface (DRS)

approach. This approach was further popularized by Vining and Myers [59], and since

 11

then it has received a great deal of attention from researchers including Fan and Del

Castillo [60], Yang, Kuo, and Chou [61], Lee and Park [62], Köksoy and Yalçinöz [63],

and Dellino et al.[56].

In all papers mentioned in the previous paragraph except Dellino et al. [56], the DRS

approach was applied to real-life problems; Dellino et al. [56] considered deterministic

simulation. Therefore the main contribution of this thesis is to adapt Taguchian RSM to

discrete-event simulation studies. Furthermore, we systematically explore the

environmental variables by letting them to take their values from some intervals.

2.2. LITERATURE REVIEW

During the last couple of decades, robust design methodology has received increasing

attention from engineers and researchers, due to the need of designing, formulating,

developing, and analyzing new products or improving the existing ones.

In the early 1980's, Taguchi proposed the robust design approach. Since then, the

Taguchian robust design methodology and its extensions have been widely used in

many industrial applications to improve product quality and production methods.

Applications of robust design to various engineering problems in the automotive

industry, plastic technology, process industry, and information technology can be found

in Bendell, Disney and Pridmore, and Dehnad [64, 65]. For robust process design, we

refer to Taguchi and Wu; Taguchi; Box; Phadke; Welch, Yu, kang and Sacks;

Shoemaker, Tsui and Wu; Pledger; Borkowski and Lucas; Wu and Hannada; and Myers

and Montgomery [66, 67, 68, 69, 70, 71, 72, 73, 74, 55]. Finally, for the applications of

Taguchi's approach to quality management and artificial neural networks, we refer to

Lin, Sullivan and Taguchi; and Lin and Tseng, respectively [75, 76].

Taguchi defines robust design as a product whose performance is minimally sensitive to

factors causing variability (at the lowest possible cost) [77] and to achieve desirable

product quality by design, he suggests a three stage process [78]:

 12

• System design, which is related to the conceptualization and synthesis of a product

or process to be used;

• Parameter design, which is related to finding the appropriate design factor levels to

make the system less sensitive to variations in uncontrollable noise factors (that is,

to make the system robust);

• Tolerance design, which occurs when the tolerances for the products or process are

established to minimize the sum of the manufacturing and lifetime costs of the

product or process.

Two important tools used in the parameter design of Taguchi are orthogonal arrays and

signal-to-noise ratios. Orthogonal arrays are used to test the different levels of each of

the control factors, and signal-to-noise ratios as a quality indicator.

The main difference of Taguchi's method compared to ordinary optimization lies in the

accounting for performance variations due to noise factors beyond the control of the

designer [2]. That is, Taguchi's method selects the levels of the controllable factors to

obtain the optimal operating conditions of control factors by reducing the variability

around a nominal value of a quality characteristic of interest, and at the same time it

keeps the process mean at the customer-identified target value.

Although Taguchi has had tremendous impacts on robust product and process designs,

his approach has received much criticism, particularly because of the use of crossed

orthogonal arrays as experimental designs and signal-to-noise-ratios. Several

shortcomings of Taguchi's approach have been pointed out by Box; Vining and Myers;

Pignatiello and Ramberg; Myers, Khuri and Vining; Myers and Montgomery; Leon,

Shoemaker, and Kackar; Box, Bisgaard, and Fung; Nair et al. and Tsui [79, 80, 81, 82,

83, 84, 54, 85]. As a result, several researches have provided alternative methods to

Taguchi's robust parameter design.

The concept of robustness was introduced by Myers and Carter [58] to RSM

methodology through the DRS approach to model their problem. Their objective was to

find the optimal operating settings that optimize a primary response, subject to the

 13

condition that a secondary response takes on a desirable value. Since then, many

researchers have focused on the dual response approach. These approaches can be

classified as follows. Some researchers including Myers and Carter [58]; Fan and Del

Castillo [60]; Tang and Xu [86]; Ross, Osborne, and George [87]; Köksoy and

Doğanaksoy [88]; Yang, Kuo, and Chou [89]; Peterson and Kuhn [90]; Jeong, Kim, and

Chang [91]; Yeniay, Unal, and Lepsch [92]; Lee and Park [93]; Lee, Park, and Cho

[94], and Köksoy and Yalçınöz [95] considered only control factors when they

approximated their unknown responses through first or second-order regression

polynomials. On the other hand, Miró-Quesada and Del Castillo [96]; Miró-Quesada

and Del Castillo [97]; Myers, Brenneman, and Myers [98]; Rajagopal, Del Castillo, and

Peterson [99], Giovagnoli and Romano [100]; and Dellino et al. [56] considered both

noise and control factors. Below, we summarize the contributions of these papers to the

robust response surface methodology.

The abundant literature on RSM about how to seek optimal operating settings for dual

response systems using various optimization approaches neglects the inherent sampling

variability of the fitted responses. Therefore, Fan and Del Castillo [60] introduced

Monte Carlo sampling to the dual response approach and constructed an optimal region

in the control factor space, which provides more useful information to a process

engineer than a single expected optimal solution.

Tang and Xu proposed a goal programming approach to optimize a dual response

system. Their formulation is general enough to include some of the existing methods as

special case [86].

Ross et al. presented a mathematically rigorous approach for incorporating decision-

maker preferences. By interpreting the Lagrangian as a value function and the Lagrange

multiplier as a preference ratio, they explored candidate solutions that reflect decision-

maker preferences [87].

Taguchi's robust parameter design calls for simultaneous optimization of the mean and

standard deviation responses. The dual response optimization procedures have been

 14

adapted to achieve this goal by taking into account both the mean and standard

deviation responses. The popular formulations of the dual response problem typically

impose a restriction on the value of the secondary response (i.e., keeping the standard

deviation below a specified value) and optimize the primary response (i.e., maximize or

minimize the mean). Restrictions on the secondary response, however, may rule out

better conditions, since an acceptable value for the secondary response is usually

unknown. In fact, process conditions that result in a smaller standard deviation are

often preferable. A more flexible formulation of the problem can be achieved by

considering the secondary response as another primary response. Therefore, Köksoy

and Doğanaksoy introduced Pareto optimal solutions, which give more flexibility to the

decision-makers in exploring alternative solutions [88]. Furthermore, Köksoy and

Yalçınöz again followed Pareto optimal solutions strategy, but this time they solved the

DRS problem through a genetic algorithm [95].

Yang et al. solved a multiresponse simulation problem by using a dual response system

and scatter search method. Their proposed dual response system constructs a response

surface for each response [89]. It then transforms the dual response system into a

standard nonlinear programming formulation. The transformation treats the secondary

response as a constraint. In addition, the sample variance from simulation replications

is considered simultaneously by adding search area constraints to variance. Their

proposed scatter search method uses scatter search algorithms as an embedded

mechanism in a simulation program to guide the solution search process.

Peterson and Kuhn proposed an approach to doing a ridge analysis for optimizing a

response surface in the presence of noise variables [90]. Their approach allows an

investigator to explore factor combinations that lower the mean squared error about a

target value, while at the same time keeping track of how much the mean response

differs from the target value. Their approach also allows an investigator to compute a

simultaneous confidence band about the root mean squared error about a target value.

The dual response surface optimization simultaneously considers the mean and the

standard deviation of a response. The minimization of the mean squared error is a

 15

simple, yet effective, approach in DRS optimization. The bias and variance components

of the mean squared error need to be weighted properly if they are not in the same

importance in the given problem situation. To date, the relative weights of bias and

variance have been equally set or determined only by the data. However, the weights

should be determined in accordance with the tradeoffs on various factors in quality and

costs. Therefore, Jeong et al. (2005) proposed a systematic method to determine the

weights of bias and variance in accordance with a decision-maker's preference structure

regarding the tradeoffs [91].

Yeniay et al. utilized the DRS approach to quantify variability in critical performance

characteristics during conceptual design phase of a launch vehicle [92]. Using design of

experiments methods and disciplinary design analysis codes, dual response surfaces are

constructed for the mean and standard deviation to quantify variability in vehicle weight

and sizing analysis. Next, an optimum solution is sought to minimize variability subject

to a constraint on mean weight.

In robust design, a commonly used assumption behind the data collection procedure is

that all the data are fully observed. However, in many industrial experiments, interval

censored observations are frequently available in addition to the fully observed

observations.

Therefore, Lee and Park calculated the optimal operating conditions for the process

based on a dual response approach using incomplete data [93]. In their novel approach,

they estimate the process mean and variance with incomplete data. Thus, it is possible

to find the optimal operating conditions using all of the information available.

Robust design uses the ordinary least squares method to obtain adequate response

functions for the process mean and variance by assuming that experimental data are

normally distributed and that there is no major contamination in the data set. Under

these assumptions, the sample mean and variance are often used to estimate the process

mean and variance. In practice, the above assumptions are not always satisfied. When

these assumptions are violated, one can alternatively use the sample median and median

 16

absolute deviation to estimate the process mean and variance. However, the median and

median absolute deviations both suffer from a lack of efficiency under the normal

distribution, although they are fairly outlier-resistant. To remedy this problem, Lee et

al. proposed new robust design methods based on a highly efficient and outlier resistant

estimator [94].

Miró-Quesada and Del Castillo proposed an extension to the dual response approach to

robust parameter design for the case of multiple responses [96]. Their methodology

provides unbiased estimates of the process covariance matrix and of the vector of

expected values using parameter estimates from a multivariate regression fit.

Miró-Quesada and Del Castillo studied the prediction properties of models used in the

dual response approach to robust parameter design, and they proposed two procedures

that improve the performance of the approach [97]. Their first procedure suggests

scaling of the noise variables to reduce the expected mean squared error of the variance

model, based on the concept that the range of the noise variables used in the

experimental design should contain most of their distribution. However, it is shown that

such scaling does not alter the variance contribution of the noise factors, which is

fundamental for robust parameter design. Their second procedure combines the

variance due to the noise factors with the variance due to the prediction error of the

fitted model, thus considering all sources of variability present in the problem. An

unbiased estimator of this combined variance is developed.

Robust parameter design has been studied and applied, in most cases, assuming a linear

model under standard assumptions. More recently, robust parameter design has been

considered in a generalized linear model setting. Myers et al. applied a general dual

response approach when using robust parameter design in the case of a generalized

linear model [98]. They motivated the need for exploring both the process mean and

process variance by discussing situations when a compromise between the two is

necessary.

 17

The uncertainty of the model form is typically neglected in process optimization studies.

In addition, not taking into account the existence of noise factors and nonnormal errors

may invalidate the conclusions of such studies. Rajagopal et al. presented a Bayesian

approach to model robust process optimization in the presence of noise factors and

nonnormal error terms [99]. Their paper extended the idea of model form-robustness

using a Bayesian predictive approach to cases where there is uncertainty due to the

distributional assumptions of the errors.

The existing procedures for robust design, devised for physical experiments, may be too

limiting when the system can be simulated by a computer model. Therefore,

Giovagnoli and Romano introduced a modification of the DRS modeling, which

incorporates the option of stochastically simulating some of the noise factors when their

probabilistic behavior is known [100]. Their method generalizes both the crossed and

the combined array approaches and finds a natural application to integrated parameter

and tolerance design.

Optimization of simulated systems is tackled by many methods, but most methods

assume known environments. Therefore, Dellino et al. [56] developed a robust

methodology for uncertain environments. Their methodology uses Taguchi's view of

the uncertain world, but replaces his statistical techniques by Response Surface

Methodology.

2.3. TAGUCHI’S ROBUST DESIGN

Robust means that the process or product performs consistently and is relatively

insensitive to the factors that are difficult to control. Hence, Robust Design approach

aims to provide a method for designing products and processes that are minimally

impacted by external forces, such as environment, client use or manufacturing-based

factors named as uncontrollable factors .

As mentionned in the literature review part, Taguchi suggests a three stage process

(system design, parameter design, tolerance design) in order to minimize the

 18

process/product variation and to design robust and flexible processes/products that are

adaptable to environmental conditions.

According to Taguchi, there are two types of factors that affect a product’s functional

characteristic which can be found in Figure 2.1: control factors and noise factors [56].

Figure 2.1: Taguchi factors

The first type of factors are under the control of the users, and the second type of factors

are difficult or impossible or too expensive to control. Hence, parameter design seeks

to identify settings of the control factors which make the product insensitive to

variations in the noise factors, i.e., make the product more robust, without actually

eliminating the causes of variation.

Design of experiments techniques, specifically Orthogonal Arrays (OAs), are employed

in Taguchi’s approach to systematically vary and test the different levels of each of the

control factors. A complete listing of OAs can be found in text such as Phadke [69].

To implement robust design, Taguchi advocates the use of an “inner array” and “outer

array” approach. The “inner array” consists of the OA that contains the control factor

settings; the “outer array” consists of the OA that contains the noise factors and their

settings which are under investigation. The combination of the “inner array” and “outer

array” constitutes what is called the “product array” or “complete parameter design

layout”. The product array is used to systematically test various combinations of the

control factor settings over all combinations of noise factors after which the mean

Simulation model

(black box)

d1

.

.

dk

Control

factors

Noise factors

e1 ec

Output w

 19

response and standard deviation may be approximated for each run using the following

equations.

• Mean response:
1

1 n

i
i

y y
n =

= ∑ (2.2)

• Standard deviation: ()2

1 1

n
i

i

y y
S

n=

−
=

−∑ (2.3)

The preferred parameter settings are then determined through analysis of the “signal-to-

noise” (SN) ratio where factor levels that maximize the appropriate SN ratio are

optimal. There are three standard types of SN ratios depending on the desired

performance response [78]:

• Smaller the better (for making the system response as small as possible):

2

1

110log
n

S i
i

SN y
n =

⎛ ⎞= − ⎜ ⎟
⎝ ⎠
∑ (2.4)

• Nominal the best (for reducing variability around a target):

2

210 logT
ySN
S

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (2.5)

• Larger the better (for making the system response as large as possible):

2
1

1 110log
n

L
i i

SN
n y=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ (2.6)

 20

These SN ratios are derived from the quadratic loss function and are expressed in a

decibel scale.

Once all of the SN ratios have been computed for each run of an experiment, Taguchi

advocates a graphical approach to analyze the data. In the graphical approach, the SN

ratios and average responses are plotted for each factor against each of its levels. The

graphs are then examined to “pick the winner,” i.e., pick the factor level which (1) best

maximize SN and (2) bring the mean on target (or maximize or minimize the mean, as

the case may be).

Finally, confirmation tests should be run at the “optimal” product settings to verify that

the predicted performance is actually realized. A demonstration of Taguchi’s approach

to parameter design can be found in Figure 2.2.

Figure 2.2: Main Steps of Taguchi Robust Design

1. Select the quality characteristic

2. Select control and noise factors

3. Select orthogonal array

4. Conduct the experiments

5. Analyse results; determine
optimum factor-level combination

6. Predict optimum performance

7. Confirm experimental design

 21

Taguchi method is a simple and usefull tool, but there are also some drawbacks which

require to be compansated with other optimization methodologies. These drawbacks

are:

• When the number of design parameters increases its computational requirements

becomes unaffordable.

• Taguchi method has no capability to handle multiple performance measures

simultaneously.

2.4. TAGUCHIAN RESPONSE SURFACE METHODOLOGY

In this section, we introduce the steps of Taguchian RSM. We assume that the initial

point is in a neighborhood of an optimal solution of the problem in (2.1), say *d , which

was already found by a classic simulation optimization algorithm. Hence, starting from

the neighborhood of *d , our Taguchian RSM will search for a robust optimal solution

in one shot, rather than searching iteratively over the global feasible area.

Taguchian RSM consists of four steps, namely selecting a design type of experiments,

fitting a regression metamodel to the realizations of the random response w in (2.1) and

estimating its variance, checking the validity of the fitted metamodel, and minimizing a

risk-averse transformation of the problem in (2.1). We will describe these steps in

detail later in this section. Our description is in general in line with the one in Dellino et

al. [56]; whenever there is a difference, we will make it clear in the text.

In Step 2 of Taguchian RSM, Myers and Montgomery [55] suggested to approximate w

in (2.1) through

' '
'

0 ;;
1 1 1 1 1

k k k c k c

j j j g g j g j gj j j
j j g j gj j

y d d d e d eβ β β γ δ ε
= = = = =≥

= + + + + +∑ ∑∑ ∑ ∑∑ (2.7)

0
T T T Td d Bd e d eβ β γ ε= + + + + Δ + (2.8)

 22

where y is the regression predictor, 0β is the overall mean, the jkβ ’s are the main

effects of the controllable variables, the '

2

;2 j j

k β ’s are the two-factor interactions

('j j≠) and the purely quadratic effects ('j j=), the gcγ ’s are the main effects of the

environmental variables, and the ;j gkcδ ’s are the control-by-noise interactions. This

makes a total of
2

1
2
kq k c kc= + + + + unknown coefficients to be estimated in (2.7).

Furthermore, the ε is the residual which is supposed to satisfy the white noise

assumption; that is, ε is normally, independently, and identically distributed with mean

zero (0εμ =) and constant variance 2
εσ [55]. 0εμ = implies that the metamodel in

(2.5) has no lack-of-fit, which will be investigated in Step 3. Finally, (2.8) is obtained

by simply rewriting (2.7) in matrix notation.

Myers and Montgomery assumed the following for the vector of the environmental

variables e in (2.8): () 0E e = and 2cov() ee σ= Ι , where cov()e and Ι denote the

covariance matrix of e and the identity matrix, respectively [55]. We, however, prefer

to replace their assumption with the more realistic one in Dellino et al.: () eE e μ= and

cov() ee = Ω , where both eμ and eΩ are assumed to be known [56]. Under Dellino et

al.'s assumption, the mean and variance of y are given by

0() T T T T
e eE y d d Bd dβ β γ μ μ= + + + + Δ (2.9)

() () ()2 2var() var T T T T T
ey d e d dε εγ σ γ γ σ⎡ ⎤= + Δ + = + Δ Ω + Δ +⎣ ⎦ (2.10)

provided that e and ε are independent [56]. Estimates of (2.7) and (2.10) will be used

when we minimize a risk-averse version of (2.1) in Step 4.

Now, we can detail each step of Taguchian RSM, as follows. These steps will be used

only once when we apply Taguchian RSM to an inventory example in the next section

(i.e., one shot approach).

 23

Step 1, Select a design type of experiments: To fit the metamodel in (2.7), simulation

practitioners usually prefer a central composite design (CCD), which is defined as

follows. One part of a CCD consists of a two-level factorial design that may be

fractional-provided this fractional has a resolution at least V - since a resolution V (VR)

design gives unbiased ordinary least squares (OLS) estimators of all main effects and all

two-factor interactions-provided all other effects are negligible. Furthermore, to

estimate all purely quadratic effects, a CCD augments a VR design by (i) the central

design point and (ii) 2()k c+ axial design points [101]. In our CCD, we have only 2k

axial design points in addition to the central design point, since there are no purely

quadratic effects of the environmental variables in (2.7).

Step 2, Fit the metamodel and estimate variance: Let n be the total number of input

combinations, which depends on the selected design type in Step 1. We simulate lm

replicates at the l th design point (,)T T T
l ld e (1,...,)l n= , which give lm identically and

independently distributed simulated responses at that point. Furthermore, we do not use

common seeds across the n input combinations, to make the resulting total number of

runs 1l nN m m m= + + + + independent. Our main reason for avoiding common

seeds is the well-known synchronization problem of discrete-event simulation studies

[102]. By this way, we obtain the 1N × vector ŵ of simulated responses.

Let ζ be the 1q× vector whose components are the unknown coefficients in (2.7). If

the ε satisfies the white noise assumption, then the best linear unbiased estimator of ζ

is given by its OLS estimator:

() 1ˆ ˆT TX X X wζ
−

= (2.11)

where X is the N q× matrix of explanatory variables. In (2.11), we use the original

values of d and e ; because the inversion in (2.11) may cause numerical instabilities,

Dellino et al. used their standardized (or coded) values [56].

 24

Assuming that the variance of w is constant across the n input combinations, the

covariance matrix of ζ̂ is given by

() 12
ˆ

ˆ ˆ T
w X Xσ

−
Ψ = (2.12)

where 2
ŵσ is estimated through mean squared residuals [101]:

 () ()2
ˆ

ˆ ˆ ˆ ˆ
ˆ

T

w

w y w y
N q

σ
− −

=
−

 (2.13)

provided ˆŷ Xζ= and N q> . Considering the dependence of (2.10) on d , the constant

variance assumption may not be very realistic; we left this issue as a future work.

For (2.11) to be multivariate normally distributed, Dellino et al., who considered

deterministic simulation, assumed that e is multivariate normally distributed [56]. We,

however, consider stochastic simulation where we can make a large number of runs;

that is, N →∞ such that lm →∞ for each input combination l . Then, under some

conditions, (){ }ˆN ζ ζ− has asymptotically a multivariate normal distribution with

zero mean vector and covariance matrix Ψ with Ψ given by (2.12) replacing 2
ˆˆwσ with

2
ŵσ [103]. In practice, ζ and 2

ŵσ are computed through (2.11) and (2.13) for large N .

Therefore, we do not need to assume multivariate normality for e . Furthermore, the

asymptotic multivariate normality of ζ̂ enables us to apply classic F-test for lack-of-fit

in the following step.

Step 3, Test the validity of the fitted metamodel: We test the following null

hypothesis:

0 : () ().H E w E y= (2.14)

 25

If 0H is rejected, the approach in classic RSM is to switch alternative regression

metamodels using some transformations of d ; in this thesis, we do not discuss solutions

when there is lack-of-fit, but we refer to Irrizary, Kuhl, Lada, Subramanian and Wilson

for such solutions [104]. In case 0H is not rejected, Step 4 will be performed.

To test 0H , we introduce the following classic F-statistic:

1 2

1
,

2

LOF
v v

PE

SS vF
SS v

= (2.15)

where LOFSS is the lack-of-fit sum of squares, PESS is the sum of squared pure errors,

and 1v n q= − and 2v N n= − are the degrees of freedom of LOFSS and PESS ,

respectively. 0H is rejected if
1 2,v vF exceeds a prespecified critical value

1 2, ,v vFα , where

α is the type- Ι error rate.

To compute
1 2,v vF , we introduce the sum of squared residuals, RSS , since LOFSS is

given by LOF R PESS SS SS= − . These RSS and PESS can be computed through

() ()ˆ ˆ ˆ ˆT
RSS w y w y= − − (2.16)

and

() ()ˆ ˆ ˆ ˆ
T

PESS w w w w= − − (2.17)

where ŵ is the 1N × vector of responses averaged over the lm replicates; i.e., its first

1m rows consist of
1

ˆmw , which denotes the average of the first 1m components of ŵ , its

next 2m rows consist of
2

ˆmw , which denotes the average of the next 2m components of

ŵ , etc.

 26

Finally, to test 0H , Dellino et al. used leave-one-out cross-validation. Our F-test

approach in (2.15) is more standard in regression analysis [56].

Step 4, Minimize the risk-averse problem: To obtain a risk-averse formulation of the

problem in (2.1), we first estimate (2.9) and (2.10) by

0
ˆ ˆ ˆ ˆˆˆ T T T T

e ey d d Bd dβ β γ μ μ= + + + + Δ (2.18)

() () 2ˆ ˆˆ ˆ ˆvar() T T T
ey d d εγ γ σ= + Δ Ω + Δ + (2.19)

Note that the variance estimator in (2.19) is biased; Myers and Montgomery gave an

unbiased estimator for var()y [55], but for simplicity we use (2.19). Furthermore, we

estimate 2ˆεσ through (2.13).

Now a risk-averse formulation is given by the smaller the better approach:

ˆminimize

subject to var()

y

y τ≤
 (2.20)

where τ denotes a threshold value. We will change this τ over a finite interval and

solve (2.20) each time with the new τ to observe the price of taking risk.

2.5. (s, S) INVENTORY EXAMPLE

In this section, we applied Taguchian RSM to an (s, S) inventory example investigated

by Bashyam and Fu [105]. The computer program was coded in Matlab 7.6, the

optimization in (2.20) was performed through the built-in function fmincon in Matlab,

and could be analyzed in Appendix A and B.

 27

2.5.1. Problem Definition

Bashyam and Fu [105] considered an infinite horizon periodic review inventory system

with continuous-valued independently and identically distributed demands and full

backlogging.

Orders are received at the beginning of the period; the demand for the period is

subtracted out, then an order review is carried out at the end of the period. The

inventory level in period n (nW) is defined as the on hand stock minus backorders, and

observed after demand subtraction, and the inventory position (nI) is the inventory

level plus any outstanding orders [105].

Ordering decisions are made according to the wellknown (s, S) policy:

If nI s< : an order for the amount nS I− is placed

 O/w, no action is taken

The lead times iL for orders placed are assumed to be integer valued i.i.d. random

variables. Under their convention, an order with lead time l placed in period n will

arrive at the beginning of period 1n l+ + .

The performance of the system is evaluated by a cost function and a service level

measure, where the cost measure considers only setup and holding costs, and the service

level measure tracks the extent of backlogging in the system.

2.5.2. Application

Like Bashyam and Fu, we assumed an infinite horizon, periodic review inventory

system with exponentially distributed demands with mean 100 and Poisson distributed

order lead times with mean 6, and full backlogging of orders [106]. The basic sequence

of events in each period is as follows: orders are received at the beginning of the period,

the demand for the period is subtracted, and order review is done at the end of the

 28

period. An order is placed when the inventory position falls below the reorder level s;

the order amount is the difference between the order up to level S and the current

inventory position.

Furthermore, Bashyam and Fu set per order setup cost to 36, per unit order cost to 2,

and per period per unit holding cost to 1; we used the same cost values in our simulation

experiments [105]. Moreover, Bashyam and Fu had a service level constraint, which

we did omit, since this would require considering multiple responses; we left this issue

as a future work. We, however, had the following deterministic constraint in addition to

(2.20): s S≤ .

Angün (2008) found an estimated optimal solution of Bashyam and Fu's problem as

() ()* *, 1160,1212
T Ts S = with an estimated cost of 647.15 [106]. Starting from this

estimated optimal solution, our goal is to find a robust optimal solution. The random

response w to be minimized is the total costs, namely the sum of order setup, ordering,

and holding costs. The environmental variable e is the mean demand.

In our experiment, the factorial part of CCD was given by a 23 design with

980 1340s≤ ≤ , 1019 1405S≤ ≤ and 80 120e≤ ≤ , the central point by s = 1160, S =

1212, and e = 100, the two positive axial points by s = 1424, S = 1212, and e = 100, and

s = 1160, S = 1476, and e = 100, and the two negative axial points by s = 896, S = 1212,

and e = 100, and s = 1160, S = 948, and e = 100, all expressed in the original variables;

obviously, n = 13. Notice that the low (80) and high (120) values for e were chosen as

100 5e± Ω , where 2100eΩ = is the variance of e. Furthermore, the number of

replicates at each input combination l was chosen as 30lm = so that 390N = . Each

simulation run was simulated for 2500 periods, and the type- Ι error rate α for lack-of-

fit test was chosen as 1%α = . The computer program was coded in Matlab 7.6, and

could be analyzed in Appendix C.

 29

Table 2.1.: Optimal regression predictors *ŷ and their risks *ˆvar()y obtained through
solving (2.20) with s S≤

*ŷ *ˆvar()y
*ŷ *ˆvar()y

*ŷ *ˆvar()y
-408 232 -409 233 -410 234
-411 236 -413 237 -415 238
-416 240 -418 241 -419 242

We solved (2.20) subject to s S≤ by changing the target value τ over the interval

[50,000; 58,000]; that is, we started with τ = 50,000, solved the problem, increased τ

by 1000, and resolved the new problem up to and including τ = 58,000. Our numerical

results are presented in Table 2.1; we rounded up all decimals to the nearest integers.

According to the results in Table 2.1, the lower the cost is, the higher the risk becomes,

which is in accordance with the common sense. In particular, the lowest cost, namely

419, has the highest risk, namely 242. A further remark that should be made is that all

optimal costs in Table 2.1 are lower than the one in Angün (2008) as seen in Table 2.2.

simply because in this thesis, we did not consider the service level constraint [106].

Table 2.2.: Numerical results for the 0.50 quantile (‘mean’) of 100 estimated solutions
for the inventory problem

iteratio
n

iterate ˆˆ(,)s S search direction d̂ step
size
λ

 (1)
0H (2)

0H

0 (2100, 2300) (-0.7045, -0.7097) 1703.4
1 (900, 1091) reject fail to reject
2 (1500, 1695.5) reject reject
3 (1200, 1393.3) (-0.5973, -0.8020) 171.3 reject reject
4 (1097.6, 1255.9) reject fail to reject
5 (1148.8, 1324.6) (-0.4816, -0.8764) 100.9 reject reject
6 (1123.2, 1290.2) reject fail to reject
7 (1100.2, 1236.1) reject fail to reject
8 (1124.5, 1280.3) reject fail to reject
9 (1136.7, 1302.4) reject reject

 30

3. CALL CENTER APPLICATION

In this chapter, we will apply our Taguchian RSM approach to a more complex example

which is a call center problem modeled in Arena. The results taken from the execution

of the model will be used in our optimization algorithm.

3.1. PROBLEM DEFINITION

The generic call center system described in detail in the Simulation with Arena book

provides a central number in an organization that customers call for technical support,

sales information, and order status. This central number feeds 26 trunk lines. If all 26

lines are in use, a caller gets a busy signal; or an answered caller hears a recording

describing three options: transfer to technical support, sales information, or order-status

inquiry [107].

Below a brief description of each option is given and further details regarding waiting

times, product types’ request statistics, call duration estimates etc. can be found in

Appendix D.

Technical Support Calls

If the caller chooses technical support, he/she gets a second recording asking which of

three product types he/she is using:

• Product type 1? (25% of technical support callers)

• Product type 2? (34% of technical support callers)

• Product type 3? (41% of technical support callers)

 31

If a qualified technical support person is available for chosen product type, the call is

automatically routed to that person for immediate service. If not, the call is placed in an

electronic queue until a support person is available. Upon completion of the call, the

customer exits the system. However, four percent of these technical support calls needs

further assistance after completion of the call. The questions raised by these callers are

forwarded to another technical group, outside the boundaries of the defined model that

prepares a response. The resulting response is sent back to the same technical support

person who took the original call. This person then calls the customer back. These

calls require the use of one of the 26 trunk lines and takes priority over incoming calls.

If a returned call is not completed on the same day the original call was received, it’s

carried over to the next day. A demonstration of the Generic Call Center System can be

found in Figure 3.1.

Figure 3.1: Generic Call Center System

There are 11 technical support people variously qualified for the three different product

lines. Some people only qualified in one line, and some on two or maybe all three lines.

Detailed stuffing description and schedule information can be found in Appendix D.

Generic Call Center System

single telephone number
with 26 trunk lines

technical support calls

sales calls

order status calls

product type 1 @%25

product type 2 @%34

product type 3 @%41

@%4
further
assistance

 32

Sales Calls

These calls are automatically routed to the sales staff which is separated from technical

support staff. There are seven sales people with the staggered daily schedules defined

in number of people @ time period in minutes. If a salesperson is not available, the

caller is waited on the line. Upon completion of the call, the customer exist the system.

Order-Status Calls

These calls are automatically handled by the phone system, and there is no limit on the

number handled at a time (but still limited by the 26 trunk lines). After the call some of

these callers take the option to talk to a real person and the rest exits the system. And

these calls:

• are routed to the sales staff

• have the same priority as incoming sales calls.

and then customers exit the system.

The call center operates from 8 a.m. to 6 p.m., and a small proportion of the staff stays

until 7 p.m. Incoming calls shut out after 6 p.m., but all calls that entered before 6 p.m.

are answered. The call arrival rate varies substantially over the day, and is expressed in

calls per hour for each 30-minute period during which the system is open. All technical

support employees work an eight-hour day with 30 minutes off for lunch (lunch is not

included in the eight hours). Top-level Model View of the Call Center Model can be

found in Figure 3.2.

Figure 3.2: Top-level Model View of the Call Center Model

Time Period Counter

Create and Direct Arrivals

Technical Support Calls

Sales Calls

Order-Status Calls

Returned Tech Calls

 33

3.2. APPLICATION #1

Based on the defined model, our objective is to find an optimal solution * * * *
1 2 3 1(, , ,)x x x e ,

where 1x is the number of trunk lines, 2x is the additional sales staff, 3x is all product

support staff (support people qualified for all product types) and 1e is the recording

delay of technical support calls having the uniform distribution (0.1,0.5)U as an

environmental factor, all of which minimize the total system cost. These decision

variables have the following constraints: 126 50x≤ ≤ , 2 3 15x x+ ≤ , 10.5 0.5r e r− ≤ ≤ +

where r is the radius. The objective function is the expected total system cost of new

technical people and new sales staff, and new trunk lines.

In the first step of our approach, we select the design type of experiments. As in our

previous example, we prefer to use a CCD design and since we have 4 design factors,

we select a 42 CCD design with 2 6k = axial design points and a central design point

which are given in detail in Appendix D. Therefore, we have 23n = input

combinations.

To fit the metamodel and estimate its variance, we simulate 10lm = replicates at each

design point and obtain 10 identically and independently distributed simulated

responses at each point. By this way, we obtain the 230 1× vector ŵ of simulated

responses.

Type- Ι error rate α for lack-of-fit test is chosen as 1%α = . The computer program

was coded in Matlab 7.6, and could be analyzed in Appendix E.

Finally, in order to minimize the risk averse problem, we first estimate (3.1):

10 1 1 2 2 3 3 1 1,2 1 2 1,3 1 3 2,3 2 3

2 2 2
1,1 1 1 1,2 1 2 1,3 1 3 1,1 1 2,2 2 3,3 3

y x x x e x x x x x x

e x e x e x x x x

β β β β γ β β β

δ δ δ β β β

= + + + + + + +

+ + + + + +
 (3.1)

 34

For this, we use our computer program which was coded in Matlab 7.6, and could be

analyzed in Appendix F.

3.3. RESULTS #1

Based on the results taken from the execution of the Matlab codes, we observeβ as

below:

-894160
46944.3
363.787
71341.3
431242
-3.60577
-1687.57

18.75
-6989.71
-187.5
-50035.5
-672.168
-24.7372
-229.493

β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

The optimization of the problem is performed by using the fmincon function. Our

minimization resulted with 1exitflag = which means that the problem is solved at

optimum. The optimum value for x is as below:

26.000
0
0
0.4950

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

The objective value is equal to -4.4865e+003.

 35

3.4. APPLICATION #2

Since the student version of Arena doesn’t allow us to increase the number of decision

variables, we therefore decided to add one more environmental factor 2e in order to

expand the original example.

Then, our objective becomes to find an optimal solution * * * * *
1 2 3 1 2(, , , ,)x x x e e , where 1x is

the number of trunk lines, 2x is the additional sales staff, 3x is all product support staff

(support people qualified for all product types), 1e is the recording delay of technical

support calls having the uniform distribution (0.1,0.5)U and 2e is the delay of create &

direct arrivals part of the system having the uniform distribution U(0.1,0.6) as an

environmental factor, all of which minimize the total system cost.

These decision variables have the same constraints as application #1. The objective

function is the expected total system cost of new technical people and new sales staff,

and new trunk lines.

In the first step of our approach, we select the design type of experiments. As in our

previous example, we prefer to use a CCD design and since we have 5 design factors

now, we select a 52 CCD design with 2 6k = axial design points and a central design

point which are given in detail in Appendix G. Therefore, we have 39n = input

combinations.

To fit the metamodel and estimate its variance, we simulate 10lm = replicates at each

design point and obtain 10 identically and independently distributed simulated

responses at each point. By this way, we obtain the 390 1× vector ŵ of simulated

responses.

Type- Ι error rate α for lack-of-fit test is chosen as 1%α = . The computer program

was coded in Matlab 7.6, and could be analyzed in Appendix H.

 36

Finally, in order to minimize the risk averse problem, we first estimate (3.2):

0 1 1 2 2 3 3 1,2 1 2 1,3 1 3 2,3 2 3

1 21 1,1 1 1 1,2 1 2 1,3 1 3 2 2,1 2 1 2,2 2 2

2 2 2
2,3 2 3 1,1 1 2,2 2 3,3 3

y x x x x x x x x x

e e x e x e x e e x e x

e x x x x

β β β β β β β

γ δ δ δ γ δ δ

δ β β β

= + + + + + +

+ + + + + + +

+ + + +

 (3.2)

For this, we use our computer program which was coded in Matlab 7.6, and could be

analyzed in Appendix I.

3.5. RESULTS #2

Based on the results taken from the execution of Matlab codes, we observeβ as below:

-2.00829e+006
43093.4
313036
41741.4
1.48e+006
1.18377e+006
6009.64
-5114.92
-31250.1

-52091.2
-312501
222195
-40164.2
-260418
178239
169.08
-6.47815
-200.209

β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎣ ⎦

⎥

 37

The optimization of the problem is performed by using the fmincon function. Our

minimization resulted with 4exitflag = which means that the magnitude of the search

direction is very small. The optimum value for x is as below:

50.000
12.4348
2.5652
0.5050
0.6060

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

The objective value is equal to -5.2503e+006.

We also experiment our minimization algorithm with different starting points, and

obtain same results; therefore, we can say that we reached a local optimum.

 38

4. CONCLUSION

In this thesis, we presented the steps of Taguchian RSM, which consisted of selecting

an experimental design type, approximating the random response by a regression

metamodel and estimating its variance, performing a lack-of-fit test to check the validity

of the metamodel, and minimizing a risk-averse reformulation of the original problem.

We contrasted our description of Taguchian RSM with the one in Dellino et al. (2008):

the major differences are that we did not assume multivariate normality since we

considered stochastic simulation and had a large sample size -so that multivariate

normality is the result of a central limit theorem- and we used classic F-test for lack-of-

fit.

First, we applied our Taguchian RSM to an inventory example which is used as an

introductory exercise to our methodology; and our results showed that low risks mean

high costs.

Then we applied our method to a more complex example with three decision variables

and a single environmental factor. Based on the results taken from the simulation of the

problem in Arena, we applied our algorithms for RSM and lack-of-fit test. Our results

show that the presented methodology reaches a global optimum value for the

minimization problem.

In order to expand the original example, we did add one more environmental factor and

applied our methodology to the simulation results again. Our results show that the

presented methodology reaches a local optimum value for the minimization problem for

different starting points.

 39

While the author believes that the presented model provides value, there are also further

points that can be included. First of all classic RSM is an iterative metaheuristic; hence,

in our future work, we should extend our one shot approach to an iterative one. Another

issue is to extend the current approach to handle multiple random responses. Additional

interactions between and within the decision factors could have been included.

 40

REFERENCES:

[1] Sahinidis, N.V, “Optimization under uncertainty: state-of-the-art and

opportunities”, Elsevier, doi:10.1016/j.compchemeng.2003.09.017, (2004).

[2] Beyer, H.-G., Sendhoff, B., ”Robust optimization: a comprehensive survey”,

Computer Methods in Applied Mechanics and Engineering, 196, 3190-3218,

(2007).

[3] Shapiro, A., Ruszczyński, A., “Lectures on stochastic programming”, http:

//www2.isye.gatech.edu/»ashapiro/publications.html, (2008).

[4] Kall, P., Wallace, S.W., Stochastic Programming, John Wiley & Sons, Chichester,

England, (1994).

[5] Birge, J.R., Louveaux, F., Introduction to Stochastic Programming, Springer,

(1997).

[6] Ferguson, A., Dantzig, G.B., “The allocation of aircraft to routes: an example of

linear programming under uncertain demands”, Management Science, 3, 45-73,

(1956).

[7] Charnes, A., Cooper, W.W., Symonds, G.H., “Cost horizons and certainty

equivalents: an approach to stochastic programming of heating oil”, Management

Science, 6, 235-263, (1958).

[8] Dupačová, J., Gairovonski, A., Kos, Z., Szantai, T., “Stochastic programming in

water management: a case study and a comparison of solution techniques”,

European Journal of Operational Research, 52, 28-44, (1991).

[9] Manne, A.S., “Waiting for the breeder”, in Review of Economic Studies

Symposium, 47-65, (1974).

[10] Louveaux, F.V., “A solution method for multistage stochastic programs with

recourse with application to an energy investment problem”, Operations

Research, 28, 889-902, (1980).

 41

[11] Pereira, M.V.F., Pinto, L.M.V.G., “Multi-stage stochastic optimization applied to

energy planning”, Mathematical Programming, 37, 131-152, (1991).

[12] Manne, A.S., Richels, R.G., Buying Greenhouse Insurance - The Economic Costs

of CO2 Emission Limits, Cambridge, The MIT Press, (1992).

[13] Morton, D.P., “An enhanced decomposition algorithm for multistage stochastic

hydroelectric scheduling”, Annals of Operations Research, 64, 211-235, (1996).

[14] Takriti, S., Birge, J.R., Long, E., “A stochastic model for the unit commitment

problem”, IEEE Transactions on Power Systems, 11, 1497-1508, (1996).

[15] Carøe, C.C., Ruszczyński, A., Schultz, R., “Unit commitment under uncertainty

via two-stage stochastic programming”, In D. Pisinger, C.C. Carøe, & J.M.

Rygaard (Eds.), Proceedings of NOAS 97 (pp. 21-30), Department of Computer

Science, University of Copenhagen, Denmark, (1997).

[16] Gassmann, H.I., “Optimal harvest of a forest in the precence of uncertainty”,

Canadian Journal of Forest Research, 19, 1267-1274, (1989).

[17] Kao, E.P.C., Queyranne, M., “Budgeting costs of nursing in a hospital”,

Management Science, 31, 608-621, (1985).

[18] Mulvey, J.M., Vladimirou, H., “Stochastic network optimization models for

investment planning”, Annals of Operations Research, 20, 187-217, (1989).

[19] Mulvey, J.M., Vladimirou, H., “Applying the progressive hedging algorithm to

stochastic generalized networks”, Annals of Operations Research, Vol. 31, pp.

399-424, (1991b).

[20] Mulvey, J.M., Vladimirou, H., “Stochastic network programming for financial

planning problems”, Management Science, 38, 1642-1664, (1992).

[21] Ziemba, W.T., Vickson, R.G., Eds., Stochastic Optimization Models in Finance,

Academic Press, (1975).

[22] Kallberg, J.G., White, R., Ziemba, W.T., “Short Term Financial Planning Under

Uncertainty”, Management Science, (1982).

[23] Zenios, S.A., “Parallel Monte Carlo simulation of mortgage backed securities”,

Financial Optimization, Cambridge University Press, pp. 325-343, (1992).

[24] Dert, C.L., Asset liability management for pension funds: a multistage chace

constrained programming approach. Ph.D. Thesis, Erasmus University,

Rotterdam, The Netherlands, (1995).

 42

[25] Carino, D.R., Ziemba, W.T., “Formulation of the Russel-Yasuda Kasai financial

planning model”, Operations Research, 46, 433-449, (1998).

[26] Kouwenberg, R., Zenios, S.A., Stochastic programming models for asset liability

management. Technical report, HERMES Center of Excellence on Computational

Finance & Economics, University of Cyprus, Nicosia, Cyprus, (2001).

[27] Sherali, H.D., Soyster, A.L., Murphy, F.H., Sen, S., “Allocation of capital costs in

electric utility capacity expansion planning under uncertainty”, Management

Science, 30, 1-19, (1984).

[28] Davis, M.H.A., Dempster, M.A.H., Sethi, S.P., Vermes, D., “Optimal capacity

expansion under uncertainty”, Advances in Applied Probability, 19,156-176,

(1987).

[29] Bienstock, D., Shapiro, J.F., “Optimizing resource acquisition decisions by

stochastic programming”, Management Science, 34, 215-229, (1988).

[30] Eppen, G.D., Martin, R.K., Schrage, L., “A scenario approach to capacity

planning”, Operations Research, 37, 517-527, (1989).

[31] Berman, O., Ganz, Z., Wagner, J.M., “A stochastic optimization model for

planning capacity expansion in a service industry under uncertain demand”,

Naval Research Logistics, 41, 545-564, (1994).

[32] Malcolm, S., Zenios, S.A., “Robust optimization of power systems capacity

expansion under uncertainty”, Journal of the Operational Research Society, 45,

1040-1049, (1994).

[33] Ahmed, S., King, A., Parija, G.A., “A multi-stage stochastic integer programming

approach for capacity expansion under uncertainty”, Journal of Global

Optimization, 26, 3-24, (2003).

[34] Charnes, A., Cooper, W.W., “Chance-constrained programming”, Management

Science, 6, 73-79, (1959).

[35] Charnes, A., Cooper, W.W., “Deterministic equivalents for optimizing and

satisfying under chance constraints”, Operations Research, Vol. 11, 18-39,

(1963).

[36] Vajda, S., Probabilistic Programming. Academic Press, New York, (1972).

[37] Naslund, B., “A model of capital budgeting under risk”, The Journal of Business,

Vol. 39, 257-271, (1966).

 43

[38] Gurgur, C., Luxhoj, J.T., “Application of chance-constrained programming to

capital rationing problems with asymmetrically distributed cash flows and

available budget”, The Engineering Economist, 48(3), 241-258, (2003).

[39] Kelle, P., “Sequential investment planning based on stochastic models”,

Engineering Cost and Production Economist, Vol. 12, 205-209, (1987).

[40] Sarper, H., “Capital rationing under risk: a chance constrained approach using

uniformly distributed cash flows and budgets”, The Engineering Economist, Vol.

39, 49-76, (1993).

[41] Silver, E.A., Pyke, D.F., Peterson, R., Inventory Management and Production

Planning and Scheduling, Third Edition. Wiley, New York, (1998).

[42] Nemirovski, A., Shapiro, A., “Convex approximations of chance constraint

programs”, SIAM Journal on Optimization, Vol.17, No.4, pp.969-996, (2006).

[43] Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., “Coherent measures of risk”,

Mathematical Finance, 9, 203-228, (1999).

[44] Markowitz, H.M., “Portfolio Selection”, Journal of Finance, 7, 77-91, (1952).

[45] Takriti, S., Ahmed, S., “On robust optimization of two-stage systems”,

Mathematical Programing, 99, 109-126, (2004).

[46] Ahmed, S., Cakmak, U., Shapiro, A., “Coherent risk measures in inventory

problems”, European Journal of Operational Research, 182 (1), 226-238, (2007).

[47] Rockafellar, R.T., Uryasev, S.P., “Optimization of conditional value-at-risk”, The

Journal of Risk, 2, 21-41, (2000).

[48] Garcia-Gonzalez, J., Parrilla, E., Mateo, A., “Risk-averse profit-based optimal

scheduling of a hydro-chain in the day ahead electricity market”, European

Journal of Operational Research, 181, 1354-1369, (2007).

[49] Von Neumann, J., Morgenstern, O., Theory of Games and Economic Behavior.

Princeton University Press, Princeton, (1947).

[50] Soyster, A.L., “Convex programming with set-inclusive constraints and

applications to inexact linear programming”, Operations Research, 1154-1157,

(1973).

[51] Ben-Tal, A., Nemirovski, A., “Robust optimization: methodology and

applications”, Mathematical Programming, Series B, 92, 453-480, (2002).

 44

[52] Taguchi, G., Quality Engineering through Design Optimization, Kraus

International Publication, New York, (1984).

[53] Trosset, M., “Taguchi and robust optimization”, Technical Report 96-31,

Department of Computational & Applied Mathematics, Rice University, (1996).

[54] Nair, V.N., Abraham, B., MacKay, J., Box, G., Kacker, R.N., Lorenzen, T.J.,

Lucas, J.M, Myers, R.H., Vining, G.G., Nelder, J.A., Phadke, M.S., Sacks, J.,

Welch, W.J., Shoemaker, A.C., Tsui, K.L., Taguchi, S., Wu, C.F.J., “Taguchi’s

parameter design: a panel discussion”, Technometrics, 34, 127–161, (1992).

[55] Myers, R.H., Montgomery, D.C., Response surface methodology: process and

product optimization using designed experiments, Wiley, New York, (1995).

[56] Dellino, G., Kleijnen, J.P.C., Meloni, C., Robust optimization in simulation:

Taguchi and Response Surface Methodology, Working Paper, Tilburg University,

Tilburg, The Netherlands, (2008).

[57] Fu, M.C., “Optimization for simulation: theory vs. practice”, INFORMS Journal

on Computing, 14 192-215, (2002).

[58] Myers, R.H., Carter, W.H., “Response surface techniques for dual response

systems”, Technometrics, 15, 301-317, (1973).

[59] Vining, G.G., Myers, R.H., “Combining Taguchi and response surface

philosophies: a dual response approach”, Journal of Quality Technology, 22, 38-

45, (1990).

[60] Fan, S-KS., Del Castillo, E., “Calculation of an optimal region of operation for

dual response systems fitted from experimental data”, Journal of the Operational

Research Society, 50, 826-836, (1999).

[61] Yang, T., Kuo, Y., Chou, P., “Solving a multiresponse simulation problem using a

dual-response system and scatter search method”, Simulation Modelling Practice

and Theory, 13, 356-369, (2005).

[62] Lee, S.B., Park, C., “Development of robust design optimization using incomplete

data”, Computers & Industrial Engineering, 50, 345-356, (2006).

[63] Köksoy, O., Yalçinöz, T., “Robust design using Pareto type optimization: a

genetic algorithm with arithmetic crossover”, Computers & Industrial

Engineering, 55, 208-218, (2008).

 45

[64] Bendell, A., Disney, J., Pridmore, W.A., Taguchi Methods: Applications in World

Industry, IFS Publications, London, (1987).

[65] Dehnad, K., Quality Control, Robust Design and the Taguchi Method, Wadsworth

and Brooks/Cole, Pacific Grove, CA, (1989).

[66] Taguchi, G., Wu, Y., Introduction to Off-Line Quality Control, Central Japan

Quality Control Association: Nagoya (Japan), available from American Supplier

Institute, Romulus, MI, U. S. A., (1980).

[67] Taguchi, G., Introduction to Quality Engineering: Designing Quality into

Products and Processes, Kraus International Publications: White Plains, New

York, (1986).

[68] Box, G.E.P., “Signal-to-noise ratios, performance criteria, and transformations”,

Technometrics, 30, 1-17, (1988).

[69] Phadke, S.M., Quality engineering using robust design, Englewood Cliffs, NJ,

Prentice Hall, (1989).

[70] Welch, W.J., Yu, T-K., Kang, S.M., Sacks, J., “Computer experiments for quality

control by parameter design”, Journal of Quality Technology, 22, 15–22, (1990).

[71] Shoemaker, A.C., Tsui, K.L., Wu, C.F., “Economical experimentation methods

for robust design”, Technometrics, 33, 415-427, (1994).

[72] Pledger, M., “Observable uncontrollable factors in parameter design”, Journal of

Quality Technology, 28, 153-162, (1996).

[73] Borkowski, J.J., Lucas, J.M., “Designs of mixed resolution for process robustness

studies”, Technometrics, 39, 63-70, (1997).

[74] Wu, C.F.J., Hannada, M., Experiments: Planning, analysis, and parameter design

optimization, John Wiley, New York, (2000).

[75] Lin, P.K.H., Sullivan, L.P., Taguchi, G., “Using Taguchi Methods in quality

engineering”, Quality Progress, Vol 23, N.9, (1990).

[76] Lin, T.Y., Tseng, C.H., “Optimum design for artificial neural networks: an

example in a bicycle derailleur system”, Engineering Application of Artificial

Intelligence, 13, 3-14, (2000).

[77] Taguchi, G., Chowdhury, S., Taguchi, S., Robust Engineering, McGraw-Hill, New

York, (1999).

 46

[78] Wysk, R.A., Niebel, B.W., Cohen, P.H., Simpson, T.W., Manufacturing

Processes: Integrated Product and Process Design, McGraw-Hill. New York,

(2000).

[79] Box, G.E.P., “Discussion of off-line quality control, parameter design and the

Taguchi methods”, Journal of Quality Technologies, 17, 198–206, (1985).

[80] Vining, G.G., Myers, R.H., “Combining Taguchi and response surface

philosophies: a dual response approach”, Journal of Quality Technology, 22, 38-

45, (1990).

[81] Pignatiello, J., Ramberg, J.S., “Top ten triumphs and tragedies of Genichi

Taguchi”, Quality Engineering, 4, 221–225, (1991).

[82] Myers, R.H., Khuri, A.I., Vining, G.G., “Response surface alternatives to the

Taguchi robust design problem”, Journal of the American Statistical Association,

46, 131–139, (1992).

[83] Leon, R. V., Shoemaker, A.C., Kackar, R.N., “Performance measures independent

of adjustment: an explanation and extension of Taguchi signal-to-noise ratio”,

Technometrics, 29, 253–285, (1987).

[84] Box, G.E.P., Bisgaard, S., Fung, C., “An explanation and critique of Taguchi’s

contributions to quality engineering”, International Journal of Reliability

Management, 4, 123–131, (1988).

[85] Tsui, K.L., “An overview of Taguchi method and newly developed statistical

methods for robust design”, IIE Transactions, 24, 44–57, (1992).

[86] Tang, L.C., Xu, K.A., “Unified approach for DRS optimization”, Journal of

Quality Technology, 34, 437–447, (2002).

[87] Ross, D.L., Osborne, D.M., George, J.H., “Decision criteria in dual response”,

Struct Multidsc Optim, 23, 460-466, (2002).

[88] Köksoy, O., Doğanaksoy, N., “Joint optimization of mean and standard deviation

in response surface experimentation”, Journal of Quality Technology, 35, 239–

252, (2003).

[89] Yang, T., Kuo, Y., Chou, P., “Solving a multiresponse simulation problem using a

dual-response system and scatter search method”, Simulation Modelling Practice

and Theory, 13, 356-369, (2005).

 47

[90] Peterson, J.J., Kuhn, A.M., “Ridge analysis with noise variables”, Technometrics,

Vol.47, No.3, (2005).

[91] Jeong, I.-J., Kim, K.-J., Chang, S.Y., “Optimal weighting of bias and variance in

DRS optimization”, Journal of Quality Technology, 37, 3, ABI/INFORM Global

pg.236, (2005).

[92] Yeniay, O., Unal, R., Lepsch, R.A., “Using DRSs to reduce variability in launch

vehicle design: a case study”, Reliability Enginerring and System Safety, 91, 407-

412, (2006).

[93] Lee, S.B., Park, C., “Development of robust design optimization using incomplete

data”, Computers & Industrial Engineering, 50, 345-356, (2006).

[94] Lee, S.E., Park, C., Cho, B.-R., “Development of a highly efficient and resistant

robust design”, International Journal of Production Research, Vol.45, No.1, 157-

167, (2007).

[95] Köksoy, O., Yalçinöz, T., “Robust design using Pareto type optimization: a

genetic algorithm with arithmetic crossover”, Computers & Industrial

Engineering, 55, 208-218, (2008).

[96] Quesada, G.M., Del Castillo, E., “A dual response approach to the multivariate

robust parameter design problem”, Journal of Quality Technology, 46, 2,

ABI/INFORM Global pg.176, (2004).

[97] Quesada, G.M., Del Castillo, E., “Two approaches for improving the dual

response method in robust parameter design”, Journal of Quality Technology, 36,

2, ABI/INFORM Global pg.154, (2004).

[98] Myers, W.R., Brenneman, W.A., Myers, R.H., “A dual response approach to

robust parameter design for a generalized linear model”, Journal of Quality

Technology, 37, 2, ABI/INFORM Global pg.130, (2005).

[99] Rajagopal, R., Del Castillo, E., Peterson, J.J., “Model and distribution-robust

process optimization with noise factors”, Journal of Quality Technology, 37, 3,

ABI/INFORM Global pg.210, (2005).

[100] Giovagnoli, A., Romano, D., “Robust design via simulation experiments: a

modified DRS approach”, Quality and Reliability Enginerring International, 24,

401-416, (2008).

 48

[101] Kleijnen, J.P.C., Design and Analysis of Simulation Experiments, Springer

Science + Business Media, New York, (2008).

[102] Law, A.M., Simulation Modeling and Analysis, 4th ed. McGraw-Hill, Boston,

(2007).

[103] Theil, H., Principles of Econometrics, Wiley, New York, (1971).

[104] Irizarry, M., Kuhl, M.E., Lada, E.K., Subramanian, S., Wilson, J.R., “Analyzing

transformation-based simulation metamodels”, IIE Transactions, 35, 271-283,

(2003).

[105] Bashyam, S., Fu, M.C., “Optimization of (s, S) inventory systems with random

lead times and a service level constraint”, Management Science, 44, S243-S256,

(1998).

[106] Angun, E., Black box simulation optimization: generalized response surface

methodology, VDM Verlag, Saarbrucken, Germany, (2008).

[107] Kelton, W.D., Sadowski, R.P., Sadowski, D.A., Simulation with Arena, 2nd edn.

McGraw-Hill, Boston, (2002).

 49

APPENDIX A:

(s, S) Inventory program simulation code:

function [averagecostvector, fillratevector]=inventory_simulation(d1total, d2total,

e1total, totalruns, holdingcost, orderingcost, setupcost, numberofperiods, leadtimemean)

%initialization

averagecostvector=[];

fillratevector=[];

for i=1:totalruns

 period=1;

 indicator=0;

 totalcost=0;

 totalsatisfieddemand=0;

 totaldemand=0;

 arrivaltimes=[];

 orders=[];

 orderedarrivaltimes=[];

 orderedorders=[];

 notfullfilledtimes=[];

 notfullfilledorders=[];

 inventorylevel=d2total(i);

 inventoryposition=d2total(i);

 while period <= numberofperiods

%check existing orders

if size(notfullfilledtimes,1) ~= 0

count=0;

 50

for m=1:size(notfullfilledtimes,1)

 if period == notfullfilledtimes(m,1)

inventorylevel=inventorylevel+notfullfilledorders(m,1);

 count=count+1;

 end

 end

 if count > 0

 newnotfullfilledtimes=[];

 newnotfullfilledorders=[];

 for p=1:(size(notfullfilledtimes,1)-count)

 newnotfullfilledtimes(p,1)=notfullfilledtimes(p+count,1);

 newnotfullfilledorders(p,1)=notfullfilledorders(p+count,1);

 end

 notfullfilledtimes=newnotfullfilledtimes;

 notfullfilledorders=newnotfullfilledorders;

 end

 end

 beforedemandinventorylevel=inventorylevel;

%generate demands

 demand=exprnd(e1total(i));

%update inventory level

 inventorylevel=inventorylevel-demand;

%check inventory position, determine leadtimes

if inventoryposition < d1total(i)

 indicator=1;

 leadtime=poissrnd(leadtimemean);

 arrivaltimes=[arrivaltimes; period+1+leadtime];

 orders=[orders; d2total(i)-inventoryposition];

 [orderedarrivaltimes, index1] = sort(arrivaltimes);

 for k=1:size(index1,1)

 51

 orderedorders(k,1)=orders(index1(k,1),1);

 end

 notfullfilledtimes=[notfullfilledtimes; period+1+leadtime];

 notfullfilledorders=[notfullfilledorders; d2total(i)-inventoryposition];

 newnotfullfilledtimes=[];

 newnotfullfilledorders=[];

 [newnotfullfilledtimes, index2] = sort(notfullfilledtimes);

 for h=1:size(index2,1)

 newnotfullfilledorders(h,1)=notfullfilledorders(index2(h,1),1);

 end

 notfullfilledtimes=newnotfullfilledtimes;

 notfullfilledorders=newnotfullfilledorders;

 end

%compute cost, total cost, satisfied demand, total satisfied demand, and total demand

cost = max([inventorylevel; 0]) * holdingcost + indicator *(setupcost + (orderingcost *

(d2total(i)-inventoryposition)));

 totalcost=totalcost+cost;

 if beforedemandinventorylevel > 0

 satisfieddemand=min([demand; beforedemandinventorylevel]);

 else

 satisfieddemand=0;

 end

 totalsatisfieddemand=totalsatisfieddemand+satisfieddemand;

 totaldemand=totaldemand+demand;

 inventoryposition=inventorylevel+sum(notfullfilledorders);

 indicator=0;

 period=period + 1;

 end

 averagecostvector=[averagecostvector;totalcost/numberofperiods];

 fillratevector=[fillratevector;totalsatisfieddemand/totaldemand];

end

 52

APPENDIX B:

Application of Robust RSM to the inventory simulation:

%this program applies robust rsm to an inventory simulation

%fix simulation seed

rand('state',0);

numberofreplicates = 30;

numberofinputs = 13;

totalruns = numberofreplicates * numberofinputs;

holdingcost = 1;

orderingcost = 2;

setupcost = 36;

numberofperiods = 2500;

leadtimemean=6;

alpha=0. 01;

totalreject=0;

totalfailreject=0;

allzetas=[];

%design matrix

d1=[1340; 1340; 1340; 980; 980; 980; 1340; 980; 1160; 1424; 1160; 896; 1160];

d2=[1405; 1405; 1019; 1405; 1019; 1405; 1019; 1019; 1212; 1212; 1476; 1212; 948];

e1=[120; 80; 120; 120; 120; 80; 80; 80; 100; 100; 100; 100; 100];

d1total=[repmat(d1(1),numberofreplicates,1); repmat(d1(2),numberofreplicates,1);

repmat(d1(3),numberofreplicates,1); repmat(d1(4),numberofreplicates,1);

repmat(d1(5),numberofreplicates,1); repmat(d1(6),numberofreplicates,1);

repmat(d1(7),numberofreplicates,1); repmat(d1(8),numberofreplicates,1);

 53

repmat(d1(9),numberofreplicates,1); repmat(d1(10),numberofreplicates,1);

repmat(d1(11),numberofreplicates,1); repmat(d1(12),numberofreplicates,1);

repmat(d1(13),numberofreplicates,1)];

d2total=[repmat(d2(1),numberofreplicates,1); repmat(d2(2),numberofreplicates,1);

repmat(d2(3),numberofreplicates,1); repmat(d2(4),numberofreplicates,1);

repmat(d2(5),numberofreplicates,1); repmat(d2(6),numberofreplicates,1);

repmat(d2(7),numberofreplicates,1); repmat(d2(8),numberofreplicates,1);

repmat(d2(9),numberofreplicates,1); repmat(d2(10),numberofreplicates,1);

repmat(d2(11),numberofreplicates,1); repmat(d2(12),numberofreplicates,1);

repmat(d2(13),numberofreplicates,1)];

e1total=[repmat(e1(1),numberofreplicates,1); repmat(e1(2),numberofreplicates,1);

repmat(e1(3),numberofreplicates,1); repmat(e1(4),numberofreplicates,1);

repmat(e1(5),numberofreplicates,1); repmat(e1(6),numberofreplicates,1);

repmat(e1(7),numberofreplicates,1); repmat(e1(8),numberofreplicates,1);

repmat(e1(9),numberofreplicates,1); repmat(e1(10),numberofreplicates,1);

repmat(e1(11),numberofreplicates,1); repmat(e1(12),numberofreplicates,1);

repmat(e1(13),numberofreplicates,1)];

X=[ones(totalruns,1) d1total d2total d1total. ^2 d2total. ^2 d1total. *d2total e1total

d1total. *e1total d2total. *e1total];

fid=fopen('zeta','w+');

fprintf(fid,'zeta(1) zeta(2) zeta(3) zeta(4) zeta(5) zeta(6) zeta(7) zeta(8)

zeta(9)\n');

for t=1:50

%call inventory simulation

[averagecostvector, fillratevector]=inventory_simulation(d1total, d2total, e1total,

totalrun, holdingcost, orderingcost, setupcost, numberofperiods, leadtimemean);

%fit regression metamodel to average cost realizations

 zeta=X\averagecostvector;

 54

%call lack-of-fit F-test

[F_statistic,F_critical]=lack_of_fit(zeta, alpha, X, averagecostvector,

numberofreplicates, totalruns, numberofinputs);

 if F_statistic > F_critical

 totalreject=totalreject+1;

 else

 totalfailreject=totalfailreject+1;

 end

 allzetas=[allzetas;zeta(1) zeta(2) zeta(3) zeta(4) zeta(5) zeta(6) zeta(7) zeta(8)

zeta(9)];

 fprintf(fid,' %g %g %g %g %g %g %g %g %g\n',zeta(1), zeta(2),

zeta(3), zeta(4), zeta(5), zeta(6), zeta(7), zeta(8), zeta(9));

 t

end

fclose(fid);

 55

APPENDIX C:

Lack-of-fit test simulation code:

%this function performs lack-of-fit F-test

function [F_statistic, F_critical]=lack_of_fit(zeta, alpha, X, averagecostvector,

numberofreplicates, totalruns, numberofinputs)

one=[]; two=[]; three=[]; four=[]; five=[]; six=[]; seven=[]; eight=[]; nine=[]; ten=[];

eleven=[]; twelve=[]; thirteen=[];

averagecostvectorbar=[];

%compute sum of squared residuals and sum of squared errors

regressionhead=X*zeta;

sumsquaredresidual=(averagecostvector-regressionhead)'*(averagecostvector-

regressionhead);

for i=1:totalruns

 if i<= numberofreplicates

 one=[one;averagecostvector(i)];

 elseif (i>= numberofreplicates+1)&(i<= 2*numberofreplicates)

 two=[two;averagecostvector(i)];

 elseif (i>= 2*numberofreplicates+1)&(i<= 3*numberofreplicates)

 three=[three;averagecostvector(i)];

 elseif (i>= 3*numberofreplicates+1)&(i<= 4*numberofreplicates)

 four=[four;averagecostvector(i)];

 elseif (i>= 4*numberofreplicates+1)&(i<= 5*numberofreplicates)

 five=[five;averagecostvector(i)];

 elseif (i>= 5*numberofreplicates+1)&(i<= 6*numberofreplicates)

 six=[six;averagecostvector(i)];

 elseif (i>= 6*numberofreplicates+1)&(i<= 7*numberofreplicates)

 56

 seven=[seven;averagecostvector(i)];

 elseif (i>= 7*numberofreplicates+1)&(i<= 8*numberofreplicates)

 eight=[eight;averagecostvector(i)];

 elseif (i>= 8*numberofreplicates+1)&(i<= 9*numberofreplicates)

 nine=[nine;averagecostvector(i)];

 elseif (i>= 9*numberofreplicates+1)&(i<= 10*numberofreplicates)

 ten=[ten;averagecostvector(i)];

 elseif (i>= 10*numberofreplicates+1)&(i<= 11*numberofreplicates)

 eleven=[eleven;averagecostvector(i)];

 elseif (i>= 11*numberofreplicates+1)&(i<= 12*numberofreplicates)

 twelve=[twelve;averagecostvector(i)];

 elseif (i>= 12*numberofreplicates+1)&(i<= 13*numberofreplicates)

 thirteen=[thirteen;averagecostvector(i)];

 end

end

for i=1:totalruns

 if i<= numberofreplicates

 averagecostvectorbar=[averagecostvectorbar;mean(one)];

 elseif (i>= numberofreplicates+1)&(i<= 2*numberofreplicates)

 averagecostvectorbar=[averagecostvectorbar;mean(two)];

 elseif (i>= 2*numberofreplicates+1)&(i<= 3*numberofreplicates)

 averagecostvectorbar=[averagecostvectorbar;mean(three)];

 elseif (i>= 3*numberofreplicates+1)&(i<= 4*numberofreplicates)

 averagecostvectorbar=[averagecostvectorbar;mean(four)];

 elseif (i>= 4*numberofreplicates+1)&(i<= 5*numberofreplicates)

 averagecostvectorbar=[averagecostvectorbar;mean(five)];

 elseif (i>= 5*numberofreplicates+1)&(i<= 6*numberofreplicates)

 averagecostvectorbar=[averagecostvectorbar;mean(six)];

 elseif (i>= 6*numberofreplicates+1)&(i<= 7*numberofreplicates)

 averagecostvectorbar=[averagecostvectorbar;mean(seven)];

 elseif (i>= 7*numberofreplicates+1)&(i<= 8*numberofreplicates)

 averagecostvectorbar=[averagecostvectorbar;mean(eight)];

 57

 elseif (i>= 8*numberofreplicates+1)&(i<= 9*numberofreplicates)

 averagecostvectorbar=[averagecostvectorbar;mean(nine)];

 elseif (i>= 9*numberofreplicates+1)&(i<= 10*numberofreplicates)

 averagecostvectorbar=[averagecostvectorbar;mean(ten)];

 elseif (i>= 10*numberofreplicates+1)&(i<= 11*numberofreplicates)

 averagecostvectorbar=[averagecostvectorbar;mean(eleven)];

 elseif (i>= 11*numberofreplicates+1)&(i<= 12*numberofreplicates)

 averagecostvectorbar=[averagecostvectorbar;mean(twelve)];

 elseif (i>= 12*numberofreplicates+1)&(i<= 13*numberofreplicates)

 averagecostvectorbar=[averagecostvectorbar;mean(thirteen)];

 end

end

sumsquaredpurerror=(averagecostvector-averagecostvectorbar)'*(averagecostvector-

averagecostvectorbar);

sumsquaredlackfit=sumsquaredresidual-sumsquaredpurerror;

%perform F-test

dof1=numberofinputs-size(zeta,1);

dof2=totalruns-numberofinputs;

F_statistic=(sumsquaredlackfit/dof1)/(sumsquaredpurerror/dof2);

F_critical = finv(1-alpha,dof1,dof2);

 58

Objective function @ fmincon

%this function creates the objective function for the minimization

function obj = objective(x)

obj = -180.0543 + 0.1704*x(1) + 0.4675*x(2) - 0.0004*x(1)^2 - 0.0003*x(2)^2 +

0.001*x(1)*x(2) + 2.58*x(3) - 0.0019*x(1)*x(3) - 0.0035*x(2)*x(3);

Minimization function

%this program minimizes the regression predictor subject to its variance <=

%target value where target value takes its values from [150, 400]

[x,fval,exitflag]=fmincon(@objective,[1160;1212;100], [1 -1 0], 0, [], [], [896;948;80],

[1424;1476;120], @constraint)

 59

APPENDIX D:

Table D.1.: The percentages of requests for transfer options and product types

3 transfer options choice percentages
Technical support 76%
Sales information 16%
Order status inquiry 8%

3 product type options choice percentages
Product type 1 25%
Product type 2 34%
Product type 3 41%

Table D.2.: Sales staff (7) daily schedules (number of people @ time period in minutes)

Table D.3.: Estimated times for: (in minutes)

Support option choice time UNIF (0.1,0.6)
Technical support product type choice UNIF (0.1,0.5)
All technical support calls TRIA(3,6,18)
Response preparation time for further investigation
required technical calls

EXPO(60)

Customer recall time TRIA(2,4,9)
Sales calls TRIA(4,15,45)
Order status call transactions TRIA(2,3,4)
Follow up order status calls TRIA(3,5,10)

Sales staff 1 3@90
Sales staff 2 7@90
Sales staff 3 6@90
Sales staff 4 7@60
Sales staff 5 6@120
Sales staff 6 7@120
Sales staff 7 4@90

 60

Table D.4.: Call Arrival Rates (Calls Per Hour)

Table D.5.: Technical support (11) schedules

Time Period (30 minutes) Name Product
lines 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Tech1 1 · · · · · · · · · · · · · · · ·
Tech2 1 · · · · · · · · · · · · · · · ·
Tech3 1,3 · · · · · · · · · · · · · · · ·
Tech4 1,2,3 · · · · · · · · · · · · · · · ·
Tech5 1,2,3 · · · · · · · · · · · · · · · ·
Tech6 2 · · · · · · · · · · · · · · · ·
Tech7 2 · · · · · · · · · · · · · · · ·
Tech8 2 · · · · · · · · · · · · · · · ·
Tech9 3 · · · · · · · · · · · · · · · ·
Tech10 3 · · · · · · · · · · · · · · · ·
Tech11 3 · · · · · · · · · · · · · · · ·

Table D.6.: Calculation of the central point, positive and negative axial points and
positive and negative values of design variables based on OptQuest Results

OptQuest
Results

1%α = 2 2 2 2(26.26 26) (4.04 4) (5.05 5) (0.505 0.5) 0.2678radius = − + − + − + − =

 + - positive axial points negative axial points

*
1 26x = 26.26 25.74

1 26.2678x = , 2 4x = , 3 5x = , 1 0.5e = 1 25.7321x = , 2 4x = , 3 5x = , 1 0.5e =
*
2 4x = 4.04 3.96

1 26x = , 2 4.2678x = , 3 5x = , 1 0.5e = 1 26x = , 2 3.7321x = , 3 5x = , 1 0.5e =

*
3 5x = 5.05 4.95

1 26x = , 2 4x = , 3 5.2678x = , 1 0.5e = 1 26x = , 2 4x = , 3 4.7321x = , 1 0.5e =

*
1 0.5e = 0.505 0.495 central point

 1 26x = , 2 4x = , 3 5x = , 1 0.5e =

Time Rate Time Rate Time Rate Time Rate
8.00-8.30 20 10.30-11.00 75 13.00-13.30 110 15.30-16.00 90
8.30-9.00 35 11.00-11.30 75 13.30-14.00 95 16.00-16.30 70
9.00-9.30 45 11.30-12.00 90 14.00-14.30 105 16.30-17.00 65
9.30-10.00 50 12.00-12.30 95 14.30-15.00 90 17.00-17.30 45

10.00-10.30 70 12.30-13.00 105 15.00-15.30 85 17.30-18.00 30

 61

Table D.7.: Input combinations table for the call centre simulation

23 input combinations

42 input combinations Resolution V Design

1x 2x 3x 1e 1x 2x 3x 1e

+ + + + 26.26 4.04 5.05 0.505

+ + + - 26.26 4.04 5.05 0.495

+ + - + 26.26 4.04 4.95 0.505

+ - + + 26.26 3.96 5.05 0.505

- + + + 25.74 4.04 5.05 0.505

- - + + 25.74 3.96 5.05 0.505

- + - + 25.74 4.04 4.95 0.505

- + + - 25.74 4.04 5.05 0.495

+ - - + 26.26 3.96 4.95 0.505

+ + - - 26.26 4.04 4.95 0.495

+ - + - 26.26 3.96 5.05 0.495

- - - + 25.74 3.96 4.95 0.505

- - + - 25.74 3.96 5.05 0.495

- + - - 25.74 4.04 4.95 0.495

+ - - - 26.26 3.96 4.95 0.495

- - - - 25.74 3.96 4.95 0.495

central point 26 4 5 0.5

 26.2678 4 5 0.5

 26 4.2678 5 0.5

positive axial points

 26 4 5.2678 0.5

 25.7321 4 5 0.5

 26 3.7321 5 0.5

negative axial points

 26 4 4.7321 0.5

 62

Table D.8.: Total sytem costs per replication calculated through the call centre
simulation

Input
combinations

Total sytem cost @lth replication Total
cost

 1 2 3 4 5 6 7 8 9 10
i.c. 1 2974.50 3249.27 4351.07 3819.31 3866.04 4034.41 4158.34 4283.42 4847.41 3221.92 3881

i.c. 2 2144.48 4734.73 3726.44 4435.67 3571.43 4242.04 4558.35 4088.35 3849.73 4141.91 3949

i.c. 3 2910.36 3054.69 4079.72 4534.55 3651.75 4263.69 4391.89 3905.11 4223.16 3978.76 3899

i.c. 4 2968.74 3243.51 4345.31 3813.55 3860.28 4028.65 4152.58 4277.66 4841.65 3216.16 3875

i.c. 5 2906.60 3894.78 3922.27 4162.51 4271.60 4207.29 3949.10 4403.57 3117.10 4357.22 3919

i.c. 6 2900.84 3889.02 3916.51 4156.75 4265.84 4201.53 3943.34 4397.81 3111.34 4351.46 3913

i.c. 7 2971.87 3180.87 4052.82 3987.83 4506.67 4432.59 3121.14 4823.22 3266.66 3931.37 3828

i.c. 8 2144.48 4459.83 4009.44 4342.30 3960.66 4221.37 3760.86 4086.63 4105.72 4200.27 3929

i.c. 9 2904.60 3048.93 4073.96 4528.79 3645.99 4257.93 4386.13 3899.35 4217.40 3973.00 3894

i.c. 10 2205.68 4323.85 3968.36 3746.25 4579.18 4010.62 4151.34 4124.97 4284.05 3559.01 3895

i.c. 11 2138.72 4728.97 3720.68 4429.91 3565.67 4236.28 4552.59 4082.59 3843.97 4136.15 3944

i.c. 12 2966.11 3175.11 4047.06 3982.07 4500.91 4426.83 3115.38 4817.46 3260.90 3925.61 3822

i.c. 13 2132.72 4454.07 4003.68 4336.54 3954.90 4215.61 3755.10 4080.87 4099.96 4194.51 3923

i.c. 14 2205.68 4306.03 4403.08 3692.27 3970.70 4224.98 3875.20 3804.03 4165.76 3450.93 3810

i.c. 15 2199.92 4318.09 3962.60 3740.49 4573.42 4004.86 4145.58 4119.21 4278.29 3553.25 3890

i.c. 16 2199.92 4300.27 4397.32 3686.51 3964.94 4219.22 3869.44 3798.27 4160.00 3445.17 3804

centeral
point

2817.39 3902.39 3805.63 4225.54 4138.06 4088.09 4288.14 4047.90 4277.02 3839.19 3943

positive axial
point 1

2817.39 3902.39 3805.63 4225.54 4138.06 4088.09 4288.14 4047.90 4277.02 3839.19 3943

positive axial
point 2

2836.68 3921.67 3824.91 4244.82 4157.35 4107.37 4307.42 4067.18 4296.30 3858.47 3962

positive axial
point 3

2835.60 3920.60 3823.84 4243.75 4156.28 4106.30 4306.35 4066.11 4295.23 3857.40 3961

negative
axial point 1

2492.14 3703.68 4397.66 4521.43 4493.66 3897.11 4301.80 2818.23 4740.95 4730.45 4010

negative
axial point 2

2798.10 3883.10 3786.34 4206.25 4118.78 4068.80 4268.85 4028.61 4257.73 3819.90 3924

negative
axial point 3

2867.18 3750.88 4215.76 3256.36 4664.11 3737.27 3814.78 4596.91 3330.91 4740.62 3897

 63

APPENDIX E:

%this function performs lack-of-fit F-test

function [F_statistic, F_critical]=lack_of_fit2(beta, alpha, X, costvectorperreplications,

averagecost vector, numberofreplications, totalruns, numberofinputs)

%compute sum of squared residuals and sum of squared errors

averagecostvectorbar=[];

regressionhead=X*beta;

sumsquaredresidual=(costvectorperreplications-

regressionhead)'*(costvectorperreplications-regressionhead);

for i=1:totalruns

 if i<= numberofreplications

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(1)];

 elseif (i>= numberofreplications+1)&&(i<= 2*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(2)];

 elseif (i>= 2*numberofreplications+1)&&(i<= 3*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(3)];

 elseif (i>= 3*numberofreplications+1)&&(i<= 4*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(4)];

 elseif (i>= 4*numberofreplications+1)&&(i<= 5*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(5)];

 elseif (i>= 5*numberofreplications+1)&&(i<= 6*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(6)];

 elseif (i>= 6*numberofreplications+1)&&(i<= 7*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(7)];

 elseif (i>= 7*numberofreplications+1)&&(i<= 8*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(8)];

 64

 elseif (i>= 8*numberofreplications+1)&&(i<= 9*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(9)];

 elseif (i>= 9*numberofreplications+1)&&(i<= 10*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(10)];

 elseif (i>= 10*numberofreplications+1)&&(i<= 11*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(11)];

 elseif (i>= 11*numberofreplications+1)&&(i<= 12*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(12)];

 elseif (i>= 12*numberofreplications+1)&&(i<= 13*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(13)];

 elseif (i>= 13*numberofreplications+1)&&(i<= 14*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(14)];

 elseif (i>= 14*numberofreplications+1)&&(i<= 15*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(15)];

 elseif (i>= 15*numberofreplications+1)&&(i<= 16*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(16)];

 elseif (i>= 16*numberofreplications+1)&&(i<= 17*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(17)];

 elseif (i>= 17*numberofreplications+1)&&(i<= 18*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(18)];

 elseif (i>= 18*numberofreplications+1)&&(i<= 19*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(19)];

 elseif (i>= 19*numberofreplications+1)&&(i<= 20*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(20)];

 elseif (i>= 20*numberofreplications+1)&&(i<= 21*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(21)];

 elseif (i>= 21*numberofreplications+1)&&(i<= 22*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(22)];

 elseif (i>= 22*numberofreplications+1)&&(i<= 23*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(23)];

 end

end

 65

sumsquaredpurerror=(costvectorperreplications-

averagecostvectorbar)'*(costvectorperreplications-averagecostvectorbar);

sumsquaredlackfit=sumsquaredresidual-sumsquaredpurerror;

%perform F-test

dof1=numberofinputs-size(beta,1);

dof2=totalruns-numberofinputs;

F_statistic=(sumsquaredlackfit/dof1)/(sumsquaredpurerror/dof2);

F_critical = finv(1-alpha,dof1,dof2);

 66

APPENDIX F:

%this program applies robust rsm to the call center simulation

numberofinputs = 23;

numberofreplications=10;

totalruns = numberofinputs*numberofreplications;

alpha=0.01;

totalreject=0;

totalfailreject=0;

allbetas=[];

%design matrix

d1=[26.26; 26.26; 26.26; 26.26; 25.74; 25.74; 25.74; 25.74; 26.26; 26.26; 26.26; 25.74;

25.74; 25.74; 26.26; 25.74; 26; 26.2678; 26; 26; 25.7321; 26; 26];

d2=[4.04; 4.04; 4.04; 3.96; 4.04; 3.96; 4.04; 4.04; 3.96; 4.04; 3.96; 3.96; 3.96; 4.04;

3.96; 3.96; 4; 4; 4.2678; 4; 4; 3.7321; 4];

d3=[5.05; 5.05; 4.95; 5.05; 5.05; 5.05; 4.95; 5.05; 4.95; 4.95; 5.05; 4.95; 5.05; 4.95;

4.95; 4.95; 5; 5; 5; 5.2678; 5; 5; 4.7321];

e1=[0.505; 0.495; 0.505; 0.505; 0.505; 0.505; 0.505; 0.495; 0.505; 0.495; 0.495; 0.505;

0.495; 0.495; 0.495; 0.495; 0.5; 0.5; 0.5; 0.5; 0.5; 0.5; 0.5];

d1total=[repmat(d1(1),numberofreplications,1); repmat(d1(2),numberofreplications,1);

repmat(d1(3),numberofreplications,1); repmat(d1(4),numberofreplications,1);

repmat(d1(5),numberofreplications,1); repmat(d1(6),numberofreplications,1);

repmat(d1(7),numberofreplications,1); repmat(d1(8),numberofreplications,1);

repmat(d1(9),numberofreplications,1); repmat(d1(10),numberofreplications,1);

repmat(d1(11),numberofreplications,1); repmat(d1(12),numberofreplications,1);

repmat(d1(13),numberofreplications,1); repmat(d1(14),numberofreplications,1);

repmat(d1(15),numberofreplications,1); repmat(d1(16),numberofreplications,1);

 67

repmat(d1(17),numberofreplications,1); repmat(d1(18),numberofreplications,1);

repmat(d1(19),numberofreplications,1); repmat(d1(20),numberofreplications,1);

repmat(d1(21),numberofreplications,1); repmat(d1(22),numberofreplications,1);

repmat(d1(23),numberofreplications,1)];

d2total=[repmat(d2(1),numberofreplications,1); repmat(d2(2),numberofreplications,1);

repmat(d2(3),numberofreplications,1); repmat(d2(4),numberofreplications,1);

repmat(d2(5),numberofreplications,1); repmat(d2(6),numberofreplications,1);

repmat(d2(7),numberofreplications,1); repmat(d2(8),numberofreplications,1);

repmat(d2(9),numberofreplications,1); repmat(d2(10),numberofreplications,1);

repmat(d2(11),numberofreplications,1); repmat(d2(12),numberofreplications,1);

repmat(d2(13),numberofreplications,1); repmat(d2(14),numberofreplications,1);

repmat(d2(15),numberofreplications,1); repmat(d2(16),numberofreplications,1);

repmat(d2(17),numberofreplications,1); repmat(d2(18),numberofreplications,1);

repmat(d2(19),numberofreplications,1); repmat(d2(20),numberofreplications,1);

repmat(d2(21),numberofreplications,1); repmat(d2(22),numberofreplications,1);

repmat(d2(23),numberofreplications,1)];

d3total=[repmat(d3(1),numberofreplications,1); repmat(d3(2),numberofreplications,1);

repmat(d3(3),numberofreplications,1); repmat(d3(4),numberofreplications,1);

repmat(d3(5),numberofreplications,1); repmat(d3(6),numberofreplications,1);

repmat(d3(7),numberofreplications,1); repmat(d3(8),numberofreplications,1);

repmat(d3(9),numberofreplications,1); repmat(d3(10),numberofreplications,1);

repmat(d3(11),numberofreplications,1); repmat(d3(12),numberofreplications,1);

repmat(d3(13),numberofreplications,1); repmat(d3(14),numberofreplications,1);

repmat(d3(15),numberofreplications,1); repmat(d3(16),numberofreplications,1);

repmat(d3(17),numberofreplications,1); repmat(d3(18),numberofreplications,1);

repmat(d3(19),numberofreplications,1); repmat(d3(20),numberofreplications,1);

repmat(d3(21),numberofreplications,1); repmat(d3(22),numberofreplications,1);

repmat(d3(23),numberofreplications,1)];

e1total=[repmat(e1(1),numberofreplications,1); repmat(e1(2),numberofreplications,1);

repmat(e1(3),numberofreplications,1); repmat(e1(4),numberofreplications,1);

 68

repmat(e1(5),numberofreplications,1); repmat(e1(6),numberofreplications,1);

repmat(e1(7),numberofreplications,1); repmat(e1(8),numberofreplications,1);

repmat(e1(9),numberofreplications,1); repmat(e1(10),numberofreplications,1);

repmat(e1(11),numberofreplications,1); repmat(e1(12),numberofreplications,1);

repmat(e1(13),numberofreplications,1); repmat(e1(14),numberofreplications,1);

repmat(e1(15),numberofreplications,1); repmat(e1(16),numberofreplications,1);

repmat(e1(17),numberofreplications,1); repmat(e1(18),numberofreplications,1);

repmat(e1(19),numberofreplications,1); repmat(e1(20),numberofreplications,1);

repmat(e1(21),numberofreplications,1); repmat(e1(22),numberofreplications,1);

repmat(e1(23),numberofreplications,1)];

X=[ones(totalruns,1) d1total d2total d3total e1total d1total.*d2total d1total.*d3total

d2total.*d3total d1total.*e1total d2total.*e1total d3total.*e1total d1total.^2 d2total.^2

d3total.^2];

fid=fopen('call_center','w+');

fprintf(fid,'beta(1) beta(2) beta(3) beta(4) beta(5) beta(6) beta(7) beta(8)

beta(9) beta(10) beta(11) beta(12) beta(13) beta(14)\n');

for t=1:50

%230*1 cost vector

costvectorperreplications=[2974.50; 3249.27; 4351.07; 3819.31; 3866.04; 4034.41;

4158.34; 4283.42; 4847.41; 3221.92; 2144.48; 4734.73; 3726.44; 4435.67; 3571.43;

4242.04; 4558.35; 4088.35; 3849.73; 4141.91; 2910.36; 3054.69; 4079.72; 4534.55;

3651.75; 4263.69; 4391.89; 3905.11; 4223.16; 3978.76; 2968.74; 3243.51; 4345.31;

3813.55; 3860.28; 4028.65; 4152.58; 4277.66; 4841.65; 3216.16; 2906.60; 3894.78;

3922.27; 4162.51; 4271.60; 4207.29; 3949.10; 4403.57; 3117.10; 4357.22; 2900.84;

3889.02; 3916.51; 4156.75; 4265.84; 4201.53; 3943.34; 4397.81; 3111.34; 4351.46;

2971.87; 3180.87; 4052.82; 3987.83; 4506.67; 4432.59; 3121.14; 4823.22; 3266.66;

3931.37; 2144.48; 4459.83; 4009.44; 4342.30; 3960.66; 4221.37; 3760.86; 4086.63;

4105.72; 4200.27; 2904.60; 3048.93; 4073.96; 4528.79; 3645.99; 4257.93; 4386.13;

3899.35; 4217.40; 3973.00; 2205.68; 4323.85; 3968.36; 3746.25; 4579.18; 4010.62;

4151.34; 4124.97; 4284.05; 3559.01; 2138.72; 4728.97; 3720.68; 4429.91; 3565.67;

4236.28; 4552.59; 4082.59; 3843.97; 4136.15; 2966.11; 3175.11; 4047.06; 3982.07;

 69

4500.91; 4426.83; 3115.38; 4817.46; 3260.90; 3925.61; 2132.72; 4454.07; 4003.68;

4336.54; 3954.90; 4215.61; 3755.10; 4080.87; 4099.96; 4194.51; 2205.68; 4306.03;

4403.08; 3692.27; 3970.70; 4224.98; 3875.20; 3804.03; 4165.76; 3450.93; 2199.92;

4318.09; 3962.60; 3740.49; 4573.42; 4004.86; 4145.58; 4119.21; 4278.29; 3553.25;

2199.92; 4300.27; 4397.32; 3686.51; 3964.94; 4219.22; 3869.44; 3798.27; 4160.00;

3445.17; 2817.39; 3902.39; 3805.63; 4225.54; 4138.06; 4088.09; 4288.14; 4047.90;

4277.02; 3839.19; 2817.39; 3902.39; 3805.63; 4225.54; 4138.06; 4088.09; 4288.14;

4047.90; 4277.02; 3839.19; 2836.68; 3921.67; 3824.91; 4244.82; 4157.35; 4107.37;

4307.42; 4067.18; 4296.30; 3858.47; 2835.60; 3920.60; 3823.84; 4243.75; 4156.28;

4106.30; 4306.35; 4066.11; 4295.23; 3857.40; 2492.14; 3703.68; 4397.66; 4521.43;

4493.66; 3897.11; 4301.80; 2818.23; 4740.95; 4730.45; 2798.10; 3883.10; 3786.34;

4206.25; 4118.78; 4068.80; 4268.85; 4028.61; 4257.73; 3819.90; 2867.18; 3750.88;

4215.76; 3256.36; 4664.11; 3737.27; 3814.78; 4596.91; 3330.91; 4740.62];

%23*1 vector

averagecostvector=[3881; 3949; 3899; 3875; 3919; 3913; 3828; 3929; 3894; 3895;

3944; 3822; 3923; 3810; 3890; 3804; 3943; 3943; 3962; 3961; 4010; 3924; 3897];

%fit regression metamodel to average cost realizations

 beta=X\costvectorperreplications;

%call lack-of-fit F-test

[F_statistic,F_critical]=lack_of_fit2(beta,alpha,X,costvectorperreplications,

averagecostvector,numberofreplications,totalruns,numberofinputs);

 if F_statistic > F_critical

 totalreject=totalreject+1;

 else

 totalfailreject=totalfailreject+1;

 end

allbetas=[allbetas;beta(1) beta(2) beta(3) beta(4) beta(5) beta(6) beta(7) beta(8) beta(9)

beta(10) beta(11) beta(12) beta(13) beta(14)];

 70

fprintf(fid,' %g %g %g %g %g %g %g %g %g\n',beta(1), beta(2),

beta(3), beta(4), beta(5), beta(6), beta(7), beta(8), beta(9), beta(10), beta(11), beta(12),

beta(13), beta(14));

 t

end

fclose(fid);

Objective function @ fmincon

%this function creates the objective function for the minimization

function obj = objective2(x)

obj = -894160 + 46944.3*x(1) + 363.787*x(2) + 71341.3*x(3) + 431242*x(4) -

3.60577*x(1)*x(2) - 1687.57*x(1)*x(3) + 18.75*x(2)*x(3) - 6989.71*x(4)*x(1) -

187.5*x(4)*x(2) - 50035.5*x(4)*x(3) -672.168*x(1)^2 - 24.7372*x(2)^2 -

229.493*x(3)^2;

Minimization function

[x,fval,exitflag]=fmincon(@objective2, [26;4;5;0.5], [0 1 1 0], 15, [], [], [26;0;0;0.495],

[50;15;15;0.505])

 71

APPENDIX G:

Table G.1.: Calculation of the central point, positive and negative axial points and

positive and negative values of design variables based on OptQuest Results

OptQuest
Results

1%α = 2 2 2 2 2(26.26 26) (4.04 4) (5.05 5) (0.505 0.5) (0.606 0.6) 0.267882radius = − + − + − + − + − =

 + - positive axial points negative axial points

*
1 26x = 26.26 25.74

1 26.267882x = , 2 4x = , 3 5x = , 1 0.5e = ,

2 0.6e =
1 25.732118x = , 2 4x = , 3 5x = , 1 0.5e = ,

2 0.6e =
*
2 4x = 4.04 3.96

1 26x = , 2 4.267882x = , 3 5x = , 1 0.5e = ,

2 0.6e =
1 26x = , 2 3.732118x = , 3 5x = , 1 0.5e = ,

2 0.6e =
*
3 5x = 5.05 4.95

1 26x = , 2 4x = , 3 5.267882x = , 1 0.5e = ,

2 0.6e =
1 26x = , 2 4x = , 3 4.732118x = , 1 0.5e = ,

2 0.6e =
*
1 0.5e = 0.505 0.495 central point

*
2 0.6e = 0.606 0.594

1 26x = , 2 4x = , 3 5x = , 1 0.5e = , 2 0.6e =

 72

Table G.2.: Input combinations table for the call centre simulation

39 input combinations (@application #2)

52 input combinations Resolution V Design

1x 2x 3x 1e 2e 1x 2x 3x 1e 2e

+ + + + + 26.26 4.04 5.05 0.505 0.606

+ + + + - 26.26 4.04 5.05 0.505 0.594

+ + + - + 26.26 4.04 5.05 0.495 0.606

+ + - + + 26.26 4.04 4.95 0.505 0.606

+ - + + + 26.26 3.96 5.05 0.505 0.606

- + + + + 25.74 4.04 5.05 0.505 0.606

- - + + + 25.74 3.96 5.05 0.505 0.606

- + - + + 25.74 4.04 4.95 0.505 0.606

- + + - + 25.74 4.04 5.05 0.495 0.606

- + + + - 25.74 4.04 5.05 0.505 0.594

+ - - + + 26.26 3.96 4.95 0.505 0.606

+ + - - + 26.26 4.04 4.95 0.495 0.606

+ + + - - 26.26 4.04 5.05 0.495 0.594

+ - + - + 26.26 3.96 5.05 0.495 0.606

+ - + + - 26.26 3.96 5.05 0.505 0.594

+ + - + - 26.26 4.04 4.95 0.505 0.594

- - - + + 25.74 3.96 4.95 0.505 0.606

+ + - - - 26.26 4.04 4.95 0.495 0.594

- - + - + 25.74 3.96 5.05 0.495 0.606

- + - - + 25.74 4.04 4.95 0.495 0.606

- + + - - 25.74 4.04 5.05 0.495 0.594

+ - - + - 26.26 3.96 4.95 0.505 0.594

+ - + - - 26.26 3.96 5.05 0.495 0.594

- - + + - 25.74 3.96 5.05 0.505 0.594

- + - + - 25.74 4.04 4.95 0.505 0.594

+ - - - + 26.26 3.96 4.95 0.495 0.606

- - - - + 25.74 3.96 4.95 0.495 0.606

+ - - - - 26.26 3.96 4.95 0.495 0.594

- + - - - 25.74 4.04 4.95 0.495 0.594

 73

- - + - - 25.74 3.96 5.05 0.495 0.594

- - - + - 25.74 3.96 4.95 0.505 0.594

- - - - - 25.74 3.96 4.95 0.495 0.594

central point 26 4 5 0.5 0.6

 26.267882 4 5 0.5 0.6

 26 4.267882 5 0.5 0.6

positive axial points

 26 4 5.267882 0.5 0.6

 25.732118 4 5 0.5 0.6

 26 3.732118 5 0.5 0.6

negative axial points

 26 4 4.732118 0.5 0.6

 74

Table G.3.: Total sytem costs per replication

Input
combinations

Total sytem cost @lth replication (@application #2) Total
cost

 1 2 3 4 5 6 7 8 9 10
i.c. 1 2974.50 3249.28 4351.07 3819.31 3866.04 4034.41 4158.34 4283.42 4847.41 3221.91 3881

i.c. 2 2974.50 3249.27 4351.07 3819.31 3866.04 4138.74 4544.46 3891.75 4034.14 4032.77 3890

i.c. 3 2144.49 4650.53 4077.91 3322.74 4835.23 3642.69 4364.19 3939.71 4093.05 3910.96 3898

i.c. 4 2910.36 3054.69 4079.72 4534.55 3786.16 4205.74 4112.75 3509.12 4548.76 3950.53 3869

i.c. 5 2968.74 3243.52 4345.31 3813.55 3860.28 4028.65 4152.58 4277.66 4841.65 3216.15 3875

i.c. 6 2906.60 3894.78 3922.27 4162.51 4271.60 4207.29 3949.10 4403.57 3117.10 4357.22 3919

i.c. 7 2900.84 3889.02 3916.51 4156.75 4265.84 4201.53 3943.34 4397.81 3111.34 4351.46 3913

i.c. 8 2971.87 3144.12 3979.64 4120.42 4264.11 4462.85 3482.15 3472.38 4631.85 4022.94 3855

i.c. 9 2144.49 4459.83 4009.44 4342.30 4037.79 4189.28 3210.24 5070.82 3895.47 3783.80 3914

i.c. 10 2906.59 4278.05 3894.78 3922.27 4162.51 4271.60 4283.37 3866.27 3879.99 3794.80 3926

i.c. 11 2904.60 3048.93 4073.96 4528.79 3780.40 4199.98 4106.99 3503.36 4543.00 3944.77 3863

i.c. 12 2205.69 4323.85 3968.36 3746.25 4579.18 4010.62 4151.34 4124.97 4284.05 3559.01 3895

i.c. 13 2144.48 4734.73 3726.44 4435.67 3571.43 4242.04 4359.14 4294.95 3785.20 4339.41 3963

i.c. 14 2138.73 4644.77 4072.15 3316.98 4829.47 3636.93 4358.43 3933.95 4087.29 3905.20 3892

i.c. 15 2968.74 3243.51 4345.31 3813.55 3860.28 4132.98 4538.70 3885.99 4028.38 4027.01 3884

i.c. 16 2910.36 3054.69 4079.72 4534.55 3979.38 3264.58 4891.85 3957.32 3817.37 4294.69 3878

i.c. 17 2966.11 3138.36 3973.88 4114.66 4258.35 4457.09 3476.39 3466.62 4626.09 4017.18 3849

i.c. 18 2205.68 4323.85 4067.04 3858.86 4292.39 3851.01 4333.34 3264.27 4739.54 3460.23 3840

i.c. 19 2138.73 4454.07 4003.68 4336.54 4032.03 4183.52 3204.48 5065.06 3889.71 3778.04 3909

i.c. 20 2205.69 4306.03 3907.72 4590.12 3527.44 4338.75 4191.90 4059.08 3646.79 4057.54 3883

i.c. 21 2144.48 4459.83 4009.44 4342.30 3960.66 4127.90 4002.59 3776.49 4214.05 4282.28 3932

i.c. 22 2904.60 3048.93 4073.96 4528.79 3973.62 3258.82 4886.09 3951.56 3811.61 4288.93 3873

i.c. 23 2138.72 4728.97 3720.68 4429.91 3565.67 4236.28 4353.38 4289.19 3779.44 4333.65 3958

i.c. 24 2900.83 3889.02 3916.51 4156.75 4265.84 4277.61 3860.51 3874.23 3789.04 4272.29 3920

i.c. 25 2971.87 3180.87 4052.82 3987.83 4506.67 4432.59 3259.29 4032.02 3870.58 4576.48 3887

i.c. 26 2199.93 4318.09 3962.60 3740.49 4573.42 4004.86 4145.58 4119.21 4278.29 3553.25 3890

i.c. 27 2199.93 4300.27 3901.96 4584.36 3521.68 4332.99 4186.14 4053.32 3641.03 4051.78 3877

i.c. 28 2199.92 4318.09 4061.28 3853.10 4286.63 3845.25 4327.58 3258.51 4733.78 3454.47 3834

i.c. 29 2205.68 4306.03 4403.47 3368.25 4366.27 4415.53 3935.00 3870.40 3853.88 3801.44 3853

i.c. 30 2138.72 4454.07 4003.68 4336.54 3954.90 4122.14 3996.83 3770.73 4208.29 4276.52 3926

 75

i.c. 31 2966.11 3175.11 4047.06 3982.07 4500.91 4426.83 3253.53 4026.26 3864.82 4570.72 3881

i.c. 32 2199.92 4300.27 4397.71 3362.49 4360.51 4409.77 3929.24 3864.64 3848.12 3795.68 3847

centeral
point

2817.39 3902.39 3805.63 4225.54 4138.06 4088.09 4288.14 4047.90 4277.02 3839.19 3943

positive axial
point 1

2817.39 3902.39 3805.63 4225.54 4138.06 4088.09 4288.14 4047.90 4277.02 3839.19 3943

positive axial
point 2

2836.68 3921.68 3824.92 4244.82 4157.35 4107.38 4307.42 4067.19 4296.31 3858.48 3962

positive axial
point 3

2835.61 3920.61 3823.85 4243.75 4156.28 4106.31 4306.35 4066.12 4295.24 3857.40 3961

negative
axial point 1

2492.14 3703.68 4397.66 4521.43 4493.66 3897.11 4301.80 2818.23 4740.95 4730.45 4010

negative
axial point 2

2798.11 3883.11 3786.34 4206.25 4118.78 4068.80 4268.85 4028.61 4257.73 3819.90 3924

negative
axial point 3

2867.18 3750.88 4215.77 3256.36 4664.12 3737.27 3814.78 4596.92 3330.91 4740.62 3897

 76

APPENDIX H:

%this function performs lack-of-fit F-test

function [F_statistic, F_critical]=lack_of_fit3(beta, alpha, X, costvectorperreplications,

averagecostvector, numberofreplications, totalruns, numberofinputs)

%compute sum of squared residuals and sum of squared errors

averagecostvectorbar=[];

regressionhead=X*beta;

sumsquaredresidual=(costvectorperreplications-

regressionhead)'*(costvectorperreplications-regressionhead);

for i=1:totalruns

 if i<= numberofreplications

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(1)];

 elseif (i>= numberofreplications+1)&&(i<= 2*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(2)];

 elseif (i>= 2*numberofreplications+1)&&(i<= 3*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(3)];

 elseif (i>= 3*numberofreplications+1)&&(i<= 4*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(4)];

 elseif (i>= 4*numberofreplications+1)&&(i<= 5*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(5)];

 elseif (i>= 5*numberofreplications+1)&&(i<= 6*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(6)];

 elseif (i>= 6*numberofreplications+1)&&(i<= 7*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(7)];

 elseif (i>= 7*numberofreplications+1)&&(i<= 8*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(8)];

 elseif (i>= 8*numberofreplications+1)&&(i<= 9*numberofreplications)

 77

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(9)];

 elseif (i>= 9*numberofreplications+1)&&(i<= 10*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(10)];

 elseif (i>= 10*numberofreplications+1)&&(i<= 11*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(11)];

 elseif (i>= 11*numberofreplications+1)&&(i<= 12*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(12)];

 elseif (i>= 12*numberofreplications+1)&&(i<= 13*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(13)];

 elseif (i>= 13*numberofreplications+1)&&(i<= 14*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(14)];

 elseif (i>= 14*numberofreplications+1)&&(i<= 15*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(15)];

 elseif (i>= 15*numberofreplications+1)&&(i<= 16*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(16)];

 elseif (i>= 16*numberofreplications+1)&&(i<= 17*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(17)];

 elseif (i>= 17*numberofreplications+1)&&(i<= 18*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(18)];

 elseif (i>= 18*numberofreplications+1)&&(i<= 19*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(19)];

 elseif (i>= 19*numberofreplications+1)&&(i<= 20*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(20)];

 elseif (i>= 20*numberofreplications+1)&&(i<= 21*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(21)];

 elseif (i>= 21*numberofreplications+1)&&(i<= 22*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(22)];

 elseif (i>= 22*numberofreplications+1)&&(i<= 23*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(23)];

 elseif (i>= 23*numberofreplications+1)&&(i<= 24*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(24)];

 elseif (i>= 24*numberofreplications+1)&&(i<= 25*numberofreplications)

 78

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(25)];

 elseif (i>= 25*numberofreplications+1)&&(i<= 26*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(26)];

 elseif (i>= 26*numberofreplications+1)&&(i<= 27*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(27)];

 elseif (i>= 27*numberofreplications+1)&&(i<= 28*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(28)];

 elseif (i>= 28*numberofreplications+1)&&(i<= 29*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(29)];

 elseif (i>= 29*numberofreplications+1)&&(i<= 30*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(30)];

 elseif (i>= 30*numberofreplications+1)&&(i<= 31*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(31)];

 elseif (i>= 31*numberofreplications+1)&&(i<= 32*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(32)];

 elseif (i>= 32*numberofreplications+1)&&(i<= 33*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(33)];

 elseif (i>= 33*numberofreplications+1)&&(i<= 34*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(34)];

 elseif (i>= 34*numberofreplications+1)&&(i<= 35*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(35)];

 elseif (i>= 35*numberofreplications+1)&&(i<= 36*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(36)];

 elseif (i>= 36*numberofreplications+1)&&(i<= 37*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(37)];

 elseif (i>= 37*numberofreplications+1)&&(i<= 38*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(38)];

 elseif (i>= 38*numberofreplications+1)&&(i<= 39*numberofreplications)

 averagecostvectorbar=[averagecostvectorbar;averagecostvector(39)];

 end

end

 79

sumsquaredpurerror=(costvectorperreplications-

averagecostvectorbar)'*(costvectorperreplications-averagecostvectorbar);

sumsquaredlackfit=sumsquaredresidual-sumsquaredpurerror;

%perform F-test

dof1=numberofinputs-size(beta,1);

dof2=totalruns-numberofinputs;

F_statistic=(sumsquaredlackfit/dof1)/(sumsquaredpurerror/dof2);

F_critical = finv(1-alpha,dof1,dof2);

 80

APPENDIX I:

Matlab program codes for Appendix I can be found in the attached cd document with

the name “robust_rsm_3.m”.

Objective function @ fmincon

%this function creates the objective function for the minimization

function obj = objective3(x)

obj = (-2.00829e+006) + 43093.4*x(1) + 313036*x(2) + 41741.4*x(3) +

(1.48e+006)*x(4) + (1.18377e+006)*x(5) - 6009.64*x(1)*x(2) - 5114.92*x(1)*x(3) -...

31250.1*x(2)*x(3) - 52091.2*x(4)*x(1) - 312501*x(4)*x(2) + 222195*x(4)*x(3) -

40164.2*x(5)*x(1) - 260418*x(5)*x(2) +...

178239*x(5)*x(3) + 169.08*x(1)^2 - 6.47815*x(2)^2 - 200.209*x(3)^2;

Minimization function

[x,fval,exitflag]=fmincon(@objective3,[26; 4; 5; 0.5; 0.6],[0 1 1 0 0], 15, [], [],

26;0;0;0.495;0.594], [50;15;15;0.505;0.606])

 81

BIOGRAPHICAL SKETCH:

Seda Eyigün was born in in Balıkesir, on April 3, 1981.

She completed the high school in Balıkesir Lisesi, in 1999.

She received his B. Sc. degree in Computer Engineering from Galatasaray University,

İstanbul, in 2005. Since 2005, she is in the M. Sc. program in Industrial Engineering

of Galatasaray University.

For the completion of the program she has studied on "Robust Optimization through

Response Surface Methodology". She wrote her first academic article in 2008 with

Yrd. Doç. Dr. M. Ebru Angün.

