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ABSTRACT

During the last couple of decades, optimization methods have become one of the most
important research fields and received increasing attention from engineers, product

designers and researchers especially in the field of production and related industries.

The classical optimization approaches assume that the input data of the optimization
model is known with certainty. However, in many areas of application of real world
problems like inventory management, portfolio selection, supply chain optimization and
production planning, it’s needed to integrate the uncertainty of the input data into the

optimization model which refers to optimization under uncertainty.

The increasing interest in simulation optimization for problems that arise in practical
applications becomes relevant where explicit mathematical formulations are too
restrictive. Therefore, for many practical cases one cannot obtain an analytical solution
through those kind of methods. Indeed, simulation optimization has led to the

numerical solution of large-scale, real-world decision-making problems.

A simulation optimization method, Response Surface Methodology (RSM); aims to
achieve optimum operation conditions while minimizing the variability in order to
produce high quality and reliable products and services at the lowest possible cost. As
an extension of Robust Parameter Design (RPD), RSM is a combination methodology

of mathematical and statistical techniques in problem modeling and analysis.

The risk-neutrality problem of the classic simulation optimization problems can be
handled by the Dual Response Surface (DRS) approach within RSM and combining it

with the Taguchi’s RPD enables researchers to cope with the unknown environments.



In this work, a risk-averse approach to Response Surface Methodology, which explicitly
deals with random environments, is presented. The main contribution of this thesis is to

adapt Taguchian RSM to discrete-event simulation studies.

The thesis introduced the steps of this Taguchian RSM approach and then an application
of these steps to an inventory optimization is provided. The computer program is coded
in Matlab 7.6. , and the optimization is performed through the built-in function fmincon
in Matlab.

Furthermore, Taguchian RSM method is applied to a more complex example which is a
call center problem modeled in Arena. The results taken from the execution of the

model is used in our optimization algorithm coded in Matlab.

Although it’s usefull to increase the number of decision variables in the example,
because of the version limits of Arena, an example with an additional environmental
factor is provided in order to expand the original example. Thus we left this issue as a

future research.

For the future work, this study can be extended to an iterative approach, or the proposed

approach can be developed to handle multiple random responses.

X



RESUME

Pendant les derni¢res décades, les méthodes d'optimisation sont devenues une des
régions de recherche les plus importantes et ont regus l'attention augmentante des
ingénieurs, des créateurs de produit et des chercheurs surtout dans le domaine de la

production.

Les approches d'optimisation classiques supposent que les variables d'entrée du modele
d'optimisation sont connues avec la certitude. Cependant, dans le monde réel, il est
nécessaire d'intégrer l'incertitude des variables d'entrée dans le modele d'optimisation

qui se réfere a I'optimisation sous l'incertitude.

L'intérét croissant sur l'optimisation de simulation pour les problémes qui se présentent
dans les applications réel devient pertinentes ou les formulations mathématiques sont
trop restrictives. Donc, pour ces type de problémes, 1'un ne peut pas obtenir une
solution analytique par ces type de méthodes. En effet, I'optimisation de simulation a

mené a la solution numérique d'aux problémes de prise de décision a grande échelle.

Une méthode d'optimisation de simulation; La Méthodologie de Surface de Réponse
(RSM) a l'intention d'accomplir des conditions d'opération optimales, en minimisant la
variabilité, pour produire des produits et des services de haute qualité au prix le plus bas
possible. Comme une extension de Plan Parameétre Robuste (RPD), RSM est une
méthodologie de combinaison de techniques mathématiques et statistiques, utilisée pour

le modele at I’analyse du probléme.

Le probléme de risque-neutralité des problemes classiques d'optimisation de simulation

peut étre traité par l'approche Dual Response Surface (DRS) dans RSM et la



combinaison de cette approache avec le Plan Parameétre Robuste (RPD) du Taguchi

permet a chercheurs de faire face aux environnements inconnus.

Dans ce travail, une approche risque-opposé a la Méthodologie de Surface de Réponse,
qui traite explicitement des environnements faits au hasard, est présentée. La
contribution principale de cette theése est d'adapter Taguchian RSM aux études de

simulation de discret-événement.

L’¢étude introduit les étapes de cette approach et une application de ces étapes a un
probléme d’optimisation d'inventaire est fourni. Le programme informatique est codé
dans Matlab 7.6. , et I'optimisation est exécutée par le fmincon de fonction intégré dans

Matlab.

En outre, la méthode de Taguchian RSM est appliquée a une exemple plus complexe
qui est un probléme de centre téléphonique et est modelé dans Arena. Les résultats pris
de I'exécution du modéle sont utilisés dans notre algorithme d'optimisation, codé dans

Matlab.

Bien que c'est utile d’augmenter le nombre de variables de décision dans l'exemple, a
cause des limites de version d'Arena, un exemple avec un facteur ambiant
supplémentaire est fourni pour grandir I'exemple original. Ainsi nous sommes partis ce

probléme comme une recherche future.
Pour le travail futur, cette étude peut étre étendue a une approche itérative, ou

I'approche proposée peut étre développée pour manipuler des réponses multiples faites

au hasard.
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OZET

Optimizasyon metodlar1 ozellikle tiretim ve ilgili endiistrilerde, bir¢ok mihendis,

tasarimci ve arastirmaci tarafindan kullanilan 6nemli ¢caligsma alanlarindan birisidir.

Klasik yaklasimlarin ¢ogunda girdiler bilinir durumda olsa da, gercek hayattaki bircok
problemde (envanter yonetimi, portfolio secim, tedarik zinciri ve iiretim planlama
problemleri gibi) girdi verilerinin bilinir olmamasi, arastirmacilar farkli optimizasyon

tekniklerinin gelistirilmesine yonlendirmistir.

Gergek hayattaki birgok problemin ¢6zliim yaklagiminda kisit ve gecerlilikleri kesin olan
matematiksel formiillerin kullanim1 smirlayici oldugundan, bu tip problemlerde
simiilasyon-optimizasyon metodlarmin kullanilmasi daha gecerli hale gelmektedir. Bu
tip problemlerde matematiksel formiiller kullanarak analitik bir ¢oziim elde etmek
oldukca zordur. Bu yiizden, simiilasyon-optimizasyon yaklasimi ger¢ek hayatta
karsilagilan, biiyiik ol¢ekli karar verme problemlerinde sayisal sonuglar igin yol

gosterici olabilmektedir.

Diisiik maliyetli, yiiksek kaliteli ve giivenilir {iriinler iiretmek ya da bu 6l¢iilerde hizmet
saglamak amaciyla uygulanan Saglamci Parametre Tasarimi (Robust Parameter Design
- RPD) teknigi , degiskenligi en aza indirerek optimum operasyon kosullarini elde

etmeyi amaglamaktadir.

Tepki Yiizeyi Metodolojisi (Response Surface Methodology - RSM), Saglamci
Parametre Tasarimi tekniginin bir uzantist ve bir simiilasyon-optimizasyon metodu
olarak, problem analizi ve modellemede matematiksel ve istatistiksel tekniklerin

biraraya gelmesiyle olusturulmus bir yontemdir.



Simiilasyon optimizasyon problemlerinde kullanilan klasik yaklagimlarin risk-nétr
olmasi problemi ve bu problemlerin raslantisal ¢cevrelerde ¢oziimlenebilmeleri ¢ift tepki
ylizeyi yaklasimi ve bu yaklasimin Taguchi’nin Saglamci Parametre tasarimi ile

birlestirilmesi ile ¢oziimlenebilmektedir.

Bu c¢alismada, Tepki Yiizeyi Metodolojisi yontemi; raslantisal c¢evrelerde riskten
kacinma yontemi ile incelenerek, yeni bir yaklasim Onerilmistir. Calismanin temel

katkisi, Onerilen yontemin ayrik olayli simiilasyon 6rneklerine uygulanmasidir.

Calismanin genelinde, bu yaklagimin adimlar1 belirtilmis ve bu adimlar bir envanter
optimizasyon problemine uygulanarak sonuglari analiz edilmistir. 1lgili bilgisayar
programi Matlab 7.6.’da yazilmis, optimizasyon da Matlab’in fmincon fonksiyonu ile

uygulanmustir.

Daha sonra, sozkonusu metod daha kompleks bir 6rnek olan ve Arena programi
tizerinde modellenen cagri merkezi problemine iki farkli durumda uygulanmistir.
Modelin ¢alismas1 sonucu elde edilen sonuglar Matlab’da yazilan optimizasyon

algoritmasinda kullanilmastir.

Ornekteki karar degiskelerinin sayisimi arttirmak uygulama igin faydali olacaktir.
Ancak simiilasyon caligmasi i¢in kullanilan Arena programinin dgrenci versiyonu, bu
artirmi kisitladigindan, 6rnegi gelistirmek icin ¢evresel faktor eklenmistir. Bu durum,

ileriki bir uygulama olarak birakilmigtir.
Calisma sonucunda, Onerilen bir kerelik yaklasimin yinelemeli bir yaklagima

dontstiiriilebilecegi, ya da ¢oklu raslantisal tepki problemleri i¢in gelistirilebilecegi

belirtilmistir.

xiil



1. INTRODUCTION

In this chapter, we will present an overview on different approaches to optimization
under uncertainty, including two-stage stochastic programming with recourse,
probabilistic (or chance constraint) programming, risk-averse optimization and robust
optimization; reviews for stochastic programming with recourse, probabilistic
programming, and robust optimization are given in recent papers of Sahinidis [1] and
Beyer and Sendhoff [2]. Risk-averse optimization is explained in detail in Shapiro and

Ruszczynski’s comprehensive survey about stochastic programming [3].

For real-world optimization problems, the decision environment is usually characterized

by the following facts:

e The parameters (e.g., cost vector) are estimated through historical data. Hence, they
are uncertain.

e The optimal solution, even if computed very accurately, may be difficult to be
implemented accurately.

e The problem must remain feasible for all meaningful realizations of the parameters.

e Problems are large-scale. There are in general many variables and/or constraints.

e Bad optimal solutions (those that become severely infeasible when the parameters of

the problem are slightly changed) are quite common.

These facts imply that in many cases we deal with optimization problems under
uncertainty; see also many application papers on, for example, inventory management,
portfolio selection, facility planning, supply chain optimization, and production
planning and scheduling. The classical approaches to linear and nonlinear optimization
problems, on the other hand, assume that the parameters of the optimization problem are

known with certainty. Therefore, it is important to present the methodologies that can



cope with optimization problems under uncertainty, as well as their advantages and

shortcomings.
1.1. TWO STAGE STOCHASTIC PROGRAMMING WITH RECOURSE:

In the standard two-stage stochastic programming, the decision variables are partitioned
into two sets. The first-stage variables are those that have to be decided before the
actual realizations of the random parameters occur. Subsequently, once the realizations
of the random parameters are obtained, the second-stage variables are determined as
corrective measures or recourse against any infeasibilities arising due to these particular
realizations of the random parameters at certain costs. Due to uncertainty, the second-
stage cost is a random variable. Therefore, the objective is to select the first-stage
variables such that the sum of the first-stage costs and the expected value of the random

second-stage costs is minimized.

A standard formulation of the two-stage stochastic linear programming problem is as
follows; for further information, standard textbooks on stochastic programming such as
Kall and Wallace’s, Birge and Louveaux’s, and Shapiro and Ruszczynski’s can be

investigated [4, 5, 3].

minimize ¢' X +E [Q(X, W)]

subject to x € X
with (1.1)

Q(X, W) = minimize f (w)" y
subject to D(w)y > h(w)+T (w)x
yeY

c is the cost vector for the vector X of the first-stage variables, X and Y are

polyhedral sets, w is the vector of random variables from a probability space, f(w) is
the random cost vector for the vector y of the second-stage variables whose values

depend on x, and D(w), T(w), and h(w) are, respectively, random matrices and



random right-hand-side of the second-stage problem. The concept of recourse has been

applied also to integer and non-linear programming, and to problems with multi-stages.

The main advantage of the two-stage stochastic linear programming problem is that
under the assumption that w has a joint discrete distribution, the problem can be
equivalently formulated as a large-scale linear programming problem which can be
solved using standard linear programming technology. On the other hand, the main
shortcoming of this approach is that infeasibilities at the second-stage are allowed at a
certain penalty. The approach thus focusses on the minimization of the expected

recourse costs without taking into account the system's reliability.

There have been many successful applications of stochastic programming in very
diverse areas such as fleet assignment by Ferguson and Dantzig [6]; production of
heating oil with constraints on demands and capacities by Charnes and Cooper [7];
water management systems by Dupacova, Gairovonski, Kos and Szantai [8]; energy
planning by Manne; Louveaux; Pereira and Pinto; Manne and Richels; Morton; Takriti
Birge and Long; Carge, Ruszczynski, and Schultz [9, 10, 11, 12, 13, 14, 15]; forestry
planning by Gassmann [16]; hospital staffing by Kao and Queyranne [17]; financial
decision-making by Mulvey and Vladimirou; Ziemba and Vickson; Kallberg, White and
Ziemba; Zenios; Dert; Carino and Ziemba; Kouwenberg and Zenios [18, 19, 20, 21, 22,
23, 24, 25, 26]; and capacity expansion problems by Sherali, Soyster, Murphy and Sen;
Davis, Dempster, Sethi and Vermes; Bienstock and Shapiro; Eppen, Martin and
Schrage; Berman, Ganz and Wagner; Malcom and Zenios; Ahmet, King and Parija [27,

28,29, 30, 31, 32, 33].

1.2. CHANCE CONSTRAINT OR PROBABILISTIC PROGRAMMING:

In the recourse-based approach, decision-makers assign costs (penalties) to recourse
activities that are taken to ensure feasibility of the second-stage problem. The focus is
on the minimization of the expected recourse costs. In the probabilistic or chance
constraint programming, however, the focus is on the reliability of the system; that is,

the system's reliability to meet feasibility constraints in a random environment. This



reliability is expressed through one or many probability functions, which require that

constraints are satisfied at a prespecified level.

Consider the following classical linear programming problem:

minimize ¢’ X
subject to AX>b (1.2)
x>0

where C is the cost vector, X is the vector of decision variables, b is the right-hand-
side vector, and A is the constraint matrix. Suppose that some entries in A are random

and the constraints AX>b have to be satisfied with some probability p € (0,1). Now,

the corresponding probabilistic programming problem can be given as [4, 5, 3]:

minimize ¢’ X
subject to P(AX>b)> p (1.3)
x>0

Suppose that in (1.3), there is only one constraint (hence, we have P(a'x>b)> p) and

randomness occurs in b. Suppose also that F is the cumulative density function of b .
Then the problem with a single probabilistic constraint becomes a simple linear

programming problem after replacing P(a) .

The main advantage of probabilistic programming is that it replaces the subjective
penalties in the recourse-based approaches by probabilities. However, this objectivity
has a price. In general, the feasible area of (1.3) is not convex, which makes (1.3) very
difficult to be solved. The feasible set in (1.3) is convex only under restrictive

assumptions [4, 5, 3].



Charnes and Cooper [34, 35] first introduced chance-constrained formulation of
stochastic programs. The classic book by Vajda provides an excellent introduction to

the formulation as well as various interpretations [36].

Applications of chance constraint programming (CCP) to capital rationing problems can
be found in [37, 38]. An extensive review of stochastic investment planning is

presented by Kelle, and Sarper [39, 40].
1.3. RISK AVERSE OPTIMIZATION:

In the following, we will explain risk averse optimization using the following simplest

form of the newsvendor problem taken from Sylver, Pyke, and Peterson [41].

A newsvendor orders a fixed quantity X of newspapers to be sold each day. The daily
demand D is assumed to be random, and the ordering decision should be made before a
realization d of demand occurs. The per unit acquisition cost is ¢. Unsold newspapers
are salvaged each day at the unit price W. A back order penalty cost of b per unit is
incurred if d exceeds X. The question is to find an ordering quantity X that optimizes
a selected performance measure, for example, the total cost. For a particular realization

d, this total cost function can be formulated as

G(x,d)=cx+b(d-x) —w(x—d), (1.4)

where (d - X)+ and (X —d )+ correspond to the maximum of d —X and 0, and x—d and

0, respectively.

If it makes sense to assume that the distribution function of D can be estimated from
historical data, then one of the possible ways to formulate the newsvendor problem is to
minimize the expected total cost, where the expectation is taken with respect to the

distribution function of D :



minimize E[G(x,D)] (1.5)

x>0

This classic formulation causes two well-known problems: First, it minimizes the total

cost on average, and hence it does not take the decision-maker's attitude toward risk into

account. Second, it is almost impossible to quantify the penalty cost b in G (x, d ) .

These two problems can be overcome by the following chance constraint formulation of

the newsvendor problem:

minimize E| H (x, D)]
20 (1.6)
subject to P{D—x>7}<«a

where for a particular realization d, H (X,d) is the difference between the total

acquisition cost and the revenue from the salvaged newspapers, if there are any, (that is,
H(x,d)=cx-w(x-d) , and P{D-x>7}<a is the so-called probabilistic (or

chance) constraint, which means that the probability of the demand exceeding the

ordering quantity X by a predetermined threshold z should not be greater than a

predetermined significance level  €(0,1). Hence, this approach minimizes a form of

the cost function on average while making sure that the risk of the demand being larger
than the ordering quantity is small. The problem type in (1.6) can be solved only after
finding a deterministic equivalent of the probabilistic constraint. As we already
mentioned in the previous subsection, the main disadvantages of having such a
constraint is that its deterministic equivalent gives rise to a convex feasible set for the
decision variable X (or vector in multi-dimensional case) only under restrictive
assumptions on the distribution function of D. Otherwise, one has to deal with a

nonconvex optimization problem.

Nemirovski and Shapiro construct convex approximations to probabilistic constraints.

These approximations are conservative in the sense that the feasible sets defined by



these approximations are contained in the feasible sets defined by the probabilistic

constraints [42]. Denoting the convex approximation of the probabilistic constraint by

P, (X, D), the problem in (1.6) becomes

minimize E[H (X, D)]

(1.7)
subject to p,_, (X, D)<«

The problem type in (1.7) is called risk averse optimization in the stochastic
programming literature [3]. As in (1.6), the problem in (1.7) minimizes the cost on
average while reducing the risk of having more than 7 backordered items to an
acceptable level, namely 1—« . Some more properties of the problem in (1.7) are: (i) It
is a convex optimization problem, and hence it is easily solvable by any optimization
software; (i) since the feasible set of (1.7) is contained in the feasible set of (1.6) and
both problems have the same objective function, the minimum objective value of (1.7)

provides an upper bound for the minimum objective value of (1.6).

This p, , has to satisfy some mathematical conditions which can be found in Artzner,

Delbaen, Eber and Heath [43]. Furthermore, classic risk measures such as variance and
standard deviation introduced in a portfolio selection problem by Markowitz do not

satisfy some of these conditions [44, 45].

Risk averse optimization has applications in many fields; for example, Ahmed,
Cakmak, and Shapiro apply this approach for inventory models [46], Rockafellar and
Uryasev for portfolio optimization [47], and Garcia-Gonzalez, Parrilla, and Mateo for

profit-based optimal scheduling of a hydro-chain [48].

Finally, in minimization problems, the risk aversion has been classically dealt with
through disutility functions. The existence of such functions is derived axiomatically in
Von Neumann and Morgenstern [49], but these disutility functions are very difficult to

elicit in practice. With the risk averse approach, this problem disappears.



The main advantage of risk averse optimization is that it can be easily solved by
standard convex optimization softwares. However, there are many different types for

P, such as semi-deviations and conditional-value-at-risk, and the choice for one of

them introduces subjectivity to the problem.

1.4. ROBUST OPTIMIZATION:

Robust optimization is a modeling methodology, combined with computational tools, to
process optimization problems in which the data are uncertain and is only known to

belong to some uncertainty set.

There are two different approaches to robust optimization problems. The first approach
is originated from Soyster [50], and further popularized by Ben-Tal and Nemirovski
[51]. In this approach, the focus is on feasibility uncertainties; that is, uncertainties
concerning the fulfillment of constraints the design variables must obey. This approach
assumes certain types for the uncertainty sets and obtains a computationally tractable
robust counterpart of the original problem. This approach also assumes that
mathematical expressions for the objective and/or constraint functions are available,
which is not the case for our problem. Therefore, in the rest of this work, we will not

consider Ben-Tal and Nemirovski 's approach to robust optimization.

The second approach is originated from Taguchi. The main difference of Taguchi's
method compared to ordinary optimization lies in the accounting for performance
variations due to noise factors beyond the control of the designer. That is, there are two
kinds of parameters entering the objective and/or constraint functions: control
parameters which are to be tuned to optimality, and noise factors (e.g., environmental

conditions) which are difficult to be controled by the designer [52].

Taguchi does not really use an automated optimization procedure. Instead, he uses
design of experiments in order to evaluate different design (control) parameters. To this
end, the design parameters are systematically changed taking values on a predefined

(orthogonal) lattice, the so-called inner array. At each design point, the noise variables



are systematically changed according to an outer array. The outputs of the performance
measures are obtained through real-life experimentation. Consequently, a statistical
data analysis can be performed to identify the design variable producing the best

performance.

From viewpoint of optimization efficiency, Taguchi's optimization approach suffers
from the curse of dimensions. Suppose that we have a k-dimensional design vector and

g-dimensional noise vector. Then, considering only the design vector, we already need
2 experiments (either real-life or simulation runs). Adding also the noise vector, we
will need a minimum of g2* experiments. As pointed out by Trosset: “the Taguchi

approach violates a fundamental tenet of numerical optimization-that one should avoid
doing too much work until one nears a solution" [53]. Besides these efficiency
considerations, there are other aspects of Taguchi's method which are subject to

controversial debates summarized in a panel discussion [54].

In our approach, we will use the idea of partitioning parameters into two sets, namely
design and noise parameters. However, like Myers and Montgomery [55], and Dellino,
Kleijnen, and Meloni [56], we will use Response Surface Methodology (RSM), which is
a black box simulation optimization technique. RSM is a computationally efficient
technique, which can cope with the curse of dimensions problem. However, our RSM
is different than the one in classic simulation optimization literature, where one usually
assumes known environments; for example, in an inventory optimization problem,

demands and lead times follow some distributions with some estimated parameters.

This estimation is usually achieved through the analysis of historical data. Then,
considering a specific environment (that is, distributions with specific parameters), one
finds the optimal operating conditions for this inventory system, without exploring
systematically other possible environments. Obviously, if the true environment happens
to be different from the one considered in simulation optimization procedure, then the
optimal operating conditions may become sub-optimal. In the chapters to follow, we
explain our Taguchian RSM, which takes into account several possible environments in

a systematic way.



2. TAGUCHIAN APPROACH TO RESPONSE SURFACE METHODOLOGY

2.1. INTRODUCTION

In classic simulation optimization, we usually minimize the expectation of a random
response, say W, for which an explicit mathematical formulation is not available, and

therefore the expectation is estimated through simulation [57].

This type of problems can be formulated as follows:

minimize E[ w|d | 2.1)

where d is the vector of control variables. An example of (2.1) is an inventory
problem, where w is the sum of ordering, inventory-carrying, and penalty costs for

back-ordered demands.

There are two disadvantages related to the formulation in (2.1). First, (2.1) is risk-
neutral; that is, W is minimized on average without taking into account, for example, its
estimated variance. To introduce the second disadvantage, we need to consider the
simulation study that estimates W-for example, an inventory simulation where we
assume demands follow an exponential distribution with mean 1/4. Now the second
disadvantage is that the simulation study is done considering a single point estimate for

this 4 (known environment).

In Response Surface Methodology (RSM), the risk-neutrality problem of (2.1) was
detected by Myers and Carter [58] who introduced the dual response surface (DRS)
approach. This approach was further popularized by Vining and Myers [59], and since
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then it has received a great deal of attention from researchers including Fan and Del
Castillo [60], Yang, Kuo, and Chou [61], Lee and Park [62], Kdksoy and Yalg¢indz [63],
and Dellino et al.[56].

In all papers mentioned in the previous paragraph except Dellino et al. [56], the DRS
approach was applied to real-life problems; Dellino et al. [56] considered deterministic
simulation. Therefore the main contribution of this thesis is to adapt Taguchian RSM to
discrete-event simulation studies.  Furthermore, we systematically explore the

environmental variables by letting them to take their values from some intervals.

2.2. LITERATURE REVIEW

During the last couple of decades, robust design methodology has received increasing
attention from engineers and researchers, due to the need of designing, formulating,

developing, and analyzing new products or improving the existing ones.

In the early 1980's, Taguchi proposed the robust design approach. Since then, the
Taguchian robust design methodology and its extensions have been widely used in
many industrial applications to improve product quality and production methods.
Applications of robust design to various engineering problems in the automotive
industry, plastic technology, process industry, and information technology can be found
in Bendell, Disney and Pridmore, and Dehnad [64, 65]. For robust process design, we
refer to Taguchi and Wu; Taguchi; Box; Phadke; Welch, Yu, kang and Sacks;
Shoemaker, Tsui and Wu; Pledger; Borkowski and Lucas; Wu and Hannada; and Myers
and Montgomery [66, 67, 68, 69, 70, 71, 72, 73, 74, 55]. Finally, for the applications of
Taguchi's approach to quality management and artificial neural networks, we refer to

Lin, Sullivan and Taguchi; and Lin and Tseng, respectively [75, 76].

Taguchi defines robust design as a product whose performance is minimally sensitive to
factors causing variability (at the lowest possible cost) [77] and to achieve desirable

product quality by design, he suggests a three stage process [78]:
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e System design, which is related to the conceptualization and synthesis of a product
or process to be used;

e Parameter design, which is related to finding the appropriate design factor levels to
make the system less sensitive to variations in uncontrollable noise factors (that is,
to make the system robust);

e Tolerance design, which occurs when the tolerances for the products or process are
established to minimize the sum of the manufacturing and lifetime costs of the

product or process.

Two important tools used in the parameter design of Taguchi are orthogonal arrays and
signal-to-noise ratios. Orthogonal arrays are used to test the different levels of each of

the control factors, and signal-to-noise ratios as a quality indicator.

The main difference of Taguchi's method compared to ordinary optimization lies in the
accounting for performance variations due to noise factors beyond the control of the
designer [2]. That is, Taguchi's method selects the levels of the controllable factors to
obtain the optimal operating conditions of control factors by reducing the variability
around a nominal value of a quality characteristic of interest, and at the same time it

keeps the process mean at the customer-identified target value.

Although Taguchi has had tremendous impacts on robust product and process designs,
his approach has received much criticism, particularly because of the use of crossed
orthogonal arrays as experimental designs and signal-to-noise-ratios.  Several
shortcomings of Taguchi's approach have been pointed out by Box; Vining and Myers;
Pignatiello and Ramberg; Myers, Khuri and Vining; Myers and Montgomery; Leon,
Shoemaker, and Kackar; Box, Bisgaard, and Fung; Nair et al. and Tsui [79, 80, 81, 82,
83, 84, 54, 85]. As a result, several researches have provided alternative methods to

Taguchi's robust parameter design.

The concept of robustness was introduced by Myers and Carter [58] to RSM
methodology through the DRS approach to model their problem. Their objective was to

find the optimal operating settings that optimize a primary response, subject to the
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condition that a secondary response takes on a desirable value. Since then, many
researchers have focused on the dual response approach. These approaches can be
classified as follows. Some researchers including Myers and Carter [58]; Fan and Del
Castillo [60]; Tang and Xu [86]; Ross, Osborne, and George [87]; Koksoy and
Doganaksoy [88]; Yang, Kuo, and Chou [89]; Peterson and Kuhn [90]; Jeong, Kim, and
Chang [91]; Yeniay, Unal, and Lepsch [92]; Lee and Park [93]; Lee, Park, and Cho
[94], and Koksoy and Yal¢inoz [95] considered only control factors when they
approximated their unknown responses through first or second-order regression
polynomials. On the other hand, Mir6-Quesada and Del Castillo [96]; Mir6-Quesada
and Del Castillo [97]; Myers, Brenneman, and Myers [98]; Rajagopal, Del Castillo, and
Peterson [99], Giovagnoli and Romano [100]; and Dellino et al. [56] considered both
noise and control factors. Below, we summarize the contributions of these papers to the

robust response surface methodology.

The abundant literature on RSM about how to seek optimal operating settings for dual
response systems using various optimization approaches neglects the inherent sampling
variability of the fitted responses. Therefore, Fan and Del Castillo [60] introduced
Monte Carlo sampling to the dual response approach and constructed an optimal region
in the control factor space, which provides more useful information to a process

engineer than a single expected optimal solution.

Tang and Xu proposed a goal programming approach to optimize a dual response
system. Their formulation is general enough to include some of the existing methods as

special case [86].

Ross et al. presented a mathematically rigorous approach for incorporating decision-
maker preferences. By interpreting the Lagrangian as a value function and the Lagrange
multiplier as a preference ratio, they explored candidate solutions that reflect decision-

maker preferences [87].

Taguchi's robust parameter design calls for simultaneous optimization of the mean and

standard deviation responses. The dual response optimization procedures have been
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adapted to achieve this goal by taking into account both the mean and standard
deviation responses. The popular formulations of the dual response problem typically
impose a restriction on the value of the secondary response (i.e., keeping the standard
deviation below a specified value) and optimize the primary response (i.e., maximize or
minimize the mean). Restrictions on the secondary response, however, may rule out
better conditions, since an acceptable value for the secondary response is usually
unknown. In fact, process conditions that result in a smaller standard deviation are
often preferable. A more flexible formulation of the problem can be achieved by
considering the secondary response as another primary response. Therefore, Koksoy
and Doganaksoy introduced Pareto optimal solutions, which give more flexibility to the
decision-makers in exploring alternative solutions [88]. Furthermore, Koksoy and
Yalginoz again followed Pareto optimal solutions strategy, but this time they solved the

DRS problem through a genetic algorithm [95].

Yang et al. solved a multiresponse simulation problem by using a dual response system
and scatter search method. Their proposed dual response system constructs a response
surface for each response [89]. It then transforms the dual response system into a
standard nonlinear programming formulation. The transformation treats the secondary
response as a constraint. In addition, the sample variance from simulation replications
is considered simultaneously by adding search area constraints to variance. Their
proposed scatter search method uses scatter search algorithms as an embedded

mechanism in a simulation program to guide the solution search process.

Peterson and Kuhn proposed an approach to doing a ridge analysis for optimizing a
response surface in the presence of noise variables [90]. Their approach allows an
investigator to explore factor combinations that lower the mean squared error about a
target value, while at the same time keeping track of how much the mean response
differs from the target value. Their approach also allows an investigator to compute a

simultaneous confidence band about the root mean squared error about a target value.

The dual response surface optimization simultaneously considers the mean and the

standard deviation of a response. The minimization of the mean squared error is a
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simple, yet effective, approach in DRS optimization. The bias and variance components
of the mean squared error need to be weighted properly if they are not in the same
importance in the given problem situation. To date, the relative weights of bias and
variance have been equally set or determined only by the data. However, the weights
should be determined in accordance with the tradeoffs on various factors in quality and
costs. Therefore, Jeong et al. (2005) proposed a systematic method to determine the
weights of bias and variance in accordance with a decision-maker's preference structure

regarding the tradeoffs [91].

Yeniay et al. utilized the DRS approach to quantify variability in critical performance
characteristics during conceptual design phase of a launch vehicle [92]. Using design of
experiments methods and disciplinary design analysis codes, dual response surfaces are
constructed for the mean and standard deviation to quantify variability in vehicle weight
and sizing analysis. Next, an optimum solution is sought to minimize variability subject

to a constraint on mean weight.

In robust design, a commonly used assumption behind the data collection procedure is
that all the data are fully observed. However, in many industrial experiments, interval
censored observations are frequently available in addition to the fully observed

observations.

Therefore, Lee and Park calculated the optimal operating conditions for the process
based on a dual response approach using incomplete data [93]. In their novel approach,
they estimate the process mean and variance with incomplete data. Thus, it is possible

to find the optimal operating conditions using all of the information available.

Robust design uses the ordinary least squares method to obtain adequate response
functions for the process mean and variance by assuming that experimental data are
normally distributed and that there is no major contamination in the data set. Under
these assumptions, the sample mean and variance are often used to estimate the process
mean and variance. In practice, the above assumptions are not always satisfied. When

these assumptions are violated, one can alternatively use the sample median and median
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absolute deviation to estimate the process mean and variance. However, the median and
median absolute deviations both suffer from a lack of efficiency under the normal
distribution, although they are fairly outlier-resistant. To remedy this problem, Lee et
al. proposed new robust design methods based on a highly efficient and outlier resistant

estimator [94].

Mir6-Quesada and Del Castillo proposed an extension to the dual response approach to
robust parameter design for the case of multiple responses [96]. Their methodology
provides unbiased estimates of the process covariance matrix and of the vector of

expected values using parameter estimates from a multivariate regression fit.

Mir6-Quesada and Del Castillo studied the prediction properties of models used in the
dual response approach to robust parameter design, and they proposed two procedures
that improve the performance of the approach [97]. Their first procedure suggests
scaling of the noise variables to reduce the expected mean squared error of the variance
model, based on the concept that the range of the noise variables used in the
experimental design should contain most of their distribution. However, it is shown that
such scaling does not alter the variance contribution of the noise factors, which is
fundamental for robust parameter design. Their second procedure combines the
variance due to the noise factors with the variance due to the prediction error of the
fitted model, thus considering all sources of variability present in the problem. An

unbiased estimator of this combined variance is developed.

Robust parameter design has been studied and applied, in most cases, assuming a linear
model under standard assumptions. More recently, robust parameter design has been
considered in a generalized linear model setting. Myers et al. applied a general dual
response approach when using robust parameter design in the case of a generalized
linear model [98]. They motivated the need for exploring both the process mean and
process variance by discussing situations when a compromise between the two is

necessary.
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The uncertainty of the model form is typically neglected in process optimization studies.
In addition, not taking into account the existence of noise factors and nonnormal errors
may invalidate the conclusions of such studies. Rajagopal et al. presented a Bayesian
approach to model robust process optimization in the presence of noise factors and
nonnormal error terms [99]. Their paper extended the idea of model form-robustness
using a Bayesian predictive approach to cases where there is uncertainty due to the

distributional assumptions of the errors.

The existing procedures for robust design, devised for physical experiments, may be too
limiting when the system can be simulated by a computer model. Therefore,
Giovagnoli and Romano introduced a modification of the DRS modeling, which
incorporates the option of stochastically simulating some of the noise factors when their
probabilistic behavior is known [100]. Their method generalizes both the crossed and
the combined array approaches and finds a natural application to integrated parameter

and tolerance design.

Optimization of simulated systems is tackled by many methods, but most methods
assume known environments. Therefore, Dellino et al. [56] developed a robust
methodology for uncertain environments. Their methodology uses Taguchi's view of
the uncertain world, but replaces his statistical techniques by Response Surface

Methodology.

2.3. TAGUCHI’S ROBUST DESIGN

Robust means that the process or product performs consistently and is relatively
insensitive to the factors that are difficult to control. Hence, Robust Design approach
aims to provide a method for designing products and processes that are minimally
impacted by external forces, such as environment, client use or manufacturing-based

factors named as uncontrollable factors .

As mentionned in the literature review part, Taguchi suggests a three stage process

(system design, parameter design, tolerance design) in order to minimize the
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process/product variation and to design robust and flexible processes/products that are

adaptable to environmental conditions.

According to Taguchi, there are two types of factors that affect a product’s functional

characteristic which can be found in Figure 2.1: control factors and noise factors [56].
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Figure 2.1: Taguchi factors

The first type of factors are under the control of the users, and the second type of factors
are difficult or impossible or too expensive to control. Hence, parameter design seeks
to identify settings of the control factors which make the product insensitive to
variations in the noise factors, i.e., make the product more robust, without actually

eliminating the causes of variation.

Design of experiments techniques, specifically Orthogonal Arrays (OAs), are employed
in Taguchi’s approach to systematically vary and test the different levels of each of the

control factors. A complete listing of OAs can be found in text such as Phadke [69].

To implement robust design, Taguchi advocates the use of an “inner array” and “outer
array” approach. The “inner array” consists of the OA that contains the control factor
settings; the “outer array” consists of the OA that contains the noise factors and their
settings which are under investigation. The combination of the “inner array” and “outer
array” constitutes what is called the “product array” or “complete parameter design
layout”. The product array is used to systematically test various combinations of the

control factor settings over all combinations of noise factors after which the mean
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response and standard deviation may be approximated for each run using the following

equations.
1
e Mean response: y:H Y, (2.2)
i=1
~ (i -Y)
e Standard deviation: S = i )1/ (2.3)
i=1 n-—

The preferred parameter settings are then determined through analysis of the “signal-to-
noise” (SN) ratio where factor levels that maximize the appropriate SN ratio are
optimal. There are three standard types of SN ratios depending on the desired

performance response [78]:

e Smaller the better (for making the system response as small as possible):
SN, :—IOIOg( ny] (2.4)
e Nominal the best (for reducing variability around a target):
72
SN, zlolog{yj (2.5)
e Larger the better (for making the system response as large as possible):

SN, :—IOlog[% iz] (2.6)
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These SN ratios are derived from the quadratic loss function and are expressed in a

decibel scale.

Once all of the SN ratios have been computed for each run of an experiment, Taguchi
advocates a graphical approach to analyze the data. In the graphical approach, the SN
ratios and average responses are plotted for each factor against each of its levels. The
graphs are then examined to “pick the winner,” i.e., pick the factor level which (1) best
maximize SN and (2) bring the mean on target (or maximize or minimize the mean, as

the case may be).

Finally, confirmation tests should be run at the “optimal” product settings to verify that
the predicted performance is actually realized. A demonstration of Taguchi’s approach

to parameter design can be found in Figure 2.2.

1. Select the quality characteristic

A 4

2. Select control and noise factors

!

3. Select orthogonal array

A 4

4. Conduct the experiments

A 4

5. Analyse results; determine
optimum factor-level combination

A 4

6. Predict optimum performance

A 4

7. Confirm experimental design

Figure 2.2: Main Steps of Taguchi Robust Design
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Taguchi method is a simple and usefull tool, but there are also some drawbacks which
require to be compansated with other optimization methodologies. These drawbacks

arc:

e When the number of design parameters increases its computational requirements
becomes unaffordable.
e Taguchi method has no capability to handle multiple performance measures

simultaneously.
2.4. TAGUCHIAN RESPONSE SURFACE METHODOLOGY

In this section, we introduce the steps of Taguchian RSM. We assume that the initial
point is in a neighborhood of an optimal solution of the problem in (2.1), say d*, which
was already found by a classic simulation optimization algorithm. Hence, starting from
the neighborhood of d”, our Taguchian RSM will search for a robust optimal solution

in one shot, rather than searching iteratively over the global feasible area.

Taguchian RSM consists of four steps, namely selecting a design type of experiments,
fitting a regression metamodel to the realizations of the random response W in (2.1) and
estimating its variance, checking the validity of the fitted metamodel, and minimizing a
risk-averse transformation of the problem in (2.1). We will describe these steps in
detail later in this section. Our description is in general in line with the one in Dellino et

al. [56]; whenever there is a difference, we will make it clear in the text.

In Step 2 of Taguchian RSM, Myers and Montgomery [55] suggested to approximate W
in (2.1) through

k k k c k c
y=8+>.54d, +ZZﬂj;j.djdj. +) vt DD 5 de +e (2.7)
j=1 g=1

i=1jzj j=1 g=I

=p,+B d+d'Bd+y'e+d Ae+¢ (2.8)
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where Y is the regression predictor, S, is the overall mean, the kj;’s are the main

2
effects of the controllable variables, the > ﬂj_j.’s are the two-factor interactions

(j#j) and the purely quadratic effects (j= j ), the Cy,’s are the main effects of the

environmental variables, and the ke, ’s are the control-by-noise interactions. This

2
makes a total of q=1+Kk +k?+c+ kc unknown coefficients to be estimated in (2.7).

Furthermore, the & is the residual which is supposed to satisfy the white noise

assumption; that is, ¢ is normally, independently, and identically distributed with mean
zero (u, =0) and constant variance o [55]. . =0 implies that the metamodel in

(2.5) has no lack-of-fit, which will be investigated in Step 3. Finally, (2.8) is obtained

by simply rewriting (2.7) in matrix notation.

Myers and Montgomery assumed the following for the vector of the environmental

variables € in (2.8): E(e)=0 and cov(e)=o_.I, where cov(e) and I denote the

covariance matrix of € and the identity matrix, respectively [55]. We, however, prefer

to replace their assumption with the more realistic one in Dellino et al.: E(e)= 4, and
cov(e) =0, , where both g, and €, are assumed to be known [56]. Under Dellino et

al.'s assumption, the mean and variance of y are given by

E(y)=8,+8d+d"Bd+y"u, +d Ay, (2.9)

var(y) :Var[(yT +dTA)e]+ag2 :(yT +dTA)QE(7/+ATd)+O'f (2.10)

provided that e and ¢ are independent [56]. Estimates of (2.7) and (2.10) will be used

when we minimize a risk-averse version of (2.1) in Step 4.

Now, we can detail each step of Taguchian RSM, as follows. These steps will be used
only once when we apply Taguchian RSM to an inventory example in the next section

(i.e., one shot approach).



23

Step 1, Select a design type of experiments: To fit the metamodel in (2.7), simulation
practitioners usually prefer a central composite design (CCD), which is defined as
follows. One part of a CCD consists of a two-level factorial design that may be

fractional-provided this fractional has a resolution at least V - since a resolution V (R, )

design gives unbiased ordinary least squares (OLS) estimators of all main effects and all
two-factor interactions-provided all other effects are negligible. Furthermore, to
estimate all purely quadratic effects, a CCD augments a R, design by (i) the central
design point and (ii) 2(k + ) axial design points [101]. In our CCD, we have only 2k

axial design points in addition to the central design point, since there are no purely

quadratic effects of the environmental variables in (2.7).

Step 2, Fit the metamodel and estimate variance: Let n be the total number of input
combinations, which depends on the selected design type in Step 1. We simulate m,
replicates at the |th design point (d,',e )" I=(l,...,n), which give m, identically and
independently distributed simulated responses at that point. Furthermore, we do not use

common seeds across the n input combinations, to make the resulting total number of

runs N=m +..+m +...+m, independent. Our main reason for avoiding common

seeds is the well-known synchronization problem of discrete-event simulation studies

[102]. By this way, we obtain the N x1 vector W of simulated responses.

Let £ be the qx1 vector whose components are the unknown coefficients in (2.7). If
the ¢ satisfies the white noise assumption, then the best linear unbiased estimator of ¢

is given by its OLS estimator:

-1

£=(XTX) X"w 2.11)

where X is the N x(Q matrix of explanatory variables. In (2.11), we use the original

values of dand e; because the inversion in (2.11) may cause numerical instabilities,

Dellino et al. used their standardized (or coded) values [56].
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Assuming that the variance of W is constant across the N input combinations, the

covariance matrix of ¢ is given by

=65 (XTX) (2.12)

(2.13)

provided ¥ = ch and N >(q. Considering the dependence of (2.10) on d, the constant

variance assumption may not be very realistic; we left this issue as a future work.

For (2.11) to be multivariate normally distributed, Dellino et al., who considered
deterministic simulation, assumed that e is multivariate normally distributed [56]. We,
however, consider stochastic simulation where we can make a large number of runs;

that is, N — oo such that m, - oo for each input combination |. Then, under some
conditions, {\/W (cf - )} has asymptotically a multivariate normal distribution with

zero mean vector and covariance matrix ¥ with W given by (2.12) replacing &, with
o, [103]. In practice, ¢ and o are computed through (2.11) and (2.13) for large N .
Therefore, we do not need to assume multivariate normality for €. Furthermore, the

asymptotic multivariate normality of éA' enables us to apply classic F-test for lack-of-fit

in the following step.

Step 3, Test the validity of the fitted metamodel: We test the following null
hypothesis:

H, : E(w) = E(y). (2.14)
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If H, is rejected, the approach in classic RSM is to switch alternative regression

metamodels using some transformations of d ; in this thesis, we do not discuss solutions
when there is lack-of-fit, but we refer to Irrizary, Kuhl, Lada, Subramanian and Wilson

for such solutions [104]. In case H, is not rejected, Step 4 will be performed.

To test H,, we introduce the following classic F-statistic:

— SSLOF /Vl (215)
v SSPE /VZ

where SS - is the lack-of-fit sum of squares, SS,. is the sum of squared pure errors,
and v,=n-q and v,=N-n are the degrees of freedom of SS . and SS,.,
respectively. H, is rejected if F, | exceeds a prespecified critical value F where

ARV

a 1s the type-1 error rate.

To compute F we introduce the sum of squared residuals, SS;, since SS - is

VLY, 2

given by SS - =SS; =SS, . These SS; and SS,. can be computed through

SSp =(W—-9) (W-9) (2.16)
and

SSpe =(W-W) (W) 2.17)

where W is the N x1 vector of responses averaged over the m, replicates; i.e., its first
m, rows consist of VTle , which denotes the average of the first m, components of W, its

next m, rows consist of W, , which denotes the average of the next m, components of

W, etc.
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Finally, to test H,, Dellino et al. used leave-one-out cross-validation. Our F-test

approach in (2.15) is more standard in regression analysis [56].

Step 4, Minimize the risk-averse problem: To obtain a risk-averse formulation of the
problem in (2.1), we first estimate (2.9) and (2.10) by

Y=L, +p"d+d"Bd +7" 4, +d Ay, (2.18)

vAar(y)z(yT +dTA)QE(;?+ATd)+&j (2.19)

Note that the variance estimator in (2.19) is biased; Myers and Montgomery gave an

unbiased estimator for var(y) [55], but for simplicity we use (2.19). Furthermore, we

estimate & through (2.13).

Now a risk-averse formulation is given by the smaller the better approach:

minimize ¥
—~ (2.20)
subject to var(y) <7

where 7 denotes a threshold value. We will change this 7 over a finite interval and

solve (2.20) each time with the new 7 to observe the price of taking risk.
2.5. (5, S) INVENTORY EXAMPLE

In this section, we applied Taguchian RSM to an (s, S) inventory example investigated
by Bashyam and Fu [105]. The computer program was coded in Matlab 7.6, the
optimization in (2.20) was performed through the built-in function fmincon in Matlab,

and could be analyzed in Appendix A and B.
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2.5.1. Problem Definition

Bashyam and Fu [105] considered an infinite horizon periodic review inventory system
with continuous-valued independently and identically distributed demands and full
backlogging.

Orders are received at the beginning of the period; the demand for the period is
subtracted out, then an order review is carried out at the end of the period. The

inventory level in period n (W, ) is defined as the on hand stock minus backorders, and
observed after demand subtraction, and the inventory position (1, ) is the inventory

level plus any outstanding orders [105].

Ordering decisions are made according to the wellknown (s, S) policy:

If I, <s :an order for the amount S -1, is placed

O/w, no action is taken

The lead times L, for orders placed are assumed to be integer valued i.i.d. random

variables. Under their convention, an order with lead time | placed in period n will

arrive at the beginning of period n+1+1.

The performance of the system is evaluated by a cost function and a service level
measure, where the cost measure considers only setup and holding costs, and the service

level measure tracks the extent of backlogging in the system.

2.5.2. Application

Like Bashyam and Fu, we assumed an infinite horizon, periodic review inventory
system with exponentially distributed demands with mean 100 and Poisson distributed
order lead times with mean 6, and full backlogging of orders [106]. The basic sequence
of events in each period is as follows: orders are received at the beginning of the period,

the demand for the period is subtracted, and order review is done at the end of the
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period. An order is placed when the inventory position falls below the reorder level s;
the order amount is the difference between the order up to level S and the current

inventory position.

Furthermore, Bashyam and Fu set per order setup cost to 36, per unit order cost to 2,
and per period per unit holding cost to 1; we used the same cost values in our simulation
experiments [105]. Moreover, Bashyam and Fu had a service level constraint, which
we did omit, since this would require considering multiple responses; we left this issue
as a future work. We, however, had the following deterministic constraint in addition to

(2.20): s<S.

Angiin (2008) found an estimated optimal solution of Bashyam and Fu's problem as
(S*,S*)T =(116O,1212)T with an estimated cost of 647.15 [106]. Starting from this

estimated optimal solution, our goal is to find a robust optimal solution. The random
response W to be minimized is the total costs, namely the sum of order setup, ordering,

and holding costs. The environmental variable € is the mean demand.

In our experiment, the factorial part of CCD was given by a 23 design with
980<s<1340, 1019<S <1405 and 80<e<120, the central point by s = 1160, S =
1212, and e = 100, the two positive axial points by s = 1424, S= 1212, and e = 100, and
s=1160,S= 1476, and e = 100, and the two negative axial points by s =896, S = 1212,
and e = 100, and s = 1160, S = 948, and e = 100, all expressed in the original variables;
obviously, n = 13. Notice that the low (80) and high (120) values for e were chosen as

100+,/Q, /5, where Q, =100" is the variance of e. Furthermore, the number of
replicates at each input combination | was chosen as m, =30 so thatN =390. Each

simulation run was simulated for 2500 periods, and the type-1 error rate & for lack-of-
fit test was chosen as o =1%. The computer program was coded in Matlab 7.6, and

could be analyzed in Appendix C.
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Table 2.1.: Optimal regression predictors ¥ and their risks \/\7a\r( ¥") obtained through
solving (2.20) with s <S
w7

Jvar(9) y Jvar(y")

-408 232 -409 233 -410 234
-411 236 -413 237 -415 238
-416 240 -418 241 -419 242

We solved (2.20) subject to S<S by changing the target value 7 over the interval
[50,000; 58,000]; that is, we started with 7 = 50,000, solved the problem, increased 7
by 1000, and resolved the new problem up to and including 7 = 58,000. Our numerical

results are presented in Table 2.1; we rounded up all decimals to the nearest integers.

According to the results in Table 2.1, the lower the cost is, the higher the risk becomes,
which is in accordance with the common sense. In particular, the lowest cost, namely
419, has the highest risk, namely 242. A further remark that should be made is that all
optimal costs in Table 2.1 are lower than the one in Angiin (2008) as seen in Table 2.2.

simply because in this thesis, we did not consider the service level constraint [106].

Table 2.2.: Numerical results for the 0.50 quantile (‘mean’) of 100 estimated solutions
for the inventory problem

iteratio iterate (§,9) search direction d step H" H?

n size
A

0 (2100, 2300) (-0.7045,-0.7097)  1703.4
1 (900, 1091) reject fail to reject
2 (1500, 1695.5) reject reject
3 (1200, 1393.3) (-0.5973,-0.8020)  171.3 reject reject
4 (1097.6, 1255.9) reject fail to reject
5 (1148.8, 1324.6)  (-0.4816,-0.8764)  100.9 reject reject
6 (1123.2,1290.2) reject fail to reject
7 (1100.2, 1236.1) reject fail to reject
8 (1124.5, 1280.3) reject fail to reject
9 (1136.7,1302.4) reject reject




3. CALL CENTER APPLICATION

In this chapter, we will apply our Taguchian RSM approach to a more complex example
which is a call center problem modeled in Arena. The results taken from the execution

of the model will be used in our optimization algorithm.

3.1. PROBLEM DEFINITION

The generic call center system described in detail in the Simulation with Arena book
provides a central number in an organization that customers call for technical support,
sales information, and order status. This central number feeds 26 trunk lines. If all 26
lines are in use, a caller gets a busy signal; or an answered caller hears a recording
describing three options: transfer to technical support, sales information, or order-status

inquiry [107].

Below a brief description of each option is given and further details regarding waiting
times, product types’ request statistics, call duration estimates etc. can be found in

Appendix D.

Technical Support Calls
If the caller chooses technical support, he/she gets a second recording asking which of

three product types he/she is using:

e Product type 1? (25% of technical support callers)
e Product type 2? (34% of technical support callers)
e Product type 3? (41% of technical support callers)
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If a qualified technical support person is available for chosen product type, the call is
automatically routed to that person for immediate service. If not, the call is placed in an
electronic queue until a support person is available. Upon completion of the call, the
customer exits the system. However, four percent of these technical support calls needs
further assistance after completion of the call. The questions raised by these callers are
forwarded to another technical group, outside the boundaries of the defined model that
prepares a response. The resulting response is sent back to the same technical support
person who took the original call. This person then calls the customer back. These
calls require the use of one of the 26 trunk lines and takes priority over incoming calls.
If a returned call is not completed on the same day the original call was received, it’s

carried over to the next day. A demonstration of the Generic Call Center System can be

found in Figure 3.1.

i}
bl

Generic Call Center System

product type 1 @%25 @%a
technical support calls < product type 2 @%34 further

product type 3 @%41 assistance

Y
single telephone number
with 26 trunk lines

— > sales calls

\ order status calls

Figure 3.1: Generic Call Center System

There are 11 technical support people variously qualified for the three different product
lines. Some people only qualified in one line, and some on two or maybe all three lines.

Detailed stuffing description and schedule information can be found in Appendix D.
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Sales Calls

These calls are automatically routed to the sales staff which is separated from technical
support staff. There are seven sales people with the staggered daily schedules defined
in number of people @ time period in minutes. If a salesperson is not available, the

caller 1s waited on the line. Upon completion of the call, the customer exist the system.

Order-Status Calls

These calls are automatically handled by the phone system, and there is no limit on the
number handled at a time (but still limited by the 26 trunk lines). After the call some of
these callers take the option to talk to a real person and the rest exits the system. And

these calls:

e are routed to the sales staff

e have the same priority as incoming sales calls.

and then customers exit the system.

The call center operates from 8 am. to 6 p.m., and a small proportion of the staff stays
until 7 p.m. Incoming calls shut out after 6 p.m., but all calls that entered before 6 p.m.
are answered. The call arrival rate varies substantially over the day, and is expressed in
calls per hour for each 30-minute period during which the system is open. All technical
support employees work an eight-hour day with 30 minutes off for lunch (lunch is not
included in the eight hours). Top-level Model View of the Call Center Model can be
found in Figure 3.2.

Time Period Counter

Returned Tech Calls

A 4
A 4

Technical Support Calls

Create and Direct Arrivals » Sales Calls

» Order-Status Calls

Figure 3.2: Top-level Model View of the Call Center Model
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3.2. APPLICATION #1

Based on the defined model, our objective is to find an optimal solution (X, X,,X;,€, ),
where X, is the number of trunk lines, X, is the additional sales staff, X, is all product
support staft (support people qualified for all product types) and €, is the recording

delay of technical support calls having the uniform distribution U (0.1,0.5) as an

environmental factor, all of which minimize the total system cost. These decision

variables have the following constraints: 26 <X, <50, X, +X; <15, 0.5-r<e <0.5+r

where r is the radius. The objective function is the expected total system cost of new

technical people and new sales staff, and new trunk lines.

In the first step of our approach, we select the design type of experiments. As in our

previous example, we prefer to use a CCD design and since we have 4 design factors,

we select a 2* CCD design with 2k =6 axial design points and a central design point
which are given in detail in Appendix D. Therefore, we have n=23 input

combinations.

To fit the metamodel and estimate its variance, we simulate m, =10 replicates at each

design point and obtain 10 identically and independently distributed simulated
responses at each point. By this way, we obtain the 230x1 vector W of simulated

responses.

Type-1 error rate « for lack-of-fit test is chosen asa =1% . The computer program

was coded in Matlab 7.6, and could be analyzed in Appendix E.
Finally, in order to minimize the risk averse problem, we first estimate (3.1):

y = ﬁO +ﬂlxl +ﬂ2X2 +ﬁ3X3 +7/lel +IB],2X1X2 +IBI,3X1X3 +IBZ,3X2X3

2 2 2
+51,1elxl + 51,2e1 X+ 51,3e1X3 + ﬂ1,1x1 + ﬂz,zxz + ﬂ3,3X3
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For this, we use our computer program which was coded in Matlab 7.6, and could be

analyzed in Appendix F.

3.3. RESULTS#1

Based on the results taken from the execution of the Matlab codes, we observe,g’ as

below:

[-894160 |
46944.3
363.787
71341.3
431242
-3.60577
-1687.57
18.75
-6989.71
-187.5
-50035.5
-672.168
24.7372

-229.493 |

The optimization of the problem is performed by using the fmincon function. Our

minimization resulted with exitflag =1 which means that the problem is solved at

optimum. The optimum value for X is as below:

The objective value is equal to -4.4865e+003.
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3.4. APPLICATION #2

Since the student version of Arena doesn’t allow us to increase the number of decision

variables, we therefore decided to add one more environmental factor €, in order to

expand the original example.

Then, our objective becomes to find an optimal solution (X,X;,X;,€,,€,), where X, is
the number of trunk lines, X, is the additional sales staff, X, is all product support staff
(support people qualified for all product types), €, is the recording delay of technical
support calls having the uniform distribution U (0.1,0.5) and e, is the delay of create &

direct arrivals part of the system having the uniform distribution U(0.1,0.6) as an

environmental factor, all of which minimize the total system cost.

These decision variables have the same constraints as application #1. The objective
function is the expected total system cost of new technical people and new sales staff,

and new trunk lines.

In the first step of our approach, we select the design type of experiments. As in our
previous example, we prefer to use a CCD design and since we have 5 design factors
now, we select a 2° CCD design with 2k =6 axial design points and a central design
point which are given in detail in Appendix G. Therefore, we have n=39 input

combinations.

To fit the metamodel and estimate its variance, we simulate m, =10 replicates at each

design point and obtain 10 identically and independently distributed simulated
responses at each point. By this way, we obtain the 390x1 vector W of simulated

responses.

Type-1 error rate o for lack-of-fit test is chosen as @ =1% . The computer program

was coded in Matlab 7.6, and could be analyzed in Appendix H.
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Finally, in order to minimize the risk averse problem, we first estimate (3.2):

Y =By BX + BoXo + BiXs + BLoXXy + B3 XX + By 3% X%
+718 08X + 0,8 X +0, 38X+ 7,8, +0,,8,X +0,,8,%, (3.2)

+52,3ez Xy + ﬂ1,1x1 + 132,2 X, + 183,3 X

For this, we use our computer program which was coded in Matlab 7.6, and could be

analyzed in Appendix I.

3.5. RESULTS #2

Based on the results taken from the execution of Matlab codes, we observeﬁ as below:

[-2.00829¢+006 |
43093.4
313036
41741.4
1.48¢+006
1.18377e+006
6009.64
-5114.92
-31250.1
-52091.2
312501
222195
-40164.2
260418
178239
169.08
-6.47815

| -200.209

k)
I
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The optimization of the problem is performed by using the fmincon function. Our

minimization resulted with exitflag =4 which means that the magnitude of the search

direction is very small. The optimum value for X is as below:

[50.000 |
12.4348
X=|2.5652
0.5050
| 0.6060 |

The objective value is equal to -5.2503e+006.

We also experiment our minimization algorithm with different starting points, and

obtain same results; therefore, we can say that we reached a local optimum.



4. CONCLUSION

In this thesis, we presented the steps of Taguchian RSM, which consisted of selecting
an experimental design type, approximating the random response by a regression
metamodel and estimating its variance, performing a lack-of-fit test to check the validity

of the metamodel, and minimizing a risk-averse reformulation of the original problem.

We contrasted our description of Taguchian RSM with the one in Dellino et al. (2008):
the major differences are that we did not assume multivariate normality since we
considered stochastic simulation and had a large sample size -so that multivariate
normality is the result of a central limit theorem- and we used classic F-test for lack-of-

fit.

First, we applied our Taguchian RSM to an inventory example which is used as an
introductory exercise to our methodology; and our results showed that low risks mean

high costs.

Then we applied our method to a more complex example with three decision variables
and a single environmental factor. Based on the results taken from the simulation of the
problem in Arena, we applied our algorithms for RSM and lack-of-fit test. Our results
show that the presented methodology reaches a global optimum value for the

minimization problem.

In order to expand the original example, we did add one more environmental factor and
applied our methodology to the simulation results again. Our results show that the
presented methodology reaches a local optimum value for the minimization problem for

different starting points.
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While the author believes that the presented model provides value, there are also further
points that can be included. First of all classic RSM is an iterative metaheuristic; hence,
in our future work, we should extend our one shot approach to an iterative one. Another
issue is to extend the current approach to handle multiple random responses. Additional

interactions between and within the decision factors could have been included.
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APPENDIX A:

(s, S) Inventory program simulation code:

function [averagecostvector, fillratevector]|=inventory simulation(dltotal, d2total,

eltotal, totalruns, holdingcost, orderingcost, setupcost, numberofperiods, leadtimemean)

%initialization
averagecostvector=||;
fillratevector=[];

for i=1:totalruns
period=1;

indicator=0;

totalcost=0;
totalsatisfieddemand=0;
totaldemand=0;
arrivaltimes=[];
orders=[];
orderedarrivaltimes=[];
orderedorders=[];
notfullfilledtimes=[];
notfullfilledorders=[];
inventorylevel=d2total(i);
inventoryposition=d2total(i);

while period <= numberofperiods

%check existing orders
if size(notfullfilledtimes,1) ~= 0

count=0;
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for m=1:size(notfullfilledtimes,1)
if period == notfullfilledtimes(m,1)
inventorylevel=inventorylevel+notfullfilledorders(m,1);
count=count+1;
end
end
if count > 0
newnotfullfilledtimes=[];
newnotfullfilledorders=[];
for p=1:(size(notfullfilledtimes, 1)-count)
newnotfullfilledtimes(p, I )=notfullfilledtimes(p+count,1);
newnotfullfilledorders(p,1)=notfullfilledorders(p+count,1);
end
notfullfilledtimes=newnotfullfilledtimes;
notfullfilledorders=newnotfullfilledorders;
end
end

beforedemandinventorylevel=inventorylevel;

%generate demands

demand=exprnd(eltotal(i));

%update inventory level

inventorylevel=inventorylevel-demand;

%check inventory position, determine leadtimes

if inventoryposition < d1total(1)
indicator=1;
leadtime=poissrnd(leadtimemean);
arrivaltimes=[arrivaltimes; period+1+leadtime];
orders=[orders; d2total(i)-inventoryposition];
[orderedarrivaltimes, index1] = sort(arrivaltimes);

for k=1:size(index1,1)
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orderedorders(k,1)=orders(index1(k,1),1);
end
notfullfilledtimes=[notfullfilledtimes; period+1+leadtime];
notfullfilledorders=[notfullfilledorders; d2total(i)-inventoryposition];
newnotfullfilledtimes=][];
newnotfullfilledorders=[];
[newnotfullfilledtimes, index2] = sort(notfullfilledtimes);
for h=1:size(index2,1)
newnotfullfilledorders(h,1)=notfullfilledorders(index2(h,1),1);
end
notfullfilledtimes=newnotfullfilledtimes;
notfullfilledorders=newnotfullfilledorders;

end

%compute cost, total cost, satisfied demand, total satisfied demand, and total demand
cost = max([inventorylevel; 0]) * holdingcost + indicator *(setupcost + (orderingcost *
(d2total(i)-inventoryposition)));
totalcost=totalcost+cost;
if beforedemandinventorylevel > 0
satisfieddemand=min([demand; beforedemandinventorylevel]);
else
satisfieddemand=0;
end
totalsatisfieddemand=totalsatisfieddemand+satisfieddemand;
totaldemand=totaldemand+demand;
inventoryposition=inventorylevel+sum(notfullfilledorders);
indicator=0;
period=period + 1;
end
averagecostvector=[averagecostvector;totalcost/numberofperiods];
fillratevector=[fillratevector;totalsatisfieddemand/totaldemand];

end



APPENDIX B:

Application of Robust RSM to the inventory simulation:

%this program applies robust rsm to an inventory simulation
%fix simulation seed

rand('state’,0);

numberofreplicates = 30;

numberofinputs = 13;

totalruns = numberofreplicates * numberofinputs;
holdingcost = 1;

orderingcost = 2;

setupcost = 36;

numberofperiods = 2500;

leadtimemean=6;

alpha=0. 01;

totalreject=0;

totalfailreject=0;

allzetas=[];

%design matrix

d1=[1340; 1340; 1340; 980; 980; 980; 1340; 980; 1160; 1424; 1160; 896; 1160];
d2=[1405; 1405; 1019; 1405; 1019; 1405; 1019; 1019; 1212; 1212; 1476; 1212; 948];
el1=[120; 80; 120; 120; 120; 80; 80; 80; 100; 100; 100; 100; 100];

dl1total=[repmat(d1(1),numberofreplicates,1); repmat(d1(2),numberofreplicates,1);
repmat(d1(3),numberofreplicates,1); repmat(d1(4),numberofreplicates,1);
repmat(d1(5),numberofreplicates,1); repmat(d1(6),numberofreplicates,1);

repmat(d1(7),numberofreplicates,1); repmat(d1(8),numberofreplicates,1);
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repmat(d1(9),numberofreplicates,1);
repmat(d1(11),numberofreplicates,1);
repmat(d1(13),numberofreplicates,1)];

d2total=[repmat(d2(1),numberofreplicates,1);
repmat(d2(3),numberofreplicates,1);
repmat(d2(5),numberofreplicates,1);
repmat(d2(7),numberofreplicates, 1);
repmat(d2(9),numberofreplicates,1);
repmat(d2(11),numberofreplicates,1);
repmat(d2(13),numberofreplicates,1)];

eltotal=[repmat(e1(1),numberofreplicates,1);
repmat(e1(3),numberofreplicates,1);
repmat(el(5),numberofreplicates,1);
repmat(e1(7),numberofreplicates,1);
repmat(e1(9),numberofreplicates,1);
repmat(e1(11),numberofreplicates,1);

repmat(el(13),numberofreplicates,1)];

X=[ones(totalruns,1) dltotal d2total dltotal
dltotal. *eltotal d2total. *eltotal];
fid=fopen('zeta','w+');
fprintf(fid,'zeta(1)  zeta(2)
zeta(9)\n'");

for t=1:50

zeta(3)

%call inventory simulation

[averagecostvector,

zeta(4)

fillratevector]=inventory simulation(dl1total,

repmat(d1(10),numberofreplicates,1);
repmat(d1(12),numberofreplicates,1);

repmat(d2(2),numberofreplicates,1);
repmat(d2(4),numberofreplicates,1);
repmat(d2(6),numberofreplicates,1);
repmat(d2(8),numberofreplicates, 1);
repmat(d2(10),numberofreplicates,1);
repmat(d2(12),numberofreplicates,1);

repmat(e1(2),numberofreplicates,1);
repmat(e1(4),numberofreplicates,1);
repmat(el(6),numberofreplicates,1);
repmat(e1(8),numberofreplicates,1);
repmat(e1(10),numberofreplicates,1);

repmat(e1(12),numberofreplicates,1);

. 2 d2total. N2 dltotal. *d2total eltotal

zeta(5) zeta(6) zeta(7) zeta(8)

d2total, eltotal,

totalrun, holdingcost, orderingcost, setupcost, numberofperiods, leadtimemean);

%fit regression metamodel to average cost realizations

zeta=X\averagecostvector;
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%call lack-of-fit F-test
[F_statistic,F_critical]=lack of fit(zeta, alpha, X, averagecostvector,
numberofreplicates, totalruns, numberofinputs);
if F_statistic > F_critical
totalreject=totalreject+1;
else
totalfailreject=totalfailreject+1;
end
allzetas=[allzetas;zeta(1) zeta(2) zeta(3) zeta(4) zeta(5) zeta(6) zeta(7) zeta(8)
zeta(9)];
fprintf(fid,' %g %g %g %g %g %g %g %g %g\n'zeta(l), zeta(2),
zeta(3), zeta(4), zeta(5), zeta(6), zeta(7), zeta(8), zeta(9));
t
end

fclose(fid);



APPENDIX C:

Lack-of-fit test simulation code:

%ithis function performs lack-of-fit F-test

function [F statistic, F critical]=lack of fit(zeta, alpha, X, averagecostvector,
numberofreplicates, totalruns, numberofinputs)

one=[]; two=[]; three=[]; four=[]; five=[]; six=[]; seven=[]; eight=[]; nine=[]; ten=[];
eleven=[]; twelve=[]; thirteen=[];

averagecostvectorbar=[];

%compute sum of squared residuals and sum of squared errors
regressionhead=X*zeta;
sumsquaredresidual=(averagecostvector-regressionhead)'*(averagecostvector-
regressionhead);
for i=1:totalruns
if i<= numberofreplicates
one=[one;averagecostvector(i)];
elseif (i>= numberofreplicates+1)&(1<= 2*numberofreplicates)
two=[two;averagecostvector(i)];
elseif (i>= 2*numberofreplicates+1)&(i<= 3*numberofreplicates)
three=[three;averagecostvector(i)];
elseif (i>= 3*numberofreplicates+1)&(i<= 4*numberofreplicates)
four=[four;averagecostvector(i)];
elseif (i>= 4*numberofreplicates+1)&(i<= 5S*numberofreplicates)
five=[five;averagecostvector(i)];
elseif (i>= S*numberofreplicates+1)&(i<= 6*numberofreplicates)
six=[six;averagecostvector(i)];

elseif (i>= 6*numberofreplicates+1)&(i<= 7*numberofreplicates)
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seven=[seven;averagecostvector(i)];

elseif (i>= 7*numberofreplicates+1)&(i<= 8*numberofreplicates)
eight=[eight;averagecostvector(i)];

elseif (i>= 8*numberofreplicates+1)&(i<= 9*numberofreplicates)
nine=[nine;averagecostvector(i)];

elseif (i>= 9*numberofreplicates+1)&(i<= 10*numberofreplicates)
ten=[ten;averagecostvector(i)];

elseif (i>= 10*numberofreplicates+1)&(i<= 11*numberofreplicates)
eleven=[eleven;averagecostvector(i)];

elseif (i>= 11*numberofreplicates+1)&(i<= 12*numberofreplicates)
twelve=[twelve;averagecostvector(i)];

elseif (i>= 12*numberofreplicates+1)&(i<= 13*numberofreplicates)
thirteen=[thirteen;averagecostvector(i)];

end

end
for i=1:totalruns

if i<= numberofreplicates
averagecostvectorbar=[averagecostvectorbar;mean(one)];

elseif (i>= numberofreplicates+1)&(i<= 2*numberofreplicates)
averagecostvectorbar=[averagecostvectorbar;mean(two)];

elseif (i>= 2*numberofreplicates+1)&(i<= 3*numberofreplicates)
averagecostvectorbar=[averagecostvectorbar;mean(three)];

elseif (i>= 3*numberofreplicates+1)&(i<= 4*numberofreplicates)
averagecostvectorbar=[averagecostvectorbar;mean(four)];

elseif (i>= 4*numberofreplicates+1)&(i<= 5*numberofreplicates)
averagecostvectorbar=[averagecostvectorbar;mean(five)];

elseif (i>= 5*numberofreplicates+1)&(i<= 6*numberofreplicates)
averagecostvectorbar=[averagecostvectorbar;mean(six)];

elseif (i>= 6*numberofreplicates+1)&(i<= 7*numberofreplicates)
averagecostvectorbar=[averagecostvectorbar;mean(seven)];

elseif (i>= 7*numberofreplicates+1)&(i<= 8*numberofreplicates)

averagecostvectorbar=[averagecostvectorbar;mean(eight)];
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elseif (i>= 8*numberofreplicates+1)&(i<= 9*numberofreplicates)
averagecostvectorbar=[averagecostvectorbar;mean(nine)];
elseif (i>= 9*numberofreplicates+1)&(i<= 10*numberofreplicates)
averagecostvectorbar=[averagecostvectorbar;mean(ten)];
elseif (i>= 10*numberofreplicates+1)&(i<= 11*numberofreplicates)
averagecostvectorbar=[averagecostvectorbar;mean(eleven)];
elseif (i>= 11*numberofreplicates+1)&(i<= 12*numberofreplicates)
averagecostvectorbar=[averagecostvectorbar;mean(twelve)];
elseif (i>= 12*numberofreplicates+1)&(i<= 13*numberofreplicates)
averagecostvectorbar=[averagecostvectorbar;mean(thirteen)];
end
end
sumsquaredpurerror=(averagecostvector-averagecostvectorbar)'*(averagecostvector-
averagecostvectorbar);

sumsquaredlackfit=sumsquaredresidual-sumsquaredpurerror;

%perform F-test

dofl=numberofinputs-size(zeta,1);
dof2=totalruns-numberofinputs;
F_statistic=(sumsquaredlackfit/dof1)/(sumsquaredpurerror/dof2);
F _critical = finv(1-alpha,dofl,dof2);
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Objective function (@ fmincon

%this function creates the objective function for the minimization

function obj = objective(x)

obj = -180.0543 + 0.1704*x(1) + 0.4675*x(2) - 0.0004*x(1)"2 - 0.0003*x(2)"2 +
0.001*x(1)*x(2) + 2.58*x(3) - 0.0019*x(1)*x(3) - 0.0035*x(2)*x(3);

Minimization function

%this program minimizes the regression predictor subject to its variance <=

%target value where target value takes its values from [150, 400]
[x,fval,exitflag]=fmincon(@objective,[1160;1212;100], [1 -1 0], O, [], [], [896;948;80],
[1424;1476;120], (@constraint)



APPENDIX D:

Table D.1.: The percentages of requests for transfer options and product types

3 transfer options choice percentages
Technical support 76%
Sales information 16%
Order status inquiry 8%
3 product type options choice percentages

Product type 1 25%
Product type 2 34%
Product type 3 41%

Table D.2.: Sales staff (7) daily schedules (number of people @ time period in minutes)

Sales staff 1 3@90
Sales staff 2 T@90
Sales staff 3 6@90
Sales staff 4 T@60
Sales staff 5 6@120
Sales staff 6 T@120
Sales staff 7 4@90

Table D.3.: Estimated times for: (in minutes)

Support option choice time UNIF (0.1,0.6)
Technical support product type choice UNIF (0.1,0.5)
All technical support calls TRIA(3,6,18)
Response preparation time for further investigation EXPO(60)
required technical calls

Customer recall time TRIA(2,4,9)
Sales calls TRIA(4,15,45)
Order status call transactions TRIA(2,3,4)
Follow up order status calls TRIA(3,5,10)
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Table D.4.: Call Arrival Rates (Calls Per Hour)

Time

8.00-8.30

8.30-9.00

9.00-9.30
9.30-10.00
10.00-10.30

Rate

20
35
45
50
70

Time
10.30-11.00
11.00-11.30
11.30-12.00
12.00-12.30
12.30-13.00

Rate Time

75 13.00-13.30
75 13.30-14.00
90 14.00-14.30
95 14.30-15.00
105  15.00-15.30

Rate
110
95
105
90
85

Time
15.30-16.00
16.00-16.30
16.30-17.00
17.00-17.30
17.30-18.00

Rate
90
70
65
45
30

Table D.5.: Technical support (11) schedules

Time Period (30 minutes)

1 23 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Name Product
lines
Techl 1
Tech2 1
Tech3 1,3
Tech4 1,2,3
Tech5 1,23
Tech6 2
Tech7 2
Tech8 2
Tech9 3
Techl0 3
Techll 3

20 21 22

Table D.6.: Calculation of the central point, positive and negative axial points and
positive and negative values of design variables based on OptQuest Results

opruesti| - @ =1% 1| radius = /(26.26— 26)" + (4.04—4)” +(5.05—5)" +(0.505—0.5)" =0.2678
+ - positive axial points negative axial points
x =26 ||26:26]|25.74|| x =26.2678, X, =4, X, =5, ¢, =05 || x, =25.7321, x, =4, X, =5, ¢, =0.5
X; =4 4.04 11396 || x, =26, x,=4.2678, x, =5, ¢ =0.5 || x =26, x,=3.7321, x,=5, ¢ =0.5
X, =5 505 (1495 (| x, =26, x, =4, x,=5.2678,6,=05 || x =26, x,=4, x,=4.7321, ¢ =0.5
e =05 0.505 || 0.495 central point
X, =26, X, =4, X,=5,¢ =05
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Table D.7.: Input combinations table for the call centre simulation

23 input combinations

2¢ input combinations Resolution V Design

X, X, X, e X, X, X, )
+ |l + |l + || + | [[ 2026 || 404 || 505 || 0505 |
+ 1l + 1 + || - | [[ 2026 || 404 || 505 || 0495 |
+ I+ 1 - 1 + 1 [[| 2626 || 404 || 495 || os05 |
+ 1 - 11 + || + | [[ 2026 || 39 || 505 || 0505 |
N IEREE [[ 2574 || 404 || 505 || o505 |
I EE T [[ 2574 || 39 || so05 || os05 |
-+ -1+ 1 [[ 2574 || 404 || 495 || 0505 |
NENEE R [[ 2574 || 404 || 505 || 0495 |
+ 1 - 1 - || + | [[ 2026 || 39 || 495 || 0505 |
+ 1l + 1 - 1| - | [[ 2026 || 404 || 495 || 0495 |
+ 1 -1 + 1 - 1 [[ 2626 || 39 || so05 || 0495 |
-1 -1 - N+ [[| 2574 || 39 || 495 || 0505 |
- -1+ -1 [[ 2574 || 39 || so05 || 0495 |
-+ -1 -1 [[ 2574 || 404 || 495 || 0495 |
+ 10 -1 - 1l - | [[ 2626 || 396 || 495 || 0495 |
- -1 -1 -1 [[| 2574 || 39 || 495 || 0495 |

central point | | | | 26 I | 4 | | 5 | | 0.5 |

positive axial points | [| 262678 || 4 [| 5 [[ o5 |
| [ 26 || 42678 || 5 [[ o5 |
| [ 26 | 4 [[ 52678 || o5 |
negative axial points | | | 25.7321 I | 4 | | 5 | | 0.5 |
| [ 26 || 37321 | 5 [[ o5 |
| [ 26 | 4 [[ 47321 || o5 |
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Table D.8.: Total sytem costs per replication calculated through the call centre

simulation

Input Total sytem cost @lth replication Total
combinations cost
| Lt fL2 13 14 4s 1t e L7 108 fL o {10 |
lic. 1 [[2974.50][3249.27|[4351.07 | [ 3819.31 || 3866.04 | | 4034.41 | [ 4158.34 | [ 4283.42 || 4847.41 || 3221.92 || 3881 |
lic.2 [[2144.48][4734.73|[3726.44 | | 4435.67 | 3571.43 | [ 4242.04 | [ 4558.35 || 4088.35 | | 3849.73 || 4141.91 || 3949 |
lic.3 [[2910.36][3054.69][4079.72 | | 4534.55 || 3651.75 | | 4263.69 || 4391.89 || 3905.11 | [ 4223.16 || 3978.76 | | 3899 |
lic.4 [[2968.74][3243.51][ 434531 ]| 3813.55 || 3860.28 | [ 4028.65 || 4152.58 || 4277.66 | | 4841.65 || 3216.16 || 3875 |
lic.5 [12906.60](3894.78|[3922.27 | [ 4162.51 | 4271.60 | [ 4207.29 | [ 3949.10 || 4403.57 || 3117.10 || 4357.22 || 3919 |
lic.6 [[2900.84](3889.02][3916.51 || 4156.75 || 4265.84 | [ 4201.53 | [ 3943.34 |[ 4397.81 | [ 3111.34 | 4351.46 | | 3913 |
lic.7 [[2971.87](3180.87][4052.82 | | 3987.83 || 4506.67 || 4432.59 || 3121.14 || 4823.22 | | 3266.66 || 3931.37 || 3828 |
lic.8 [[2144.48][4459.83 || 4009.44 | [ 4342.30 | [ 3960.66 | | 4221.37 | | 3760.86 || 4086.63 || 4105.72 || 4200.27 | | 3929 |
lic.9 [12904.60[3048.93|[4073.96 || 4528.79 || 3645.99 | | 4257.93 | [ 4386.13 |{ 3899.35 || 4217.40 | 3973.00 | | 3894 |
lic. 10 [[2205.68][4323.85][3968.36 | | 3746.25 || 4579.18 | [ 4010.62 || 4151.34 || 4124.97 | | 4284.05 || 3559.01 || 3895 |
lic 11 [[2138.72][4728.97][3720.68 | | 4429.91 || 3565.67 || 4236.28 || 4552.59 || 4082.59 | | 3843.97 || 4136.15 | | 3944 |
lic. 12 [[2966.11][3175.11][4047.06 | 3982.07 || 4500.91 || 4426.83 | [ 3115.38 | [ 481746 | [ 3260.90 | [ 3925.61 | | 3822 |
lic. 13 [[2132.72][4454.07| | 4003.68 | [ 4336.54 | [ 3954.90 | [ 4215.61 | [ 3755.10 || 4080.87 || 4099.96 || 4194.51 || 3923 |
lic. 14 [[2205.68 ][ 4306.03 | [ 4403.08 | [ 3692.27 || 3970.70 | [ 4224.98 | | 3875.20 | 3804.03 | [ 4165.76 | 3450.93 | | 3810 |
lic. 15 [[2199.92]4318.09][3962.60 | | 3740.49 || 4573.42 | [ 4004.86 || 4145.58 || 4119.21 | [ 4278.29 || 3553.25 | | 3890 |
lic. 16 [[2199.92][4300.27][4397.32 || 3686.51 || 3964.94 | [ 4219.22 || 3869.44 | 3798.27 | | 4160.00 || 3445.17 || 3804 |
centeral 2817.39|[3902.39][ 3805.63 || 4225.54 || 4138.06 || 4088.09 || 4288.14 | [ 4047.90 || 4277.02 || 3839.19 || 3943
point
positive axial |[2817.39](3902.39 || 3805.63 || 4225.54 || 4138.06 || 4088.09 || 4288.14 || 4047.90 || 4277.02 || 3839.19 || 3943
point 1
pogitileeaxial 2836.68|[3921.67 || 3824.91 || 4244.82 || 4157.35 || 4107.37 || 4307.42 || 4067.18 || 4296.30 || 3858.47 || 3962
point
po§iti\3/eaxial 2835.60 | [3920.60 ][ 3823.84 | [ 4243.75 || 4156.28 | [ 4106.30 || 4306.35 | [ 4066.11 || 4295.23 || 3857.40 | 3961
point
negative 2492.14](3703.68 || 4397.66 || 4521.43 || 4493.66 || 3897.11 || 4301.80 || 2818.23 | [ 4740.95 || 4730.45 || 4010
axial point 1
negative 2798.10]|3883.10 || 3786.34 || 4206.25 || 4118.78 || 4068.80 || 4268.85 || 4028.61 || 4257.73 || 3819.90 | | 3924
axial point 2
negative 2867.18|[3750.88 ][ 4215.76 || 3256.36 || 4664.11 ][ 3737.27 || 3814.78 | [ 4596.91 || 3330.91 || 4740.62 || 3897
axial point 3




APPENDIX E:

%ithis function performs lack-of-fit F-test
function [F_statistic, F_critical]=lack of fit2(beta, alpha, X, costvectorperreplications,

averagecost vector, numberofreplications, totalruns, numberofinputs)

%compute sum of squared residuals and sum of squared errors
averagecostvectorbar=[];
regressionhead=X*beta;
sumsquaredresidual=(costvectorperreplications-
regressionhead)"*(costvectorperreplications-regressionhead);
for i=1:totalruns
if i<= numberofreplications
averagecostvectorbar=[averagecostvectorbar;averagecostvector(1)];
elseif (i>= numberofreplications+1)&&(i<= 2*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(2)];
elseif (i>= 2*numberofreplications+1)&&(i<= 3*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(3)];
elseif (i>= 3*numberofreplications+1)&&(i<= 4*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(4)];
elseif (i>= 4*numberofreplications+1)&&(i<= S*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(5)];
elseif (i>= 5*numberofreplications+1)&&(1<= 6*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(6)];
elseif (i>= 6*numberofreplications+1)&&(i<= 7*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(7)];
elseif (i>= 7*numberofreplications+1)&&(1<= §*numberofreplications)

averagecostvectorbar=[averagecostvectorbar;averagecostvector(8)];
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elseif (i>= 8*numberofreplications+1)&&(i<= 9*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(9)];
elseif (i>= 9*numberofreplications+1)&&(i<= 10*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(10)];
elseif (i>= 10*numberofreplications+1)&&(1<= 11*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(11)];
elseif (i>= 11*numberofreplications+1)&&(i<= 12*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(12)];
elseif (i>= 12*numberofreplications+1)&&(1<= 13*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(13)];
elseif (i>= 13*numberofreplications+1)&&(i<= 14*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(14)];
elseif (i>= 14*numberofreplications+1)&&(1<= 15*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(15)];
elseif (i>= 15*numberofreplications+1)&&(i<= 16*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(16)];
elseif (i>= 16*numberofreplications+1)&&(1<= 17*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(17)];
elseif (i>= 17*numberofreplications+1)&&(i<= 18*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(18)];
elseif (i>= 18*numberofreplications+1)&&(1<= 19*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(19)];
elseif (i>= 19*numberofreplications+1)&&(i<= 20*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(20)];
elseif (i>= 20*numberofreplications+1)&&(i<= 2 I *numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(21)];
elseif (i>= 21*numberofreplications+1)&&(i<= 22*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(22)];
elseif (i>= 22*numberofreplications+1)&&(i<= 23*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(23)];
end

end
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sumsquaredpurerror=(costvectorperreplications-
averagecostvectorbar)'*(costvectorperreplications-averagecostvectorbar);

sumsquaredlackfit=sumsquaredresidual-sumsquaredpurerror;

%perform F-test

dofl=numberofinputs-size(beta,1);
dof2=totalruns-numberofinputs;
F_statistic=(sumsquaredlackfit/dof1)/(sumsquaredpurerror/dof2);
F critical = finv(1-alpha,dof1,dof2);



APPENDIX F:

%this program applies robust rsm to the call center simulation
numberofinputs = 23;

numberofreplications=10;

totalruns = numberofinputs*numberofreplications;
alpha=0.01;

totalreject=0;

totalfailreject=0;

allbetas=[];

%design matrix

d1=[26.26; 26.26; 26.26; 26.26; 25.74; 25.74; 25.74; 25.74; 26.26; 26.26; 26.26; 25.74;
25.74; 25.74; 26.26; 25.74; 26; 26.2678; 26; 26; 25.7321; 26; 26];

d2=[4.04; 4.04; 4.04; 3.96; 4.04; 3.96; 4.04; 4.04; 3.96; 4.04; 3.96; 3.96; 3.96; 4.04;
3.96; 3.96; 4; 4; 4.2678; 4; 4; 3.7321; 4],

d3=[5.05; 5.05; 4.95; 5.05; 5.05; 5.05; 4.95; 5.05; 4.95; 4.95; 5.05; 4.95; 5.05; 4.95;
4.95;4.95; 5;5;5;5.2678; 5; 5, 4.7321];

e1=[0.505; 0.495; 0.505; 0.505; 0.505; 0.505; 0.505; 0.495; 0.505; 0.495; 0.495; 0.505;
0.495; 0.495; 0.495; 0.495; 0.5; 0.5; 0.5; 0.5; 0.5; 0.5; 0.5];

dl1total=[repmat(d1(1),numberofreplications,1); repmat(d1(2),numberofreplications,1);

repmat(d1(3),numberofreplications,1); repmat(d1(4),numberofreplications,1);
repmat(d1(5),numberofreplications,1); repmat(d1(6),numberofreplications,1);
repmat(d1(7),numberofreplications,1); repmat(d1(8),numberofreplications,1);
repmat(d1(9),numberofreplications,1); repmat(d1(10),numberofreplications,1);
repmat(d1(11),numberofreplications,1); repmat(d1(12),numberofreplications,1);
repmat(d1(13),numberofreplications,1); repmat(d1(14),numberofreplications,1);

repmat(d1(15),numberofreplications,1); repmat(d1(16),numberofreplications,1);
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repmat(d1(17),numberofreplications,1); repmat(d1(18),numberofreplications,1);
repmat(d1(19),numberofreplications,1); repmat(d1(20),numberofreplications,1);
repmat(d1(21),numberofreplications,1); repmat(d1(22),numberofreplications,1);

repmat(d1(23),numberofreplications,1)];

d2total=[repmat(d2(1),numberofreplications,1); repmat(d2(2),numberofreplications,1);

repmat(d2(3),numberofreplications,1); repmat(d2(4),numberofreplications,1);
repmat(d2(5),numberofreplications,1); repmat(d2(6),numberofreplications,1);
repmat(d2(7),numberofreplications,1); repmat(d2(8),numberofreplications,1);
repmat(d2(9),numberofreplications,1); repmat(d2(10),numberofreplications,1);
repmat(d2(11),numberofreplications,1); repmat(d2(12),numberofreplications,1);
repmat(d2(13),numberofreplications,1); repmat(d2(14),numberofreplications,1);
repmat(d2(15),numberofreplications,1); repmat(d2(16),numberofreplications,1);
repmat(d2(17),numberofreplications,1); repmat(d2(18),numberofreplications,1);
repmat(d2(19),numberofreplications,1); repmat(d2(20),numberofreplications,1);
repmat(d2(21),numberofreplications,1); repmat(d2(22),numberofreplications,1);

repmat(d2(23),numberofreplications,1)];

d3total=[repmat(d3(1),numberofreplications,1); repmat(d3(2),numberofreplications,1);

repmat(d3(3),numberofreplications,1); repmat(d3(4),numberofreplications,1);
repmat(d3(5),numberofreplications,1); repmat(d3(6),numberofreplications,1);
repmat(d3(7),numberofreplications,1); repmat(d3(8),numberofreplications,1);
repmat(d3(9),numberofreplications,1); repmat(d3(10),numberofreplications,1);
repmat(d3(11),numberofreplications,1); repmat(d3(12),numberofreplications,1);
repmat(d3(13),numberofreplications,1); repmat(d3(14),numberofreplications,1);
repmat(d3(15),numberofreplications,1); repmat(d3(16),numberofreplications,1);
repmat(d3(17),numberofreplications,1); repmat(d3(18),numberofreplications,1);
repmat(d3(19),numberofreplications,1); repmat(d3(20),numberofreplications,1);
repmat(d3(21),numberofreplications,1); repmat(d3(22),numberofreplications,1);

repmat(d3(23),numberofreplications,1)];

eltotal=[repmat(e1(1),numberofreplications,1); repmat(el(2),numberofreplications,1);

repmat(e1(3),numberofreplications,1); repmat(el(4),numberofreplications,1);
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repmat(el(5),numberofreplications,1); repmat(el(6),numberofreplications,1);
repmat(e1(7),numberofreplications,1); repmat(e1(8),numberofreplications,1);
repmat(e1(9),numberofreplications,1); repmat(e1(10),numberofreplications,1);
repmat(e1(11),numberofreplications,1); repmat(e1(12),numberofreplications,1);
repmat(el(13),numberofreplications,1); repmat(el(14),numberofreplications,1);
repmat(e1(15),numberofreplications,1); repmat(e1(16),numberofreplications,1);
repmat(e1(17),numberofreplications,1); repmat(e1(18),numberofreplications,1);
repmat(e1(19),numberofreplications,1); repmat(e1(20),numberofreplications,1);
repmat(el(21),numberofreplications,1); repmat(e1(22),numberofreplications,1);

repmat(e1(23),numberofreplications,1)];

X=[ones(totalruns,1) dltotal d2total d3total eltotal dltotal.*d2total dltotal.*d3total
d2total.*d3total dltotal.*eltotal d2total.*eltotal d3total.*eltotal dltotal.*2 d2total."2
d3total.~2];

fid=fopen('call_center','w+');

fprintf(fid,'beta(l) beta(2) beta(3) beta(4) beta(5) beta(6) beta(7) beta(8)
beta(9) beta(10) beta(11) beta(12) beta(13) beta(14)\n');

for t=1:50

%230*1 cost vector

costvectorperreplications=[2974.50; 3249.27; 4351.07; 3819.31; 3866.04; 4034.41;
4158.34; 4283.42; 4847.41; 3221.92; 2144.48; 4734.73; 3726.44; 4435.67; 3571.43;
4242.04; 4558.35; 4088.35; 3849.73; 4141.91; 2910.36; 3054.69; 4079.72; 4534.55;
3651.75; 4263.69; 4391.89; 3905.11; 4223.16; 3978.76; 2968.74; 3243.51; 4345.31;
3813.55; 3860.28; 4028.65; 4152.58; 4277.66; 4841.65; 3216.16; 2906.60; 3894.78;
3922.27; 4162.51; 4271.60; 4207.29; 3949.10; 4403.57; 3117.10; 4357.22; 2900.84;
3889.02; 3916.51; 4156.75; 4265.84; 4201.53; 3943.34; 4397.81; 3111.34; 4351.46;
2971.87; 3180.87; 4052.82; 3987.83; 4506.67; 4432.59; 3121.14; 4823.22; 3266.66;
3931.37; 2144.48; 4459.83; 4009.44; 4342.30; 3960.66; 4221.37; 3760.86; 4086.63;
4105.72; 4200.27; 2904.60; 3048.93; 4073.96; 4528.79; 3645.99; 4257.93; 4386.13;
3899.35; 4217.40; 3973.00; 2205.68; 4323.85; 3968.36; 3746.25; 4579.18; 4010.62;
4151.34; 4124.97; 4284.05; 3559.01; 2138.72; 4728.97; 3720.68; 4429.91; 3565.67,
4236.28; 4552.59; 4082.59; 3843.97; 4136.15; 2966.11; 3175.11; 4047.06; 3982.07,
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4500.91; 4426.83; 3115.38; 4817.46; 3260.90; 3925.61; 2132.72; 4454.07; 4003.68;
4336.54; 3954.90; 4215.61; 3755.10; 4080.87; 4099.96; 4194.51; 2205.68; 4306.03;
4403.08; 3692.27; 3970.70; 4224.98; 3875.20; 3804.03; 4165.76; 3450.93; 2199.92;
4318.09; 3962.60; 3740.49; 4573.42; 4004.86; 4145.58; 4119.21; 4278.29; 3553.25;
2199.92; 4300.27; 4397.32; 3686.51; 3964.94; 4219.22; 3869.44; 3798.27; 4160.00;
3445.17; 2817.39; 3902.39; 3805.63; 4225.54; 4138.06; 4088.09; 4288.14; 4047.90;
4277.02; 3839.19; 2817.39; 3902.39; 3805.63; 4225.54; 4138.06; 4088.09; 4288.14;
4047.90; 4277.02; 3839.19; 2836.68; 3921.67; 3824.91; 4244.82; 4157.35; 4107.37,
4307.42; 4067.18; 4296.30; 3858.47; 2835.60; 3920.60; 3823.84; 4243.75; 4156.28;
4106.30; 4306.35; 4066.11; 4295.23; 3857.40; 2492.14; 3703.68; 4397.66; 4521.43;
4493.66; 3897.11; 4301.80; 2818.23; 4740.95; 4730.45; 2798.10; 3883.10; 3786.34;
4206.25; 4118.78; 4068.80; 4268.85; 4028.61; 4257.73; 3819.90; 2867.18; 3750.88;
4215.76; 3256.36; 4664.11; 3737.27; 3814.78; 4596.91; 3330.91; 4740.62];

%23*1 vector
averagecostvector=[3881; 3949; 3899; 3875; 3919; 3913; 3828; 3929; 3894; 3895;
3944; 3822; 3923; 3810; 3890; 3804; 3943; 3943; 3962; 3961; 4010; 3924; 3897];

%fit regression metamodel to average cost realizations

beta=X\costvectorperreplications;

%call lack-of-fit F-test
[F_statistic,F_critical]=lack of fit2(beta,alpha,X,costvectorperreplications,
averagecostvector,numberofreplications,totalruns,numberofinputs);
if F_statistic > F_critical
totalreject=totalreject+1;
else
totalfailreject=totalfailreject+1;
end
allbetas=[allbetas;beta(1) beta(2) beta(3) beta(4) beta(5) beta(6) beta(7) beta(8) beta(9)
beta(10) beta(11) beta(12) beta(13) beta(14)];
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fprintf(fid,’ %g %g %g %g %g %g %g %g %g\n'beta(l), beta(2),
beta(3), beta(4), beta(5), beta(6), beta(7), beta(8), beta(9), beta(10), beta(11), beta(12),
beta(13), beta(14));

t
end

fclose(fid);

Objective function @ fmincon

%ithis function creates the objective function for the minimization

function obj = objective2(x)

obj = -894160 + 46944.3*x(1) + 363.787*x(2) + 71341.3*x(3) + 431242*x(4) -
3.60577*x(1)*x(2) - 1687.57*x(1)*x(3) + 18.75*x(2)*x(3) - 6989.71*x(4)*x(1) -
187.5*x(4)*x(2) - 50035.5*x(4)*x(3) -672.168*x(1)"2 - 24.7372*x(2)"2 -
229.493*x(3)"2;

Minimization function
[x,fval,exitflag]=fmincon(@objective2, [26;4;5;0.5], [0 1 1 0], 15, [], [], [26;0;0;0.495],
[50;15;15;0.505])



APPENDIX G:

Table G.1.: Calculation of the central point, positive and negative axial points and

positive and negative values of design variables based on OptQuest Results

opiuest] @ =1% | radius = /(26.26 - 26)* +(4.04— 4)* +(5.05—5)* +(0.505—0.5)* +(0.606 — 0.6)" = 0.267882
+ - positive axial points negative axial points
x =26 |[26.26][2574][ x, =26.267882, x, =4, X, =5, ¢, =0.5, X =25.732118, X, =4, X, =5, € =0.5,
e, =0.6 e, =0.6
x.=4 |[404][396][x =26, x,=4.267882, x, =5, ¢, =0.5, X =26, X, =3.732118, x, =5,  =0.5,
e, =0.6 e, =0.6
x =5 |[505][495|[x =26, x,=4, x,=5.267882, ¢, =0.5, X =26, X, =4, X, =4.732118, ¢, =0.5,
e, =0.6 e, =0.6
e1* =0.5 ||0-505](0.495 central point
e, = 0.6 ||0-006]10.594 X, =26, X,=4, X,=5,¢=05,¢=0.6
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Table G.2.: Input combinations table for the call centre simulation

| 39 input combinations (@application #2) I
| 2’ input combinations Resolution V Design |
%l %]l elle X, X, X ) e,

[+ + [+ [+ ][+ ] 2626 ][ 404 [ 505 ][os05][ o606 ]
L+l + 1+l + ] -] 2620 || 404 || 505 |[o505] 0594 |
[+l + [+l -] +|] 2626 || 404 || 505 |l 0495] 0606 |
[+ + 1 -+ [+ 2626 ][ 404 ][ 495 ][os05][ o606 ]
[+ -1+ ][+ ][ 2626 ][ 39 ][ 505 ][o0505|[ 0606 ]
-+ [+l + ]| +|] 2574 || 404 || 505 ]los05] 0606 |
-1 -+ + ]+ ]| 2574 || 39 || 505 |[o505] 0606 |
[+ - [+ 1+ ][ 2574 ][ 404 ][ 495 ][os05|[ o606 |
-1+ 1+ -1+ 2574 ][ 404 [ 505 ][o495][ o606 |
-1+l -] 2574 || 404 || 505 |[o505]| 0594 |
[+l - -+ +|] 2626 || 396 || 495 []los05] 0606 |
[+ + 1] - 1 -1[+ 1] 2626 ][ 404 ][ 495 ][0495 ][ o606 |
[+ ][+ [ 1 -1 - ][ 2626 ][ 404 ][ 505 ][o0495|[ 0594 1]
[+ -1+ [ -1+ || 2626 ][ 39 ][ 505 ][o495|[ 0606 ]
L+l -+ + ] -|] 2620 || 39 || 505 |]los05] 059 |
[+ -1 +1] - ][ 2626 ][ 404 [ 495 ][os05][ 0594 1]
(- -1 -+ 1+ 2574 ][ 39 ][ 495 ][os05|[ o606 ]
[+ 10+ -1 -1 -1 2626 ][ 404 ][ 495 ][o495][ 059 |
(- -0+ -1+ 2574 ][ 39 ][ 505 ][o0495 |[ 0606 ]
[+ - -1+ | 2574 ][ 404 ][ 495 ][o495|[ o606 |
-1+ 1+ -1 -] 2574 || 404 || 505 |[0495]| 0594 |
[+ - 10 -+ 1 - ][ 2626 ][ 396 ][ 495 ][os05|[ 0594 1]
[+ -1+ -1 -] 2626 ][ 39 ][ 505 ][o495|[ 0594 1]
-1 -+ ] -] 2574 || 39 || 505 |[o505] 0594 |
[+ 1 -+ 1 -] 2574 ][ 404 ][ 495 ][os05|[ 0594 1]
[+ -1 -1 -1+ 1] 2626 ][ 396 ][ 495 ][0495 ][ o606 |
-1 -1 - -+ ]| 2574 || 39 || 495 |[0495]| 0606 |
[+ -1 -1 -1 - || 2626 ][ 396 ][ 495 ][o495|[ 0594 1]
-1+ -1 -1 -1 2574 ][ 404 [ 495 ][o495 ][ 0594 |
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- -1+ -1 -] 2574 ][ 39 ][ 505 ][o49s|[ 0594 1]
(-1 -1+ 1 -] 2574 ][ 396 ][ 495 ][os05|[ 0594 1]
-1 -1 - -1- || 2574 || 39 || 495 |[o0495 | 0594 |
| central point [l || 26 [l 4 || 5 |[ os || o6 |
positive axial points || || 26267882 || 4 || 5 || o5 || o6 |
|| 26 [[ 4267882 ]| 5 || o5 || o6 |
|| 26 [[ 4 ||5207882|] 05 || 06 |
negative axial points || |[ 2573218 || 4 || 5 || o5 || o6 |
|| 26 [[ 3732118 ]| 5 || o5 || o6 |
|| 26 [[ 4 |[4732u8]|] 05 || o6 |
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Table G.3.: Total sytem costs per replication

Input Total sytem cost @lth replication (@application #2) Total
combinations cost
| L qL 2 JL 3 [ 4 JL s [ e L7 [ 8 9 [ 10 f[ |
lic. 1 [[2974.50][3249.28][4351.07 | | 3819.31 || 3866.04 | [ 4034.41 || 4158.34 || 4283.42 | | 4847.41 || 3221.91 || 3881 |
lic.2 [[2974.50][3249.27][ 4351.07 | [ 3819.31 || 3866.04 | | 4138.74 | | 4544.46 | 3891.75 || 4034.14 | 4032.77 | | 3890 |
lic.3 [[2144.49][4650.53 || 4077.91 |[3322.74 || 4835.23 | | 3642.69 | | 4364.19 |{ 3939.71 || 4093.05 || 3910.96 | | 3898 |
[ic. 4 [[2910.36]3054.69][4079.72 | | 4534.55 | 3786.16 | [ 4205.74 | [ 4112.75 | 3509.12 | | 4548.76 || 3950.53 | | 3869 |
lic.5 [[2968.74][3243.52][ 434531 ]| 3813.55 || 3860.28 | | 4028.65 || 4152.58 || 4277.66 | | 4841.65 || 3216.15 || 3875 |
lic.6 [[2906.60](3894.78 (392227 | | 4162.51 || 4271.60 | [ 4207.29 || 3949.10 || 4403.57 | | 3117.10 || 4357.22 || 3919 |
lic.7 [12900.84](3889.02][3916.51 || 4156.75 || 4265.84 | [ 4201.53 | [ 3943.34 | [ 4397.81 || 3111.34 || 4351.46 || 3913 |
lic.8 [[2971.87][3144.12][3979.64 | [ 4120.42 || 4264.11 | [ 4462.85 || 3482.15 | 3472.38 | | 4631.85 || 4022.94 | | 3855 |
lic.9 [[2144.49][4459.83 [ 4009.44 | | 4342.30 | 4037.79 | [ 4189.28 | [ 3210.24 || 5070.82 | | 3895.47 | 3783.80 | | 3914 |
lic. 10 [12906.59[4278.05 | 3894.78 | [ 3922.27 || 4162.51 | | 4271.60 | | 4283.37 || 3866.27 ]| 3879.99 || 3794.80 | | 3926 |
lic. 11 [12904.60[3048.93|[4073.96 | [ 4528.79 | 3780.40 | [ 4199.98 | [ 4106.99 |{ 3503.36 || 4543.00 || 3944.77 || 3863 |
lic. 12 [[2205.69][4323.85] 3968.36 || 3746.25 || 4579.18 || 4010.62 | [ 4151.34 | [ 4124.97 | [ 4284.05 | [ 3559.01 | | 3895 |
lic. 13 [[2144.48][4734.73|[3726.44 | | 4435.67 || 3571.43 | [ 4242.04 || 4359.14 || 4294.95 | | 3785.20 || 4339.41 || 3963 |
lic. 14 [[2138.73 ][ 4644.77][ 4072.15 | | 3316.98 || 4829.47 | | 3636.93 || 4358.43 || 3933.95 | | 4087.29 || 3905.20 || 3892 |
lic. 15 [[2968.74[3243.51 || 4345.31 || 3813.55 || 3860.28 | | 4132.98 | [ 4538.70 || 3885.99 || 4028.38 || 4027.01 | | 3884 |
lic. 16 [[2910.36](3054.69][4079.72 | | 4534.55 || 3979.38 | | 3264.58 | [ 4891.85 || 3957.32 ] | 3817.37 || 4294.69 | | 3878 |
lic. 17 [[2966.11][3138.36][3973.88 | | 4114.66 || 4258.35 || 4457.09 || 3476.39 || 3466.62 | | 4626.09 || 4017.18 || 3849 |
lic. 18 [[2205.68 |[4323.85]|4067.04 | | 3858.86 || 4292.39 | [ 3851.01 || 4333.34 || 3264.27 | | 4739.54 || 3460.23 || 3840 |
lic. 19 [[2138.73[4454.07 | 4003.68 | [ 4336.54 | [ 4032.03 | [ 4183.52 | [ 3204.48 || 5065.06 || 3889.71 || 3778.04 || 3909 |
ic. 20 [[2205.69][4306.03][3907.72 || 4590.12 || 3527.44 | [ 4338.75 | [ 4191.90 || 4059.08 | | 3646.79 || 4057.54 | | 3883 |
lic. 21 [[2144.48 || 4459.83 | [ 4009.44 | | 4342.30 || 3960.66 || 4127.90 | [ 4002.59 || 3776.49 | | 4214.05 || 4282.28 | | 3932 |
lic. 22 [[2904.60][3048.93|[4073.96 | | 4528.79 || 3973.62 | | 3258.82 || 4886.09 || 3951.56 | | 3811.61 || 4288.93 || 3873 |
lic.23 [[2138.72][4728.97|[3720.68 | [ 4429.91 | 3565.67 | | 4236.28 | | 4353.38 || 4289.19 || 3779.44 || 4333.65 | | 3958 |
[ic. 24 [[2900.83][3889.02][3916.51 || 4156.75 || 4265.84 | [ 4277.61 || 3860.51 || 3874.23 | | 3789.04 || 4272.29 | | 3920 |
lic. 25 [[2971.87]3180.87][4052.82 | | 3987.83 || 4506.67 || 4432.59 | 3259.29 || 4032.02 | | 3870.58 || 4576.48 | | 3887 |
lic.26 [12199.93][4318.09][3962.60 |[3740.49 || 4573.42 | [ 4004.86 | | 4145.58 | [ 4119.21 || 4278.29 | 3553.25 | | 3890 |
lic.27 [[2199.93][4300.27][3901.96 | [ 4584.36 || 3521.68 | [ 4332.99 | [ 4186.14 || 4053.32 || 3641.03 || 4051.78 | | 3877 |
lic. 28 [[2199.92][4318.09][4061.28 | [ 3853.10 || 4286.63 | | 3845.25 | [ 4327.58 || 3258.51 | [ 4733.78 | 3454.47 | | 3834 |
ic.29 [[2205.68 [ 4306.03 | [ 4403.47 | | 3368.25 || 4366.27 | [ 4415.53 | [ 3935.00 || 3870.40 | | 3853.88 || 3801.44 || 3853 |
ic.30 [[2138.72]4454.07][4003.68 | | 4336.54 || 3954.90 | [ 4122.14 || 3996.83 || 3770.73 | | 4208.29 || 4276.52 | | 3926 |
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|i.c.31 ||2966.11 ||3175.11 ||4047.06 || 3982.07 || 4500.91 ||4426.83 || 3253.53 ||4026.26 || 3864.82 ||4570.72 || 3881 |
|i.c. 32 ||2199.92||4300.27||4397.71 || 3362.49 || 4360.51 ||44o9.77 || 3929.24 || 3864.64 || 3848.12 || 3795.68 || 3847 |
centeral 2817.39](3902.39| [ 3805.63 | [ 4225.54 || 4138.06 | | 4088.09 || 4288.14 | [ 4047.90 || 4277.02 || 3839.19 || 3943
point

positive axial || 2817.39][3902.39 |[ 3805.63 || 4225.54 || 4138.06 || 4088.09 || 4288.14 || 4047.90 || 4277.02 || 3839.19 || 3943
point 1

positive axial || 2836.68|[3921.68 | [ 3824.92 || 4244.82 | [ 4157.35 || 4107.38 || 4307.42 || 4067.19 || 4296.31 | [ 3858.48 || 3962
point 2

positive axial || 2835.61]3920.61][3823.85 || 4243.75 || 4156.28 || 4106.31 || 4306.35 || 4066.12 || 4295.24 || 3857.40 || 3961
point 3

negative 2492.14|[3703.68 | [ 4397.66 || 4521.43 || 4493.66 | [ 3897.11 || 4301.80 | | 2818.23 || 4740.95 || 4730.45 || 4010
axial point 1

negative 2798.11][3883.11][3786.34 |[ 4206.25 || 4118.78 | [ 4068.80 || 4268.85 | [ 4028.61 || 4257.73 ]| 3819.90 || 3924
axial point 2

negative 2867.18|[3750.88| [ 4215.77 || 3256.36 || 4664.12 || 3737.27 || 3814.78 | | 4596.92 || 3330.91 || 4740.62 || 3897
axial point 3




APPENDIX H:

%ithis function performs lack-of-fit F-test
function [F_statistic, F_critical]=lack of fit3(beta, alpha, X, costvectorperreplications,

averagecostvector, numberofreplications, totalruns, numberofinputs)

%compute sum of squared residuals and sum of squared errors
averagecostvectorbar=[];
regressionhead=X*beta;
sumsquaredresidual=(costvectorperreplications-
regressionhead)'*(costvectorperreplications-regressionhead);
for i=1:totalruns
if i<= numberofreplications
averagecostvectorbar=[averagecostvectorbar;averagecostvector(1)];
elseif (i>= numberofreplications+1)&&(i<= 2*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(2)];
elseif (i>= 2*numberofreplications+1)&&(i<= 3*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(3)];
elseif (i>= 3*numberofreplications+1)&&(i<= 4*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(4)];
elseif (i>= 4*numberofreplications+1)&&(i<= 5S*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(5)];
elseif (i>= 5*numberofreplications+1)&&(i<= 6*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(6)];
elseif (i>= 6*numberofreplications+1)&&(i<= 7*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(7)];
elseif (i>= 7*numberofreplications+1)&&(i<= §*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(8)];

elseif (i>= 8*numberofreplications+1)&&(i<= 9*numberofreplications)
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averagecostvectorbar=[averagecostvectorbar;averagecostvector(9)];
elseif (i>= 9*numberofreplications+1)&&(i<= 10*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(10)];
elseif (i>= 10*numberofreplications+1)&&(i<= 1 1 *numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(11)];
elseif (i>= 11*numberofreplications+1)&&(i<= 12*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(12)];
elseif (i>= 12*numberofreplications+1)&&(i<= 13*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(13)];
elseif (i>= 13*numberofreplications+1)&&(i<= 14*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(14)];
elseif (i>= 14*numberofreplications+1)&&(i<= 15*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(15)];
elseif (i>= 15*numberofreplications+1)&&(i<= 16*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(16)];
elseif (i>= 16*numberofreplications+1)&&(i<= 17*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(17)];
elseif (i>= 17*numberofreplications+1)&&(i<= 18*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(18)];
elseif (i>= 18*numberofreplications+1)&&(i<= 19*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(19)];
elseif (i>= 19*numberofreplications+1)&&(i<= 20*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(20)];
elseif (i>= 20*numberofreplications+1)&&(i<= 2 1 *numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(21)];
elseif (i>= 21*numberofreplications+1)&&(1<= 22 *numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(22)];
elseif (i>= 22*numberofreplications+1)&&(i<= 23*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(23)];
elseif (i>= 23*numberofreplications+1)&&(1<= 24*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(24)];

elseif (i>= 24*numberofreplications+1)&&(i<= 25*numberofreplications)
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averagecostvectorbar=[averagecostvectorbar;averagecostvector(25)];
elseif (i>= 25*numberofreplications+1)&&(i<= 26*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(26)];
elseif (i>= 26*numberofreplications+1)&&(1<= 27*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(27)];
elseif (i>= 27*numberofreplications+1)&&(i<= 28*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(28)];
elseif (i>= 28*numberofreplications+1)&&(1<= 29*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(29)];
elseif (i>= 29*numberofreplications+1)&&(i<= 30*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(30)];
elseif (i>= 30*numberofreplications+1)&&(i<= 3 1 *numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(31)];
elseif (i>= 31*numberofreplications+1)&&(i<= 32*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(32)];
elseif (i>= 32*numberofreplications+1)&&(i<= 33*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(33)];
elseif (i>= 33*numberofreplications+1)&&(i<= 34*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(34)];
elseif (i>= 34*numberofreplications+1)&&(i<= 35*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(35)];
elseif (i>= 35*numberofreplications+1)&&(i<= 36*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(36)];
elseif (i>= 36*numberofreplications+1)&&(i<= 37*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(37)];
elseif (i>= 37*numberofreplications+1)&&(1<= 38 *numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(38)];
elseif (i>= 38*numberofreplications+1)&&(i<= 39*numberofreplications)
averagecostvectorbar=[averagecostvectorbar;averagecostvector(39)];
end

end
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sumsquaredpurerror=(costvectorperreplications-
averagecostvectorbar)'*(costvectorperreplications-averagecostvectorbar);

sumsquaredlackfit=sumsquaredresidual-sumsquaredpurerror;

%perform F-test

dofl=numberofinputs-size(beta,1);
dof2=totalruns-numberofinputs;
F_statistic=(sumsquaredlackfit/dof1)/(sumsquaredpurerror/dof2);
F _critical = finv(1-alpha,dofl,dof2);



APPENDIX I:

Matlab program codes for Appendix I can be found in the attached cd document with

the name “robust rsm_3.m”.

Objective function (@ fmincon

%this function creates the objective function for the minimization

function obj = objective3(x)

obj = (-2.00829¢+006) + 43093.4*x(1) + 313036*x(2) + 41741.4*x(3) +
(1.48e¢+006)*x(4) + (1.18377e+006)*x(5) - 6009.64*x(1)*x(2) - 5114.92*x(1)*x(3) -...
31250.1*x(2)*x(3) - 52091.2*x(4)*x(1) - 312501*x(4)*x(2) + 222195*x(4)*x(3) -
40164.2*x(5)*x(1) - 260418*x(5)*x(2) +...

178239*x(5)*x(3) + 169.08*x(1)"2 - 6.47815*x(2)"2 - 200.209*x(3)"2;

Minimization function
[x,fval,exitflag]=fmincon(@objective3,[26; 4; 5; 0.5; 0.6],[0 1 1 0 0], 15, [], [I,
26;0;0;0.495;0.594], [50;15;15;0.505;0.606])
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