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ABSTRACT 

 

 

 

During the last couple of decades, optimization methods have become one of the most 

important research fields and received increasing attention from engineers, product 

designers and researchers especially in the field of production and related industries.   

 

The classical optimization approaches assume that the input data of the optimization 

model is known with certainty.  However, in many areas of application of real world 

problems like inventory management, portfolio selection, supply chain optimization and 

production planning, it’s needed to integrate the uncertainty of the input data into the 

optimization model which refers to optimization under uncertainty.  

 

The increasing interest in simulation optimization for problems that arise in practical 

applications becomes relevant where explicit mathematical formulations are too 

restrictive.  Therefore, for many practical cases one cannot obtain an analytical solution 

through those kind of methods.  Indeed, simulation optimization has led to the 

numerical solution of large-scale, real-world decision-making problems. 

 

A simulation optimization method, Response Surface Methodology (RSM); aims to 

achieve optimum operation conditions while minimizing the variability in order to 

produce high quality and reliable products and services at the lowest possible cost.  As 

an extension of Robust Parameter Design (RPD), RSM  is a combination methodology 

of mathematical and statistical techniques in problem modeling and analysis.   

 

The risk-neutrality problem of the classic simulation optimization problems can be 

handled by the Dual Response Surface (DRS) approach within RSM and combining it 

with the Taguchi’s RPD enables researchers to cope with the unknown environments.  

 



 ix

In this work, a risk-averse approach to Response Surface Methodology, which explicitly 

deals with random environments, is presented.  The main contribution of this thesis is to 

adapt Taguchian RSM to discrete-event simulation studies.   

 

The thesis introduced the steps of this Taguchian RSM approach and then an application 

of these steps to an inventory optimization is provided.  The computer program is coded 

in Matlab 7.6. , and the optimization is performed through the built-in function fmincon 

in Matlab. 

 

Furthermore, Taguchian RSM method is applied to a more complex example which is a 

call center problem modeled in Arena.  The results taken from the execution of the 

model is used in our optimization algorithm coded in Matlab. 

 

Although it’s usefull to increase the number of decision variables in the example, 

because of the version limits of Arena, an example with an additional environmental 

factor is provided in order to expand the original example.  Thus we left this issue as a 

future research.  

 

For the future work, this study can be extended to an iterative approach, or the proposed 

approach can be developed to handle multiple random responses.  
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RESUME 

 

 

 

Pendant les dernières décades, les méthodes d'optimisation sont devenues une des 

régions de recherche les plus importantes et ont reçus l'attention augmentante des 

ingénieurs, des créateurs de produit et des chercheurs surtout dans le domaine de la 

production. 

 

Les approches d'optimisation classiques supposent que les variables d'entrée du modèle 

d'optimisation sont connues avec la certitude.  Cependant, dans le monde réel, il est 

nécessaire d'intégrer l'incertitude des variables d'entrée dans le modèle d'optimisation 

qui se réfère à l'optimisation sous l'incertitude. 

 

L'intérêt croissant sur l'optimisation de simulation pour les problèmes qui se présentent 

dans les applications réel devient pertinentes où les formulations mathématiques sont 

trop restrictives.  Donc, pour ces type de problèmes, l'un ne peut pas obtenir une 

solution analytique par ces type de méthodes.  En effet, l'optimisation de simulation a 

mené à la solution numérique d'aux problèmes de prise de décision à grande échelle. 

 

Une méthode d'optimisation de simulation; La Méthodologie de Surface de Réponse 

(RSM) a l'intention d'accomplir des conditions d'opération optimales, en minimisant la 

variabilité, pour produire des produits et des services de haute qualité au prix le plus bas 

possible.  Comme une extension de Plan  Paramètre Robuste (RPD), RSM est une 

méthodologie de combinaison de techniques mathématiques et statistiques, utilisée pour 

le modèle at l’analyse du problème. 

 

Le problème de risque-neutralité des problèmes classiques d'optimisation de simulation 

peut être traité par l'approche Dual Response Surface (DRS) dans RSM et la 
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combinaison de cette approache avec le Plan  Paramètre Robuste (RPD) du Taguchi 

permet à chercheurs de faire face aux environnements inconnus.  

 

Dans ce travail, une approche risque-opposé à la Méthodologie de Surface de Réponse, 

qui traite explicitement des environnements faits au hasard, est présentée.  La 

contribution principale de cette thèse est d'adapter Taguchian RSM aux études de 

simulation de discret-événement.  

 

L’étude introduit les étapes de cette approach et une application de ces étapes à un 

problème d’optimisation d'inventaire est fourni.  Le programme informatique est codé 

dans Matlab 7.6. , et l'optimisation est exécutée par le fmincon de fonction intégré dans 

Matlab. 

 

En outre, la méthode de Taguchian RSM est appliquée à une exemple plus complexe 

qui est un problème de centre téléphonique et est modelé dans Arena.  Les résultats pris 

de l'exécution du modèle sont utilisés dans notre algorithme d'optimisation, codé dans 

Matlab. 

 

Bien que c'est utile d’augmenter le nombre de variables de décision dans l'exemple, à 

cause des limites de version d'Arena, un exemple avec un facteur ambiant 

supplémentaire est fourni pour grandir l'exemple original. Ainsi nous sommes partis ce 

problème comme une recherche future. 

 

Pour le travail futur, cette étude peut être étendue à une approche itérative, ou 

l'approche proposée peut être développée pour manipuler des réponses multiples faites 

au hasard. 
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ÖZET 

 

 

 

Optimizasyon metodları özellikle üretim ve ilgili endüstrilerde, birçok mühendis, 

tasarımcı ve araştırmacı tarafından kullanılan önemli çalışma alanlarından birisidir.   

 

Klasik yaklaşımların çoğunda girdiler bilinir durumda olsa da, gerçek hayattaki birçok 

problemde (envanter yönetimi, portfolio seçim, tedarik zinciri ve üretim planlama 

problemleri gibi) girdi verilerinin bilinir olmaması, araştırmacıları farklı optimizasyon 

tekniklerinin geliştirilmesine yönlendirmiştir.    

 

Gerçek hayattaki birçok problemin çözüm yaklaşımında kısıt ve geçerlilikleri kesin olan 

matematiksel formüllerin kullanımı sınırlayıcı olduğundan, bu tip problemlerde 

simülasyon-optimizasyon metodlarının kullanılması daha geçerli hale gelmektedir.  Bu 

tip problemlerde matematiksel formüller kullanarak analitik bir çözüm elde etmek 

oldukça zordur.  Bu yüzden, simülasyon-optimizasyon yaklaşımı gerçek hayatta 

karşılaşılan, büyük ölçekli karar verme problemlerinde sayısal sonuçlar için yol 

gösterici olabilmektedir.    

 

Düşük maliyetli, yüksek kaliteli ve güvenilir ürünler üretmek ya da bu ölçülerde hizmet 

sağlamak amacıyla uygulanan Sağlamcı Parametre Tasarımı (Robust Parameter Design 

- RPD) tekniği , değişkenliği en aza indirerek optimum operasyon koşullarını elde 

etmeyi amaçlamaktadır.   

 

Tepki Yüzeyi Metodolojisi (Response Surface Methodology - RSM), Sağlamcı 

Parametre Tasarımı tekniğinin bir uzantısı ve bir simülasyon-optimizasyon metodu  

olarak, problem analizi ve modellemede matematiksel ve istatistiksel  tekniklerin 

biraraya gelmesiyle oluşturulmuş bir yöntemdir.  
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Simülasyon optimizasyon problemlerinde kullanılan klasik yaklaşımların risk-nötr 

olması problemi ve bu problemlerin raslantısal çevrelerde çözümlenebilmeleri  çift tepki 

yüzeyi yaklaşımı ve bu yaklaşımın Taguchi’nin Sağlamcı Parametre tasarımı ile 

birleştirilmesi ile çözümlenebilmektedir.  

 

Bu çalışmada, Tepki Yüzeyi Metodolojisi yöntemi; raslantısal çevrelerde riskten 

kaçınma yöntemi ile incelenerek, yeni bir yaklaşım önerilmiştir.  Çalışmanın temel 

katkısı, önerilen yöntemin ayrık olaylı simülasyon örneklerine uygulanmasıdır. 

 

Çalışmanın genelinde, bu yaklaşımın adımları belirtilmiş ve bu adımlar bir envanter 

optimizasyon problemine uygulanarak sonuçları analiz edilmiştir.  İlgili bilgisayar 

programı Matlab 7.6.’da yazılmış, optimizasyon da Matlab’ın fmincon fonksiyonu ile 

uygulanmıştır. 

 

Daha sonra, sözkonusu metod daha kompleks bir örnek olan ve Arena programı 

üzerinde modellenen çağrı merkezi problemine iki farklı durumda uygulanmıştır.  

Modelin çalışması sonucu elde edilen sonuçlar Matlab’da yazılan optimizasyon 

algoritmasında kullanılmıştır. 

 

Örnekteki karar değişkelerinin sayısını arttırmak uygulama için faydalı olacaktır.  

Ancak simülasyon çalışması için kullanılan Arena programının öğrenci versiyonu, bu 

artırımı kısıtladığından, örneği geliştirmek için çevresel faktör eklenmiştir.  Bu durum, 

ileriki bir uygulama olarak bırakılmıştır. 

 

Çalışma sonucunda, önerilen bir kerelik yaklaşımın yinelemeli bir yaklaşıma 

dönüştürülebileceği, ya da çoklu raslantısal tepki problemleri için geliştirilebileceği 

belirtilmiştir.   
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1. INTRODUCTION 

 

 

 

In this chapter, we will present an overview on different approaches to optimization 

under uncertainty, including two-stage stochastic programming with recourse, 

probabilistic (or chance constraint) programming, risk-averse optimization and robust 

optimization; reviews for stochastic programming with recourse, probabilistic 

programming, and robust optimization are given in recent papers of Sahinidis [1] and 

Beyer and Sendhoff [2].  Risk-averse optimization is explained in detail in  Shapiro and 

Ruszczyński’s comprehensive survey about stochastic programming [3].  

 

For real-world optimization problems, the decision environment is usually characterized 

by the following facts: 

 

• The parameters (e.g., cost vector) are estimated through historical data.  Hence, they 

are uncertain.  

• The optimal solution, even if computed very accurately, may be difficult to be 

implemented accurately.  

• The problem must remain feasible for all meaningful realizations of the parameters.  

• Problems are large-scale.  There are in general many variables and/or constraints.   

• Bad optimal solutions (those that become severely infeasible when the parameters of 

the problem are slightly changed) are quite common.  

 

These facts imply that in many cases we deal with optimization problems under 

uncertainty; see also many application papers on, for example, inventory management, 

portfolio selection, facility planning, supply chain optimization, and production 

planning and scheduling.  The classical approaches to linear and nonlinear optimization 

problems, on the other hand, assume that the parameters of the optimization problem are 

known with certainty.  Therefore, it is important to present the methodologies that can 
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cope with optimization problems under uncertainty, as well as their advantages and 

shortcomings.  

 

1.1. TWO STAGE STOCHASTIC PROGRAMMING WITH RECOURSE: 

 

In the standard two-stage stochastic programming, the decision variables are partitioned 

into two sets.  The first-stage variables are those that have to be decided before the 

actual realizations of the random parameters occur.  Subsequently, once the realizations 

of the random parameters are obtained, the second-stage variables are determined as 

corrective measures or recourse against any infeasibilities arising due to these particular 

realizations of the random parameters at certain costs.  Due to uncertainty, the second- 

stage cost is a random variable.  Therefore, the objective is to select the first-stage 

variables such that the sum of the first-stage costs and the expected value of the random 

second-stage costs is minimized.  

 

A standard formulation of the two-stage stochastic linear programming problem is as 

follows; for further information, standard textbooks on stochastic programming such as 

Kall and Wallace’s, Birge and Louveaux’s, and Shapiro and Ruszczyński’s can be 

investigated [4, 5, 3]. 

  

[ ]minimize ( , )
subject to 

Tc x Q x w
x X

+Ε

∈
 

with               (1.1) 

( , ) minimize ( )
subject to ( ) ( ) ( )
                

TQ x w f w y
D w y h w T w x
y Y

=
≥ +

∈
 

 

c  is the cost vector for the vector x  of the first-stage variables, X  and Y  are 

polyhedral sets, w  is the vector of random variables from a probability space, ( )f w  is 

the random cost vector for the vector y  of the second-stage variables whose values 

depend on x , and ( )D w , ( )T w , and ( )h w  are, respectively, random matrices and 
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random right-hand-side of the second-stage problem.  The concept of recourse has been 

applied also to integer and non-linear programming, and to problems with multi-stages.  

 

The main advantage of the two-stage stochastic linear programming problem is that 

under the assumption that w  has a joint discrete distribution, the problem can be 

equivalently formulated as a large-scale linear programming problem which can be 

solved using standard linear programming technology.  On the other hand, the main 

shortcoming of this approach is that infeasibilities at the second-stage are allowed at a 

certain penalty.  The approach thus focusses on the minimization of the expected 

recourse costs without taking into account the system's reliability.  

 

There have been many successful applications of stochastic programming in very 

diverse areas such as fleet assignment by Ferguson and Dantzig [6]; production of 

heating oil with constraints on demands and capacities by Charnes and Cooper [7];  

water management systems by Dupačová, Gairovonski, Kos and Szantai [8]; energy 

planning by Manne; Louveaux; Pereira and Pinto; Manne and Richels; Morton; Takriti 

Birge and Long; Carøe, Ruszczyński, and Schultz [9, 10, 11, 12, 13, 14, 15]; forestry 

planning by Gassmann [16]; hospital staffing by Kao and Queyranne [17]; financial 

decision-making by Mulvey and Vladimirou; Ziemba and Vickson; Kallberg, White and 

Ziemba; Zenios; Dert; Carino and Ziemba; Kouwenberg and Zenios [18, 19, 20, 21, 22, 

23, 24, 25, 26]; and capacity expansion problems by Sherali, Soyster, Murphy and Sen; 

Davis, Dempster, Sethi and Vermes; Bienstock and Shapiro; Eppen, Martin and 

Schrage; Berman, Ganz and Wagner; Malcom and Zenios; Ahmet, King and Parija [27, 

28, 29, 30, 31, 32, 33].  

 

1.2. CHANCE CONSTRAINT OR PROBABILISTIC PROGRAMMING: 

 

In the recourse-based approach, decision-makers assign costs (penalties) to recourse 

activities that are taken to ensure feasibility of the second-stage problem.  The focus is 

on the minimization of the expected recourse costs.  In the probabilistic or chance 

constraint programming, however, the focus is on the reliability of the system; that is, 

the system's reliability to meet feasibility constraints in a random environment.  This 
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reliability is expressed through one or many probability functions, which require that 

constraints are satisfied at a prespecified level.  

 

Consider the following classical linear programming problem: 

 

minimize 
subject to 
               0

Tc x
Ax b
x

≥
≥

                                                       (1.2) 

 

where c  is the cost vector, x  is the vector of decision variables, b  is the right-hand-

side vector, and A  is the constraint matrix.  Suppose that some entries in A  are random 

and the constraints Ax b≥  have to be satisfied with some probability (0,1)p∈ .  Now, 

the corresponding probabilistic programming problem can be given as [4, 5, 3]: 

 

minimize 
subject to ( )
                x 0

Tc x
P Ax b p≥ ≥
≥

                                           (1.3) 

 

Suppose that in (1.3), there is only one constraint (hence, we have ( )TP a x b p≥ ≥ ) and 

randomness occurs in b .  Suppose also that F  is the cumulative density function of b .  

Then the problem with a single probabilistic constraint becomes a simple linear 

programming problem after replacing ( )P a .  

 

The main advantage of probabilistic programming is that it replaces the subjective 

penalties in the recourse-based approaches by probabilities.  However, this objectivity 

has a price.  In general, the feasible area of (1.3) is not convex, which makes (1.3) very 

difficult to be solved.  The feasible set in (1.3) is convex only under restrictive 

assumptions [4, 5, 3].  
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Charnes and Cooper [34, 35] first introduced chance-constrained formulation of 

stochastic programs. The classic book by Vajda provides an excellent introduction to 

the formulation as well as various interpretations [36]. 

 

Applications of chance constraint programming (CCP) to capital rationing problems can 

be found in [37, 38].  An extensive review of stochastic investment planning is 

presented by Kelle, and Sarper [39, 40].  

 

1.3. RISK AVERSE OPTIMIZATION: 

 

In the following, we will explain risk averse optimization using the following simplest 

form of the newsvendor problem taken from Sylver, Pyke, and Peterson [41].  

 

A newsvendor orders a fixed quantity x  of newspapers to be sold each day.  The daily 

demand D  is assumed to be random, and the ordering decision should be made before a 

realization d  of demand occurs.  The per unit acquisition cost is c .  Unsold newspapers 

are salvaged each day at the unit price w .  A back order penalty cost of b  per unit is 

incurred if d  exceeds x .  The question is to find an ordering quantity x  that optimizes 

a selected performance measure, for example, the total cost.  For a particular realization 

d , this total cost function can be formulated as 

 

( ) ( ) ( ),G x d cx b d x w x d
+ +

= + − − −                             (1.4) 

 

where ( )d x
+

−  and ( )x d
+

−  correspond to the maximum of d x−  and 0, and x d−  and 

0, respectively.  

 

If it makes sense to assume that the distribution function of D  can be estimated from 

historical data, then one of the possible ways to formulate the newsvendor problem is to 

minimize the expected total cost, where the expectation is taken with respect to the 

distribution function of D : 
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( )
x 0

minimize  ,G x D
≥

Ε ⎡ ⎤⎣ ⎦                                                (1.5) 

 

This classic formulation causes two well-known problems: First, it minimizes the total 

cost on average, and hence it does not take the decision-maker's attitude toward risk into 

account.  Second, it is almost impossible to quantify the penalty cost b  in ( ),G x d .  

 

These two problems can be overcome by the following chance constraint formulation of 

the newsvendor problem: 

 

( )
{ }

0
minimize  ,

subject to 
x

H x D

P D x τ α
≥

Ε ⎡ ⎤⎣ ⎦

− > ≤
                                         (1.6) 

 

where for a particular realization d , ( ),H x d  is the difference between the total 

acquisition cost and the revenue from the salvaged newspapers, if there are any, (that is,  

( ) ( ),H x d cx w x d
+

= − − , and { }P D x τ α− > ≤  is the so-called probabilistic (or 

chance) constraint, which means that the probability of the demand exceeding the 

ordering quantity x  by a predetermined threshold τ  should not be greater than a 

predetermined significance level ( )0,1α ∈ .  Hence, this approach minimizes a form of 

the cost function on average while making sure that the risk of the demand being larger 

than the ordering quantity is small.  The problem type in (1.6) can be solved only after 

finding a deterministic equivalent of the probabilistic constraint.  As we already 

mentioned in the previous subsection, the main disadvantages of having such a 

constraint is that its deterministic equivalent gives rise to a convex feasible set for the 

decision variable x  (or vector in multi-dimensional case) only under restrictive 

assumptions on the distribution function of D .  Otherwise, one has to deal with a 

nonconvex optimization problem.  

 

Nemirovski and Shapiro construct convex approximations to probabilistic constraints.  

These approximations are conservative in the sense that the feasible sets defined by 
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these approximations are contained in the feasible sets defined by the probabilistic 

constraints [42].  Denoting the convex approximation of the probabilistic constraint by 

( )1 ,x Dαρ − , the problem in (1.6) becomes 

 

( )
( )1

minimize ,

subject to ,

H x D

x Dαρ α−

Ε ⎡ ⎤⎣ ⎦
≤

                                            (1.7) 

 

The problem type in (1.7) is called risk averse optimization in the stochastic 

programming literature [3].  As in (1.6), the problem in (1.7) minimizes the cost on 

average while reducing the risk of having more than τ  backordered items to an 

acceptable level, namely 1 α− .  Some more properties of the problem in (1.7) are: (i) It 

is a convex optimization problem, and hence it is easily solvable by any optimization 

software; (ii) since the feasible set of (1.7) is contained in the feasible set of (1.6) and 

both problems have the same objective function, the minimum objective value of (1.7) 

provides an upper bound for the minimum objective value of (1.6).  

 

This 1 αρ −  has to satisfy some mathematical conditions which can be found in Artzner, 

Delbaen, Eber and Heath [43].  Furthermore, classic risk measures such as variance and 

standard deviation introduced in a portfolio selection problem by Markowitz do not 

satisfy some of these conditions [44, 45].  

 

Risk averse optimization has applications in many fields; for example, Ahmed, 

Cakmak, and Shapiro apply this approach for inventory models [46], Rockafellar and 

Uryasev for portfolio optimization [47], and Garcia-Gonzalez, Parrilla, and Mateo for 

profit-based optimal scheduling of a hydro-chain [48].  

 

Finally, in minimization problems, the risk aversion has been classically dealt with 

through disutility functions.  The existence of such functions is derived axiomatically in 

Von Neumann and Morgenstern [49], but these disutility functions are very difficult to 

elicit in practice.  With the risk averse approach, this problem disappears.  
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The main advantage of risk averse optimization is that it can be easily solved by 

standard convex optimization softwares.  However, there are many different types for 

1 αρ −  such as semi-deviations and conditional-value-at-risk, and the choice for one of 

them introduces subjectivity to the problem.  

 

1.4. ROBUST OPTIMIZATION: 

 

Robust optimization is a modeling methodology, combined with computational tools, to 

process optimization problems in which the data are uncertain and is only known to 

belong to some uncertainty set.  

 

There are two different approaches to robust optimization problems.  The first approach 

is originated from Soyster [50], and further popularized by Ben-Tal and Nemirovski 

[51].  In this approach, the focus is on feasibility uncertainties; that is, uncertainties 

concerning the fulfillment of constraints the design variables must obey.  This approach 

assumes certain types for the uncertainty sets and obtains a computationally tractable 

robust counterpart of the original problem.  This approach also assumes that 

mathematical expressions for the objective and/or constraint functions are available, 

which is not the case for our problem.  Therefore, in the rest of this work, we will not 

consider Ben-Tal and Nemirovski 's approach to robust optimization.  

 

The second approach is originated from Taguchi.  The main difference of Taguchi's 

method compared to ordinary optimization lies in the accounting for performance 

variations due to noise factors beyond the control of the designer.  That is, there are two 

kinds of parameters entering the objective and/or constraint functions: control 

parameters which are to be tuned to optimality, and noise factors (e.g., environmental 

conditions) which are difficult to be controled by the designer [52].  

 

Taguchi does not really use an automated optimization procedure.  Instead, he uses 

design of experiments in order to evaluate different design (control) parameters.  To this 

end, the design parameters are systematically changed taking values on a predefined 

(orthogonal) lattice, the so-called inner array.  At each design point, the noise variables 
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are systematically changed according to an outer array.  The outputs of the performance 

measures are obtained through real-life experimentation.  Consequently, a statistical 

data analysis can be performed to identify the design variable producing the best 

performance.  

 

From viewpoint of optimization efficiency, Taguchi's optimization approach suffers 

from the curse of dimensions.  Suppose that we have a k-dimensional design vector and 

g-dimensional noise vector.  Then, considering only the design vector, we already need 

2k  experiments (either real-life or simulation runs).  Adding also the noise vector, we 

will need a minimum of 2kg  experiments.  As pointed out by Trosset: “the Taguchi 

approach violates a fundamental tenet of numerical optimization-that one should avoid 

doing too much work until one nears a solution" [53]. Besides these efficiency 

considerations, there are other aspects of Taguchi's method which are subject to 

controversial debates summarized in a panel discussion [54].  

 

In our approach, we will use the idea of partitioning parameters into two sets, namely 

design and noise parameters.  However, like Myers and Montgomery [55], and Dellino, 

Kleijnen, and Meloni [56], we will use Response Surface Methodology (RSM), which is 

a black box simulation optimization technique.  RSM is a computationally efficient 

technique, which can cope with the curse of dimensions problem.  However, our RSM 

is different than the one in classic simulation optimization literature, where one usually 

assumes known environments; for example, in an inventory optimization problem, 

demands and lead times follow some distributions with some estimated parameters.  

 

This estimation is usually achieved through the analysis of historical data.  Then, 

considering a specific environment (that is, distributions with specific parameters), one 

finds the optimal operating conditions for this inventory system, without exploring 

systematically other possible environments.  Obviously, if the true environment happens 

to be different from the one considered in simulation optimization procedure, then the 

optimal operating conditions may become sub-optimal.  In the chapters to follow, we 

explain our Taguchian RSM, which takes into account several possible environments in 

a systematic way.  
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2. TAGUCHIAN APPROACH TO RESPONSE SURFACE METHODOLOGY  

 

 

 

2.1. INTRODUCTION 

 

In classic simulation optimization, we usually minimize the expectation of a random 

response, say w , for which an explicit mathematical formulation is not available, and 

therefore the expectation is estimated through simulation [57].  

 

This type of problems can be formulated as follows: 

 

minimize w dΕ ⎡ ⎤⎣ ⎦                                                       (2.1) 

 

where d  is the vector of control variables.  An example of (2.1) is an inventory 

problem, where w  is the sum of ordering, inventory-carrying, and penalty costs for 

back-ordered demands.  

 

There are two disadvantages related to the formulation in (2.1).  First, (2.1) is risk-

neutral; that is, w  is minimized on average without taking into account, for example, its 

estimated variance.  To introduce the second disadvantage, we need to consider the 

simulation study that estimates w -for example, an inventory simulation where we 

assume demands follow an exponential distribution with mean 1 λ .  Now the second 

disadvantage is that the simulation study is done considering a single point estimate for 

this λ  (known environment).  

 

In Response Surface Methodology (RSM), the risk-neutrality problem of (2.1) was 

detected by Myers and Carter [58] who introduced the dual response surface (DRS) 

approach.  This approach was further popularized by Vining and Myers [59], and since 
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then it has received a great deal of attention from researchers including Fan and Del 

Castillo [60], Yang, Kuo, and Chou [61], Lee and Park [62], Köksoy and Yalçinöz [63], 

and Dellino et al.[56].  

 

In all papers mentioned in the previous paragraph except Dellino et al. [56], the DRS 

approach was applied to real-life problems; Dellino et al. [56] considered deterministic 

simulation.  Therefore the main contribution of this thesis is to adapt Taguchian RSM to 

discrete-event simulation studies.  Furthermore, we systematically explore the 

environmental variables by letting them to take their values from some intervals.  

 

2.2. LITERATURE REVIEW 

 

During the last couple of decades, robust design methodology has received increasing 

attention from engineers and researchers, due to the need of designing, formulating, 

developing, and analyzing new products or improving the existing ones.  

 

In the early 1980's, Taguchi proposed the robust design approach.  Since then, the 

Taguchian robust design methodology and its extensions have been widely used in 

many industrial applications to improve product quality and production methods.  

Applications of robust design to various engineering problems in the automotive 

industry, plastic technology, process industry, and information technology can be found 

in Bendell, Disney and Pridmore, and Dehnad [64, 65].  For robust process design, we 

refer to Taguchi and Wu; Taguchi; Box; Phadke; Welch, Yu, kang and Sacks; 

Shoemaker, Tsui and Wu; Pledger; Borkowski and Lucas; Wu and Hannada; and Myers 

and Montgomery [66, 67, 68, 69, 70, 71, 72, 73, 74, 55].  Finally, for the applications of 

Taguchi's approach to quality management and artificial neural networks, we refer to 

Lin, Sullivan and Taguchi; and Lin and Tseng, respectively [75, 76].  

 

Taguchi defines robust design as a product whose performance is minimally sensitive to 

factors causing variability (at the lowest possible cost) [77] and to achieve desirable 

product quality by design, he suggests a three stage process [78]: 
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• System design, which is related to the conceptualization and synthesis of a product 

or process to be used; 

• Parameter design, which is related to finding the appropriate design factor levels to 

make the system less sensitive to variations in uncontrollable noise factors (that is, 

to make the system robust); 

• Tolerance design, which occurs when the tolerances for the products or process are 

established to minimize the sum of the manufacturing and lifetime costs of the 

product or process.  

 

Two important tools used in the parameter design of Taguchi are orthogonal arrays and 

signal-to-noise ratios.  Orthogonal arrays are used to test the different levels of each of 

the control factors, and signal-to-noise ratios as a quality indicator.  

 

The main difference of Taguchi's method compared to ordinary optimization lies in the 

accounting for performance variations due to noise factors beyond the control of the 

designer [2].  That is, Taguchi's method selects the levels of the controllable factors to 

obtain the optimal operating conditions of control factors by reducing the variability 

around a nominal value of a quality characteristic of interest, and at the same time it 

keeps the process mean at the customer-identified target value.  

 

Although Taguchi has had tremendous impacts on robust product and process designs, 

his approach has received much criticism, particularly because of the use of crossed 

orthogonal arrays as experimental designs and signal-to-noise-ratios.  Several 

shortcomings of Taguchi's approach have been pointed out by Box; Vining and Myers; 

Pignatiello and Ramberg; Myers, Khuri and Vining; Myers and Montgomery; Leon, 

Shoemaker, and Kackar; Box, Bisgaard, and Fung; Nair et al. and Tsui [79, 80, 81, 82, 

83, 84, 54, 85].  As a result, several researches have provided alternative methods to 

Taguchi's robust parameter design.  

 

The concept of robustness was introduced by Myers and Carter [58] to RSM 

methodology through the DRS approach to model their problem.  Their objective was to 

find the optimal operating settings that optimize a primary response, subject to the 
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condition that a secondary response takes on a desirable value.  Since then, many 

researchers have focused on the dual response approach.  These approaches can be 

classified as follows.  Some researchers including Myers and Carter [58]; Fan and Del 

Castillo [60]; Tang and Xu [86]; Ross, Osborne, and George [87]; Köksoy and 

Doğanaksoy [88]; Yang, Kuo, and Chou [89]; Peterson and Kuhn [90]; Jeong, Kim, and 

Chang [91]; Yeniay, Unal, and Lepsch [92]; Lee and Park [93]; Lee, Park, and Cho 

[94], and Köksoy and Yalçınöz [95] considered only control factors when they 

approximated their unknown responses through first or second-order regression 

polynomials.  On the other hand, Miró-Quesada and Del Castillo [96]; Miró-Quesada 

and Del Castillo [97]; Myers, Brenneman, and Myers [98]; Rajagopal, Del Castillo, and 

Peterson [99], Giovagnoli and Romano [100]; and Dellino et al. [56] considered both 

noise and control factors.  Below, we summarize the contributions of these papers to the 

robust response surface methodology.  

 

The abundant literature on RSM about how to seek optimal operating settings for dual 

response systems using various optimization approaches neglects the inherent sampling 

variability of the fitted responses.  Therefore, Fan and Del Castillo [60] introduced 

Monte Carlo sampling to the dual response approach and constructed an optimal region 

in the control factor space, which provides more useful information to a process 

engineer than a single expected optimal solution.  

 

Tang and Xu proposed a goal programming approach to optimize a dual response 

system.  Their formulation is general enough to include some of the existing methods as 

special case [86].  

 

Ross et al. presented a mathematically rigorous approach for incorporating decision-

maker preferences.  By interpreting the Lagrangian as a value function and the Lagrange 

multiplier as a preference ratio, they explored candidate solutions that reflect decision-

maker preferences [87].  

 

Taguchi's robust parameter design calls for simultaneous optimization of the mean and 

standard deviation responses.  The dual response optimization procedures have been 
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adapted to achieve this goal by taking into account both the mean and standard 

deviation responses.  The popular formulations of the dual response problem typically 

impose a restriction on the value of the secondary response (i.e., keeping the standard 

deviation below a specified value) and optimize the primary response (i.e., maximize or 

minimize the mean).  Restrictions on the secondary response, however, may rule out 

better conditions, since an acceptable value for the secondary response is usually 

unknown.  In fact, process conditions that result in a smaller standard deviation are 

often preferable.  A more flexible formulation of the problem can be achieved by 

considering the secondary response as another primary response.  Therefore, Köksoy 

and Doğanaksoy introduced Pareto optimal solutions, which give more flexibility to the 

decision-makers in exploring alternative solutions [88].  Furthermore, Köksoy and 

Yalçınöz again followed Pareto optimal solutions strategy, but this time they solved the 

DRS problem through a genetic algorithm [95].  

 

Yang et al. solved a multiresponse simulation problem by using a dual response system 

and scatter search method.  Their proposed dual response system constructs a response 

surface for each response [89].  It then transforms the dual response system into a 

standard nonlinear programming formulation.  The transformation treats the secondary 

response as a constraint.  In addition, the sample variance from simulation replications 

is considered simultaneously by adding search area constraints to variance.  Their 

proposed scatter search method uses scatter search algorithms as an embedded 

mechanism in a simulation program to guide the solution search process.  

 

Peterson and Kuhn proposed an approach to doing a ridge analysis for optimizing a 

response surface in the presence of noise variables [90].  Their approach allows an 

investigator to explore factor combinations that lower the mean squared error about a 

target value, while at the same time keeping track of how much the mean response 

differs from the target value.  Their approach also allows an investigator to compute a 

simultaneous confidence band about the root mean squared error about a target value.  

 

The dual response surface optimization simultaneously considers the mean and the 

standard deviation of a response.  The minimization of the mean squared error is a 



 15

simple, yet effective, approach in DRS optimization.  The bias and variance components 

of the mean squared error need to be weighted properly if they are not in the same 

importance in the given problem situation.  To date, the relative weights of bias and 

variance have been equally set or determined only by the data.  However, the weights 

should be determined in accordance with the tradeoffs on various factors in quality and 

costs.  Therefore, Jeong et al. (2005) proposed a systematic method to determine the 

weights of bias and variance in accordance with a decision-maker's preference structure 

regarding the tradeoffs [91].  

 

Yeniay et al. utilized the DRS approach to quantify variability in critical performance 

characteristics during conceptual design phase of a launch vehicle [92].  Using design of 

experiments methods and disciplinary design analysis codes, dual response surfaces are 

constructed for the mean and standard deviation to quantify variability in vehicle weight 

and sizing analysis.  Next, an optimum solution is sought to minimize variability subject 

to a constraint on mean weight.  

 

In robust design, a commonly used assumption behind the data collection procedure is 

that all the data are fully observed.  However, in many industrial experiments, interval 

censored observations are frequently available in addition to the fully observed 

observations.  

 

Therefore, Lee and Park calculated the optimal operating conditions for the process 

based on a dual response approach using incomplete data [93].  In their novel approach, 

they estimate the process mean and variance with incomplete data.  Thus, it is possible 

to find the optimal operating conditions using all of the information available.   

 

Robust design uses the ordinary least squares method to obtain adequate response 

functions for the process mean and variance by assuming that experimental data are 

normally distributed and that there is no major contamination in the data set.  Under 

these assumptions, the sample mean and variance are often used to estimate the process 

mean and variance.  In practice, the above assumptions are not always satisfied.  When 

these assumptions are violated, one can alternatively use the sample median and median 
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absolute deviation to estimate the process mean and variance.  However, the median and 

median absolute deviations both suffer from a lack of efficiency under the normal 

distribution, although they are fairly outlier-resistant.  To remedy this problem, Lee et 

al. proposed new robust design methods based on a highly efficient and outlier resistant 

estimator [94].  

 

Miró-Quesada and Del Castillo proposed an extension to the dual response approach to 

robust parameter design for the case of multiple responses [96].  Their methodology 

provides unbiased estimates of the process covariance matrix and of the vector of 

expected values using parameter estimates from a multivariate regression fit.  

 

Miró-Quesada and Del Castillo studied the prediction properties of models used in the 

dual response approach to robust parameter design, and they proposed two procedures 

that improve the performance of the approach [97].  Their first procedure suggests 

scaling of the noise variables to reduce the expected mean squared error of the variance 

model, based on the concept that the range of the noise variables used in the 

experimental design should contain most of their distribution.  However, it is shown that 

such scaling does not alter the variance contribution of the noise factors, which is 

fundamental for robust parameter design.  Their second procedure combines the 

variance due to the noise factors with the variance due to the prediction error of the 

fitted model, thus considering all sources of variability present in the problem.  An 

unbiased estimator of this combined variance is developed.  

 

Robust parameter design has been studied and applied, in most cases, assuming a linear 

model under standard assumptions.  More recently, robust parameter design has been 

considered in a generalized linear model setting.  Myers et al. applied a general dual 

response approach when using robust parameter design in the case of a generalized 

linear model [98].  They motivated the need for exploring both the process mean and 

process variance by discussing situations when a compromise between the two is 

necessary.  
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The uncertainty of the model form is typically neglected in process optimization studies.  

In addition, not taking into account the existence of noise factors and nonnormal errors 

may invalidate the conclusions of such studies.  Rajagopal et al. presented a Bayesian 

approach to model robust process optimization in the presence of noise factors and 

nonnormal error terms [99].  Their paper extended the idea of model form-robustness 

using a Bayesian predictive approach to cases where there is uncertainty due to the 

distributional assumptions of the errors.  

 

The existing procedures for robust design, devised for physical experiments, may be too 

limiting when the system can be simulated by a computer model.  Therefore, 

Giovagnoli and Romano introduced a modification of the DRS modeling, which 

incorporates the option of stochastically simulating some of the noise factors when their 

probabilistic behavior is known [100].  Their method generalizes both the crossed and 

the combined array approaches and finds a natural application to integrated parameter 

and tolerance design.  

 

Optimization of simulated systems is tackled by many methods, but most methods 

assume known environments.  Therefore, Dellino et al. [56] developed a robust 

methodology for uncertain environments.  Their methodology uses Taguchi's view of 

the uncertain world, but replaces his statistical techniques by Response Surface 

Methodology.  

 

2.3. TAGUCHI’S ROBUST DESIGN 

 

Robust means that the process or product performs consistently and is relatively 

insensitive to the factors that are difficult to control.  Hence, Robust Design approach 

aims to provide a method for designing products and processes that are minimally 

impacted by external forces, such as environment, client use or manufacturing-based 

factors named as uncontrollable factors .   

 

As mentionned in the literature review part, Taguchi suggests a three stage process 

(system design, parameter design, tolerance design) in order to minimize the 
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process/product variation and to design robust and flexible processes/products that are 

adaptable to environmental conditions.   

 

According to Taguchi, there are two types of factors that affect a product’s functional 

characteristic which can be found in Figure 2.1: control factors and noise factors [56]. 

 

 

 

 

 

 

 

 
Figure 2.1: Taguchi factors 

 

The first type of factors are under the control of the users, and the second type of factors 

are difficult or impossible or too expensive to control.  Hence, parameter design seeks 

to identify settings of the control factors which make the product insensitive to 

variations in the noise factors, i.e., make the product more robust, without actually 

eliminating the causes of variation. 

 

Design of experiments techniques, specifically Orthogonal Arrays (OAs), are employed 

in Taguchi’s approach to systematically vary and test the different levels of each of the 

control factors.  A complete listing of OAs can be found in text such as Phadke [69].   

 

To implement robust design, Taguchi advocates the use of an “inner array” and “outer 

array” approach.  The “inner array” consists of the OA that contains the control factor 

settings; the “outer array” consists of the OA that contains the noise factors and their 

settings which are under investigation.  The combination of the “inner array” and “outer 

array” constitutes what is called the “product array” or “complete parameter design 

layout”.  The product array is used to systematically test various combinations of the 

control factor settings over all combinations of noise factors after which the mean 
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response and standard deviation may be approximated  for each run using the following 

equations. 

 

• Mean response:                           
1

1 n

i
i

y y
n =

= ∑                                                         (2.2)  

 

• Standard deviation:                    ( )2
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−
=

−∑                                               (2.3) 

 

The preferred parameter settings are then determined through analysis of the “signal-to-

noise” (SN) ratio where factor levels that maximize the appropriate SN ratio are 

optimal. There are three standard types of SN ratios depending on the desired 

performance response [78]: 

 

• Smaller the better (for making the system response as small as possible): 

 

2
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• Nominal the best (for reducing variability around a target): 
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• Larger the better (for making the system response as large as possible): 
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These SN ratios are derived from the quadratic loss function and are expressed in a 

decibel scale. 

 

Once all of the SN ratios have been computed for each run of an experiment, Taguchi 

advocates a graphical approach to analyze the data. In the graphical approach, the SN 

ratios and average responses are plotted for each factor against each of its levels. The 

graphs are then examined to “pick the winner,” i.e., pick the factor level which (1) best 

maximize SN and (2) bring the mean on target (or maximize or minimize the mean, as 

the case may be).  

 

Finally, confirmation tests should be run at the “optimal” product settings to verify that 

the predicted performance is actually realized.  A demonstration of Taguchi’s approach 

to parameter design can be found in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 2.2: Main Steps of Taguchi Robust Design 
 

1. Select the quality characteristic

2. Select control and noise factors

3. Select orthogonal array

4. Conduct the experiments

5. Analyse results; determine 
optimum factor-level combination

6. Predict optimum performance

7. Confirm experimental design
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Taguchi method is a simple and usefull tool, but there are also some drawbacks which 

require to be compansated with other optimization methodologies. These drawbacks 

are:  

 

• When the number of design parameters increases its computational requirements 

becomes unaffordable. 

• Taguchi method has no capability to handle multiple performance measures 

simultaneously. 

 

2.4.  TAGUCHIAN RESPONSE SURFACE METHODOLOGY 

 

In this section, we introduce the steps of Taguchian RSM.  We assume that the initial 

point is in a neighborhood of an optimal solution of the problem in (2.1), say *d , which 

was already found by a classic simulation optimization algorithm.  Hence, starting from 

the neighborhood of *d , our Taguchian RSM will search for a robust optimal solution 

in one shot, rather than searching iteratively over the global feasible area.  

 

Taguchian RSM consists of four steps, namely selecting a design type of experiments, 

fitting a regression metamodel to the realizations of the random response w  in (2.1) and 

estimating its variance, checking the validity of the fitted metamodel, and minimizing a 

risk-averse transformation of the problem in (2.1).  We will describe these steps in 

detail later in this section.  Our description is in general in line with the one in Dellino et 

al. [56]; whenever there is a difference, we will make it clear in the text.  

 

In Step 2 of Taguchian RSM, Myers and Montgomery [55] suggested to approximate w  

in (2.1) through 

 

' '
'

0 ;;
1 1 1 1 1

k k k c k c

j j j g g j g j gj j j
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0
T T T Td d Bd e d eβ β γ ε= + + + + Δ +                                                  (2.8) 
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where y  is the regression predictor, 0β  is the overall mean, the jkβ ’s are the main 

effects of the controllable variables, the '

2

;2 j j

k β ’s are the two-factor interactions 

( 'j j≠ ) and the purely quadratic effects ( 'j j= ), the gcγ ’s are the main effects of the 

environmental variables, and the ;j gkcδ ’s are the control-by-noise interactions.  This 

makes a total of 
2

1
2
kq k c kc= + + + +  unknown coefficients to be estimated in (2.7).  

Furthermore, the ε  is the residual which is supposed to satisfy the white noise 

assumption; that is, ε  is normally, independently, and identically distributed with mean 

zero ( 0εμ = ) and constant variance 2
εσ  [55].  0εμ =  implies that the metamodel in 

(2.5) has no lack-of-fit, which will be investigated in Step 3.  Finally, (2.8) is obtained 

by simply rewriting (2.7) in matrix notation.  

 

Myers and Montgomery assumed the following for the vector of the environmental 

variables e  in (2.8): ( ) 0E e =  and 2cov( ) ee σ= Ι , where cov( )e  and Ι  denote the 

covariance matrix of e  and the identity matrix, respectively [55].  We, however, prefer 

to replace their assumption with the more realistic one in Dellino et al.: ( ) eE e μ=  and 

cov( ) ee = Ω , where both eμ  and eΩ  are assumed to be known [56].  Under Dellino et 

al.'s assumption, the mean and variance of y  are given by 

 

0( ) T T T T
e eE y d d Bd dβ β γ μ μ= + + + + Δ                            (2.9) 

( ) ( ) ( )2 2var( ) var T T T T T
ey d e d dε εγ σ γ γ σ⎡ ⎤= + Δ + = + Δ Ω + Δ +⎣ ⎦           (2.10) 

 

provided that e  and ε  are independent [56].  Estimates of (2.7) and (2.10) will be used 

when we minimize a risk-averse version of (2.1) in Step 4.  

 

Now, we can detail each step of Taguchian RSM, as follows.  These steps will be used 

only once when we apply Taguchian RSM to an inventory example in the next section 

(i.e., one shot approach).  
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Step 1, Select a design type of experiments: To fit the metamodel in (2.7), simulation 

practitioners usually prefer a central composite design (CCD), which is defined as 

follows.  One part of a CCD consists of a two-level factorial design that may be 

fractional-provided this fractional has a resolution at least V - since a resolution V ( VR ) 

design gives unbiased ordinary least squares (OLS) estimators of all main effects and all 

two-factor interactions-provided all other effects are negligible.  Furthermore, to 

estimate all purely quadratic effects, a CCD augments a VR  design by (i) the central 

design point and (ii) 2( )k c+  axial design points [101].  In our CCD, we have only 2k  

axial design points in addition to the central design point, since there are no purely 

quadratic effects of the environmental variables in (2.7).  

 

Step 2, Fit the metamodel and estimate variance: Let n  be the total number of input 

combinations, which depends on the selected design type in Step 1.  We simulate lm  

replicates at the l th design point ( , )T T T
l ld e  (1,..., )l n= , which give lm  identically and 

independently distributed simulated responses at that point.  Furthermore, we do not use 

common seeds across the n  input combinations, to make the resulting total number of 

runs 1 ... ...l nN m m m= + + + +  independent.  Our main reason for avoiding common 

seeds is the well-known synchronization problem of discrete-event simulation studies 

[102].  By this way, we obtain the 1N ×  vector ŵ  of simulated responses.  

 

Let ζ  be the 1q×  vector whose components are the unknown coefficients in (2.7).  If 

the ε  satisfies the white noise assumption, then the best linear unbiased estimator of ζ  

is given by its OLS estimator: 

 

( ) 1ˆ ˆT TX X X wζ
−

=                                                   (2.11) 

 

where X  is the N q×  matrix of explanatory variables.  In (2.11), we use the original 

values of d and e ; because the inversion in (2.11) may cause numerical instabilities, 

Dellino et al. used their standardized (or coded) values [56].  

 



 24

Assuming that the variance of w  is constant across the n  input combinations, the 

covariance matrix of ζ̂  is given by 

 

( ) 12
ˆ

ˆ ˆ T
w X Xσ

−
Ψ =                                                        (2.12) 

 

where 2
ŵσ  is estimated through mean squared residuals [101]: 

 

 ( ) ( )2
ˆ

ˆ ˆ ˆ ˆ
ˆ

T

w

w y w y
N q

σ
− −

=
−

                                               (2.13) 

 

provided ˆŷ Xζ=  and N q> .  Considering the dependence of (2.10) on d , the constant 

variance assumption may not be very realistic; we left this issue as a future work.  

 

For (2.11) to be multivariate normally distributed, Dellino et al., who considered 

deterministic simulation, assumed that e  is multivariate normally distributed [56].  We, 

however, consider stochastic simulation where we can make a large number of runs; 

that is, N →∞  such that lm →∞  for each input combination l .  Then, under some 

conditions, ( ){ }ˆN ζ ζ− has asymptotically a multivariate normal distribution with 

zero mean vector and covariance matrix Ψ  with Ψ  given by (2.12) replacing 2
ˆˆwσ  with 

2
ŵσ  [103].  In practice, ζ  and 2

ŵσ  are computed through (2.11) and (2.13) for large N .  

Therefore, we do not need to assume multivariate normality for e .  Furthermore, the 

asymptotic multivariate normality of ζ̂  enables us to apply classic F-test for lack-of-fit 

in the following step.  

 

Step 3, Test the validity of the fitted metamodel: We test the following null 

hypothesis: 

 

0 : ( ) ( ).H E w E y=                                                       (2.14) 
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If 0H  is rejected, the approach in classic RSM is to switch alternative regression 

metamodels using some transformations of d ; in this thesis, we do not discuss solutions 

when there is lack-of-fit, but we refer to Irrizary, Kuhl, Lada, Subramanian and Wilson 

for such solutions [104].  In case 0H  is not rejected, Step 4 will be performed.   

 

To test 0H , we introduce the following classic F-statistic: 

 

1 2

1
,

2

LOF
v v

PE

SS vF
SS v

=                                                       (2.15) 

 

where LOFSS  is the lack-of-fit sum of squares, PESS  is the sum of squared pure errors, 

and 1v n q= −  and 2v N n= −  are the degrees of freedom of LOFSS  and PESS , 

respectively.  0H  is rejected if 
1 2,v vF  exceeds a prespecified critical value 

1 2, ,v vFα , where 

α  is the type- Ι  error rate.  

 

To compute 
1 2,v vF , we introduce the sum of squared residuals, RSS , since LOFSS  is 

given by LOF R PESS SS SS= − .  These RSS  and PESS  can be computed through  

 

( ) ( )ˆ ˆ ˆ ˆT
RSS w y w y= − −                                                  (2.16) 

and 

( ) ( )ˆ ˆ ˆ ˆ
T

PESS w w w w= − −                                                (2.17) 

 

where ŵ  is the 1N ×  vector of responses averaged over the lm  replicates; i.e., its first 

1m  rows consist of 
1

ˆmw , which denotes the average of the first 1m  components of ŵ , its 

next 2m  rows consist of 
2

ˆmw , which denotes the average of the next 2m  components of 

ŵ , etc.   
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Finally, to test 0H , Dellino et al. used leave-one-out cross-validation.  Our F-test 

approach in (2.15) is more standard in regression analysis [56].  

 

Step 4, Minimize the risk-averse problem: To obtain a risk-averse formulation of the 

problem in (2.1), we first estimate (2.9) and (2.10) by 

 

0
ˆ ˆ ˆ ˆˆˆ T T T T

e ey d d Bd dβ β γ μ μ= + + + + Δ                              (2.18) 

( ) ( ) 2ˆ ˆˆ ˆ ˆvar( ) T T T
ey d d εγ γ σ= + Δ Ω + Δ +                              (2.19) 

 

Note that the variance estimator in (2.19) is biased; Myers and Montgomery gave an 

unbiased estimator for var( )y  [55], but for simplicity we use (2.19).  Furthermore, we 

estimate 2ˆεσ  through (2.13).  

 

Now a risk-averse formulation is given by the smaller the better approach: 

 

ˆminimize 

subject to var( )

y

y τ≤
                                              (2.20) 

 

where τ  denotes a threshold value.  We will change this τ  over a finite interval and 

solve (2.20) each time with the new τ  to observe the price of taking risk.  

 

2.5. (s, S) INVENTORY EXAMPLE 

 

In this section, we applied Taguchian RSM to an (s, S) inventory example investigated 

by Bashyam and Fu [105].  The computer program was coded in Matlab 7.6, the 

optimization in (2.20) was performed through the built-in function fmincon in Matlab, 

and could be analyzed in Appendix A and B.    

 

 



 27

2.5.1. Problem Definition 

 

Bashyam and Fu [105] considered an infinite horizon periodic review inventory system 

with continuous-valued independently and identically distributed demands and full 

backlogging.   

Orders are received at the beginning of the period; the demand for the period is 

subtracted out, then an order review is carried out at the end of the period. The 

inventory level in period n ( nW ) is defined as the on hand stock minus backorders, and 

observed after demand subtraction, and the inventory position ( nI ) is the inventory 

level plus any outstanding orders [105]. 

 

Ordering decisions are made according to the wellknown (s, S) policy: 

 

If  nI s<  : an order for the amount nS I−  is placed 

     O/w, no action is taken 

 

The lead times iL  for orders placed are assumed to be integer valued i.i.d. random 

variables. Under their convention, an order with lead time l placed in period n will 

arrive at the beginning of period 1n l+ + . 

 

The performance of the system is evaluated by a cost function and a service level 

measure, where the cost measure considers only setup and holding costs, and the service 

level measure tracks the extent of backlogging in the system. 

 

2.5.2. Application 

 

Like Bashyam and Fu, we assumed an infinite horizon, periodic review inventory 

system with exponentially distributed demands with mean 100 and Poisson distributed 

order lead times with mean 6, and full backlogging of orders [106].  The basic sequence 

of events in each period is as follows: orders are received at the beginning of the period, 

the demand for the period is subtracted, and order review is done at the end of the 
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period.  An order is placed when the inventory position falls below the reorder level s; 

the order amount is the difference between the order up to level S and the current 

inventory position.   

 

Furthermore, Bashyam and Fu set per order setup cost to 36, per unit order cost to 2, 

and per period per unit holding cost to 1; we used the same cost values in our simulation 

experiments [105].  Moreover, Bashyam and Fu had a service level constraint, which 

we did omit, since this would require considering multiple responses; we left this issue 

as a future work.  We, however, had the following deterministic constraint in addition to 

(2.20): s S≤ .  

 

Angün (2008) found an estimated optimal solution of Bashyam and Fu's problem as 

( ) ( )* *, 1160,1212
T Ts S =  with an estimated cost of 647.15 [106].  Starting from this 

estimated optimal solution, our goal is to find a robust optimal solution.  The random 

response w  to be minimized is the total costs, namely the sum of order setup, ordering, 

and holding costs.  The environmental variable e  is the mean demand.  

 

In our experiment, the factorial part of CCD was given by a 23 design with 

980 1340s≤ ≤ , 1019 1405S≤ ≤  and 80 120e≤ ≤ , the central point by s = 1160, S = 

1212, and e =  100, the two positive axial points by s = 1424, S = 1212, and e = 100, and 

s = 1160, S =  1476, and e = 100, and the two negative axial points by s = 896, S = 1212, 

and e = 100, and s = 1160, S = 948, and e = 100, all expressed in the original variables; 

obviously, n = 13.  Notice that the low (80) and high (120) values for e were chosen as 

100 5e± Ω , where 2100eΩ =  is the variance of e.  Furthermore, the number of 

replicates at each input combination l  was chosen as 30lm =  so that 390N = .  Each 

simulation run was simulated for 2500 periods, and the type- Ι  error rate α  for lack-of-

fit test was chosen as 1%α = .  The computer program was coded in Matlab 7.6, and 

could be analyzed in Appendix C.  
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Table 2.1.: Optimal regression predictors *ŷ  and their risks *ˆvar( )y  obtained through 
solving (2.20) with s S≤  
 

*ŷ  *ˆvar( )y  
*ŷ  *ˆvar( )y  

*ŷ  *ˆvar( )y  
-408 232 -409 233 -410 234 
-411 236 -413 237 -415 238 
-416 240 -418 241 -419 242 

 

We solved (2.20) subject to s S≤  by changing the target value τ  over the interval 

[50,000; 58,000]; that is, we started with τ  = 50,000, solved the problem, increased τ   

by 1000, and resolved the new problem up to and including τ = 58,000.  Our numerical 

results are presented in Table 2.1; we rounded up all decimals to the nearest integers.  

 

According to the results in Table 2.1, the lower the cost is, the higher the risk becomes, 

which is in accordance with the common sense.  In particular, the lowest cost, namely 

419, has the highest risk, namely 242.  A further remark that should be made is that all 

optimal costs in Table 2.1 are lower than the one in Angün (2008) as seen in Table 2.2. 

simply because in this thesis, we did not consider the service level constraint [106].  

 

Table 2.2.: Numerical results for the 0.50 quantile (‘mean’) of 100 estimated solutions 
for the inventory problem  
 

iteratio
n 

iterate ˆˆ( , )s S   search direction d̂  step 
size  
λ  

 (1)
0H   (2)

0H  

0 (2100, 2300) (-0.7045, -0.7097) 1703.4   
1 (900, 1091)   reject fail to reject 
2 (1500, 1695.5)   reject reject 
3 (1200, 1393.3) (-0.5973, -0.8020) 171.3 reject reject 
4 (1097.6, 1255.9)   reject fail to reject 
5 (1148.8, 1324.6) (-0.4816, -0.8764) 100.9 reject reject 
6 (1123.2, 1290.2)   reject fail to reject 
7 (1100.2, 1236.1)   reject fail to reject 
8 (1124.5, 1280.3)   reject fail to reject 
9 (1136.7, 1302.4)   reject reject 
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3. CALL CENTER APPLICATION 

 

 

 

In this chapter, we will apply our Taguchian RSM approach to a more complex example 

which is a call center problem modeled in Arena. The results taken from the execution 

of the model will be used in our optimization algorithm. 

 

3.1. PROBLEM DEFINITION 

 

The generic call center system described in detail in the Simulation with Arena book 

provides a central number in an organization that customers call for technical support, 

sales information, and order status.  This central number feeds 26 trunk lines.  If all 26 

lines are in use, a caller gets a busy signal; or an answered caller hears a recording 

describing three options: transfer to technical support, sales information, or order-status 

inquiry [107].  

 

Below a brief description of each option is given and further details regarding waiting 

times, product types’ request statistics, call duration estimates etc. can be found in 

Appendix D.  

 

Technical Support Calls 

If the caller chooses technical support, he/she gets a second recording asking which of 

three product types he/she is using: 

 

• Product type 1? (25% of technical support callers) 

• Product type 2? (34% of technical support callers) 

• Product type 3? (41% of technical support callers) 
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If a qualified technical support person is available for chosen product type, the call is 

automatically routed to that person for immediate service.  If not, the call is placed in an 

electronic queue until a support person is available.  Upon completion of the call, the 

customer exits the system.  However, four percent of these technical support calls needs 

further assistance after completion of the call.  The questions raised by these callers are 

forwarded to another technical group, outside the boundaries of the defined model that 

prepares a response.  The resulting response is sent back to the same technical support 

person who took the original call.  This person then calls the customer back.  These 

calls require the use of one of the 26 trunk lines and takes priority over incoming calls.  

If a returned call is not completed on the same day the original call was received, it’s 

carried over to the next day. A demonstration of the Generic Call Center System can be 

found in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Generic Call Center System 
 

There are 11 technical support people variously qualified for the three different product 

lines.  Some people only qualified in one line, and some on two or maybe all three lines.  

Detailed stuffing description and schedule information can be found in Appendix D.   

 

 

Generic Call Center System

single telephone number 
with 26 trunk lines

technical support calls

sales calls

order status calls

product type 1 @%25

product type 2 @%34

product type 3 @%41

@%4 
further 
assistance
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Sales Calls 

These calls are automatically routed to the sales staff which is separated from technical 

support staff.  There are seven sales people with the staggered daily schedules defined 

in number of people @ time period in minutes.  If a salesperson is not available, the 

caller is waited on the line. Upon completion of the call, the customer exist the system.   

 

Order-Status Calls 

These calls are automatically handled by the phone system, and there is no limit on the 

number handled at a time (but still limited by the 26 trunk lines).  After the call some of 

these callers take the option to talk to a real person and the rest exits the system. And 

these calls:  

 

• are routed to the sales staff 

• have the same priority as incoming sales calls. 

 

and then customers exit the system. 

 

The call center operates from 8 a.m. to 6 p.m., and a small proportion of the staff stays 

until 7 p.m.  Incoming calls shut out after 6 p.m., but all calls that entered before 6 p.m. 

are answered. The call arrival rate varies substantially over the day, and is expressed in 

calls per hour for each 30-minute period during which the system is open. All technical 

support employees work an eight-hour day with 30 minutes off for lunch (lunch is not 

included in the eight hours). Top-level Model View of the Call Center Model can be 

found in Figure 3.2. 

 

 
 
 
 
 
 
 

 
Figure 3.2: Top-level Model View of the Call Center Model 

 

Time Period Counter

Create and Direct Arrivals

Technical Support Calls

Sales Calls

Order-Status Calls

Returned Tech Calls
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3.2. APPLICATION #1 

 

Based on the defined model, our objective is to find an optimal solution * * * *
1 2 3 1( , , , )x x x e , 

where 1x  is the number of trunk lines, 2x  is the additional sales staff,  3x  is all product 

support staff (support people qualified for all product types) and 1e  is the recording 

delay of technical support calls having the uniform distribution (0.1,0.5)U  as an 

environmental factor, all of which minimize the total system cost.  These decision 

variables have the following constraints: 126 50x≤ ≤ , 2 3 15x x+ ≤ ,  10.5 0.5r e r− ≤ ≤ +  

where r is the radius.  The objective function is the expected total system cost of new 

technical people and new sales staff, and new trunk lines. 

 

In the first step of our approach, we select the design type of experiments.  As in our 

previous example, we prefer to use a CCD design and since we have 4 design factors, 

we select a 42  CCD design with 2 6k =  axial design points and a central design point 

which are given in detail in Appendix D.  Therefore, we have 23n =  input 

combinations. 

 

To fit the metamodel and estimate its variance, we simulate 10lm =  replicates at each 

design point and obtain 10 identically and independently distributed simulated 

responses at each point.  By this way, we obtain the 230 1×  vector ŵ  of simulated 

responses. 

 

Type- Ι  error rate α  for lack-of-fit test is chosen as 1%α = .  The computer program 

was coded in Matlab 7.6, and could be analyzed in Appendix E. 

 

Finally, in order to minimize the risk averse problem, we first estimate (3.1): 

 

10 1 1 2 2 3 3 1 1,2 1 2 1,3 1 3 2,3 2 3

2 2 2
1,1 1 1 1,2 1 2 1,3 1 3 1,1 1 2,2 2 3,3 3

y x x x e x x x x x x

e x e x e x x x x

β β β β γ β β β

δ δ δ β β β

= + + + + + + +

+ + + + + +
       (3.1) 
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For this, we use our computer program which was coded in Matlab 7.6, and could be 

analyzed in Appendix F.  

 

3.3. RESULTS #1 

 

Based on the results taken from the execution of the Matlab codes, we observeβ  as 

below:   

 

-894160
46944.3
363.787
71341.3
431242
-3.60577
-1687.57

  
18.75
-6989.71
-187.5
-50035.5
-672.168
-24.7372
-229.493

β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

The optimization of the problem is performed by using the fmincon function. Our 

minimization resulted with 1exitflag =  which means that the problem is solved at 

optimum. The optimum value for x  is as below: 

 

26.000
0
0
0.4950

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

The objective value is equal to -4.4865e+003. 
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3.4. APPLICATION #2 

 

Since the student version of Arena doesn’t allow us to increase the number of decision 

variables, we therefore decided to add one more environmental factor 2e  in order to 

expand the original example. 

 

Then, our objective becomes to find an optimal solution * * * * *
1 2 3 1 2( , , , , )x x x e e , where 1x  is 

the number of trunk lines, 2x  is the additional sales staff,  3x  is all product support staff 

(support people qualified for all product types), 1e  is the recording delay of technical 

support calls having the uniform distribution (0.1,0.5)U  and 2e  is the delay of create & 

direct arrivals part of the system having the uniform distribution U(0.1,0.6) as an 

environmental factor, all of which minimize the total system cost.   

 

These decision variables have the same constraints as application #1. The objective 

function is the expected total system cost of new technical people and new sales staff, 

and new trunk lines. 

 

In the first step of our approach, we select the design type of experiments.  As in our 

previous example, we prefer to use a CCD design and since we have 5 design factors 

now, we select a 52  CCD design with 2 6k =  axial design points and a central design 

point which are given in detail in Appendix G.  Therefore, we have 39n =  input 

combinations. 

 

To fit the metamodel and estimate its variance, we simulate 10lm =  replicates at each 

design point and obtain 10 identically and independently distributed simulated 

responses at each point.  By this way, we obtain the 390 1×  vector ŵ  of simulated 

responses. 

 

Type- Ι  error rate α  for lack-of-fit test is chosen as 1%α = .  The computer program 

was coded in Matlab 7.6, and could be analyzed in Appendix H. 
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Finally, in order to minimize the risk averse problem, we first estimate (3.2): 

 

0 1 1 2 2 3 3 1,2 1 2 1,3 1 3 2,3 2 3

1 21 1,1 1 1 1,2 1 2 1,3 1 3 2 2,1 2 1 2,2 2 2

2 2 2
2,3 2 3 1,1 1 2,2 2 3,3 3

y x x x x x x x x x

e e x e x e x e e x e x

e x x x x

β β β β β β β

γ δ δ δ γ δ δ

δ β β β

= + + + + + +

+ + + + + + +

+ + + +

           (3.2) 

 

For this, we use our computer program which was coded in Matlab 7.6, and could be 

analyzed in Appendix I.  

 

3.5. RESULTS #2 

 

Based on the results taken from the execution of Matlab codes, we observeβ  as below:   

 

-2.00829e+006
43093.4
313036
41741.4
1.48e+006
1.18377e+006
6009.64
-5114.92
-31250.1

  
-52091.2
-312501
222195
-40164.2
-260418
178239
169.08
-6.47815
-200.209

β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎣ ⎦

⎥
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The optimization of the problem is performed by using the fmincon function.  Our 

minimization resulted with 4exitflag =  which means that the magnitude of the search 

direction is very small.  The optimum value for x  is as below: 

 

50.000
12.4348
2.5652
0.5050
0.6060

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

The objective value is equal to -5.2503e+006. 

 

We also experiment our minimization algorithm with different starting points, and 

obtain same results; therefore, we can say  that we reached a local optimum. 
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4. CONCLUSION 

 

 

 

In this thesis, we presented the steps of Taguchian RSM, which consisted of selecting 

an experimental design type, approximating the random response by a regression 

metamodel and estimating its variance, performing a lack-of-fit test to check the validity 

of the metamodel, and minimizing a risk-averse reformulation of the original problem.  

 

We contrasted our description of Taguchian RSM with the one in Dellino et al. (2008): 

the major differences are that we did not assume multivariate normality since we 

considered stochastic simulation and had a large sample size -so that multivariate 

normality is the result of a central limit theorem- and we used classic F-test for lack-of-

fit.  

 

First, we applied our Taguchian RSM to an inventory example which is used as an 

introductory exercise to our methodology; and our results showed that low risks mean 

high costs. 

 

Then we applied our method to a more complex example with three decision variables 

and a single environmental factor.  Based on the results taken from the simulation of the 

problem in Arena, we applied our algorithms for RSM and lack-of-fit test.  Our results 

show that the presented methodology reaches a global optimum value for the 

minimization problem. 

 

In order to expand the original example, we did add one more environmental factor and 

applied our methodology to the simulation results again.  Our results show that the 

presented methodology reaches a local optimum value for the minimization problem for 

different starting points. 
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While the author believes that the presented model provides value, there are also further 

points that can be included.  First of all classic RSM is an iterative metaheuristic; hence, 

in our future work, we should extend our one shot approach to an iterative one.  Another 

issue is to extend the current approach to handle multiple random responses.  Additional 

interactions between and within the decision factors could have been included. 
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APPENDIX A:  

 

 

 

(s, S) Inventory program simulation code: 

 
function [averagecostvector, fillratevector]=inventory_simulation(d1total, d2total, 

e1total, totalruns, holdingcost, orderingcost, setupcost, numberofperiods, leadtimemean) 

 
%initialization 

averagecostvector=[]; 

fillratevector=[]; 

for i=1:totalruns 

 period=1; 

 indicator=0; 

 totalcost=0; 

 totalsatisfieddemand=0; 

 totaldemand=0; 

 arrivaltimes=[]; 

 orders=[]; 

 orderedarrivaltimes=[]; 

 orderedorders=[]; 

 notfullfilledtimes=[]; 

 notfullfilledorders=[]; 

 inventorylevel=d2total(i); 

 inventoryposition=d2total(i); 

 while period <= numberofperiods 

 
%check existing orders 

if size(notfullfilledtimes,1) ~= 0 

count=0; 
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for m=1:size(notfullfilledtimes,1) 

                if period == notfullfilledtimes(m,1) 

inventorylevel=inventorylevel+notfullfilledorders(m,1); 

                    count=count+1; 

                end 

            end 

            if count > 0 

                newnotfullfilledtimes=[]; 

                newnotfullfilledorders=[]; 

                for p=1:(size(notfullfilledtimes,1)-count) 

                    newnotfullfilledtimes(p,1)=notfullfilledtimes(p+count,1); 

                    newnotfullfilledorders(p,1)=notfullfilledorders(p+count,1); 

                end 

                notfullfilledtimes=newnotfullfilledtimes; 

                notfullfilledorders=newnotfullfilledorders; 

            end 

        end 

        beforedemandinventorylevel=inventorylevel; 

       
%generate demands 

        demand=exprnd(e1total(i)); 

 
%update inventory level 

        inventorylevel=inventorylevel-demand; 

 
%check inventory position, determine leadtimes 

if inventoryposition < d1total(i) 

            indicator=1; 

            leadtime=poissrnd(leadtimemean); 

            arrivaltimes=[arrivaltimes; period+1+leadtime]; 

            orders=[orders; d2total(i)-inventoryposition]; 

            [orderedarrivaltimes, index1] = sort(arrivaltimes); 

            for k=1:size(index1,1) 
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                orderedorders(k,1)=orders(index1(k,1),1); 

            end 

            notfullfilledtimes=[notfullfilledtimes; period+1+leadtime]; 

            notfullfilledorders=[notfullfilledorders; d2total(i)-inventoryposition]; 

            newnotfullfilledtimes=[]; 

            newnotfullfilledorders=[]; 

            [newnotfullfilledtimes, index2] = sort(notfullfilledtimes); 

            for h=1:size(index2,1) 

                newnotfullfilledorders(h,1)=notfullfilledorders(index2(h,1),1); 

            end 

            notfullfilledtimes=newnotfullfilledtimes; 

            notfullfilledorders=newnotfullfilledorders; 

        end 

 

%compute cost, total cost, satisfied demand, total satisfied demand, and total demand 

cost = max([inventorylevel; 0]) * holdingcost + indicator *(setupcost + (orderingcost * 

(d2total(i)-inventoryposition))); 

        totalcost=totalcost+cost; 

        if beforedemandinventorylevel > 0 

            satisfieddemand=min([demand; beforedemandinventorylevel]); 

        else 

            satisfieddemand=0; 

        end 

        totalsatisfieddemand=totalsatisfieddemand+satisfieddemand; 

        totaldemand=totaldemand+demand; 

        inventoryposition=inventorylevel+sum(notfullfilledorders); 

        indicator=0; 

        period=period + 1; 

    end 

    averagecostvector=[averagecostvector;totalcost/numberofperiods]; 

    fillratevector=[fillratevector;totalsatisfieddemand/totaldemand]; 

end 
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APPENDIX B:  

 

 

 

Application of Robust RSM to the inventory simulation: 

 
%this program applies robust rsm to an inventory simulation 

%fix simulation seed 

rand('state',0); 

numberofreplicates = 30; 

numberofinputs = 13; 

totalruns = numberofreplicates * numberofinputs; 

holdingcost = 1; 

orderingcost = 2; 

setupcost = 36; 

numberofperiods = 2500; 

leadtimemean=6; 

alpha=0. 01; 

totalreject=0; 

totalfailreject=0; 

allzetas=[]; 

 
%design matrix 

d1=[1340; 1340; 1340; 980; 980; 980; 1340; 980; 1160; 1424; 1160; 896; 1160]; 

d2=[1405; 1405; 1019; 1405; 1019; 1405; 1019; 1019; 1212; 1212; 1476; 1212; 948]; 

e1=[120; 80; 120; 120; 120; 80; 80; 80; 100; 100; 100; 100; 100]; 

 

d1total=[repmat(d1(1),numberofreplicates,1); repmat(d1(2),numberofreplicates,1); 

repmat(d1(3),numberofreplicates,1); repmat(d1(4),numberofreplicates,1); 

repmat(d1(5),numberofreplicates,1); repmat(d1(6),numberofreplicates,1); 

repmat(d1(7),numberofreplicates,1); repmat(d1(8),numberofreplicates,1); 
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repmat(d1(9),numberofreplicates,1); repmat(d1(10),numberofreplicates,1); 

repmat(d1(11),numberofreplicates,1); repmat(d1(12),numberofreplicates,1); 

repmat(d1(13),numberofreplicates,1)]; 

 
d2total=[repmat(d2(1),numberofreplicates,1); repmat(d2(2),numberofreplicates,1); 

repmat(d2(3),numberofreplicates,1); repmat(d2(4),numberofreplicates,1); 

repmat(d2(5),numberofreplicates,1); repmat(d2(6),numberofreplicates,1); 

repmat(d2(7),numberofreplicates,1); repmat(d2(8),numberofreplicates,1); 

repmat(d2(9),numberofreplicates,1); repmat(d2(10),numberofreplicates,1); 

repmat(d2(11),numberofreplicates,1); repmat(d2(12),numberofreplicates,1); 

repmat(d2(13),numberofreplicates,1)]; 

 
e1total=[repmat(e1(1),numberofreplicates,1); repmat(e1(2),numberofreplicates,1); 

repmat(e1(3),numberofreplicates,1); repmat(e1(4),numberofreplicates,1); 

repmat(e1(5),numberofreplicates,1); repmat(e1(6),numberofreplicates,1); 

repmat(e1(7),numberofreplicates,1); repmat(e1(8),numberofreplicates,1); 

repmat(e1(9),numberofreplicates,1); repmat(e1(10),numberofreplicates,1); 

repmat(e1(11),numberofreplicates,1); repmat(e1(12),numberofreplicates,1); 

repmat(e1(13),numberofreplicates,1)]; 

 
X=[ones(totalruns,1) d1total d2total d1total. ^2 d2total. ^2 d1total. *d2total e1total 

d1total. *e1total d2total. *e1total]; 

fid=fopen('zeta','w+'); 

fprintf(fid,'zeta(1)    zeta(2)    zeta(3)    zeta(4)    zeta(5)    zeta(6)    zeta(7)    zeta(8)    

zeta(9)\n');    

for t=1:50 

 

%call inventory simulation  

[averagecostvector, fillratevector]=inventory_simulation(d1total, d2total, e1total, 

totalrun, holdingcost, orderingcost, setupcost, numberofperiods, leadtimemean); 

    
%fit regression metamodel to average cost realizations 

    zeta=X\averagecostvector; 
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%call lack-of-fit F-test 

[F_statistic,F_critical]=lack_of_fit(zeta, alpha, X, averagecostvector, 

numberofreplicates, totalruns, numberofinputs); 

    if F_statistic > F_critical 

        totalreject=totalreject+1; 

    else 

        totalfailreject=totalfailreject+1; 

    end 

    allzetas=[allzetas;zeta(1) zeta(2) zeta(3) zeta(4) zeta(5) zeta(6) zeta(7) zeta(8) 

zeta(9)]; 

    fprintf(fid,'  %g     %g    %g     %g     %g     %g     %g     %g     %g\n',zeta(1), zeta(2), 

zeta(3), zeta(4), zeta(5), zeta(6), zeta(7), zeta(8), zeta(9)); 

    t 

end 

fclose(fid); 
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APPENDIX C: 

 

 

 

Lack-of-fit test simulation code: 

 
%this function performs lack-of-fit F-test  

function [F_statistic, F_critical]=lack_of_fit(zeta, alpha, X, averagecostvector, 

numberofreplicates, totalruns, numberofinputs) 

one=[]; two=[]; three=[]; four=[]; five=[]; six=[]; seven=[]; eight=[]; nine=[]; ten=[]; 

eleven=[]; twelve=[]; thirteen=[]; 

averagecostvectorbar=[]; 

 
%compute sum of squared residuals and sum of squared errors 

regressionhead=X*zeta; 

sumsquaredresidual=(averagecostvector-regressionhead)'*(averagecostvector- 

regressionhead); 

for i=1:totalruns 

    if i<= numberofreplicates 

        one=[one;averagecostvector(i)]; 

    elseif (i>= numberofreplicates+1)&(i<= 2*numberofreplicates) 

        two=[two;averagecostvector(i)]; 

    elseif (i>= 2*numberofreplicates+1)&(i<= 3*numberofreplicates) 

        three=[three;averagecostvector(i)]; 

    elseif (i>= 3*numberofreplicates+1)&(i<= 4*numberofreplicates) 

        four=[four;averagecostvector(i)]; 

    elseif (i>= 4*numberofreplicates+1)&(i<= 5*numberofreplicates) 

        five=[five;averagecostvector(i)]; 

    elseif (i>= 5*numberofreplicates+1)&(i<= 6*numberofreplicates) 

        six=[six;averagecostvector(i)]; 

    elseif (i>= 6*numberofreplicates+1)&(i<= 7*numberofreplicates) 
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        seven=[seven;averagecostvector(i)]; 

    elseif (i>= 7*numberofreplicates+1)&(i<= 8*numberofreplicates) 

        eight=[eight;averagecostvector(i)]; 

    elseif (i>= 8*numberofreplicates+1)&(i<= 9*numberofreplicates) 

        nine=[nine;averagecostvector(i)]; 

    elseif (i>= 9*numberofreplicates+1)&(i<= 10*numberofreplicates) 

        ten=[ten;averagecostvector(i)]; 

    elseif (i>= 10*numberofreplicates+1)&(i<= 11*numberofreplicates) 

        eleven=[eleven;averagecostvector(i)]; 

    elseif (i>= 11*numberofreplicates+1)&(i<= 12*numberofreplicates) 

        twelve=[twelve;averagecostvector(i)]; 

    elseif (i>= 12*numberofreplicates+1)&(i<= 13*numberofreplicates) 

        thirteen=[thirteen;averagecostvector(i)]; 

    end 

end 

for i=1:totalruns 

    if i<= numberofreplicates 

        averagecostvectorbar=[averagecostvectorbar;mean(one)]; 

    elseif (i>= numberofreplicates+1)&(i<= 2*numberofreplicates) 

        averagecostvectorbar=[averagecostvectorbar;mean(two)]; 

    elseif (i>= 2*numberofreplicates+1)&(i<= 3*numberofreplicates) 

        averagecostvectorbar=[averagecostvectorbar;mean(three)]; 

    elseif (i>= 3*numberofreplicates+1)&(i<= 4*numberofreplicates) 

        averagecostvectorbar=[averagecostvectorbar;mean(four)]; 

    elseif (i>= 4*numberofreplicates+1)&(i<= 5*numberofreplicates) 

        averagecostvectorbar=[averagecostvectorbar;mean(five)]; 

    elseif (i>= 5*numberofreplicates+1)&(i<= 6*numberofreplicates) 

        averagecostvectorbar=[averagecostvectorbar;mean(six)]; 

    elseif (i>= 6*numberofreplicates+1)&(i<= 7*numberofreplicates) 

        averagecostvectorbar=[averagecostvectorbar;mean(seven)]; 

    elseif (i>= 7*numberofreplicates+1)&(i<= 8*numberofreplicates) 

        averagecostvectorbar=[averagecostvectorbar;mean(eight)]; 
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    elseif (i>= 8*numberofreplicates+1)&(i<= 9*numberofreplicates) 

        averagecostvectorbar=[averagecostvectorbar;mean(nine)]; 

    elseif (i>= 9*numberofreplicates+1)&(i<= 10*numberofreplicates) 

        averagecostvectorbar=[averagecostvectorbar;mean(ten)]; 

    elseif (i>= 10*numberofreplicates+1)&(i<= 11*numberofreplicates) 

        averagecostvectorbar=[averagecostvectorbar;mean(eleven)]; 

    elseif (i>= 11*numberofreplicates+1)&(i<= 12*numberofreplicates) 

        averagecostvectorbar=[averagecostvectorbar;mean(twelve)]; 

    elseif (i>= 12*numberofreplicates+1)&(i<= 13*numberofreplicates) 

        averagecostvectorbar=[averagecostvectorbar;mean(thirteen)]; 

    end 

end 

sumsquaredpurerror=(averagecostvector-averagecostvectorbar)'*(averagecostvector-

averagecostvectorbar); 

sumsquaredlackfit=sumsquaredresidual-sumsquaredpurerror; 

 
%perform F-test 

dof1=numberofinputs-size(zeta,1); 

dof2=totalruns-numberofinputs; 

F_statistic=(sumsquaredlackfit/dof1)/(sumsquaredpurerror/dof2); 

F_critical = finv(1-alpha,dof1,dof2); 
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Objective function @ fmincon 

 
%this function creates the objective function for the minimization 

function obj = objective(x) 

obj = -180.0543 + 0.1704*x(1) + 0.4675*x(2) - 0.0004*x(1)^2 - 0.0003*x(2)^2 + 

0.001*x(1)*x(2) + 2.58*x(3) - 0.0019*x(1)*x(3) - 0.0035*x(2)*x(3); 

 

Minimization function 

 
%this program minimizes the regression predictor subject to its variance <= 

%target value where target value takes its values from [150, 400] 

[x,fval,exitflag]=fmincon(@objective,[1160;1212;100], [1 -1 0], 0, [], [], [896;948;80], 

[1424;1476;120], @constraint) 
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APPENDIX D:  

 

 

 

Table D.1.: The percentages of requests for transfer options and product types  

 

3 transfer options choice percentages 
Technical support 76% 
Sales information 16% 
Order status inquiry 8% 

3 product type options choice percentages 
Product type 1 25% 
Product type 2 34% 
Product type 3 41% 

 

Table D.2.: Sales staff (7) daily schedules (number of people @ time period in minutes) 
 

 
 
 
 
 
 
 
 

 

Table D.3.: Estimated times for: (in minutes) 
 

Support option choice time UNIF (0.1,0.6) 
Technical support product type choice  UNIF (0.1,0.5) 
All technical support calls TRIA(3,6,18) 
Response preparation time for further investigation 
required technical calls 

EXPO(60) 

Customer recall time  TRIA(2,4,9) 
Sales calls TRIA(4,15,45) 
Order status call transactions TRIA(2,3,4) 
Follow up order status calls TRIA(3,5,10) 

Sales staff 1 3@90 
Sales staff 2 7@90 
Sales staff 3 6@90 
Sales staff 4 7@60 
Sales staff 5 6@120 
Sales staff 6 7@120 
Sales staff 7 4@90 
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Table D.4.: Call Arrival Rates (Calls Per Hour) 
 

 

Table D.5.: Technical support (11) schedules 
 

Time Period (30 minutes) Name Product 
lines 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Tech1 1 · · · · · · ·  · · · · · · · · ·      
Tech2 1      · · · · · ·  · · · · · · · · · · 
Tech3 1,3   · · · · · ·  · · · · · · · · · ·    
Tech4 1,2,3     · · · · ·  · · · · · · · · · · ·  
Tech5 1,2,3    · · · · · · ·  · · · · · · · · ·   
Tech6 2 · · · · · · ·  · · · · · · · · ·      
Tech7 2      · · · ·  · · · · · · · · · · · · 
Tech8 2    · · · · ·  · · · · · · · · · · ·   
Tech9 3 · · · · · · ·  · · · · · · · · ·      
Tech10 3      · · · ·  · · · · · · · · · · · · 
Tech11 3    · · · · ·  · · · · · · · · · · ·   

 

Table D.6.: Calculation of the central point, positive and negative axial points and 
positive and negative values of design variables based on OptQuest Results 
 

OptQuest 
Results 

1%α =  2 2 2 2(26.26 26) (4.04 4) (5.05 5) (0.505 0.5) 0.2678radius = − + − + − + − =  

 + - positive axial points negative axial points 

*
1 26x =  26.26 25.74 

1 26.2678x = , 2 4x = , 3 5x = , 1 0.5e =  1 25.7321x = , 2 4x = , 3 5x = , 1 0.5e =  
*
2 4x =  4.04 3.96 

1 26x = , 2 4.2678x = , 3 5x = , 1 0.5e =  1 26x = , 2 3.7321x = , 3 5x = , 1 0.5e =  

*
3 5x =  5.05 4.95 

1 26x = , 2 4x = , 3 5.2678x = , 1 0.5e =  1 26x = , 2 4x = , 3 4.7321x = , 1 0.5e =

*
1 0.5e =  0.505 0.495 central point 

   1 26x = , 2 4x = , 3 5x = , 1 0.5e =  

 
 

Time Rate Time Rate Time Rate Time Rate 
8.00-8.30 20 10.30-11.00 75 13.00-13.30 110 15.30-16.00 90 
8.30-9.00 35 11.00-11.30 75 13.30-14.00 95 16.00-16.30 70 
9.00-9.30 45 11.30-12.00 90 14.00-14.30 105 16.30-17.00 65 
9.30-10.00 50 12.00-12.30 95 14.30-15.00 90 17.00-17.30 45 

10.00-10.30 70 12.30-13.00 105 15.00-15.30 85 17.30-18.00 30 
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Table D.7.: Input combinations table for the call centre simulation 
 

23 input combinations 

42  input combinations Resolution  V Design 

1x  2x  3x  1e   1x  2x  3x  1e  

+ + + +  26.26 4.04 5.05 0.505 

+ + + -  26.26 4.04 5.05 0.495 

+ + - +  26.26 4.04 4.95 0.505 

+ - + +  26.26 3.96 5.05 0.505 

- + + +  25.74 4.04 5.05 0.505 

- - + +  25.74 3.96 5.05 0.505 

- + - +  25.74 4.04 4.95 0.505 

- + + -  25.74 4.04 5.05 0.495 

+ - - +  26.26 3.96 4.95 0.505 

+ + - -  26.26 4.04 4.95 0.495 

+ - + -  26.26 3.96 5.05 0.495 

- - - +  25.74 3.96 4.95 0.505 

- - + -  25.74 3.96 5.05 0.495 

- + - -  25.74 4.04 4.95 0.495 

+ - - -  26.26 3.96 4.95 0.495 

- - - -  25.74 3.96 4.95 0.495 

central point  26 4 5 0.5 

 26.2678 4 5 0.5 

 26 4.2678 5 0.5 

positive axial points 

 26 4 5.2678 0.5 

 25.7321 4 5 0.5 

 26 3.7321 5 0.5 

negative axial points 

 26 4 4.7321 0.5 
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Table D.8.: Total sytem costs per replication calculated through the call centre 
simulation 
 

Input 
combinations 

Total sytem cost @lth replication Total 
cost 

 1 2 3 4 5 6 7 8 9 10  
i.c. 1 2974.50 3249.27 4351.07 3819.31 3866.04 4034.41 4158.34 4283.42 4847.41 3221.92 3881 

i.c. 2 2144.48 4734.73 3726.44 4435.67 3571.43 4242.04 4558.35 4088.35 3849.73 4141.91 3949 

i.c. 3 2910.36 3054.69 4079.72 4534.55 3651.75 4263.69 4391.89 3905.11 4223.16 3978.76 3899 

i.c. 4 2968.74 3243.51 4345.31 3813.55 3860.28 4028.65 4152.58 4277.66 4841.65 3216.16 3875 

i.c. 5 2906.60 3894.78 3922.27 4162.51 4271.60 4207.29 3949.10 4403.57 3117.10 4357.22 3919 

i.c. 6 2900.84 3889.02 3916.51 4156.75 4265.84 4201.53 3943.34 4397.81 3111.34 4351.46 3913 

i.c. 7 2971.87 3180.87 4052.82 3987.83 4506.67 4432.59 3121.14 4823.22 3266.66 3931.37 3828 

i.c. 8 2144.48 4459.83 4009.44 4342.30 3960.66 4221.37 3760.86 4086.63 4105.72 4200.27 3929 

i.c. 9 2904.60 3048.93 4073.96 4528.79 3645.99 4257.93 4386.13 3899.35 4217.40 3973.00 3894 

i.c. 10 2205.68 4323.85 3968.36 3746.25 4579.18 4010.62 4151.34 4124.97 4284.05 3559.01 3895 

i.c. 11 2138.72 4728.97 3720.68 4429.91 3565.67 4236.28 4552.59 4082.59 3843.97 4136.15 3944 

i.c. 12 2966.11 3175.11 4047.06 3982.07 4500.91 4426.83 3115.38 4817.46 3260.90 3925.61 3822 

i.c. 13 2132.72 4454.07 4003.68 4336.54 3954.90 4215.61 3755.10 4080.87 4099.96 4194.51 3923 

i.c. 14 2205.68 4306.03 4403.08 3692.27 3970.70 4224.98 3875.20 3804.03 4165.76 3450.93 3810 

i.c. 15 2199.92 4318.09 3962.60 3740.49 4573.42 4004.86 4145.58 4119.21 4278.29 3553.25 3890 

i.c. 16 2199.92 4300.27 4397.32 3686.51 3964.94 4219.22 3869.44 3798.27 4160.00 3445.17 3804 

centeral 
point 

2817.39 3902.39 3805.63 4225.54 4138.06 4088.09 4288.14 4047.90 4277.02 3839.19 3943 

positive axial 
point 1 

2817.39 3902.39 3805.63 4225.54 4138.06 4088.09 4288.14 4047.90 4277.02 3839.19 3943 

positive axial 
point 2 

2836.68 3921.67 3824.91 4244.82 4157.35 4107.37 4307.42 4067.18 4296.30 3858.47 3962 

positive axial 
point 3 

2835.60 3920.60 3823.84 4243.75 4156.28 4106.30 4306.35 4066.11 4295.23 3857.40 3961 

negative 
axial point 1 

2492.14 3703.68 4397.66 4521.43 4493.66 3897.11 4301.80 2818.23 4740.95 4730.45 4010 

negative 
axial point 2 

2798.10 3883.10 3786.34 4206.25 4118.78 4068.80 4268.85 4028.61 4257.73 3819.90 3924 

negative 
axial point 3 

2867.18 3750.88 4215.76 3256.36 4664.11 3737.27 3814.78 4596.91 3330.91 4740.62 3897 
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APPENDIX E:  

 

 

 

%this function performs lack-of-fit F-test  

function [F_statistic, F_critical]=lack_of_fit2(beta, alpha, X, costvectorperreplications, 

averagecost vector, numberofreplications, totalruns, numberofinputs) 

 

%compute sum of squared residuals and sum of squared errors 

averagecostvectorbar=[]; 

regressionhead=X*beta; 

sumsquaredresidual=(costvectorperreplications- 

regressionhead)'*(costvectorperreplications-regressionhead); 

for i=1:totalruns 

    if i<= numberofreplications 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(1)]; 

    elseif (i>= numberofreplications+1)&&(i<= 2*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(2)]; 

    elseif (i>= 2*numberofreplications+1)&&(i<= 3*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(3)]; 

    elseif (i>= 3*numberofreplications+1)&&(i<= 4*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(4)]; 

    elseif (i>= 4*numberofreplications+1)&&(i<= 5*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(5)]; 

    elseif (i>= 5*numberofreplications+1)&&(i<= 6*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(6)]; 

    elseif (i>= 6*numberofreplications+1)&&(i<= 7*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(7)]; 

    elseif (i>= 7*numberofreplications+1)&&(i<= 8*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(8)]; 
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    elseif (i>= 8*numberofreplications+1)&&(i<= 9*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(9)]; 

    elseif (i>= 9*numberofreplications+1)&&(i<= 10*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(10)]; 

    elseif (i>= 10*numberofreplications+1)&&(i<= 11*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(11)]; 

    elseif (i>= 11*numberofreplications+1)&&(i<= 12*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(12)]; 

    elseif (i>= 12*numberofreplications+1)&&(i<= 13*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(13)]; 

    elseif (i>= 13*numberofreplications+1)&&(i<= 14*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(14)]; 

    elseif (i>= 14*numberofreplications+1)&&(i<= 15*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(15)]; 

    elseif (i>= 15*numberofreplications+1)&&(i<= 16*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(16)]; 

    elseif (i>= 16*numberofreplications+1)&&(i<= 17*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(17)]; 

    elseif (i>= 17*numberofreplications+1)&&(i<= 18*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(18)]; 

    elseif (i>= 18*numberofreplications+1)&&(i<= 19*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(19)]; 

    elseif (i>= 19*numberofreplications+1)&&(i<= 20*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(20)]; 

    elseif (i>= 20*numberofreplications+1)&&(i<= 21*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(21)]; 

    elseif (i>= 21*numberofreplications+1)&&(i<= 22*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(22)]; 

    elseif (i>= 22*numberofreplications+1)&&(i<= 23*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(23)]; 

    end 

end 
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sumsquaredpurerror=(costvectorperreplications-

averagecostvectorbar)'*(costvectorperreplications-averagecostvectorbar); 

sumsquaredlackfit=sumsquaredresidual-sumsquaredpurerror; 

 

%perform F-test 

dof1=numberofinputs-size(beta,1); 

dof2=totalruns-numberofinputs; 

F_statistic=(sumsquaredlackfit/dof1)/(sumsquaredpurerror/dof2); 

F_critical = finv(1-alpha,dof1,dof2); 
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APPENDIX F:  

 

 

 

%this program applies robust rsm to the call center simulation 

numberofinputs = 23; 

numberofreplications=10; 

totalruns = numberofinputs*numberofreplications; 

alpha=0.01; 

totalreject=0; 

totalfailreject=0; 

allbetas=[]; 

 
%design matrix 

d1=[26.26; 26.26; 26.26; 26.26; 25.74; 25.74; 25.74; 25.74; 26.26; 26.26; 26.26; 25.74; 

25.74; 25.74; 26.26; 25.74; 26; 26.2678; 26; 26; 25.7321; 26; 26]; 

d2=[4.04; 4.04; 4.04; 3.96; 4.04; 3.96; 4.04; 4.04; 3.96; 4.04; 3.96; 3.96; 3.96; 4.04; 

3.96; 3.96; 4; 4; 4.2678; 4; 4; 3.7321; 4]; 

d3=[5.05; 5.05; 4.95; 5.05; 5.05; 5.05; 4.95; 5.05; 4.95; 4.95; 5.05; 4.95; 5.05; 4.95; 

4.95; 4.95; 5; 5; 5; 5.2678; 5; 5; 4.7321]; 

e1=[0.505; 0.495; 0.505; 0.505; 0.505; 0.505; 0.505; 0.495; 0.505; 0.495; 0.495; 0.505; 

0.495; 0.495; 0.495; 0.495; 0.5; 0.5; 0.5; 0.5; 0.5; 0.5; 0.5]; 

 
d1total=[repmat(d1(1),numberofreplications,1); repmat(d1(2),numberofreplications,1); 

repmat(d1(3),numberofreplications,1); repmat(d1(4),numberofreplications,1); 

repmat(d1(5),numberofreplications,1); repmat(d1(6),numberofreplications,1); 

repmat(d1(7),numberofreplications,1); repmat(d1(8),numberofreplications,1); 

repmat(d1(9),numberofreplications,1); repmat(d1(10),numberofreplications,1); 

repmat(d1(11),numberofreplications,1); repmat(d1(12),numberofreplications,1); 

repmat(d1(13),numberofreplications,1); repmat(d1(14),numberofreplications,1); 

repmat(d1(15),numberofreplications,1);    repmat(d1(16),numberofreplications,1); 
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repmat(d1(17),numberofreplications,1); repmat(d1(18),numberofreplications,1); 

repmat(d1(19),numberofreplications,1); repmat(d1(20),numberofreplications,1); 

repmat(d1(21),numberofreplications,1); repmat(d1(22),numberofreplications,1); 

repmat(d1(23),numberofreplications,1)]; 

 
d2total=[repmat(d2(1),numberofreplications,1); repmat(d2(2),numberofreplications,1); 

repmat(d2(3),numberofreplications,1); repmat(d2(4),numberofreplications,1); 

repmat(d2(5),numberofreplications,1); repmat(d2(6),numberofreplications,1); 

repmat(d2(7),numberofreplications,1); repmat(d2(8),numberofreplications,1); 

repmat(d2(9),numberofreplications,1); repmat(d2(10),numberofreplications,1); 

repmat(d2(11),numberofreplications,1); repmat(d2(12),numberofreplications,1); 

repmat(d2(13),numberofreplications,1); repmat(d2(14),numberofreplications,1); 

repmat(d2(15),numberofreplications,1);    repmat(d2(16),numberofreplications,1); 

repmat(d2(17),numberofreplications,1); repmat(d2(18),numberofreplications,1); 

repmat(d2(19),numberofreplications,1); repmat(d2(20),numberofreplications,1); 

repmat(d2(21),numberofreplications,1);    repmat(d2(22),numberofreplications,1); 

repmat(d2(23),numberofreplications,1)]; 

 
d3total=[repmat(d3(1),numberofreplications,1); repmat(d3(2),numberofreplications,1);  

repmat(d3(3),numberofreplications,1); repmat(d3(4),numberofreplications,1); 

repmat(d3(5),numberofreplications,1); repmat(d3(6),numberofreplications,1); 

repmat(d3(7),numberofreplications,1); repmat(d3(8),numberofreplications,1); 

repmat(d3(9),numberofreplications,1); repmat(d3(10),numberofreplications,1); 

repmat(d3(11),numberofreplications,1); repmat(d3(12),numberofreplications,1);  

repmat(d3(13),numberofreplications,1); repmat(d3(14),numberofreplications,1); 

repmat(d3(15),numberofreplications,1); repmat(d3(16),numberofreplications,1); 

repmat(d3(17),numberofreplications,1); repmat(d3(18),numberofreplications,1); 

repmat(d3(19),numberofreplications,1); repmat(d3(20),numberofreplications,1); 

repmat(d3(21),numberofreplications,1); repmat(d3(22),numberofreplications,1); 

repmat(d3(23),numberofreplications,1)];  

 
e1total=[repmat(e1(1),numberofreplications,1); repmat(e1(2),numberofreplications,1); 

repmat(e1(3),numberofreplications,1); repmat(e1(4),numberofreplications,1); 



 68

repmat(e1(5),numberofreplications,1); repmat(e1(6),numberofreplications,1); 

repmat(e1(7),numberofreplications,1); repmat(e1(8),numberofreplications,1); 

repmat(e1(9),numberofreplications,1); repmat(e1(10),numberofreplications,1); 

repmat(e1(11),numberofreplications,1); repmat(e1(12),numberofreplications,1); 

repmat(e1(13),numberofreplications,1); repmat(e1(14),numberofreplications,1); 

repmat(e1(15),numberofreplications,1); repmat(e1(16),numberofreplications,1); 

repmat(e1(17),numberofreplications,1); repmat(e1(18),numberofreplications,1); 

repmat(e1(19),numberofreplications,1); repmat(e1(20),numberofreplications,1); 

repmat(e1(21),numberofreplications,1); repmat(e1(22),numberofreplications,1); 

repmat(e1(23),numberofreplications,1)]; 

 
X=[ones(totalruns,1) d1total d2total d3total e1total d1total.*d2total d1total.*d3total 

d2total.*d3total d1total.*e1total d2total.*e1total d3total.*e1total d1total.^2 d2total.^2 

d3total.^2]; 

fid=fopen('call_center','w+'); 

fprintf(fid,'beta(1)    beta(2)    beta(3)    beta(4)    beta(5)    beta(6)    beta(7)    beta(8)    

beta(9)  beta(10)    beta(11)    beta(12)    beta(13)    beta(14)\n');    

for t=1:50 

 

%230*1 cost vector 

costvectorperreplications=[2974.50; 3249.27; 4351.07; 3819.31; 3866.04; 4034.41; 

4158.34; 4283.42; 4847.41; 3221.92; 2144.48; 4734.73; 3726.44; 4435.67; 3571.43; 

4242.04; 4558.35; 4088.35; 3849.73; 4141.91; 2910.36; 3054.69; 4079.72; 4534.55; 

3651.75; 4263.69; 4391.89; 3905.11; 4223.16; 3978.76; 2968.74; 3243.51; 4345.31; 

3813.55; 3860.28; 4028.65; 4152.58; 4277.66; 4841.65; 3216.16; 2906.60; 3894.78; 

3922.27; 4162.51; 4271.60; 4207.29; 3949.10; 4403.57; 3117.10; 4357.22; 2900.84; 

3889.02; 3916.51; 4156.75; 4265.84; 4201.53; 3943.34; 4397.81; 3111.34; 4351.46; 

2971.87; 3180.87; 4052.82; 3987.83; 4506.67; 4432.59; 3121.14; 4823.22; 3266.66; 

3931.37; 2144.48; 4459.83; 4009.44; 4342.30; 3960.66; 4221.37; 3760.86; 4086.63; 

4105.72; 4200.27; 2904.60; 3048.93; 4073.96; 4528.79; 3645.99; 4257.93; 4386.13; 

3899.35; 4217.40; 3973.00; 2205.68; 4323.85; 3968.36; 3746.25; 4579.18; 4010.62; 

4151.34; 4124.97; 4284.05; 3559.01; 2138.72; 4728.97; 3720.68; 4429.91; 3565.67; 

4236.28; 4552.59; 4082.59; 3843.97; 4136.15; 2966.11; 3175.11; 4047.06; 3982.07; 
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4500.91; 4426.83; 3115.38; 4817.46; 3260.90; 3925.61; 2132.72; 4454.07; 4003.68; 

4336.54; 3954.90; 4215.61; 3755.10; 4080.87; 4099.96; 4194.51; 2205.68; 4306.03; 

4403.08; 3692.27; 3970.70; 4224.98; 3875.20; 3804.03; 4165.76; 3450.93; 2199.92; 

4318.09; 3962.60; 3740.49; 4573.42; 4004.86; 4145.58; 4119.21; 4278.29; 3553.25; 

2199.92; 4300.27; 4397.32; 3686.51; 3964.94; 4219.22; 3869.44; 3798.27; 4160.00; 

3445.17; 2817.39; 3902.39; 3805.63; 4225.54; 4138.06; 4088.09; 4288.14; 4047.90; 

4277.02; 3839.19; 2817.39; 3902.39; 3805.63; 4225.54; 4138.06; 4088.09; 4288.14; 

4047.90; 4277.02; 3839.19; 2836.68; 3921.67; 3824.91; 4244.82; 4157.35; 4107.37; 

4307.42; 4067.18; 4296.30; 3858.47; 2835.60; 3920.60; 3823.84; 4243.75; 4156.28; 

4106.30; 4306.35; 4066.11; 4295.23; 3857.40; 2492.14; 3703.68; 4397.66; 4521.43; 

4493.66; 3897.11; 4301.80; 2818.23; 4740.95; 4730.45; 2798.10; 3883.10; 3786.34; 

4206.25; 4118.78; 4068.80; 4268.85; 4028.61; 4257.73; 3819.90; 2867.18; 3750.88; 

4215.76; 3256.36; 4664.11; 3737.27; 3814.78; 4596.91; 3330.91; 4740.62]; 

     
%23*1 vector 

averagecostvector=[3881; 3949; 3899; 3875; 3919; 3913; 3828; 3929; 3894; 3895; 

3944; 3822; 3923; 3810; 3890; 3804; 3943; 3943; 3962; 3961; 4010; 3924; 3897]; 

 
%fit regression metamodel to average cost realizations 

    beta=X\costvectorperreplications; 

  
%call lack-of-fit F-test 

[F_statistic,F_critical]=lack_of_fit2(beta,alpha,X,costvectorperreplications, 

averagecostvector,numberofreplications,totalruns,numberofinputs); 

    if F_statistic > F_critical 

        totalreject=totalreject+1; 

    else 

        totalfailreject=totalfailreject+1; 

    end 

allbetas=[allbetas;beta(1) beta(2) beta(3) beta(4) beta(5) beta(6) beta(7) beta(8) beta(9) 

beta(10) beta(11) beta(12) beta(13) beta(14)]; 
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fprintf(fid,'  %g     %g    %g     %g     %g     %g     %g     %g     %g\n',beta(1), beta(2), 

beta(3), beta(4), beta(5), beta(6), beta(7), beta(8), beta(9), beta(10), beta(11), beta(12), 

beta(13), beta(14)); 

    t 

end 

fclose(fid); 

 

Objective function @ fmincon 

 
%this function creates the objective function for the minimization 

function obj = objective2(x) 

obj = -894160 + 46944.3*x(1) + 363.787*x(2) + 71341.3*x(3) + 431242*x(4) - 

3.60577*x(1)*x(2) - 1687.57*x(1)*x(3) + 18.75*x(2)*x(3) - 6989.71*x(4)*x(1) - 

187.5*x(4)*x(2) - 50035.5*x(4)*x(3) -672.168*x(1)^2 - 24.7372*x(2)^2 - 

229.493*x(3)^2; 

 
Minimization function  

[x,fval,exitflag]=fmincon(@objective2, [26;4;5;0.5], [0 1 1 0], 15, [], [], [26;0;0;0.495], 

[50;15;15;0.505]) 
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APPENDIX G:  

 

 

 

Table G.1.: Calculation of the central point, positive and negative axial points and 

positive and negative values of design variables based on OptQuest Results 

 

OptQuest 
Results 

1%α =  2 2 2 2 2(26.26 26) (4.04 4) (5.05 5) (0.505 0.5) (0.606 0.6) 0.267882radius = − + − + − + − + − =

 + - positive axial points negative axial points 

*
1 26x =  26.26 25.74 

1 26.267882x = , 2 4x = , 3 5x = , 1 0.5e = , 

2 0.6e =  
1 25.732118x = , 2 4x = , 3 5x = , 1 0.5e = , 

2 0.6e =  
*
2 4x =  4.04 3.96 

1 26x = , 2 4.267882x = , 3 5x = , 1 0.5e = , 

2 0.6e =  
1 26x = , 2 3.732118x = , 3 5x = , 1 0.5e = , 

2 0.6e =  
*
3 5x =  5.05 4.95 

1 26x = , 2 4x = , 3 5.267882x = , 1 0.5e = , 

2 0.6e =  
1 26x = , 2 4x = , 3 4.732118x = , 1 0.5e = , 

2 0.6e =  
*
1 0.5e =  0.505 0.495 central point 

*
2 0.6e =  0.606 0.594 

1 26x = , 2 4x = , 3 5x = , 1 0.5e = , 2 0.6e =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 72

Table G.2.: Input combinations table for the call centre simulation 
 

39 input combinations (@application #2) 

52  input combinations Resolution  V Design 

1x  2x  3x  1e  2e  1x  2x  3x  1e  2e  

+ + + + + 26.26 4.04 5.05 0.505 0.606 

+ + + + - 26.26 4.04 5.05 0.505 0.594 

+ + + - + 26.26 4.04 5.05 0.495 0.606 

+ + - + + 26.26 4.04 4.95 0.505 0.606 

+ - + + + 26.26 3.96 5.05 0.505 0.606 

- + + + + 25.74 4.04 5.05 0.505 0.606 

- - + + + 25.74 3.96 5.05 0.505 0.606 

- + - + + 25.74 4.04 4.95 0.505 0.606 

- + + - + 25.74 4.04 5.05 0.495 0.606 

- + + + - 25.74 4.04 5.05 0.505 0.594 

+ - - + + 26.26 3.96 4.95 0.505 0.606 

+ + - - + 26.26 4.04 4.95 0.495 0.606 

+ + + - - 26.26 4.04 5.05 0.495 0.594 

+ - + - + 26.26 3.96 5.05 0.495 0.606 

+ - + + - 26.26 3.96 5.05 0.505 0.594 

+ + - + - 26.26 4.04 4.95 0.505 0.594 

- - - + + 25.74 3.96 4.95 0.505 0.606 

+ + - - - 26.26 4.04 4.95 0.495 0.594 

- - + - + 25.74 3.96 5.05 0.495 0.606 

- + - - + 25.74 4.04 4.95 0.495 0.606 

- + + - - 25.74 4.04 5.05 0.495 0.594 

+ - - + - 26.26 3.96 4.95 0.505 0.594 

+ - + - - 26.26 3.96 5.05 0.495 0.594 

- - + + - 25.74 3.96 5.05 0.505 0.594 

- + - + - 25.74 4.04 4.95 0.505 0.594 

+ - - - + 26.26 3.96 4.95 0.495 0.606 

- - - - + 25.74 3.96 4.95 0.495 0.606 

+ - - - - 26.26 3.96 4.95 0.495 0.594 

- + - - - 25.74 4.04 4.95 0.495 0.594 
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- - + - - 25.74 3.96 5.05 0.495 0.594 

- - - + - 25.74 3.96 4.95 0.505 0.594 

- - - - - 25.74 3.96 4.95 0.495 0.594 

central point  26 4 5 0.5 0.6 

 26.267882 4 5 0.5 0.6 

 26 4.267882 5 0.5 0.6 

positive axial points 

 26 4 5.267882 0.5 0.6 

 25.732118 4 5 0.5 0.6 

 26 3.732118 5 0.5 0.6 

negative axial points 

 26 4 4.732118 0.5 0.6 
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Table G.3.: Total sytem costs per replication 
 

Input 
combinations 

Total sytem cost @lth replication (@application #2) Total 
cost 

 1 2 3 4 5 6 7 8 9 10  
i.c. 1 2974.50 3249.28 4351.07 3819.31 3866.04 4034.41 4158.34 4283.42 4847.41 3221.91 3881 

i.c. 2 2974.50 3249.27 4351.07 3819.31 3866.04 4138.74 4544.46 3891.75 4034.14 4032.77 3890 

i.c. 3 2144.49 4650.53 4077.91 3322.74 4835.23 3642.69 4364.19 3939.71 4093.05 3910.96 3898 

i.c. 4 2910.36 3054.69 4079.72 4534.55 3786.16 4205.74 4112.75 3509.12 4548.76 3950.53 3869 

i.c. 5 2968.74 3243.52 4345.31 3813.55 3860.28 4028.65 4152.58 4277.66 4841.65 3216.15 3875 

i.c. 6 2906.60 3894.78 3922.27 4162.51 4271.60 4207.29 3949.10 4403.57 3117.10 4357.22 3919 

i.c. 7 2900.84 3889.02 3916.51 4156.75 4265.84 4201.53 3943.34 4397.81 3111.34 4351.46 3913 

i.c. 8 2971.87 3144.12 3979.64 4120.42 4264.11 4462.85 3482.15 3472.38 4631.85 4022.94 3855 

i.c. 9 2144.49 4459.83 4009.44 4342.30 4037.79 4189.28 3210.24 5070.82 3895.47 3783.80 3914 

i.c. 10 2906.59 4278.05 3894.78 3922.27 4162.51 4271.60 4283.37 3866.27 3879.99 3794.80 3926 

i.c. 11 2904.60 3048.93 4073.96 4528.79 3780.40 4199.98 4106.99 3503.36 4543.00 3944.77 3863 

i.c. 12 2205.69 4323.85 3968.36 3746.25 4579.18 4010.62 4151.34 4124.97 4284.05 3559.01 3895 

i.c. 13 2144.48 4734.73 3726.44 4435.67 3571.43 4242.04 4359.14 4294.95 3785.20 4339.41 3963 

i.c. 14 2138.73 4644.77 4072.15 3316.98 4829.47 3636.93 4358.43 3933.95 4087.29 3905.20 3892 

i.c. 15 2968.74 3243.51 4345.31 3813.55 3860.28 4132.98 4538.70 3885.99 4028.38 4027.01 3884 

i.c. 16 2910.36 3054.69 4079.72 4534.55 3979.38 3264.58 4891.85 3957.32 3817.37 4294.69 3878 

i.c. 17 2966.11 3138.36 3973.88 4114.66 4258.35 4457.09 3476.39 3466.62 4626.09 4017.18 3849 

i.c. 18 2205.68 4323.85 4067.04 3858.86 4292.39 3851.01 4333.34 3264.27 4739.54 3460.23 3840 

i.c. 19 2138.73 4454.07 4003.68 4336.54 4032.03 4183.52 3204.48 5065.06 3889.71 3778.04 3909 

i.c. 20 2205.69 4306.03 3907.72 4590.12 3527.44 4338.75 4191.90 4059.08 3646.79 4057.54 3883 

i.c. 21 2144.48 4459.83 4009.44 4342.30 3960.66 4127.90 4002.59 3776.49 4214.05 4282.28 3932 

i.c. 22 2904.60 3048.93 4073.96 4528.79 3973.62 3258.82 4886.09 3951.56 3811.61 4288.93 3873 

i.c. 23 2138.72 4728.97 3720.68 4429.91 3565.67 4236.28 4353.38 4289.19 3779.44 4333.65 3958 

i.c. 24 2900.83 3889.02 3916.51 4156.75 4265.84 4277.61 3860.51 3874.23 3789.04 4272.29 3920 

i.c. 25 2971.87 3180.87 4052.82 3987.83 4506.67 4432.59 3259.29 4032.02 3870.58 4576.48 3887 

i.c. 26 2199.93 4318.09 3962.60 3740.49 4573.42 4004.86 4145.58 4119.21 4278.29 3553.25 3890 

i.c. 27 2199.93 4300.27 3901.96 4584.36 3521.68 4332.99 4186.14 4053.32 3641.03 4051.78 3877 

i.c. 28 2199.92 4318.09 4061.28 3853.10 4286.63 3845.25 4327.58 3258.51 4733.78 3454.47 3834 

i.c. 29 2205.68 4306.03 4403.47 3368.25 4366.27 4415.53 3935.00 3870.40 3853.88 3801.44 3853 

i.c. 30 2138.72 4454.07 4003.68 4336.54 3954.90 4122.14 3996.83 3770.73 4208.29 4276.52 3926 
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i.c. 31 2966.11 3175.11 4047.06 3982.07 4500.91 4426.83 3253.53 4026.26 3864.82 4570.72 3881 

i.c. 32 2199.92 4300.27 4397.71 3362.49 4360.51 4409.77 3929.24 3864.64 3848.12 3795.68 3847 

centeral 
point 

2817.39 3902.39 3805.63 4225.54 4138.06 4088.09 4288.14 4047.90 4277.02 3839.19 3943 

positive axial 
point 1 

2817.39 3902.39 3805.63 4225.54 4138.06 4088.09 4288.14 4047.90 4277.02 3839.19 3943 

positive axial 
point 2 

2836.68 3921.68 3824.92 4244.82 4157.35 4107.38 4307.42 4067.19 4296.31 3858.48 3962 

positive axial 
point 3 

2835.61 3920.61 3823.85 4243.75 4156.28 4106.31 4306.35 4066.12 4295.24 3857.40 3961 

negative 
axial point 1 

2492.14 3703.68 4397.66 4521.43 4493.66 3897.11 4301.80 2818.23 4740.95 4730.45 4010 

negative 
axial point 2 

2798.11 3883.11 3786.34 4206.25 4118.78 4068.80 4268.85 4028.61 4257.73 3819.90 3924 

negative 
axial point 3 

2867.18 3750.88 4215.77 3256.36 4664.12 3737.27 3814.78 4596.92 3330.91 4740.62 3897 
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APPENDIX H:  

 

 

 

%this function performs lack-of-fit F-test 

function [F_statistic, F_critical]=lack_of_fit3(beta, alpha, X, costvectorperreplications, 

averagecostvector, numberofreplications, totalruns, numberofinputs) 

 
%compute sum of squared residuals and sum of squared errors 

averagecostvectorbar=[]; 

regressionhead=X*beta; 

sumsquaredresidual=(costvectorperreplications- 

regressionhead)'*(costvectorperreplications-regressionhead); 

for i=1:totalruns 

    if i<= numberofreplications 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(1)]; 

    elseif (i>= numberofreplications+1)&&(i<= 2*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(2)]; 

    elseif (i>= 2*numberofreplications+1)&&(i<= 3*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(3)]; 

    elseif (i>= 3*numberofreplications+1)&&(i<= 4*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(4)]; 

    elseif (i>= 4*numberofreplications+1)&&(i<= 5*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(5)]; 

    elseif (i>= 5*numberofreplications+1)&&(i<= 6*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(6)]; 

    elseif (i>= 6*numberofreplications+1)&&(i<= 7*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(7)]; 

    elseif (i>= 7*numberofreplications+1)&&(i<= 8*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(8)]; 

    elseif (i>= 8*numberofreplications+1)&&(i<= 9*numberofreplications) 
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        averagecostvectorbar=[averagecostvectorbar;averagecostvector(9)]; 

    elseif (i>= 9*numberofreplications+1)&&(i<= 10*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(10)]; 

    elseif (i>= 10*numberofreplications+1)&&(i<= 11*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(11)]; 

    elseif (i>= 11*numberofreplications+1)&&(i<= 12*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(12)]; 

    elseif (i>= 12*numberofreplications+1)&&(i<= 13*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(13)]; 

    elseif (i>= 13*numberofreplications+1)&&(i<= 14*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(14)]; 

    elseif (i>= 14*numberofreplications+1)&&(i<= 15*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(15)]; 

    elseif (i>= 15*numberofreplications+1)&&(i<= 16*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(16)]; 

    elseif (i>= 16*numberofreplications+1)&&(i<= 17*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(17)]; 

    elseif (i>= 17*numberofreplications+1)&&(i<= 18*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(18)]; 

    elseif (i>= 18*numberofreplications+1)&&(i<= 19*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(19)]; 

    elseif (i>= 19*numberofreplications+1)&&(i<= 20*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(20)]; 

    elseif (i>= 20*numberofreplications+1)&&(i<= 21*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(21)]; 

    elseif (i>= 21*numberofreplications+1)&&(i<= 22*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(22)]; 

    elseif (i>= 22*numberofreplications+1)&&(i<= 23*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(23)]; 

    elseif (i>= 23*numberofreplications+1)&&(i<= 24*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(24)]; 

    elseif (i>= 24*numberofreplications+1)&&(i<= 25*numberofreplications) 
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        averagecostvectorbar=[averagecostvectorbar;averagecostvector(25)]; 

    elseif (i>= 25*numberofreplications+1)&&(i<= 26*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(26)]; 

    elseif (i>= 26*numberofreplications+1)&&(i<= 27*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(27)]; 

    elseif (i>= 27*numberofreplications+1)&&(i<= 28*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(28)]; 

    elseif (i>= 28*numberofreplications+1)&&(i<= 29*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(29)]; 

    elseif (i>= 29*numberofreplications+1)&&(i<= 30*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(30)]; 

    elseif (i>= 30*numberofreplications+1)&&(i<= 31*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(31)]; 

    elseif (i>= 31*numberofreplications+1)&&(i<= 32*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(32)]; 

    elseif (i>= 32*numberofreplications+1)&&(i<= 33*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(33)]; 

    elseif (i>= 33*numberofreplications+1)&&(i<= 34*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(34)]; 

    elseif (i>= 34*numberofreplications+1)&&(i<= 35*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(35)]; 

    elseif (i>= 35*numberofreplications+1)&&(i<= 36*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(36)]; 

    elseif (i>= 36*numberofreplications+1)&&(i<= 37*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(37)]; 

    elseif (i>= 37*numberofreplications+1)&&(i<= 38*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(38)]; 

    elseif (i>= 38*numberofreplications+1)&&(i<= 39*numberofreplications) 

        averagecostvectorbar=[averagecostvectorbar;averagecostvector(39)]; 

    end 

end 
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sumsquaredpurerror=(costvectorperreplications-

averagecostvectorbar)'*(costvectorperreplications-averagecostvectorbar); 

sumsquaredlackfit=sumsquaredresidual-sumsquaredpurerror; 

 
%perform F-test 

dof1=numberofinputs-size(beta,1); 

dof2=totalruns-numberofinputs; 

F_statistic=(sumsquaredlackfit/dof1)/(sumsquaredpurerror/dof2); 

F_critical = finv(1-alpha,dof1,dof2); 
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APPENDIX I:  

 

 

Matlab program codes for Appendix I can be found in the attached cd document with 

the name “robust_rsm_3.m”. 

 

Objective function @ fmincon 

 
%this function creates the objective function for the minimization 

function obj = objective3(x) 

obj = (-2.00829e+006) + 43093.4*x(1) + 313036*x(2) + 41741.4*x(3) + 

(1.48e+006)*x(4) + (1.18377e+006)*x(5) - 6009.64*x(1)*x(2) - 5114.92*x(1)*x(3) -... 

31250.1*x(2)*x(3) - 52091.2*x(4)*x(1) - 312501*x(4)*x(2) + 222195*x(4)*x(3) -

40164.2*x(5)*x(1) - 260418*x(5)*x(2) +... 

178239*x(5)*x(3) + 169.08*x(1)^2 - 6.47815*x(2)^2 - 200.209*x(3)^2; 

 

 

Minimization function 

[x,fval,exitflag]=fmincon(@objective3,[26; 4; 5; 0.5; 0.6],[0 1 1 0 0], 15, [], [], 

26;0;0;0.495;0.594], [50;15;15;0.505;0.606]) 
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