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ABSTRACT 

 

 

 

By the developments in computer technologies, there has been a significant increase on 

academic studies and practical applications about simulation optimization in the last 

decades.  The major advantage of this augmentation, which also positively affects 

commercial software, is the opportunity of examiner a large number of design solutions 

and to obtain the values of various performance measures compared to the traditional 

methods. 

 

Simulation optimization methods can be classified as white box methods and black box 

methods. While white box methods enabling the practitioners to estimate the random 

responses and their gradient vectors, black box methods use the simulation outputs of 

the random responses to approximate their gradient vectors.  Although white box 

methods outperform black box methods, black box methods shall be preferred in a case 

which the knowledge of the stochastic structure of the system is not available to the 

practitioners.  

 

In this study, performances of black box methods Response Surface Methodology and 

Simultaneous Perturbation Stochastic Approximation are compared numerically 

considering that the computer budget is limited and each simulation run is time-

consuming.  Comparisons are realized on the newsvendor problem, (s, S) inventory  

model and generic call center problem. 

 

The computer program of RSM and SPSA algorithms are coded in Matlab 7.6 for the 

newsvendor problem and (s, S) inventory model.  The call center model is first designed 

in Arena, and then RSM and SPSA steps are applied manually based on the results get 

by this model.  

 



 ix

 

 

RESUME 

 

 

 

Grace aux developments à la technologie de l’enformatique, dans les dernières années, 

il exists un remarquable augmentation aux travoux académiques et pratiques sur 

l’optimisation de simulation.  L’avantage le plus grand de cette augmentation, qui a 

aussi affecté positivement les nombres des logicielles commerciales, est de 

l’opportunité d’examiner nombreauses solutions de dessins et d’obtenir les valeurs de 

plusieurs mesures de performance quand on compare aux méthodes traditionelles. 

 

Les méthodes d’optimisation de simulation peuvent etre classifiées comme des 

méthodes de boîte blanche et des méthodes de boîte noire.  Les méthodes de boîte 

blanche permettent l’utilisateur d’estimer les critères de performance du modèle de 

simulation avec ses vecteurs gradyans, quand les méthodes de boîte noire permettent 

l’utilisateur seulement d’obtenir les estimations de gradyans des critères de performance 

en utilisant les données de la simulaiton.  Bien que les méthodes de boîte blanche soient 

plus efficace que les méthodes de boîte noire, il est mieux de préférer les méthodes de 

boîte noire dans un cas où l’information de la structure probabilistic du system n’est pas 

disponible pour l’utilisateur. 

 

Dans ce travail, on a comparé numériquement les performances de deux méthodes de 

boîte noire, ‘Response Surface Methodology’  et ‘Simultaneous Perturbation Stochastic 

Approximation’.  On a assumé que le budget de l’ordinateur est limité et chaque tour de 

la simulation consomme beaucoup de temps.  On a comparé les methods sur le 

problème de vendeur de journal, sur le modèle d’inventaire (s, S) et sur le problème de 

centre d’appel. 

 

 



 x

Pour le problème de vendeur de journal, sur le modèle d’inventaire (s, S), le programme 

informatique de RSM et SPSA est codé dans Matlab 7.6.  Le modèle de centre d’appel 

est designé dans Arena, puis RSM et SPSA est appliqué sur ce modèle.  
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ÖZET 

 

 

 

Bilgisayar teknolojisindeki gelişmeler sayesinde, son yıllarda benzetim modellerinin 

eniyilemesi üzerindeki akademik çalışmalar ve pratik uygulamalarda belirgin bir artış 

görülmüştür.  Piyasadaki ticari bilgisayar programlarının sayısını da olumlu yönde 

etkileyen bu artışın en büyük avantajı ise geleneksel metotlara göre daha fazla sayıda 

tasarım çözümü deneyebilme ve değişik performans ölçütlerini değerlendirebilme 

imkânı sağlamasıdır. 

 

Benzetim modellerini eniyileyen yöntemler beyaz ve kara kutu yöntemler olarak ikiye 

ayrılır.  Beyaz kutu yöntemleri, kullanıcıya benzetim modelinin performans kriterlerinin 

tahminlerinin yanında performans kriterlerinin gradyent tahminlerini de sağlarken, kara 

kutu yöntemleri yalnızca benzetim modelinin çıktılarını kullanarak performans 

kriterlerinin gradyent tahminlerini sağlar.  Beyaz kutu yöntemlerinin, kara kutu 

yöntemlerine göre daha etkin olmasına karşın, ele alınan problemin yapısının bir 

genelleştirilmiş yarı Markov süreciyle modellenemeyeceği durumlarda kara kutu 

yöntemleri tercih edilmelidir. 

 

Bu çalışmada, bilgisayarın benzetim modelleri için kullanacağı sürenin kısıtlı olduğu ve 

benzetim programının her bir adımının bilgisayarda çalıştırılmasının uzun sürdüğü 

varsayımları altında, kara kutu yöntemlerinden Response Surface Methodology ve 

Simultaneous Perturbation Stochastic Approximation’ın performansları nümerik olarak 

karşılaştırılmıştır.  Karşılaştırmalar, klasik gazeteci çocuk problemi, (s, S) envanter 

modeli ve çağrı merkezi problemi üzerinde yapılmıştır.   

 

Klasik gazeteci çocuk problemi ve (s, S) envanter modeli icin RSM ve SPSA programı 

Matlab 7.6 kullanılarak kodlanmıştır.  Çağrı merkezi problemi ise, Arena’da 



 xii

modellenmiş, buradan çıkan sonuçlar kullanılarak RSM ve SPSA manuel olarak 

koşulmuştur. 

 



 

 

1

   

 

 

1.  INTRODUCTION 

 

 

 

The term ‘simulation optimization’ has become widespread in both academical and 

practical studies.  From the academical point of view, simulation optimization has 

become one of the new entries in the updated second edition of the ‘Encyclopedia of 

Operations Research and Management Science’ [1].  Furthermore, many surveys and 

panel discussions about the future of simulation optimization, and its methodologies and 

applications have been published; see Tekin and Sabuncuoglu [2];  Fu [3]; Andradóttir 

et al. [4]; Azadivar [5]; Andradóttir [6]; also all the Winter Simulation Conference 

proceedings, which are available online at the website [7].  From the practical point of 

view, optimization modules have been recently implemented in many commercial 

discrete-event simulation packages; Table 1.1 shows simulation packages and 

optimization methods incorporated into these packages [3]. 

 

We can explain one of the many reasons for the interest in simulation optimization, as 

follows. For problems that arise in practical applications, explicit mathematical 

formulations may be too restrictive; that is where simulation is relevant.  Therefore, for 

many practical cases one cannot obtain an analytical solution through methods that 

require explicit mathematical formulations.  Indeed, simulation optimization has led to 

the numerical solution of large-scale, real-world decision-making problems; see, for 

example, Azadivar and Truong [8], April et al. [9], and Martin and Schouwenaar [10]. 

 

In this thesis, we mainly consider stochastic simulation. Moreover, we focus on black 

box simulation optimization methods - which we will detail later in this chapter - 

because of their generality, and their ease of use and implementation.  To illustrate their 

generality, we give the following references that apply black box simulation 

optimization methods to either deterministically or stochastically simulated systems in 

very diverse fields, such as engineering design [11] and ergonomic design of 
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workstations [12] - where both papers use deterministic simulation -, and air traffic 

control [13], production planning [14], and design of manufacturing cells [15] - where 

all three papers use stochastic simulation. 

 

Table 1.1 An overview of commercial software packages used in simulation 
optimization  

 

Optimization package 
(simulation platform) Vendor (URL) Primary Search  

Strategies 

AutoStat 
(AutoMod) 

Auto Simulations, Inc. 
(www.autosim.com) 

Evolutionary, genetic 
algorithms 

OptQuest 
(Arena, CrystalBall,  
et al.) 

Optimization Technologies, 
Inc. 
(www.opttek.com) 

Scatter search and tabu 
search, neural networks 

OPTIMIZ 
(SIMUL8) 

Visual Thinking 
International Ltd. 
(www.simul8.com) 

Neural networks 

SimRunner 
(ProModel) 

PROMODEL Corp. 
(www.promodel.com) 

Evolutionary, genetic 
algorithms 

Optimizer 
(WITNESS) 

Lanner Group, Inc. 
(www.lanner.com/corporate)

Simulated annealing, 
tabu search 

 

In the rest of this thesis, we do not consider screening, which can be considered as stage 

zero (pre-processing phase) of any black box simulation optimization methods.  For 

screening, we give the following brief description and references.  Screening is the 

process of searching for the few truly important input variables among the great many 

potentially important input variables that affect a system's performance; for a recent 

reference, see Dean and Lewis [16].  Trocine and Malone [17] compares and contrasts 

screening methods in terms of efficiency, effectiveness, and robustness.  As screening 

methods, classical factorial designs [18], two-stage group screening [19], sequential 

bifurcation [20, 21], and iterated fractional factorial designs [22] are considered. 

 

More specifically, we focus on numerical comparisons of two black box methods called 

response surface methodology (RSM) and simultaneous perturbation stochastic 
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approximation (SPSA), respectively.  RSM originated in Box and Wilson [23].  Myers 

and Montgomery [18], which is a classic textbook on RSM, gives the following general 

description, for a minimization problem.  In the first stage of RSM, an experimental 

design is used to locally fit a first-order polynomial to the observed values of the 

random response; this fit uses linear regression.  Then, a steepest descent search 

direction is estimated from the fitted first-order polynomial, and a number of steps are 

taken along this direction - until no additional decrease in objective is evident.  This 

procedure is repeated until a first-order polynomial becomes an inadequate model, 

which is indicated when the gradient is not significantly different than a zero vector.  In 

the second stage of RSM, a second-order polynomial is fitted locally, and this 

polynomial is minimized.  Furthermore, canonical and ridge analyses are performed to 

determine the nature of the fitted objective function (i.e., convex, concave, or indefinite) 

and the nature of the estimated optimum (i.e., single optimum or multiple optima). 

 

Some disciplines interpret RSM in a completely different way: RSM becomes a one 

shot approach that fits a single response surface, which is either a second-order 

polynomial or a kriging model, to the random response over the whole experimental 

area.  Next, this nonlinear fitted model is optimized using a global optimization 

procedure; see Sacks et al. [24], Jones, Schonlau, and Welch [25], and Simpson et al. 

[26].  In this thesis, we do not consider the one-shot RSM, but we concentrate on the 

sequential version as recently described in Myers and Montgomery [18]. 

 

Stochastic approximation (SA) is an iterative technique that can be used to optimize 

both real systems and computer simulation of real systems.  This technique was 

introduced in the 1950s by Robbins and Monroe [27] and Kiefer and Wolfowitz [28].  

Later, a new SA algorithm, namely simultaneous perturbation SA (SPSA), was 

introduced and developed by Spall [29, 30, 31].  A recent, complete reference on SPSA 

is the monograph Spall [32]. 

 

Both RSM and SPSA are broadly applicable in the sense that they can be easily 

integrated into both stochastic and deterministic simulations, since RSM and SPSA do 

not necessarily exploit the stochastic structure of the simulated system.  Not exploiting 
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the stochastic structure has the advantage of being very flexible.  However, a 

disadvantage is that both RSM and SPSA may be computationally more expensive than 

the other methods that do take the stochastic structure into account. 

 

RSM and SPSA have the two important features of black box approaches, namely 

generality and simplicity.  Furthermore, unlike genetic algorithms that have a family of 

solution points at each iteration, both RSM and SPSA have a single solution point at 

each iteration along the search path.  RSM has the following disadvantages compared to 

metaheuristics and SPSA (i.e., genetic algorithms, tabu search, and simulated 

annealing): (i) RSM is assumed to be a continuous optimization method, since RSM is 

similar to gradient-based approaches.  Hence, unlike metaheuristics and SPSA, RSM is 

not suitable for discrete optimization; (ii) RSM may find a local optimum, as opposed to 

metaheuristics and SPSA that search for a global one. 

 

The remainder of this chapter is organized as follows. Section 1.1 distinguishes between 

black box and white box approaches to gradient estimation through simulation, with the 

emphasis on black box approaches.  Section 1.2 gives an overview of black box 

simulation optimization methods. 

 

1.1 Black Box Approaches to Gradient Estimation 

 

In this section, we differentiate between black box and white box approaches to gradient 

estimation through simulation.  We emphasize black box approaches, since RSM and 

SPSA - the focus of this thesis - are black box methods. By definition, simulation is 

treated as a black box if the gradient estimates (and possibly higher order derivative 

estimates) through simulation are not available using either perturbation analysis (PA) - 

see Ho and Cao [33], Fu and Hu [34] - or likelihood ratio score function (LR/SF) - see 

Rubinstein and Shapiro [35]. 

 

Before presenting the common approaches to obtain black box gradient estimates 

through simulation, we introduce a general problem formulation for simulation 

optimization, as follows: 
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( )[ ]ωω ,min dFEimize
d Θ∈

                                                  (1.1) 

 

where Eω  is the expectation operator with respect to the simulation's seed vector ω , 

( )ω,dF  is a random response estimated through simulation, d is 1×k vector of input 

variables, and Θ  is the (explicitly or implicitly defined) feasible search space. 

 

The most straightforward way for obtaining gradient estimates uses finite differences. 

Forward finite differencing (FFD) needs k + 1 simulation runs to obtain a single 

gradient estimate, i.e.; the thi  (i = 1,…, k) component of the gradient estimate, say ig  at 

d is  

 

( ) ( ) ( )
i

ii
i c

dFecdF
dg

−+
=                                           (1.2) 

 

where )( iiecdF +  and ( )dF  are estimates of F in (1.1) at the two input vectors 

iiecd +  and d, ie is the unit vector in the thi  direction and ic is a scalar.  

 

Central finite differencing (CFD) conducts 2k simulation runs to obtain a single gradient 

estimate: 

 

( ) ( ) ( )
i

iiii
i c

ecdFecdF
dg

2
−−+

=                                 (1.3) 

 

where )( iiecdF −  is the estimate of F in (1.1) at the input vector iiecd − .  Obviously, 

CFD is computationally more expensive than FFD.  On the other hand, the CFD 

estimators are less biased than the FFD estimators. In either case, however, a single 

gradient estimate requires O (k) simulation replicates. 
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In RSM, we will use resolution-III designs to obtain gradient estimates.  By definition, 

this design type gives unbiased estimators of the gradients of the random responses, 

provided that first-order polynomial approximations are adequate for these responses; 

see Kleijnen [36].  To obtain a single gradient estimate, resolution-III designs need only 

k + 1 simulation runs, rounded upwards to a multiple of four.  Therefore, resolution-III 

designs are computationally more efficient than CFD; they require the same number of 

runs as FFD, but give smaller variances (standard errors) than FFD.  For further 

comparisons of design of experiments schemes – including resolution-III designs – with 

FFD and CFD, we refer to Brekelmans et al. [37]. 

 

The method of simultaneous perturbation (SP) of Spall [38] avoids these O (k) 

simulation replicates, and estimates a single gradient by perturbing in all directions 

simultaneously.  To obtain a single gradient estimate, SP needs only two simulation 

runs, independent of k, as follows: 

 

( ) ( ) ( )
i

ii
i

cdFcdF
dg

∆
∆−−∆+

=
2

                                  (1.4) 

 
 

where )( ∆+ icdF  and )( ∆− icdF  are estimates of F in (1.1) at the two input vectors 

∆+ icd  and ∆− icd  and ( )Tki ∆∆∆=∆ ,...,,...,1  represents a realization of a 

vector, say ∆ , of independent, identically distributed random perturbations satisfying 

certain conditions given in Spall [31].  In practice, the simplest and most popular 

distribution for ∆  is the symmetric (scaled) Bernoulli distribution.  The difference 

between the FFD/CFD estimators and the SP estimators is that the numerator, which 

involves the expensive simulation replicates, varies in the FFD/CFD estimates (see (1.2) 

and (1.3)), whereas the numerator is constant in the SP estimates, and it is the 

denominator involving the random perturbations that varies (see (1.4)).  A difficulty 

encountered in implementing FFD, CFD, and SP is that the choice of the scalar ic  must 

balance between too much noise and too much bias; that is, in order for the bias to be 

small, it is necessary to let the scalar ic   be small.  However, when ic  is small, the 
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FFD, CFD, and SP estimators usually have large variances; see Spall [39] for practical 

guidelines for choosing ic  in SP. 

 

In Table 1.2 - again taken from Fu [3] - we compare white box approaches to gradient 

estimation such as infinitesimal perturbation analysis (IPA), which is the simplest form 

of PA, and LR/SF, as well as FFD, CFD, and SP.  IPA and LR/SF require more 

knowledge about the simulated system than FFD, CFD, and SP.  For example, LR/SF 

assumes the knowledge of a distribution that dominates the input distribution; see 

L'Ecuyer [40].  Under certain conditions, IPA and LR/SF provide gradient (and possibly 

higher order derivatives) estimators with desirable statistical properties such as 

unbiasedness and strong consistency through a single simulation run; for these 

conditions, see, for example, Glasserman [41] for PA, and Rubinstein and Shapiro [35] 

for LR/SF.  LR/SF applies more generally than IPA; see L'Ecuyer [40].  However, 

Glynn proves that when both IPA and LR/SF yield unbiased and strongly consistent 

estimators, LR/SF's estimators have larger variances [42].  For further comparison of 

finite differences, IPA, and LR/SF, we refer to L'Ecuyer [40]. 

 

Table 1.2: Gradient estimation through simulation  
 

Approach Number of 
simulations Key feature(s) Disadvantage 

IPA 1 highly efficient, easy to implement limited 
applicability 

LR/SF 1 assumes the knowledge of a distribution 
that dominates the input distribution 

possibly high 
variance 

SP 2 widely applicable generally noisy 

FFD k+1 widely applicable generally noisy 

CFD 2k widely applicable generally noisy 

 

1.2 Black Box Simulation Optimization Methods 

 

In this section, we present several black box simulation optimization methods that we 

consider as alternatives to RSM and SPSA.  We do not claim to give an exhaustive 
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literature survey on black box simulation optimization.  We focus on methods that we 

think to be most widely used; also see Andradóttir et al. [4] and Boesel et al. [43], 

which are the panel discussions at the Winter Simulation Conferences in 2000 and 

2001, respectively, and also Table 1.1, which shows the most popular optimization 

approaches among practitioners.  See also Figure 1.1 - taken from Tekin and 

Sabuncuoglu - which classifies various simulation optimization techniques [2]. 

 

In the following, we do not consider statistical ranking, selection, and multiple 

comparison methods; see, for example, Goldsman et al. [44], or a more recent reference 

Boesel, Nelson, and Kim [45].  The primary difference between statistical ranking, 

selection, and multiple comparison methods and the methods described below is that the 

former methods evaluate exhaustively all members of a fixed and finite set of 

alternatives.  However, the latter methods attempt to search efficiently through the 

feasible search space to find better solutions, because exhaustive search is impractical or 

impossible (i.e., the feasible search space can be unbounded or uncountable).  

Furthermore, we do not consider sample path optimization of Gürkan, Özge, and 

Robinson [46, 47], and random search methods (see, for example, Andradóttir [6].  The 

sample path methods use IPA to estimate gradients through simulation (hence, it is a 

white box approach).  To the best of our knowledge, random search methods have been 

applied solely to discrete optimization problems. 

 

In the following subsections, we shall summarize black box methods, namely the 

stochastic approximation method, genetic algorithms, tabu search, simulated annealing, 

and ordinal optimization. 
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                                                        Methodologies 

                          
                      Local Optimization                                            Global Optimization 

       
 Discrete Decision Space       Continuous Decision Space 

 
 

 
 
 

 
 
 
 

                                                  
 
 
 
 
 

 
Figure 1.1: Simulation optimization methodologies 

 

1.2.1 The Stochastic Approximation Method 

 

The stochastic approximation method attempts to mimic the gradient search method in 

deterministic optimization, while taking into account the stochastic setting.  Given the 

problem in (1.1), the general form of stochastic approximation is: 

 

( )( )nnnn dgadd −Π= Θ+1                                              (1.5) 

 

where Θ  is closed and convex, ΘΠ denotes some projection back into Θ  when the 

iteration leads to a point outside Θ  (e.g., the simplest projection would be to return to 

the previous point), n denotes the iteration number, and { }na  is a sequence of step size 

Metaheuristics 
 
Scatter Search 
Tabu Search         
Simulated Annealing   Ranking and Selection    

Multiple Comparisons    
Ordinal Optimization      
Random Search              

White Box Methods 
 
Stochastic Approximation 
Sample path Optimization 
 

Black Box Methods 
 
Response Surface Methodology 
Stochastic Approximation  

SPSA 
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multipliers such that ∞=∑
∞

=1n
na  and ∞=∑

∞

=1

2

n
na  [3].  If the finite differences (1.2) or 

(1.3) are used to obtain g  in (1.5), then the procedure in (1.5) is called Kiefer-

Wolfowitz's algorithm; see Kiefer and Wolfowitz [28].  If simultaneous perturbation in 

(1.4) is used to obtain g  in (1.5), then it is called simultaneous perturbation stochastic 

approximation; see Spall [32, 38, 48], and Kleinman, Spall, and Naiman [49]. 

 

Under appropriate conditions, one can prove the convergence of the sequence { }nd  to 

the local minimum with probability one, as n goes to infinity; for these conditions in 

case of SPSA, see Spall [31].  In practice, however, the performance of stochastic 

approximation is very much sensitive to the sequence{ }na ; see, for example, Fu [3].  

Theoretically, a constant step size results in weak convergence - that is, convergence in 

distribution - which means that the iterates may oscillate around the local minimum.  

Yet, in practice, a constant step size results in much quicker convergence in the early 

stages of the method - unlike a step size decreasing at each step. 

 

Some of the (recent) advances on stochastic approximation are as follows.  Since 

stochastic approximation is a gradient search method, it generally finds a local 

optimum.  Therefore, Maryak and Chin enhance SPSA to find the global optimum [50].  

Furthermore, Gerencsér, Hill and Vagó [51] and Whitney, Solomon, and Hill [52] apply 

stochastic approximation to discrete optimization, although it has been usually used for 

continuous optimization. 

 

1.2.2 Genetic Algorithms 

 

Unlike stochastic approximation and RSM, evolutionary search strategies such as 

genetic algorithms work with a family of solution points - namely the population – 

rather than a single solution point.  More importantly, the solution points in the current 

population interact to form the next population - also called the next generation.  

Important factors that affect the success of genetic algorithms are the selection 

procedure and the types of genetic operators.  Selection can be done either 

deterministically or probabilistically - and is based on the fitness of a solution point, 
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where the fitness of a solution point corresponds to its objective function value.  Two of 

the simplest (deterministic) selection procedures include keeping each generation at a 

constant number of the fittest solution points (survival of the fittest), or keeping only the 

offspring from reproduction (complete generational turnover).  Genetic operators 

operate on a genetic representation (code) of a solution point, and are generally 

classified as crossover operators and mutation operators.  The crossover operators take 

two solution points from the population that have relatively good fitnesses, and combine 

them to make two new solution points.  The mutation operators take a single, well-

performing solution point, and alter it slightly.  Notice that the crossover operators 

distinguish genetic algorithms from other metaheuristics, such as simulated annealing 

and tabu search.  For more details and references, see Michalewicz and Schoenauer, and 

Fouskakis and Draper [53, 54]. 

 

1.2.3 Tabu Search 

 

Tabu search can be thought of as a variation on local search that incorporates two main 

strategies, namely adaptive memory and responsive exploration [55].  The features of 

these strategies modify the neighborhood of a solution point as the search progresses, 

and thus determine the effectiveness of the algorithm.  In particular, the modification 

from which the method derives its name may forbid certain points (classifying them 

tabu); i.e., these tabu points do not belong to the current neighborhood of a solution 

point.  Thus, for example, short-term memory can prevent the search from revisiting 

recently visited points, whereas long-term memory can encourage moves that have 

historically led to improvements (intensification) and moves into previously unexplored 

regions of the search space (diversification).  For details and more references, see 

Glover, and Fouskakis and Draper [56, 54]. 

 

1.2.4 Simulated Annealing 

 

Simulated annealing may be thought of as a variation on local search, in which the main 

idea for a minimization problem is to accept all downhill improving moves, but 

sometimes accept also uphill moves, where the acceptance probability of uphill moves 



 

 

12

   

decreases to zero at an appropriate rate (this is the cooling schedule from which the 

method derives its name, in analogy with the physical annealing process, where the 

system seeks the lowest energy state) [57].  By accepting uphill moves, simulated 

annealing tries to avoid local minima.  An attractive property of this algorithm is that - 

unlike genetic algorithms and tabu search - convergence can be rigorously proved in 

many settings; see, for example, Gutjahr and Pflug [58], and Alrefaei and Andradóttir 

[59].  On the other hand, the procedure has been found to converge relatively slow to a 

good solution point, compared to genetic algorithms and tabu search.  For more details 

and references, we refer to Anandalingam [60], and Fouskakis and Draper [54]. 

 

1.2.5 Ordinal Optimization 

 

In this section, we present the ordinal approach to simulation optimization|as opposed to 

the cardinal approach; see Ho, Sreenivas, and Vakili [61], and Ho et al. [62].  Note that 

both RSM and SPSA are cardinal approaches.  Furthermore, it will become clear in this 

section that ordinal optimization is not meant to replace traditional cardinal 

optimization, but supplements it. 

 

Ordinal optimization differs from cardinal optimization in two important ways: (i) the 

aim of ordinal optimization is not to look for the best but to find a solution that is good 

enough (goal softening), which has to be statistically defined; (ii) ordinal optimization 

focuses on approximating the order among the outputs of the given input vectors rather 

than accurately estimating the values of these outputs (and possibly their gradients and 

higher-order derivatives) at these input vectors. 

 

Before detailing these two properties, we explain a general weakness related to 

simulation optimization problems, following Ho et al. [61].  Suppose that in (1.1), Θ is 

a huge, arbitrary, but finite search space.  The standard approach to estimate 

( )[ ]ωω ,dFE  is 

 

( ) ( )∑
=

=
N

j
jN dF

N
dF

1
,1 ω                                                 (1.6) 



 

 

13

   

where jω  is the thj  sampled value of the random vector ω  and N is the number of 

simulation replicates (or the length of the simulation run).  Now, the problem is that the 

confidence interval of (1.6) cannot improve faster than N/1 .   

 

Ordinal optimization is based on two tenets: 

 

i) Order converges exponentially fast, whereas (1.6) converges at the rate N/1 ; see 

Dai, and Dai and Chen [63, 64].  This is intuitively reasonable: think of the problem of 

holding identically looking packages in each hand and trying to determine which 

package weighs more versus estimating the difference in weight between the two 

packages. 

 

ii) Goal softening eases the computational burden of finding the optimum.  In ordinal 

optimization, one settles for the set of good enough input vectors with high probability 

(e.g., any of the top r of the input vectors, 95% of the time). 

 

Ordinal optimization has some common features with statistical ranking, selection, and 

multiple comparison methods: for example, relative ordering in ordinal optimization is 

in the same spirit as multiple comparisons; goal softening is in the same spirit as 

statistical ranking and selection.  The primary difference is the scale; the former method 

deals with a very large search space, whereas Goldsman and Nelson suggests two to 

twenty input vectors for the latter methods [65].  Furthermore, ordinal optimization does 

not address questions such as the distance between the best and the rest, which is a 

cardinal notion in multiple comparison methods, or whether or not the observed order is 

a maximum likelihood estimate of the actual order. 

 

Some advantages of ordinal optimization are simplicity (the procedure is easy to state 

and implement), generality (applicable to a very large class of problems), and efficiency 

(it is possible to select good input vectors with high probability in the presence of 

significant estimation errors).  In some cases, however, obtaining a good enough subset 

of input vectors may not be very satisfactory.  Then, ordinal optimization can be 

considered as an approach complementary to cardinal optimization (for example, as a 
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pre-processing step that narrows the search space).  Moreover, once a statistically good 

solution is obtained through the ordinal approach, the final fine tuning to reach the true 

optimum can be accomplished via cardinal optimization. 

 

Finally, there have been many applications of ordinal optimization to different problems 

such as communication networks [66], rare event simulation [67], resource allocation 

problems [62], and robot motion planning problem [68].  Additional applications and an 

interactive online demo can be found at the website: hrl.harvard.edu/~ho/DEDS [69]. 
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2. RESPONSE SURFACE METHODOLOGY AND SIMULTANEOUS 

PERTURBATION STOCHASTIC APPROXIMATION 

 

 

 

2.1 Introduction 

 

With the increasing computational power of computers, simulation optimization has 

become a very active research area for the last two decades; see, for example, Jacobson 

and Schruben [70], Safizadeh [71], Azadivar [5], Andradóttir et al. [4], Fu [3], Tekin 

and Sabuncuoglu [2], and Fu, Glover and April [72].  Recent discussions of simulation 

optimization are Henderson and Nelson, and Kleijnen [73, 74]. 

 

There are a number of simulation optimization methods that can be classified as either 

white box or black box methods.  White box methods such as sample path optimization 

assume that unbiased estimates of the gradients of the random responses are obtainable 

through a single run of simulation [75].  This gradient estimation is achieved through a 

form of perturbation analyses [41, 33, 76] or the likelihood ratio/score function method 

[35].  On the other hand, black box methods such as meta-heuristics, simultaneous 

perturbation stochastic approximation [32], and response surface methodology [77, 18] 

need only the simulation outputs of the random responses.  When the unbiasedness 

assumption is satisfied, white box methods outperform black box ones; see, for 

example, L'Ecuyer, Giroux, and Glynn [78].  However, in many practical problems, this 

assumption is not satisfied; hence, black box methods are applicable. 

 

This study aims at comparing SPSA and RSM numerically for simulation optimization 

problems when each simulation run is very time-consuming and the computational 

budget allows only a small number of runs.  The ultimate purpose, however, is not to 

make definitive conclusions as to superiority, but simply to illustrate reasonably 

comparable performances on different types of simulation optimization problems.  As 
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an example of time-consuming simulation, 36 to 160 hours of computer time are needed 

to simulate a crash model at Ford Motor Company; see the panel discussion Simpson et 

al. [79].  In such a case, it is important that the search reaches a vicinity of the true 

optima with the most improvement in the goal function using only a small number of 

runs. From that vicinity, a large number of runs can still be performed to estimate a 

local (or preferably global) optimal solution, but this is not within the scope of this 

study. 

 

There are many articles in the literature related to this work.  For example, Spall [31] 

and Chin [80] compare SPSA with the standard finite-difference SA (FDSA) and the 

random-directions SA, and Kleinman et al. compare SPSA with FDSA using 

bootstrapping examples [49].  Furthermore, Fu and Hill use discrete event dynamic 

systems to compare SPSA with FDSA [81].  Recently, Kleijnen and Wan [82] compare 

RSM with OptQuest (an add-on to simulation software such as Arena, ProModel, and 

Simul8) and Bashyam and Fu's perturbation analysis combined with the feasible 

directions method using an (s, S) inventory management problem [83].  However, all 

these authors assume that the computational budget enables them to compare the 

methods asymptotically, which is in contrast with the main assumption of this study 

(i.e., small number of runs).  To the best of our knowledge, there is no work in the 

simulation optimization literature that compares RSM with SPSA using a small or large 

number of runs. 

 

In this study, we consider examples of a classic simulation optimization problem; that 

is, there is a single, random response to be minimized. This problem can be formulated 

as  

 

( )0minimize ,
kd R

E F dω ω
∈

⎡ ⎤⎣ ⎦                                               (2.1) 

 

where d is the vector of k input variables, ω  is the simulation seed vector, 0F  is the 

random simulation response, and Eω  is the expectation operator with respect to ω . In 

(2.1), the mathematical form of 0F  is not known explicitly; only its simulation outputs 
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are available.  However, it is assumed that 0F  is continuous and continuously 

differentiable on kR . 

 

Further, we consider examples of simulation optimization problem with stochastic 

constraints and box constraints, so (2.1) becomes: 

 

                                     ( )0min ,
kd R

imize E F dω ω
∈

⎡ ⎤⎣ ⎦  

( )[ ] jj adFE ≥ωω ,                                                          (2.2) 

                                     udl ≤≤  

 

where l is the lower bound on d, u is the upper bound on d, ja  is the thj  component of 

the deterministic right-hand-side vector, and the ( )1,...,0 −= rjFj  are r random 

simulation responses (outputs).  Again, we do not know these jF  explicitly, so we 

estimate their means through simulation.  However, we again assume that these jF  are 

continuous and continuously differentiable on the feasible set defined by the inequalities 

in (2.2). 

 

The remainder of this chapter is organized as follows.  Sections 2.2 and 2.3 present 

literature surveys on SPSA and RSM, respectively.  Sections 2.4 and 2.5 introduce the 

step-by-step implementation guidelines of SPSA and RSM for unconstrained problem 

type in (2.1) and constrained problem type in (2.2), respectively.  The performances of 

these two methods will be compared on various example problems in the following 

chapter. 

 

2.2 Literature Survey on SPSA 

 

Stochastic approximation (SA) is an iterative technique that can be used to optimize 

both real systems or computer simulation of real systems.  This technique is introduced 

in the 1950s by Robbins and Monroe [27], Kiefer and Wolfowitz [28], and Blum [84].  

Later, a new SA algorithm, namely simultaneous perturbation SA (SPSA), is introduced 
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and developed by Spall [31].  A recent, complete reference on SPSA is the monograph 

Spall [32]. 

 

From the practitioners' point of view, SPSA has been very useful since it has been 

applied to diverse areas such as vessel traffic management [85], air traffic management 

[13], simulation optimization of complicated discrete-event dynamic systems [81, 86] 

image processing [87], optimization of fresh-food supply chains in uncertain 

environments [88], simulation optimization for revenue management of airlines with 

cancellations and overbookings [89], and industrial quality improvement [90]. 

 

There are a number of techniques for enhancing the performance of the basic SPSA 

algorithm. For example, Spall uses the average of several SP gradient estimations to 

reduce the noise effects [31].  Furthermore, Spall derives an adapted SPSA that 

emulates for stochastic problems the fast Newton-Raphson algorithm of deterministic 

optimization [38].  These two improvements can be applied at the expense of extra, 

timeconsuming simulation runs. 

 

Sadegh and Spall consider the problem of choosing the best distribution for the 

perturbation vector [91].  On the basis of asymptotic distribution results, it is shown that 

the optimal distribution for the components of the perturbation vector is symmetric 

Bernoulli.  This simple distribution has also proven effective in many finite-sample 

practical and simulation examples. 

 

There are only a few articles which cope with problems with general inequality 

constraints such as Rezayat, Wang and Spall, and Sadegh [92, 93, 94].  The first two 

articles deal with the constraints using several types of penalty functions, and the last 

article uses a projection operator.  Furthermore, Fu and Hill consider simple box 

constraints and implement the following projection algorithm: project x% (0 < x < 100) 

of the way - as measured in the parameter direction most violated – to the boundary 

[81]. 
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Since SPSA uses only the local gradient information, the classic SPSA converges to a 

local optimal solution.  Recently, Maryak and Chin generalizes SPSA to a globally 

convergent algorithm [95].  In the numerical studies, they find significantly beter 

performance of SPSA as a global optimizer than for the popular simulated annealing 

and genetic algorithm methods, which are often recommended for global optimization.  

Finally, SPSA is originally meant for continuous optimization problems.  Hill changes 

this original algorithm so that it can also be applied to discrete optimization problems 

[96]. 

 

2.3 Literature Survey on RSM 

 

Response surface methodology has originated from the work of Box and Wilson who 

apply RSM to find optimal operating conditions for chemical processes [23].  One of 

the earliest application of RSM to simulated systems is by Biles [97].  Recent Works on 

RSM are by Barton and Meckesheimer, and Kleijnen (2008) [98, 74]. 

 

Like SPSA, RSM is important for practitioners since it can be applied to data obtained 

from both real-life (non-simulated) systems and simulated systems [23].  The latter 

systems can be deterministic or stochastic; see, for example, Ben-Gal and Bukchin [12] 

for a case study of RSM optimization of a deterministic simulated system, and Irizarry, 

Wilson, and Trevino [99], and Yang and Tseng [100] for case studies of RSM 

optimization of stochastic simulated systems. 

 

2.4 Guidelines for Unconstrained Problems 

 

2.4.1 SPSA 

 

We consider the basic version of SPSA for which Spall [32] provides the following 

step-by-step implementation guidelines and the MATLAB code available at 

<www.jhuapl.edu/SPSA/Pages/MATLAB.htm> [69]. 
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Step 0: Initialize and select coefficients: 

Set counter index p = 0.  Pick an initial input vector 0d . Pick nonnegative values for the 

coefficients a, c, A, α  and γ  to calculate the following gain sequences { }pa and { }pc  as 

follows: 

 

( )αAp
aa p
++

=
1

 and 
( )γ1+

=
p

cc p                                         (2.3) 

 

This choice of { }pa  and { }pc satisfies classic regularity conditions of the SA algorithm; 

i.e., 0→pa  and 0→pc  as ∞→p , ∞=∑
∞

=0p
pa , ( ) ∞<∑

∞

=0

2/
p

pp ca  [32]. 

 

Chin derives the asymptotically optimal values 1α =  and 1/ 6γ = , but these values are 

not generally useful in practice since they require information on the random response 

0F  and its gradients [101].  In practical applications, Spall recommends to set 

0.602α =  and 0.101γ =  [32].  Spall also suggests to set A at 10% or less of the 

maximum number of iterations, and to set c at a level approximately equal to the 

estimated standard deviation of 0F  [32]. 

 

Step 1: Generate the SP vector 

Using parametric bootstrapping, generate a k-dimensional random perturbation vector 

p∆ .  The components of this p∆  have to satisfy some statistical properties: 

 

i) All k components have to be independent, identically and symmetrically distributed 

about zero with a finite variance,  

ii) all k components have to have finite inverse moments [32].  

 

The second property implies that the normal and uniform distributions can not be used 

to generate p∆ , since these distributions do not have finite inverse moments.  
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Spall recommends to use a Bernoulli 1±  distribution with probability of 1/2 for each 1±  

outcome to generate each component of p∆  since this distribution is both theoretically 

valid and practically effective [32].  Hence, in the numerical examples, each component 

of p∆  is generated through a symmetric Bernoulli 1±  distribution. 

 

Step 2: Perform simulation runs 

Perform four runs to obtain one simulation output of the random response, denoted by 

(.)F , at each of ppp cd ∆+ and ppp cd ∆− , and two simulation outputs of the random 

response at pd , using independent pseudorandom numbers.  At this step, Spall needs 

only two runs, one at each of  ppp cd ∆+ and ppp cd ∆− , to estimate an SP gradient at 

the next step [32].  The two extra runs at pd  are required to obtain point estimates of 

the sample mean and the sample variance of the expected objective function, denoted by 

( )0 pF d  and ( )2
0 pS d , where  

 

( ) ( ) ( )0,1 0,2
0 2

p p
p

F d F d
F d

+
=                                               (2.4) 

                      ( ) ( ) ( )( ) ( ) ( )( )2 2
2
0 0,1 0 0,2 0p p p p pS d F d F d F d F d= − + −  

 

The estimates are used in Step 4 to determine the next estimated iterate. 

 

Step 3: Estimate gradient through SP 

Estimate the gradient ( )pp dg  of the expected objective function with respect to d by 

the equation: 
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( )

( ) ( )

( ) ( )
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆

∆−−∆+

∆

∆−−∆+

=

kpp

pppppp

pp

pppppp

pp

c
cdFcdF

c
cdFcdF

dg

,

1,

2

.

.

2

                                 (2.5) 

 

where ( )kiip ,...,1, =∆  is the thi  component of p∆ .  Observe that in (2.5), the numerator 

is the same for each component i so that only two simulation runs are necessary to 

obtain one SP gradient estimate, independent of the dimension k of the problem. 

 

Step 4: Update the current estimated iterate 

Estimate a candidate for the new current iterate by the following standard SA recursion: 

 

( )1 ˆp p p p pd d a g d+ = −                                                    (2.6) 

 

At this step, Spall considers 1+pd  in (2.6) as the new current estimated iterate [32].  

However, due to the stochastic nature of the problem in (2.1), in this study 1+pd  is 

considered as the new current estimated iterate if there is a statistically significant 

improvement in the estimated objective function with respect to pd .  Following the 

approach in Kao, Chen and Tseng [102], the following hypothesis is tested via the two-

sample Student t-test for independent samples: 

 

( ) ( )0 1: , , 0p pH E F d E F dω ωω ω+
⎡ ⎤ ⎡ ⎤− ≤⎣ ⎦ ⎣ ⎦  

                                                                                                              (2.7) 

( ) ( )1 1: , , 0p pH E F d E F dω ωω ω+
⎡ ⎤ ⎡ ⎤− >⎣ ⎦ ⎣ ⎦  
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In order to test (2.7), perform two runs at 1+pd   to obtain point estimates ( )0 1pF d +  and 

( )2
0 1pS d +  as in (2.4).  Then, an appropriate test statistic to use is the following standard 

Student t-statistic [103]: 

 

( ) ( )
( ) ( )

0 1 0

2 2
0 1 0

2 2

p p

p p

F d F d
t

S d S d

+

+

−
=

+

                                             (2.8) 

 

If the random simulation responses are assumed to be normally distributed, under 0H  

this test statistic has a t-distribution with v degrees of freedom, where v is given by 

[103]: 

 

( ) ( )

( ) ( )

2
2 2
0 1 0

2 2
2 2
0 1 0

2 2

2 2

p p

p p

S d S d

v
S d S d

+

+

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                    (2.9)  

 

If the resulting p-value of the test does not exceed its pre-specified significance level, 

then 0H  in (2.7) is rejected, and 1+pd  in (2.6) is set as the new current estimated iterate.  

Otherwise, the old estimated iterate pd  is not changed. 

 

The test statistic in (2.8) requires some comments. Uunlike Kao et al. [102] who use a 

pooled variance estimate in (2.8), we do not assume common (homoscedastic) variances 

of the simulation outputs.  For a discussion on how realistic the common variance 

assumption is, see Kleijnen [74].  Furthermore, we do not assume the normality of the 

simulation outputs.  Nevertheless, the Student t-statistic in (2.8) is quite insensitive to 

nonnormality; see Kleijnen and many references therein [19]. 
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Step 5: Iterate or terminate 

If the stopping criterion is satisfied, then stop the SPSA procedure. Otherwise, set p+1 

to p, and go to Step 1.   

 

In the numerical examples, the stopping criterion is satisfied when the maximum 

number of runs is reached or there is no statistically significant improvement in the 

objective, whichever happens first. 

 

2.4.2 RSM 

 

Based on Kleijnen, Den Hertog, and Angün [104] and Angün et al. [105], this section 

provides the steps for the practical implementation of RSM as follows: 

 

Step 0: Initialize 

Input a maximum number of iterations.  Pick an initial input vector 0d . Input a (fixed) 

user-specified experimental area, where the response 0F  is locally approximated by a 

first-order regression metamodel.  Design local metamodel fitting experiment.  Conduct 

simulation experiments at the input vectors (design points). 

 

In the numerical examples, the maximum number of iterations is also used as the 

stopping criterion of RSM.  Furthermore, the half-size of the experimental area at the 
thp  iteration is given by pc  in (2.3).  Thus, considering 0d   as the center of the initial 

design, the high and low levels of the thi  input variable are given by, say, 0,0 cd i +  and 

0,0 cd i −  respectively, where id ,0  is the ith component of 0d .  A resolution-III design is 

selected, since such a design gives unbiased estimators of the coeffcients of the first 

order regression metamodel with a small number of simulation runs, provided that the 

first-order metamodel is an adequate approximation; see Kleijnen [106]. 

 

Step 1: Fit a first-order regression metamodel 

Approximate F in (2.1) by a first-order regression metamodel, where the regression 

coefficients are estimated through ordinary least squares: 
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( ) 1

0
T TX X X Fβ

−
=                                                     (2.10) 

 

In (2.10), X is the design matrix augmented by a column of ones and 0F  denotes the 

simulation outputs at the design points.  Furthermore, estimate the variance of F  

through mean squared residual (MSR): 

 

( ) ( )
( )

0 02

1

T
F X F X

N k

β β
σ

− −
=

− +
                                      (2.11) 

 

where N is the total number of local runs and k + 1 is the number of regression coeffi 

cients to be estimated. 

 

Step 2: Estimate a search direction 

Estimate the following adapted steepest descent direction, which is first derived in 

Kleijnen et al. [104]: 

 

0
1

−
−−= βCg                                                                (2.12) 

 

where 0−β  equals β  excluding the intercept, and C is the matrix obtained by deleting 

the first row and the first column of 1)( −XX T .  The search direction in (2.12) is shown 

to perform better than the ordinary estimated steepest descent search direction in 

Kleijnen et al. and Angün et al. [104, 105]. 

 

Step 3: Update the current estimated iterate 

Similar to (2.6), the next estimated iterates are given by: 

 

gadd ppp ˆ1 −=+                                                          (2.13) 
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where g  is now given by (2.12).  The step size at the thp  iteration is given by pa  in 

(2.3). 

 

Step 4: Select a resolution-III design and simulate at the design points 

Consider pd as the center of the current design, and pc  as the half-size of the 

experimental area.  Conduct a total of N simulation runs at the design points. 

 

Step 5: Iterate or terminate 

If the maximum number of iterations is reached, stop the RSM procedure. Otherwise, 

set p + 1 to p, and go to Step 1. 

 

2.5 Guidelines for Constrained Problems 

 

Based on Angün et al. that describes the generalized version of RSM, which can handle 

stochastic constraints as well as deterministic box constraints, this section provides the 

the steps for the practical implementation of the SPSA and RSM [105].  The problem of 

handling constraints has not been considered often in the SPSA literature; see also 

Section 2.2.  Therefore, we will use the same approach for SPSA as the approach in the 

generalized RSM with some modifications. 

 

Before presenting the details of our heuristic, we briefly explain the general procedure 

for RSM.  First, the r expected responses in (2.2) are locally approximated by r first-

order polynomials.  Next, these polynomials are used to estimate the search direction 

and a maximum step size.  In this estimated search direction, a line search using two 

statistical tests is performed to determine an iterate better than the current iterate.  At the 

end of this line search, the heuristic may fail to find a better iterate than the current one.   

In that case, the heuristic does not leave the current iterate.  New first-order polynomials 

are fitted in a new local experimental area or in the old one - the latter happens when the 

line search fails to find a better iterate.  Again a new search direction and a maximum 

step size are estimated, and the heuristic continues - as described above - until a 

stopping criterion is satisfied. 
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The two statistical tests in the line search test candidate iterates for feasibility and 

improvement in objective.  Different from the tests in Angün et al. [105] which consider 

relative improvements, the tests in this study consider absolute improvements as in 

Kleijnen through the classic Student t-tests [107].  This approach is simpler than the one 

in Angüun et al., but requires one more expensive simulation run [105].  Since these 

tests are exactly the same for both SPSA and RSM, we will describe them before 

introducing the steps for SPSA and RSM. 

 

Tests for improvement in objective and feasibility:  

 

To decide whether a point has a better estimated objective, we test the null hypothesis in 

(2.7) (unconstrained case) through the t-statistic in (2.8).  For SPSA, ( )0 .S  is estimated 

through the sample variance estimator in (2.4), and for RSM it is estimated through the 

MSR estimator in (2.11).  To decide whether the same point is feasible or not, we test 

the following null hypothesis for each constraint j: 

 

( )0 : , 0j pH E s dω ω⎡ ⎤ ≥⎣ ⎦                                               (2.14) 

 

 

through the following t-statistic, where js  is the slack estimated through j j js a F= − : 
 

( )
( )2

2

j p

j p

s d
t

S d
=                                                              (2.15) 

 

Again for SPSA, ( ).jS  is estimated through (2.4), and for RSM through (2.11) after 

replacing 0F  by jF .  The degrees of freedom are v = 1 and v = N - (k + 1) for SPSA 

and RSM, respectively.  Now the null hypothesis in (2.14) is rejected if the resulting p-

value of the test is less than the pre-specified significance level. For simplicity, we use 

( )1 : , 0j pH E s dω ω⎡ ⎤ <⎣ ⎦
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the same significance level, namely 10%, for both test for improvement in objective and 

test for feasibility. 

 

2.5.1 Generalized RSM 

 

First, we detail each step of the constrained RSM as follows. 

 

Step 0: Initialize:  

Input a fixed, user-specified number of simulation runs per line search, and a maximum 

total number of simulation runs for the whole simulation study.  This maximum can be 

determined by the time and budget constraints of the expensive simulation study.  For 

the whole study, initialize the number of simulation runs already executed to zero. 

 

Input a fixed, user-specified size of the local experimental area, where the responses jF  

in (2.2) are locally approximated by first-order polynomials.  This local experimental 

area should lie within the global area determined by the box constraints in (2.2).  The 

size of this local experimental area is clearly scale dependent, and there are no general 

guidelines to determine an appropriate size that would work in all applications; see the 

standard RSM textbooks by Myers and Montgomery, and Khuri and Cornell [18, 77].  

Therefore, to determine an appropriate size, the users need to have insight into their 

application. 

 

To fit first-order polynomials, RSM uses classic designs of resolution-III.  The design 

points pd  are simulated to estimate their objectives ( )0 pF d  and their slacks ( )j ps d .   

The initial iterate, say 0d , is the feasible design point (among the N design points) that 

has the minimum objective ( )0 0F d  estimated through simulation. 

 

The number of simulation runs already executed for the whole study is increased by N, 

which denotes the number of runs used for initialization. 
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Step 1: Fit first-order polynomials and estimate variances: 

For each response j, approximate (2.2) by local first-order polynomials within the local 

experimental area using (2.10), and obtain point estimates ,j jσ  for the variances 

through (2.11).  Because the locally constant variance assumption may not hold globally, 

use only the most recent estimates ,j jσ  in the heuristic. 

 

Step 2: Estimate a search direction and a maximum step size: 

Determine the search direction as follows: 

 

( ) 0,0
1222

−

−−−− ++−= βVRBSBg T                                     (2.16) 

 

where S , R and V are diagonal matrices with as main-diagonal elements the current 

estimated slack vectors s, r, v > 0 and entries of 2−S are estimated through a single 

simulation run at pd , i.e., ( ) 22
j j js a F

−− = − .  The last factor in (2.16), namely 0,0 −− β  is 

the estimated classic steepest-descent direction. 

 

Assuming that the approximations hold globally, a maximum step size into the direction 

(2.16) can be obtained explicitly through { }{ }321max ,,min,0max λλλλ =  where 
 

                 ( ) { }{ }1 , 0 , 0 , 0min / : 1,.., 1 , 0T T T
h h p h hc d g h r gλ β β β− − −= − ∈ − < , 

                 ( ) { }{ }2 ,min / : 1,..., , 0i p i i iu d g i k gλ = − ∈ > , 

                 ( ) { }{ }3 ,min / : 1,..., , 0i p i i il d g i k gλ = − ∈ < . 

 

To increase the probability of staying within the interior of the feasible region, take only 

80% of maxλ as the maximum step size λ . 
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Step 3: Estimate a line minimum:  

This step is illustrated through the flowchart in Figure 2.1.  Initialize the number of 

simulation runs already executed per line search to zero.  Simulate at pd gλ+  to js , 0F  

and 2
jS . 

 

At this point, the heuristic compares the current iterate pd with the candidate iterate 

pd gλ+  to determine the better iterate, where better means both feasible and lower 

objective.  As mentioned in the beginning of this section, the heuristic tests the ratios of 

both the slacks and the objectives.   

 

Determine the better of pd  and pd gλ+ .  Denote the better by cd .  Set its objective to 

0,cF .  Increase the number of already executed simulation runs for both the whole study 

and the line search by one. 

 

Next the interval ,c cd d gλ⎡ ⎤+⎣ ⎦  is systematically halved in the same search direction to 

estimate a line minimum.  Such binary search is used since a better point may lie 

between cd  and cd gλ+ .  Repeat the procedure each time with a new interval 

,c cd d gλ⎡ ⎤+⎣ ⎦ , until the fixed number of simulation runs per line search is reached.  

Then, set the slacks of the current estimated line minimum ( )cd  to ( )j cs d .   

 

Step 4: Select a resolution-III design and simulate the design points: 

The current design point cd  and the other design points form the N vertices of a k 

dimensional hypercube with the side length determined by the fixed size of the local 

experimental area.  Simulate at the new design points.  Increase the number of 

simulation runs already executed for the whole study by the number of new runs. 
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Figure 2.1: Estimating a line minimum 

1. Initializations: set already executed simulation runs per inner loop to 0.  Simulate twice at 

pd gλ+  to estimate the expected objective and the sample variances, determine the “better” of 

pd gλ+  and pd , increase number of simulation runs by two for inner and outer loops. 

2. Number of simulation runs 
for inner loop ≤  pre-specified 
number? 

End 

3. Simulate at candidate hd .  ( )0.5h p pd d d gλ= + +  

4. Bookkeeping: Increase number of simulation runs by two for inner and outer loops. 

 
5. hd  feasible? 

6. Determine new 
end point of line 

p hd g dλ+ ←  

7. hd  has better objective 
than best so far? 

8. pd  has better objective 

than pd gλ+ ? 

9. Determine new end point of 
line p pd d gλ← +  

10. Determine best so far, change objective and slacks to those of best so far 

N

Y

Y

N

Y

Y

N 

N
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Step 5: Check the stopping criteria:  

Stop the heuristic when the number of executed simulation runs for the whole study 

exceeds the maximum. Otherwise, set p + 1 to p, and go to Step 1. 

 

2.5.2. Constrained SPSA 

 

Step 0: Initialize and select coefficients: 

Set again the counter index p = 0.  Pick the same initial input vector 0d  as in the 

generalized RSM.  Pick nonnegative values for the coefficients c and γ  to calculate 

{ }pc  through (2.3).  We will use the same step size sequence as in the generalized 

RSM, hence we will not need { }pa . 

 

Step 1: Generate the SP vector: 

Using parametric bootstrapping, generate a single k-dimensional random perturbation 

vector p∆  through a symmetric Bernoulli ± 1 distribution. 

 

Step 2: Perform simulation runs: 

Perform four runs to obtain r simulation outputs of the random responses, denoted by 

( ).jF , at each of p p pd c+ ∆  and p p pd c− ∆  and two simulation outputs for all r 

responses at pd .  Again, the two extra runs at pd  are required to obtain the point 

estimate of the expected objective and the point estimates of the r sample variances of 

responses through (2.4).  These estimates are used in the line search in Step 4 to 

determine the next estimated iterate. 

 

Step 3: Estimate a search direction and a maximum step size: 

Estimate the r gradients through (2.5), replacing 0F  by jF  .  Then, estimate the search 

direction in (2.16).  Now, the rows in B  consist of the gradients of the constraints 

estimated through (2.5), the components of S , R and V  are computed as in the 

generalized RSM, and 0, 0β −  is the gradient of the expected objective estimated again 
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through (2.5).  We will use the same step size in the constrained SPSA as in the 

generalized RSM. 

 

Step 3: Estimate a line minimum: 

This step is the same as in the generalized RSM, hence it is illustrated through the 

flowchart in Figure 2.1. 

 

Step 4: Iterate or terminate: 

If the stopping criterion is satisfied (i.e., the maximum number of simulation runs is 

reached), then stop the constrained SPSA procedure.  Otherwise, set p + 1 to p, and go 

to Step 1. 
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3. APPLICATIONS 

 

 

 

3.1. Introduction 

 

In the following subsections, we compare the performance of SPSA with that of RSM. 

In these subsections, we consider the simplest version of the newsvendor problem as 

described in, for example, Silver, Pyke, and Peterson [108], the (s, S) inventory 

optimization with a service-level constraint which is originally investigated by Bashyam 

and Fu [83], and the call center originally simulated in Arena and fully specifed in 

Kelton, Sadowski, and Sadowski [109].  In the final subsection, we present conclusions 

from these numerical experiments. 

 

We emphasize that the newsvendor problem enables us to control the intrinsic noise of 

the simulation; moreover, this example is computationally efficient compared with 

expensive simulation studies that may take weeks.  Furthermore, we (the evaluators) 

know the true optimum, the binding constraints, etc.; therefore, this example provides 

controlled laboratory settings.  The (s, S) inventory optimization with a service-level 

constraint and the call-center problem lay the ground for investigating the performances 

of SPSA and RSM in realistic simulation studies. 

 

To measure the variability in the performances of SPSA and RSM over different sample 

paths - obtained by simulating with different seed vectors - we generate 1000 macro- 

replicates (in practice, analysts make a single macro-replicate if their simulation is 

expensive).  At the end of each macro-replicate, we have an estimate d  of the true 

optimal solution and an estimate of the optimal objective value.  We then sort these 

macro- replicates with respect to their deviations from the true optimum and with 

respect to their deviations from the initial objective value. 
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Angün et al. compared OptQuest - which is an optimization add-on to various popular 

simulation software packages - with RSM on a constrained `toy' problem and the call 

center problem, and found that neither RSM nor OptQuest considerably outperformed 

the other with respect to the estimated optimal objective value obtained in a relatively 

small number of simulation runs [105]. 

 

We conduct the experiments on a PC with Windows XP, Intel Celeron CPU of 2.40 

GHz, and 512 MB RAM. We code the heuristic in Matlab 6.5. 

 

3.2. Newsvendor Problem 

 

We consider a single item inventory control problem with nonnegative, continuous de 

mand over a single period, which is the simplest unconstrained version of the 

newsvendor problem. 

 

Let D denote the one period random demand, c the unit acquisition cost, s > c the unit 

selling price, and w < c the unit salvage value.  The distribution of D and the parameters 

of its distribution are assumed to be known.  Now the problem is to determine an 

optimal order-up-to quantity *Q  such that the following expected net profit function is 

maximized: 

 

( ) ( ) ( ), min ,E P Q sE Q D wE Q D cQ
+

⎡ ⎤= + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦                       (3.1) 

 

In (3.1), ( )min ,Q D  and ( ) ( )max ,0Q D Q D
+

− = −  correspond to the sold and the 

salvaged units, respectively, if Q units are ordered at the beginning of the period. 

 

where F is the demand's cumulative distribution function, and h c w= −  and b s c= −  

are the unit overage and underage costs, respectively.  If F is strictly increasing, then F 

has an inverse, and the unique *Q  is given by 
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* 1 bQ F
b h

− ⎛ ⎞= ⎜ ⎟+⎝ ⎠
                                                          (3.2)  

The problem of determining *Q  and ( )*E P Q⎡ ⎤⎣ ⎦  becomes more interesting when there 

are significant demand uncertainty, and large overage and underage costs.  The demand 

uncertainty is usually measured by the coefficient of variation of demand.  In the 

following, we use uniform distribution for demands over [50, 3500] (coeffcient of 

variation =0.5611), and different values for a in (2.2) andβ , where ( )/b b hβ = + . 

 

We comment on Tables 3.1 and 3.2 in the final subsection. 

 

Table 3.1: Variability of the estimated objectives over 1000 macro-replicates for the 
newsvendor problem: a = 5 

 
Deviations from the true 

optimal 

Percent deviations from 

the initial objective 

 

SPSA RSM SPSA RSM 

β =0.25 

10th  quantile (best) 

25th  quantile 

50th  quantile 

75th  quantile 

90th quantile (worst) 

0.719 

0.7249 

0.7303 

0.7354 

0.7395 

0.7583 

0.7604 

0.7628 

0.7649 

0.7670 

37.54 

34.64 

32.00 

29.52 

27.48 

18.29 

17.25 

16.11 

15.06 

14.06 

 

β =0.50 

10th  quantile (best) 

25th  quantile 

50th  quantile 

75th  quantile 

90th quantile (worst) 

0.8507 

0.8524 

0.8539 

0.8554 

0.8566 

0.8716 

0.8722 

0.8728 

0.8734 

0.8740 

37.35 

35.84 

34.42 

0.3310 

31.94 

18.14 

17.64 

17.03 

16.48 

15.95 

β =0.75 

10th  quantile (best) 

25th  quantile 

50th  quantile 

75th  quantile 

90th quantile (worst) 

0.8420 

0.8460 

0.8504 

0.8540 

0.8571 

0.8858 

0.8869 

0.8881 

0.8893 

0.8904 

113.55 

108.14 

102.17 

97.30 

93.03 

54.38 

52.83 

51.15 

49.55 

48.14 
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Table 3.2: Variability of the estimated objectives over 1000 macro-replicates for the 
newsvendor problem: a = 1 

 
Deviations from the true 

optimal 

Percent deviations from 

the initial objective 

 

SPSA RSM SPSA RSM 

β =0.25 

10th  quantile (best) 

25th  quantile 

50th  quantile 

75th  quantile 

90th quantile (worst) 

0.9095 

0.9099 

0.9102 

0.9106 

0.9109 

0.9179 

0.9181 

0.9182 

0.9184 

0.9186 

271.06 

269.58 

268.05 

266.64 

265.31 

236.51 

235.86 

235.17 

234.50 

233.84 

β =0.50 

10th  quantile (best) 

25th  quantile 

50th  quantile 

75th  quantile 

90th quantile (worst) 

0.8831 

0.8834 

0.8836 

0.8838 

0.8841 

0.8872 

0.8873 

0.8875 

0.8877 

0.8878 

7.57 

7.34 

7.10 

6.89 

6.67 

3.81 

3.68 

3.54 

3.38 

3.24 

β =0.75 

10th  quantile (best) 

25th  quantile 

50th  quantile 

75th  quantile 

90th quantile (worst) 

0.9095 

0.9099 

0.9102 

0.9106 

0.9109 

0.9179 

0.9181 

0.9182 

0.9184 

0.9186 

22.30 

21.81 

21.31 

20.84 

20.40 

10.91 

10.70 

10.47 

10.25 

10.03 

 

Matlab code of newsvendor problem application on RSM and SPSA can be found in 

Appendix A. 

 

3.3. (s, S) Inventory Problem with a Service-level Constraint 

 

We now compare SPSA and RSM on the optimization of the (s, S) inventory system 

with a service-level constraint.  Unlike most authors on inventory models, Bashyam and 

Fu assume a service-level constraint instead of a penalty cost for back-orders, which is 

also the approach in practice. 
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Our goal is to find an estimate ( )* *,s S  of the optimal reorder and order up to levels *s  

and *S that is, we have two input variables ( ), Td s S= .  The objective function 

( )0 ,E F d w⎡ ⎤⎣ ⎦  is the steady-state expected total costs, namely the sum of order setup, 

ordering, and holding costs.  There is a single stochastic constraint ( )1 ,E F d w⎡ ⎤⎣ ⎦ , which 

is the expected steady-state ‘fill rate', i.e., the fraction of demand directly met from 

stock on hand.  There is also a deterministic constraint on the inputs, namely S s≥ .  

 

Like Bashyam and Fu , we assume an infinite horizon, periodic review inventory system 

with continuous-valued and independent, identically distributed (i.i.d) demands and full 

backlogging of orders [83].  The basic sequence of events in each period is as follows: 

orders are received at the beginning of the period, the demand for the period is 

subtracted, and order review is done at the end of the period.  An order is placed when 

the inventory position (stock on hand plus outstanding suppliers' orders minus 

customers' back-orders) falls below the reorder level s; the order amount is the 

difference between the order up to level S and the current inventory position. Suppliers' 

orders can cross in time (which has made the analytical solution impossible, so far). 

 

Bashyam and Fu consider various distribution types for customers' demands during a 

period and order lead times [83].  In particular, Bashyam and Fu calibrate their 

algorithm using exponentially distributed demands with mean 100 and Poisson 

distributed order lead times with mean 6 [83].  Furthermore, they report that the results 

of the calibration problem are quite representative of the large number of test cases that 

they consider.  Therefore, in our simulation experiments, we also assume that 

customers' demands have an exponential distribution with mean 100 and order lead 

times have a Poisson distribution with mean 6.  Moreover, they set per order setup cost 

Z = 36, per unit order cost u = 2, and per period per unit holding cost h = 1; we use the 

same cost values in our simulation experiments.  Like Bashyam and Fu [83], each run is 

simulated for 20,000 periods, since they find that this is sufficient to reach steady-state 

conditions.  Finally, whereas Bashyam and Fu consider various target fill rates 

including 0.90, in our simulation experiments, we only focus on a target fill rate of 0.90 
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[83].  Our simulation of the inventory system starts with the inventory position and the 

inventory level (stock on hand) at S without any outstanding suppliers' orders. 

 

In the original Bashyam and Fu's inventory problem, there are no box constraints on s 

and S [83].  During the iterations, the matrix in (2.12) can become ill-conditioned.  To 

prevent this situation, we add tentative upper and lower bounds on s and S, as follows.   

The lower and upper bounds on s are given by ( ) ( )mins E D E L=  and 

( ) ( ) ( )max 3 Ds E D E L E Lσ= + , respectively, where ( )E D , ( )E L  and Dσ are the 

expected demand, the expected lead time, and the standard deviation of demands, 

respectively.  This gives 600 2400s≤ ≤ .  To obtain lower and upper bounds on S, we 

use the economic order quantity (EOQ) formula in Bashyam and Fu [83]: 

( )2 /EOQ ZE D h= .  We choose the lower and upper bounds on S as 

min max0.5 2s EOQ S s EOQ+ ≤ ≤ + , which approximately equals 643 2570S≤ ≤ . 

 

Bashyam and Fu does not report the optimal ( )* *,s S  for the test case with the Poisson 

distributed lead times with mean 6, exponentially distributed demands with mean 100, 

and 0.90 target fill rate [83].  Therefore, Angün et al. found the ‘optimal’ ( )* *,s S  

through brute-force simulation over a grid [105].  They simulated for 30,000 simulation 

periods and average the costs and the fill rates over 10 macro-replicates over ( ),s S  

plane, starting with 600 2400s≤ ≤  and 643 2570S≤ ≤ , and a coarse grid.  By refining 

the grid successively and reaching to 1 1× , their conclusion of these brute-force 

simulation experiments is that s = 1160 and S = 1212 - which has the average cost of 

647.15 with a standard error of 8.55 and the average fill rate of 0.8948 with a Standard 

error of 0.01 - is the best estimate of ( )* *,s S . 

 

Table 3.3 shows the test results of 70 simulation runs per macro-replicate and the 

starting point is s = 700  and S =750.   
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Table 3.3: Variability of the estimated objectives over 1000 macro-replicates for the (s, 
S) inventory problem. 
 

Deviations from the true 

optimal 

Percent deviations from the 

initial objective 

 

SPSA RSM SPSA RSM 

10th  quantile (best) 

25th  quantile 

50th  quantile 

75th  quantile 

90th quantile (worst) 

0.615 

0.664 

0.694 

0.721 

0.804 

0.658 

0.668 

0.703 

0.736 

0.797 

21.5 

22.12 

19.23 

14.25 

13.49 

20.51 

19.45 

18.56 

15.69 

13.57 

 

We again comment on Table 3.3 in the final subsection. 

 

3.4. Generic Call Center Problem 

 

Given in Simulation with Arena book by Kelton et al., the generic call center system 

provides a central number in an organization that customers call for technical support, 

sales information, and order status [109].  This central number feeds 26 trunk lines.  If 

all 26 lines are in use, a caller gets a busy signal; or an answered caller hears a recording 

describing three options: transfer to technical support (76%), sales information (16%), 

or order-status inquiry (and 8%).  The estimated time for this activity is UNIF (0.1, 0.6) 

with times in minutes. 

 
Technical support calls are routed to a second recording that asks the caller which of 

three product types (1, 2 or 3) he is using (with the percentages of 25%, 34% or 41% 

respectively.  The estimated time for technical support product type choice is UNIF (0.1, 

0.5). 

 

If a qualified technical support person is available for the choosen product type, the call 

is automatically routed to that support person for immediate service.  If no support 

person is available at the moment, the call is placed in an electronic queue until one is 

available. The customer exits the system as soon as the the call is completed.  Besides, 
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4% of these technical support calls needs further assistance after completion of the call.  

The questions of these callers are forwarded to another technical group, outside the 

boundaries of the defined model that prepares a response.  And the resulting response is 

sent back to the same technical support person who answered the original call.  Then, 

this support person calls the customer back.  These calls use of one of the 26 trunk lines 

and takes priority over incoming calls.  A returned call is carried over to the next day if 

it could not be completed on the same day the original call was received.  The estimated 

time for all technical support calls is given as TRIA(3, 6, 18), for the response 

preparation time for further investigation required technical calls is given as EXPO(60) 

and for customer recall time is given as TRIA(2, 4, 9). 

 

Sales calls are automatically routed to the sales staff which consists of seven sales 

people. If sales person is not available, the customer is treated to space music. Again, 

upon completion of the call, the caller exist the system.   The sales calls are estimated to 

be TRIA(4, 15, 45). 

 

Order-status calls are automatically handled by the phone system. Except 26 trunk lines, 

there is no limit on the number handled at a time.  The estimated time for order status 

call transactions is TRIA(2, 3, 4).  15% of callers talk to a real person after they have 

received their order status.  Having the same priority as incoming sales calls, these 

customers are routed to the sales staff, and then exit the system.  The estimated time for 

follow up order status calls is TRIA(3, 5, 10). 

 
The call center operates from 8 a.m. to 6 p.m., and a small proportion of the staff stays 

until 7 p.m.  No new calls are accepted after 6 p.m., but all calls that entered before 6 p.m. 

are answered. 

 
The call arrival rate varies substantially over the day, and is expressed in calls per hour 

for each 30-minute period during which the system is open.  The call-arrival rates are 

given in Table 3.4 [109]. 

 

The daily schedules of 7 sales people are given as (number of people @ time period in 

minutes): 3@90, 7@90, 6@90, 7@60, 6@120, 7@120 and 4@90. 
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Table 3.4: Call arrival rates (Calls per hour)  
 

 

All technical support people work an eight-hour day with 30 minutes off for lunch 

(lunch is not included in the eight hours).  An example of 11 technical support people’s 

schedule can be found in Kelton et al. [109]. Some of these staff are qualified for 

product type 1, some are qualified for 2, some are qualified for 3, and some of them are 

qualified for all product types (1, 2 and 3). 

 

In the system, the term “balking” is used for the number of customer calls that are not 

able to get a trunk line.  Customers who hang up the phone before reaching a real 

person are not considered. 

 

Based on the defined model, our objective is to find an optimal solution * * *
1 2 3( , , )x x x , 

where 1x  is all product support people (support people qualified for all product types), 

2x  is the additional sales staff, 3x  is the number of trunk lines, all of which minimize 

the total system cost.  These decision variables have the following constraints: 

10 22x≤ ≤ , 20 22x≤ ≤ , 1 2 22x x+ ≤  and 326 50x≤ ≤ .  The objective function is the 

expected total system cost of new technical people and new sales staff, and new trunk 

lines.  Besides the constraints about decision variables, we have another constraint 

called “percent available signal”, which says that the ratio of available lines over all 

trunk lines in the system shall be greater than or equal to 0.95.   

 
We use resolution-III design, so we have 8n =  input combinations.  We simulate 1lm =  

replicates at each design point and observe total system cost and percent free for each 

input combinations as given ın Table 3.5.  Our stopping criterion - the maximum 

number of runs – is 25 simulation runs.  

Time Rate Time Rate Time Rate Time Rate 
8.00-8.30 20 10.30-11.00 75 13.00-13.30 110 15.30-16.00 90 
8.30-9.00 35 11.00-11.30 75 13.30-14.00 95 16.00-16.30 70 
9.00-9.30 45 11.30-12.00 90 14.00-14.30 105 16.30-17.00 65 

9.30-
10.00 

50 12.00-12.30 95 14.30-15.00 90 17.00-17.30 45 

10.00-
10.30 

70 12.30-13.00 105 15.00-15.30 85 17.30-18.00 30 
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Table 3.5: Input combinations for call center model 
 

Simulation Run 1x  2x  3x  Total system cost 
( 0F ) 

Percent available (%) 
( 1F ) 

1 5 3 32 2305 0.9544 

2 5 3 31 2333 0.9604 

3 5 2 32 2267 0.9534 

4 4 3 32 2274 0.9404 

5 4 2 31 2247 0.9359 

6 4 3 31 2285 0.9188 

7 4 2 32 2226 0.9672 

8 4 2 31 2212 0.9394 

 

The problem explained above can be formulated as: 

 

               (3.3) 

 

where 0 1 1 2 2 3 3x x xβ β β β β+ + +  is expected total cost and 0 1 2 31 2 3 0.95x x xγ γ γ γ+ + + ≥  

is expected percent available.   

 

We calcule as given in (2.10), and  as: 

 

( ) 1

1
T TX X X Fγ

−
=                                                        (3.4) 

 

where 0F  and 1F  are total system cost vector and percent available vector gathered from  

simulation runs. 

 

0 1 1 2 2 3 3

0 1 2 31 2 3

1 2

1 2 3

minimize 

subject to 0.95
                22
                0 22,0 22,26 50

x x x

x x x
x x

x x x

β β β β

γ γ γ γ
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We choose the input combination which staisfies the constraints and has the lowest cost 

as a starting point pd .  So, we have ( )4 2 32pd = .   

 

Table 3.6 shows the best objectives reached at the end of 25 simulation runs, and 

percent improvements from the starting point for RSM and SPSA.  Results of each 

simulation run for RSM and SPSA can also be found in Appendix B. 

 

Table 3.6: Estimated objectives and percent improvements over 25 simulation runs for 
call center application 
 
 RSM SPSA 

Initial Expected Cost 2226 2226 

Best Expected Cost 2082 2136 

Percent Improvement (%) 6.47 4.04 

 

We comment on Table 3.6 in the final subsection. 

 

3.5. Conclusions for Numerical Examples 

 

According to our results in Tables 3.1, 3.2, and 3.3 SPSA performs better than RSM.  

However, SPSA is shown to be more sensitive to randomness and changes in 

parameters.  According to Table 3.6, RSM performs beter than SPSA, and has a beter 

improvement based on the starting point than SPSA.   
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4. CONLUSION 

 

 

 

In this study, we compared performances of black box simulation optimization 

methodologies response surface methodology and simultaneous perturbation stochastic 

approximation numerically, under the assumption that the computer budget is limited 

and each simulation run is time-consuming. 

 

Firstly, we applied RSM and SPSA on the newsvendor problem.  Here, we considered a 

single item inventory control problem with nonnegative, continuous demand over a 

single period, which was the simplest unconstrained version of the newsvendor 

problem. 

 

Then, we compared these two methodes on the optimization of the (s, S) inventory 

system with a service-level constraint.  In this example, we adopted Bashyam and Fu’s 

approach which assumes a service-level constraint instead of a penalty cost for back-

orders [83]. 

  

At last, we applied RSM and SPSA on generic call center model described in Kelton et 

al [109], which was a constrained optimization problem example. 

 

We observed that, in the newsvendor and (s, S) inventory applications, SPSA performed 

better than RSM, but was more sensitive to randomness and changes in parameters.  

However, in the call center model application,  RSM performed beter than SPSA, and 

had a beter improvement than SPSA based on the starting point. 

 

We conclude that, for future research, we can compare SPSA and RSM on a badly 

scaled problem, where RSM can outperform SPSA.  We comment that this can be 
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expected since with the new search directions, RSM is scale independent whereas SPSA 

is scale dependent.   
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APPENDIX A:  

 

 

 

% fix seeds 

rand('state',0); 

randn('state',0); 

s = 6; 

c = 5; 

w = 2; 

%initializations 

ratioestobjspsa=[]; 

ratioestobjrsm=[]; 

percentimpspsa=[]; 

percentimprsm=[]; 

 

%inputs 

overagecost = input('Overage cost = '); 

underagecost = input('Underage cost = '); 

numberofdemands = input('Number of demands = '); 

demanddistribution = input('Demand distribution type (uniform (l, u) (1), exponential 

(2), normal (3), lognormal (4): '); 

beta = underagecost / (overagecost + underagecost); 

 

%input parameters of the demand distribution 

if demanddistribution == 1 

    parameter1 = input('Demand parameter l = '); 

    parameter2 = input('Demand parameter u = '); 

elseif demanddistribution == 2 

    parameter1 = input('Demand mean = '); 
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    parameter2 = 0; 

elseif demanddistribution == 3 

    parameter1 = input('Demand mean = '); 

    parameter2 = input('Demand standard deviation = '); 

elseif demanddistribution == 4 

    parameter1 = input('Ln demand mean = '); 

    parameter2 = input('Ln demand standard deviation = '); 

end 

 

%analytical optimum solution and optimal objective value 

[optimumsolution,optimalobjvalue]=analyticaloptimum(demanddistribution,parameter1,

parameter2, underagecost,overagecost,beta); 

 

%optimization inputs 

initialorderquantity = input('Initial order quantity = '); 

demands = unifrnd(parameter1,parameter2,10000,1); 

initalobjectives = s * min(demands(:),initialorderquantity) + w * 

max(initialorderquantity-demands(:),0) - c * initialorderquantity;  

initialobjective = mean(initalobjectives); 

iterationumber = input('Number of iterations = '); 

stepconstant1 = input('Step constant 1 = '); 

 

%common constants for rsm and spsa 

stepconstant2 = 0.1*iterationumber; 

stepconstant3 = 0.602; 

perturbconstant2 = 0.101; 

for macro = 1:1000 

     

%initial point for both spsa and rsm 

    currentiteratespsa = initialorderquantity; 

    currentiteratersm = initialorderquantity; 

%initialize 
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    steps = []; 

    perturbs = []; 

    spghats = []; 

    iteratesspsa = []; 

    objspsa=[]; 

    rsmghats = []; 

    iteratesrsm = []; 

    objrsm = []; 

    iteratesspsa = [iteratesspsa;initialorderquantity]; 

    iteratesrsm = [iteratesrsm;initialorderquantity]; 

 

%initial demand generation through monte carlo simulation  

[demands,demandsplus,demandsminus,cvdemand,stdevdemand]=montecarlo(demanddi

stribution,parameter1, parameter2,numberofdemands); 

    

%loop for spsa and rsm 

    for iteration = 1 : iterationumber 

         

%step and perturbation sizes 

        perturbconstant1 = cvdemand; 

        step = stepconstant1 /(iteration + stepconstant2)^stepconstant3; 

        steps = [steps;step]; 

        perturb = perturbconstant1 / (iteration^perturbconstant2); 

        perturbs=[perturbs;perturb]; 

         

%profit estimation at the design points for spsa 

[averageprofitplusspsa,averageprofitminusspsa,averageprofitcurrentspsa,delta]=profitest

imationspsa(currentiteratespsa,perturb,numberofdemands,demands,demandsplus,deman

dsminus,underagecost,overagecost); 

        objspsa = [objspsa;averageprofitcurrentspsa]; 

         

%profit estimation at the design points for rsm 
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[averageprofitplusrsm,averageprofitminusrsm,averageprofitcurrentrsm]=profitestimatio

nrsm(currentiteratersm,perturb, 

numberofdemands,demands,demandsplus,demandsminus,underagecost,overagecost); 

        objrsm = [objrsm;averageprofitcurrentrsm]; 

 

%spsa iterates 

[ghatspsa,currentiteratespsa]=spsa(averageprofitplusspsa,averageprofitminusspsa,pertur

b,delta, currentiteratespsa,step); 

        spghats=[spghats;ghatspsa]; 

        iteratesspsa = [iteratesspsa;currentiteratespsa];    

         

%rsm iterates 

[ghatrsm,currentiteratersm]=rsm(currentiteratersm,perturbconstant1,averageprofitplusrs

m, averageprofitminusrsm,step); 

        rsmghats=[rsmghats;ghatrsm]; 

        iteratesrsm = [iteratesrsm;currentiteratersm]; 

         

%demand generation through monte carlo simulation 

[demands,demandsplus,demandsminus,cvdemand,stdevdemand]=montecarlo(demanddi

stribution,parameter1, parameter2,numberofdemands); 

    end 

    if iteration == iterationumber 

        ratioestobjspsa=[ratioestobjspsa;(optimalobjvalue-

averageprofitcurrentspsa)/optimalobjvalue]; 

        ratioestobjrsm=[ratioestobjrsm;(optimalobjvalue-

averageprofitcurrentrsm)/optimalobjvalue]; 

        percentimpspsa=[percentimpspsa;(averageprofitcurrentspsa-

initialobjective)/initialobjective]; 

        percentimprsm=[percentimprsm;(averageprofitcurrentrsm-

initialobjective)/initialobjective]; 

    end 

end 
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pr10spsa=prctile(ratioestobjspsa,10); 

pr10rsm=prctile(ratioestobjrsm,10); 

pr25spsa=prctile(ratioestobjspsa,25); 

pr25rsm=prctile(ratioestobjrsm,25); 

pr50spsa=prctile(ratioestobjspsa,50); 

pr50rsm=prctile(ratioestobjrsm,50); 

pr75spsa=prctile(ratioestobjspsa,75); 

pr75rsm=prctile(ratioestobjrsm,75); 

pr90spsa=prctile(ratioestobjspsa,90); 

pr90rsm=prctile(ratioestobjrsm,90); 

 

primp10spsa=prctile(percentimpspsa,10); 

primp10rsm=prctile(percentimprsm,10); 

primp25spsa=prctile(percentimpspsa,25); 

primp25rsm=prctile(percentimprsm,25); 

primp50spsa=prctile(percentimpspsa,50); 

primp50rsm=prctile(percentimprsm,50); 

primp75spsa=prctile(percentimpspsa,75); 

primp75rsm=prctile(percentimprsm,75); 

primp90spsa=prctile(percentimpspsa,90); 

primp90rsm=prctile(percentimprsm,90); 
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APPENDIX B: 

 

 

Table B.1: Simulation run results for RSM 

 
Simulation 

Run 
1x  2x  3x  Total system cost 

( 0F )  
Percent available (%) 
( 1F ) 

1 5 3 32 2305 0.9544 

2 5 3 31 2333 0.9604 

3 5 2 32 2267 0.9534 

4 4 3 32 2274 0.9404 

5 5 2 31 2247 0.9359 

6 4 3 31 2285 0.9188 

7 4 2 32 2226 0.9672 

8 4 2 31 2212 0.9394 

9 3.8958 1.9559 32.0077 2209 0.9563 

10 3.8958 1.9559 32.0077 2222 0.9528 

11 3.9479 1.9779 32.0039 2225 0.9528 

12 3.9479 1.9779 32.0039 2213 0.9563 

13 3.9219 1.9669 32.0058 2223 0.9528 

14 3.9219 1.9669 32.0058 2211 0.9563 

15 3.9219 1.9669 31.0058 2232 0.9045 

16 3.9219 0.9669 32.0058 2155  0.9469 

17 2.9219 1.9669 32.0058 2181 0.9554 

18 3.9219 0.9669 31.0058 2154 0.9561 

19 2.9219 1.9669 31.0058 2174 0.9718 

20 2.9219 0.9669 32.0058 2116 0.9520 

21 2.9219 0.9669 31.0058 2102 0.9781 

22 2.7843 0.7231 31.4967 2082 0.9781 
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23 2.7843 0.7231 31.4967 2097 0.9509 

24 2.8531 0.8450 31.2512 2092 0.9781 

25 2.8531 0.8450 31.2512 2107 0.9509 

 
 

Table B.2: Simulation run results for SPSA: 

 
Simulation 

Run 
1x  2x  3x  Total system cost 

( 0F )  
Percent available (%) 

( 1F ) 
1 5 3 32 2305 0.9544 

2 5 3 31 2333 0.9604 

3 5 2 32 2267 0.9534 

4 4 3 32 2274 0.9404 

5 5 2 31 2247 0.9359 

6 4 3 31 2285 0.9188 

7 4 2 32 2226 0.9672 

8 4 2 31 2212 0.9394 

9 4 2 32 2197 0.9454 

10 4.0154 2.0154 31.9846 2214 0.9394 

11 3.9846 1.9846 32.0154 2227 0.9528 

12 4.0452 2.0126 32.1033 2200 0.9454 

13 4.0452 2.0126 32.1033 2228 0.9672 

14 4.0226 2.0063 32.0156 2227 0.9672 

15 4.0226 2.0063 32.0156 2199 0.9454 

16 4.0339 2.0094 32.0774 2228 0.9672 

17 4.0339 2.0094 32.0774 2199 0.9454 

18 4.0339 2.0094 31.0774 2214 0.9394 

19 4.0339 1.0094 32.0774 2175 0.9474 

20 3.0339 2.0094 32.0774 2156 0.9546 

21 4.0339 1.0094 31.0774 2196 0.9478 

22 3.0339 2.0094 31.0774 2136 0.9576 
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23 3.0339 1.0094 32.0774 2206 0.9528 

24 3.0339 1.0094 31.0774 2118 0.9402 

25 3.0339 2.0094 31.0774 2184 0.9444 
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