
 
 

 
 

 
DYNAMIC MEMORY SCHEDULING TO ENHANCE PROCESSING 

PERFORMANCE 
(UYGULAMA PERFORMANSINI ARTIRMAK İÇİN DİNAMİK HAFIZA 

PLANLAMASI) 
 
 
 

by 
 

Mutlu ERCAN, B.S. 
 
 

Thesis 
 

Submitted in Partial Fulfillment 

of the Requirements 

for the Degree of 

 
 
 

MASTER OF SCIENCE 

in 

COMPUTER ENGINEERING 

in the 

INSTITUTE OF SCIENCE AND ENGINEERING 

of 

GALATASARAY UNIVERSITY 

 
 
 
 
 
 
 

September 2009



 
 

 
DYNAMIC MEMORY SCHEDULING TO ENHANCE PROCESSING 

PERFORMANCE 
(UYGULAMA PERFORMANSINI ARTIRMAK İÇİN DİNAMİK HAFIZA 

PLANLAMASI) 
 
 
 

by 
 

Mutlu ERCAN, B.S. 
 
 

Thesis 
 

Submitted in Partial Fulfillment 

of the Requirements 

for the Degree of 

 
 

MASTER OF SCIENCE 

 
 
 

Date Submission             : September 12, 2009 

Date of Defense Examination : October 12, 2009 

 

Supervisor  : Asst. Prof. Dr. Tankut ACARMAN 

Committee Members   : Asst. Prof. Dr. Murat AKIN 

     Assoc. Prof. Dr. Esra ALBAYRAK 

 
 
 
 
 
 
 
 
 



 
 

ii 
 

 
 

Acknowledgements 
 
 
 
I would like to express my gratitude to all those who gave me the possibility to 

complete this thesis. I want to thank the Computer Engineering Department at Institute 

of Science and Engineering in Galatasaray University for giving me permission to 

commence this thesis in the first instance, to do the necessary research work and to use 

departmental data. 

 

I am deeply indebted to my supervisor Asst. Prof. Dr. Tankut ACARMAN from 

Galatasaray University whose help, stimulating suggestions and encouragement helped 

me in all the time of research for and writing of this thesis. 

 

My colleagues from the Department of Technology Management at AvivaSA Emeklilik 

ve Hayat supported me in my work. I want to thank them for all their help, support, 

interest and valuable hints. Especially I am obliged to Altan EVNİ and Özge KUTAL 

for their great help in difficult times. 

 

Especially, I would like to give my special thanks to my wife Nazlı whose patient love 

enabled me to complete this work. 

 

 

Mutlu ERCAN  

 

September 2009 

 

 



 
 

 

Table of Contents 
 
 

 

Acknowledgements   ........................................................................................................... ii
Table of Contents   ............................................................................................................. iii
List of Symbols   ................................................................................................................ iv
List of Figures   ................................................................................................................... v
List of Tables   .................................................................................................................. vii
Abstract   .......................................................................................................................... viii
Résumé   .............................................................................................................................. x
Özet   .................................................................................................................................. xi
1. Introduction   ............................................................................................................... 1
2. Literature Review   ..................................................................................................... 2

2.1. Motivation   ...................................................................................................... 5
3. Computing Process Modeling   ................................................................................... 9

3.1. Memory   ........................................................................................................ 10
3.2. CPU (Central Processing Unit)   .................................................................... 11
3.3. Job   ................................................................................................................. 11
3.4. The Process Modeling   .................................................................................. 11
3.5 The Desired Value Derivation   ...................................................................... 28
3.6 Error Derivation   ............................................................................................ 29
3.7. Processing Jobs   ............................................................................................. 34
4. Dynamic Resource Allocation and Memory Scheduling   ............................. 36
4.1 Iterative Learning Control   ................................................................................ 36

5. Experimental Study   ................................................................................................. 51
5.1 Experimental Results   .................................................................................... 51

6. Future Works   .......................................................................................................... 62
7. Conclusion   .............................................................................................................. 63
8. References   ............................................................................................................... 64
Biographical Sketch   ........................................................................................................ 67

 

 
 
 
 
 

 



 
 

 
 

List of Symbols 

 
 

 

rt   : Running time cost of a computational job. 
ct   : Time cost of getting output of a computational from the memory  
m   : Total memory usage to keep output of the jobs 

Tm   : Total available memory 
λ   : Jobs arrival rate 
α  : Proportion of the memory usage 

CPUt   : Time cost of a computational job  
N : Number of jobs in a window 

k
CPUt∆  : Total time cost of computational jobs in a window 

/
k
I Ot∆   : Total time cost of I/O jobs in a window 

kja  : Existence of a computational job in a window 

kib  : Existence of an I/O job in a window 

TotalT  : Total time of the processing jobs in a window 
ke  : Error value 
dv  : Desired value 
kv   : Intermediate variable 
l
kg  : Achieved gain 

CPU : Central Processing Unit 
ILC  : Iterative Learning Control 
µ  : Service rate 
λ  : Arrival rate 

scp  : Selective criteria 
τ  : Window size 
C : Capacity of the memory 

iΨ  : Individual gain 
Ω  : The cumulative number of the individual distinct jobs 
 
 
 
 
 
 



 
 

 
 

List of Figures 

 

 
 
Figure 2.1 Caching exist in many system implementations..............................................4 
Figure 2.2 Time Machine customer information entry interface.......................................6 
Figure 2.3 Time Machine an individual retirement product’s property selection 
interface.............................................................................................................................6 
Figure 2.4 Time Machine a life insurance product’s assurance property selection 
interface.............................................................................................................................7 
Figure 3.1 The architecture of the computing system.....................................................10 
Figure 3.2 Memory Proportion........................................................................................12 
Figure 3.3 Effects of keeping the jobs in the memory.....................................................14 
Figure 3.4 Flow diagram of the computing process....................................................... 16 
Figure 3.5 Interactions between CPU and memory.........................................................17 
Figure 3.6 The model of the system................................................................................18 
Figure 3.7 Sliding Window and window regulation process...........................................19 
Figure 3.8 The Gain of the Window................................................................................26 
Figure 3.9 The decision automata....................................................................................32 
Figure 3.10 Example of the flow.....................................................................................35 
Figure 4.1 Error Derivations............................................................................................38 
Figure 4.2 Expected Value with 50 jobs and capacity = 200..........................................39 
Figure 4.3 Error variation with 50 jobs and capacity = 200............................................40 
Figure 4.4 The Usage of the CPU with 50 jobs and capacity = 200...............................40 
Figure 4.5 The Derivation of the window size with 50 jobs and capacity = 200............41 
Figure 4.6 Expected Value with 40 jobs and capacity = 400..........................................42 
Figure 4.7 Error variation with 40 jobs and capacity = 400............................................42 
Figure 4.8 Relative gain with 40 jobs and capacity = 400..............................................43 
Figure 4.9 Derivation of the window size with 40 jobs and capacity = 400...................43 
Figure 4.10 Expected Value with 100 jobs and capacity = 1400....................................44 
Figure 4.11 Error variation with 100 jobs and capacity = 1400......................................45 
Figure 4.12 Relative gain with 100 jobs and capacity = 1400........................................45 
Figure 4.13 Derivation of the window size with 100 jobs and capacity = 1400.............46 
Figure 4.14 Expected Value with 100 jobs and capacity = 8000....................................47 
Figure 4.15 Error variation with 100 jobs and capacity = 8000......................................47 
Figure 4.16 Relative gain with 100 jobs and capacity = 8000........................................48 
Figure 4.17 Derivation of the window size with 100 jobs and capacity = 8000.............48 
Figure 4.18 CPU Usage Derivations When ILC Applied...............................................49 
Figure 4.19 CPU Usage Derivations When ILC Not Applied........................................50 
Figure 4.20 CPU Usage Derivations differences when applying Iterative Learning 
Control and not applying Iterative Learning Control......................................................50 
Figure 5.1 Caching test results with random jobs...........................................................52 
Figure 5.2 The Error Rate where τ =10..........................................................................53 
Figure 5.3 The Error Rate where τ =50..........................................................................54 



 
 

vi 
 

Figure 5.4 The Error Rate where τ =100........................................................................54 
Figure 5.5 The Error Rate where τ =200........................................................................55 
Figure 5.6 The Error Rate where τ =300........................................................................55 
Figure 5.7 The Error Rate where τ =400........................................................................56 
Figure 5.8 The Error Rate where τ =500........................................................................56 
Figure 5.9 The Error Rate where τ =600........................................................................57 
Figure 5.10 The Error Rate where τ =700......................................................................57 
Figure 5.11 The Error Rate where τ =800......................................................................58 
Figure 5.12 The Error Rate where τ  calculated dynamically........................................58 
Figure 5.13 The Usage of CPU in a real-life application (First Day).............................59 
Figure 5.14 The Usage of CPU in a real-life application (Tenth Day)...........................60 
Figure 5.15 The Usage of CPU in real-life application (Fifteenth Day).........................60 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

List of Tables 
 
 

 
Table 3.1 The characteristics of the jobs in the example.................................................24 
Table 3.2 Variations of the Expected Values..................................................................25  
Table 3.3 Example 1........................................................................................................27 
Table 3.4 Example 2........................................................................................................28 
Table 3.5 The effects of the new job arrival and the error variation...............................30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

Abstract 
 
 
 
In line with the increasing information processing requests of users and systems, the 

systems with much more powerful processing capabilities are needed. Despite the 

increase in hardware’s processing and transmission busses’ speed, performance 

enhancement of the overall computing system may require simultaneous resource 

allocation depending on the computing task. To enhance the overall processing 

performance, research on software control and dynamic resource allocation of the 

computing and storage units have been   underway by almost all the leading computer 

and computing nodes’ manufacturers. In this study, computing system performance 

enhancement by dynamic memory scheduling has been developed.   

 

A fairly special computing process has been elaborated, the requested computing jobs 

are always created by choosing the inputs among a finite set inquiring the risk of the 

insurance policy of the candidate.  In some special computing areas, like insurance risk 

investigation, calculations of income and premium need heavy and repetitive actuarial 

calculations, that the computing systems performing these computing efforts, may 

enhance CPU’s utilization by classifying on an “intelligent manner” the computing jobs 

and caching the repeating computing jobs created by the same input interval.  In this 

study, caching the repetitive jobs’ results and enhancing the CPU usage rate has been 

presented and an intelligent regulation scheme has been introduced to software control.  

 

The jobs can be classified as two kinds; I/O jobs and computational jobs. External 

storage jobs are may be the examples of the I/O jobs.  The computational jobs are the 

jobs, which always produce the same outputs versus the same input values.  In this 

work, in the situation that the jobs are processed again; the advantages are examined to 

keep the outputs in the memory instead of reprocessing them. 

 



 
 

ix 
 

Instead of a static structure, to keep the process in a dynamic way to provide more 

benefit from the memory has investigated, the Iterative Learning Control methodology 

has been implemented to improve the usage of the system resources.  Moreover, 

theoretical results, which obtained in this work has observed on the actual practice.  The 

data that has been obtained from an individual retirement company has been corrupted 

by a linear function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

Résumé 

 

 
Aujourd'hui, en conformité avec les besoins croissants des utilisateurs et des systèmes, 

nous avons besoin des systèmes qui sont plus puissants. En dépit de l'augmentation de la 

vitesse de matériel, là peut surgir quelques problèmes de performance dans les systèmes 

s'ils ne sont pas appui par le logiciel. Afin d'empêcher ces problèmes, les travails sur la 

couche application a fait. Dans cette étude, nous explorons la manière d'augmenter les 

performances système par l'établissement du programme dynamique de mémoire. 

 

Dans le cas nous recherchons les systèmes ; nous notons que quelques travaux ont 

retraité encore. Nous pouvons classifier les travaux de système comme travaux d'entrée-

sortie et travaux informatiques. Les travaux de stockage externe sont peuvent être les 

exemples des travaux d'entrée-sortie. En outre, les travaux informatiques sont les 

travaux, qui produisent toujours les mêmes sorties par les mêmes valeurs d'entrée.  Dans 

ce travail, dans la situation cette les travaux traitent encore ; nous avons examiné les 

avantages de maintenir les sorties dans la mémoire au lieu de les retraiter. 

 

Au lieu d'une structure statique, pour maintenir le processus dans une manière 

dynamique de fournir plus d'indemnité de la mémoire a étudié. D'ailleurs, les résultats 

théoriques, qui ont obtenu en ce travail a observé sur la pratique réelle. 

 
 
 
 
 
 
 
 
 
 



 
 

 
 

Özet 

 

 
 
Günümüzde artan kullanıcı ve sistem ihtiyaçları doğrultusunda daha güçlü sistemlere 

ihtiyaç duyulmaktadır.  Artan donanım hızlarına rağmen yazılım tarafından 

desteklenmeyen sistemlerde performans sorunları ortaya çıkabilmektedir.  Uygulama 

katmamnında bu amaç doğrultusunda bazı çalışmalar sürekli olarak yapılmaktadır.  Bu 

çalışmada, dinamik hafıza planlaması ile sistem performansını arttırmanın yollarını 

araştırıldı.   

 

Sigorta sektörü gibi bazı sektörlerde prim ve kazanç hesaplamaları için yoğun aktueryal 

hesaplamalar yapılmaktadır.  Bu hesaplamaları yapan programlarda da, her ne kadar 

farklı girdi değerleri ile işlemler yapılsa da, sistemin alt katmanlarında bazı işlerin 

sürekli olarak tekrarlandığı görülebilmektedir.  Her işlem esnasında bütün 

hesaplamaların baştan yapılmasındansa, çok tekrar gören işlerin sonuçlarını sistemin 

performansını düşürmeden hafızada tutmanın faydaları araştırılmıştır.   

 

Sistem işlerini de I/O işi ve hesap işi olarak sınıflandırabiliriz. I/O işlerine dış depolama 

aygıtları üzerinde yapılan işleri örnek olarak verebiliriz. Hesap işleri ise aynı girdi 

değerleri ile daima aynı çıktıları üreten işlerdir.  Çalışmamızda hesap işlerinin 

tekrarlandıkları durumda tekrar tekrar işlemek yerine çıktı değerlerini bellekte tutmanın 

avantajları incelenmiştir.   

 

Bellekte tutma işlemi için durağan bir yapı yerine dinamik olarak bellekten daha fazla 

faydalanmanın yolları araştırılmıştır. Elde edilen teorik sonuçların gerçek uygulamalar 

üzerindeki etkisi gözlemlenmiştir.   

 

Öncelikle sanal veri setleri üzerinde algoritma denendi.  10 tane iş, normal dağılım ile 

rastgele olarak 10000 iş oluşturacak şekilde dizildi.  Herbir iş için rastgele çıktı 



 
 

xii 
 

büyüklüğü ve servis hızı seçildi.  Farklı büyüklükteki hafıza durumları için bu işler 

tekrarlandı.  İş sayısı 100’e kadar onar onar arttırılarak sonuçlar gözlemlendi.  Elde 

edilen kazançlar, öğrenme algoritması uygulanmadığı takdirde elde edilebilecek 

kazançlar ile karşılaştırıldı.   

 

Daha sonra bu sonuçlar ışığında bir bireysel emeklilik şirketinin, hayat sigortası ürünleri 

için prim hesaplayan, bireysel emeklilik ürünleri için de birikim projeksiyonu yapan 

“Zaman Makinası” adındaki, Java altyapısı ile yazılmış uygulamasının çalışma 

istatistiklerinden oluşan gerçek data üzerinde çalıştırılarak, öğrenme algoritması 

uygulanmadığı takdirde oluşan sonuç ile sınızsız hafızaya sahip olunması durumunda 

elde edilebilecek sonuçlar ile karşılaştırıldı.  Bireysel emeklilik şirketinden alınan data, 

doğrusal bir fonksiyon vasıtasıyla bozulmuştur. 

 

Bu çalışmada temel olarak çoğu zaman boşta kalan hafıza tekrarlayan işler için, çıktı 

değerlerini tutmak üzere kullanılması incelenmiştir.   Dataların hafızada tutulması 

işlemi tasarım modeli olarak kullanılmakta olan bir yapıdır.  Bu modelin işler için de 

kullanılabilirliği araştırılmıştır.  İş tekrarlı yapılarda, uygun iş seçimi için eklenen 

öğrenme algoritması ile birlikte sonuçları gözlemlenmiştir.   

 



1 
 

 
 

 
 

1. Introduction 

 

 

 

Nowadays, by the increase of the users and the demands of the business, more powerful 

systems are required.  Despite of the development speed of hardware systems, it has to 

be assisted by software systems, because incomplete performance work at software 

layer can cause slowness even crashes.  In the application layer, some improvements are 

developed to enhance computing performance.  In this sense, efficient usage of system 

resources is a vital part towards process’ development.   

 

One of the main resources of the system is CPU and another one is memory.  Using 

them efficiently makes the system works faster.  The system can need them all 

sometimes, but usually some of the system resources can be inactive.  Mostly, the 

system cannot use all bytes of the memory. Because of that, we studied to find how the 

usage of the memory could be augmented without decreasing the performance of the 

system. 

 

To achieve this goal, we tried to improve the performance of the Time-Machine 

application of an individual retirement and life insurance enterprise which is developed 

on Java platform.  Java class methods are used as jobs and the heap space is tried to be 

used efficiently.  The application calculates the premium and the retention depends on 

the customer’s age, sex and assurance.  First of all, the application calculates a 

multiplicity depends on the age and sex of the customer, and then the multiplicity is 

multiplied by the premium or the assurance.  Java methods are recalled with same 

parameters during the day.  The idle memory is tried to be allocate for the recalling 

methods.  



 
 

 
 

2. Literature Review 

 

 

 

In order to improve system performance, many studies has been developed on different 

subjects including scheduling strategies, architectures and device improvements.  The 

materials which compose devices have been enhanced to run faster.  Nowadays faster, 

multi-cored, multi-CPU systems are being produced, faster bus’ are being used to 

connect their processors with larger and faster memories, faster and larger external 

storage devices has been developed.  

 

Many static and dynamic scheduling algorithms have been developed for real time 

system’ operations.  Static scheduling algorithms have low costs, but incapable to adapt 

scheduling rules to enhance efficiency of the limited resources.  Dynamic scheduling 

algorithms provide more adaptive solutions to the systems to respond the changes in the 

environment systems [1].  The dynamic scheduling algorithms mainly based on 

“selection criteria driven” approach such as Earliest Deadline First, Highest Value First, 

Highest Value Density First. 

 

The Earliest Deadline First Algorithm’s selective criterion is based on the deadlines of 

task’s current requests.  A task will be assigned the highest priority if the deadline of its 

current request is the nearest, and will be assigned the lowest priority if the deadline of 

its current request is the furthest [2].  In The Highest Values First Algorithms, each 

process has its own function of time which defines the value to the system of that 

process.  The completion of a process has a value to the system which varies with time 

[3].  The Highest Value Density First Algorithm analyzes the dynamic value density of 

a task during its runtime at the first time.  Both the value and time attributes of a task 

are considered when assigning its priority [4]. 

 



3 
 

 
 

On the other hand, static scheduling algorithms have been improved by adding them 

dynamic approach.  Improved round-robin algorithm with two processors based on 

separating the processors by process type, one is dedicated for CPU-intensive process, 

and the other one is for I/O dedicated process [5].    

 

Data access operations occupy much in system resources.  One of the design patterns in 

software development architecture to improve system performance is caching.  The 

applications avoid from repeated data reads by caching.  The cache strategies depend on 

requirements of the applications.  There are several cache patterns as below [6]; 

• Cache Accessor -

• 

 Decouples caching logic from the data model and data access 

details. 

Demand Cache

• 

 - Populates a cache lazily as applications request data. A demand 

cache is useful for data that is read frequently but unpredictably. 

Primed Cache - 

• 

Explicitly primes a cache with a predicted set of data. A primed 

cache is useful for data that is read frequently and predictably. 

Cache Search Sequence - 

• 

Inserts shortcut entries into a cache to optimize the 

number of operations that future searches require. 

Cache Collector - 

• 

Purges entries whose presence in the cache no longer provides 

any performance benefit. 

Cache Replicator - 

• 

Replicates operations across multiple caches. 

Cache Statistics - 

Caching is one of the common performance improvement patterns which are applied in 

many layers of the systems.  Figure 2.1 shows some caching implementations [7]. 

Record and publish cache and pool statistics using a consistent 

structure for uniform presentation. 

 

 



4 
 

 
 

 
Figure 2.1 Caching exist in many system implementations [7].  

 

 

 

Iterative Learning Control is a methodology which can be applied to repetitive systems 

tries to improve system performance based on the knowledge of the previous 

experiences.  System learns from previous repetitions to improve next repetitions to 

minimize the tracking error [8].  Since Iterative Learning Control methodology (ILC) 

was submitted in 1984, the concept has been used in many areas.  ILC has been applied 

in two dimensional systems with splitting the system into separated one dimensional 

system [9]. In factories, industrial manipulators performs same cycles repetitively, by 

using ILC some improvements in energy, time minimization has been gained [10].  

ILC-based automatic train operation systems has been developed to converge the 

tracking error to zero which compose from energy savings, trip time, safety [11].  ILC 

has been used in antilock braking systems in electric and hybrid electric vehicles by 

using electric motor to improve the braking torque, where anti-lock brake systems learn 

the maximum tire-road friction, which may vary with the weather conditions such as 

rain, snow, dry etc, and maximize braking force by enforcing learning the braking 

actuators to search the maximum handling force, [12].  

 



5 
 

 
 

Since the submission of ILC, many studies have been performed on the subject.  The 

convergence speed tried to be improved [13].   Studies on initial conditions have been 

performed in [14]. 

 

In this study, a memory scheduling methodology is explored. Idle memory tried to be 

used for caching repetitive jobs and ILC was tried to be applied to select proper job.   

 

2.1. Motivation 

 

In some areas, like insurance and retirement enterprises area, the calculations of 

retention and premium need heavy actuarial calculations.  Like different types of 

mortality tables, disability, assurance, commission calculation tables, funds grow 

expectations and many other ones are used to perform these calculations.  The tables are 

not changed frequently.  The tables that are used for life insurance calculations, are 

updated when death proportions or born rates are changed (i.e. a disaster or an epidemic 

disease occurs).   Individual retirement tables are changed when enterprise’s strategy 

changes [15].  It can be assumed that for a life insurance policy with same input values 

always same premium is calculated.   

 

Every day more than 10000 calculations are done.  For an individual retirement product, 

a customer must be more than 18 years old and 56 years old customer can retire, and 

must be in the system more than 10 years.  Most of customers are between 18 and 46.  

About 350 customers exist in each age.  About 175 of them are male and 175 of them 

are female.  For all types of calculations, for each customer a multiplicity calculating 

and for retirement products premium is multiplied by that multiplicity and for life 

insurance products assurance values are multiplied by that multiplicity.  Many 

calculations are executed for each request coming from different individual customer.  

The Time Machine’s customer information entry page is shown in Figure 2.2., an 

individual retirement products entry page can be seen in Figure 2.3 and a life insurance 

products entry page can be seen in Figure 2.4.  The Time Machine is explained in 

section 4.1. 



6 
 

 
 

 
 

Figure 2.2 Time Machine customer information entry interface, [16] 

 

 

 
 

Figure 2.3 Time Machine an individual retirement product’s property selection 

interfaces, [16] 



7 
 

 
 

 

 

 

 
 

Figure 2.4 Time Machine a life insurance product’s assurance property selection 

interfaces, [16] 

 

 

The objective of the study is to improve system performance by establishing Dynamic 

Memory Allocation methodology.  Our goal is to use the system memory in a maximum 

efficient way.  To achieve this goal, the proposed resource allocation algorithm based 

on ILC to select the most profitable job has been developed which uses the system 

memory to preserve time.  

 

One of the main parts of the system is the CPU and another one is the memory.  All jobs 

operate in CPU by using the system memory.  Software application developers evolve 

caching methods for frequently recalled jobs in order to ease work and shorten the 

cycle.  In this way, frequently called jobs, which are specified by the architect, are kept 



8 
 

 
 

in the memory after their first call they have been used and which will be used from 

memory storage for their next calls.  The success of this method depends on the 

experience of the developer.  If he/she forces so many jobs kept within the memory, the 

memory demands for another job that may not be covered due to the system limits.   

 



 

 
 

 

3. Computing Process Modeling 

 

 

 

A computing system generally has six main parts.  In some systems, some of the parts 

would be unnecessary and some of them would be more than one.  Input values arrive 

from input devices by users or other systems.  Depends on the CPUs availability the 

requests which are sent by input device can wait in the job queue. CPU performs the 

jobs in the job queue by using, if necessary, memory and external storage devices, and 

sends the result to the output device which can be a display device or another system or 

something else.  The architecture of the system is shown in Figure 3.1.   

 

The jobs come to the system randomly.  Input devices indicate the devices that the 

parameters of the jobs are given.  Output devices indicate the devices to which the 

output of the job will be sent.  FIFO (First in first out) rule is applied to manage the job 

queue.   

 



10 
 

 
 

CPUMemory

External Storage

Job Queue

Input Devices Output Devices

 
 

Figure 3.1 The architecture of the computing system 

 

 

3.1. Memory 

 

One of the parts of a system is the memory which is used to store data or programs and 

variables.  In our scope, we try to use idle memory to keep the jobs’ output values.  

Accessing to the memory for the CPU is fast enough.  Because of that more output kept 

in the memory, provides the total time cost of the system in smaller degrees.   

 

In our research, we obtained the average time of getting an output from memory is 

approximately 12*10e-7 ms.  A priori, cost of a simple request from the memory is 

smaller than complex memory usages.  



11 
 

 
 

3.2. CPU (Central Processing Unit) 

 

Another vital part is the CPU which can be called as core of the system because of the 

where all jobs should be processed.  The CPU uses the memory to perform its jobs. 

Sometimes, for simple jobs CPU does not need to use the memory.  This case does not 

cause a problem; it is detailed in Section 3.4.  It can be approved that CPU is very busy 

and that is why we try to decrease its density.   

 

3.3. Job 

 

Jobs are whatever done by the CPU.  But in this paper, jobs are defined as the 

expressions in the programming languages.  3+5 is a job.  The jobs have the inputs and 

the outputs and these outputs can be used as an input of another job or can be assigned 

to a variable.   The assignment operations cannot be defined as a job, x=8 is not a job.  

 

There are two kinds of jobs; I/O jobs and computational jobs. The computational jobs 

are the jobs which are deterministic, give always same output with same input.  “3+x” is 

a computational job, because when a value is set for “x” the output is independent from 

time.  “3+4” equals always 7.   The other jobs, like writing to a file system are I/O jobs.  

 

3.4. The Process Modeling 

 

Jobs that run in the systems can be categorized as I/O and the computational jobs.  I/O 

jobs are performed by using system resources such as hard disk, ram. The 

computational jobs are the jobs that produce the same output with the same inputs.  An 

I/O job such as data writing to a disk is not a deterministic job from this point of view.  

In some systems, the computational jobs are called frequently.  If the frequencies of 

these jobs are so overly, the effect of caching them in the memory would achieve a 

better system performance than running them again.   

 



12 
 

 
 

We assume that the jobs which produce the same output by the same input are marked 

with same identity number.  By the way, if a computational job, which’s output kept in 

the memory, is recalled through, its output can be obtained from the memory. 

 

The time cost of a job which runs in CPU can be called as rt  and the time cost of 

getting its output from memory is denoted by ct .  The computing process addressed by 

this study performs the process subject to the jobs with rt >> ct .  It can be supposed if 

there are more jobs in the memory, there will be less time cost in the system.  In this 

research, there is a massive difference between rt  and ct .  Getting from memory is a 

simple operation which is due ct , but to run a complex job CPU uses the other devices 

such as memory and external devices several times.   

 

Nowadays the CPUs are faster, it means the gain can be limited. But the gain can be 

improved by caching these jobs in groups. 

 

If m  describes the total memory footprints of the outputs of the jobs, and also Tm  

describes the total memory of the system. 

 

 

T

m
m

α =        (3.1) 

 

 

 
Figure 3.2 Memory Proportion 

 

 

The equation (3.1) defines the proportion of the memory to cache the jobs and Figure 

3.2 shows the memory proportion.  If α  is bigger for a homogeneous system, it means 



13 
 

 
 

more number of the jobs exist in the memory.  And also the possibility of finding a job 

in the memory will be higher.  But it may cause another problem; to run other jobs 

system may require the memory which is used to keep the outputs of the previous jobs. 

As a result, these jobs may run slower and the performance of the system may decrease.  

In other words, the jobs whose outputs exist in the memory are affected positively by 

some α . But for the jobs whose output does not exist in the memory, may run slower, 

because of the limited memory.  Our goal is to develop an Iterative Learning Control 

System that achieves to equilibrate these two constraints and caching suitable jobs 

without increasing the overall service time. 

 

An application that operates I/O and computational jobs randomly was prepared to 

observe the gain and this study enforces selection of operation points achieving higher 

gains.  Figure 3.3 demonstrates time costs with respect to the classified job types.  

When most of the jobs are I/O jobs, there is a limited gain. But when the proportion of 

the computational jobs increase versus the overall jobs, the effect of keeping output of 

the jobs in the memory increases also.  The left slope of the valley shows that effect.  

But when the system becomes unable to find enough memory to process the jobs, time 

costs of the jobs increases as shown in the right slope of the valley. 

  

 



14 
 

 
 

0
10

20
30

40
50

60
70

80
90

0
10

20
30

40
50

60
70

80
90

100
0.5

1

1.5

2

2.5

3

3.5

x 10
5

The proportion of the memory to cache the jobs

EFFECTS OF KEEPING JOBS IN THE MEMORY

(I/O jobs / (computational jobs + I/O jobs))

tim
e 

co
st

 o
f t

he
 jo

bs

 
 

Figure 3.3 Effects of keeping the jobs in the memory 

 

 

These jobs are homogenous in the sense of service rates and output size.  

 

The time cost of a computational job can be describe as, 

 

 

if the job exists in the memory
( ) if the job is operated by the CPU{ c

CPU r

t
t tα =  (3.2) 

 

 

Where sub indices c denotes cache and r denotes runtime.  The jobs are observed by 

sliding window method.  Initially, the last n jobs can be supposed as the current window 

size.  After termination of a job, that job will enter to the window and the earliest job in 

the window will be out of the window.   The total operating time of the kth window is 

shown as; 



15 
 

 
 

1
( )

m
k ki
CPU ki CPU

i
t b t α

=

∆ =∑  , {0,1}kj kia b∀ ∈              (3.3) 

 

 

Where bki denotes the existence of ith job in the kth

 

 window.  And the total time cost of 

the I/O jobs in the same window is; 

 

/ /
1

( )
m

k kj
I O kj I O

j
t a t α

=

∆ =∑  , {0,1}kj kia b∀ ∈    (3.4) 

 

 

Where kja  denotes the existence of the jth job in the kth

 

 window. 

The jobs taken from I/O unit and to be computed existing in the window equals to; 

 

 

/( ) k k
k CPU I OT t tα = ∆ + ∆      (3.5) 

 

 

In the equation (3.5), kT defines the total time cost of the kth

/
k
I Ot∆

 window, n defines the 

number of I/O jobs and m defines the number of computational jobs.   denotes the 

time cost of the j.th I/O jobs that is being operated in the kth window.   



16 
 

 
 

Input

The job is an I/O job?

Yes

No

Run the job in the 
CPU

The jobs ouput exists in 
the memory?

Memory 
Arrengement

Learning Process

Yes

Run the job in the 
CPU

No

Use the output 
from the memory

Output

 
 

Figure 3.4 Flow diagram of the computing process 

 

 

In the Figure 3.4, the fundamental process of the system is shown. The system decides 

to run a job by the type of the job and existence of the job in the memory.  The 

interactions between CPU and Memory are shown in Figure 3.5. 

 

 



17 
 

 
 

 
 

Figure 3.5 Interactions between CPU and memory 

 

 

The M|M|1 queuing system consists of a single queuing station with a single server. 

Customers arrive according to a Poisson Process with rate λ, and the probability 

distribution of the service time is exponential with mean  sec [17]. 

 

The individual jobs come to the computing system with Poisson Process with rate λi. 

Through the definition of Poisson Process [17], the jobs are merged into a single 

Poisson Process with rate equals the sum of the rates of its components.  The system can 

be modeled as M|M|1 system.  The jobs arrive by the Poisson Process, for all t,  >0 

[17]; 



18 
 

 
 

( )( ( ) ( ) ) 1, 2,...
!

n
P A t A t n e n

n
λδλδδ −+ − = = =      (3.6) 

 

 

There are two possible paths for the jobs.  If the output of the job is in the memory, the 

job goes through the path that the memory exists on.  Otherwise the job goes through 

the path that the CPU exists on to process the job.  Probability of existence in the 

memory of the output of the job is p.  The model of the process is as Figure 3.6.   

 

 

Memory

CPU

λ λ

pλ

(1 )p λ−

1µ

2µ  
 

Figure 3.6 The model of the system 

 

 

Where λ  is the arrival rate of the jobs, 1µ  is the service rate of getting the output of the 

job from the memory and 2µ  is the service rate of processing the job by the CPU.   

 

 

1µ >> 2µ      (3.7) 

 

 



19 
 

 
 

 
 

Figure 3.7 Sliding Window and window regulation process. 

 

 

 is the selection parameter to maintain the already computed result in the memory.  

The sliding window methodology can be used for forgetting the jobs having high 

selective criteria but which have not been recalled for a long time.  The size of the 

sliding window is regulating to choose the most suitable jobs; the process is shown in 

Figure 3.7.  The selective criteria are calculated for only the jobs that exist in the 

window.  The jobs are sorted by their selective criteria multiplied par the number of the 

occurrences in the window, when there is enough memory the jobs put into the memory 

one by one.  The selective criteria are as (3.8) and takes values between 0 and 1. 

 



20 
 

 
 

( )1

1 ( )
1( )

mia
C

i
i ami i

Csc i i i
ip e e

τ

µ
λ

µ τ

µ λτ

−

Ω Γ
−∑

== =    (3.8) 

 

 

where 
1

1
i iµ

Ω

=

Γ =∑ and im  is the size of the output of the ith
iµ job,  is the service rate of 

the ith Ω job by the CPU,  is the number of the jobs in the system, τ  is the window 

dimension (number of jobs in the window), iλ  is the arrival rate of the ith

 

 job, C is the 

capacity of the memory and a is the scaling factor.  We supposed that all of the 

variables of the jobs are determined a priori.   

When im  increases, sc
ip  decreases.  Because the job occupies more memory resource 

and it is better to chose with low  im .  When iµ  increases, sc
ip  decreases. Because the 

time benefit decreases.  When iλ  increases, sc
ip  increases. It is favorable to choose the 

jobs with higher occurrence probability to avoid unnecessary computation efforts.  

When τ  increases, sc
ip  decreases.  Because the numbers of the jobs increase, the 

importance of choosing the job decreases also.   

 

There are two factors for a job to exist in the memory.  One is existence in the window 

which is described by ip


, and the other one is selective criteria.  The probability of 

existence in the memory (pi

 

) can be defined as (3.9). 

 

( ) ( ) ( )sc
i i ip pp τ τ τ=



     (3.9) 

 

 



21 
 

 
 

The probability of selecting a job from the system is number of occurrences of the job 

divided by the number of total jobs (3.10).  

 

 

( )( )
( )

jinSystem

iP i
j

Ν
=

Ν∑      
(3.10) 

 

 

Where N(i) denotes number of occurrences of ith job, and P(i) denotes the probability of 

selecting ith

 

 job in the system. The probability of selecting another job is shown as 

(3.11).  

 

* ( )( )( ) ( ) 1
( )

1 Total

Total
jinSystem

iiP i P i
j

Ν −ΝΝ
= − =

Ν Ν
= −

∑   

 

 

Where   
( )Total

jinSystem
jΝ Ν= ∑     (3.11) 

 

   

Where 
*

( )P i  is the probability of absence of job i in the sliding window, ( )P i is the 

probability of existence of job I, Ν  is the total number of jobs.  When we select another 

job, the probability of absence of the job from the two selections becomes as (3.12). 

 

 

 

12

* ( ) ( ) 1( )
1

Total Total

Total Total

i iP i Ν −Ν Ν −Ν −
Ν Ν −

=     (3.12) 



22 
 

 
 

The probability of absence in a window for a job is as (3.13). 

 

 

1

* ( ) 1( )
1

Total

k Total

i kP i
k

τ

τ

=

Ν −Ν − +
Ν − +

=∏     (3.13) 

 

 

Where ip


is the probability of existence of the ith

 

 job in the window as (3.14). 

 

1

( ) 1( )
1

1 Total
i

k Total

i kp
k

τ
τ

=

Ν −Ν − +
Ν − +

= −∏


    (3.14) 

 

 

A(i) is the total number of ith job which can be described as the arrival rate of the 

proportion of ith

 

 job and the total arrival rate of the jobs multiplied with total number of 

jobs, described as (3.15). 

 

1

( ) i

j
j

i λ

λ
Ω

=

Ν Ν=
∑

     (3.15) 

 

 

The jobs for which CPU does not use the memory to process, the service rate tends to 

the infinite utilization rate, and the selective criteria would be neglected.  These types of 

jobs would not be kept in the memory unless there is no other computational job which 

may be unrealistic scenario for real-time computing systems.   

   

Gain of a job is defined as the time cost of CPU processing to achieve the output result.  

Time cost of getting from memory is ignored, because it is small and invariant (almost 



23 
 

 
 

same time cost value for all jobs).  The relative gain is important for the system, the 

proportion of the absolute gain and the total of absolute gains of all jobs. The relative 

gain of the ith
iΨ job in the window is denoted by , and given by, 

 

 

1

1i
i

i

µ

µ
Ψ = =

Γ Γ  Where      1

1
i iµ

Ω

=

Γ =∑
  (3.16)

 

 

 

The expectation of a random variable X, is the mean of the distribution of X, denotes 

E(X) as given below: 

 

 

( )( )
all x

X xE X xP == ∑
    (3.17)

 

 

 

That is the average of all possible values of X, weighted by their probabilities [18]. For 

the total expected gain of a window, it can be obtained the possibilities of existence in 

the memory, weighted by the relative gains as (3.18). 

 

 

( )( ) i i
i in

E p
τ

τΨ = Ψ∑
    (3.18)

 

 

 
From (3.7), (3.8), (3.13), (3.15), (3.17) we can obtain (3.19). 
 

 

( )

11

( ) 11 1
1

( )
ami i

CTotal i

ki Totali

i k e
k

E
µ τ

λ
τ

µ

Γ
−Ω

==

   Ν −Ν − +   −
   Γ Ν − +

   

Ψ = ∑ ∏
 (3.19) 



24 
 

 
 

Ω  stands for the cumulative number of the individual distinct jobs whose outputs are 

kept in the memory. 

 

We suppose that the system has 3 jobs given by a, b and c which have the same output 

size, same service rate, and same arrival rate as given in Table 3.1 and variations of the 

expected values are given in Table 3.2.  Total of the expected computing properties 

such as service rate, arrival rate and size may be maximized when the window size 

equals to 4, (see for instance Table 3.2 presenting the instantaneous dynamic resource 

allocation scheme given by (3.8) through (3.19).   

 

 

Table 3.1 The characteristics of the jobs in the example 

 a b c 
iµ (1/ms) 1 1 1 

mi (byte) 1 1 1 
iλ  1/3 1/3 1/3 

 

Γ (ms) 3 
Capacity(byte) 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

 
 

Table 3.2 Variations of the Expected Values  

Window Size a b c Total
1 0,004240997 0,004240997 0,004240997 0,012722992
2 0,006588577 0,006588577 0,006588577 0,01976573
3 0,007682481 0,007682481 0,007682481 0,023047444
4 0,007969234 0,007969234 0,007969234 0,023907703
5 0,007757089 0,007757089 0,007757089 0,023271267
6 0,007255928 0,007255928 0,007255928 0,021767783
7 0,006606127 0,006606127 0,006606127 0,019818382
8 0,00589936 0,00589936 0,00589936 0,017698079
9 0,00519351 0,00519351 0,00519351 0,015580531

10 0,004523323 0,004523323 0,004523323 0,013569969
11 0,003907948 0,003907948 0,003907948 0,011723845
12 0,003356262 0,003356262 0,003356262 0,010068786
13 0,002870582 0,002870582 0,002870582 0,008611746
14 0,002449259 0,002449259 0,002449259 0,007347776
15 0,002088478 0,002088478 0,002088478 0,006265433
16 0,001783567 0,001783567 0,001783567 0,005350701
17 0,001530101 0,001530101 0,001530101 0,004590303
18 0,00132532 0,00132532 0,00132532 0,003975959
19 0,001171799 0,001171799 0,001171799 0,003515398
20 0,001098194 0,001098194 0,001098194 0,003294582

Expected Values

 
 

 

The variations of the expected gain are shown in Figure 3.8.  The dash-dot line signifies 

the expected gain of the three jobs, and the solid line is the total of the expectations. The 

expected gain for the three jobs are the same, because the jobs have identical 

characteristics such as arrival rates, service rates, memory occupations. 

 

 



26 
 

 
 

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025
The Expected Gain of The Window

Window Size

Th
e 

E
xp

ec
te

d 
G

ai
n

 

 
The Expected Gain of a=b=c
Total of Expected Gains

 
Figure 3.8 The Gain of the Window 

 

 

An example is shown in Table 3.3.  If the sliding window methodology was not used, 

the job “a” would occupy the memory for a long time.  Even it is not needed anymore, 

because of it’s repetition count and it’s other selection criterion, “a” would rest in the 

memory.  If no jobs are kept in the memory the system endures for 18 ms.  But we save 

approximately 12 ms and the system endures only 6 ms.  But in the example is shown in 

Table 3.3, the jobs are distributed individually and the gain is only 8 ms.   

 

 

 

 

 

 

 

 



27 
 

 
 

Table 3.3 Example 1  
a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a
b b b b b b b b b b b b b b b b b b
b b b b b b b b b b b b b b b b b b
b b b b b b b b b b b b b b b b b b
c c c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c c c
a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a
b b b b b b b b b b b b b b b b b b
b b b b b b b b b b b b b b b b b b
b b b b b b b b b b b b b b b b b b
c c c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c c c

The Gain 
of The 

Window
0,004241 0,006589 0,007682 0,007969 0,007757 0,007969 0,007682 0,007969 0,007757 0,007969 0,007682 0,007969 0,007757 0,007969 0,007682 0,007969 0,007757 0,007969

Error 0,019667 0,017319 0,016225 0,015938 0,016151 0,015938 0,016225 0,015938 0,016151 0,015938 0,016225 0,015938 0,016151 0,015938 0,016225 0,015938 0,016151 0,015938
a a a a a a b b b a a a a a a b b b

b b b c c c c c c b b b c c c
a exists a exists b exists b exists c exists c exists a exists a exists b exists b exists c exists c exists 

1 1 1 1 1 1 1 1 1 1 1 1

The jobs

Memory

Reel Gain

 

 

For a job set as in Table 3.3, the algorithm starts with window size equals to one.  The 

first job is “a”, and it is not in the memory.  At the beginning, the memory is free, and 

the window size equals to one.  The difference between the total expectation of the jobs 

and the expectation of job “a” equals to 0.019667 when the window size is one.  It is 

smaller than the position at window size equals to zero, 0.023908.  Because of the 

emptiness of the memory, means 2 bytes can be kept in the memory, and “a” has an 

output with size equals to 1.  The output of the job “a” is kept in the memory.  The 

algorithm decides to increase the window size.   

 

The second job is again “a”.  It’s output is already in the memory.  The error equals to 

0.017319 which is smaller than 0.019667 (previous error).  The algorithm decides that it 

done well with previous iteration that is increasing window size, and continues to 

increase window size.  After the third iteration the error becomes 0.016225 which is 

smaller than previous error.  After fourth iteration the error becomes 0.015938.  The 

fifth iteration is done by window size equals to five.  But the error becomes 0.016151 

which is greater than previous error.  The algorithm decides to undo last window action 

and sets window size to 4, and continues to change the window size at each iteration.  

Because of the limit of the memory equals to 2 bytes and each output keeps one byte, 

only two outputs can be kept in the memory at same time.  Each job endures one 

millisecond.  At total 18 ms jobs has done, but it endured only 6 ms.  

 



28 
 

 
 

Table 3.4 Example 2 
a a a a a a a a a a a a a a a a a a
b b b b b b b b b b b b b b b b b b
c c c c c c c c c c c c c c c c c c
a a a a a a a a a a a a a a a a a a
b b b b b b b b b b b b b b b b b b
c c c c c c c c c c c c c c c c c c
a a a a a a a a a a a a a a a a a a
b b b b b b b b b b b b b b b b b b
c c c c c c c c c c c c c c c c c c
a a a a a a a a a a a a a a a a a a
b b b b b b b b b b b b b b b b b b
c c c c c c c c c c c c c c c c c c
a a a a a a a a a a a a a a a a a a
b b b b b b b b b b b b b b b b b b
c c c c c c c c c c c c c c c c c c
a a a a a a a a a a a a a a a a a a
b b b b b b b b b b b b b b b b b b
c c c c c c c c c c c c c c c c c c

The Gain 
of The 

Window
0,004241 0,006589 0,007682 0,007969 0,007757 0,007969 0,007682 0,007969 0,007757 0,007682 0,007969 0,007757 0,007969 0,007682 0,007969 0,007757 0,007969 0,007682

Error 0,019667 0,017319 0,016225 0,015938 0,016151 0,015938 0,016225 0,015938 0,016151 0,016225 0,015938 0,016151 0,015938 0,016225 0,015938 0,016151 0,015938 0,016225
a a a a a b b b b b b b a a a a a a

b b b b c c c c c c c c c c c b b
a exists b exists b exists c exists b exists c exists c exists a exists 

1 1 1 1 1 1 1 1

The jobs

Memory

Reel Gain

 

 
If these jobs are arranged in an order as Table 3.4, the real gain is only 8 ms.  Because 

the jobs whose outputs are kept in the memory are recalled after the other jobs called.  

The jobs in the window do not mean that the outputs of all of them are kept in the 

memory, it means they can be kept in the memory if there exist enough place. 

 

3.5 The Desired Value Derivation 

 

Our goal is to minimize the service time of the system.  In other words, the time cost of 

obtaining the outputs of the jobs has to be minimized.  Thus, by their first process, all 

jobs have to exist in the memory.  If we could have an unlimited memory, we would 

have kept all jobs in the memory, but unfortunately despite of the development of 

hardware systems we have limited system resources.   

 

TotalΝ  is called as number of jobs processed and it is bigger than Ω  number of jobs in a 

window. 
TotalT  is the total service time elapsed for all the processed jobs having the 

subindices by k.  Equation (3.20) can be obtained; 

 

 

1
( )

Total

k
k

Total

T

T
α

Ν

=

Ω

∑
      (3.20) 



29 
 

 
 

Where 
T

m
m

α = (proportional usage of the memory). 

 

Minimizing TotalT  is the desired value.  The time cost of running the I/O jobs are not in 

the scope of this study (if there is not enough place in the memory to run new jobs, the 

time cost of running the I/O jobs will increase but a condition can be added to the 

system to cover this case). In conclusion, our goal is to obtain all computational jobs in 

the memory by their first call. 

 

 

1

m
i

d r
i

v t
=

=∑      (3.21) 

 

 

A condition can be added to ensure that there exists still enough memory.  If the running 

time of one consequent job is bigger than the average of the time cost of running jobs, it 

will start to organize jobs which are in the memory by deleting most inconvenient job in 

the memory.  In other way, desired value can be described as formula (3.19) which 

equals to the expected value. 

 

3.6 Error Derivation 

 

Through the definition, the error is the difference between the obtained result and the 

desired value.  In other words, error is described as; 

 

 

 
1

max( ( ))
k

i i
k

i k

pe E
τ τ τ∈ = − +

Ψ
= Ψ − ∑



    (3.22) 

 

 

The effects of new job states on the error are shown in Table 3.5. 



30 
 

 
 

Table 3.5 The effects of the new job arrival and the error variation. 

The status of the new job 

that is entering into the 

window 

The status of the old job 

that is leaving the window 
The effect on the error 

Exists in the memory Exists in the memory Does not change 

Exists in the memory 
Does not exist in the memory, 

computational job 
Decrease 

Exists in the memory 
Does not exist in the memory, 

I/O job 
Decrease 

Does not exist in the 

memory, computational job, 

terminated in average time 

Exists in the memory Does not change 

Does not exist in the 

memory, computational job, 

terminated in average time 

Does not exist in the memory, 

computational job 
Does not change 

Does not exist in the 

memory, computational job, 

terminated in average time 

Does not exist in the memory, 

I/O job 
Does not change 

Does not exist in the 

memory, computational job, 

terminated in more than 

average time 

Exists in the memory Increase 

Does not exist in the 

memory, computational job, 

terminated in more than 

average time 

Does not exist in the memory, 

computational job 
Does not change 

Does not exist in the 

memory, computational job, 

terminated in more than 

average time 

Does not exist in the memory, 

I/O job 
Does not change 



31 
 

 
 

Does not exist in the 

memory, I/O job, 

terminated in average time 

Exists in the memory Does not change 

Does not exist in the 

memory, I/O job, 

terminated in average time 

Does not exist in the memory, 

computational job 
Does not change 

Does not exist in the 

memory, I/O job, 

terminated in average time 

Does not exist in the memory, 

I/O job 
Does not change 

Does not exist in the 

memory, I/O job, 

terminated in more than 

average time 

Exists in the memory Increase 

Does not exist in the 

memory, I/O job, 

terminated in more than 

average time 

Does not exist in the memory, 

computational job 
Does not change 

Does not exist in the 

memory, I/O job, 

terminated in more than 

average time 

Does not exist in the memory, 

I/O job 
Does not change 

 

 

The decisions on the situation of the memory can be summarized as given in Table 3.4.  

In the situations marked by “decreasing” change, the service time starts to decrease and 

the computational jobs can be kept in the memory.  At “no change” points, the duration 

decrease continues or the stationary duration exists or the system is in the duration 

before the increment.  Because of these circumstances cannot be separated, keeping new 

jobs in the memory can continue. At the “increasing” points, the time cost of the jobs 

which started to be processed becomes excessive. In this situation, the jobs in the 

memory should be deleted.   

 



32 
 

 
 

At this point to decide which job will be deleted from the memory is essential for the 

system.  Figure 3.9 shows the decision automata which describes decision states of the 

system.   

 

 

Start

end

end end

The job is a computational 
jobThe job is an I/O job

Time cost in the limits

Time cost of the job is 
excessive

Time cost of the job is 
excessive Time cost in  the limits

The job does not exists in the 
memory

The job exists in the memory

end

Apply ILC to the jobs in the 
memory. Delete the most 

inconvenient job in the 
memory

Put the output of the job into 
the memory

Get the output of the job from 
the memory, add call count to 
the signature of the job in the 

memory

 
 

Figure 3.9 The decision automata 

 



33 
 

 
 

The generic code for the decision algorithm is given below; 

for each job begin 

 if the job is an I/O job begin 

  t = calculate_time_cost(run(job), output) 

  if t < time_limit_for_I/O_job begin 

   recalculate(time_limit_for_I/O_job,t); 

   return output; 

  end; 

  else begin 

   ILC(job_list_in_the_memory) 

   delete_most_inconvenient_job(job_list_in_the_memory) 

  end; 

 end; 

 else begin  

 if is_in_the_list(job, job_list_in_the_memory)begin 

  increase_call_count(job, job_list_in_the_memory); 

  return get_from_memory(job, job_list_in_the_memory); 

 end; 

 else begin 

   t = calculate_time_cost(run(job),output) 

   if t < time_limit_for_Computational_job begin 

    recalculate(time_limit_for_Computational_job, t); 

    add_job(job, job_list_int_the_memory); 

    return output; 

   end; 

   else begin 

    ILC(job_list_in_the_memory); 

    delete_most_inconvenient_job(job_list_in_the_memory); 

return output; 

   end; 

  end; 

end; end; 



34 
 

 
 

3.7. Processing Jobs 
 
An example of the system is specified at Figure 3.10.  Each character signifies unique 

job, the “X” signify an I/O job.  The system is composed by the job list, first memory to 

keep the outputs of the job and the window memory to keep the output of jobs in the 

window whose output does not exist in the first memory.   

 

When the system starts to operate, the sliding window begins to change as Figure 

3.10.a.  The first window represented with red includes only first job.  The memory that 

is used for keeping outputs of the jobs is empty. After processing the first job the 

window gets the second job, and the output of the first job is kept in the memory as 

Figure 3.10.b.  The X cannot be set in the memory because it is an I/O job.  The 6th 

position of the window is shown in Figure 3.10.c. All precedence outputs are in the 

memory, and still there exists memory.  The 10th job is the same as the first job and the 

output of the 1st

 

 job is still in the memory, it can be used without computing by the CPU 

meanwhile adding the job count to the object in the memory.  “n” object has its call 

orders, 1 and 10 which will be used for calculating gain function for the job.   

Now the limit of the memory is reached, but the system does not know that.  When the 

11th

 

 job arrives, it is processed in excessive time because there is not enough memory to 

perform that job easily, and the system should choose one of the eight jobs to delete 

from memory.  A gain function can be used to decide job to delete. The gain of “z” is 

the minimum value of all then the output of the “z” is deleted from the memory and the 

output of “a” is replaced.   

When the other jobs of the system require more memory, the size of the memory that is 

used for keeping the outputs, decreases by the time average condition of the works. 

 

 

 

 

 



35 
 

 
 

n y p X z e m v i n a i l t m c ..
Memory Job  Queue

 
 

a) The first position of the window 
 

n y p X z e m v i n a i l t m c .. n
Job  Queue Memory 

 
 

b) The second position of the window 
 

n y p X z e m v i n a i l t m c .. n y p z
Job  Queue Memory 

 
 

c) The 6th

 
 position of the window 

n y p X z e m v i n a i l t m c .. n y p z e v i
Job  Queue Memory 

 
 

d) 10th

 
 position of the window 

n y p X z e m v i n a i l t m c .. n y p z e v i
Job  Queue 1st Memory 

 
 

e) 11th

 
 position of the window 

n y p X z e m v i n a i l t m c .. n y p a e v i
Memory Job  Queue

 
 

f) 12th

 
 position of the window 

n y p X z e m v i n a i l t m c .. n y p a e v i
Job  Queue Memory 

 
 

g) The 13th

 
 position of the window 

 
Figure 3.10 Example of the flow 

 
 
 
 
 



 

 
 

 
 

4. Dynamic Resource Allocation and Memory Scheduling 
 
 
 
Iterative Learning Control methodology is used in our algorithm because previous 

experiences will be used for next memory scheduling.  The goal is to minimize the error 

and to regulate the window size to ensure caching the most frequent repeating jobs’ 

results in the memory to avoid unnecessary computing effort.   

 

4.1 Iterative Learning Control 
 
 
Iterative Learning Control is recognized as a powerful control method to achieve 

trajectory tracking tasks in a class of repetitive systems [11].  Our goal is to obtain the 

ideal window size such that the frequently repeated similar job results may be cached 

and to achieve best utilization of the processor.  To achieve this goal, the window 

dimension has to be adjusted after the each iteration.  

 

A typical Iterative Learning Algorithm control output formulation is given by, [19]. 

 

 

 1( ) ( ) ( )k k k
du t u t e t
dt

γ+ = +      (4.1) 

 

 

Where ek

 

(t) can be defined as the error term expressed as a difference between the 

desired expected gain of the overall jobs and the window gain. 

 

1
( ) ( ) ( ) max ( ( ))

k
i i

k d r
i k

pe t v t v t E
τ τ τ∈ = − +

Ψ
= − = Ψ − ∑



  (4.2) 

 



37 
 

 
 

The desired expected gain, which is the first term in the error function given by (4.2), is 

constituted by summing all the individual expected gain of the jobs existing in the 

memory (see also (3.19) for its derived expression).  The second term is the averaged 

sum of the individual gain existing in the sliding window. 

 

In our setting, it can be implemented as (4.3).  

 

 

1
1

1

( )k k
k k

k k

e esignτ τ
τ τ

−
+

−

−
= −

−
    (4.3) 

 

 

Where sign function is described as below, 

 

 

( ) 1 if x 0
(.) ( ) 1 if x<0{sign x

sign sign x
= ≥

= =−   (4.4) 

 

 

By the way the system tries to reach the optimum size of the window dynamically and it 

is temporal variable.  The CPU usage derivations of Example 1 and Example 2 can be 

seen in Figure 4.1.  

 

 



38 
 

 
 

0 2 4 6 8 10 12 14 16 18

0.4

0.5

0.6

0.7

0.8

0.9

1
The CPU Usage Derivation

Number of Jobs Processed

Th
e 

C
P

U
 U

sa
ge

 R
at

e

 

 
The CPU Usage for Example 1
The CPU Usage for Example 2

 
Figure 4.1 Error Derivation 

 

 

In the Figure 4.1 the CPU usage rate decreases exponentially and exhibiting some 

oscillations due to the discontinuous nature of the window size regulation which means 

more outputs are found in the memory. At the beginning, the first job (job “a”) is 

processed by the CPU for both examples.  In Example 1, described as dash-dot line, the 

second jobs (job “a”) output is found in the memory; it is not processed by the CPU, the 

usage decreased to half of its initial value.  The third job is again “a” and the usage 

decreases to its thirty percent.  In Example 2, described as solid line, the second and the 

third jobs (job “b” and job “c”) are processed by CPU.  The forth job is “b” in Example 

1.  It’s output does not exist in the memory.  The CPU usage becomes half, because the 

first “a” and “b” could not been found in the memory and they were processed but the 

second and the third “a” were found in the memory.   

 

A simulator has been prepared to observe gains with different types of random systems.  

Different number of jobs was chosen to generate a system with 10000 jobs.  The service 



39 
 

 
 

rates were chosen between 1 and 10 and the footprints of outputs were chosen between 

1 and 100, both with uniform distribution.  The jobs sequence was chosen with uniform 

distribution.   

 

Figure 4.2 shows the variation of Expected Values that has a maximum value when 

window size equals to 187, and Figure 4.3 shows the variation of Error and Figure 4.4 

shows the derivation of CPU usage with 50 jobs and capacity equals to 200.  Figure 4.5 

shows the derivation of window size, at the beginning there one job and the window 

size is started with one, and increased by one by one until error value decreases.  It can 

be observed from Figure 4.3 and 4.5, the error derivations and the window size 

derivations are almost contrary.  

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

40

45
EXPECTED VALUE WITH 50 JOBS AND CAPACITY = 200

WINDOW SIZE

E
X

P
E

C
TE

D
 V

A
LU

E

 
Figure 4.2 Expected Value with 50 jobs and capacity = 200 

 

 



40 
 

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
32

34

36

38

40

42

44

46
ERROR WITH 50 JOBS AND CAPACITY = 200

NUMBER OF JOBS PROCESSED

E
R

R
O

R

 
Figure 4.3 Error variation with 50 jobs and capacity = 200 

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
THE USAGE OF THE CPU WITH 50 JOBS AND CAPACITY = 200

NUMBER OF JOBS PROCESSED

TH
E

 U
S

A
G

E
 O

F 
TH

E
 C

P
U

 

 
ILC APPLIED SYSTEM
ILC NOT APPLIED SYSTEM

 
Figure 4.4 The Usage of the CPU with 50 jobs and capacity = 200 

 
 



41 
 

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

300
THE DERIVATION OF THE WINDOW SIZE WITH 50 JOBS AND CAPACITY = 200

NUMBER OF JOBS PROCESSED

W
IN

D
O

W
 S

IZ
E

 
Figure 4.5 The Derivation of the window size with 50 jobs and capacity = 200 

 
 
The footprints are distributed between 1 and 100 with uniform distribution.  The 

average of service rates is about 50 (In this example the sum of the footprints are 2347).  

About 4 jobs can be kept in the memory with capacity 200.  But Figure 4.4 shows that 

when the system goes to stationary state, 25% of jobs are not reprocessed, but if 

Iterative Learning Control Methodology is not used 15% of jobs are not reprocessed.   

 

Figure 4.6 shows that the variation of the Expected Values has maximum value when 

window size equals to 168, and Figure 4.7 shows the variation of Error and Figure 4.8 

shows the derivation of CPU usage with 40 jobs and capacity equals to 400.  Figure 4.9 

shows the derivation of the window size with 40 jobs and capacity equals 400 system. 

 

 



42 
 

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

40
EXPECTED VALUE WITH 40 JOBS AND CAPACITY = 400

WINDOW SIZE

E
X

P
E

C
TE

D
 V

A
LU

E

 
Figure 4.6 Expected Value with 40 jobs and capacity = 400 

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
22

24

26

28

30

32

34

36

38
ERROR WITH 40 JOBS AND CAPACITY = 400

NUMBER OF JOBS PROCESSED

E
R

R
O

R

 
Figure 4.7 Error variation with 40 jobs and capacity = 400 

 



43 
 

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
THE USAGE OF THE CPU WITH 40 JOBS AND CAPACITY = 400

NUMBER OF JOBS PROCESSED

TH
E

 U
S

A
G

E
 O

F 
TH

E
 C

P
U

 

 
ILC APPLIED SYSTEM
ILC NOT APPLIED SYSTEM

 
Figure 4.8 Relative gain with 40 jobs and capacity = 400 

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250
THE DERIVATION OF THE WINDOW SIZE WITH 40 JOBS AND CAPACITY = 400

NUMBER OF JOBS PROCESSED

W
IN

D
O

W
 S

IZ
E

 
Figure 4.9 Derivation of the window size with 40 jobs and capacity = 400 



44 
 

 
 

About 8 jobs can be kept in the memory with capacity 400.  But Figure 4.8 shows that 

when the system goes to stationary state, 35% of jobs are not reprocessed, but if 

Iterative Learning Control Methodology is not used 20% of jobs are not reprocessed.  

Between 4800 and 5800 the error rate is increasing in Figure 4.7.  When the job order is 

analyzed, it is observed that a job set that does not exist in the memory arrives to the 

CPU.   

 

Figure 4.10 shows the variation of Expected Values, and Figure 4.11 shows the 

variation of Error and Figure 4.12 shows the derivation of CPU usage with 100 jobs and 

capacity equals 1400 system. Figure 4.13 shows the derivation of the window size with 

100 jobs and capacity equals 1400 system. 

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100
EXPECTED VALUE WITH 100 JOBS AND CAPACITY = 1400

WINDOW SIZE

E
X

P
E

C
TE

D
 V

A
LU

E

 
Figure 4.10 Expected Value with 100 jobs and capacity = 1400 

 
 



45 
 

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
40

50

60

70

80

90

100
ERROR WITH 100 JOBS AND CAPACITY = 1400

NUMBER OF JOBS PROCESSED

E
R

R
O

R

 
Figure 4.11 Error variation with 100 jobs and capacity = 1400 

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
THE USAGE OF THE CPU WITH 100 JOBS AND CAPACITY = 1400

NUMBER OF JOBS PROCESSED

TH
E

 U
S

A
G

E
 O

F 
TH

E
 C

P
U

 

 
ILC APPLIED SYSTEM
ILC NOT APPLIED SYSTEM

 
Figure 4.12 Relative gain with 100 jobs and capacity = 1400 

 
 



46 
 

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

300

350

400

450

500
THE DERIVATION OF THE WINDOW SIZE WITH 100 JOBS AND CAPACITY = 1400

NUMBER OF JOBS PROCESSED

W
IN

D
O

W
 S

IZ
E

 
Figure 4.13 Derivation of the window size with 100 jobs and capacity = 1400 

 
 
About 28 jobs can be kept in the memory with capacity 1400.  But Figure 4.12 shows 

that when the system goes to stationary state 33% of jobs are not reprocessed, but if 

Iterative Learning Control Methodology is not used 46% of jobs are not reprocessed.   

   

Figure 4.14 shows the variation of Expected Values, and Figure 4.15 shows the 

variation of Error and Figure 4.16 shows the variations of relative gain of 100 jobs and 

capacity equals 8000 system.  Figure 4.17 shows the derivation of the window size with 

100 jobs and capacity equals 8000 system. 

 



47 
 

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100
EXPECTED VALUE WITH 100 JOBS AND CAPACITY = 8000

WINDOW SIZE

E
X

P
E

C
TE

D
 V

A
LU

E

 
Figure 4.14 Expected Value with 100 jobs and capacity = 8000 

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100
ERROR WITH 100 JOBS AND CAPACITY = 8000

NUMBER OF JOBS PROCESSED

E
R

R
O

R

 
Figure 4.15 Error variation with 100 jobs and capacity = 8000 



48 
 

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GAIN WITH 100 JOBS AND CAPACITY = 8000

NUMBER OF JOBS PROCESSED

G
A

IN

 

 
ILC APPLIED SYSTEM
ILC NOT APPLIED SYSTEM

 
Figure 4.16 Relative gain with 100 jobs and capacity = 8000 

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

300

350

400

450

500
THE DERIVATION OF THE WINDOW SIZE WITH 100 JOBS AND CAPACITY = 8000

NUMBER OF JOBS PROCESSED

W
IN

D
O

W
 S

IZ
E

 
Figure 4.17 Derivation of the window size with 100 jobs and capacity = 8000 

 
 



49 
 

 
 

About 160 jobs can be kept in the memory with capacity 8000, but in these example 

total footprints is 4994.  All of the jobs’ outputs can be kept in the memory.  It can be 

seen in Figure 4.16 that applying Iterative Learning Control methodology does not 

provide any benefit when the system has a huge memory.  But when the memory is 

limited (which means real world case), Iterative Learning Control Methodology 

provides benefits.  In the Figure 4.17, there exist window size changes because the 

arriving jobs are changing and the expected values are changed.   

 

When Iterative Learning Control is applied CPU Usage Derivations are shown in Figure 

4.18 and when Iterative Learning Control is not applied CPU Usage Derivations are 

shown in Figure 4.19.  The difference of two case shows that if the memory capacity is 

limited, the gain of using Iterative Learning Control is higher as shown in Figure 4.20.  

At some points the differences are not high, there exists valleys in Figure 4.20.  The 

arriving order of the jobs causes these cases.   

 

 

10
20

30
40

50
60

70
80

90
100

0

1000

2000

3000

4000

5000

6000

7000

8000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CAPACITY

CPU USAGE DERIVATION WHEN ILC IS USED

NUMBER OF JOBS

C
P

U
 U

S
A

G
E

 
Figure 4.18 CPU Usage Derivations When ILC Applied 

 



50 
 

 
 

10
20

30
40

50
60

70
80

90
100

0

1000

2000

3000

4000

5000

6000

7000

8000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CAPACITY

CPU USAGE DERIVATION WHEN ILC IS NOT USED

NUMBER OF JOBS

C
P

U
 U

S
A

G
E

 
Figure 4.19 CPU Usage Derivations When ILC Not Applied 

 
 

10

20

30

40

50

60

70

80

90

100

0

1000

2000

3000

4000

5000

6000

7000

8000

0

0.05

0.1

0.15

0.2

0.25

CAPACITY

DIFFERENCES BETWEEN ILC APPLIED AND NOT APPLIED

NUMBER OF JOBS

C
P

U
 U

S
A

G
E

 
 

Figure 4.20 CPU Usage Derivations differences when applying Iterative Learning 
Control and not applying Iterative Learning Control 



 

 
 

 
 

5. Experimental Study 
 

 

 

The data is taken from real-life data belonging to a Time-Machine application of an 

individual retirement and life insurance company.  Because of privacy policies the real 

data is corrupted by a linear function.  The retirement retention and insurance premium 

calculations are using CPU much, and using the tables which are permanent but 

voluminous.   

 

5.1 Experimental Results 
 
As shown in Figure 3.3 and Figure 5.1, the time graphics of windows of N jobs depends 

on α  which creates a view of a valley.  Our goal is to allocate the resources of the 

computing system at the bottom of this valley as much as possible.  In general, the 

system starts to go down in the graphic when jobs start to keep in the memory.  But 

afterwards the system starts to go up on the right side of the valley because of the time 

cost of un-cached jobs.  The algorithm has to determine that change.  But it can be seen 

easily that there exists local minimum point in the system, because the jobs are not 

homogeneous.  If the raise is small then it can be supposed that the value is negligible.   

 



52 
 

 
 

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

job number

tim
e 

co
st

 o
f t

he
 jo

b 
(m

s)

CACHING TEST WITH RANDOM JOBS

 
Figure 5.1 Caching test results with random jobs 

 

 

The problem is which criteria will be utilized by the Iterative Learning Control system.  

Which job will be deleted from the memory in a situation that the jobs in the memory 

cause other jobs to run slowly?  At that point a gain function is needed to compare the 

benefits of the jobs which are in the memory. The gain function has to be applicable to 

all computational jobs.  The gain function has a direct proportion with the position of 

the job in the job list and it has a direct proportion with call frequency of the job and it 

has a direct proportion with the time cost of the job and it has an inverse proportion with 

the footprint of the output of the job in the memory. And the gain function is describes 

as g as below;   

 

In this study, Java is used as programming language and Aspect Oriented Programming 

is used to implement our case study.  Aspect Oriented Programming allows the 

separation of the functional mechanism from the non-functional ones [20].  In our study, 

an enterprise application (Retirement Projection Time Machine) is used and the outputs 

of the java methods are kept in the memory by Aspect Oriented Programming.   



53 
 

 
 

Retirement Projection Time Machine is a Java application that calculates future income 

of current payments and calculates required payments for desired income. The 

application also calculates life insurance premiums.  The application is used by the 

customers and financial advisors of retirement and life insurance enterprises.  The 

application runs on Websphere Application Server with heap size 256 Mb, 1.8 GHz 

Pentium Dual CPU and uses DB2 as Database.  The application was developed by 

Struts framework as Model-View-Controller, and Hibernate was used for table-object 

modeling.   

 

In the Figure 5.2 to 5.11 green lines represent the error graph of the desired value.  If all 

jobs could be kept in the memory, the error would have been like that graph.  The red 

lines represent the situation without dynamic control, until the system limit all jobs are 

kept in the memory.  The blue lines represent the error value with the dynamic 

scheduling.  The gain changes with different values of τ .  

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

20

30

40

50

60

70

80

90

100

NUMBER OF WINDOWS PROCESSED

E
R

R
O

R

ERROR RATE (T=10)

 

 
DESIRED VALUE
WITHOUT LEARNING
WITH LEARNING

 
Figure 5.2 The Error Rate where τ =10 

 



54 
 

 
 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

20

30

40

50

60

70

80

90

100

NUMBER OF WINDOWS PROCESSED

E
R

R
O

R

ERROR RATE (T=50)

 

 
DESIRED VALUE
WITHOUT LEARNING
WITH LEARNING

 
Figure 5.3 The Error Rate where τ =50 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

20

30

40

50

60

70

80

90

100

NUMBER OF WINDOWS PROCESSED

E
R

R
O

R

ERROR RATE (T=100)

 

 
DESIRED VALUE
WITHOUT LEARNING
WITH LEARNING

 
Figure 5.4 The Error Rate where τ =100 



55 
 

 
 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

20

30

40

50

60

70

80

90

100

NUMBER OF WINDOWS PROCESSED

E
R

R
O

R

ERROR RATE (T=200)

 

 
DESIRED VALUE
WITHOUT LEARNING
WITH LEARNING

 
Figure 5.5 The Error Rate where τ =200 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

20

30

40

50

60

70

80

90

100

NUMBER OF WINDOWS PROCESSED

E
R

R
O

R

ERROR RATE (T=300)

 

 
DESIRED VALUE
WITHOUT LEARNING
WITH LEARNING

 
Figure 5.6 The Error Rate where τ =300 



56 
 

 
 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

20

30

40

50

60

70

80

90

100

NUMBER OF WINDOWS PROCESSED

E
R

R
O

R

ERROR RATE (T=400)

 

 
DESIRED VALUE
WITHOUT LEARNING
WITH LEARNING

 
Figure 5.7 The Error Rate where τ =400 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

20

30

40

50

60

70

80

90

100

NUMBER OF WINDOWS PROCESSED

E
R

R
O

R

ERROR RATE (T=500)

 

 
DESIRED VALUE
WITHOUT LEARNING
WITH LEARNING

 
Figure 5.8 The Error Rate where τ =500 



57 
 

 
 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

20

30

40

50

60

70

80

90

100

NUMBER OF WINDOWS PROCESSED

E
R

R
O

R

ERROR RATE (T=600)

 

 
DESIRED VALUE
WITHOUT LEARNING
WITH LEARNING

 
Figure 5.9 The Error Rate where τ =600 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

20

30

40

50

60

70

80

90

100

NUMBER OF WINDOWS PROCESSED

E
R

R
O

R

ERROR RATE (T=700)

 

 
DESIRED VALUE
WITHOUT LEARNING
WITH LEARNING

 
Figure 5.10 The Error Rate where τ =700 



58 
 

 
 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

20

30

40

50

60

70

80

90

100

NUMBER OF WINDOWS PROCESSED

E
R

R
O

R

ERROR RATE (T=800)

 

 
DESIRED VALUE
WITHOUT LEARNING
WITH LEARNING

 
Figure 5.11 The Error Rate where τ =800 

 
 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

20

30

40

50

60

70

80

90

100

NUMBER OF WINDOWS PROCESSED

E
R

R
O

R

ERROR RATE

 

 
DESIRED VALUE
WITHOUT LEARNING
WITH LEARNING

 
Figure 5.12 The Error Rate where τ  calculated dynamically 



59 
 

 
 

Figure 5.12 shows the error rate when τ  is calculated by Iterative Learning Control.  

The Figure 5.12 indicates that by this work we approached the goal that to enhance 

processing performance by dynamic memory scheduling. 

 

In the previous experiences, all of the jobs characteristics are supposed to be known.  

But in real-life, it is impossible.  To overcome this situation, the system is designed as 

the averages of previous weeks data is based on.  When a new job arrives, it is statistical 

values are applied to next day’s work.  In Figure 4.13, it is shown that the CPU Usage 

of the first day after a week.  It can be observed in Figure 4.13, Figure 4.14 and 4.15, 

the usage of CPU is dependant from the jobs arrive order, and each day has its own 

characteristic.  

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
THE USAGE OF THE CPU IN A REAL-LIFE APPLICATION

NUMBER OF JOBS PROCESSED

TH
E

 U
S

A
G

E
 O

F 
TH

E
 C

P
U

 

 
ILC APPLIED
ILC NOT APPLIED

 
Figure 5.13 The Usage of CPU in a real-life application (First Day) 

 



60 
 

 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
THE USAGE OF THE CPU IN A REAL-LIFE APPLICATION

NUMBER OF JOBS PROCESSED

TH
E

 U
S

A
G

E
 O

F 
TH

E
 C

P
U

 

 
ILC APPLIED
ILC NOT APPLIED

 
Figure 5.14 The Usage of CPU in a real-life application (Tenth Day) 

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
THE USAGE OF THE CPU IN A REAL-LIFE APPLICATION

NUMBER OF JOBS PROCESSED

TH
E

 U
S

A
G

E
 O

F 
TH

E
 C

P
U

 

 
ILC APPLIED
ILC NOT APPLIED

 
Figure 5.15 The Usage of CPU in a real-life application (Fifteenth Day) 



61 
 

 
 

In section 4, it is observed that when the jobs arrive to the computing system randomly 

the usage of the CPU varies between 0% and 25%.  Through the arrival order of the 

jobs, in the real-life application of an individual retirement and life insurance company 

the usage of the CPU varies between 60% and 70%.  Keeping outputs of the jobs in the 

memory provides gain about 20%-25%, but applying an ILC algorithm increases the 

gain to 75%-95%. 

 



 

 
 

 

6. Future Works 
 
 
 
In this paper, we tried to discover the gains of dynamic memory scheduling and we used 

single CPU system. It indicates that using double CPU-structures with one is split for 

I/O processes and the other one is split for intensive processes by Round-Robin 

scheduling algorithm that can improve the system performance [5].   

 

Same jobs run periodically on some system.  On these types of systems, periods can be 

observed and a part of the memory could be used for remembering jobs and periods.  By 

this way, the requirements could be predicted and the system could get close the ideal 

form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

7. Conclusion 
 
 
 

The experimental results demonstrated that an efficient dynamic memory allocation 

lead to remarkable improve on the system performance.  In this study, we scheduled the 

idle memory to keep the outputs of repetitive jobs.  To provide benefit from the 

methodology, a dynamic system developed.   

 

In computer systems, the jobs run by the CPU with using the memory and the other 

system resources. In the enterprise applications, the outputs of the repetitive jobs are 

kept in the memory by the system developer.  Thus the outputs of these jobs are brought 

from the memory without occupying the CPU.  It is not analyzed on the jobs that kept in 

the memory how necessary they are. And also it pays no attention if there are necessary 

jobs that are not kept in the memory. The success of analyzes are controversial. 

 

In our study the system defines its own requirements and keeps the outputs of the 

suitable jobs in the memory. In this way by the variable requirements on runtime, the 

system tries to get the maximum gain from the memory.  It is observed that the study 

met with success. 

 

Through our study, the developers will not have to decide which jobs should be kept in 

the memory.  The improvements on the system performance and the response time were 

achieved.  These improvements provide more rapid systems on the side of the end users. 

 

 

 

 

   

 
 



 

 
 

 
 

8. References 
 

 

 

[1] Ding, W., Guo, R., “Design and Evaluation of Sectional Real-Time Scheduling 

Algorithms Based on System Load”, Young Computer Scientists, 9, 14 - 18, (2008).   

 

[2] Liu, C.L., Layland, J.W., “Scheduling Algorithms for Multiprogramming in a Hard-

Real-Time Environment”, Journal of Association of Computing Machinery, 20 (1), 46 - 

61, (1973). 

 

[3] Jensen, E.D., Locke, C.D., Takuda, H., “A Time-Driven Scheduling Model for Real-

Time Operating Systems”, Computer Science Department, Carnegie-Mellon University, 

Pittsburgh, (1985). 

 

[4] Chen, H., Xia, J., “A Real-Time Task Scheduling Algorithm Based on Dynamic 

Priority”, Embedded Software and Systems, 431 - 436, (2009). 

 

[5] Kantabutra, S., Kornpitak, P., Naramittakapong, C., “Dynamic Clustering-Based 

Round-Robin Scheduling Algorithm”, International Symposium on Communications 

and Information Technology, 3, (2003). 

 

[6] Nock, C., Data Access Patterns: Database Interactions in Object-Oriented 

Applications, Addison Wesley, Boston, (2003). 

 

[7] Ford, C., Gileadi, I., Purba, S., Moerman, M., Patterns for Performance and 

Operability – Building and Testing Enterprise Software, Auerbach Publications, (2008). 

 

[8] Butcher, M., Karimi, A., Longchamp, R., “A Statistical Analysis of Certain Iterative 

Learning Control Algorithms”, International Journal of Control, 81, 156 - 166, (2008). 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4708920�
http://www.informaworld.com/smpp/title~db=all~content=t713393989�
http://www.informaworld.com/smpp/title~db=all~content=t713393989~tab=issueslist~branches=81#v81�


65 
 

 
 

[9] Al-Towaim, T., Barton, A.D., Lewin, P.L, Rogers, E., Owens, D.H., “Iterative 

Learning Control – 2D control systems from theory to application”, International 

Journal of Control (Special Issue: Multidimensional Control Systems: Theory with a 

view to Applications)

 

, 77 (9), 877 - 893, (2004). 

[10] Moon, J., Doh, T., Chung, M.J., “An Iterative Learning Control Scheme for 

Manipulators”, Intelligent Robots and Systems, 2, 759 - 765, (1997).  

 

[11] Yi, W., Zhongs heng, H., Xingyi, L., “A Novel Automatic Train Operation 

Algorithm Based on Iterative Learning Control Theory”, Service Operations and 

Logistics, and Informatics, 2, 1766 - 1770, (2008). 

 

[12] Mi, C., Lin, H., Zhang, Y., “Iterative Learning Control of Antilock Breaking of 

Electric and Hybrid Vehicles”, Vehicular Technology, 54 (2), 486 - 494, (2005). 

 

[13] Xu, J., Wang, D., Wang, X., “The Analysis of Convergence Speed for an Open and 

Closed Loop Second Order Iterative Learning Control Algorithm”, Intelligent Control 

and Automotion, 1, 3905 - 3909, (2006). 

 

[14] Xu, J.X., Yan, R., “On Initial Conditions in Iterative Learning Control”, Automatic 

Control, 50 (9), 1349 - 1354, (2005). 

 

[15] Booth, P., Chadburn, R., Haberman, S., James, D., Khorasanee, Z., Plumb R.H., 

Rickayzen, B., Modern Actuarial Theory and Practice, Chapman & Hall/CRC, Florida, 

(2005). 

 

[16] AvivaSA Time-Machine Application, http://crm.avivasa.com.tr/IceCreamWeb/, 

(2009). 

 

[17] Bertsekas, D., Gallager, R., Data Networks, Prentice Hall, New Jersey, (1992). 

 

[18] Pitman, J. Probability, Springer, Pittsburg, (1999). 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4657348�
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4657348�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=25�
http://crm.avivasa.com.tr/IceCreamWeb/�


66 
 

 
 

 

[19] Ahn, H., Moore, K. L., Chen, Y., Iterative Learning Control: Robustness and 

Monotonic Convergence for Interval Systems, Springer, (2007). 

 

[20] Machta, N., Bennani, M.T., Ahmed S.B., “Aspect Oriented Design of Real-Time 

Applications”, Industrial Informatics, 7, 763 - 767, (2009). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5175248�


 

 
 

 
 

Biographical Sketch 
  

 

 

Mutlu ERCAN was born in İstanbul in September 19, 1979. He graduated from İstanbul 

Orhan Cemal Fersoy Foreign Language Intensive High School in 1997. He received his 

B.S. degree in Computer Engineering in 2003 from Galatasaray University, İstanbul, 

Turkey. 

  


	Acknowledgements
	Table of Contents
	List of Symbols
	List of Figures
	List of Tables
	Abstract
	Résumé
	Özet
	Introduction
	Literature Review
	Motivation

	Computing Process Modeling
	Memory
	CPU (Central Processing Unit)
	Job
	The Process Modeling
	The Desired Value Derivation
	Error Derivation
	Processing Jobs
	Dynamic Resource Allocation and Memory Scheduling
	4.1 Iterative Learning Control

	Experimental Study
	Experimental Results

	Future Works
	Conclusion
	References
	Biographical Sketch

