DYNAMIC MEMORY SCHEDULING TO ENHANCE PROCESSING
PERFORMANCE

(UYGULAMA PERFORMANSINI ARTIRMAK iCIN DINAMIK HAFIZA
PLANLAMASI)

by

Mutlu ERCAN, B.S.

Thesis

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

MASTER OF SCIENCE
in
COMPUTER ENGINEERING
in the
INSTITUTE OF SCIENCE AND ENGINEERING
of
GALATASARAY UNIVERSITY

September 2009

DYNAMIC MEMORY SCHEDULING TO ENHANCE PROCESSING
PERFORMANCE
(UYGULAMA PERFORMANSINI ARTIRMAK iCIN DINAMIK HAFIZA
PLANLAMASI)

by

Mutlu ERCAN, B.S.

Thesis

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

MASTER OF SCIENCE

Date Submission : September 12, 2009

Date of Defense Examination : October 12, 2009

Supervisor . Asst. Prof. Dr. Tankut ACARMAN
Committee Members : Asst. Prof. Dr. Murat AKIN
Assoc. Prof. Dr. Esra ALBAYRAK

Acknowledgements

I would like to express my gratitude to all those who gave me the possibility to
complete this thesis. | want to thank the Computer Engineering Department at Institute
of Science and Engineering in Galatasaray University for giving me permission to
commence this thesis in the first instance, to do the necessary research work and to use

departmental data.

I am deeply indebted to my supervisor Asst. Prof. Dr. Tankut ACARMAN from
Galatasaray University whose help, stimulating suggestions and encouragement helped
me in all the time of research for and writing of this thesis.

My colleagues from the Department of Technology Management at AvivaSA Emeklilik
ve Hayat supported me in my work. | want to thank them for all their help, support,
interest and valuable hints. Especially 1 am obliged to Altan EVNI and Ozge KUTAL
for their great help in difficult times.

Especially, I would like to give my special thanks to my wife Nazli whose patient love
enabled me to complete this work.

Mutlu ERCAN

September 2009

Table of Contents

ACKNOWIEAGEMENTS. ...t I
Table OF CONENES.......oiiiiiicice bbbt iii
LISt OF SYMDOIS ... e \Y;
LISt OF FIQUIES ...ttt et e re e s re et e saeenre e e e v
IS 00 1=] LSS Vil
ADSTFACT ...ttt bbbt viii
RESUIME. ...ttt ettt st b e b e st e st et e b e st e s be et e ese e st ese et e e e stenteeneereaneanen X
OZBL ..ttt ettt ettt ettt Xi
R 1011 oo [0 Tox 1 o o SRRSO 1
2. LITErature REVIBWc.eeiiiieiii ittt 2
20 O |V [0 (V=1 (oo PSS 5
3. Computing Process MOAeliNG.........cccvvveriiieiieiieie e 9
3.1 IMIBIMOTY ettt ettt n e e 10
3.2. CPU (Central Processing UNIt)ccooviieriereiieeieeieseesese e e snesae e 11
T TN [o SRS 11
3.4, The Process MOdelingccooveiiiiiiiee e 11
3.5 The Desired Value DeriVation...........ccoceieeiieriinienenie e 28
3.6 ErrOr DErIVALION.ccciuiiiieieie ettt 29
3.7, ProCessing JODS.......cuoiiiiiiiie e 34
4, Dynamic Resource Allocation and Memory Scheduling.........c.ccccevevvenenee. 36
4.1 Iterative Learning CONrOlcooooviiiiiieiiiie e 36
5. EXperimental STUAY..........coooiiiieiiee e 51
5.1 Experimental RESUIS.........ccoiiiiii e 51
B. FULUIE WOTKS ..ottt bbbt 62
T O] o 1151 o] o ISP 63
8. RETEIBNCES. ...t 64
BiographiCal SKELCHoo i 67

List of Symbols

tr : Running time cost of a computational job.

te : Time cost of getting output of a computational from the memory
m : Total memory usage to keep output of the jobs

M: : Total available memory

A : Jobs arrival rate

a : Proportion of the memory usage

tepy - Time cost of a computational job

N : Number of jobs in a window

At('épu - Total time cost of computational jobs in a window

Atlk,o : Total time cost of 1/O jobs in a window

akj : Existence of a computational job in a window
b, :Existence of an I/0 job in a window

T ;. : Total time of the processing jobs in a window
ek : Error value

Vs : Desired value

Vi . Intermediate variable

g, : Achieved gain

CPU : Central Processing Unit

ILC : Iterative Learning Control

7, : Service rate

- Arrival rate

: Selective criteria

: Window size

: Capacity of the memory

- Individual gain

: The cumulative number of the individual distinct jobs

7]
o

T >

{Q..eOu\

List of Figures

Figure 2.1 Caching exist in many system implementations..............ccoovevenieniennnnenenee 4
Figure 2.2 Time Machine customer information entry interface........c...ccccveveviviieiiiennnns 6
Figure 2.3 Time Machine an individual retirement product’s property selection
1L o T =3O RPROPRRN 6
Figure 2.4 Time Machine a life insurance product’s assurance property selection
1L o T = 3SR 7
Figure 3.1 The architecture of the computing SyStem...........c.ccceveiiieii i, 10
Figure 3.2 Memory PropOrtioN..........cooiiiiiiiieieiese sttt 12
Figure 3.3 Effects of keeping the jobs in the Memory...........ccccooeiiiiiiiciccicce e, 14
Figure 3.4 Flow diagram of the COMPULING PrOCESS........cccuririeieiierienierie e, 16
Figure 3.5 Interactions between CPU and MEMOIY.........cccceiveriiiieiiese e 17
Figure 3.6 The model of the SYStEM........cooi i 18
Figure 3.7 Sliding Window and window regulation process...........c.cccevveveevieieesesnenne. 19
Figure 3.8 The Gain of the WINAOW..........cccoiiiiiiiiiiiiiecee e 26
Figure 3.9 The deciSion aUtOMALA.............cccveiieeieiieie e 32
Figure 3.10 Example of the fIOW..........cocoiiiiiii e, 35
Figure 4.1 Error DeriVatiONS.........cccuviiieiieie ettt sne s 38
Figure 4.2 Expected Value with 50 jobs and capacity = 200..........ccccceveririeninienieninnnnns 39
Figure 4.3 Error variation with 50 jobs and capacity = 200............cccccvvveveniieieeseciene. 40
Figure 4.4 The Usage of the CPU with 50 jobs and capacity = 200...........c.ccocevvvrvenne. 40
Figure 4.5 The Derivation of the window size with 50 jobs and capacity = 200............ 41
Figure 4.6 Expected Value with 40 jobs and capacity = 400..........cccccererireninieniininnnnns 42
Figure 4.7 Error variation with 40 jobs and capacity = 400............c.cccvvveveeiieiieesncienne 42
Figure 4.8 Relative gain with 40 jobs and capacity = 400...........ccccocerereniniinieeieiennenns 43
Figure 4.9 Derivation of the window size with 40 jobs and capacity = 400................... 43
Figure 4.10 Expected Value with 100 jobs and capacity = 1400...........cccccocervrvninnnnnnns 44
Figure 4.11 Error variation with 100 jobs and capacity = 1400.........c.ccccccceevveivereenenne. 45
Figure 4.12 Relative gain with 100 jobs and capacity = 1400...........ccccocervriirienienennenn 45
Figure 4.13 Derivation of the window size with 100 jobs and capacity = 1400............. 46
Figure 4.14 Expected Value with 100 jobs and capacity = 8000............ccccocervrvrvrnnnnns 47
Figure 4.15 Error variation with 100 jobs and capacity = 8000.............ccccceevveiveririnenne. 47
Figure 4.16 Relative gain with 100 jobs and capacity = 8000.............ccccervrvrvrieniennenn 48
Figure 4.17 Derivation of the window size with 100 jobs and capacity = 8000............. 48
Figure 4.18 CPU Usage Derivations When ILC Applied..........ccooevviiiineninienineine 49
Figure 4.19 CPU Usage Derivations When ILC Not Applied..........cccccveveiiveieiiieiiennns 50
Figure 4.20 CPU Usage Derivations differences when applying Iterative Learning

Control and not applying Iterative Learning Control............ccccccveviiiiiieic e 50
Figure 5.1 Caching test results with random JODBS..........ccocvieiiiiieiii e 52
Figure 5.2 The Error Rate Where 7 =10.....ccoiiiiiiiiiiinieeeeeeee s 53

Figure 5.3 The Error Rate Where 7 =50........ccccviieiiiiieiieie e 54

Figure 5.4 The Error Rate Where 7 =100.........ccooiiiiiiiiiieiicie e 54

Figure 5.5 The Error Rate Where 7 =200.........ccooiiiiiiiininieeee s 55
Figure 5.6 The Error Rate Where 7 =300.........cccciueiiiiieiierieeseese e 55
Figure 5.7 The Error Rate where 7 =400.........c.ccoeiiiiiiiieiiee e 56
Figure 5.8 The Error Rate Where 7 =500........c.cccviiiiiiiiniiinieieie s 56
Figure 5.9 The Error Rate where 7 =600...........ccceiiriiiiiiiniesiee e 57
Figure 5.10 The Error Rate Where 7 =700.........ccccoriririieiinie e 57
Figure 5.11 The Error Rate Where 7 =800..........cccoociriririiinieieeese s 58
Figure 5.12 The Error Rate where 7 calculated dynamically...........c.ccccoecvevviivenvinnnne. 58
Figure 5.13 The Usage of CPU in a real-life application (First Day)...........ccccoevrvrnnne. 59
Figure 5.14 The Usage of CPU in a real-life application (Tenth Day)........c...ccccceeuvenene 60
Figure 5.15 The Usage of CPU in real-life application (Fifteenth Day)...........c.ccccvvunee. 60

Vi

List of Tables

Table 3.1 The characteristics of the jobs in the example.........cocieiiiiiies 24
Table 3.2 Variations of the EXpected ValUes...........ccccoveveiieiieie i 25
Table 3.3 EXAMPIE L. ettt re e 27
Table 3.4 EXAMPIE 2ottt et nraente e ne s 28

Table 3.5 The effects of the new job arrival and the error variation..............cccccovvenenne 30

Abstract

In line with the increasing information processing requests of users and systems, the
systems with much more powerful processing capabilities are needed. Despite the
increase in hardware’s processing and transmission busses’ speed, performance
enhancement of the overall computing system may require simultaneous resource
allocation depending on the computing task. To enhance the overall processing
performance, research on software control and dynamic resource allocation of the
computing and storage units have been underway by almost all the leading computer
and computing nodes’ manufacturers. In this study, computing system performance

enhancement by dynamic memory scheduling has been developed.

A fairly special computing process has been elaborated, the requested computing jobs
are always created by choosing the inputs among a finite set inquiring the risk of the
insurance policy of the candidate. In some special computing areas, like insurance risk
investigation, calculations of income and premium need heavy and repetitive actuarial
calculations, that the computing systems performing these computing efforts, may
enhance CPU’s utilization by classifying on an “intelligent manner” the computing jobs
and caching the repeating computing jobs created by the same input interval. In this
study, caching the repetitive jobs’ results and enhancing the CPU usage rate has been

presented and an intelligent regulation scheme has been introduced to software control.

The jobs can be classified as two kinds; I/0 jobs and computational jobs. External
storage jobs are may be the examples of the 1/0 jobs. The computational jobs are the
jobs, which always produce the same outputs versus the same input values. In this
work, in the situation that the jobs are processed again; the advantages are examined to

keep the outputs in the memory instead of reprocessing them.

Instead of a static structure, to keep the process in a dynamic way to provide more
benefit from the memory has investigated, the Iterative Learning Control methodology
has been implemented to improve the usage of the system resources. Moreover,
theoretical results, which obtained in this work has observed on the actual practice. The
data that has been obtained from an individual retirement company has been corrupted

by a linear function.

Résumé

Aujourd'hui, en conformité avec les besoins croissants des utilisateurs et des systemes,
nous avons besoin des systemes qui sont plus puissants. En dépit de l'augmentation de la
vitesse de matériel, la peut surgir quelques problémes de performance dans les systemes
s'ils ne sont pas appui par le logiciel. Afin d'empécher ces problémes, les travails sur la
couche application a fait. Dans cette étude, nous explorons la maniére d'augmenter les

performances systéme par I'établissement du programme dynamique de mémoire.

Dans le cas nous recherchons les systemes ; nous notons que quelques travaux ont
retraité encore. Nous pouvons classifier les travaux de systeme comme travaux d'entrée-
sortie et travaux informatiques. Les travaux de stockage externe sont peuvent étre les
exemples des travaux d'entrée-sortie. En outre, les travaux informatiques sont les
travaux, qui produisent toujours les mémes sorties par les mémes valeurs d'entrée. Dans
ce travail, dans la situation cette les travaux traitent encore ; nous avons examiné les

avantages de maintenir les sorties dans la mémoire au lieu de les retraiter.

Au lieu d'une structure statique, pour maintenir le processus dans une maniere
dynamique de fournir plus d'indemnité de la mémoire a étudié. D'ailleurs, les résultats

théoriques, qui ont obtenu en ce travail a observé sur la pratique réelle.

Ozet

Gilinlimiizde artan kullanic1 ve sistem ihtiyaglar1 dogrultusunda daha gii¢lii sistemlere
ihtiya¢ duyulmaktadir. Artan donanim hizlarma ragmen yazilim tarafindan
desteklenmeyen sistemlerde performans sorunlari ortaya c¢ikabilmektedir. Uygulama
katmamninda bu ama¢ dogrultusunda bazi ¢alismalar stirekli olarak yapilmaktadir. Bu
calismada, dinamik hafiza planlamasi ile sistem performansini arttirmanin yollarini

arastirildi.

Sigorta sektorii gibi baz1 sektorlerde prim ve kazang hesaplamalari i¢in yogun aktueryal
hesaplamalar yapilmaktadir. Bu hesaplamalar1 yapan programlarda da, her ne kadar
farkli girdi degerleri ile islemler yapilsa da, sistemin alt katmanlarinda bazi islerin
strekli olarak tekrarlandigr goriilebilmektedir. Her islem esnasinda biitiin
hesaplamalarin bastan yapilmasindansa, ¢ok tekrar goren islerin sonuglarini Sistemin

performansini diistirmeden hafizada tutmanin faydalari arastirilmistir.

Sistem iglerini de I/O isi ve hesap isi olarak siniflandirabiliriz. I/O islerine dis depolama
aygitlar1 tizerinde yapilan isleri 6rnek olarak verebiliriz. Hesap isleri ise ayni girdi
degerleri ile daima aymi ciktilar1 treten islerdir. Calismamizda hesap islerinin
tekrarlandiklar1 durumda tekrar tekrar islemek yerine ¢ikti degerlerini bellekte tutmanin

avantajlar incelenmistir.

Bellekte tutma iglemi i¢in duragan bir yap1 yerine dinamik olarak bellekten daha fazla
faydalanmanin yollar1 arastirilmistir. Elde edilen teorik sonuglarin gercek uygulamalar

tizerindeki etkisi gozlemlenmistir.

Oncelikle sanal veri setleri tizerinde algoritma denendi. 10 tane is, normal dagilim ile

rastgele olarak 10000 is olusturacak sekilde dizildi. Herbir is i¢in rastgele ¢ikti

bliyiikliigi ve servis hiz1 secildi. Farkli biiyiikliikteki hafiza durumlar1 i¢in bu isler
tekrarland1. Is sayis1 100’e kadar onar onar arttirilarak sonuglar gézlemlendi. Elde
edilen kazanclar, 6grenme algoritmast uygulanmadigi takdirde elde edilebilecek

kazanglar ile karsilagtirildu.

Daha sonra bu sonuglar 1s18inda bir bireysel emeklilik sirketinin, hayat sigortasi tiriinleri
icin prim hesaplayan, bireysel emeklilik trunleri icin de birikim projeksiyonu yapan
“Zaman Makinas1” adindaki, Java altyapist ile yazilmis uygulamasimin ¢alisma
istatistiklerinden olusan gercek data iizerinde ¢alistirilarak, O6grenme algoritmasi
uygulanmadig: takdirde olusan sonug ile sinizsiz hafizaya sahip olunmasi durumunda
elde edilebilecek sonuglar ile karsilagtirildi. Bireysel emeklilik sirketinden alinan data,

dogrusal bir fonksiyon vasitasiyla bozulmustur.

Bu ¢alismada temel olarak ¢cogu zaman bosta kalan hafiza tekrarlayan isler i¢in, ¢ikti
degerlerini tutmak {izere kullanilmasi incelenmistir. Datalarin hafizada tutulmasi
islemi tasarim modeli olarak kullanilmakta olan bir yapidir. Bu modelin isler i¢in de
kullanilabilirligi arastirilmistir. Is tekrarhi yapilarda, uygun is secimi icin eklenen

O0grenme algoritmasi ile birlikte sonuglart gézlemlenmistir.

xii

1. Introduction

Nowadays, by the increase of the users and the demands of the business, more powerful
systems are required. Despite of the development speed of hardware systems, it has to
be assisted by software systems, because incomplete performance work at software
layer can cause slowness even crashes. In the application layer, some improvements are
developed to enhance computing performance. In this sense, efficient usage of system

resources is a vital part towards process’ development.

One of the main resources of the system is CPU and another one is memory. Using
them efficiently makes the system works faster. The system can need them all
sometimes, but usually some of the system resources can be inactive. Mostly, the
system cannot use all bytes of the memory. Because of that, we studied to find how the
usage of the memory could be augmented without decreasing the performance of the

system.

To achieve this goal, we tried to improve the performance of the Time-Machine
application of an individual retirement and life insurance enterprise which is developed
on Java platform. Java class methods are used as jobs and the heap space is tried to be
used efficiently. The application calculates the premium and the retention depends on
the customer’s age, sex and assurance. First of all, the application calculates a
multiplicity depends on the age and sex of the customer, and then the multiplicity is
multiplied by the premium or the assurance. Java methods are recalled with same
parameters during the day. The idle memory is tried to be allocate for the recalling

methods.

2. Literature Review

In order to improve system performance, many studies has been developed on different
subjects including scheduling strategies, architectures and device improvements. The
materials which compose devices have been enhanced to run faster. Nowadays faster,
multi-cored, multi-CPU systems are being produced, faster bus’ are being used to
connect their processors with larger and faster memories, faster and larger external

storage devices has been developed.

Many static and dynamic scheduling algorithms have been developed for real time
system’ operations. Static scheduling algorithms have low costs, but incapable to adapt
scheduling rules to enhance efficiency of the limited resources. Dynamic scheduling
algorithms provide more adaptive solutions to the systems to respond the changes in the
environment systems [1]. The dynamic scheduling algorithms mainly based on
“selection criteria driven” approach such as Earliest Deadline First, Highest Value First,

Highest Value Density First.

The Earliest Deadline First Algorithm’s selective criterion is based on the deadlines of
task’s current requests. A task will be assigned the highest priority if the deadline of its
current request is the nearest, and will be assigned the lowest priority if the deadline of
its current request is the furthest [2]. In The Highest Values First Algorithms, each
process has its own function of time which defines the value to the system of that
process. The completion of a process has a value to the system which varies with time
[3]. The Highest Value Density First Algorithm analyzes the dynamic value density of
a task during its runtime at the first time. Both the value and time attributes of a task

are considered when assigning its priority [4].

On the other hand, static scheduling algorithms have been improved by adding them
dynamic approach. Improved round-robin algorithm with two processors based on
separating the processors by process type, one is dedicated for CPU-intensive process,
and the other one is for 1/0O dedicated process [5].

Data access operations occupy much in system resources. One of the design patterns in
software development architecture to improve system performance is caching. The
applications avoid from repeated data reads by caching. The cache strategies depend on

requirements of the applications. There are several cache patterns as below [6];

o Cache Accessor - Decouples caching logic from the data model and data access
details.

o Demand Cache - Populates a cache lazily as applications request data. A demand
cache is useful for data that is read frequently but unpredictably.

e Primed Cache - Explicitly primes a cache with a predicted set of data. A primed
cache is useful for data that is read frequently and predictably.

o Cache Search Sequence - Inserts shortcut entries into a cache to optimize the
number of operations that future searches require.

o Cache Collector - Purges entries whose presence in the cache no longer provides
any performance benefit.

o Cache Replicator - Replicates operations across multiple caches.

» Cache Statistics - Record and publish cache and pool statistics using a consistent

structure for uniform presentation.

Caching is one of the common performance improvement patterns which are applied in

many layers of the systems. Figure 2.1 shows some caching implementations [7].

Web Browser Web browser caches

static web content
between requests

Processors on the server
have their own cache to

reduce latency of Web Browser
accessing server memory
during processing Server Platform

Application caches

database connection _ Application Tier
references in pools

Web server caches
document root in
memaory

Application container
caches code resources in

Application Container memory

Database caches blocks of

data fg;’;::':::z’er \ Modern Relational
P Database

Database maintains
statement cache for
parsed 50L

Operating System
maintains file system
disk and only complete cache (Note: Itis
operations when E-F’ﬁu:ient\\“-m SAN Stc-rage CDmPﬂDI‘IfDF_daTBhBSES
to do so to bypass this cache)

The SAM controller will Operating S}fstem
cache read/write data from

[\ /)

Figure 2.1 Caching exist in many system implementations [7].

Iterative Learning Control is a methodology which can be applied to repetitive systems
tries to improve system performance based on the knowledge of the previous
experiences. System learns from previous repetitions to improve next repetitions to
minimize the tracking error [8]. Since lIterative Learning Control methodology (ILC)
was submitted in 1984, the concept has been used in many areas. ILC has been applied
in two dimensional systems with splitting the system into separated one dimensional
system [9]. In factories, industrial manipulators performs same cycles repetitively, by
using ILC some improvements in energy, time minimization has been gained [10].
ILC-based automatic train operation systems has been developed to converge the
tracking error to zero which compose from energy savings, trip time, safety [11]. ILC
has been used in antilock braking systems in electric and hybrid electric vehicles by
using electric motor to improve the braking torque, where anti-lock brake systems learn
the maximum tire-road friction, which may vary with the weather conditions such as
rain, snow, dry etc, and maximize braking force by enforcing learning the braking

actuators to search the maximum handling force, [12].

Since the submission of ILC, many studies have been performed on the subject. The
convergence speed tried to be improved [13]. Studies on initial conditions have been

performed in [14].

In this study, a memory scheduling methodology is explored. Idle memory tried to be

used for caching repetitive jobs and ILC was tried to be applied to select proper job.

2.1. Motivation

In some areas, like insurance and retirement enterprises area, the calculations of
retention and premium need heavy actuarial calculations. Like different types of
mortality tables, disability, assurance, commission calculation tables, funds grow
expectations and many other ones are used to perform these calculations. The tables are
not changed frequently. The tables that are used for life insurance calculations, are
updated when death proportions or born rates are changed (i.e. a disaster or an epidemic
disease occurs). Individual retirement tables are changed when enterprise’s strategy
changes [15]. It can be assumed that for a life insurance policy with same input values

always same premium is calculated.

Every day more than 10000 calculations are done. For an individual retirement product,
a customer must be more than 18 years old and 56 years old customer can retire, and
must be in the system more than 10 years. Most of customers are between 18 and 46.
About 350 customers exist in each age. About 175 of them are male and 175 of them
are female. For all types of calculations, for each customer a multiplicity calculating
and for retirement products premium is multiplied by that multiplicity and for life
insurance products assurance values are multiplied by that multiplicity. Many
calculations are executed for each request coming from different individual customer.
The Time Machine’s customer information entry page is shown in Figure 2.2., an
individual retirement products entry page can be seen in Figure 2.3 and a life insurance
products entry page can be seen in Figure 2.4. The Time Machine is explained in

section 4.1.

fle (it Yew Fgvotes Jodks felo F

Ow-Q WNEAG Pt fren @ -5 0 JE&S

Addvess (i) :]Gn Lirks ™
| Zomanmakinesi Miisteri Giris Ekran

Kigisel Bilgiler

Ad Soyad |
Cinsiyeti Lrioek _‘._'
Dodum Tarhi [ir0ee m
E-Posta |

DEVAM ET d

Figure 2.2 Time Machine customer information entry interface, [16]

Ele Edt Yiew Favortes Took Help ar
Qe - () @ @ \»h pSear:h *Favnrlt&s & pl:zv .; = - @ e
Adiress [@) [v] B ee ks >

| Zamanmakinesi~ Plan Nar

@] islemle ilgili agiklamalar (S ana menu

TL
Kisisel Bilgiler

isim: Mutlu ERCAN PERT
Cinsiyet; Erkek @ Diisiik Risk |® [0}

Dogumn Tarihi: 01-01-1580
e-posta:

R B Para Piyasasi Likit Kamu Fonu
DEGISTIR J B Gelir Amagh Kamu Borglanma Araclan Fonu
M Biytme Amach Esnek Fon
B Hisse Senedi Fonu
B Gelir Amagh Kamu Dis Borglanma Araglan Fonu

Bireysel emekdilik hesaplamas: igin agagidaki analiz

tirlerinden birini seciniz. C OrtaRisk |®

Analiz Tipi @ Katir Payindan Birikim Bul

Katki Pay! ile dim Birikim ve B o Phases i KamuFans
Maas Tutarim adrenmek istivorurm = orylrana Bar Fore!
Hisse Senedi Fonu
Stzlesme Baslangi; Tarihi Z5-11-2009 5] B Gelir Amagh Kamu Dig Borglanma Araglan Foru

istefje Bagl Ek Sdeme @ o L
Willk Diizenli Katki pay @ [0 TL

O Yiiksek Risk |®

DEVAM ET J

=
"

W By
"
=

Brnek Vergi Avantaji Hesaplama Tablosu

Ayl katia Pay) TL
Ayl Britt Maag L

Tillik Vergi Indirimi Matrahi
Tillik Vergi Indirimi U

Vergi Hesapla =

Figure 2.3 Time Machine an individual retirement product’s property selection

interfaces, [16]

Ele Edt Wew Favartes Took Help i

Qe - () ﬂ g’l A /"‘seamh “ Favorites 4G} - il @ 3
aAddress | &) | B ks *
-
| ZIamanmakinesi Uzun Siireli Hayat Sigortasi
7 @] islemile ilgili ac\k\ame}ar S ana menu
Kigisel Bilgiler

Isim: Mutlu ERCAN
Cinsiyet: Erkek

Dogum Tarihi: 01-01-1980
&-posta:

DEGISTIR 4
Yas TEMINAT

29 o

Para Birimi TL i 30 'D_D—
Palige Baslangig Tarihi 25-11-2009 | 31 0.0

2| beo
Bl b

Maluliyet Terninab War mi? | Hayr [

Sigarta Siresi 10
34 0.0
Prim Odeme Saresi
EEEEEEEEEEE 0 35 'EI.EI—
Gdsme Periyody Al [w 36 0.0
Temins t Tuten I vil () [0 37 0.0

38 o

@ Teminat Azalis Orani 0.00%

O Teminat Azalis Tutar 0.00

DEVAM ET J

Figure 2.4 Time Machine a life insurance product’s assurance property selection

interfaces, [16]

The objective of the study is to improve system performance by establishing Dynamic
Memory Allocation methodology. Our goal is to use the system memory in a maximum
efficient way. To achieve this goal, the proposed resource allocation algorithm based
on ILC to select the most profitable job has been developed which uses the system

memory to preserve time.

One of the main parts of the system is the CPU and another one is the memory. All jobs
operate in CPU by using the system memory. Software application developers evolve
caching methods for frequently recalled jobs in order to ease work and shorten the

cycle. In this way, frequently called jobs, which are specified by the architect, are kept

in the memory after their first call they have been used and which will be used from
memory storage for their next calls. The success of this method depends on the
experience of the developer. If he/she forces so many jobs kept within the memory, the

memory demands for another job that may not be covered due to the system limits.

3. Computing Process Modeling

A computing system generally has six main parts. In some systems, some of the parts
would be unnecessary and some of them would be more than one. Input values arrive
from input devices by users or other systems. Depends on the CPUs availability the
requests which are sent by input device can wait in the job queue. CPU performs the
jobs in the job queue by using, if necessary, memory and external storage devices, and
sends the result to the output device which can be a display device or another system or

something else. The architecture of the system is shown in Figure 3.1.

The jobs come to the system randomly. Input devices indicate the devices that the
parameters of the jobs are given. Output devices indicate the devices to which the
output of the job will be sent. FIFO (First in first out) rule is applied to manage the job

queue.

10

Input Devices Output Devices

4

Job Queue

Memory < CPU

External Storage

Figure 3.1 The architecture of the computing system

3.1. Memory

One of the parts of a system is the memory which is used to store data or programs and
variables. In our scope, we try to use idle memory to keep the jobs’ output values.
Accessing to the memory for the CPU is fast enough. Because of that more output kept

in the memory, provides the total time cost of the system in smaller degrees.

In our research, we obtained the average time of getting an output from memory is
approximately 12*10e-7 ms. A priori, cost of a simple request from the memory is

smaller than complex memory usages.

11

3.2. CPU (Central Processing Unit)

Another vital part is the CPU which can be called as core of the system because of the
where all jobs should be processed. The CPU uses the memory to perform its jobs.
Sometimes, for simple jobs CPU does not need to use the memory. This case does not
cause a problem; it is detailed in Section 3.4. It can be approved that CPU is very busy

and that is why we try to decrease its density.

3.3. Job

Jobs are whatever done by the CPU. But in this paper, jobs are defined as the
expressions in the programming languages. 3+5 is a job. The jobs have the inputs and
the outputs and these outputs can be used as an input of another job or can be assigned

to a variable. The assignment operations cannot be defined as a job, x=8 is not a job.

There are two kinds of jobs; 1/0 jobs and computational jobs. The computational jobs
are the jobs which are deterministic, give always same output with same input. “3+x” is
a computational job, because when a value is set for “x” the output is independent from
time. “3+4” equals always 7. The other jobs, like writing to a file system are 1/O jobs.

3.4. The Process Modeling

Jobs that run in the systems can be categorized as 1/O and the computational jobs. 1/O
jobs are performed by using system resources such as hard disk, ram. The
computational jobs are the jobs that produce the same output with the same inputs. An
I/0 job such as data writing to a disk is not a deterministic job from this point of view.
In some systems, the computational jobs are called frequently. If the frequencies of
these jobs are so overly, the effect of caching them in the memory would achieve a

better system performance than running them again.

12

We assume that the jobs which produce the same output by the same input are marked
with same identity number. By the way, if a computational job, which’s output kept in

the memory, is recalled through, its output can be obtained from the memory.

The time cost of a job which runs in CPU can be called as tr and the time cost of
getting its output from memory is denoted by tc. The computing process addressed by
this study performs the process subject to the jobs with tr>>tc. It can be supposed if
there are more jobs in the memory, there will be less time cost in the system. In this
research, there is a massive difference between tr and tc. Getting from memory is a
simple operation which is due tc, but to run a complex job CPU uses the other devices

such as memory and external devices several times.

Nowadays the CPUs are faster, it means the gain can be limited. But the gain can be
improved by caching these jobs in groups.

If M describes the total memory footprints of the outputs of the jobs, and also M-«

describes the total memory of the system.

o=— (3.2)

m
'

Figure 3.2 Memory Proportion

The equation (3.1) defines the proportion of the memory to cache the jobs and Figure

3.2 shows the memory proportion. If ¢ is bigger for a homogeneous system, it means

13

more number of the jobs exist in the memory. And also the possibility of finding a job
in the memory will be higher. But it may cause another problem; to run other jobs
system may require the memory which is used to keep the outputs of the previous jobs.
As a result, these jobs may run slower and the performance of the system may decrease.
In other words, the jobs whose outputs exist in the memory are affected positively by
some ¢ . But for the jobs whose output does not exist in the memory, may run slower,
because of the limited memory. Our goal is to develop an Iterative Learning Control
System that achieves to equilibrate these two constraints and caching suitable jobs

without increasing the overall service time.

An application that operates I/0 and computational jobs randomly was prepared to
observe the gain and this study enforces selection of operation points achieving higher
gains. Figure 3.3 demonstrates time costs with respect to the classified job types.
When most of the jobs are I/O jobs, there is a limited gain. But when the proportion of
the computational jobs increase versus the overall jobs, the effect of keeping output of
the jobs in the memory increases also. The left slope of the valley shows that effect.
But when the system becomes unable to find enough memory to process the jobs, time
costs of the jobs increases as shown in the right slope of the valley.

14

EFFECTS OF KEEPING JOBS IN THE MEMORY

x 10°

35

time cost of the jobs

(VO jobs / (computational jobs + I/O jobs)) The proportion of the memory to cache the jobs

Figure 3.3 Effects of keeping the jobs in the memory

These jobs are homogenous in the sense of service rates and output size.

The time cost of a computational job can be describe as,

tc if the job exists in the memory

tepu (@) :{tr if the job is operated by the CPU (3.2)

Where sub indices ¢ denotes cache and r denotes runtime. The jobs are observed by
sliding window method. Initially, the last n jobs can be supposed as the current window
size. After termination of a job, that job will enter to the window and the earliest job in
the window will be out of the window. The total operating time of the k™ window is

shown as;

15

Aty =D btéey (@) vy b <103 (3.3)
i=1

Where by denotes the existence of i™ job in the k™ window. And the total time cost of

the 1/0 jobs in the same window is;
k - kj
AtI 10 = z akjtl ;O (0[) Vakj : bki €{0.1} (3.4)
j=1

Where ax denotes the existence of the j™ job in the k™ window.

The jobs taken from 1/O unit and to be computed existing in the window equals to;
T (o) = Atépu + At|k/o (3.5)

In the equation (3.5), Tkdefines the total time cost of the k™ window, n defines the
number of 1/0 jobs and m defines the number of computational jobs. At,k,o denotes the

time cost of the j.th 1/0 jobs that is being operated in the k™ window.

16

Input

The job is an I/O job?

No /
Memor
Arrengement
Yes
The jobs ouput exists in
the memory?
No Yes
A
Run the job in the Run the job in the Use the output

CPU CPU from the memory

Learning Process

]

A 4

Output

Figure 3.4 Flow diagram of the computing process

In the Figure 3.4, the fundamental process of the system is shown. The system decides
to run a job by the type of the job and existence of the job in the memory. The

interactions between CPU and Memory are shown in Figure 3.5.

17

—<l| Looks for the output of the job

QOutput | If the output is founded, takes the output >

Memory Controller
ontrols memory for Idie space an
suitable jobs
Memory I

CPU

controller

Memory proportion
changes by
system loads

----------- Fem—)

L]
Process the job by using memory Job .
T —————~ | processing

|

|

|

|

|

|

|

v
Sends the output to the m
Sends the output of the job

<

Figure 3.5 Interactions between CPU and memory

The M|M|1 queuing system consists of a single queuing station with a single server.
Customers arrive according to a Poisson Process with rate A, and the probability

distribution of the service time is exponential with mean }, sec [17].

The individual jobs come to the computing system with Poisson Process with rate A;.
Through the definition of Poisson Process [17], the jobs are merged into a single
Poisson Process with rate equals the sum of the rates of its components. The system can
be modeled as M|M|1 system. The jobs arrive by the Poisson Process, for all t, & >0
[17];

18

n
P(A(t+5)—A(t):n):e—i5% n=12,.. (3.6)

There are two possible paths for the jobs. If the output of the job is in the memory, the
job goes through the path that the memory exists on. Otherwise the job goes through
the path that the CPU exists on to process the job. Probability of existence in the

memory of the output of the job is p. The model of the process is as Figure 3.6.

Memory

pA a

\ 4

(1-p)A

CPU

K,

Figure 3.6 The model of the system

Where 4 is the arrival rate of the jobs, y4 is the service rate of getting the output of the

job from the memory and g, is the service rate of processing the job by the CPU.

My >> (3.7)

Window size is regulating

Job i-4

Job i-3

Job i-2

19

Job i-1

Job i
Current
Processing
Job

‘ the jobs

Window is sliding with

1

Job i+1

Job i+2

Memory

5C

p*, is the selection parameter to maintain the already computed result in the memory.

The sliding window methodology can be used for forgetting the jobs having high
selective criteria but which have not been recalled for a long time. The size of the
sliding window is regulating to choose the most suitable jobs; the process is shown in
Figure 3.7. The selective criteria are calculated for only the jobs that exist in the
window. The jobs are sorted by their selective criteria multiplied par the number of the

occurrences in the window, when there is enough memory the jobs put into the memory

Figure 3.7 Sliding Window and window regulation process.

INPUT

CPU

Output

OUTPUT

\ 4

one by one. The selective criteria are as (3.8) and takes values between 0 and 1.

20

m:
a—t
~(—&—0)
ﬂ.
A1
I gi _(am/iiyci:rr
-: ﬂ. .
p*.(r)=e =7 =e 7 (3.8)

Q
where T :Zi and m, is the size of the output of the i” job, s is the service rate of
i1 H;

the i" job by the CPU, Q is the number of the jobs in the system, 7 is the window

dimension (number of jobs in the window), A is the arrival rate of the i™ job, C is the

capacity of the memory and a is the scaling factor. We supposed that all of the

variables of the jobs are determined a priori.

When m, increases, p*, decreases. Because the job occupies more memory resource
and it is better to chose with low m,. When g increases, p*, decreases. Because the

time benefit decreases. When A increases, p*, increases. It is favorable to choose the

jobs with higher occurrence probability to avoid unnecessary computation efforts.

When 7 increases, p*, decreases. Because the numbers of the jobs increase, the

importance of choosing the job decreases also.

There are two factors for a job to exist in the memory. One is existence in the window

which is described by p,, and the other one is selective criteria. The probability of

existence in the memory (p;) can be defined as (3.9).

D.(2) = pi (1) P, (7) (3.9)

21

The probability of selecting a job from the system is number of occurrences of the job
divided by the number of total jobs (3.10).

N(i)
>, N()

jinSystem

P(i) = (3.10)

Where N(i) denotes number of occurrences of i job, and P(i) denotes the probability of
selecting i job in the system. The probability of selecting another job is shown as
(3.11).

*

N(I) _ NTotaI _N(I)

P(i)=1-P(i)=1- —=
N(J) Nro
jin;em roel
NTotaI = i Z N(J) (311)
Where jinSystem

*

Where P(i) is the probability of absence of job i in the sliding window, P(i)is the

probability of existence of job I, N is the total number of jobs. When we select another

job, the probability of absence of the job from the two selections becomes as (3.12).

*

Pi2(i) = NTO;'I

~N(1) Nyg —N() -1
N 1

(3.12)

Total Total —

22

The probability of absence in a window for a job is as (3.13).

* T -
. Ni —N(@)—k+1
P-(1)= Tota) 3.13

® 1.:! N, —k+1 (3.13)

Total

Where p; is the probability of existence of the i™ job in the window as (3.14).

- T .
1 Now —N() k41 14
PO = I T (.19

Total

A(i) is the total number of i job which can be described as the arrival rate of the
proportion of i job and the total arrival rate of the jobs multiplied with total number of
jobs, described as (3.15).

N(@)=-JN (3.15)

The jobs for which CPU does not use the memory to process, the service rate tends to
the infinite utilization rate, and the selective criteria would be neglected. These types of
jobs would not be kept in the memory unless there is no other computational job which

may be unrealistic scenario for real-time computing systems.

Gain of a job is defined as the time cost of CPU processing to achieve the output result.

Time cost of getting from memory is ignored, because it is small and invariant (almost

23

same time cost value for all jobs). The relative gain is important for the system, the
proportion of the absolute gain and the total of absolute gains of all jobs. The relative

gain of the i" job in the window is denoted by Y., and given by,

1 po1
ﬂiF Where i1 M (3.16)

The expectation of a random variable X, is the mean of the distribution of X, denotes

E(X) as given below:

E(X)=_ ¥ xP(x=)
ax (3.17)

That is the average of all possible values of X, weighted by their probabilities [18]. For
the total expected gain of a window, it can be obtained the possibilities of existence in

the memory, weighted by the relative gains as (3.18).

E(T):i %‘4 T\Pi P; (7)

(3.18)

From (3.7), (3.8), (3.13), (3.15), (3.17) we can obtain (3.19).

7(amiyil"r

1_1£[NTota|—N(i)—k+1 o i
k12 Ni., —k+1

ol 1
EMW)=2|—
=1 /’llr Total

(3.19)

24

Q stands for the cumulative number of the individual distinct jobs whose outputs are

kept in the memory.

We suppose that the system has 3 jobs given by a, b and ¢ which have the same output
size, same service rate, and same arrival rate as given in Table 3.1 and variations of the
expected values are given in Table 3.2. Total of the expected computing properties
such as service rate, arrival rate and size may be maximized when the window size
equals to 4, (see for instance Table 3.2 presenting the instantaneous dynamic resource

allocation scheme given by (3.8) through (3.19).

Table 3.1 The characteristics of the jobs in the example

a b C
(Lms)l 1 1 1
m; (byte) 1 1 1
A 1/3 1/3 1/3
I" (ms) 3

Capacity(byte) 2

25

Table 3.2 Variations of the Expected Values

Expected Values
Window Size a b C Total
1 0,004240997 | 0,004240997 | 0,004240997 | 0,012722992
2 0,006588577 | 0,006588577 | 0,006588577 | 0,01976573
3 0,007682481 | 0,007682481 | 0,007682481 | 0,023047444
4 0,007969234 | 0,007969234 | 0,007969234 | 0,023907703
5 0,007757089 | 0,007757089 | 0,007757089 | 0,023271267
6 0,007255928 | 0,007255928 | 0,007255928 | 0,021767783
7 0,006606127 | 0,006606127 | 0,006606127 | 0,019818382
8 0,00589936 | 0,00589936 | 0,00589936 | 0,017698079
9 0,00519351 | 0,00519351 | 0,00519351 | 0,015580531
10 0,004523323 | 0,004523323 | 0,004523323 | 0,013569969
11 0,003907948 | 0,003907948 | 0,003907948 | 0,011723845
12 0,003356262 | 0,003356262 | 0,003356262 | 0,010068786
13 0,002870582 | 0,002870582 | 0,002870582 | 0,008611746
14 0,002449259 | 0,002449259 | 0,002449259 | 0,007347776
15 0,002088478 | 0,002088478 | 0,002088478 | 0,006265433
16 0,001783567 | 0,001783567 | 0,001783567 | 0,005350701
17 0,001530101 | 0,001530101 | 0,001530101 | 0,004590303
18 0,00132532 | 0,00132532 | 0,00132532 | 0,003975959
19 0,001171799| 0,001171799 | 0,001171799 | 0,003515398
20 0,001098194 | 0,001098194 | 0,001098194 | 0,003294582

The variations of the expected gain are shown in Figure 3.8. The dash-dot line signifies
the expected gain of the three jobs, and the solid line is the total of the expectations. The
expected gain for the three jobs are the same, because the jobs have identical

characteristics such as arrival rates, service rates, memory occupations.

26

The Expected Gain of The Window
T

0.025 T T T T T T

T
The Expected Gain of a=b=c

Total of Expected Gains

0.02

The Expected Gain

o
)
2

0.005

0 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

Window Size

Figure 3.8 The Gain of the Window

An example is shown in Table 3.3. If the sliding window methodology was not used,
the job *“a” would occupy the memory for a long time. Even it is not needed anymore,
because of it’s repetition count and it’s other selection criterion, “a” would rest in the
memory. If no jobs are kept in the memory the system endures for 18 ms. But we save
approximately 12 ms and the system endures only 6 ms. But in the example is shown in
Table 3.3, the jobs are distributed individually and the gain is only 8 ms.

27

Table 3.3 Example 1

The jobs

6ChonoCoCOUDODNNOTOTOTD O D
L = R
CPoTCoTOoRRDOOODOTOTOT® D B
ChooCoUCoMODNOOCTOTOD D W
ChnoCoCLODDNNOCTOTOD D W
ChNnCoCOODDNNOCTOTOD D
6ChnoCoCOUDODNNOCTOTOD D
6ChooTCoCOUDODNOO0TOTOD OO
ChohoCoCCMODBDOOOCTOTOD D W
CfPohoCoTOoRROOO0O0DOTCOTOT® OO
= -)
ChNnCoCUDDNNOCOTOD D
6ChNCOoCODDONNOCTOTOD D
6 hoCoOCODODNNOTOTOTD DO
I = R)
ChooCOoCOoMODBDONOOCTOTOD D W
= P A)
= R)

The Gain
of The | 0,004241 | 0,006589 | 0,007682 | 0,007969 | 0,007757 | 0,007969 | 0,007682 | 0,007969 | 0,007757 | 0,007969 | 0,007682 | 0,007969 | 0,007757 | 0,007969 | 0,007682 | 0,007969 | 0,007757 | 0,007969
Window

Error 0,019667| 0,017319| 0,016225(0,015938| 0,016151| 0,015938| 0,016225| 0,015938| 0,016151(0,015938| 0,016225| 0,015938| 0,016151f 0,015938| 0,016225| 0,015938| 0,016151| 0,015938|

a a a a a a b b b a a a a a a b b b
b b b © © C c G € b b b © c G

Memory

Reel Gain aexists aexists bexists b exists cexists cexists aexists aexists bexists b exists cexists cexists

i i 1 i i i i i i i 1 1

For a job set as in Table 3.3, the algorithm starts with window size equals to one. The
first job is “a”, and it is not in the memory. At the beginning, the memory is free, and
the window size equals to one. The difference between the total expectation of the jobs
and the expectation of job “a” equals to 0.019667 when the window size is one. It is
smaller than the position at window size equals to zero, 0.023908. Because of the
emptiness of the memory, means 2 bytes can be kept in the memory, and “a” has an
output with size equals to 1. The output of the job “a” is kept in the memory. The

algorithm decides to increase the window size.

The second job is again “a”. It’s output is already in the memory. The error equals to
0.017319 which is smaller than 0.019667 (previous error). The algorithm decides that it
done well with previous iteration that is increasing window size, and continues to
increase window size. After the third iteration the error becomes 0.016225 which is
smaller than previous error. After fourth iteration the error becomes 0.015938. The
fifth iteration is done by window size equals to five. But the error becomes 0.016151
which is greater than previous error. The algorithm decides to undo last window action
and sets window size to 4, and continues to change the window size at each iteration.
Because of the limit of the memory equals to 2 bytes and each output keeps one byte,
only two outputs can be kept in the memory at same time. Each job endures one

millisecond. At total 18 ms jobs has done, but it endured only 6 ms.

28

Table 3.4 Example 2

The jobs

R T - A)
= T - R)
= N -)
CTCuveoCVNTDNOTDOOT 0O
= = N T)
CTCVuoTONOoCODOCTOOCTO 0O
CTCVuOoNTONOoCODOTO0OTO N OO
CTCveTCONTONTN 0T 0O
CTCVMOTYNOoCODOTN0TO 0O
6CTCveoCONTONTOO0OT 0O
R N R)
R N L)
R - N T
L = - T
L e -)
R R A)
R A)
CoCvMooCONTODNTODOOTDOOC

The Gain
of The | 0,004241 | 0,006589 | 0,007682 | 0,007969 | 0,007757 | 0,007969 | 0,007682 | 0,007969 | 0,007757 | 0,007682 | 0,007969 | 0,007757 | 0,007969 | 0,007682 | 0,007969 | 0,007757 | 0,007969 | 0,007682
Window
Error 0,019667| 0,017319| 0,016225| 0,015938| 0,016151| 0,015938| 0,016225| 0,015938| 0,016151| 0,016225| 0,015938| 0,016151) 0,015938| 0,016225| 0,015938| 0,016151| 0,015938| 0,016225
a a a a a b b b b b b b a a a a a a

b b b b c ® ® © C C C © © © © b b

aexists b exists bexists cexists bexists cexists cexists aexists
i 1 i i i i il i

Memory

Reel Gain

If these jobs are arranged in an order as Table 3.4, the real gain is only 8 ms. Because
the jobs whose outputs are kept in the memory are recalled after the other jobs called.
The jobs in the window do not mean that the outputs of all of them are kept in the

memory, it means they can be kept in the memory if there exist enough place.

3.5 The Desired Value Derivation

Our goal is to minimize the service time of the system. In other words, the time cost of
obtaining the outputs of the jobs has to be minimized. Thus, by their first process, all
jobs have to exist in the memory. If we could have an unlimited memory, we would
have kept all jobs in the memory, but unfortunately despite of the development of

hardware systems we have limited system resources.

N, 1S called as number of jobs processed and it is bigger than ©Q number of jobs in a
window. T is the total service time elapsed for all the processed jobs having the

subindices by k. Equation (3.20) can be obtained;

N Total

Z T ()
T Total HT (320)

29

m
(proportional usage of the memory).

T

Where o =

Minimizing T ___ is the desired value. The time cost of running the 1/0 jobs are not in

the scope of this study (if there is not enough place in the memory to run new jobs, the
time cost of running the 1/0 jobs will increase but a condition can be added to the
system to cover this case). In conclusion, our goal is to obtain all computational jobs in
the memory by their first call.

m .
Vy=D.t (3.21)
i=1

A condition can be added to ensure that there exists still enough memory. If the running
time of one consequent job is bigger than the average of the time cost of running jobs, it
will start to organize jobs which are in the memory by deleting most inconvenient job in
the memory. In other way, desired value can be described as formula (3.19) which

equals to the expected value.

3.6 Error Derivation

Through the definition, the error is the difference between the obtained result and the

desired value. In other words, error is described as;

o, =max(E(¥))— > —iP

reN i=k—z+1 T

(3.22)

The effects of new job states on the error are shown in Table 3.5.

30

Table 3.5 The effects of the new job arrival and the error variation.

The status of the new job]
) . The status of the old job
that is entering into the The effect on the error

that is leaving the window

window

Exists in the memory Exists in the memory Does not change

o Does not exist in the memory,
Exists in the memory]] Decrease
computational job

o Does not exist in the memory,
Exists in the memory) Decrease
1/0 job

Does not exist in the
memory, computational job, Exists in the memory Does not change

terminated in average time

Does not exist in the o
) ~ Does not exist in the memory,
memory, computational job,) _ Does not change
)) _ computational job
terminated in average time

Does not exist in the o
) ~ Does not exist in the memory,
memory, computational job, 1O ioh Does not change
. . : Jjo
terminated in average time

Does not exist in the
memory, computational job, o
)) Exists in the memory Increase
terminated in more than

average time

Does not exist in the
memory, computational job, Does not exist in the memory,
))]) Does not change
terminated in more than computational job

average time

Does not exist in the
memory, computational job, Does not exist in the memory,
) ;) Does not change
terminated in more than 1/0 job

average time

31

Does not exist in the
memory, 1/O job, Exists in the memory Does not change

terminated in average time

Does not exist in the -
) Does not exist in the memory,
memory, /O job,)) Does not change
))) computational job
terminated in average time

Does not exist in the o
. Does not exist in the memory,
memory, 1/O job, _ Does not change
)) _ 1/O job
terminated in average time

Does not exist in the

memory, /O job,

] o s Exists in the memory Increase
average time
Does not exist in the
memory, 1/O job, Does not exist in the memory,

. . . . Does not change
terminated in more than computational job

average time

Does not exist in the
memory, 1/O job, Does not exist in the memory,
))) Does not change
terminated in more than 1/0 job

average time

The decisions on the situation of the memory can be summarized as given in Table 3.4.
In the situations marked by “decreasing” change, the service time starts to decrease and
the computational jobs can be kept in the memory. At “no change” points, the duration
decrease continues or the stationary duration exists or the system is in the duration
before the increment. Because of these circumstances cannot be separated, keeping new
jobs in the memory can continue. At the “increasing” points, the time cost of the jobs
which started to be processed becomes excessive. In this situation, the jobs in the

memory should be deleted.

32

At this point to decide which job will be deleted from the memory is essential for the
system. Figure 3.9 shows the decision automata which describes decision states of the

system.

The job is a.computational

Time cost jn the limits

Time cost'of the job is

- The job exists\in the memory
excessive

Time cost of the job is

Time costin the limits

Apply ILC to the jobs in the Get the output|of the job from
memory. Delete the most Put the output|of the job into the memory, agld call count to
inconvenient job in the the memory the signature of the job in the
mernory

Figure 3.9 The decision automata

33

The generic code for the decision algorithm is given below;
for each job begin
if the job is an /O jobbegin
t = calculate_time_cost(run(job), output)
if t <time_limit_for_1/O_job begin
recalculate(time_limit_for_1/O_job,t);

return output;

end;
else begin
ILC(job_list_in_the_memory)
delete_most_inconvenient_job(job_list_in_the_memory)
end;
end;
else begin

if is_in_the_list(job, job_list_in_the_memory)begin
increase_call_count(job, job_list_in_the_memory);

return get_from_memory(job, job_list_in_the_memory);

end;
else begin
t = calculate_time_cost(run(job),output)
if t <time_limit_for_Computational_job begin
recalculate(time_limit_for_Computational_job, t);
add_job(job, job_list_int_the_memory);
return output;
end;
else begin
ILC(job_list_in_the_memory);
delete_most_inconvenient_job(job_list_in_the_memory);
return output;
end;
end;

end; end;

34

3.7. Processing Jobs

An example of the system is specified at Figure 3.10. Each character signifies unique
job, the “X” signify an 1/O job. The system is composed by the job list, first memory to
keep the outputs of the job and the window memory to keep the output of jobs in the

window whose output does not exist in the first memory.

When the system starts to operate, the sliding window begins to change as Figure
3.10.a. The first window represented with red includes only first job. The memory that
is used for keeping outputs of the jobs is empty. After processing the first job the
window gets the second job, and the output of the first job is kept in the memory as
Figure 3.10.b. The X cannot be set in the memory because it is an 1/0 job. The 6"
position of the window is shown in Figure 3.10.c. All precedence outputs are in the
memory, and still there exists memory. The 10" job is the same as the first job and the
output of the 1% job is still in the memory, it can be used without computing by the CPU
meanwhile adding the job count to the object in the memory. “n” object has its call
orders, 1 and 10 which will be used for calculating gain function for the job.

Now the limit of the memory is reached, but the system does not know that. When the
11" job arrives, it is processed in excessive time because there is not enough memory to
perform that job easily, and the system should choose one of the eight jobs to delete
from memory. A gain function can be used to decide job to delete. The gain of “z” is
the minimum value of all then the output of the “z” is deleted from the memory and the

output of “a” is replaced.

When the other jobs of the system require more memory, the size of the memory that is

used for keeping the outputs, decreases by the time average condition of the works.

35

Job Queue Memory

By [p[X[z[e]lm[v]i In[afi [Tt Im[e[.] TTTTTTT]

a) The first position of the window

Job Queue Memory

W Xlz]lelmv]i [n]afi || {t|mc]..| In[T [111[]

b) The second position of the window

Job Queue Memory

BB [[[n[afi [i [t [mlc]..] [nylplz] TT]

c¢) The 6" position of the window

Job Queue Memory

inypXzemvi nEANNNRARENMRAEENE

d) 10™ position of the window

Job Queue 1st Memory

[n PPN 1 [t [mlc]..] [nlylplz]elv]i]

e) 11" position of the window

Job Queue Memory

Mo Xz emv i nai IAMANRENHABNE

f) 12" position of the window

Job Queue Memory

AMRXz e mvinai | AEEREONAABNN

g) The 13" position of the window

Figure 3.10 Example of the flow

4. Dynamic Resource Allocation and Memory Scheduling

Iterative Learning Control methodology is used in our algorithm because previous
experiences will be used for next memory scheduling. The goal is to minimize the error
and to regulate the window size to ensure caching the most frequent repeating jobs’

results in the memory to avoid unnecessary computing effort.

4.1 lIterative Learning Control

Iterative Learning Control is recognized as a powerful control method to achieve
trajectory tracking tasks in a class of repetitive systems [11]. Our goal is to obtain the
ideal window size such that the frequently repeated similar job results may be cached
and to achieve best utilization of the processor. To achieve this goal, the window

dimension has to be adjusted after the each iteration.

A typical Iterative Learning Algorithm control output formulation is given by, [19].

d
U, () =u, (1) + 7aek (t) (4.1)

Where ex(t) can be defined as the error term expressed as a difference between the

desired expected gain of the overall jobs and the window gain.

e, () =V, () ~V, () =max EF))— > —iP 42)

reN i=k—z+1 T

37

The desired expected gain, which is the first term in the error function given by (4.2), is
constituted by summing all the individual expected gain of the jobs existing in the
memory (see also (3.19) for its derived expression). The second term is the averaged

sum of the individual gain existing in the sliding window.

In our setting, it can be implemented as (4.3).

) e —€
T =0 — Slgn(rk — z__k L) (4.3)
Kk~ Tk

Where sign function is described as below,

i sign(x)=1 if x>0
sign(.) :{sign(x):—l if x<0 (44)

By the way the system tries to reach the optimum size of the window dynamically and it
is temporal variable. The CPU usage derivations of Example 1 and Example 2 can be

seen in Figure 4.1.

38

The CPU Usage Derivation
T T T T T

T
The CPU Usage for Example 1
\ The CPU Usage for Example 2

091 \

o
3
T

The CPU Usage Rate
T

0.5

0.4

| | | | |
0 2 4 6

| | |
8 10 12 14 16 18
Number of Jobs Processed

Figure 4.1 Error Derivation

In the Figure 4.1 the CPU usage rate decreases exponentially and exhibiting some
oscillations due to the discontinuous nature of the window size regulation which means
more outputs are found in the memory. At the beginning, the first job (job “a”) is
processed by the CPU for both examples. In Example 1, described as dash-dot line, the
second jobs (job “a”) output is found in the memory; it is not processed by the CPU, the
usage decreased to half of its initial value. The third job is again “a” and the usage
decreases to its thirty percent. In Example 2, described as solid line, the second and the
third jobs (job “b” and job “c”) are processed by CPU. The forth job is “b” in Example
1. It’s output does not exist in the memory. The CPU usage becomes half, because the

first “a” and “b” could not been found in the memory and they were processed but the
second and the third “a” were found in the memory.

A simulator has been prepared to observe gains with different types of random systems.

Different number of jobs was chosen to generate a system with 10000 jobs. The service

39

rates were chosen between 1 and 10 and the footprints of outputs were chosen between
1 and 100, both with uniform distribution. The jobs sequence was chosen with uniform

distribution.

Figure 4.2 shows the variation of Expected Values that has a maximum value when
window size equals to 187, and Figure 4.3 shows the variation of Error and Figure 4.4
shows the derivation of CPU usage with 50 jobs and capacity equals to 200. Figure 4.5
shows the derivation of window size, at the beginning there one job and the window
size is started with one, and increased by one by one until error value decreases. It can
be observed from Figure 4.3 and 4.5, the error derivations and the window size

derivations are almost contrary.

EXPECTED VALUE WITH 50 JOBS AND CAPACITY = 200
T T T

45 T T

EXPECTED VALUE

1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

WINDOW SIZE

Figure 4.2 Expected Value with 50 jobs and capacity = 200

ERROR

THE USAGE OF THE CPU

40

ERROR WITH 50 JOBS AND CAPACITY = 200

1000 2000 3000 4000 5000 6000 7000 8000 9000

NUMBER OF JOBS PROCESSED

Figure 4.3 Error variation with 50 jobs and capacity = 200

THE USAGE OF THE CPU WITH 50 JOBS AND CAPACITY = 200
T

10000

o

®

&
T

o
®

o
5
o

e e e e o]

* ILC APPLIED SYSTEM

ILC NOT APPLIED SYSTEM

1000 2000 3000 4000 5000 6000 7000 8000 9000

NUMBER OF JOBS PROCESSED

10000

Figure 4.4 The Usage of the CPU with 50 jobs and capacity = 200

41

THE DERIVATION OF THE WINDOW SIZE WITH 50 JOBS AND CAPACITY = 200
T T T T T T T T T

300

250 v.—,.

200 -

150~ *

WINDOW SIZE

100~ -

50— -

1 1 1 1 1 1 1 1 1
0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

NUMBER OF JOBS PROCESSED

Figure 4.5 The Derivation of the window size with 50 jobs and capacity = 200

The footprints are distributed between 1 and 100 with uniform distribution. The
average of service rates is about 50 (In this example the sum of the footprints are 2347).
About 4 jobs can be kept in the memory with capacity 200. But Figure 4.4 shows that
when the system goes to stationary state, 25% of jobs are not reprocessed, but if

Iterative Learning Control Methodology is not used 15% of jobs are not reprocessed.

Figure 4.6 shows that the variation of the Expected Values has maximum value when
window size equals to 168, and Figure 4.7 shows the variation of Error and Figure 4.8
shows the derivation of CPU usage with 40 jobs and capacity equals to 400. Figure 4.9
shows the derivation of the window size with 40 jobs and capacity equals 400 system.

EXPECTED VALUE

40

42

EXPECTED VALUE WITH 40 JOBS AND CAPACITY = 400
T T

ERROR

| | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000

WINDOW SIZE

Figure 4.6 Expected Value with 40 jobs and capacity = 400

ERROR WITH 40 JOBS AND CAPACITY = 400
T

1000 2000 3000 4000 5000 6000 7000 8000 9000

NUMBER OF JOBS PROCESSED

Figure 4.7 Error variation with 40 jobs and capacity = 400

10000

10000

THE USAGE OF THE
T

43

CPU WITH 40 JOBS AND CAPACITY = 400

1 T T
‘ ‘ ‘ ‘ ‘ . ILC APPLIED SYSTEM
ILC NOT APPLIED SYSTEM
0.95 -
]
095 -
0.858 —
o]
o
O
u o8 —
I
'_
L
o 0.75 -
10}
Q
<
[%2]
D o7 -
L
T
'_
0.65— —
0.6 -
0.55— -
o L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
NUMBER OF JOBS PROCESSED
Figure 4.8 Relative gain with 40 jobs and capacity = 400
THE DERIVATION OF THE WINDOW SIZE WITH 40 JOBS AND CAPACITY = 400
250 T T T T T T T T T
200 —
w 150 V] ‘ —
N
wn
z
o
a
=
; 100 —
50 —
0 1 1 1 1 1 1 1 1 1

o

1000 2000 3000 4000 5000 6000

NUMBER OF JOBS PROCESSED

7000 8000 9000 10000

Figure 4.9 Derivation of the window size with 40 jobs and capacity = 400

44

About 8 jobs can be kept in the memory with capacity 400. But Figure 4.8 shows that
when the system goes to stationary state, 35% of jobs are not reprocessed, but if
Iterative Learning Control Methodology is not used 20% of jobs are not reprocessed.
Between 4800 and 5800 the error rate is increasing in Figure 4.7. When the job order is
analyzed, it is observed that a job set that does not exist in the memory arrives to the
CPU.

Figure 4.10 shows the variation of Expected Values, and Figure 4.11 shows the
variation of Error and Figure 4.12 shows the derivation of CPU usage with 100 jobs and
capacity equals 1400 system. Figure 4.13 shows the derivation of the window size with

100 jobs and capacity equals 1400 system.

EXPECTED VALUE WITH 100 JOBS AND CAPACITY = 1400
T T

10 T T T T T

EXPECTED VALUE

30 -

20— -

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

WINDOW SIZE

Figure 4.10 Expected Value with 100 jobs and capacity = 1400

THE USAGE OF THE CPU

100

45

ERROR WITH 100 JOBS AND CAPACITY = 1400
T T

0

ERROR

40

1000 2000 3000 4000 5000 6000 7000 8000

NUMBER OF JOBS PROCESSED

9000

Figure 4.11 Error variation with 100 jobs and capacity = 1400

THE USAGE OF THE CPU WITH 100 JOBS AND CAPACITY = 1400
T

10000

0.95

0.9 F

0.8

0.6~

T
ILC APPLIED SYSTEM

ILC NOT APPLIED SYSTEM

1000 2000 3000 4000 5000 6000 7000 8000

NUMBER OF JOBS PROCESSED

9000

Figure 4.12 Relative gain with 100 jobs and capacity = 1400

10000

46

THE DERIVATION OF THE WINDOW SIZE WITH 100 JOBS AND CAPACITY = 1400
500 T T T T T T T T T

WINDOW SIZE

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

NUMBER OF JOBS PROCESSED

Figure 4.13 Derivation of the window size with 100 jobs and capacity = 1400

About 28 jobs can be kept in the memory with capacity 1400. But Figure 4.12 shows
that when the system goes to stationary state 33% of jobs are not reprocessed, but if

Iterative Learning Control Methodology is not used 46% of jobs are not reprocessed.

Figure 4.14 shows the variation of Expected Values, and Figure 4.15 shows the
variation of Error and Figure 4.16 shows the variations of relative gain of 100 jobs and
capacity equals 8000 system. Figure 4.17 shows the derivation of the window size with

100 jobs and capacity equals 8000 system.

EXPECTED VALUE

ERROR

47

EXPECTED VALUE WITH 100 JOBS AND CAPACITY = 8000
T T

307

20

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

100

WINDOW SIZE

Figure 4.14 Expected Value with 100 jobs and capacity = 8000

ERROR WITH 100 JOBS AND CAPACITY = 8000

10000

Il Il Il Il Il Il Il Il Il

1000 2000 3000 4000 5000 6000 7000 8000 9000

NUMBER OF JOBS PROCESSED

Figure 4.15 Error variation with 100 jobs and capacity = 8000

10000

48

GAIN WITH 100 JOBS AND CAPACITY = 8000

1 T T T T T I

T
ILC APPLIED SYSTEM
ILC NOT APPLIED SYSTEM

0.9 -

0.8 -

1 1 1 1 1 [I I
0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

NUMBER OF JOBS PROCESSED

Figure 4.16 Relative gain with 100 jobs and capacity = 8000

THE DERIVATION OF THE WINDOW SIZE WITH 100 JOBS AND CAPACITY = 8000
T

500 T T T T T T T T

WINDOW SIZE

1 1 1 1 1 1 1 1 1
0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

NUMBER OF JOBS PROCESSED

Figure 4.17 Derivation of the window size with 100 jobs and capacity = 8000

49

About 160 jobs can be kept in the memory with capacity 8000, but in these example
total footprints is 4994. All of the jobs’ outputs can be kept in the memory. It can be
seen in Figure 4.16 that applying Iterative Learning Control methodology does not
provide any benefit when the system has a huge memory. But when the memory is
limited (which means real world case), Iterative Learning Control Methodology
provides benefits. In the Figure 4.17, there exist window size changes because the

arriving jobs are changing and the expected values are changed.

When lIterative Learning Control is applied CPU Usage Derivations are shown in Figure
4.18 and when lIterative Learning Control is not applied CPU Usage Derivations are
shown in Figure 4.19. The difference of two case shows that if the memory capacity is
limited, the gain of using Iterative Learning Control is higher as shown in Figure 4.20.
At some points the differences are not high, there exists valleys in Figure 4.20. The

arriving order of the jobs causes these cases.

CPU USAGE DERIVATION WHEN ILC IS USED

0.9
0.8
0.7
0.6
0.5

0.4

CPU USAGE

0.3

0.2

0.1

10

NUMBER OF JOBS CAPACITY

Figure 4.18 CPU Usage Derivations When ILC Applied

CAPACITY

8000

100

CAPACITY

50

CPU USAGE DERIVATION WHEN ILC IS NOT USED

39vSNn Ndd

NUMBER OF JOBS

Figure 4.19 CPU Usage Derivations When ILC Not Applied

DIFFERENCES BETWEEN ILC APPLIED AND NOT APPLIED

T
o
S

~
S

.15
1

39VSN NdO

0.05

NUMBER OF JOBS

Figure 4.20 CPU Usage Derivations differences when applying Iterative Learning

Control and not applying Iterative Learning Control

5. Experimental Study

The data is taken from real-life data belonging to a Time-Machine application of an
individual retirement and life insurance company. Because of privacy policies the real
data is corrupted by a linear function. The retirement retention and insurance premium
calculations are using CPU much, and using the tables which are permanent but

voluminous.

5.1 Experimental Results

As shown in Figure 3.3 and Figure 5.1, the time graphics of windows of N jobs depends
on « which creates a view of a valley. Our goal is to allocate the resources of the
computing system at the bottom of this valley as much as possible. In general, the
system starts to go down in the graphic when jobs start to keep in the memory. But
afterwards the system starts to go up on the right side of the valley because of the time
cost of un-cached jobs. The algorithm has to determine that change. But it can be seen
easily that there exists local minimum point in the system, because the jobs are not

homogeneous. If the raise is small then it can be supposed that the value is negligible.

52

CACHING TEST WITH RANDOM JOBS

200 T T

160~ —

140 *

120~ *

100 -1

80— —

time cost of the job (ms)

60— *

| | | | | | | |
0
0 100 200 300 400 500 600 700 800 900 1000

job number

Figure 5.1 Caching test results with random jobs

The problem is which criteria will be utilized by the Iterative Learning Control system.
Which job will be deleted from the memory in a situation that the jobs in the memory
cause other jobs to run slowly? At that point a gain function is needed to compare the
benefits of the jobs which are in the memory. The gain function has to be applicable to
all computational jobs. The gain function has a direct proportion with the position of
the job in the job list and it has a direct proportion with call frequency of the job and it
has a direct proportion with the time cost of the job and it has an inverse proportion with
the footprint of the output of the job in the memory. And the gain function is describes

as g as below;

In this study, Java is used as programming language and Aspect Oriented Programming
is used to implement our case study. Aspect Oriented Programming allows the
separation of the functional mechanism from the non-functional ones [20]. In our study,
an enterprise application (Retirement Projection Time Machine) is used and the outputs
of the java methods are kept in the memory by Aspect Oriented Programming.

53

Retirement Projection Time Machine is a Java application that calculates future income
of current payments and calculates required payments for desired income. The
application also calculates life insurance premiums. The application is used by the
customers and financial advisors of retirement and life insurance enterprises. The
application runs on Websphere Application Server with heap size 256 Mb, 1.8 GHz
Pentium Dual CPU and uses DB2 as Database. The application was developed by
Struts framework as Model-View-Controller, and Hibernate was used for table-object
modeling.

In the Figure 5.2 to 5.11 green lines represent the error graph of the desired value. If all
jobs could be kept in the memory, the error would have been like that graph. The red
lines represent the situation without dynamic control, until the system limit all jobs are
kept in the memory. The blue lines represent the error value with the dynamic

scheduling. The gain changes with different values of 7.

ERROR RATE (T=10)
T T T

100

90 —

| M

ERROR

30 —

1 1 1 1 1 1 1 1 1
10
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

NUMBER OF WINDOWS PROCESSED

Figure 5.2 The Error Rate where 7 =10

ERROR

ERROR

54

ERROR RATE (T=50)
T T T

~ DESIRED VALUE

— WITHOUT LEARNING
— WITH LEARNIN G

80 =

| W ‘ﬂ.

A ‘ | H‘ﬂ H*
M' fJ\/wM f& NUW un\/“” ol : Al

| | | | | | | | |
) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

NUMBER OF WINDOWS PROCESSED

|

|

Figure 5.3 The Error Rate where 7 =50

ERROR RATE (T=100)
T T T

~— DESIRED VALUE

WITHOUT LEARNING
—— WITH LEARNING

N | |
M MJ M M\M UW n/w M #L i \ﬁ”

\“W

Il Il Il Il Il Il Il Il Il .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

NUMBER OF WINDOWS PROCESSED

Figure 5.4 The Error Rate where 7 =100

ERROR

ERROR

100

55

ERROR RATE (T=200)
T T T

90

80

70

60

50

40

30

T
DESIRED VALUE
—— WITHOUT LEARNING
— WITH LEARNING

1

Jl | ‘ H‘A
\f(\w w“' \\ﬂ \um | M\M v ‘W] i ”" \' \Wﬁ

100

| | |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

NUMBER OF WINDOWS PROCESSED

Figure 5.5 The Error Rate where 7 =200

ERROR RATE (T=300)
T T T

90

80

70

60

50

30

20

10
0

T
DESIRED VALUE
— WITHOUT LEARNING
WITH LEARNING

|

(M\ el [fee il Iy
N* %‘\N'me’_w JN\H al ‘M" Wi

| | | | | | | | |

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

NUMBER OF WINDOWS PROCESSED

Figure 5.6 The Error Rate where z =300

ERROR

ERROR

56

ERROR RATE (T=400)
T T T

|
|1
\]
IR
ALt LA L
10 1 1 1 1 1 1 1 1 1
’ . o lsﬁ\ﬁu MB EFZEOOCO) F WIN IZDS?)DWS P Rs(o)ozl ESSE I33500 - - =
Figure 5.7 The Error Rate where z =400
y ERROR RATE (T=500) |
|
50— ,
|
I A
I Mt
A R
0 5(110 10100 1;00 20100 2;00 30;0 3;00 40100 4;00 ;)00

NUMBER OF WINDOWS PROCESSED

Figure 5.8 The Error Rate where 7 =500

100

57

ERROR RATE (T=600)
T T T

90

60~

ERROR

50~

40

30

DESIRED VALUE

i
J\JJ i Mh

#_é

500

|
1000 1500 2000 2500 3000 3500 4000 4500 5000

NUMBER OF WINDOWS PROCESSED

Figure 5.9 The Error Rate where 7 =600

90

ERROR

40

20—

ERROR RATE (T=700)
‘ ‘ ‘ . DES\R‘ED VALUE

— WITHOUT LEARNING
— WITH LEARNING

/
L W\w

i
|

1500 2000 2500 3000 3500
NUMBER OF WINDOWS PROCESSED

Figure 5.10 The Error Rate where 7 =700

100

ERROR RATE (T=800)
T T T

90

ERROR

a
=)

30

— WITH LEARNIN(G

~—— WITHOUT LEARNI

ING

\f\f\M il A [W M

1

ERROR

|
500 1000 1500 2000 2500 3000 3500 4000 4500

NUMBER OF WINDOWS PROCESSED

Figure 5.11 The Error Rate where 7 =800

ERROR RATE
T T T

5000

T
~— DESIRED VALUE

— WITH LEARNING

—— WITHOUT LEARNING

I

1500 2000 2 3000 3500
NUMBER OF WINDOWS PROCESSED

Figure 5.12 The Error Rate where 7 calculated dynamically

59

Figure 5.12 shows the error rate when 7 is calculated by lIterative Learning Control.
The Figure 5.12 indicates that by this work we approached the goal that to enhance

processing performance by dynamic memory scheduling.

In the previous experiences, all of the jobs characteristics are supposed to be known.
But in real-life, it is impossible. To overcome this situation, the system is designed as
the averages of previous weeks data is based on. When a new job arrives, it is statistical
values are applied to next day’s work. In Figure 4.13, it is shown that the CPU Usage
of the first day after a week. It can be observed in Figure 4.13, Figure 4.14 and 4.15,
the usage of CPU is dependant from the jobs arrive order, and each day has its own

characteristic.

THE USAGE OF THE CPU IN A REAL-LIFE APPLICATION

1 T T T T T T T T

* ILC APPLIED
ILC NOT APPLIED

THE USAGE OF THE CPU

Figure 5.13 The Usage of CPU in a real-life application (First Day)

60

THE USAGE OF THE CPU IN A REAL-LIFE APPLICATION

1 T T T T T T T

* ILC APPLIED
ILC NOT APPLIED

0.9 -
0.8¢ |
0.7 i’ -
0.6~ -
0.5 |

0.4 —

THE USAGE OF THE CPU

i 1

N]

0 Il Il Il Il Il Il Il Il Il
0 0.2 0.4 0.6 1.4 16 1.8 2

0.8 1 12
NUMBER OF JOBS PROCESSED x10°

Figure 5.14 The Usage of CPU in a real-life application (Tenth Day)

THE USAGE OF THE CPU IN A REAL-LIFE APPLICATION
T T T T T T

1
‘ * ILC APPLIED
ILC NOT APPLIED
0.9 —
1 /\W/\
o 07 L14,‘,/\} —
o
O
w
T /
o064 —
51
[¢]
w
2 0.5¢ —
(2]
o]
w
£ oa -
0.3 -
0.2 —
o1 I I I I I I I | I
0 0.2 0.4 0.6 08 1 12 14 16 18 2
NUMBER OF JOBS PROCESSED x10°

Figure 5.15 The Usage of CPU in a real-life application (Fifteenth Day)

61

In section 4, it is observed that when the jobs arrive to the computing system randomly
the usage of the CPU varies between 0% and 25%. Through the arrival order of the
jobs, in the real-life application of an individual retirement and life insurance company
the usage of the CPU varies between 60% and 70%. Keeping outputs of the jobs in the
memory provides gain about 20%-25%, but applying an ILC algorithm increases the
gain to 75%-95%.

6. Future Works

In this paper, we tried to discover the gains of dynamic memory scheduling and we used
single CPU system. It indicates that using double CPU-structures with one is split for
I/0 processes and the other one is split for intensive processes by Round-Robin

scheduling algorithm that can improve the system performance [5].

Same jobs run periodically on some system. On these types of systems, periods can be
observed and a part of the memory could be used for remembering jobs and periods. By
this way, the requirements could be predicted and the system could get close the ideal

form.

7. Conclusion

The experimental results demonstrated that an efficient dynamic memory allocation
lead to remarkable improve on the system performance. In this study, we scheduled the
idle memory to keep the outputs of repetitive jobs. To provide benefit from the

methodology, a dynamic system developed.

In computer systems, the jobs run by the CPU with using the memory and the other
system resources. In the enterprise applications, the outputs of the repetitive jobs are
kept in the memory by the system developer. Thus the outputs of these jobs are brought
from the memory without occupying the CPU. It is not analyzed on the jobs that kept in
the memory how necessary they are. And also it pays no attention if there are necessary

jobs that are not kept in the memory. The success of analyzes are controversial.

In our study the system defines its own requirements and keeps the outputs of the
suitable jobs in the memory. In this way by the variable requirements on runtime, the
system tries to get the maximum gain from the memory. It is observed that the study

met with success.

Through our study, the developers will not have to decide which jobs should be kept in
the memory. The improvements on the system performance and the response time were

achieved. These improvements provide more rapid systems on the side of the end users.

8. References

[1] Ding, W., Guo, R., “Design and Evaluation of Sectional Real-Time Scheduling
Algorithms Based on System Load”, Young Computer Scientists, 9, 14 - 18, (2008).

[2] Liu, C.L., Layland, J.W., “Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment”, Journal of Association of Computing Machinery, 20 (1), 46 -
61, (1973).

[3] Jensen, E.D., Locke, C.D., Takuda, H., “A Time-Driven Scheduling Model for Real-
Time Operating Systems”, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, (1985).

[4] Chen, H., Xia, J., “A Real-Time Task Scheduling Algorithm Based on Dynamic
Priority”, Embedded Software and Systems, 431 - 436, (2009).

[5] Kantabutra, S., Kornpitak, P., Naramittakapong, C., “Dynamic Clustering-Based
Round-Robin Scheduling Algorithm”, International Symposium on Communications

and Information Technology, 3, (2003).

[6] Nock, C., Data Access Patterns: Database Interactions in Object-Oriented
Applications, Addison Wesley, Boston, (2003).

[7] Ford, C., Gileadi, I., Purba, S., Moerman, M., Patterns for Performance and
Operability — Building and Testing Enterprise Software, Auerbach Publications, (2008).

[8] Butcher, M., Karimi, A., Longchamp, R., “A Statistical Analysis of Certain Iterative
Learning Control Algorithms”, International Journal of Control, 81, 156 - 166, (2008).

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4708920�
http://www.informaworld.com/smpp/title~db=all~content=t713393989�
http://www.informaworld.com/smpp/title~db=all~content=t713393989~tab=issueslist~branches=81#v81�

65

[9] Al-Towaim, T., Barton, A.D., Lewin, P.L, Rogers, E., Owens, D.H., “Iterative
Learning Control — 2D control systems from theory to application”, International
Journal of Control (Special Issue: Multidimensional Control Systems: Theory with a
view to Applications), 77 (9), 877 - 893, (2004).

[10] Moon, J., Doh, T., Chung, M.J., “An lIterative Learning Control Scheme for
Manipulators”, Intelligent Robots and Systems, 2, 759 - 765, (1997).

[11] Yi, W., Zhongs heng, H., Xingyi, L., “A Novel Automatic Train Operation
Algorithm Based on Iterative Learning Control Theory”, Service Operations and
Logistics, and Informatics, 2, 1766 - 1770, (2008).

[12] Mi, C., Lin, H., Zhang, Y., “Iterative Learning Control of Antilock Breaking of
Electric and Hybrid Vehicles”, Vehicular Technology, 54 (2), 486 - 494, (2005).

[13] Xu, J., Wang, D., Wang, X., “The Analysis of Convergence Speed for an Open and
Closed Loop Second Order Iterative Learning Control Algorithm”, Intelligent Control

and Automotion, 1, 3905 - 3909, (2006).

[14] Xu, J.X., Yan, R., “On Initial Conditions in Iterative Learning Control”, Automatic
Control, 50 (9), 1349 - 1354, (2005).

[15] Booth, P., Chadburn, R., Haberman, S., James, D., Khorasanee, Z., Plumb R.H.,
Rickayzen, B., Modern Actuarial Theory and Practice, Chapman & Hall/CRC, Florida,

(2005).

[16] AvivaSA Time-Machine Application, http://crm.avivasa.com.tr/lceCreamWeb/,
(2009).

[17] Bertsekas, D., Gallager, R., Data Networks, Prentice Hall, New Jersey, (1992).

[18] Pitman, J. Probability, Springer, Pittsburg, (1999).

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4657348�
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4657348�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=25�
http://crm.avivasa.com.tr/IceCreamWeb/�

66

[19] Ahn, H., Moore, K. L., Chen, Y., Iterative Learning Control: Robustness and
Monotonic Convergence for Interval Systems, Springer, (2007).

[20] Machta, N., Bennani, M.T., Ahmed S.B., “Aspect Oriented Design of Real-Time
Applications”, Industrial Informatics, 7, 763 - 767, (2009).

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5175248�

Biographical Sketch

Mutlu ERCAN was born in Istanbul in September 19, 1979. He graduated from Istanbul
Orhan Cemal Fersoy Foreign Language Intensive High School in 1997. He received his
B.S. degree in Computer Engineering in 2003 from Galatasaray University, Istanbul,

Turkey.

	Acknowledgements
	Table of Contents
	List of Symbols
	List of Figures
	List of Tables
	Abstract
	Résumé
	Özet
	Introduction
	Literature Review
	Motivation

	Computing Process Modeling
	Memory
	CPU (Central Processing Unit)
	Job
	The Process Modeling
	The Desired Value Derivation
	Error Derivation
	Processing Jobs
	Dynamic Resource Allocation and Memory Scheduling
	4.1 Iterative Learning Control

	Experimental Study
	Experimental Results

	Future Works
	Conclusion
	References
	Biographical Sketch

