DESIGN OF OPTIMUM COMPONENT TEST PLANS WHILE CONSIDERING
MULTIPLE OBJECTIVES
(COK OLCUTLU ENIYI BILESEN SINAM PLANLARININ TASARLANMASI)

by

Emre YAMANGIL, B.S.

Thesis
Submitted in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE
in
INDUSTRIAL ENGINEERING
in the
INSTITUTE OF SCIENCE AND ENGINEERING
of

GALATASARAY UNIVERSITY

May 2009



DESIGN OF OPTIMUM COMPONENT TEST PLANS WHILE CONSIDERING
MULTIPLE OBJECTIVES
(COK OLCUTLU ENIYI BILESEN SINAM PLANLARININ TASARLANMASI)

by

Emre YAMANGIL, B.S.

Thesis
Submitted in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE

Date of Submission : May 8, 2009

Date of Defense Examination: May 18, 2009

Supervisor : Assoc. Prof. Dr. Orhan FEYZIOGLU
Committee Members: Prof. Dr. I. Kuban ALTINEL

Prof. Dr. Siileyman OZEKICI



ACKNOWLEDGEMENTS

My deepest appreciation and thanks goes to Dr. Feyzioglu, my mentor during this
effort. It was a privilege to spend a wonderful two years of my life working under his
supervision. His outstanding teaching has not only directed me to correct answers, but
also taught me how to ask the right questions. I cannot be thankful enough that, through
his guidance, I remembered something I had learned long ago - Given sufficient work,
nothing is impossible. As he says, no effort goes to waste, try again, fail again, fail

better!

During the course of my studies, I also had the chance to work with Dr. Altinel. T am
forever grateful to be given an opportunity to build on his foundation, and to attend his

class, combinatorial optimization.

Thanks to Dr. Ozekici, this thesis has been completed to the fullest. Without his
managing insight, unbelievable stochastic expertise, the optimization model would not

have even been constructed.

I would like to thank Bora Cekyay, my fellow partner in the project. His stochastic
formulations provided many of the bricks in this work, as well. And to Hakan Akyiiz
and Jbid Arsenyen, for listening to every problem I had, academic and life alike, helping

to the best of their ability without the slightest hesitation.

Finally, without my sister setting me free from the throes of desperation in my junior
year, my mother never letting me lose faith in myself and my father always believing in
me, | couldn’t even dream of accomplishing this work. Hence this work is totally

yours...

I gratefully acknowledge that this research has been supported by the Turkish Scientific
and Technological Research Council (TUBITAK)’s Grant 106M044.

08/05/2009
Emre YAMANGIL

11



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..ottt sttt et i
TABLE OF CONTENTS ...ttt il
LIST OF SYMBOLS ...ttt ettt sttt s v
LIST OF FIGURES ..ottt sttt e viii
LIST OF TABLES ... .ottt ettt ebe e sseenseenee e ix
ABSTRACT ...ttt sttt et sh ettt st e bt et e saeenbeens X
RESUME ...ttt sttt xi
OZET oottt xil
1 INTRODUCTION ....coiiiiiieiieiesteete ettt ettt aessaesaeesessaessaeseessesseenseenes 1
2 SYSTEM PERFORMANCE MEASURES......ccceootiiiiiniinieeeeeeeseeeee e 4
2.1  BASIC RELIABILITY THEORY ....oooiiiiiiiiieieeeeseee et 4
2.2 SYSTEM RELIABILITY ..ooouitiiiiieieeeseee ettt 10
2.2.1 SETIES SYSTEIMS ....inviiniiriiiriteieeiterte ettt ettt 11
222 Serial Connection of Redundant Subsystems ..........ccccoeveeeiiienieiciienenns 12
223 Serial Connection of k-out-of-n Subsystems ...........cccccceevieciieienieenenen. 12
2.2.4 Serial Connection of Standby Redundant Subsystems............c.cc........... 13

2.3 SYSTEM MEAN TIME TO FAILURE ........ccccoiiiiiieeeeeeeeeeee s 13
2.3.1 COhETeNnt SYSTEMS ....ecviieiiieiieeiiieiie ettt ettt ettt e aeeseaeebee e 13
232 SETIES SYSTEIMS ..ecvvvieerieeiiieiieeieeieeeteerteeeveeteeesreeseessseesseessseenseessseenseenns 15
233 Serial Connection of Redundant Subsystems ...........ccccccveevvviieriiieenieenns 15
234 Serial Connection of k-out-of-n Subsystems ............ccoceeeevreneinenienenne. 16
2.3.5 Serial Connection of Standby Redundant Subsystems...........c.ccceeuee..e. 17

24  SYSTEM AVAILABILITY ..oootiiiiiieiieeeeieee ettt 17
2.4.1 CORNETENE SYSTEIMS ..eeeuvvieeiiieeiiieeiieeeieeesteeesereeestreeeseeesaeeessseeessseeenaseeens 18
24.2 SETIES SYSTEIMS ....inviiniiriiiiieieeiterie ettt ettt st 19
243 Serial Connection of Redundant Subsystems ..........ccccoeeveeiiienieeciienenns 20

2.4.4 Serial Connection of k-out-of-n Subsystems ...........cccccceevieciieienieenenen. 21



2.4.5 Serial Connection of Standby Redundant Subsystems............c.ccc.......... 22

3 SYSTEM-BASED COMPONENT TESTING PROBLEM..........ccccceoveieiiniinne. 24
3.1  FORMULATION ...cooiiiiiiiiitetentee ettt st 26
3.2  FORMULATION WITH MULTIPLE PERFORMANCE MEASURES....... 29

3.2.1 Joint Multiple Performance Measures Formulation .............c.cccecveeneee. 30
322 Separate Multiple Performance Measures Formulation ........................ 30
3.3 SOLUTION PROCEDURE.......cccoooiiiiiiiiinieieiieceeieceestee e 31

4  SOLUTION METHODS TO SOLVE SUBPROBLEMS .........ccccceiiiiiiiieeee. 36

4.1 DC PROGRAMMING ..ottt 38
4.1.1 DC FUNCHONS ...ttt 38
4.1.2 Canonical DC Programming...........ccceeecueerieeiieenieeniienieeieeneeeveeneee e 39

4.2  SIGNOMIAL GEOMETRIC PROGRAMMING .......ccccerieriiniinieieeieieenne. 44
4.2.1 Linear Relaxation..........coceiiiiiiiiniiiiieie e 46
422 Deletion TeChNIQUE.......ccoviiiieiiieiieeieee e 48
423 BranChing..........ocooviiiiiioiieceeeee e 49

5 NUMERICAL EXAMPLES. ..ottt 53
5.1 EXAMPLES FOR MTTF ..ottt 53
52  EXAMPLES FOR AVAILABILITY ..oooieiiiieeeeeeeeee e 58
53  EXAMPLES FOR SMPM .....cooiiiiiiiiiiiiiiicienieseeestee e 62
54  EXAMPLES FOR JMPM......ooiiiiiiiiiiiiieieeesee e 65

0 CONCLUSION. ...ttt ettt ettt et esteeaesseesseenseeseenseenne e 68

REFERENCES ...ttt ettt et s e e s enseenaenseenneeneas 70

BIOGRAPHICAL SKETCH ...ttt 74

v



P{L >t}

p;(t)

LIST OF SYMBOLS

System availability as a function of component reliabilities

Test cost for component 7

Expected system lifetime as a function of component reliabilities
Feasible solution index set associated with 6(p!)

Feasible solution index set associated with 6(p?)

Optimum solution of type I problem at iteration ¢, new column generated
from 6(p')

Optimum solution of type II problem at iteration i, new column
generated from ()

Null hypothesis

Alternative hypothesis

Least number of components required to function for subsystem j
Lower bound of component j’s failure rate

Maximum number of total allowable failures

Optimum m

Number of subsystems

Number of components in subsystem j

Total number of failures

Total number of failures for component j

System reliability as a function of component reliabilities
Reliability of component j at time ¢

Component reliability vector at time ¢

n dimensional real vectors

Time

Test time of %" component

sth

Test time of J* component until a total of m failures occur



t*

j’m

Optimum test time of " component until a total of m failures occur
Upper bound on component ;’s failure rate

Optimum dual solution of D F;(m)

z -, minimum total test cost

Minimum total test cost for a given m

Optimum objective value of type I problem for a given m at iteration ¢

Optimum objective value of type Il problem for a given m at iteration
A given upper bound on consumer risk

A given upper bound on producer risk

Set of feasible component failure rates for which system rejection is
correct

Set of feasible component failure rates for which system acception is
correct

Component failure rates

Component failure rate for component j

Poisson parameter for which ¥, (A (7)) = v

(AeRL|p(N) < o1

(AeRL|p(N) > 57}

A performance measure as a function of component reliabilities
Unacceptable performance level

Unacceptable reliability level

Unacceptable mean time to failure level

Unacceptable availability level

Acceptable performance level

Acceptable reliability level

Acceptable mean time to failure level

Acceptable availability level

Structure function

Cumulative Poisson distribution with parameter ~

Canonical DC

Difference of two convex

vi



DP(m)
DFy(m)
JMPM
LP
P(m)
P'(m)

Pl/ (m)

Pl

P2
PP(m)
PP;(m)
RCP
SGP
SMPM

Dual linear program for a given m

Dual linear program for a given m at iteration ¢

Joint multiple performance measures

Linear programming

System-based component test problem

System-based component test problem with joint multiple performance
measures

System-based component test problem with separate multiple
performance measures

SGP after exponential variable transformation

linear relaxation of 1

Primal linear program for a given m

Primal linear program for a given m at iteration ¢

Reverse convex programming

Signomial geometric programming

Separate multiple performance measures

vil



LIST OF FIGURES

Figure 2.1 Series SYSTEIM ....cccuiieiieiiieiiieiieeie ettt ettt ettt et ae e beeseaeebeeseseenseesase e 5
Figure 2.2 Paralle]l SYStemM........cc.coiiiiiiiiiiiiieiecie ettt 6
Figure 2.3 Structure of @ 2-0ut-0f-3 SYStEML.......cccuieriiiriieiieeieeiieeie et 6
Figure 2.4 The bridge SYStEIM .....c..eeeiuiiiiiiieeie ettt eree e e e e e eeree e 9
Figure 4.1 Outer approximation scheme for general nonconvex optimization. ............. 42
Figure 5.1 Sequence of total test costs versus m for Example 5.1........ccccoeeiveiiiinnnenn. 54
Figure 5.2 Sequence of total test costs versus 7 for Example 5.9........ccccooeiieiiienenn. 58
Figure 5.3 Sequence of total test costs versus m for Example 5.15......cccccccvvviiieennenn. 62
Figure 5.4 Generated columns for the joint case JMPM. ........cccccoviniininiiniiniiicneene, 67

Figure 5.5 Generated columns for the separate case SMPM. ..........ccccviviniininicnnenne. 67



LIST OF TABLES

Table 5.1 First data set for MTTF examples. ........ccceevieriieiieiiieiienie e 53
Table 5.2 Second data set for MTTF examples. .........cccoeeiieiieiiieniienieeiecieeeeeie e 56
Table 5.3 First data set for availability eXamples. .........ccccueevierieeriienieeieeie e 59
Table 5.4 Second data set for availability examples..........ccccveeviienciieniiiecieecee e 61

Table 5.5 Data set for SMPM eXamples. .......ccccoceriiriiniiniinieniiiiceceeecneeie e 63



ABSTRACT

Testing the system as a whole might be found economically infeasible or physically
impossible in many cases. For instance, testing a nuclear device is currently banned by
international agreements or testing a space shuttle might be found too risky because of
its financial consequences. Instead, various components can be tested separately to
meet some desired level of performance for the whole system, while achieving a
minimal total testing cost. This problem is called system based component testing

problem and is investigated in this thesis.

Although system reliability is the only considered measure in the available literature on
this problem, there exist other more practical measures such as mean time to failure or
availability worth to take into account. Here we extend previous studies by

incorporating various performance measures separately or jointly.

The problem is formulated as a semi-infinite linear programming problem, and the
optimum component test times are obtained by combining the well-known cutting plane
method with the well-known column generation technique. The columns are generated
by solving two different optimization subproblems which are proved to be d.c.
(difference of two convex functions) programming or signomial geometric
programming problems depending on the performance measures examined. These
subproblems are solved to optimality by adapting an outer approximation method and
by a special branch and bound technique. Several numerical examples are provided to

illustrate the approach.



RESUME

Dans plusieurs cas, tester un systtme comme un tout peut sembler non-faisable
économiquement ou impossible physiquement. Par exemple, tester une machine
nucléaire est actuellement interdit par les accords internationaux et tester une navette
spatiale peut paraitre risqué étant donné les conséquences monétaires. Il est plutot
préféré de tester les divers composants pour atteindre le niveau désiré de la performance
du systéeme. Le probléme investigué dans cette thése est nommé le probléme d’essai des

composantes selon le systéme.

Méme si la fiabilité du systeme est la seule mesure considérée dans la littérature
disponible sur ce probléme, il existe d’autres mesures pratiques a dévisager, comme
durée moyenne de fonctionnement avant défaillance, disponibilité, etc. Les études
précédentes sont ¢largies dans cette étude par D’intégration de ces mesures de

performance séparément ou conjointement.

Le probléme est formulé comme un probléme de programmation linéaire semi-infinie et
la durée optimale de test de composant est obtenue par la combinaison d’une technique
réputée, nommé méthode des plans sécants avec une autre technique réputée, nommé
méthode de génération de colonnes. Les colonnes sont engendrées en résolvant deux
sous-problémes  différents d’optimisation, prouvés étre des problemes de
programmation d.c. (la différence des deux fonctions convexes) ou de programmation
géométrique signomiale, suivant la mesure de performance examinée. Ces sous-
problémes sont résolus a I’optimalité par 1’adaptation d’une technique d’approximation
par I’extérieure et par une méthode spéciale de séparation et d'évaluation progressive.

Plusieurs exemples numériques sont fournis afin d’illustrer I’approche.



OZET

Dizgeyi bir biitlin halinde smmamak olanaksiz veya katlanilamayacak bir maliyete
olabilir. Ornegin niikleer silahlarin denenmesi uluslararasi anlagsmalar cercevesinde
siirlandirilmistir.  Benzer sekilde bir uzay mekigini sinamanin mali sonuglar1 olduk¢a
belirsizdir. Bu gibi durumlarda bilesenler, dizgenin biitlinii i¢in 6ngoriilmiis basarim
Olciitlerini saglayacak sekilde ve olabilecek en diisiik maliyette ayr1 ayr1 denenebilirler.
Bu problem dizge tabanli bilesen sinami olarak bilinmektedir ve bu tezin konusunu

olusturmaktadir.

Probleme iliskin yazinda sadece sistem giivenilirligi dikkate alinmaktadir. Ancak
beklenen yasam siiresi veya kullanilirlik gibi Olgiitler uygulamada daha kullanigh
bulunabilir. Bu caligma farkli basarim Ol¢iitlerini hem ayrik hem de bir arada

kullanarak varolan diger ¢alismalar1 genellemektedir.

Problemin yari-sonsuz dogrusal programlama modeli olusturulmus ve eniyi bilesen
stnam siireleri kesme-diizlem yontemi ile siitun {iiretme yordaminin bir araya
getirilmesiyle hesaplanmigtir. Siitunlar, ele alinan bagarim 6lg¢iitleri dogrultusunda d.c.
(digbiikey fonksiyonlarin farki) programlama veya genel geometrik programlama
problemi olduklar1 kanitlanmis iki eniyileme alt probleminin ¢oziilmesi ile tiretilmistir.
Bu alt problemlerin ¢oziimiinde distan yaklasiklama veya dal-sinir yontemlerinden
faydalanilmistir. Yaklasimin ayrintilarini gozler oniine sermek i¢in ¢ok sayida sayisal

ornek hazirlanmistir.



1 INTRODUCTION

Increasing product complexity, challenging environment and competition in global
market have led to an increase in performance demands from consumers. For example
many military devices carry out critical missions in a growingly hostile territory where a
system failure can result in operator injury, damage to property, and a significant

economic loss.

When a system failure occurs, no matter how benign, its impact is felt. For example,
even a screw fallen from a chair may have consequences. A small injury or at least a
need to repair the chair before utilizing its full use thereafter. However, a disfunctional

flap in an airplane may result in a plane crash or an inevitable landing.

Although it is almost impossible to fully avoid system failure in the long run, it is still
important to reduce its occurrence probability. Instead of trying to eliminate a system
failure, system can be tested for whether it satisfies a certain performance measure or
not, at some pre-determined level before undertaking its mission. These tests can
provide information about a system’s capacity to fulfill its requirements. For example,
using these statistics, one can either design a system to meet its objective, avoid a
system breakdown using preventive maintenance at critical phases or know the limits of
a system before assigning it a mission. Then the question becomes “How do we design

a test model to examine the system against a desired performance measure?”

There are two well-known approaches for testing a system. First, one can either test the
system as a whole, simulating the circumstances of mission’s environment as best as
possible and examine how does the system act in this simulation. Second, one can
conduct individual component tests for the prediction and verification of the system
performance. Although it is cheaper and less dangerous to examine the components of

a system rather than the whole, the first approach provides better insights into the



system’s capacity. However the cost of these tests can be overwhelming, preventing its
usage in many situations. In this thesis, we are concerned with the alternative test
approach that combines the strong features of the two, the identification of cost-efficient

component test plans to demonstrate a desired performance measures for a system.

Component testing is carried out when it is economically infeasible or physically
impossible to test the system as a whole. For example, testing a nuclear device is
currently banned by international agreements or testing a space shuttle might be found
too risky because of its financial consequences. These are extreme but typical examples
where one needs to attain a certain performance level without testing the system.
Instead the test is done on various components to meet a desired performance measure

for the whole system, while achieving a minimal testing cost.

This approach, known as system-based component testing, drew a lot of attention in the
past three decades. It amounts to find a component testing plan that assures some
system performance within predetermined limits with minimum total testing cost.
Researchers considered different system topologies, extended the problem from
independent to dependent environments, introduced systems designed to accomplish
multi-phased missions. However, system reliability is regarded as a single performance
criterion in most of the available literature. In this work, we consider the case in which
setting a system’s expected lifetime or availability are more practical than determining
its reliability. Furthermore, we formulate the situation where system is expected to
satisfy a set of performance measures rather than only satisfying single criterion at pre-
determined levels. We formulate the multiple performance measure system-based

component testing problem in two modeling approaches.

Within the existing definition and formulation of the problem, there are two main
difficulties which make this problem hard solve to optimality. First, even it is a linear
programming problem and has finitely many variables, it also has infinitely many
constraints. This type of problems are called semi-infinite linear programming
problems. Approaches to solve this problem typically include a column generation

scheme to generate a finite subset of the constraints to satisfy optimality conditions.



Instead of generating rows and solving the problem from scratch every time a row is
generated, the applied methodology works on the dual of the original problem using the

“revised simplex” method to save from the valuable computational time.

Second, our main problem requires solving two separate subproblems to optimality
within the column generation process. These subproblems have compact but non-
convex solution sets. Hence any standard convex programming approach is not useful.
Meanwhile, it can be shown that the constraints of these subproblems can be explicitly
expressed as a difference of two convex functions or as a ratio of two posynomials
whenever it is most convenient. It is well-known that exploiting these special structures
is very convenient for solving the resulting non-convex optimization problems globally.
In this thesis, we adapt some existing deterministic procedures in the literature and
embed within the column generation scheme to solve the system based component

testing problem to optimality.

The remaining parts of this thesis are composed of six sections. In Section 2, we
present a brief introduction to basic reliability theory, and formulate system reliability,
expected system lifetime and system availability for various system topologies. Then
the semi-infinite linear programming formulation of system-based component testing
problem is provided along with the solution method in Section 3. After we give detailed
information on procedures used in the solution of the subproblems in Section 4, we
illustrate the theoretical work with numerical examples in Section 5. Finally, Section 6

includes concluding remarks.



2 SYSTEM PERFORMANCE MEASURES

In this chapter, we give a brief introduction to the basic reliability theory and derive
reliability, mean time to failure and availability performance measures for serially
connected redundant, standby redundant and k-out-of-n subsystems. The random

variables representing the state of the components are assumed to be independent.

2.1 BASIC RELIABILITY THEORY

Consider a system of n components, and suppose that each component is either
functioning or failed. To indicate if the ith component is functioning or not, we define

the indicator binary variable z; as,

1 1if the ith component is functioning
;= . (2.1)

0 if the ith component has failed
Similarly, the binary variable ¢ is indicating the state of the system:

1 if the system is in functioning state

¢ = { . (2.2)

0 if the system is in failed state

Further, we assume that the state of the system is a function of the state of the
components. If we denote the state vector of components with © = (z1, 22, ..., 2,).

Then the state of the system regarding the component state vector can be given by



¢ = o(x). (2.3)
Here ¢(x) is called the structure function of the system.

Example 2.1 (Series System)
A system consisting of n components that is functioning if and only if all of its
components are functioning is called a series system. The structure function of a series

system can be given as follows

¢(x) = min(zy, xo, ..., x,)
2.4)

n
= | I.’L'i.

=1

A series structure is illustrated by the reliability block diagram in Figure 2.1.

. Pt P ...........“—O_.
Py p—y

Figure 2.1 Series system

Example 2.2 (Parallel System)
A system that is functioning if and only if at least one of its components is functioning

is called a parallel system. Its structure function can be given by,

o(x) = max(xy, o, ..., T,)
n (2.5)
=1-JJ - =)
i=1

The corresponding reliability block diagram is given in Figure 2.2.



(o)

- Q0O

o

Figure 2.2 Parallel system

Example 2.3 (k-out-of-n System)

A system which is functioning if and only if at least £ out of 7 of its components are
functioning, is called a k-out-of-n system. In terms of comparability, a series system is
a n-out-of-n system and a parallel system is a l-out-of-n system. Hence one can say
that k-out-of-n systems is a generalization of both series and parallel systems. The

structure function of a k-out-of-n system can be given as follows,

(2.6)

‘ 1 if > >k
o)=L M Lmn =t
0 if Zi:l x;, <k

The reliability block diagram of a 2-out-of-3 structure is provided in Figure 2.3 for

illustration.

12
1 3

. O— .
2 3

—(O0—0—

Figure 2.3 Structure of a 2-out-of-3 system

Definition 2.1 (Monotone System)

A system is said to be monotone if



1. Its structure function ¢ is nondecreasing in each argument, and

ii. ¢(1) =1and ¢(0)=0.

The first argument says that a system cannot deteriorate by improving the state of a
component, namely by replacing a failed component with a functioning one. The
second argument says that the system is in functioning state if all the components are

functioning at the moment and in failed state if all the components are failed.

Let (I;,z) = (21, .., 21,0, %is1, . . ., T, ) denote the state of ith component [ € {0, 1}.

Definition 2.2 (Coherent System)
A system is said to be coherent if
1. Its structure function ¢ is nondecreasing in each argument, and
ii. Each component is relevant, i.e., there exists at least one vector (.;, ) such that

&(1;,z) = 1 and ¢(0;, ) = 0.

Detailed information on these definitions can be found in Barlow and Proschan [1].

Definition 2.3 (Minimal Path Set)
A state vector z is called a minimal path vector if
i. ¢(r)=1and
ii. o(y)=0forally < z.
If = is a minimal path vector, then the set A = {i : z; = 1} is called a minimal path set.
In other words, a minimal path set is a minimal set of components whose functioning

ensures the functioning of the system.

Let P = {P,..., P} denote the minimal path sets of a given system. We define o;(x),

the indicator function of the jth minimal path set, by



() 1, 1if all the components of P; are functioning
o \r) =
! 0, otherwise

It follows that the system will function if all the components of at least one minimal

path set are functioning; that is c;(x) = 1 for some j. Hence,

6(z) = {1, if a;(x) = 1 for some j

0, ifa;(z)=0forallj

or equivalently
2.7

Definition 2.4 (Minimal Cut Set)
A state vector x is called a minimal cut vector if
i. ¢(x)=0and
ii. ¢(y)=1forally > x.
If x is a minimal cut vector, then the set C' = {i : 2; = 0} is called a minimal cut set. In
other words, a minimal cut set is a minimal set of components whose failure ensures the

failure of the system.

Let C'= {C4,...,C,} denote the minimal cut sets of a given system. We define (3;(z),

the indicator function of the jth minimal cut set, by



B:(x) {1, if at least one component of C’; is functioning
J‘ pu—

0, if all the components of C; are not functioning

= max ;.
icC;

Since a system is not functioning if and only if all the components of at least one

minimal cut set are not functioning, it follows that

(2.8)

Figure 2.4 The bridge system

The system structure is as illustrated in Figure 2.4. The minimal path sets are
{1,4}, {1,3,5}, {2.5}, and {2,3,4}. Hence by equation (2.7), its structure function

may be expressed as
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o(x) = max{z12y, ¥173T5, TaTs, ToT3T4 }
=1- (1 — T1T4)(1 — T1T3T5)(]_ — 172[1?5)(1 — I2I3174).

2 2
= ToX3T4 + T2T5 — ToX523L4 + T1X3T5 — T1T3T5T204
. 9
+ le%ﬁ,ﬁm — azlxix213 — T T4 LT — rlriﬁx%xi
2.2 2 2.2 9 2 2
+ D1 X4T5X523 — TIT41T3T5 + TIT4T3T500 + T1T1T3L5T2

o2
— X1X3L5L2.

The minimal cut sets of the bridge system are {1,2}, {1.3,5}, {4,5}, and {2,3,4}.
Hence, from equation (2.8), the structure function of a bridge system can be given as

follows

¢(x) = max(zy, x2) max(xy, x3, r5) max(x,, 5) max(zy, r3, 1)
=[1—(1—z)(1 —z)J[1 = (1 — z1)(1 — z3)(1 — x5)]
X[ (1= 2= )1 — (1 - 2)(1 — 25)(1 — 2)]

2 2
= T9X3Tq + X2ls — T5X5L3T1 + T XT3T5 — T1T3X5T2T4

2 2.2 12 ) , 2.2 2.9 9

2,2, 2

22, 2. . . 2o 2,
+ 1T T5X5T3 — TIL4T3T5 + TITYX3T502 + T]X4T3T5Xo

- lfl.ib'gll}gl'g.

2.2 SYSTEM RELIABILITY

We assign each component a random variable X;(f), denoting the state of the ith

component at time ¢, such that,

PLX(1) = 1} = p(t) = 1 - P{X,(1) = O}, 2.9)
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Here the value p;(t) is called the reliability of the ith component at time ¢. If we define

r by
r=P{p(X(t)) =1}, where X(t)=(X1(t),...,X.(t)), (2.10)

then 7 is called the reliability of the system. By assuming that the random variables
X;(t) are independent than each other, we can express 7 as a function of component

reliabilities p;(¢), i = 1,...,n. Thatis,

r=r(p(t)), where p(t)=(pi(t),...,pa(t)). 2.11)

This function is known as the reliability function. We now provide system reliability
function for some coherent and noncoherent structures with components having

exponential lifetimes.

2.2.1 Series Systems

Assuming that the components fail exponentially with rate A;, the reliability function of

the series system of n independent components is given by

r(p(t) = P{o(X(?) = 1}

= P{X;(t)=1foralli=1,...,n}
(2.12)

n
_ | |€—)\Zt.
i=1
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2.2.2 Serial Connection of Redundant Subsystems

The reliability function of serially connected n redundant subsystems with each
subsystem having n;, 7 = 1, ..., independent identical components with exponential

failure rate Aj, is given by

(1) = [ Pox () = 1)
- ﬁP{X;Z(t) =0forsomei=1,...,n;}
j=1 (2.13)

=[[@-P{xi(t) = 0foralli =1,...,n;})
§=1

= H(l — (1 — e7Ntym),

2.2.3 Serial Connection of k-out-of-n Subsystems

Consider 7 serially connected k-out-of-n subsystems. Subsystem j consists of 7;
identical components with exponential failure rates A;, and requires the functionality of

k; of its components to survive. Reliability of this system is given below.

TIPS X0 2 k) (2.14)
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2.2.4 Serial Connection of Standby Redundant Subsystems

It 1s well known that a standby redundant system is not a coherent system. Consider
serially connected 7 standby redundant subsystems. Each subsystem has 7,
Jj =1,...,n independent identical components with exponential failure rate A;. The

reliability function of such a system is given by,

- [T Ptoce®) =11

nonml ” (2.15)

Sipp—

7=1 r=0

2.3 SYSTEM MEAN TIME TO FAILURE

2.3.1 Coherent Systems

Consider a system that consists of 7 subsystems and each subsystem is composed of
identical components. Each component of subsystem j fails independently and
exponentially with rate A;. If L is the random variable for the system lifetime, then
E[L] denotes the expected lifetime or Mean Time To Failure (MTTF) of the system and
r(p(t)) = P{o(X(t)) =1} = P{L > t} denotes the system reliability expressed as a
function  of  component  reliabilities,  where  p(t) = (p1(t),...,Pn(t))
= (e7Mt ... e*?). Then the relation between the system's expected lifetime and

reliability can be given as

+oo

BlL) = /Om P{L>ndi= | o) (2.16)

0

LetS={xecl™:¢(x)=1} CI™and FF = {xz € I'": ¢(x) = 0} C I" denote the set

of all path and cut vectors respectively. For any state z € I™, let Cy(z) = {k : 2, = 1}
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denote the set of functioning components and Cy(x) = {k : zx = 0} denote the set of

failed components. Now we can equivalently represent the structure function (2.7) as

follows
ooy =1-JJ0= [T =0=D_C I =oC [T == @17
2€P i€C(2) yesS ieCi(y) J€Ca(y)
By substituting
ICo () k
IITa-=n=> v > ] (2.18)
F€Co(y) k=0 J1:92, 3k €C0 (y) n=1

we can equally represent (2.17) by

o) = Z (—1)k Z H %5, (2.19)

yeS k=0 J1:925,Jk€C0 (y) 1€C1(y),

n=1,....k

where ¢ # j,, for all i € C1(y) and 7, € Cy(y), and J1,J2, .- ., jx € Co(y) represents k
different combinations of the elements of Cy(y). Now assuming that
1. components fail exponentially and independent than each other,
ii. failed components are repaired immediately and separately after a system break
down [2],

we can give the explicit reliability function of a coherent system [3] by

|Co(y)] - (Zigcl(y)()\ﬁ‘)\jn))
P{L>ty=>" > (=1)) > e \ i=lLak . (2.20)

yeS k=0 J1,d2,--3€Co (1)
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by taking the definite integral of reliability function (2.16), we can express MTTF of a

coherent system as follows

|Co(y)]

ElL] =Y ST PO P RN I (2.21)

yesS k= J1:72536€C(Y) | 1€C1(2
=1

11111

=

)
k
2.3.2 Series Systems

The reliability and expected system lifetime of a series system consisting of n

components can be given as

P{L >t} —¢~Mttdnlt, (2.22)

1

E[l) = .
U

(2.23)

2.3.3 Serial Connection of Redundant Subsystems

Assuming that each subsystem consists of 7; identical components, the reliability and

expected system lifetime of a serial connection of redundant subsystems can be given as

ri=1 rn=1s1=r1 Sn=rn

% (nn) (571) (_1)577"67(51/\1+...+5n>\n)t?
Sn Tn

(2.24)



16

ri=1 ra=1s1=r1 Sp=Tn

G )

Here s =s1+ ... +sp,andr =r  + ... + 7y,

(2.25)

2.3.4 Serial Connection of k-out-of-n Subsystems

MTTF of k-out-of-n systems is analyzed in [4]. The author assumes that all lifetimes
and repair times are independent and exponentially distributed, there are enough
repairmen for all failed components and replacement for a component starts
immediately after failure. = Assuming each subsystem consists of 7; identical
components, expected lifetime of the serial connection of k-out-of-n subsystems can be

derived from the reliability function such as given below.

PL=-3 -3 3 .. % <’le><2>

ri=ki rn=kn $S1=71 Spn="n

(2.26)
% (nn) <5n> (—1)8_/’46_(51)\14—“-4-5”)%){(,
s” r’L
ni Nn n Tin Ny S1
pr=Y 3 e (M)
r1=k1 rn=kpn S1=71 Sn="n
(2.27)

) (Z:> (i:> =0 (51)\1 + - 1 + Sn/\n> '
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2.3.5 Serial Connection of Standby Redundant Subsystems

It is well-known that the structure function of this kind of systems is not coherent.

Therefore, the results in the previous sections are not applicable.

However, by

assuming that all components have exponential lifetimes and the components in each

subsystem are identical [5], system reliability can be expressed explicitly. Suppose that

there are m subsystems and subsystem k consists of 7 identical components with

exponential failure rates Ay.

and hence expected system lifetime as [3]

and

m np—1

PiL>g =Y 2L e A’J

k=1 rp=0

ni—1 Ny —1 )\7“1

=2 ) oo

r1=0 rn=0

ni—1 T —1 )\7“1

(/\1+ A fritetrm

A (e )]

=22

r1=0 rn—O

2.4 SYSTEM AVAILABILITY

(A

.+ An)”‘l-‘r----l-"‘w,-‘rl ’

Then one can explicitly express system reliability (2.15),

(2.28)

(2.29)

Assuming that all component lifetimes and repair times are exponential, availability can

be determined using Markovian analysis.

The states of the corresponding Markov

process will depend on the system structure and we need to find limiting distribution. In

this section availability functions of coherent systems and non-coherent systems are

derived by Cekyay and Ozekici [3] using the Markovian analysis.
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2.4.1 Coherent Systems

Let F's={xc I":(l;,z) € Sforsomei=1,...,n} for any « € I". It is assumed
that the repair starts when the system enters some state = € [y, which takes an
exponentially distributed amount of time with some rate /1, > 0. After the repairing
process, all of the components are in functioning state. Let T = (1,...,1) represent the
perfect state. Now we can say that the states of the system follow a Markov process
with state space £ = .S U Fjs since all lifetimes and repair times are exponential. We
need to find the limiting distribution to express system availability in terms of

component failure rates. Therefore we need to solve the system of linear equations

n
’/TTE A = E T fbass
k=1

rE€lg
Tx Z )\j = Z W(lj,m)/\j; Vr € S\{T}
JjeCi(x) Jj€Co(x)
(2.30)
Tole = ), T0, Vo€ F,

jECO(LK)}
(1]‘,32)65

PR DEE

x€S zelg

Then we can give the system availability in terms of functioning states as follows

A=N"nr, (2.31)

res

Note that since p, > 0 for all * € Fs and A\, > 0 for all K =1,....n, the embedded
Markov chain is irreducible with non-null recurrent states. Hence, the system of linear

equations (2.30) has a unique solution [3].

As the serial connection of series subsystems, passive redundant subsystems and #-out-
of-n subsystems falls under coherent system category, their availability can be

formulated using (2.30) and (2.31).
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2.4.2 Series Systems

Let’s consider the series system of 7 components and assume that all component 7 fails
exponentially with failure rate A;. Let the state space represent the number of available

components in each subsystem such that

E={(i,...,in):4; =0,1, 7 =1,...,n where i; = 0 for only one j}.

System starts in the initial state 1 = (1,...,1) and it will be repaired whenever one of
its components j enters a failure state with 1; = 0. We can give the failure states in

terms of a failed component j by
Fj:{;L’EE:;r:j:Oandxizl, v17éj}

and all of the failure states by

It takes an exponentially distributed amount of time with some rate u, > 0, for all
x € Fg, to repair the system upon entering the failure state. It is clear that states of the
system follow a Markov process with state space £ = S U Fy since all lifetimes and
repair times are exponentially distributed and the limiting distribution can be found by

solving the system of linear equations

WﬁZAi = Z Tafle,
i=1
Ty mhi= ) e (l+a)N, @ eS\{T},
2 (2.32)

Mofby = 7T(1+7I))\j, ret;, j=1...n,

ZFW"’ZW.T:L

zesS z€Fg
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where O(z) ={j:z; <1} and (1],2)=(21,...,2_1,2;+ L, 2541,...,2,) for

z e F.

Availability function can be formulated with (2.31), using the solution of (2.32)

2.4.3 Serial Connection of Redundant Subsystems

Let’s consider the serial connection of n redundant subsystems each of which is
consisting 71; identical components and assume that all components of subsystem j fail
exponentially with failure rate A;. Let the state space represent the number of available

components in each subsystem such that

E={(i1,. .. in):4;,=0,....n;,j =1,...,n where i; = 0 for only one j}.

System starts in the initial state 7 = (n1. ..., n,) and it will be repaired whenever one
of its subsystems j enters a failure state with ¢; = 0. We can give the failure states in

terms of a failed subsystem 7 by

Fi={x € E:xz;=0andx; > 1, Vi # j}.

Repairing takes an exponentially distributed amount of time with some rate ., > 0
whenever system enters a state * € Flg = U=, We can determine the limiting
distribution using Markov process with state space £ = S U Fs by solving the system

of linear equations
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n
Trﬁg niA; = E Tz,
i—=1

r€Fs
Ty A= Y, T (LT, we S\ (7}
i=1 jcO(x) ! (233)
Toply = T+ ;L-)>‘j7 el j7=1,...,n,
‘]7
I

eSS z€Fy

where O(x) = {j:z; <1}. We need to obtain the solution of (2.33), before

formulating availability function using (2.31).

2.4.4 Serial Connection of k-out-of-n Subsystems

Let’s consider the serial connection of n k-out-of-n subsystems and assume that all
components of subsystem j fail exponentially with failure rate A;. Let the state space

represent the number of available components in each subsystem such that

E={(,....,in) 4=k —1,...,n;,7 =1,...,n where ¢; = k; — 1 for only one j}.

System starts in the initial state @ = (nq,...,n,) and it will be repaired whenever one
of its subsystems j enters a failure state with ¢; = k; — 1. We can give the failure states

in terms of a failed subsystem j by

Fj={zxcE:ax;=k;—landz; > k;, Vi#j}.

and it takes an exponentially distributed amount of time with some rate p, > 0, for all
x € I, to repair the system thereafter. Again the states of the system follow a Markov
process with state space £ = S U Fg and the limiting distribution can be found by

solving the system of linear equations
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n
Trﬁg niA; = E Tz,
i—=1

r€Fs
Ty A= Y, T (LT, we S\ (7}
=1 jeo@) (2.34)

Tophy = 7T(1j+

Z?TI+Z7T$:1.

eSS z€Fy

kihj, welk; j=1,...,n,

I;L)

where O(z) = {j : =; < k;}. After obtaining the solution of (2.34), we can formulate
availability function using (2.31).

2.4.5 Serial Connection of Standby Redundant Subsystems

We inspect a system of 7 serially connected standby redundant subsystems each having

n; identical components. Let the state space is represented as follows

E={(i1,...,in) 14, =0,1,...,n;,7 =1,...,n where ¢; = 0 for only one j }

and the failure states in terms of subsystem j fails

Fy={zc€FE:z;=0andz; > 1foralli # j}.

It is obvious that the system fails whenever it enters a state * € Fs = U;—; _ ,F} and it

-----

takes an exponentially distributed time /+, > 0 to get the system fully operational. We

can formulate availability function using (2.31) upon solving the set of linear equations
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Wﬁi )\i = Z Txlz,
i=1

xv€Fg
T A=Y Tarmhic @ €S\ {mh, )35

7T$M13:7T(1+,w)Ajj LL‘EFj,j:l,..../’n,

ZWJE—Q—ZWQC:L

zeSs reFg

In the following chapters, we are going to assume that /1, = 1 Vx € Fs without loss of

generality



3 SYSTEM-BASED COMPONENT TESTING PROBLEM

Let p(\) denote some performance measure for a system with n components and
component failure rate vector A = (Ay,..., A,). Then the component testing problem

can be stated in terms of the hypothesis testing problem

Ho:p(A) < p1, Hi:p(A) > ps (3.1

where p1 and p2 indicate unacceptable and acceptable system performance levels
respectively (p1 < p2 by definition). It is widely known that two errors can occur when
testing a hypothesis. Type I error is known as rejecting 1y when Hj is true and type 11

error is rejecting H, when H, is true.

Our focus is to devise a model that minimizes the total component testing cost, while
assuring type I and type II error probabilities to be less than desirable levels. Let o and
3 denote the upper bounds on type I and type II errors. Let also t; denotes the test time,
c; the non-negative test cost and N; the number of failures of component j, and m the
upper bound on the total number of component failures. Then the system-based

component testing problem can be formulated as

min ZFl et (3.2)
s.t.
P [ Reject Hy|Hg is true | < «, (3.3)
P [ Reject Hy|H; istrue | < 3. (3.4)

t;,20,j=1...,n (3.5



25

This problem was first mentioned by Gal [6]. In this work, the author proposes to
minimize total component testing cost, Z?Zl c;t;, for a system where a certain

unacceptable reliability level, /7y, needs to be demonstrated at 1 — a confidence interval
(3.3). He also assumes exponential life distributions for components. Mazumdar [7]
extends Gal’s model by also considering an acceptable system reliability level [; that
needs to be demonstrated at a specified confidence, 1 — /3. This boils down to including
constraint (3.4) in his model. Further, instead of accepting a system if and only if there

are no component failures during the test as Gal did (m = 0), Mazumdar proposes to

accept a system if the total number of component failures b N;, is less than a
p Y p H Jj=1*"7

threshold value, say Zle N; < m, and reject otherwise. This rule is referred as “sum

2

rule”. Note that this is a generalization of Gal’s rule, which he considers the case
m = 0 only. Easterling et al. [8] give a justification for using the sum rule for a series

system.

Using the sum rule, Mazumdar provides an algorithm to compute optimum number of
component failures, m”, which minimizes the total component testing cost, also meets
the unacceptable and acceptable reliability levels. He gives two numerical examples; a
series system and a series system with redundant subsystems with the assumption of

component lifetimes are independently exponentially distributed.

In their respective formulations, both Gal [6] and Mazumdar [7] show that for a series
system, the optimum component test times are independent of component test costs and
are identical. They both assume that no prior information is available about component
reliabilities. Altinel [9] considers the case where some prior information on component
reliabilities exists as a mean of setting upper bounds on component failure rates. With
the use of this prior information, he shows that the optimum component test times are
not identical, and the use of such information also leads to reduced total test cost. He
also develops a procedure to compute optimum component test times. Altinel and
Ozekici [10] extend these results to a dynamically changing environment where these
upper bounds on component failure rates change with respect to time. For modeling

this concept, they introduce arbitrary distributions for component failure rates which can



26

be approximated by distributions that have piecewise constant failure rates. This is
accomplished through a dynamic environmental process that modulates component
failure rates. Since the failure rate of each component is constant during any
environment, components still fail exponentially. However, the failure rates change
whenever the state of the environment changes. Therefore, lifetime distributions are not
necessarily exponential, but the piecewise constant structure of the failure rates is
exploited to obtain tractable expressions for the reliability function at the expense of an
enlarged set of failure rates. A major assumption of the previous formulations of
system-based component test problem is the independence of component failure rates,
which is a rather restrictive and unrealistic assumption for most cases. Altinel and
Ozekici [11] use an interesting model of stochastic component dependence introduced
by Cmlar and Ozekici [12] and generalize these results further in order to compute
optimum component test times with dependent components. In all of the above models
the system is assumed nonrepairable, hence no maintenance is done throughout the
mission time. Altinel et al. [13] introduce missions that involve a sequence of stages
where a maintenance operation is carried away in the beginning of each stage. This
maintenance operation consists of checking the device and replacing failed components
with identical ones so that the functioning state of the system at the start of each stage is
preserved. Altinel et al. [14] analyze the case where there is a given set of missions and
the device can be assigned randomly to these missions. Feyzioglu et al. [15-16] extends
the variety of systems considered by including k-out-of-n and standby redundant
subsystems. They also show that serial connection of different subsystems can also be

modeled for both single and multi-phased missions.

3.1 FORMULATION

Let us reconsider the system-based component testing problem given in (3.2) - (3.4)
with some performance measure p(A) needs to be demonstrated at 1 — « and 1 — 3

levels.



27

min ijl cits, (3.6)
S.t.
P [ Reject Hy|Hy is true | = {Z N; <m|p(A) < } < a (3.7)
P Reject H,|H, is true | {Zn N; >m|pA) > p } < j. (3.8)
t;>0,5=1....n (3.9

We denote Al = {A eRY |p(A) <p } and A% = {)\ eRY | p(A) 2 p2}, as the feasible
failure rate sets satisfying constraints (3.7) and (3.8), respectively. We also assume that
some prior information as lower and upper bounds on each component’s failure rate
exists and is obtained without additional costs. With this information, we can rewrite

the feasible failure rate sets A' and A? as
S(p") ={NeR}|p(N) <p' lb; <X;<ub; j=1,...,n} (3.10)
and
={NeR}|p(N) > p* lb; <Xj<ub; j=1,...,n} (3.11)

respectively. Assuming that all components fail exponentially, /V; is Poisson distributed

with mean \;t;, and )7, Nj is Poisson distributed with mean Y7, Ajt;. If §(p') and

6(p*), are nonempty, there exists at least one solution to the system (3.6) - (3.9). The
probability constraints (3.7) and (3.8) are surely guaranteed for all feasible A vectors if

they are modified as

max P [Zn, N; < m} <a (3.12)

Ae3(p) j=1

and
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min P [Z::l N; < m} >1- 4. (3.13)

AEG(p?)

Let Y be a Poisson random variable with parameter ¥ and ¢,,(y) = P [Y < m] denotes
the cumulative Poisson distribution function. Then P[> 77_, N; < m| = ¢, (3 77_; Ajit;)
is the system acceptance probability and we can rearrange the probability constraints

(3.12) and (3.13) as

ax on (30 At) <a .
A (ZH i) <a (3.14)
and
' , oAt >1 -
i e (Zj:l Aﬂb) >1-4. (3.15)

As @, (y) is strictly decreasing and continuous for a given value of m, it is also
invertible with respect to y. Let A,,, be the Poisson parameter value for which

©m (Ay,m) = 7. Therefore (3.14) and (3.15) can be further arranged as

and
. " 4. .
R Ajti < Ar-gm (3.17)

With this inversion, the problem given in (3.6) - (3.9) can be reformulated as follows:
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P(m) }
min ijl it jams (3.18)
s.t.
min {Z;L:1 )\jt]‘,.’n ‘ A€ (5(/01)} 2 A(,t,mv (319)
ma { D" At [A € 350} < A, (3.20)
tim=>0 73=A{1,...,n} (3.21)

The solution of P(m) is denoted by {#},, : 7 = {1,...,n}}. These are the component
test times which yields the minimum total component testing cost for a given value of
m, and z; 1is the associated total test cost. Then the minimum total test cost is
2=z =min{z), :m =1,2,...} and it is obtained by solving P(m) parametrically
with respect to m. Then the optimum component test times {t} : j = {1,...,n}} is the
optimal solution of P(m*). In the following chapters, optimization problems on the left

hand side of (3.19) and (3.20) are referred as type I and type II problems.

3.2 FORMULATION WITH MULTIPLE PERFORMANCE MEASURES

Let us reconsider the system-based component testing problem in the following multiple
performance measure formulations. Let Z = {R, M, A} denote the set of performance
measures, R denotes system reliability, M denotes system expected lifetime and A
denotes system availability, respectively.  Furthermore let pr(\) = P{L > t},
pam(X) = E[L] and pa(X) = A. Let p} and pj, denote unacceptable and acceptable
performance levels for each performance measure [ € Z, respectively. The multiple
performance measures formulation can be handled using two approaches. Either we can
formulate one type I and one type II problem with | Z| performance constraints each, or
we can separately formulate |Z| type I and type II problems each one capturing the
unacceptable and acceptable performance levels of one performance measure,

respectively.
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3.2.1 Joint Multiple Performance Measures Formulation

Now let’s consider P(m) given in (3.18) - (3.21). One can formulate the multiple
performance measure system-based component testing problem as a Joint Multiple

Performance Measure (abbreviated as JMPM so forth) formulation given below,

P'(m) :
min ijl Citims (3.22)
s.t.
min {Zj:l Ntjm | A€ 8 (PR, Phrs pfq)}} > Aams (3.23)
max {3 Atin |A € 0 (08 3 0} | < M (3.24)
tim=>07=A{L,...,n} (3.25)
where

(P pag- P) = {AERL (X)) < pj, V€ Z, 1b; < XNy <wbj,j=1,....n}, (3.26)

' (% Par- p2) = {A ERL | pi(N) > pf VL€ Z0b; < X <ubjj=1....,n}, (327)

denote the set of feasible failure rate vectors, respectively.

3.2.2 Separate Multiple Performance Measures Formulation

Instead of taking the intersection of |Z| performance measures, one can convert P(m)
given in (3.18) - (3.21) to a multiple performance measure test problem considering
each performance measure separately. Hence forming | Z| type I and type II problems

and generating columns by solving each of these optimization problems separately.
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P"(m) -
min Z;; it (3.28)
s.t.
min {Z'::l Mt | X € 5(/);)} > Ny V€ Z, (3.29)
max {Z; Atim | A € 5@%)} <o, YIEZ (3.30)
b >0 5=1{1,....n}. (3.31)

We will call P”(m) as the Separate Multiple Performance Measures (abbreviated as
SMPM so forth) formulation. It is especially useful when the JMPM formulation

becomes difficult to solve.

3.3 SOLUTION PROCEDURE

The optimization problem P(m) given in (3.18) - (3.21) has finitely many variables and
infinitely many constraints. In other words, it is a semi-infinite linear programming
problem. We now give a brief description of a solution procedure which solve this type

of problems and which is also based on earlier works of Altinel [17-18].

With a computational point of view, we assume that 6(p') and d(p?) are finite sets, in
other words [} € 6(p') and f? € 6;(p?) for every i € F' and i € I'?, respectively. This
discretization strategy is also used to solve other semi-infinite linear programming
problems effectively [19]. Let PP(m) and DP(m) denote the primal and dual

problems associated with P(m). Then

PP(m) :
min - Y ot (3.32)
j:
S.t.
Z; fltim > Aam i€ F' (dual variable 7)), (3.33)
Z;l Foitim < AMpm i€ F* (dual variable 72), (3.34)

tim 20§ ={L,....n}. (3.35)



32

1 2
maXx ZieFl )\11:,777,77_1' - ZiEFQ )\1,’(]77"71—1- . (3.36)

ZieFl fagm = Z@Q fmi<e  j={L....n} (3.37)
m>0ie 7P >0ie€F?, (3.38)

Here, if /! and F** are finite and chosen so that the component test times which solve
P(m) to optimality are in the feasible solution set of PP(m), then solving DP(m)
solves P(m). A close investigation shows that it is more convenient to work on D P(m)
since the number of columns can be substantially larger than the number of rows.
Moreover, DP(m) is always feasible for all m € N given that test costs ¢; are non-

negative in (3.32).

The formulation of DP(m) allows us also to introduce nonnegative slack variables for
each row, hence (n x n) identity matrix as a basis for DP(m). The solution algorithm
proposed here is based on the general cutting plane method for convex programs
combined with the column generation technique. Starting with empty £! and £ or
equivalently unconstrained PP(m), we generate new linear inequalities and solving
PP(m) until an e—optimal solution (more precisely, a solution arbitrarily close to the
optimal solution) is obtained. Since adding a new constraint to P P(m) is equivalent to
adding a new variable to its dual DP(m), instead of solving P P(m) from scratch, we
solve DP(m) by using the revised simplex algorithm. The basis is updated by pivoting

on the new generated column to be added to the constraint matrix of D P (m).

Since DP(m) is always feasible, the procedure can stop only in two possible cases.
Either we detect the unboundedness of 1D P(m) or we solve it to optimality. It is well
known that the unboundedness of the dual problem means the infeasibility of the primal
problem. In other words, PP (m) is infeasible, and in turn, the original problem P(m)
is infeasible due to the fact that the current constraint set with indices F™* and F* is a

relaxation of the feasible set of P(m).
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When the above procedure does not stop, at least one column is generated and added to
the constraint matrix of D P(m), and then the optimum solution of updated DP(m) is
found. By the linear programming duality, the optimum dual solution of DFP(m) with
this new column set is the optimum solution of P P(m) with the new constraint set. The
above procedure stops after computing an e —optimal solution of DP(m). This implies
that the current optimal solution is also optimal for any larger column sets containing
the current column set as a subset. Hence the dual of an e—optimal solution of DP(m)
is an e—optimal solution of PP(m); it is in fact an e—optimal solution of the semi-

infinite linear programming problem P(m).

Let us consider D P(m) for a given set of columns with indices F* and F*, and assume
that it is bounded. Then, the simplex algorithm stops if and only if the reduced cost
z;—h; >0 for all nonbasic columns of DP(m), or equivalently
min{z; — h; : for every nonbasic j} > 0 (here h is used to avoid confusion with the
unit test cost vector ¢). We observe that the index of a nonbasic column can be either in
F' or in F?. Moreover, h; = Ap(a) for all j € F*, and h; = —An(1— ) for all
7 € F2. Then, by denoting an optimal solution of DP(m) by w?, and using the fact that

tr. = w; , we can write the stopping condition of the simplex algorithm as

(minfy,tr, > Ay (a) AND minfi ity > =X, (1 — 8)) (3.39)

i€F1T m iEF?2
or equivalently as

(minf} t7, > An(e) AND maxf; tl, < Au(1— 5)). (3.40)
el €2

If we slightly modify this stopping condition to consider all possible nonbasic columns,
which are to be generated from the feasible failure rate sets d(p') and d(p?), then the
simplex algorithm stops if and only if type I and type II constraints given as inequalities
(3.19) and (3.20) in the original formulation of P(m) are satisfied, or equivalently, if
and only if
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ain 5 A > A, (o) AND £ A< Al = 3)). 41
(Alééﬁﬁ) mA = A () e ( ) (3.41)

This condition requires the solution of two optimization problems in A, whose objective
coefficients are the current optimal dual solution of P(m). Any optimum solution of
these two optimization problems which violate its related inequality (3.41) generates a
new column to be added to the constraint matrix of DP(m), which is a new cut for
PP(m). This procedure is more formally illustrated in the next algorithm proposed by

Altmel [17].

Algorithm 3.1 Column generation algorithm to solve P(m).

Step 0. Input p', p% Am(c), Am(1 — 3), ¢, Ib, ub; Initialize dual solution w?, « 0,
inverse basis By ' < I(;xe)(nxe), dual objective z;, < 0 and iteration counter i « 1;
Step 1. zjm «— min{w® A : A € §(p')} and call the optimum solution f{;
2+ max{wiA: A € 6(p?)} and call the optimum solution f};
Step 2. if (2], = Au(a) AND 23 < \u(1— 3))
STOP, t;, = w:‘n are the optimum component test times and z;,, = z}‘;m is

the minimum total test cost for this value of m;

else
UPDATE B; ! with f%, fi as two new columns;
UPDATE dual solution w;“n,
11+ 1

end if

Step 3. Solve D P;(m) with inverse basis B, ;

Step 4. if DP;(m) is BOUNDED, go to Step 1;
else, STOP and output “INFEASIBLE m”;
end if
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We must also search for the optimum value of m to compute the optimum test times.
As it is explained in Altmmel [17], 2z}, is approximately a convex function of m.
Consequently, it is possible to search for m*, the value of m for which 27, < 2, | holds
for the first time, starting from m = 0 by using the column generation algorithm for
computing 27, values. We can assume that z}, = oo for any value of m, DP(m) is
unbounded, or equivalently PP(m) is infeasible. Although this does not always
guarantee the optimum solution, stopping at the first 7 that minimize PP(m) turns out

to be a good heuristic rule in practice.



4 SOLUTION METHODS TO SOLVE SUBPROBLEMS

Within the general solution framework given above, it is required to optimally solve
type 1 and type II problems explicitly. Most of the time, these subproblems are
nonconvex. Feyzioglu et al. [16] proves that the reliability functions given in (2.12) -
(2.15) log-concave functions. This means after taking the natural logarithm of the
reliability constraint, type I problem becomes a linear reverse convex optimization
problem and type II problem becomes a convex minimization problem. We also exploit
this structure and solve subproblems involving reliability constraints with an outer
approximation procedure proposed by Horst and Tuy [20]. MTTF functions given in
(2.21), (2.23), (2.25), (2.27) and (2.29) and availability functions constructed from the
limiting distributions (2.30), (2.32), (2.33), (2.34) and (2.35) can be also transformed to
a difference of two convex functions with algebraic manipulations. But the resulting
optimization problems are rather complicated to solve after these derivations. By
rearranging the terms appropriately, MTTF functions can be reformulated as a ratio of
two posynomials [3]. To illustrate, consider the serial connection of one 2-out-of-3 and

one 3-out-of-4 subsystems:

Bl = 12 9 8 N 6
2N +3h 20\ +4h 3A +3Xs 3A\ +4)

B 30A3 4+ 175A2\; + 2450 A2 + 8473
"~ 36AT+ 210ATA; + 450MZA2 + 4200, A3 + 144AT

Therefore, we can equivalently represent system expected lifetime as

LT -
Zu,:l Su H?:l )\j N

V b .2
Dot T H?:l A

E[L] = (4.1)
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where s, and 1, are positive coefficients, ¢,; and b,; are integer constant exponents. Let
1, denote the unacceptable level of MTTF and similarly p3; denote the acceptable level

of MTTF. Using general representation function given in (4.1), optimization problems

in (3.19) and (3.20) can be restated as

min itj)\j
=1
v
s.t. Z Suy H )\;“j — Py er ﬁ )\?” <0’

J=1
54 n 14 n
Uyy 2 bvj :
s.t. E Su H )\j — Py E Ty H )\j >0
u=1 7=1 =1 7=1

Both type I and type II problems are now Signomial Geometric Programming problems,
which can be solved globally using a branch and bound scheme described in Shen et al.

[21]. We describe the details of this algorithm in section 4.2.

This case also applies if availability is considered. Let us consider the serial connection
of a single component and a 2-out-of-3 subsystem. Using the limiting distribution

formulated in (2.30) for coherent systems, we need to solve the following system of

linear equations

m13(A1 + 3A2) = o3 + mo2 + i1,
m12(A1 + 2X2) = 3Agms,

To3 = A1T13,

To2 = A1T12,

11 = 2Aom12,

T3 + T2 + 7oz + mo2 + 11 = L.
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After obtaining the unique solution to the above system, we can formulate the

availability function from (2.31) as follows

A Az + Ay
© BAg+ 5A A + 6A3 + A + AT

It is clear that this availability function has the same structure with (4.1). Hence

availability sub problems can be handled using the same procedure.

41 DCPROGRAMMING

4.1.1 DC Functions

Convexity is a nice property of functions which, unfortunately, is not preserved even
under such simple algebraic operations as scalar multiplication or lower envelope. Now
we give a brief definition to the d.c. structure (also called the complementary convex
structure) which is the common underlying mathematical structure of virtually all

nonconvex optimization problems [22].

Let S be a convex set in R”. We say that a function is d.c. on .S if it can be expressed as
the difference of two convex functions on S, ie. f(z) = fi(z) — f2(x), where

f1(z), f2(x) are convex functions on S.

An inequality of the form f(z) < 0, where the function f(z) is convex, is called a
convex inequality (because the set of all x satisfying this inequality is a convex set). If
f(z) is concave, then the inequality is called complementary convex or reverse convex
because its solution set is the complement of a convex set. Thus a reverse convex
inequality is of the form f(z) > 0, where f(z) is convex. If f(z) is a d.c. function then

the inequality f(z) < 0 is called a d.c. inequality. The following proposition shows the
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wide range of applicability of d.c. functions. Let C*(IR") denotes the class of functions

on R" continuously differentiable up to order &.

Proposition 4.1

Every function f € C*(R™) is d.c. on any compact convex set S C R™ [22].

However, it is not very easy to find the d.c. representation of a given function.
Introductory information on the d.c. decomposition of basic composite functions,
separable functions and polynomials can be found in the work of Horst and Tuy [20]. A
d.c. set S’ C R™ can be represented as S’ = {z : g(x) <0, h(z) > 0} where both
functions ¢, h: R™ — R are convex. In other words, S'=D\C where

D={z:9(x) <0}and C = {z : h(z) > 0}.

4.1.2 Canonical DC Programming

A global optimization problem is called a d.c. programming problem if it has the form,

Minimize go(x)
(DC) : ¢ subjectto  g;(x) <0, j=1,...,m, (4.2)
x e,

where C' C R” is convex and all functions g; are d.c. on C, which is usually given by a
set of convex inequalities. By introducing at most two additional variables, every d.c.
programming problem can be transformed into an equivalent canonical d.c.

programming (CDC) problem

Minimize f(z) = cx
(CDC) : { subjectto  g(z) <0 4.3)
h(z) >0

where ¢ € R”, and where h and g : R® — R are real valued convex functions on R".
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Let D ={z:¢9(x) <0} and C = {x: h(z) > 0}. If an optimal solution w of the
convex program min{cx : g(z) < 0} satisfies h(w) > 0, then the problem is solved.
However the reverse convex constraint is not essential in the problem. Therefore,

without loss of generality we may assume that there exists a point w satisfying

weintDNintC,  f(z) > f(w) Yre D\C (4.4)

The next important property is an immediate consequence of this assumption.

Proposition 4.2 (boundary property)
Every global optimal solution lies on D N oC [22].

Proof Let z¥ be any feasible solution. If 2% ¢ OC, then the line segment [w; 2°] meets
OC at a point z' = (1 — A)w + Az" such that 0 < A < 1. By convexity we have from

4.4), f(zH) < (1= XN)f(w) + Af(2°) < f(2°), so 2! is a better feasible solution than 2°.

Problem CDC is said to be regular if the feasible set S = D \ intC' is robust or, which

amounts to,

D\intC = cl(D\ C). (4.5)

Theorem 4.1 (global optimality condition)

In order that a feasible solution z to CDC be global optimal it is necessary that [22]

{reD: f(x) < f(z)} CC. (4.6)

This condition is also sufficient if the problem is regular. To exploit this optimality
criterion, it is convenient to introduce the next concept. Given € > 0, a vector Z is said

to be e-approximate optimal solution to CDC if
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TeD, hZ)>—c¢ 4.7)

f(@) <min{f(x):x e D, h(z) >0} (4.8)

Clearly as € — 0, any accumulation point of a sequence {Z"} of e-approximate optimal
solutions to CDC yields an exact global optimal solution. Therefore, in practice one
should be satisfied with an e-approximate optimal solution for € sufficiently small.
Denote C, = {z|h(z) < —¢}, D(v) = {z € D|f(z) <~}. Inview of (4.4) it is natural

to require that

w € intD NintC.,  f(z) > f(w) Vz e D\ intC, (4.9)

Define 7 = inf{f(x)|x € D,h(x) > —e}and let G = D(%), Q2 = D(%) \ intC,.

In view of (4.9) and Proposition 4.2, it is easily seen that {2 coincides with the set of e-
approximate optimal solutions of CDC, so the problem amounts to searching for a point
Z €€ Denote by P the family of polytopes P € R™ for which there exists
v € [¥, +oc] satisfying G C D(v) C P.

Consider the general problem of searching for an element of an unknown set € C R”
(for instance, € is the set of optimal solutions of a given problem). Suppose there exist
a closed set G O and a family P of polyhedrons P D (G, such that for each
polyhedron P € P a point z(P) € P (called a distinguished point associated with P)
can be defined satisfying the following conditions:

1. z(P) always exists and can be computed if {2 # 0, and whenever a sequence of
distinguished points ! = z(P,), *> = x(P»),..., converges to a point T € G
then T € Q (in particular, x(P) € G implies that x(P) € ).

2. Given any distinguished point z(P), P € P, we can recognize when z(P) € G
and if z(P) ¢ G, we can construct and affine function () (called a “cut”) such
that P' = PN {z|l(z) <0} € P and {(x) strictly separates x(F) from G, i..

satisfies
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(z(P) >0, I(z)<0VzeG. (4.10)

Figure 4.1 Outer approximation scheme for general nonconvex optimization.

Then, for every £’ € P, it is possible to define

z(P) € argmax{h(z)lx € V} (4.11)

Where V is the vertex set of . We now verify the use of outer approximation scheme
for problem CDC. First condition is obvious because z(P) exists and can be computed
provided 2 # 0; moreover, since P D G D Q, we must have h(x(P)) > —¢, so any
accumulation point T of a sequence z(P:), k =1,2,.. ., satisfies A(Z) > —¢, and hence
T € ) whenever Z € G. To verify second condition, let any x(P) associated to a
polytope P such that D(v) C P for some v € [y, +0oc|. Note that h(z(P)) > —e. If
h(z(P)) < 0 then max{h(x)|z € P} <0, hence D(v) C {z|h(z) < 0}, which implies
that v is an e-approximate optimal value if v < +oc or the problem is infeasible if
v = +o0. If h(z(P)) >0 then max{g(z(P)), h(z(P))+€} >0 and since

max{g(w), h(w) + ¢} < 0, we can compute a point ¥ such that

y € [w,z(P)], max{g(y),h(y) +e} =0 (4.12)
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Two cases are possible:

a. g(y) = 0:since g(w) < 0 this event may occur only if g(z(P)) > 0 and so
z(P) can be separated from G by a cut l(z) =p’(z —y) <0 with
p € 0g(x)/0z evaluated at y.

b. h(y) = —e: then g(y) < 0, so v is an e-approximate solution in the sense of
(4.7). Furthermore, since y = (1 — Mw + A\x(P) with 0 <A <1, it
follows that f(y) < (1 — A)f(w) + Af(z(P)) < f(z(P)), so (P) can be
separated from G by a cut I(z) =p’ (z —y) <0 with p € dg(x)/0z

evaluated at y.

In either case, if we set v/ = min{~, f(y)} then P' = PN {z|l(z) < 0} D D(¥), i.e.

P’ € P. Thus an outer approximation scheme can be applied to solve CDC [22].

Algorithm 4.1 OA algorithm for CDC.

Step 0. Let ! be the best feasible solution available, 71 = f(Z') (if no feasible solution
is known, set Z'=0, 7 =+4o0). Take a polytope Fy DD and let
Py = {z € Ry|f(z) <7 }. Determine the vertex set V; of Py. Set k = 1.
Step 1. Compute z* € argmax{h(z)|x € Vi}. If h(2*) < 0, then terminate:

a) If v, < +oo, T* is an e-approximate optimal solution.

b) If v, = +oc, the problem is infeasible.
Step 2. Compute y* € [w, 2*] such that max{g(y*), h(y*) + ¢} = 0. If g(y*) = 0 then
set Vie1 = W, %M = 7% and let

hiz) =" x -y, p*edglyh).

Step 3. If h(y*) = —¢ then set Yrr1 = min{y, f(v¥)}, T8 =% if f(y*) <,

k1 — 7% otherwise. Let

T
() = ("2 —yb), p* e af(yh).
Step 4. Compute the vertex set Vioy of Py = P N {x|li(z) <0}, setk «— k + 1and

go back to step 1.
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4.2 SIGNOMIAL GEOMETRIC PROGRAMMING

Signomial Geometric Programming (SGP) problem can be given as

Minimize Fg(x)
(SGP) : { subjectto F;(z) <0, j=1,..., M, (4.13)
reX =[z,7] CRY,

where

T N
Fy(x) =) dpap [, G =0.1,....04, (4.14)
t=1 =1

and «vj; is a positive and real coefficient; d;; = +1 or -1; 74 is an arbitrary real constant
exponent; x and T are /V-vectors with z > 0. In general, SGP corresponds to a

nonlinear optimization problem with nonconvex objective function and constraints.

SGP is a special nonlinear programming problem that has many applications in
engineering design [23-26], economics and statistics [27-30], manufacturing [31,32] and
chemical equilibrium [33,34]. There are many local optimization approaches for SGP,
however the global optimization algorithms based on the characteristic of SGP are
scarce. Maranas and Gloudas [33] proposed such a global optimization algorithm based
on the exponential variable transformation of SGP, the convex relaxation and branching
and bounding on some hyperrectangle region. By using linear relaxation, Shen and
Zhang [35] reduce the problem SGP to a sequence of linear programming problems
through successive refinement of a linear relaxation of feasible region using exponential
variable transformation, tangential hypersurfaces and convex envelop approximations.

They report efficient results for the global solution of SGP.

Another global optimization algorithm for SGP is proposed by Wang and Liang [36].

They use the popular exponential variable transformation to convert the problem into a
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Reverse Convex Programming RCP problem. Then by successively approximating
convex constraint with a linear constraint and using the linear relaxation of RCP, they
propose a convergent cutting-plane algorithm and give robust results for famous SGP
benchmark problems. However, Tuy [37] shows that the e-approximate solutions
offered by the above relaxation schemes quite often tend to be far from the actual global
optimum solution of SGP. Therefore, he proposes a DC programming and monotonic
optimization procedure for a robust solution of generalized nonconvex optimization
problems. Using the results due to Tuy, Shen et al. [38] provide another robust
optimization algorithm for the solution of SGP. However, the performance of their

algorithm varies on some of the problems encountered in literature.

Previous results in the global optimization of SGP using linear relaxation have been
gathered by Shen et al. [21]. They propose an acceleration method using a suitable
deletion technique. Their technique offers the possibility to cut away a significant
portion of the currently investigated feasible region which does not contain the global
minimum of SGP. Using the new deletion technique they report less number of
iterations and the execution time of their algorithm is significantly reduced. We
implement this algorithm for the solution of type I and type II problems consisting of

MTTF and availability functions.

We apply the exponent variable transformation = = exp(y) and equivalently represent

SGP as follows,

Minimize Uy(y)
(P1) : { subjectto V,(y) <0, j=1,...,M, (4.15)
ye Y’ =" 7" CRY,

where

N

T}
\Ijj (y) = Z 5jta_jt eXp(Z A//jl‘,iyi)7 ] = 01 17 cer A/[v (416)
t=1 1

7=
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4.2.1 Linear Relaxation

The principal construct in the development of a solution procedure for solving problem
P1 is the construction of a linear relaxation for obtaining the lower bound of the optimal
value for this problem, as well as for its partitioned subproblems. Such a linear
relaxation can be realized by lower estimating every convex term and upper estimating
ever concave term of each constraint, in either the initial bounds on the variables of the
problem, or modified bounds as defined for some partitioned subproblems in a branch

and bound scheme. In other words, this linear function is constructed by finding the

linear lower bound function of each implicitly separable term d;icvjq exp(ZfV:1 Vitili)s

j N o — u N _
Let Y = Zé\:l VitiYis let = 21:1 mln(%’tz’gia Vi) th = Z¢:1 max(%'tigia V;t:7;)
denote the lower and upper bound of Y}, in the hyper-rectangle Y; = [y, 7;] respectively.

Consider a function f;(y) = CXP(Z;\; Yiuyi) = exp(Yy) forany y € Y = [y, 7] € Yo,

where 7 = 0,1,..., M andt = 1,...,7}. Then the following statements are valid:
eap(Y) — ean(YV})

7 J

. Then,

l\r
95+ (y) = exp(Y),) + A (O vinvs — ) = exp(Y}) + Aje(YVe — i),
i=1
N

hie(y) = AL+ vy — InAjy) = Ap(1+ Yy — InAyy),

i=1

denote an affine concave envelope of fi:(y) and an affine function
corresponding to a supporting hyperplane of the graph of f;:(y) over Y parallel

to g;:(v), respectively. In other words,

hi(y) < fuly) < guly), VyeYy.
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ii. The differences Al (y) = g(y) — fu(y) and A%(y) = fuly) — hysly) satisfy

I}/lg{A]l-t(y) = Eflea);(A]Zt(y) = exp(Y})(1 — zj + 2y In z;,) where wj, = Y — Y},

exp(w;e) — 1

and z;; =
wjf

The details can be found in [35]. From this result, it follows that g;:(y) and hj:(y)
converge to f;:(y) as w; — 0. Now we can give the linear relaxation problem P2

related to P1 as follows:

Minimize W (y)

(P2): ¢ subjectto Whi(y) <0, j=1,...,M, (4.17)
yeY' =7 cRY
where
T
Wy) =3 apUh(y), j=0,1,... M, (4.18)
t—1
djih; if 0y =1,
Ui(y) = { jhiy) if 0 =1,

Sigin(y) if O =—1

Based on the above linear under-estimators, every feasible point of P1 in sub-domain Y’
is feasible for P2, and the objective function value of P2 is less than or equal to that of
P1 for all points in Y. Thus, the minimum of P2 provides a valid lower bound for the
globally optimal value of P1 over a partition set }Y'. Therefore we can use the linear
relaxation problem P2 to derive a lower bound of the solution of P1, which can be

calculated by solving P2 inside some rectangle defined by ¥ = (¥;)nx1 C Y with
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4.2.2 Deletion Technique

The accelerated deletion technique described in Shen et al. [21] is based upon on two
important global optimality theorems in some hyper rectangle space Y. We now give

brief descriptions of those theorems. To this end, let

To

/61 = Z 501‘/0501570&140157 L= 17 e N.

Theorem 4.2

Assume that ¥, is a known upper bound of the optimal objective value ¥} of P1, and let
Y = (Yi)wx1 with ¥; = [y..7;] be a sub-rectangle of Y. If there exists some index
m € {1,2,..., N} satisfying 3, > 0 and p,, < 5,,7,,, then there is no globally optimal
solution of P1 over Y'!; if 3,, < 0 and p,, < By, for some m then there is no globally

optimal solution of P1 over Y2 [21], where

N 1
Om = Wo — Z min{By . 37, } — Z doror Ao (1 — In Agy)

=1 t=1
z;ém 50t:1

— Z dorvor (exp( Ot) AOtYOt) m=1,...,N,

(SOt:*l
Y=Yy CY with V! = Z.f‘ @.7& m
(%7gm] ny; 'Zf 1= m,
V2= (Y N1 CY with Y7 = Z.f 2.75 m
| | [y’ﬁl “}rn) m }/; lf = m?
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Theorem 4.3

Assume that ¥ is a known upper bound of the optimal objective value ¥ of P1, and let
Y = (Yi)nx1 with Y; = [y..7;] be a sub-rectangle of Y. If there exists some index
m € {1,2,..., N} satisfying 3,, > 0 and 7, > 3,,y_, then there is no globally optimal
solution of P1 over Y?; if 3,, < 0 and 7., > /3,,7,,, for some m then there is no globally

optimal solution of P1 over Y [21], where

N

To
Tm = Yy — ZlﬂaX{/@igi: 3y} — Z 50ta0t(exp(yolt) - AOtYolt)

=1 =1
iFEm dgr=1
To
- Z 5QtOé()tA(]t(1 —In A()t); m = 1, C. 7]\‘7,
t=1
dor=—1
Y3 = (}/;‘3)[\7><1 g Y Wlth Y,:-g == ) [/.f4 L. # "
' ' ly .3=)NY, if i=m,
Yi— (Vi ya CY with Y= gorrm
’ ’ (=T NY: if i=m,

The proofs of Theorem 4.2 and Theorem 4.3 can be found in Shen et al. [21].

4.2.3 Branching

During each iteration of the algorithm, the branching process creates a more refined
partition that cannot yet be excluded from further consideration in searching for a
globally optimal solution of P1. In the branching process we are going to use simple
bisection rule which is defined in Shen and Zhang [35]. This rule is sufficient to ensure
convergence since it drives all the intervals shrinking to a singleton for all the variables.

Bisection branching rule can be given as follows.
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Consider any node sub-problem identified by the rectangle Y’ = [/, 7] C Y°. Let

p= f}igl}?}%{@’i — Y}

We partition Y’ by bisecting the interval [g; ,7,] into the sub-intervals [g; : (g; +7,)/2]

and [(g; +7,)/2,7,]. With the help of above definitions we can formulate the global

optimization algorithm proposed in Shen et al. [21]. Let LB(Y}) refer to the optimal
objective function value of P2 for the sub-rectangles Y* and " = y(Y'*) refer to an

element of corresponding argmin.

Algorithm 4.2 Modified branch and bound algorithm for SGP.

Step 0. Given a convergence tolerance ¢. > 0, a feasibility tolerance ¢ >0 and a
deleting tolerance €4 > 0; iteration counter £ = 1; the upper bound UB = +o0; the
active node set Qo = {Y°}; the set of feasible points /' = ). Solve P2 for Y = Y to
obtain the lower bound LBy = LB(Y?) and 4* = y(Y"). If 3/° is feasible for P1, update
and UB if necessary. If UB — LBy < ¢,, stop, and 4° is the globally optimal solution of
P1. Otherwise, proceed to Step 1.

Step 1. If the midpoint § of Y* is feasible for P1, update ' and UB such that
F=FU{y} and UB = 1;161}1}\110(3/); if F'# 0, the incumbent point is denoted by

b := argmin Wy(y);
yeF

Step 2. form = 1to N do

Step 2.0. Calculate 5,., fm Tm as defined in Theorems 1 and 2 for Yk;
if 3,, = 0, then go to Step 3;
else if 3,, > O then go to Step 2.1;
else if 3,, < 0 then go to Step 2.3;

Step2.1.  ify < g’” < G, then
. — p‘"L .
ify,, — < €4, then go to Step 2.2;

/B‘m -
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else set 7, = %, and go to Step 3;
Z <y, ,thenset Qy = Q \ Y* and go to Step 6;
Step 2.2. if y < U <7,,, then
. T’nl
if — — v < g4, then
if m < N, then set m = m + 1, and go to Step 2.0;
else go to Step 3;
Tm
elsesety = —— and go to Step 3;
5 > 7,., then set Qr = Qx \ Y*, and go to Step 6.
. Pm
Step 2.3. ify < in <79,,, then
,Om ) .
ﬁ —y < €4, then go to Step 2.4;
Pm
elsesety = o and go to Step 3;
ify,, < 3 , then set Qr = Qy \ Y*, and go to Step 6;
. Tm
Step 2.4. ify < < 7,,, then
ify,, — f 5:1 < €4, then
if m < N, then set m = m + 1, and go to Step 2.0;
else go to Step 3;
Tm
else set 7, = 5 and go to Step 3;
5 <y ., thenset Qr = Qy \ Y* and go to Step 6.

Step 3. According to the above rectangle bisection rule for Y*, we can get two new sub-

rectangles, and denote the set of new partition rectangles as ?k.

Step 4. For each Y & Vk, compute the lower bound Ef of \I/f(u) over Y, i.e
=Y aph j=0,1...., M, where

o — O5hg(Yh) af 0 =1,
Y= w
/ (S]/gjl(y;t) lf ()][ = —1.
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If ¥)'>UB or if > ey for some j€{l,...,M}, then the corresponding sub-

rectangle Y will be removed from Y ie, letY =Y \ Y and skip to next element of

Y*. 1f Y' #0, then solve P2 for each ¥ €Y to obtain LB(Y) and y(Y). If

LB(Y) > UBthenY =Y\ V.
Step 5. If y(Y) is feasible for P1, then update UB, F and b as Step 1. Set
Qi = (Qx \ Y*) UY" and the new lower bound LBy, — Xr/réigLB(Y)‘

k

Step 6. Set Qrr1 = @ \ {Y|UB —LB(Y) <e€.,Y € Qx}. If Q11 =0 then stop and
UB is the optimal value of P1, b is an optimal solution of P1. Otherwise, k < k& + 1,

select an active node Y* such that Y* € argmin LB(Y) and v* := y(Y*) for further
YEQk:

considering, and return to Step 1.




5 NUMERICAL EXAMPLES

In this section, we give some numerical examples to clarify the theoretical work. The
main algorithm, branch and bound schemes are coded in C/C++ environment. The
CDC algorithm is coded in MATLAB environment and implemented in C/C++
environment by using MATLAB C callable library generated by MATLAB compiler.
The linear programming problems are solved using standard LP solver provided by
CPLEX 11.1 callable library. The execution times are collected on a x64 HP
workstation with 2.40 GHz dual CPU and 4096 MB RAM.

5.1 EXAMPLES FOR MTTF

In this section we provide two sets of numerical examples to illustrate the system-based
component testing problems with MTTF performance measure. The first example set
consists of four systems. Lower and upper bounds on component failure rates and unit
component testing costs are given in Table 5.1. We set p}; = 3, p3; = 10, o = 0.05 and

3 = 0.05 in all examples.

Table 5.1 First data set for MTTF examples.
redundant k-out-of-n standby redundant mixed
[b; ub,; b, ub, lb; ub; c; b ub

J J J J J J J
11]0.010 | 0.481 | 77.3 | 0.007 | 0.547 | 77.9 | 0.091 | 0.814 | 14.1 | 0.073 | 0.939 | 67.8
210.010 | 0.388 | 28.4 | 0.005 | 0.138 | 93.4 | 0.091 | 0.126 | 42.1 | 0.089 | 0.823 | 75.7

310.106 | 0.388 | 77.3 |1 0.053 | 0.149 ] 12.9] 0.097 | 0.814 | 191 | 0.010 | 1.383 | 74.3

J

Example 5.1
The first example of this set is a serial connection of redundant subsystems with 2

components each. Component reliabilities and unit test costs are provided in Table 5.1.
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We calculate the first feasible m as 9 with z5 = 4818.02. Then 2z}, = 5203.65. Hence
m* =9 and the corresponding test times are (¢],#5,1}) = (27.6762,27.6705, 24.4674).
The least reliable subsystem 1 is tested the most and between the similar subsystems 2
and 3, 3 is tested less as it has a higher testing cost. A total of 74 columns are generated
in 490.70 CPU seconds. If we modify the unit component testing costs as
(c1,¢9,c3) = (7.3,28.4,147.3), the optimum m becomes m* = 15, with 27, = 3785.36.
The optimum component test times are (¢7,%5,t5) = (100.6966, 100.7719, 1.2645). The
increased test time of subsystem 1 is a result of the reduction in subsystem 1’s unit
testing cost. However as a consequence of the longer test time of less reliable
subsystem, the optimum number of observed component failures, namely m*, is

increased. This solution is illustrated Figure 5.1.

Component test costs for a given value of m
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Figure 5.1 Sequence of total test costs versus m for Example 5.1.

Example 5.2
As a second case, we study the serial connection of three 2-out-of-3 subsystems.

Component reliabilities and unit test costs are provided in Table 5.1. The feasible m. is
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detected as 7 with z5 = 6840.22. Then z§ = 6465.82 and z§ = 6754.59. Therefore
m* = 8 and the corresponding test times are (¢, %5, 1}) = (48.4039, 23.2431, 40.2906).
A total of 70 columns are generated in 486.75 CPU seconds to find this solution. In this
example, we increase the unacceptable expected system lifetime level from p}; = 3 to
pl, =4. As a result the optimum m is 19 with total component testing cost
25q = 17795.03. The component test times are (13,15,15) =
(107.8319, 82.2468, 131.7244). The increase in total component testing cost and test
times are notable, which is a clear result because we started to apply the probability of
type I error to a wider range of unacceptable performance level. Similarly if we set
piy=3 and pi, =9, new optimum solution, m*=10, =z}, = 7615.77,
(3,15, 15) = (56.6176,27.7525,47.1262), follows the same result as well. Because we
started to apply type II error probability, to a wider range of acceptable performance
level. To clarify this result, let’s recall type II problem given in (3.20). By decreasing
the acceptable MTTF level p3;, we increase the size of the column generation set 6(p3,)
given in (3.11). Therefore we are solving the P(m) problem in a tighter, more

constrained region, which results in a higher component testing cost.

Example 5.3

All subsystems of the third system are assumed to have a common redundancy n; = 2.
Component reliabilities and unit test costs are provided in Table 5.1. The column
generation algorithm generates 37 columns in total to find m* = 7 with z; = 3788.81
and (t],13,15) = (22.1353,0.0000, 18.1379) in 6.79 CPU seconds. The problem has no
feasible solution for smaller m values. Arguments similar to the previous cases remain
valid here. Subsystems 1 and 3 are quite similar and the one having higher unit test cost
is less tested. The most reliable subsystem 2 is not tested at all. We modify the
component failure rate lower bounds as (Ib1,lbs, lb3) = (0.011,0.101,0.097). In the
new setup, the column generation algorithm stops at /m = 7 with increasing component
testing cost z; = 3762.60 and z7 = 4177.45, indicating m* = 6. The component test
times are (17,15, 15) = (16.4337,0.0000, 18.4233). The shorter test time of subsystem 1
clearly depicts the increase in the reliability as a result of the change in lower bounds.
However to balance the reduction in component testing time of subsystem 1, subsystem

3 is tested slightly longer as a tradeoff between two similar setups.
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Example 5.4

In the fourth system, we investigate a mixed system that contains one redundant
subsystem with 2 components, one standby redundant subsystem with 2 components
and one 2-out-of-3 subsystem connected in series. Component reliabilities and unit test
costs are provided in Table 5.1. The first feasible and optimum m* = 11 and the total
test cost is 2z, = 7915.06. The component test times are (¢},¢5,15) =
(32.1284,23.8987, 52.7966). 72 columns are generated in 611.75 CPU seconds to solve

this case.

In the second examples set, we investigate systems with subsystems having different
redundancies. In line with the first set subsystems’ redundancies, lower and upper
bounds on component failure rates and unit component testing costs are given in Table

5.2. Weset py; = 3, p2;, = 10, o = 0.05 and 3 = 0.05 in all examples.

Table 5.2 Second data set for MTTF examples.

redundant k-out-of-n standby redundant
j TL]‘ lbj Ubj Cj ’IL]' lbj Ubj Cj ’ij lb] ’LLbj Cj
1] 4 [0.014]0.043 ]| 70.6 | 2/3 [ 0.010 | 0.092 | 329 | 4 |0.059 | 0.236 | 48.9
21 3 10.042]0.168 | 3.18 | 2/4 | 0.013 | 0.312 | 329 3 10.059 | 0.845 | 44.5
31 2 [0.091 0649 ] 27.6 | 3/410.029 | 0312 | 874 | 2 |0.164 | 0.845 | 64.6
Example 5.5

The first example of this set is a serial connection of redundant subsystems. Component
reliabilities, unit test costs and subsystem redundancies are provided in Table 5.2. We
calculate the first feasible m with 27 = 736.52. Then 2§ = 808.58. Therefore m* =7
and the corresponding test times are (¢}, ¢5,t5) = (0.0000, 7.2068, 25.7681). Subsystem
1 with most reliable and more redundant components is not tested as it has longer
expected lifetime. Component test times increase as subsystems reliabilities decrease.

A total of 37 columns are generated in 3249.79 CPU seconds to find this solution.

Example 5.6
The second example consists of a serial connection of three k-out-of-n subsystems.

Component reliabilities, unit test costs and subsystem redundancies are provided in
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Table 5.2. No feasible solution is detected 7 < 9. The optimum m™ = 10 with total
test cost sequence zj, = 9453.42, 2}, = 10147.92. The corresponding test times are
(1,85, t5) = (26.4770, 38.9369, 83.4995). It can be again observed that the test times
increase as reliabilities decrease. Comparing subsystems 1 and 2, the second requires
less number of components to survive. However it is also less reliable according to the
component reliabilities and thus needs more testing time. This solution is found in

1844.79 CPU seconds with the generation of 71 columns.

Example 5.7

The last example of this set is the serial connection of standby redundant subsystems.
Component reliabilities, unit test costs and subsystem redundancies are provided in
Table 5.2. We compute the first feasible m as 9 with zg = 2100.21. Then we compute
zjp = 2268.31. Therefore, m* =9 is the optimum solution of the component testing
problem. The corresponding test times are (¢, ¢5, ;) = (0.0000, 12.8273,23.6517). 44

columns were generated for this solution in 179.04 CPU seconds.

Example 5.8

In this example we compare passive redundancy with active redundancy. We design a
system consisting three serially connected subsystems with 3 components each. We set
(Iby, Ibs, Ibs) = (0.101,0.107,0.039), (uby,ubs, ubs) = (0.765,0.795,0.186), (c1,c2,c3)
= (67.9,65.5,16.3), pi; = 2, and p3, = 8. First we obtain the solution for the passive
redundant case, m* =6, zi =1979.69 and (¢}, t5) = (14.0293,14.1088, 6.2631).
Then we solve the system for the active redundancy case, the solution is m* = G,
z¢ = 1335.32 and (¢7, 5, ¢5) = (9.3825,9.6317,4.0966). Here, smaller total component
testing cost for the active redundancy case is an expected result, because standby

redundant subsystems have a longer expected system lifetime.

Example 5.9

As previously mentioned, stopping at the first feasible 7 for which the next feasible m
has higher total test cost turns out to be a good heuristic rule in practice. Though rarely
occurs, it is also possible to find cases where this rule does not apply. As an example,

let’s consider a serial connection of three k-out-of-n subsystems with common
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redundancies 2-out-of-3. Let (Ib1, lbs, lb3) = (0.0056, 0.0266,0.0173), (uby, uby, ubs) =
(0.1818,0.2638,0.1455) and (c1,¢0,c3) = (56.8823,3.9390,11.1902).  Furthermore,
unacceptable and acceptable expected system lifetimes are selected as pj; = 3 and
p3; = 12 respectively. The first feasible m = 7 with zX = 2148.5424. Given that the
total test cost for the next m = 8 is 2§ = 2153, 4403, the column generation algorithm
stops with m* = 7. However, if calculations are further carried, we find a sequence of
total test costs such as 2148.54, 2153.44, 2157.36, 2155.88, 2145.51, 2126.19, 2098.58,
2063.98, 2022.79, 1975.31, 1955.68, 2046.94, 2137.81, 2228.33, 2318.51, 2408.39.
Obviously, m* = 17 with 2z}, = 1955.68. This case is illustrated in Figure 5.2.

Component tegt cozts for o given value of
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Figure 5.2 Sequence of total test costs versus m for Example 5.9.

52 EXAMPLES FOR AVAILABILITY

In this section we formulate system-based component testing problem with availability

performance measure. Again the first set of examples consists of systems having same
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redundancy in each subsystem. Lower and upper bounds on component failure rates
and unit component testing costs are given in Table 5.3. We set p; = 0.70, p% = 0.85,

« = 0.05 and 8 = 0.05 in all examples.

Table 5.3 First data set for availability examples.
redundant k-out-of-n standby redundant mixed
b, ub, b, ub; lb; ub; c; b ub

J J J J J J J
110.032|0.187 | 44.5| 0.037 | 0.247 | 77.9 | 0.083 | 0.421 | 82.3 | 0.173 | 0.830 | 34.9
210.032]0.795 | 44.5 | 0.075 | 0.138 | 33.4 | 0.083 | 0.728 | 38.9 | 0.104 | 0.585 | 19.6

310.095]0.187 | 64.6 | 0.073 | 0.149 | 42.9 1 0.093 | 0.728 | 74.3 | 0.180 | 0.549 | 25.1

J

Example 5.10

First of the availability examples is a system consisting of three serially connected
redundant subsystems with 7; = 2 redundancy each. Component reliabilities and unit
testing costs are provided in Table 5.3. We compute m* = 13 with z]; = 2247.88 and
the component  test  times corresponding to this solution as
(7,15, t5) = (0.9964, 49.4514, 0.0000). 63 columns were generated in 127.53 CPU
seconds to compute this solution. We can again observe the increase in test times with
decreasing subsystem reliabilities. We change the unit test cost of subsystem 1 to
c; = c3 = 64.6, and we also set the upper bounds on component failure rates as
(Iby, by, Ib3) = (0.107,0.795,0.287). In the new solution optimum m is found as
m* = 17, optimum total component testing cost zi, = 3231.66 and ({},¢5,¢5) =
(0.0000, 65.5852,4.7853). An interesting result is that subsystem 1 is not tested as a
result of its increased reliability. However, subsystem 3 is tested in the current solution

because of its decreased reliability.

Example 5.11

Secondary, we inspect a serial connection of three 2-out-of-3 subsystems. Component
reliabilities and unit testing costs are provided in Table 5.3. There is no feasible m for
m < 6. Then we compute z; = 4569.27 and z5 = 4873.92 which indicates the optimum
m is m* = 7. The optimum test times are (¢}, 3, {3) = (55.1493, 8.1499. 0.0000). This
solution is computed in 107.45 CPU seconds by generating 45 columns. In this solution

it is again clear that the least reliable subsystem, namely subsystem 1, is the one with a
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longer test time. We set p!y = 0.69, and the new optimum solution is, m* = 6,
2§ = 3765.92 and (t7.t5,t%) = (45.4213,6.7912,0.0000). The lesser total component
testing cost is a clear result of the relaxation of type I problem. We started to apply the
probability of type I error to a narrower range of unacceptable performance level.
Similarly if we set p% = 0.86, the optimum solution is, m* =4, 2z = 3213.68 and
(7,15, t35) = (39.6818, 3.6469, 0.0000). Again the lesser total component testing cost is a
result of the relaxed type II problem.

Example 5.12

Third example involves a serial connection of 3 standby redundant subsystems, each
with n; = 2 redundant components. Component reliabilities and unit testing costs are
provided in Table 5.3. The optimum m™ = 18 is computed with total test cost values
27y = 4527.24 and 2§y = 4701.97. (47,45, 15) = (18.4728,26.3364, 26.6628) are the
optimum test times corresponding with this solution. 136 columns were generated in

468.98 CPU seconds to find this solution.

Example 5.13

The forth system consists the serial connection of one redundant subsystem with two
components, one standby redundant subsystem with two components and one 2-out-of-3
subsystem. Component reliabilities and unit testing costs are provided in Table 5.3.
The algorithm generates 103 columns in 950.10 CPU seconds to compute 275 = 1374.93
and z;; = 1442.68 which indicates the optimum m is m* = 16. The optimum test times
are (17,15, 15) = (10.7204, 13.9076, 28.9273). In this example, we set 13 = ug = 0.663.
The optimum 1 is calculated as m* = 16 with total component testing cost sequence
21 = 1699.61, =i, = 1769.46. Also the component test times in this solution are
(7,5, t5) = (8.7927,12.7237, 32.6225). The increased reliability of subsystem 1 results
in a shorter test time and the reduced reliability of subsystem 3 results in a longer test

time in the new solution.

The second set consists subsystems with varying redundancy. The component

reliabilities, unit test costs and subsystem redundancies are provided in Table 5.4.
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Table 5.4 Second data set for availability examples.

redundant k-out-of-n standby redundant
J n; | b, ub C; n; Ib; ub; C; n; lb; ub; c;
1|4 10.141]0379 | 119 2/3 10.039 | 0.353 | 4.61 4 10.163 | 0.278 | 96.4
21 3 10.201 | 0.615| 49.8 2/4 10.065]0.116 | 9.71 3 |10.181 ] 0.546 | 15.7
312 10.195]0.362 ] 959 3/4 10.017]0.138 | 82.3 2 10.025 0957 | 97.0
Example 5.14

The first example of second data set is a system consisting of three serially connected
redundant subsystems with component reliabilities, unit testing costs and subsystem
redundancies provided in Table 5.4. We compute m* = 13 with 273 = 1928.59 and the
component test times corresponding to this solution as (¢],t},t%) =
(1.1725, 38.4185,0.0000). 57 columns were generated in 3012.50 CPU seconds to
compute this solution. We can again observe the increase in test times with decreasing

subsystem reliabilities.

Example 5.15

Secondly we investigate a serial connection of three kA-out-of-n subsystems.
Component reliabilities, unit testing costs and subsystem redundancies are provided in
Table 5.4. The column generation algorithm computes the total test cost sequence
illustrated in Figure 5.3, starting from m = 14, which indicates m" = 33 with
233 = 1003.88. The component test times corresponding to this solution are (¢}, ¢5,45) =

(217.4265,0.0000,0.0000). 145 columns were generated in 6578.31 CPU seconds to

compute this solution.
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Figure 5.3 Sequence of total test costs versus m for Example 5.15.

Example 5.16

The final example of second set is a serial connection of 3 standby redundant
subsystems. Component reliabilities, unit testing costs and subsystem redundancies are
provided in Table 5.4. There is no feasible m for m < 13, then we compute
214 = 2480.35 and z{; = 2607.87. Hence the column generation algorithm stops with
m* =14 and (7,5, t5) = (0.0000, 9.8657,23.9529). 99 columns were generated in
648.46 CPU seconds to find this solution. We observe the most reliable system
subsystem 1 is not tested and the comparison between subsystem 2 and 3 is clear as the

less reliable one, namely 3 is tested longer.

5.3 EXAMPLES FOR SMPM

In this section, we formulate system-based component testing problems taking all three

performance measures into account, namely we set Z = {R, M, A}. Let p and p; for
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le Z={R,M,A} denote the unacceptable and acceptable performance levels

respectively.

Table 5.5 Data set for SMPM examples.
redundant k-out-of-n standby redundant mixed
Ib; ub; b, ub,; lb; ub; c; b ub

J J J J J J J
11]0.011 | 0.334 | 34.0 | 0.005 | 0.067 | 86.9 | 0.075 | 0.699 | 54.7 | 0.081 | 1.188 | 95.7
210.049 | 0.438 | 58.5 | 0.023 | 0.209 | 86.9 | 0.050 | 0.699 | 13.8 | 0.090 | 1.439 | 48.5

310.095]0.438 | 34.0 | 0.048 | 0.209 | 57.9 | 0.050 | 0.959 | 14.9 ] 0.012 | 0.983 | 80.0

J

Example 5.17

In the first example we analyze the serial connection of three redundant subsystems
with component reliabilities given in Table 5.5. We set py = 0.75, pj; = 2, pYy = 0.65,
and p% =0.95, p3, =12, p% =0.90 as unacceptable and acceptable performance
measures, respectively. The redundancies of all subsystems are set to a common
redundancy, i.e. n; = 2 for all 7 = 1,2,3. No feasible solution is found for m < 15.
Then, we compute z; = 3055.03 and z]- = 3208.40 and deduce that m* = 16. The
associated optimum test times are (¢,t5,t5) = (11.5532,24.9227,35.3460). A total of
277 columns are generated in 971.05 CPU seconds to find this solution. Note that unit
test costs are equal but lower and upper bounds are different for subsystem 1 and 3 and
more reliable subsystem 1 has a shorter test time. Meanwhile, subsystem 2 and 3 are
quite similar in terms of lower and upper bounds of component failure rates, but

subsystem 2 with higher unit test cost is tested less.

We modify the desired performance levels as follows, pp = 0.75, pi, = 1.999,
ply = 0.649, p% = 0.951, p3; = 12 and p*% = 0.901, and obtain the solution, m* = 16,
zg = 3058.10 and (#7, t5,t3) = (11.3755,26.0314, 33.7076). From this point on, we add
the additional modification of acceptable MTTF level, p3, = 12.01 and an interesting
result occurs. The solution remains precisely the same, which means that type II
problem including the MTTF constraint is redundant with this data set. Therefore we

can remove it from the column generation scheme without changing the solution.
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Example 5.18

Our second example consists of a serial connection of three 2-out-of-3 systems. Let the
component failure rates and unit testing costs for each subsystem be as in Table 5.5.
We set ph = 0.85, pt, =3, ply = 0.72, p% = 0.98, p3, = 13, and p% = 0.95. The first
feasible m is detected as 12 with 27, =9721.78.  Then 23 =9631.94 and
z1, = 10199.51.78.  Therefore m”* =13 and the corresponding test times are
(3,15, t5) = (0.0000, 66.4787,66.4647). A total of 216 columns are generated in
2758.31 CPU seconds to find this solution. We can note that among similar systems
subsystem 1 and subsystem 2, the less reliable one, namely the second subsystem is
tested more. If we modify the component test costs as (c1, ¢z, ¢3) = (6.9,186.9,57.9),
the  optimum  solution changes to, m*=12, 2], =13858.57 and
(7,15, 15) = (28.8914, 54.4782, 59.9409). In this solution we can note that the increased

test time of the reliable subsystem, namely subsystem 1, resulted in a lower optimum m.

Example 5.19

The third system consists of three standby redundant subsystems with 7; = 2 each, and
the component failure rates are given in Table 5.5. For the third example the
performance levels are set as py = 0.55, pj; = 2, py = 0.60, p3 = 0.95, p3; = 15, and
p% = 0.90. The column generation algorithm generates 305 columns in total to find
m* = 20 with 2z, = 1848.97 and (¢7,t5,435) = (20.5276, 24.7465, 25.6290) in 1054.46
CPU seconds. The problem has no feasible solution for smaller /m values. Arguments
similar to the previous case remain valid here. Among subsystems 2 and 3, the more
reliable system 2 is tested less and among the similar subsystems 1 and 2, the one with

the larger test cost, subsystem 1, is tested less.

When  we  modify the upper bounds  for this example as
(uby, ubs, ubs) = (1.099,0.299,0.959), the optimum solution changes to m* = 20,
275 = 2058.25 and (¢7,15,15) = (27.3597,11.7035, 26.7158). The increased component
failure rate for subsystem 1 results in a longer test time, similarly also the decreased

component failure rate for subsystem 2 results in a shorter test time.
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Example 5.20

Finally we investigate a mixed system that contains one redundant subsystem with two
components, one standby redundant subsystem with two components and one 2-out-of-3
subsystem connected in series. Again the component reliabilities and unit test costs for
each subsystem are set to the values provided in Table 5.5. Let the performance levels
for fourth system be ph =045 pi, =1, p4 =050, p% =0.95 p3, =10, and
p% =0.90. The first feasible and optimum m* =19 and the total test cost is
27q = 7221.06. The component test times are (¢],15,¢5) = (7.9170, 28.5287,63.4968).
290 columns are generated in 4458.02 CPU seconds to solve this case. Upon changing
the desired performance levels to pk = 0.20, p3, = 0.80, pY = 0.495, p3% = 0.98,
pi; =11, and p% = 0.92, hence relaxing the optimization problem, we calculate the
optimum solution as m* = 3, z5 = 10050.58 and (#7,%3,t%) = (1.9058, 3.1000, 8.4039).
The decreased total component testing cost is a clear result of relaxed performance

levels.

54 EXAMPLES FOR JMPM

Example 5.21
We now illustrate this case for a series system with two components. The reliability,

MTTF and availability functions are

1 1
R\ = M2t pIrl =~ and A

, = 5.1
A1+ Ao 1+ M+ X .1)

respectively. Using the above performance functions we can derive the semi-infinite

linear programming problem P’(m) as follows,
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min - ¢ty m + Colom, (5.2)
S.t.

( min /\1t17m + /\2t2,m )

st. A+ Az>—In p}_z
Prr(AL+Az) > 1
padi+Ae) > 1 —py
Iy < A\ <uby

\ I <A <uby

5 > A, (5.3)

(max Aty + Aatom
st A+ A<In p%
prr(A+ X)) <1

‘ ‘ S A'— L,y 54
P+ o) <1 —pf o ©4)
by < Ay < uby
L Iy <A <uby J
tl,m 2 0 tQ,m 2 0. (55)

In the above formulation, type I and type II problems are both linear programming
problems. For this example we set (Iby,lbs) = (0.039,0.013), (uby,uby) =
(1.981,0.519), (c1,¢2) = (34.03,58.52), and the desired performance levels as
ph, = 0.65, pi, = 3, pY4y = 0.60, p3, = 0.90, p2, = 10, and p?% = 0.85.

The optimum solution m* = 3, z5 = 1076.40 and (¢;,#;) = (11.6304, 11.6304) for the
JMPM case (Figure 5.4) is found in 0.26 CPU seconds with the generation of 17

columns.

For the SMPM case (Figure 5.5), we find the optimum solution m* = 27,
25, = 10338.06 and (¢7,¢5) = (111.7024,111.7024) in 1.59 CPU seconds by generating

273 columns.

We now illustrate the generated columns for each level of m and compare the results of

two formulations.
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Figure 5.4 Generated columns for the joint case JMPM.
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Figure 5.5 Generated columns for the separate case SMPM.

As we include more constraints with the same confidence interval in the SMPM
formulation, it is also a tighter problem. Therefore the smaller total component testing
cost found by the JMPM formulation is a result of its relaxed formulation compared to

its SMPM counterpart.



6 CONCLUSION

The determination of cost efficient test plans to accept or reject a system with minimum
total test cost is an important concern in reliability testing. These plans become more
critical when it is impossible or economically infeasible to test the system as a whole. In
the existing literature on system-based component testing, system reliability is regarded
as a single performance measure. In this work, we generalize this concept to a multi-
performance measure environment, where system reliability, expected system lifetime
and system availability need to be demonstrated to accept or reject a system. We
formulate expected system lifetime and system availability for various system
topologies including the serial connection of redundant, k-out-of-n and active redundant

subsystems.

Type I and type II subproblems arising in the main formulation are reverse convex
optimization problems and can be solved to global optimality using outer approximation
exploiting this structure. However expected system lifetime and availability functions
are rather complicated for this case and it is a well-known fact that outer approximation
grows cumbersome with the increase in dimension. Therefore, we prefer to work with
another representation involving signomial geometric programming and we choose a
branch and bound algorithm with a relaxation scheme to solve these optimization

problems.

We have obtained some notable results, such as
e the component test times increase as subsystem reliabilities decrease,
e a counter example to the stopping criterion for the column generation algorithm
is also provided. It is also shown that stopping at the first feasible m with
increasing total component testing cost may not be appropriate for some cases,

e the subsystem requiring more components to survive is tested more,
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e among subsystems with similar component reliabilities, the one with the smaller

unit testing cost is tested more.

Furthermore, probably the most important result, the JMPM formulation gives a better
solution with smaller total test cost and smaller first feasible m, compared to SMPM
formulation. Therefore, an interesting line of research lies in formulating JMPM

problem for different system topologies and comparing the results.

Another future line of research can be to deal with the variation of the time to failure for
various systems. It is a common fact that a system with smaller expected system
lifetime and time to failure variance is preferred in practice. If the variance can be
explicitly expressed in functional form and bounded, it can be considered as an
additional constraint in type I and type II problems involving expected system lifetime

function.

It has been proven in the literature that, setting upper bounds on component failure rates
is beneficial to reduce total test cost. However, it is assumed that upper bounds are
obtained without any additional cost. The case where upper bounds are obtained at a

price is an interesting line of research that is not addressed.

Finally, we want to point that the increasing complexity of expected system lifetime and
availability functions also increases the intractability of the problem. In spite of this
fact, we certainly hope that the analysis of this new type of testing problems leads to
interesting stochastic models and optimization results. The new testing approach
provides a more realistic setting to determine optimal component testing policies for

devices that are designed to satisfy a set of performance measures.
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