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ABSTRACT 

 
 
 

Testing the system as a whole might be found economically infeasible or physically 

impossible in many cases.  For instance, testing a nuclear device is currently banned by 

international agreements or testing a space shuttle might be found too risky because of 

its financial consequences.  Instead, various components can be tested separately to 

meet some desired level of performance for the whole system, while achieving a 

minimal total testing cost.  This problem is called system based component testing 

problem and is investigated in this thesis. 

 

Although system reliability is the only considered measure in the available literature on 

this problem, there exist other more practical measures such as mean time to failure or 

availability worth to take into account.  Here we extend previous studies by 

incorporating various performance measures separately or jointly.   

 

The problem is formulated as a semi-infinite linear programming problem, and the 

optimum component test times are obtained by combining the well-known cutting plane 

method with the well-known column generation technique.  The columns are generated 

by solving two different optimization subproblems which are proved to be d.c. 

(difference of two convex functions) programming or signomial geometric 

programming problems depending on the performance measures examined.  These 

subproblems are solved to optimality by adapting an outer approximation method and 

by a special branch and bound technique.  Several numerical examples are provided to 

illustrate the approach. 
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RÉSUMÉ 

 
 
 

Dans plusieurs cas, tester un système comme un tout peut sembler non-faisable 

économiquement ou impossible physiquement.  Par exemple, tester une machine 

nucléaire est actuellement interdit par les accords internationaux et tester une navette 

spatiale peut paraître risqué étant donné les conséquences monétaires.  Il est plutôt 

préféré de tester les divers composants pour atteindre le niveau désiré de la performance 

du système.  Le problème investigué dans cette thèse est nommé le problème d’essai des 

composantes selon le système. 

 

Même si la fiabilité du système est la seule mesure considérée dans la littérature 

disponible sur ce problème, il existe d’autres mesures pratiques à dévisager, comme 

durée moyenne de fonctionnement avant défaillance, disponibilité, etc.  Les études 

précédentes sont élargies dans cette étude par l’intégration de ces mesures de 

performance séparément ou conjointement.   

 

Le problème est formulé comme un problème de programmation linéaire semi-infinie et 

la durée optimale de test de composant est obtenue par la combinaison d’une technique 

réputée, nommé méthode des plans sécants avec une autre technique réputée, nommé 

méthode de génération de colonnes.  Les colonnes sont engendrées en résolvant deux 

sous-problèmes différents d’optimisation, prouvés être des problèmes de 

programmation d.c. (la différence des deux fonctions convexes) ou de programmation 

géométrique signomiale, suivant la mesure de performance examinée.  Ces sous-

problèmes sont résolus à l’optimalité par l’adaptation d’une technique d’approximation 

par l’extérieure et par une méthode spéciale de séparation et d'évaluation progressive.  

Plusieurs exemples numériques sont fournis afin d’illustrer l’approche.   
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ÖZET 

 
 
 

Dizgeyi bir bütün halinde sınamak olanaksız veya katlanılamayacak bir maliyete 

olabilir.  Örneğin nükleer silahların denenmesi uluslararası anlaşmalar çerçevesinde 

sınırlandırılmıştır.  Benzer şekilde bir uzay mekiğini sınamanın mali sonuçları oldukça 

belirsizdir.  Bu gibi durumlarda bileşenler, dizgenin bütünü için öngörülmüş başarım 

ölçütlerini sağlayacak şekilde ve olabilecek en düşük maliyette ayrı ayrı denenebilirler.  

Bu problem dizge tabanlı bileşen sınamı olarak bilinmektedir ve bu tezin konusunu 

oluşturmaktadır.   

 
Probleme ilişkin yazında sadece sistem güvenilirliği dikkate alınmaktadır.  Ancak 

beklenen yaşam süresi veya kullanılırlık gibi ölçütler uygulamada daha kullanışlı 

bulunabilir.  Bu çalışma farklı başarım ölçütlerini hem ayrık hem de bir arada 

kullanarak varolan diğer çalışmaları genellemektedir.   

 
Problemin yarı-sonsuz doğrusal programlama modeli oluşturulmuş ve eniyi bileşen 

sınam süreleri kesme-düzlem yöntemi ile sütun üretme yordamının bir araya 

getirilmesiyle hesaplanmıştır.  Sütunlar, ele alınan başarım ölçütleri doğrultusunda d.c. 

(dışbükey fonksiyonların farkı) programlama veya genel geometrik programlama 

problemi oldukları kanıtlanmış iki eniyileme alt probleminin çözülmesi ile üretilmiştir.  

Bu alt problemlerin çözümünde dıştan yaklaşıklama veya dal-sınır yöntemlerinden 

faydalanılmıştır.  Yaklaşımın ayrıntılarını gözler önüne sermek için çok sayıda sayısal 

örnek hazırlanmıştır. 

xii 
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1 INTRODUCTION 

 
 
 

Increasing product complexity, challenging environment and competition in global 

market have led to an increase in performance demands from consumers.  For example 

many military devices carry out critical missions in a growingly hostile territory where a 

system failure can result in operator injury, damage to property, and a significant 

economic loss.  

 

When a system failure occurs, no matter how benign, its impact is felt.  For example, 

even a screw fallen from a chair may have consequences.  A small injury or at least a 

need to repair the chair before utilizing its full use thereafter.  However, a disfunctional 

flap in an airplane may result in a plane crash or an inevitable landing.  

 

Although it is almost impossible to fully avoid system failure in the long run, it is still 

important to reduce its occurrence probability.  Instead of trying to eliminate a system 

failure, system can be tested for whether it satisfies a certain performance measure or 

not, at some pre-determined level before undertaking its mission.  These tests can 

provide information about a system’s capacity to fulfill its requirements.  For example, 

using these statistics, one can either design a system to meet its objective, avoid a 

system breakdown using preventive maintenance at critical phases or know the limits of 

a system before assigning it a mission.  Then the question becomes “How do we design 

a test model to examine the system against a desired performance measure?” 

 

There are two well-known approaches for testing a system.  First, one can either test the 

system as a whole, simulating the circumstances of mission’s environment as best as 

possible and examine how does the system act in this simulation.  Second, one can 

conduct individual component tests for the prediction and verification of the system 

performance.  Although it is cheaper and less dangerous to examine the components of 

a system rather than the whole, the first approach provides better insights into the 
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system’s capacity.  However the cost of these tests can be overwhelming, preventing its 

usage in many situations.  In this thesis, we are concerned with the alternative test 

approach that combines the strong features of the two, the identification of cost-efficient 

component test plans to demonstrate a desired performance measures for a system.  

 

Component testing is carried out when it is economically infeasible or physically 

impossible to test the system as a whole.  For example, testing a nuclear device is 

currently banned by international agreements or testing a space shuttle might be found 

too risky because of its financial consequences.  These are extreme but typical examples 

where one needs to attain a certain performance level without testing the system.  

Instead the test is done on various components to meet a desired performance measure 

for the whole system, while achieving a minimal testing cost. 

 

This approach, known as system-based component testing, drew a lot of attention in the 

past three decades.  It amounts to find a component testing plan that assures some 

system performance within predetermined limits with minimum total testing cost.  

Researchers considered different system topologies, extended the problem from 

independent to dependent environments, introduced systems designed to accomplish 

multi-phased missions.  However, system reliability is regarded as a single performance 

criterion in most of the available literature.  In this work, we consider the case in which 

setting a system’s expected lifetime or availability are more practical than determining 

its reliability.  Furthermore, we formulate the situation where system is expected to 

satisfy a set of performance measures rather than only satisfying single criterion at pre-

determined levels.  We formulate the multiple performance measure system-based 

component testing problem in two modeling approaches.  

 

Within the existing definition and formulation of the problem, there are two main 

difficulties which make this problem hard solve to optimality.  First, even it is a linear 

programming problem and has finitely many variables, it also has infinitely many 

constraints.  This type of problems are called semi-infinite linear programming 

problems.  Approaches to solve this problem typically include a column generation 

scheme to generate a finite subset of the constraints to satisfy optimality conditions.  
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Instead of generating rows and solving the problem from scratch every time a row is 

generated, the applied methodology works on the dual of the original problem using the 

“revised simplex” method to save from the valuable computational time. 

 

Second, our main problem requires solving two separate subproblems to optimality 

within the column generation process.  These subproblems have compact but non-

convex solution sets.  Hence any standard convex programming approach is not useful.  

Meanwhile, it can be shown that the constraints of these subproblems can be explicitly 

expressed as a difference of two convex functions or as a ratio of two posynomials 

whenever it is most convenient.  It is well-known that exploiting these special structures 

is very convenient for solving the resulting non-convex optimization problems globally. 

In this thesis, we adapt some existing deterministic procedures in the literature and 

embed within the column generation scheme to solve the system based component 

testing problem to optimality. 

 

The remaining parts of this thesis are composed of six sections.  In Section 2, we 

present a brief introduction to basic reliability theory, and formulate system reliability, 

expected system lifetime and system availability for various system topologies.  Then 

the semi-infinite linear programming formulation of system-based component testing 

problem is provided along with the solution method in Section 3.  After we give detailed 

information on procedures used in the solution of the subproblems in Section 4, we 

illustrate the theoretical work with numerical examples in Section 5.  Finally, Section 6 

includes concluding remarks. 
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2 SYSTEM PERFORMANCE MEASURES 

 
 
 

In this chapter, we give a brief introduction to the basic reliability theory and derive 

reliability, mean time to failure and availability performance measures for serially 

connected redundant, standby redundant and -out-of-  subsystems.  The random 

variables representing the state of the components are assumed to be independent. 

 

2.1 BASIC RELIABILITY THEORY 

 

Consider a system of  components, and suppose that each component is either 

functioning or failed.  To indicate if the th component is functioning or not, we define 

the indicator binary variable  as, 

 
 

  (2.1) 

 
 

Similarly, the binary variable  is indicating the state of the system: 

 
 

  (2.2) 

 
 

Further, we assume that the state of the system is a function of the state of the 

components.  If we denote the state vector of components with . 

Then the state of the system regarding the component state vector can be given by 
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  (2.3) 
 
 
Here  is called the structure function of the system. 

 

Example 2.1 (Series System)  

A system consisting of  components that is functioning if and only if all of its 

components are functioning is called a series system.  The structure function of a series 

system can be given as follows 

 
 

  (2.4) 

 
 

A series structure is illustrated by the reliability block diagram in Figure 2.1. 

 
 

 
Figure 2.1 Series system 

 
 

Example 2.2 (Parallel System)  

A system that is functioning if and only if at least one of its components is functioning 

is called a parallel system.  Its structure function can be given by, 

 
 

  (2.5) 

 
 

The corresponding reliability block diagram is given in Figure 2.2. 
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Figure 2.2 Parallel system 

 
 

Example 2.3 (k-out-of-n System)  

A system which is functioning if and only if at least  out of  of its components are 

functioning, is called a -out-of-  system.  In terms of comparability, a series system is 

a -out-of-  system and a parallel system is a -out-of-  system.  Hence one can say 

that -out-of-  systems is a generalization of both series and parallel systems.  The 

structure function of a -out-of-  system can be given as follows, 

 
 

  (2.6) 

 
 

The reliability block diagram of a 2-out-of-3 structure is provided in Figure 2.3 for 

illustration. 

 
 

 
Figure 2.3 Structure of a 2-out-of-3 system 

 
 

Definition 2.1 (Monotone System)  

A system is said to be monotone if 

 



 7

i. Its structure function  is nondecreasing in each argument, and 

ii.  and . 

 

The first argument says that a system cannot deteriorate by improving the state of a 

component, namely by replacing a failed component with a functioning one.  The 

second argument says that the system is in functioning state if all the components are 

functioning at the moment and in failed state if all the components are failed. 

 

Let  denote the state of th component . 

 

Definition 2.2 (Coherent System)  

A system is said to be coherent if 

i. Its structure function  is nondecreasing in each argument, and 

ii. Each component is relevant, i.e., there exists at least one vector  such that 

 and . 

 

Detailed information on these definitions can be found in Barlow and Proschan [1]. 

 

Definition 2.3 (Minimal Path Set)  

A state vector  is called a minimal path vector if  

i.  and 

ii.  for all . 

If  is a minimal path vector, then the set  is called a minimal path set. 

In other words, a minimal path set is a minimal set of components whose functioning 

ensures the functioning of the system. 

 

Let  denote the minimal path sets of a given system.  We define , 

the indicator function of the th minimal path set, by 
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It follows that the system will function if all the components of at least one minimal 

path set are functioning; that is  for some .  Hence, 

 
 

  

 
 

or equivalently 

 
  

  (2.7) 

 
 

Definition 2.4 (Minimal Cut Set)  

A state vector  is called a minimal cut vector if  

i.  and 

ii.  for all . 

If  is a minimal cut vector, then the set  is called a minimal cut set.  In 

other words, a minimal cut set is a minimal set of components whose failure ensures the 

failure of the system. 

 

Let  denote the minimal cut sets of a given system.  We define , 

the indicator function of the th minimal cut set, by 
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Since a system is not functioning if and only if all the components of at least one 

minimal cut set are not functioning, it follows that 

 
  

  (2.8) 

 
 

For example let’s consider the bridge system. 

 
 

 
Figure 2.4 The bridge system 

 
 
The system structure is as illustrated in Figure 2.4.  The minimal path sets are 

, and .  Hence by equation (2.7), its structure function 

may be expressed as 
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The minimal cut sets of the bridge system are .  

Hence, from equation (2.8), the structure function of a bridge system can be given as 

follows 

 
 

  

 

 

2.2 SYSTEM RELIABILITY 

 

We assign each component a random variable , denoting the state of the th 

component at time , such that, 

 
 
  (2.9) 
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Here the value  is called the reliability of the th component at time .  If we define 

 by 

 
 
  (2.10) 
 
 

then  is called the reliability of the system.  By assuming that the random variables 

 are independent than each other, we can express  as a function of component 

reliabilities .  That is, 

 
 
  (2.11) 
 
 
This function is known as the reliability function.  We now provide system reliability 

function for some coherent and noncoherent structures with components having 

exponential lifetimes. 

 

2.2.1 Series Systems 

 

Assuming that the components fail exponentially with rate , the reliability function of 

the series system of  independent components is given by 

 
 

  (2.12) 
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2.2.2 Serial Connection of Redundant Subsystems 

 

The reliability function of serially connected  redundant subsystems with each 

subsystem having ,  independent identical components with exponential 

failure rate , is given by 

 
 

  (2.13) 

 
 

2.2.3 Serial Connection of k-out-of-n Subsystems 

 

Consider  serially connected -out-of-  subsystems. Subsystem  consists of  

identical components with exponential failure rates , and requires the functionality of 

 of its components to survive. Reliability of this system is given below. 

 
 

  (2.14) 
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2.2.4 Serial Connection of Standby Redundant Subsystems 

 

It is well known that a standby redundant system is not a coherent system.  Consider 

serially connected  standby redundant subsystems. Each subsystem has , 

 independent identical components with exponential failure rate . The 

reliability function of such a system is given by, 

 
 

  (2.15) 

 
 

2.3 SYSTEM MEAN TIME TO FAILURE 

 

2.3.1 Coherent Systems 

 

Consider a system that consists of  subsystems and each subsystem is composed of 

identical components.  Each component of subsystem  fails independently and 

exponentially with rate .  If  is the random variable for the system lifetime, then 

 denotes the expected lifetime or Mean Time To Failure (MTTF) of the system and 

  denotes the system reliability expressed as a 

function of component reliabilities, where p(t) = (p1(t); : : : ;pn(t))p(t) = (p1(t); : : : ;pn(t)) 

= (e¡¸1t; : : : ; e¡¸nt)= (e¡¸1t; : : : ; e¡¸nt).  Then the relation between the system's expected lifetime and 

reliability can be given as 

 
 

  (2.16) 

 
 

Let  and  denote the set 

of all path and cut vectors respectively.  For any state , let  
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denote the set of functioning components and  denote the set of 

failed components.  Now we can equivalently represent the structure function (2.7) as 

follows 

 
 
 . (2.17) 

 
 

By substituting 

 
 

 , (2.18) 

 
 
we can equally represent (2.17) by 

 
 

 , (2.19) 

 
 

where  for all  and , and  represents  

different combinations of the elements of .  Now assuming that  

i. components fail exponentially and independent than each other,  

ii. failed components are repaired immediately and separately after a system break 

down [2], 

we can give the explicit reliability function of a coherent system [3] by 

 
 

 . (2.20) 
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by taking the definite integral of reliability function (2.16), we can express MTTF of a 

coherent system as follows 

 
 

 . (2.21) 

 

2.3.2 Series Systems 

 

The reliability and expected system lifetime of a series system consisting of  

components can be given as 

 
 
  (2.22) 
 

  (2.23) 

 
 

2.3.3 Serial Connection of Redundant Subsystems 

 

Assuming that each subsystem consists of  identical components, the reliability and 

expected system lifetime of a serial connection of redundant subsystems can be given as 

 
 

  (2.24) 
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  (2.25) 

 
 

Here  and . 

 

2.3.4 Serial Connection of k-out-of-n Subsystems 

 

MTTF of -out-of-  systems is analyzed in [4].  The author assumes that all lifetimes 

and repair times are independent and exponentially distributed, there are enough 

repairmen for all failed components and replacement for a component starts 

immediately after failure.  Assuming each subsystem consists of  identical 

components, expected lifetime of the serial connection of -out-of-  subsystems can be 

derived from the reliability function such as given below.   

 
 

  (2.26) 

 

  (2.27) 
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2.3.5 Serial Connection of Standby Redundant Subsystems 

 

It is well-known that the structure function of this kind of systems is not coherent.  

Therefore, the results in the previous sections are not applicable.  However, by 

assuming that all components have exponential lifetimes and the components in each 

subsystem are identical [5], system reliability can be expressed explicitly.  Suppose that 

there are  subsystems and subsystem  consists of  identical components with 

exponential failure rates .  Then one can explicitly express system reliability (2.15), 

and hence expected system lifetime as [3] 

 
 

  (2.28) 

 
 

and 

 
 

  (2.29) 

 
 

2.4 SYSTEM AVAILABILITY 

 

Assuming that all component lifetimes and repair times are exponential, availability can 

be determined using Markovian analysis.  The states of the corresponding Markov 

process will depend on the system structure and we need to find limiting distribution. In 

this section availability functions of coherent systems and non-coherent systems are 

derived by Çekyay and Özekici [3] using the Markovian analysis.  
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2.4.1 Coherent Systems 

 

Let  for any .  It is assumed 

that the repair starts when the system enters some state , which takes an 

exponentially distributed amount of time with some rate .  After the repairing 

process, all of the components are in functioning state.  Let  represent the 

perfect state.  Now we can say that the states of the system follow a Markov process 

with state space  since all lifetimes and repair times are exponential.  We 

need to find the limiting distribution to express system availability in terms of 

component failure rates. Therefore we need to solve the system of linear equations 

 
 

  (2.30) 

 
 
Then we can give the system availability in terms of functioning states as follows 

 
 
 . (2.31) 

 
 

Note that since  for all  and  for all , the embedded 

Markov chain is irreducible with non-null recurrent states.  Hence, the system of linear 

equations (2.30) has a unique solution [3]. 

 

As the serial connection of series subsystems, passive redundant subsystems and -out-

of-  subsystems falls under coherent system category, their availability can be 

formulated using (2.30) and (2.31). 
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2.4.2 Series Systems 

 
Let’s consider the series system of  components and assume that all component  fails 

exponentially with failure rate .  Let the state space represent the number of available 

components in each subsystem such that 

 
 
 . 
 
 
System starts in the initial state  and it will be repaired whenever one of 

its components  enters a failure state with .  We can give the failure states in 

terms of a failed component  by 

 
 
  
 
 

and all of the failure states by 

 
 
 . 

 
 

It takes an exponentially distributed amount of time with some rate , for all 

, to repair the system upon entering the failure state.  It is clear that states of the 

system follow a Markov process with state space  since all lifetimes and 

repair times are exponentially distributed and the limiting distribution can be found by 

solving the system of linear equations 

 

  (2.32) 
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where  and  for 

.   

 
Availability function can be formulated with (2.31), using the solution of (2.32) 

 

2.4.3 Serial Connection of Redundant Subsystems 

 
Let’s consider the serial connection of  redundant subsystems each of which is 

consisting  identical components and assume that all components of subsystem  fail 

exponentially with failure rate .  Let the state space represent the number of available 

components in each subsystem such that 

 
 
 . 
 
 

System starts in the initial state  and it will be repaired whenever one 

of its subsystems  enters a failure state with .  We can give the failure states in 

terms of a failed subsystem  by 

 
 
  
 

 

Repairing takes an exponentially distributed amount of time with some rate  

whenever system enters a state .  We can determine the limiting 

distribution using Markov process with state space  by solving the system 

of linear equations 
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  (2.33) 

 
 
where . We need to obtain the solution of (2.33), before 

formulating availability function using (2.31). 

 

2.4.4 Serial Connection of k-out-of-n Subsystems 

 

Let’s consider the serial connection of  -out-of-  subsystems and assume that all 

components of subsystem  fail exponentially with failure rate .  Let the state space 

represent the number of available components in each subsystem such that 

 
 
 . 
 
 

System starts in the initial state  and it will be repaired whenever one 

of its subsystems  enters a failure state with .  We can give the failure states 

in terms of a failed subsystem  by 

 
 
  
 
 

If system enters a state belonging to the set  repairing phase is triggered 

and it takes an exponentially distributed amount of time with some rate , for all 

, to repair the system thereafter.  Again the states of the system follow a Markov 

process with state space  and the limiting distribution can be found by 

solving the system of linear equations 
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  (2.34) 

 
 

where . After obtaining the solution of (2.34), we can formulate 

availability function using (2.31). 

 

2.4.5 Serial Connection of Standby Redundant Subsystems 

 

We inspect a system of  serially connected standby redundant subsystems each having 

 identical components.  Let the state space is represented as follows 

 
 
  
 
 

and the failure states in terms of subsystem  fails 

 
 
 . 
 
 

It is obvious that the system fails whenever it enters a state  and it 

takes an exponentially distributed time  to get the system fully operational. We 

can formulate availability function using (2.31) upon solving the set of linear equations 
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  (2.35) 

 
 

In the following chapters, we are going to assume that  without loss of 

generality
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3 SYSTEM-BASED COMPONENT TESTING PROBLEM 

 
 
 

Let  denote some performance measure for a system with  components and 

component failure rate vector .  Then the component testing problem 

can be stated in terms of the hypothesis testing problem 

 
 
  (3.1) 
 
 

where  and  indicate unacceptable and acceptable system performance levels 

respectively (  by definition).  It is widely known that two errors can occur when 

testing a hypothesis.  Type I error is known as rejecting  when  is true and type II 

error is rejecting H  when H  is true.  1H1 1H1

 

Our focus is to devise a model that minimizes the total component testing cost, while 

assuring type I and type II error probabilities to be less than desirable levels.  Let  and 

 denote the upper bounds on type I and type II errors.  Let also  denotes the test time, 

 the non-negative test cost and  the number of failures of component , and  the 

upper bound on the total number of component failures.  Then the system-based 

component testing problem can be formulated as 

 
 

  (3.2) 

            
  (3.3) 
 
  (3.4) 
 
                         (3.5) 
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This problem was first mentioned by Gal [6].  In this work, the author proposes to 

minimize total component testing cost, , for a system where a certain 

unacceptable reliability level, , needs to be demonstrated at  confidence interval 

(3.3).  He also assumes exponential life distributions for components.  Mazumdar [7] 

extends Gal’s model by also considering an acceptable system reliability level  that 

needs to be demonstrated at a specified confidence, .  This boils down to including 

constraint (3.4) in his model.  Further, instead of accepting a system if and only if there 

are no component failures during the test as Gal did ( ), Mazumdar proposes to 

accept a system if the total number of component failures, , is less than a 

threshold value, say , and reject otherwise.  This rule is referred as “sum 

rule”.  Note that this is a generalization of Gal’s rule, which he considers the case 

 only.  Easterling et al. [8] give a justification for using the sum rule for a series 

system. 

 

Using the sum rule, Mazumdar provides an algorithm to compute optimum number of 

component failures, , which minimizes the total component testing cost, also meets 

the unacceptable and acceptable reliability levels.  He gives two numerical examples; a 

series system and a series system with redundant subsystems with the assumption of 

component lifetimes are independently exponentially distributed. 

 

In their respective formulations, both Gal [6] and Mazumdar [7] show that for a series 

system, the optimum component test times are independent of component test costs  and 

are identical.  They both assume that no prior information is available about component 

reliabilities.  Altınel [9] considers the case where some prior information on component 

reliabilities exists as a mean of setting upper bounds on component failure rates.  With 

the use of this prior information, he shows that the optimum component test times are 

not identical, and the use of such information also leads to reduced total test cost.  He 

also develops a procedure to compute optimum component test times.  Altınel and 

Özekici [10] extend these results to a dynamically changing environment where these 

upper bounds on component failure rates change with respect to time.  For modeling 

this concept, they introduce arbitrary distributions for component failure rates which can 
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be approximated by distributions that have piecewise constant failure rates.  This is 

accomplished through a dynamic environmental process that modulates component 

failure rates.  Since the failure rate of each component is constant during any 

environment, components still fail exponentially.  However, the failure rates change 

whenever the state of the environment changes.  Therefore, lifetime distributions are not 

necessarily exponential, but the piecewise constant structure of the failure rates is 

exploited to obtain tractable expressions for the reliability function at the expense of an 

enlarged set of failure rates.  A major assumption of the previous formulations of 

system-based component test problem is the independence of component failure rates, 

which is a rather restrictive and unrealistic assumption for most cases.  Altınel and 

Özekici [11] use an interesting model of stochastic component dependence introduced 

by Çınlar and Özekici [12] and generalize these results further in order to compute 

optimum component test times with dependent components.  In all of the above models 

the system is assumed nonrepairable, hence no maintenance is done throughout the 

mission time.  Altınel et al. [13] introduce missions that involve a sequence of stages 

where a maintenance operation is carried away in the beginning of each stage.  This 

maintenance operation consists of checking the device and replacing failed components 

with identical ones so that the functioning state of the system at the start of each stage is 

preserved.  Altınel et al. [14] analyze the case where there is a given set of missions and 

the device can be assigned randomly to these missions.  Feyzi ğlu et al. [15-16] extends 

the variety of systems considered by including 

o

-out-of-  and standby redundant 

subsystems.  They also show that serial connection of different subsystems can also be 

odeled for both single and multi-phased missions.  

 

.1 FORMULATION 

 co  in ( (3.4)

me performance measure 

m

3

 

Let us reconsider the system-based mponent testing problem given 3.2) -  

with so  needs to be demonstrated at  and  

levels. 
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  (3.6) 

 

          (3.7) 

          

      

(3.8) 

     (3.9) 
 
 
We denote  and , as the feasible 

failure rate sets satisfying constraints (3.7) and (3.8), respectively.  We also assume that 

some prior information as lower and upper bounds on each component’s failure rate 

exists and is obtained witho t addi onal u ti costs.  With this information, we can rewrite 

e feasible failure rate sets th  and  as 

 
 
  (3.10) 

nd 

 
 

a

 
 
  (3.11) 

ng that a

 
 

respectively.  Assumi ll components fail exponentially,  is Poiss strib

with 

on di uted 

mean , and  is Poisson distributed with mean .  If  and 

 are nonempty, there exists at least one solution to the system (3.6) - 3.9)(

s (3.7) and (3.8) are surely guaranteed for all feasible 

.  The 

probability constraint  vectors if 

ey are modified as th

 
 

  (3.12) 

nd 

 
 

a
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  (3.13) 

 
 
Let  be a Poisson random variable with parameter  and  denotes 

the cumulative Poisson distribution function.  Then  

is the system acceptance probability and we can rearrange the probability constraints 

.12) and (3.13) as (3

 
 

  (3.14) 

nd 

 
 

a

 
 

  (3.15) 

 
 

As  is strictly decreasing and continuous for a given value of , it is also 

 respect to invertible with .  Let  be the Poisson parameter value for which 

.  Therefore (3.14) and (3.15) can be further arranged as  

 
 

  (3.16) 

nd 

 
 

a

 
 

  (3.17) 

ith this inversion, the problem given in (3.6) - (3.9) can be reformulated as follows: 

 
 

 
 
W
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                   (3.18) 

                 

                                 (3.19) 

                             

 

    (3.20) 

 
                                  (3.21)
  
 

The solution of  is denoted by .  These are the component 

st times which yields the minimum total component testing cost for a given value of te

, and  is the associated total  to test cost.  Then the minimum tal test cost is 

 and it is obtained by solving  parametrically 

with respect to .  Then the optimum component test times  is the 

optimal solution of .  In the following chapters, optimization problems on the left 

and side of (3.19) and (3.20) are referred as type I and type II problems. 

 

 FORMULATION WITH MULTIPLE PERFORMANCE MEASURES 

h

3.2

 

Let us reconsider the system-based component testing problem in the following multiple 

performance measure formulations.  Let  denote the set of performance 

measures,  denotes system reliability,  denotes system expected lifetime and  

m availability, respectively.  Furthermore let denotes syste , 

 and . Let  and , denote unacceptable and acceptable 

performance levels for each performance measure , respectively.  The multiple 

performance measures formulation can be handled using two approaches.  Either we can 

formulate one type I and one type II problem with  performance constraints each, or 

we can separately formulate  type I and type II problems each one capturing the 

unacceptable and acceptable performance levels of one performance measure, 

spectively. 

 

re
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3.2.1 Joint Multiple Performance Measures Formulation 

 

Now let’s consider  given in (3.18) - (3.21).  One can formulate the multiple 

performance measure system-based component testing problem as a Joint Multiple 

Performance Measure (abbreviated as JMPM so forth) formulation given below, 

 
 

 

                  (3.22) 

                 

                             (3.23) 

 

                             (3.24) 

 
                               (3.25) 
 
 

where 

 
 

 (3.26) 
 

 (3.27) 
 
 

denote the set of feasible failure rate vectors, respectively. 

 

3.2.2 Separate Multiple Performance Measures Formulation 

 

Instead of taking the intersection of  performance measures, one can convert  

given in (3.18) - (3.21) to a multiple performance measure test problem considering 

each performance measure separately.  Hence forming  type I and type II problems 

and generating columns by solving each of these optimization problems separately.  
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                   (3.28) 

                 

                                 (3.29) 

 

                                 (3.30) 

 
                                  (3.31)   
 
 
We will call  as the Separate Multiple Performance Measures (abbreviated as 

SMPM so forth) formulation.  It is especially useful when the JMPM formulation 

becomes difficult to solve.  

 

3.3 SOLUTION PROCEDURE 

 

The optimization problem  given in (3.18) - (3.21) has finitely many variables and 

infinitely many constraints.  In other words, it is a semi-infinite linear programming 

problem.  We now give a brief description of a solution procedure which solve this type 

of problems and which is also based on earlier works of Altınel [17-18]. 

 

With a computational point of view, we assume that  and  are finite sets, in 

other words  and  for every  and , respectively.  This 

discretization strategy is also used to solve other semi-infinite linear programming 

problems effectively [19].  Let  and  denote the primal and dual 

problems associated with .  Then 

 
 

 

                 ,  (3.32) 

                 

                             (3.33) 

                             (3.34) 

                               (3.35) 
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                 , (3.36) 

                 
                              (3.37) 

                             . (3.38) 
 
 

Here, if  and  are finite and chosen so that the component test times which solve 

 to optimality are in the feasible solution set of , then solving  

solves .  A close investigation shows that it is more convenient to work on  

since the number of columns can be substantially larger than the number of rows.  

Moreover,  is always feasible for all  given that test costs  are non- 

negative in (3.32). 

 

The formulation of  allows us also to introduce nonnegative slack variables for 

each row, hence ( ) identity matrix as a basis for .  The solution algorithm 

proposed here is based on the general cutting plane method for convex programs 

combined with the column generation technique.  Starting with empty  and  or 

equivalently unconstrained , we generate new linear inequalities and solving 

 until an optimal solution (more precisely, a solution arbitrarily close to the 

optimal solution) is obtained.  Since adding a new constraint to  is equivalent to 

adding a new variable to its dual , instead of solving  from scratch, we 

solve  by using the revised simplex algorithm.  The basis is updated by pivoting 

on the new generated column to be added to the constraint matrix of . 

 

Since  is always feasible, the procedure can stop only in two possible cases.  

Either we detect the unboundedness of  or we solve it to optimality.  It is well 

known that the unboundedness of the dual problem means the infeasibility of the primal 

problem.  In other words,  is infeasible, and in turn, the original problem  

is infeasible due to the fact that the current constraint set with indices  and  is a 

relaxation of the feasible set of . 

 

 



 33

When the above procedure does not stop, at least one column is generated and added to 

the constraint matrix of , and then the optimum solution of updated  is 

found.  By the linear programming duality, the optimum dual solution of  with 

this new column set is the optimum solution of  with the new constraint set.  The 

above procedure stops after computing an optimal solution of .  This implies 

that the current optimal solution is also optimal for any larger column sets containing 

the current column set as a subset.  Hence the dual of an optimal solution of  

is an optimal solution of ; it is in fact an optimal solution of the semi-

infinite linear programming problem .  

 

Let us consider  for a given set of columns with indices  and , and assume 

that it is bounded.  Then, the simplex algorithm stops if and only if the reduced cost 

 for all nonbasic columns of , or equivalently 

 (here  is used to avoid confusion with the 

unit test cost vector ).  We observe that the index of a nonbasic column can be either in 

 or in .  Moreover,  for all , and  for all 

.  Then, by denoting an optimal solution of  by  and using the fact that 

, we can write the stopping condition of the simplex algorithm as  

 
 
  (3.39) 

 
 

or equivalently as 

 
 
  (3.40) 

 
 

If we slightly modify this stopping condition to consider all possible nonbasic columns, 

which are to be generated from the feasible failure rate sets  and , then the 

simplex algorithm stops if and only if type I and type II constraints given as inequalities 

(3.19) and (3.20) in the original formulation of  are satisfied, or equivalently, if 

and only if 
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  (3.41) 

 
 

This condition requires the solution of two optimization problems in , whose objective 

coefficients are the current optimal dual solution of .  Any optimum solution of 

these two optimization problems which violate its related inequality (3.41) generates a 

new column to be added to the constraint matrix of , which is a new cut for 

. This procedure is more formally illustrated in the next algorithm proposed by 

Altınel [17]. 

 

Algorithm 3.1 Column generation algorithm to solve P(m).  

 

Step 0. Input , , , , , , ; Initialize dual solution , 

inverse basis , dual objective  and iteration counter ; 

Step 1.  and call the optimum solution ; 

  and call the optimum solution ; 

Step 2. if  

STOP,  are the optimum component test times and  is 

the minimum total test cost for this value of ; 

 else 

  UPDATE  with ,  as two new columns; 

  UPDATE dual solution ; 

  ; 

 end if 

Step 3. Solve  with inverse basis ; 

Step 4. if  is BOUNDED, go to Step 1; 

 else, STOP and output “INFEASIBLE ”; 

 end if 
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We must also search for the optimum value of  to compute the optimum test times.  

As it is explained in Altınel [17],  is approximately a convex function of .  

Consequently, it is possible to search for , the value of  for which  holds 

for the first time, starting from  by using the column generation algorithm for 

computing  values.  We can assume that  for any value of ,  is 

unbounded, or equivalently  is infeasible.  Although this does not always 

guarantee the optimum solution, stopping at the first  that minimize  turns out 

to be a good heuristic rule in practice. 
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4 SOLUTION METHODS TO SOLVE SUBPROBLEMS 

 
 
 

Within the general solution framework given above, it is required to optimally solve   

type I and type II problems explicitly.  Most of the time, these subproblems are 

nonconvex.  Feyzioğlu et al. [16] proves that the reliability functions given in (2.12) - 

(2.15) log-concave functions.  This means after taking the natural logarithm of the 

reliability constraint, type I problem becomes a linear reverse convex optimization 

problem and type II problem becomes a convex minimization problem.  We also exploit 

this structure and solve subproblems involving reliability constraints with an outer 

approximation procedure proposed by Horst and Tuy [20].  MTTF functions given in 

(2.21), (2.23), (2.25), (2.27) and (2.29) and availability functions constructed from the 

limiting distributions (2.30), (2.32), (2.33), (2.34) and (2.35) can be also transformed to 

a difference of two convex functions with algebraic manipulations.  But the resulting 

optimization problems are rather complicated to solve after these derivations.  By 

rearranging the terms appropriately, MTTF functions can be reformulated as a ratio of 

two posynomials [3].  To illustrate, consider the serial connection of one 2-out-of-3 and 

one 3-out-of-4 subsystems: 

 
 

  

 
 

Therefore, we can equivalently represent system expected lifetime as  

 
 

  (4.1) 
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where  and  are positive coefficients,  and  are integer constant exponents.  Let 

 denote the unacceptable level of MTTF and similarly  denote the acceptable level 

of MTTF.  Using general representation function given in (4.1), optimization problems 

in (3.19) and (3.20) can be restated as 

 
 

  

 

  

 
 

Both type I and type II problems are now Signomial Geometric Programming problems, 

which can be solved globally using a branch and bound scheme described in Shen et al. 

[21].  We describe the details of this algorithm in section 4.2. 

 

This case also applies if availability is considered.  Let us consider the serial connection 

of a single component and a 2-out-of-3 subsystem.  Using the limiting distribution 

formulated in (2.30) for coherent systems, we need to solve the following system of 

linear equations 
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After obtaining the unique solution to the above system, we can formulate the 

availability function from (2.31) as follows 

 
 

  

 
 

It is clear that this availability function has the same structure with (4.1).  Hence 

availability sub problems can be handled using the same procedure.  

 

4.1 DC PROGRAMMING 

 

4.1.1 DC Functions 

 

Convexity is a nice property of functions which, unfortunately, is not preserved even 

under such simple algebraic operations as scalar multiplication or lower envelope.  Now 

we give a brief definition to the d.c. structure (also called the complementary convex 

structure) which is the common underlying mathematical structure of virtually all 

nonconvex optimization problems [22]. 

 

Let  be a convex set in .  We say that a function is d.c. on  if it can be expressed as 

the difference of two convex functions on , i.e. , where 

 are convex functions on . 

 

An inequality of the form , where the function  is convex, is called a 

convex inequality (because the set of all  satisfying this inequality is a convex set).  If 

 is concave, then the inequality is called complementary convex or reverse convex 

because its solution set is the complement of a convex set.  Thus a reverse convex 

inequality is of the form , where  is convex.  If  is a d.c. function then 

the inequality  is called a d.c. inequality.  The following proposition shows the 
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wide range of applicability of d.c. functions.  Let  denotes the class of functions 

on  continuously differentiable up to order . 

 

Proposition 4.1 

Every function  is d.c. on any compact convex set  [22]. 

 

However, it is not very easy to find the d.c. representation of a given function.  

Introductory information on the d.c. decomposition of basic composite functions, 

separable functions and polynomials can be found in the work of Horst and Tuy [20].  A 

d.c. set  can be represented as  where both 

functions  are convex.  In other words,  where 

 and . 

 

4.1.2 Canonical DC Programming 

 

A global optimization problem is called a d.c. programming problem if it has the form, 

 
 

  (4.2) 

 
 
where  is convex and all functions  are d.c. on , which is usually given by a 

set of convex inequalities.  By introducing at most two additional variables, every d.c. 

programming problem can be transformed into an equivalent canonical d.c. 

programming (CDC) problem  

 
 

  (4.3) 

 
 

where , and where  and  are real valued convex functions on . 

 



 40

Let  and .  If an optimal solution  of the 

convex program  satisfies , then the problem is solved.  

However the reverse convex constraint is not essential in the problem.  Therefore, 

without loss of generality we may assume that there exists a point  satisfying 

 
 
  (4.4) 
 
 

The next important property is an immediate consequence of this assumption. 

 

Proposition 4.2 (boundary property)  

Every global optimal solution lies on  [22]. 

 

Proof Let  be any feasible solution. If , then the line segment  meets 

 at a point   such that .  By convexity we have from 

(4.4), , so  is a better feasible solution than . 

 

Problem CDC is said to be regular if the feasible set  is robust or, which 

amounts to, 

 
 
  (4.5) 
 
 

Theorem 4.1 (global optimality condition) 

In order that a feasible solution  to CDC be global optimal it is necessary that [22]  

 
 
  (4.6) 
 
 

This condition is also sufficient if the problem is regular.  To exploit this optimality 

criterion, it is convenient to introduce the next concept.  Given , a vector  is said 

to be -approximate optimal solution to CDC if 
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  (4.7) 
 
  (4.8) 
 
 

Clearly as , any accumulation point of a sequence  of -approximate optimal 

solutions to CDC yields an exact global optimal solution.  Therefore, in practice one 

should be satisfied with an -approximate optimal solution for  sufficiently small.  

Denote .  In view of (4.4) it is natural 

to require that 

 
 
  (4.9) 
 
 

Define  and let . 

 

In view of (4.9) and Proposition 4.2, it is easily seen that  coincides with the set of -

approximate optimal solutions of CDC, so the problem amounts to searching for a point 

.  Denote by  the family of polytopes  for which there exists 

 satisfying .  

 

Consider the general problem of searching for an element of an unknown set  

(for instance,  is the set of optimal solutions of a given problem).  Suppose there exist 

a closed set  and a family  of polyhedrons , such that for each 

polyhedron  a point  (called a distinguished point associated with ) 

can be defined satisfying the following conditions: 

1.  always exists and can be computed if , and whenever a sequence of 

distinguished points , ,…, converges to a point  

then  (in particular,  implies that ). 

2. Given any distinguished point , , we can recognize when  

and if , we can construct and affine function  (called a “cut”) such 

that  and  strictly separates  from , i.e. 

satisfies 
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  (4.10) 
 
 

 
Figure 4.1 Outer approximation scheme for general nonconvex optimization. 

 
 

Then, for every , it is possible to define 

 
 
  (4.11) 
 
 

Where  is the vertex set of .  We now verify the use of outer approximation scheme 

for problem CDC.  First condition is obvious because  exists and can be computed 

provided ; moreover, since , we must have , so any 

accumulation point  of a sequence , satisfies , and hence 

 whenever .  To verify second condition, let any  associated to a 

polytope  such that  for some .  Note that . If 

 then , hence , which implies 

that  is an -approximate optimal value if  or the problem is infeasible if 

.  If  then  and since 

, we can compute a point  such that 

 
 
  (4.12) 
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Two cases are possible: 

a. : since  this event may occur only if  and so 

 can be separated from  by a cut  with 

 evaluated at . 

b. : then , so  is an -approximate solution in the sense of 

(4.7).  Furthermore, since  with , it 

follows that , so  can be 

separated from  by a cut  with  

evaluated at . 

 

In either case, if we set  then , i.e. 

.  Thus an outer approximation scheme can be applied to solve CDC [22]. 

 

Algorithm 4.1 OA algorithm for CDC. 

 

Step 0. Let  be the best feasible solution available,  (if no feasible solution 

is known, set , ). Take a polytope  and let 

. Determine the vertex set  of . Set . 

Step 1. Compute . If , then terminate: 

a) If ,  is an -approximate optimal solution. 

b) If , the problem is infeasible. 

Step 2. Compute  such that . If  then 

set  and let 

  

Step 3. If  then set  if , 

 otherwise. Let 

  

Step 4. Compute the vertex set  of , set  and 

go back to step 1. 
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4.2 SIGNOMIAL GEOMETRIC PROGRAMMING 

 

Signomial Geometric Programming (SGP) problem can be given as 

 
 

  (4.13) 

 
 

where 

 
 

  (4.14) 

 
 

and  is a positive and real coefficient;  = +1 or -1;  is an arbitrary real constant 

exponent;  and  are -vectors with .  In general, SGP corresponds to a 

nonlinear optimization problem with nonconvex objective function and constraints. 

 

SGP is a special nonlinear programming problem that has many applications in 

engineering design [23-26], economics and statistics [27-30], manufacturing [31,32] and 

chemical equilibrium [33,34].  There are many local optimization approaches for SGP, 

however the global optimization algorithms based on the characteristic of SGP are 

scarce.  Maranas and Gloudas [33] proposed such a global optimization algorithm based 

on the exponential variable transformation of SGP, the convex relaxation and branching 

and bounding on some hyperrectangle region.  By using linear relaxation, Shen and 

Zhang [35] reduce the problem SGP to a sequence of linear programming problems 

through successive refinement of a linear relaxation of feasible region using exponential 

variable transformation, tangential hypersurfaces and convex envelop approximations.  

They report efficient results for the global solution of SGP.  

 

Another global optimization algorithm for SGP is proposed by Wang and Liang [36].  

They use the popular exponential variable transformation to convert the problem into a 
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Reverse Convex Programming RCP problem.  Then by successively approximating 

convex constraint with a linear constraint and using the linear relaxation of RCP, they 

propose a convergent cutting-plane algorithm and give robust results for famous SGP 

benchmark problems.  However, Tuy [37] shows that the -approximate solutions 

offered by the above relaxation schemes quite often tend to be far from the actual global 

optimum solution of SGP.  Therefore, he proposes a DC programming and monotonic 

optimization procedure for a robust solution of generalized nonconvex optimization 

problems.  Using the results due to Tuy, Shen et al. [38] provide another robust 

optimization algorithm for the solution of SGP.  However, the performance of their 

algorithm varies on some of the problems encountered in literature. 

 

Previous results in the global optimization of SGP using linear relaxation have been 

gathered by Shen et al. [21].  They propose an acceleration method using a suitable 

deletion technique.  Their technique offers the possibility to cut away a significant 

portion of the currently investigated feasible region which does not contain the global 

minimum of SGP.  Using the new deletion technique they report less number of 

iterations and the execution time of their algorithm is significantly reduced.  We 

implement this algorithm for the solution of type I and type II problems consisting of 

MTTF and availability functions. 

 

We apply the exponent variable transformation  and equivalently represent 

SGP as follows, 

 
 

  (4.15) 

 
 

where 

 
 

  (4.16) 
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and .  

 

4.2.1 Linear Relaxation 

 

The principal construct in the development of a solution procedure for solving problem 

P1 is the construction of a linear relaxation for obtaining the lower bound of the optimal 

value for this problem, as well as for its partitioned subproblems.  Such a linear 

relaxation can be realized by lower estimating every convex term and upper estimating 

ever concave term of each constraint, in either the initial bounds on the variables of the 

problem, or modified bounds as defined for some partitioned subproblems in a branch 

and bound scheme.  In other words, this linear function is constructed by finding the 

linear lower bound function of each implicitly separable term , 

; . 

 

Let , ,  

denote the lower and upper bound of  in the hyper-rectangle  respectively.  

Consider a function  for any , 

where  and .  Then the following statements are valid: 

i. Let . Then,  

 , 

 , 

 

denote an affine concave envelope of  and an affine function 

corresponding to a supporting hyperplane of the graph of  over  parallel 

to , respectively.  In other words, 
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ii. The differences  and  satisfy 

 where  

and . 

 

The details can be found in [35].  From this result, it follows that  and  

converge to  as .  Now we can give the linear relaxation problem P2 

related to P1 as follows: 

 
 

  (4.17) 

 
 
where 

 
 

  (4.18) 

 

  

 
 

Based on the above linear under-estimators, every feasible point of P1 in sub-domain  

is feasible for P2, and the objective function value of P2 is less than or equal to that of 

P1 for all points in .  Thus, the minimum of P2 provides a valid lower bound for the 

globally optimal value of P1 over a partition set .  Therefore we can use the linear 

relaxation problem P2 to derive a lower bound of the solution of P1, which can be 

calculated by solving P2 inside some rectangle defined by  with 

.  
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4.2.2 Deletion Technique 

 

The accelerated deletion technique described in Shen et al. [21] is based upon on two 

important global optimality theorems in some hyper rectangle space .  We now give 

brief descriptions of those theorems.  To this end, let 

 
 

  

 

 

Theorem 4.2 

Assume that  is a known upper bound of the optimal objective value  of P1, and let 

 with  be a sub-rectangle of .  If there exists some index 

 satisfying  and , then there is no globally optimal 

solution of P1 over ; if  and  for some  then there is no globally 

optimal solution of P1 over  [21], where  
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Theorem 4.3 

Assume that  is a known upper bound of the optimal objective value  of P1, and let 

 with  be a sub-rectangle of .  If there exists some index 

 satisfying  and , then there is no globally optimal 

solution of P1 over ; if  and  for some  then there is no globally 

optimal solution of P1 over  [21], where  

 
 

  

 

  

 

  

 

  

 
 

The proofs of Theorem 4.2 and Theorem 4.3 can be found in Shen et al. [21]. 
 

4.2.3 Branching 

 

During each iteration of the algorithm, the branching process creates a more refined 

partition that cannot yet be excluded from further consideration in searching for a 

globally optimal solution of P1.  In the branching process we are going to use simple 

bisection rule which is defined in Shen and Zhang [35].  This rule is sufficient to ensure 

convergence since it drives all the intervals shrinking to a singleton for all the variables. 

Bisection branching rule can be given as follows. 
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Consider any node sub-problem identified by the rectangle .  Let 

 
 
  

 
 

We partition  by bisecting the interval  into the sub-intervals  

and .  With the help of above definitions we can formulate the global 

optimization algorithm proposed in Shen et al. [21].  Let  refer to the optimal 

objective function value of P2 for the sub-rectangles  and  refer to an 

element of corresponding argmin.  

 

Algorithm 4.2 Modified branch and bound algorithm for SGP. 

 

Step 0. Given a convergence tolerance , a feasibility tolerance  and a 

deleting tolerance ; iteration counter  the upper bound ; the 

active node set ; the set of feasible points . Solve P2 for  to 

obtain the lower bound  and . If  is feasible for P1, update  

and  if necessary. If , stop, and  is the globally optimal solution of 

P1. Otherwise, proceed to Step 1. 

Step 1. If the midpoint  of  is feasible for P1, update  and  such that 

 and ; if , the incumbent point is denoted by 

; 

Step 2. for  to  do 

Step 2.0. Calculate  as defined in Theorems 1 and 2 for ; 

  if , then go to Step 3; 

  else if  then go to Step 2.1; 

  else if  then go to Step 2.3; 

Step 2.1. if , then 

   if , then go to Step 2.2; 
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   else set , and go to Step 3; 

  if , then set , and go to Step 6; 

Step 2.2. if , then 

   if , then 

    if , then set , and go to Step 2.0; 

    else go to Step 3; 

   else set  and go to Step 3; 

  if , then set , and go to Step 6. 

Step 2.3. if , then 

   if , then go to Step 2.4; 

   else set , and go to Step 3; 

  if , then set , and go to Step 6; 

Step 2.4. if , then 

   if , then 

    if , then set , and go to Step 2.0; 

    else go to Step 3; 

   else set  and go to Step 3; 

  if , then set , and go to Step 6. 

Step 3. According to the above rectangle bisection rule for , we can get two new sub-

rectangles, and denote the set of new partition rectangles as . 

Step 4. For each , compute the lower bound  of  over , i.e., 

, , where  
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If  or  for some , then the corresponding sub-

rectangle  will be removed from , i.e., let  and skip to next element of 

. If , then solve P2 for each  to obtain  and . If 

 then . 

Step 5. If  is feasible for P1, then update ,  and  as Step 1. Set 

 and the new lower bound  

Step 6. Set . If  then stop and 

 is the optimal value of P1,  is an optimal solution of P1. Otherwise, , 

select an active node  such that  and  for further 

considering, and return to Step 1. 
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5 NUMERICAL EXAMPLES 

 
 
 

In this section, we give some numerical examples to clarify the theoretical work.  The 

main algorithm, branch and bound schemes are coded in C/C++ environment.  The 

CDC algorithm is coded in MATLAB environment and implemented in C/C++ 

environment by using MATLAB C callable library generated by MATLAB compiler.  

The linear programming problems are solved using standard LP solver provided by 

CPLEX 11.1 callable library.  The execution times are collected on a x64 HP 

workstation with 2.40 GHz dual CPU and 4096 MB RAM. 

 

5.1 EXAMPLES FOR MTTF 

 

In this section we provide two sets of numerical examples to illustrate the system-based 

component testing problems with MTTF performance measure.  The first example set 

consists of four systems.  Lower and upper bounds on component failure rates and unit 

component testing costs are given in Table 5.1.  We set , ,  and 

 in all examples. 

 
 
Table 5.1 First data set for MTTF examples. 

redundant -out-of-  standby redundant mixed 
 

            

1 0.010 0.481 77.3 0.007 0.547 77.9 0.091 0.814 14.1 0.073 0.939 67.8

2 0.010 0.388 28.4 0.005 0.138 93.4 0.091 0.126 42.1 0.089 0.823 75.7
3 0.106 0.388 77.3 0.053 0.149 12.9 0.097 0.814 191 0.010 1.383 74.3

 
 

Example 5.1 

The first example of this set is a serial connection of redundant subsystems with 2 

components each.  Component reliabilities and unit test costs are provided in Table 5.1.  
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We calculate the first feasible  as  with .  Then .  Hence 

 and the corresponding test times are .  

The least reliable subsystem 1 is tested the most and between the similar subsystems 2 

and 3, 3 is tested less as it has a higher testing cost.  A total of 74 columns are generated 

in 490.70 CPU seconds. If we modify the unit component testing costs as 

, the optimum  becomes , with . 

The optimum component test times are . The 

increased test time of subsystem 1 is a result of the reduction in subsystem 1’s unit 

testing cost. However as a consequence of the longer test time of less reliable 

subsystem, the optimum number of observed component failures, namely , is 

increased. This solution is illustrated Figure 5.1. 

 
 

 
Figure 5.1 Sequence of total test costs versus  for Example 5.1. 

 
 

Example 5.2 

As a second case, we study the serial connection of three 2-out-of-3 subsystems.  

Component reliabilities and unit test costs are provided in Table 5.1.  The feasible  is 
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detected as 7 with .  Then  and .  Therefore 

 and the corresponding test times are .  

A total of 70 columns are generated in 486.75 CPU seconds to find this solution. In this 

example, we increase the unacceptable expected system lifetime level from  to 

. As a result the optimum  is 19 with total component testing cost 

. The component test times are  

. The increase in total component testing cost and test 

times are notable, which is a clear result because we started to apply the probability of 

type I error to a wider range of unacceptable performance level. Similarly if we set 

 and , new optimum solution, , , 

, follows the same result as well. Because we 

started to apply type II error probability, to a wider range of acceptable performance 

level. To clarify this result, let’s recall type II problem given in (3.20). By decreasing 

the acceptable MTTF level , we increase the size of the column generation set  

given in (3.11). Therefore we are solving the  problem in a tighter, more 

constrained region, which results in a higher component testing cost. 

 

Example 5.3 

All subsystems of the third system are assumed to have a common redundancy .  

Component reliabilities and unit test costs are provided in Table 5.1.  The column 

generation algorithm generates 37 columns in total to find  with   

and  in 6.79 CPU seconds.  The problem has no 

feasible solution for smaller  values.  Arguments similar to the previous cases remain 

valid here.  Subsystems 1 and 3 are quite similar and the one having higher unit test cost 

is less tested.  The most reliable subsystem 2 is not tested at all. We modify the 

component failure rate lower bounds as .  In the 

new setup, the column generation algorithm stops at  with increasing component 

testing cost  and , indicating .  The component test 

times are .  The shorter test time of subsystem 1 

clearly depicts the increase in the reliability as a result of the change in lower bounds.  

However to balance the reduction in component testing time of subsystem 1, subsystem 

3 is tested slightly longer as a tradeoff between two similar setups. 
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Example 5.4 

In the fourth system, we investigate a mixed system that contains one redundant 

subsystem with 2 components, one standby redundant subsystem with 2 components 

and one 2-out-of-3 subsystem connected in series.  Component reliabilities and unit test 

costs are provided in Table 5.1.  The first feasible and optimum  and the total 

test cost is .  The component test times are  

. 72 columns are generated in 611.75 CPU seconds to solve 

this case. 

 

In the second examples set, we investigate systems with subsystems having different 

redundancies.  In line with the first set subsystems’ redundancies, lower and upper 

bounds on component failure rates and unit component testing costs are given in Table 

5.2.  We set , ,  and  in all examples. 

 
 
Table 5.2 Second data set for MTTF examples. 

redundant -out-of-  standby redundant  
             

1 4 0.014 0.043 70.6 2/3 0.010 0.092 32.9 4 0.059 0.236 48.9 
2 3 0.042 0.168 3.18 2/4 0.013 0.312 32.9 3 0.059 0.845 44.5 
3 2 0.091 0.649 27.6 3/4 0.029 0.312 87.4 2 0.164 0.845 64.6 

 
 

Example 5.5 

The first example of this set is a serial connection of redundant subsystems.  Component 

reliabilities, unit test costs and subsystem redundancies are provided in Table 5.2.  We 

calculate the first feasible  with . Then .  Therefore  

and the corresponding test times are .  Subsystem 

1 with most reliable and more redundant components is not tested as it has longer 

expected lifetime.  Component test times increase as subsystems reliabilities decrease.  

A total of 37 columns are generated in 3249.79 CPU seconds to find this solution.  

 

Example 5.6 

The second example consists of a serial connection of three -out-of-  subsystems.  

Component reliabilities, unit test costs and subsystem redundancies are provided in 
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Table 5.2.  No feasible solution is detected .  The optimum  with total 

test cost sequence , .  The corresponding test times are 

.  It can be again observed that the test times 

increase as reliabilities decrease.  Comparing subsystems 1 and 2, the second requires 

less number of components to survive.  However it is also less reliable according to the 

component reliabilities and thus needs more testing time.  This solution is found in 

1844.79 CPU seconds with the generation of 71 columns. 

 

Example 5.7 

The last example of this set is the serial connection of standby redundant subsystems.  

Component reliabilities, unit test costs and subsystem redundancies are provided in 

Table 5.2.  We compute the first feasible  as 9 with .  Then we compute 

.  Therefore,  is the optimum solution of the component testing 

problem.  The corresponding test times are .  44 

columns were generated for this solution in 179.04 CPU seconds. 

 

Example 5.8 

In this example we compare passive redundancy with active redundancy. We design a 

system consisting three serially connected subsystems with 3 components each. We set 

, ,  

, , and . First we obtain the solution for the passive 

redundant case, ,  and . 

Then we solve the system for the active redundancy case, the solution is , 

 and .  Here, smaller total component 

testing cost for the active redundancy case is an expected result, because standby 

redundant subsystems have a longer expected system lifetime. 

 

Example 5.9 

As previously mentioned, stopping at the first feasible  for which the next feasible  

has higher total test cost turns out to be a good heuristic rule in practice.  Though rarely 

occurs, it is also possible to find cases where this rule does not apply.  As an example, 

let’s consider a serial connection of three -out-of-  subsystems with common 
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redundancies 2-out-of-3.  Let ,  

 and .  Furthermore, 

unacceptable and acceptable expected system lifetimes are selected as  and 

 respectively.  The first feasible  with .  Given that the 

total test cost for the next  is , the column generation algorithm 

stops with .  However, if calculations are further carried, we find a sequence of 

total test costs such as 2148.54, 2153.44, 2157.36, 2155.88, 2145.51, 2126.19, 2098.58, 

2063.98, 2022.79, 1975.31, 1955.68, 2046.94, 2137.81, 2228.33, 2318.51, 2408.39.  

Obviously,  with .  This case is illustrated in Figure 5.2. 

 
 

 
Figure 5.2 Sequence of total test costs versus  for Example 5.9. 

 
 

5.2 EXAMPLES FOR AVAILABILITY 

 

In this section we formulate system-based component testing problem with availability 

performance measure.  Again the first set of examples consists of systems having same 
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redundancy in each subsystem.  Lower and upper bounds on component failure rates 

and unit component testing costs are given in Table 5.3.  We set , , 

 and  in all examples. 

 
 
Table 5.3 First data set for availability examples. 

redundant -out-of-  standby redundant mixed 
 

            

1 0.032 0.187 44.5 0.037 0.247 77.9 0.083 0.421 82.3 0.173 0.830 34.9

2 0.032 0.795 44.5 0.075 0.138 33.4 0.083 0.728 38.9 0.104 0.585 19.6
3 0.095 0.187 64.6 0.073 0.149 42.9 0.093 0.728 74.3 0.180 0.549 25.1

 
 
Example 5.10 

First of the availability examples is a system consisting of three serially connected 

redundant subsystems with  redundancy each.  Component reliabilities and unit 

testing costs are provided in Table 5.3.  We compute  with  and 

the component test times corresponding to this solution as 

.  63 columns were generated in 127.53 CPU 

seconds to compute this solution.  We can again observe the increase in test times with 

decreasing subsystem reliabilities.  We change the unit test cost of subsystem 1 to 

, and we also set the upper bounds on component failure rates as 

.  In the new solution optimum  is found as 

, optimum total component testing cost  and  

.  An interesting result is that subsystem 1 is not tested as a 

result of its increased reliability.  However, subsystem 3 is tested in the current solution 

because of its decreased reliability. 

 

Example 5.11 

Secondary, we inspect a serial connection of three 2-out-of-3 subsystems.  Component 

reliabilities and unit testing costs are provided in Table 5.3.  There is no feasible  for 

.  Then we compute  and  which indicates the optimum 

 is .  The optimum test times are .  This 

solution is computed in 107.45 CPU seconds by generating 45 columns.  In this solution 

it is again clear that the least reliable subsystem, namely subsystem 1, is the one with a 
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longer test time. We set , and the new optimum solution is, ,  

 and . The lesser total component 

testing cost is a clear result of the relaxation of type I problem. We started to apply the 

probability of type I error to a narrower range of unacceptable performance level. 

Similarly if we set , the optimum solution is, ,   and 

. Again the lesser total component testing cost is a 

result of the relaxed type II problem. 

 

Example 5.12 

Third example involves a serial connection of 3 standby redundant subsystems, each 

with  redundant components.  Component reliabilities and unit testing costs are 

provided in Table 5.3.  The optimum   is computed with total test cost values 

 and .   are the 

optimum test times corresponding with this solution.  136 columns were generated in 

468.98 CPU seconds to find this solution. 

 

Example 5.13 

The forth system consists the serial connection of one redundant subsystem with two 

components, one standby redundant subsystem with two components and one 2-out-of-3 

subsystem.  Component reliabilities and unit testing costs are provided in Table 5.3.  

The algorithm generates 103 columns in 950.10 CPU seconds to compute  

and  which indicates the optimum  is .  The optimum test times 

are  .  In this example, we set .   

The optimum  is calculated as  with total component testing cost sequence 

, .  Also the component test times in this solution are 

.  The increased reliability of subsystem 1 results 

in a shorter test time and the reduced reliability of subsystem 3 results in a longer test 

time in the new solution. 

 

The second set consists subsystems with varying redundancy.  The component 

reliabilities, unit test costs and subsystem redundancies are provided in Table 5.4. 
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Table 5.4 Second data set for availability examples. 
redundant -out-of-  standby redundant  

             
1 4 0.141 0.379 11.9 2/3 0.039 0.353 4.61 4 0.163 0.278 96.4 
2 3 0.201 0.615 49.8 2/4 0.065 0.116 9.71 3 0.181 0.546 15.7 
3 2 0.195 0.362 95.9 3/4 0.017 0.138 82.3 2 0.025 0.957 97.0 

 
 

Example 5.14 

The first example of second data set is a system consisting of three serially connected 

redundant subsystems with component reliabilities, unit testing costs and subsystem 

redundancies provided in Table 5.4.  We compute  with  and the 

component test times corresponding to this solution as  

.  57 columns were generated in 3012.50 CPU seconds to 

compute this solution.  We can again observe the increase in test times with decreasing 

subsystem reliabilities. 

 

Example 5.15 

Secondly we investigate a serial connection of three -out-of-  subsystems.  

Component reliabilities, unit testing costs and subsystem redundancies are provided in 

Table 5.4.  The column generation algorithm computes the total test cost sequence 

illustrated in Figure 5.3, starting from , which indicates  with 

. The component test times corresponding to this solution are  

.  145 columns were generated in 6578.31 CPU seconds to 

compute this solution. 
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Figure 5.3 Sequence of total test costs versus  for Example 5.15. 

 
 
 

Example 5.16 

The final example of second set is a serial connection of 3 standby redundant 

subsystems.  Component reliabilities, unit testing costs and subsystem redundancies are 

provided in Table 5.4.  There is no feasible  for , then we compute 

 and .  Hence the column generation algorithm stops with 

 and .  99 columns were generated in 

648.46 CPU seconds to find this solution.  We observe the most reliable system 

subsystem 1 is not tested and the comparison between subsystem 2 and 3 is clear as the 

less reliable one, namely 3 is tested longer. 

 

5.3 EXAMPLES FOR SMPM  

 

In this section, we formulate system-based component testing problems taking all three 

performance measures into account, namely we set . Let  and  for 
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 denote the unacceptable and acceptable performance levels 

respectively. 

 
 
Table 5.5 Data set for SMPM examples. 

redundant -out-of-  standby redundant mixed 
 

            

1 0.011 0.334 34.0 0.005 0.067 86.9 0.075 0.699 54.7 0.081 1.188 95.7

2 0.049 0.438 58.5 0.023 0.209 86.9 0.050 0.699 13.8 0.090 1.439 48.5
3 0.095 0.438 34.0 0.048 0.209 57.9 0.050 0.959 14.9 0.012 0.983 80.0

 
 

Example 5.17 

In the first example we analyze the serial connection of three redundant subsystems 

with component reliabilities given in Table 5.5.  We set , , , 

and , ,  as unacceptable and acceptable performance 

measures, respectively.  The redundancies of all subsystems are set to a common 

redundancy, i.e.  for all .  No feasible solution is found for .  

Then, we compute  and  and deduce that . The 

associated optimum test times are .  A total of 

277 columns are generated in 971.05 CPU seconds to find this solution.  Note that unit 

test costs are equal but lower and upper bounds are different for subsystem 1 and 3 and 

more reliable subsystem 1 has a shorter test time.  Meanwhile, subsystem 2 and 3 are 

quite similar in terms of lower and upper bounds of component failure rates, but 

subsystem 2 with higher unit test cost is tested less.  

 

We modify the desired performance levels as follows, , , 

, ,  and , and obtain the solution, , 

 and . From this point on, we add 

the additional modification of acceptable MTTF level,  and an interesting 

result occurs. The solution remains precisely the same, which means that type II 

problem including the MTTF constraint is redundant with this data set. Therefore we 

can remove it from the column generation scheme without changing the solution. 
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Example 5.18 

Our second example consists of a serial connection of three 2-out-of-3 systems.  Let the 

component failure rates and unit testing costs for each subsystem be as in Table 5.5.  

We set , , , , , and .  The first 

feasible  is detected as 12 with .  Then  and 

.  Therefore  and the corresponding test times are 

.  A total of 216 columns are generated in 

2758.31 CPU seconds to find this solution.  We can note that among similar systems 

subsystem 1 and subsystem 2, the less reliable one, namely the second subsystem is 

tested more.  If we modify the component test costs as , 

the optimum solution changes to, ,  and 

.  In this solution we can note that the increased 

test time of the reliable subsystem, namely subsystem 1, resulted in a lower optimum . 

 

Example 5.19 

The third system consists of three standby redundant subsystems with  each, and 

the component failure rates are given in Table 5.5.  For the third example the 

performance levels are set as , , , , , and 

.  The column generation algorithm generates 305 columns in total to find 

 with  and  in 1054.46 

CPU seconds.  The problem has no feasible solution for smaller  values.  Arguments 

similar to the previous case remain valid here.  Among subsystems 2 and 3, the more 

reliable system 2 is tested less and among the similar subsystems 1 and 2, the one with 

the larger test cost, subsystem 1, is tested less.  

 

When we modify the upper bounds for this example as 

, the optimum solution changes to , 

 and . The increased component 

failure rate for subsystem 1 results in a longer test time, similarly also the decreased 

component failure rate for subsystem 2 results in a shorter test time. 
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Example 5.20 

Finally we investigate a mixed system that contains one redundant subsystem with two 

components, one standby redundant subsystem with two components and one 2-out-of-3 

subsystem connected in series.  Again the component reliabilities and unit test costs for 

each subsystem are set to the values provided in Table 5.5.  Let the performance levels 

for fourth system be , , , , , and 

. The first feasible and optimum  and the total test cost is 

.  The component test times are  .  

290 columns are generated in 4458.02 CPU seconds to solve this case. Upon changing 

the desired performance levels to , , , , 

, and , hence relaxing the optimization problem, we calculate the 

optimum solution as ,  and . 

The decreased total component testing cost is a clear result of relaxed performance 

levels. 

 

5.4 EXAMPLES FOR JMPM 

 

Example 5.21 

We now illustrate this case for a series system with two components.  The reliability, 

MTTF and availability functions are  

 
 

  (5.1) 

 
 

respectively.  Using the above performance functions we can derive the semi-infinite 

linear programming problem  as follows, 
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                  (5.2) 
                 

                             (5.3) 

 

                             (5.4) 

 
                               (5.5) 
 
 

In the above formulation, type I and type II problems are both linear programming 

problems.  For this example we set ,  

, , and the desired performance levels as 

, , , , , and .   

 

The optimum solution ,  and  for the 

JMPM case (Figure 5.4) is found in 0.26 CPU seconds with the generation of 17 

columns.  

 

For the SMPM case (Figure 5.5), we find the optimum solution , 

 and  in 1.59 CPU seconds by generating 

273 columns. 

 

We now illustrate the generated columns for each level of  and compare the results of 

two formulations. 
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Figure 5.4 Generated columns for the joint case JMPM. 

 

 
Figure 5.5 Generated columns for the separate case SMPM. 

 
 

As we include more constraints with the same confidence interval in the SMPM 

formulation, it is also a tighter problem. Therefore the smaller total component testing 

cost found by the JMPM formulation is a result of its relaxed formulation compared to 

its SMPM counterpart. 
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6 CONCLUSION 

 
 
 
The determination of cost efficient test plans to accept or reject a system with minimum 

total test cost is an important concern in reliability testing.  These plans become more 

critical when it is impossible or economically infeasible to test the system as a whole. In 

the existing literature on system-based component testing, system reliability is regarded 

as a single performance measure.  In this work, we generalize this concept to a multi-

performance measure environment, where system reliability, expected system lifetime 

and system availability need to be demonstrated to accept or reject a system.  We 

formulate expected system lifetime and system availability for various system 

topologies including the serial connection of redundant, -out-of-  and active redundant 

subsystems.  

 

Type I and type II subproblems arising in the main formulation are reverse convex 

optimization problems and can be solved to global optimality using outer approximation 

exploiting this structure.  However expected system lifetime and availability functions 

are rather complicated for this case and it is a well-known fact that outer approximation 

grows cumbersome with the increase in dimension.  Therefore, we prefer to work with 

another representation involving signomial geometric programming and we choose a 

branch and bound algorithm with a relaxation scheme to solve these optimization 

problems. 

 

We have obtained some notable results, such as 

 the component test times increase as subsystem reliabilities decrease, 

 a counter example to the stopping criterion for the column generation algorithm 

is also provided. It is also shown that stopping at the first feasible  with 

increasing total component testing cost may not be appropriate for some cases, 

 the subsystem requiring more components to survive is tested more, 
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 among subsystems with similar component reliabilities, the one with the smaller 

unit testing cost is tested more. 

 

Furthermore, probably the most important result, the JMPM formulation gives a better 

solution with smaller total test cost and smaller first feasible m, compared to SMPM 

formulation.  Therefore, an interesting line of research lies in formulating JMPM 

problem for different system topologies and comparing the results. 

 

Another future line of research can be to deal with the variation of the time to failure for 

various systems.  It is a common fact that a system with smaller expected system 

lifetime and time to failure variance is preferred in practice.  If the variance can be 

explicitly expressed in functional form and bounded, it can be considered as an 

additional constraint in type I and type II problems involving expected system lifetime 

function. 

 

It has been proven in the literature that, setting upper bounds on component failure rates 

is beneficial to reduce total test cost.  However, it is assumed that upper bounds are 

obtained without any additional cost.  The case where upper bounds are obtained at a 

price is an interesting line of research that is not addressed. 

 

Finally, we want to point that the increasing complexity of expected system lifetime and 

availability functions also increases the intractability of the problem.  In spite of this 

fact, we certainly hope that the analysis of this new type of testing problems leads to 

interesting stochastic models and optimization results.  The new testing approach 

provides a more realistic setting to determine optimal component testing policies for 

devices that are designed to satisfy a set of performance measures. 
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