
DESIGN OF OPTIMUM COMPONENT TEST PLANS WHILE CONSIDERING

MULTIPLE OBJECTIVES

(ÇOK ÖLÇÜTLÜ ENİYİ BİLEŞEN SINAM PLANLARININ TASARLANMASI)

by by

Emre YAMANGİL, B.S.

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

in

INDUSTRIAL ENGINEERING

in the

INSTITUTE OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

May 2009

DESIGN OF OPTIMUM COMPONENT TEST PLANS WHILE CONSIDERING

MULTIPLE OBJECTIVES

(ÇOK ÖLÇÜTLÜ ENİYİ BİLEŞEN SINAM PLANLARININ TASARLANMASI)

by by

Emre YAMANGİL, B.S.

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

Date of Submission : May 8, 2009

Date of Defense Examination: May 18, 2009

Supervisor : Assoc. Prof. Dr. Orhan FEYZİOĞLU

Committee Members: Prof. Dr. İ. Kuban ALTINEL

 Prof. Dr. Süleyman ÖZEKİCİ

ACKNOWLEDGEMENTS

My deepest appreciation and thanks goes to Dr. Feyzioğlu, my mentor during this

effort. It was a privilege to spend a wonderful two years of my life working under his

supervision. His outstanding teaching has not only directed me to correct answers, but

also taught me how to ask the right questions. I cannot be thankful enough that, through

his guidance, I remembered something I had learned long ago - Given sufficient work,

nothing is impossible. As he says, no effort goes to waste, try again, fail again, fail

better!

During the course of my studies, I also had the chance to work with Dr. Altınel. I am

forever grateful to be given an opportunity to build on his foundation, and to attend his

class, combinatorial optimization.

Thanks to Dr. Özekici, this thesis has been completed to the fullest. Without his

managing insight, unbelievable stochastic expertise, the optimization model would not

have even been constructed.

I would like to thank Bora Çekyay, my fellow partner in the project. His stochastic

formulations provided many of the bricks in this work, as well. And to Hakan Akyüz

and Jbid Arsenyen, for listening to every problem I had, academic and life alike, helping

to the best of their ability without the slightest hesitation.

Finally, without my sister setting me free from the throes of desperation in my junior

year, my mother never letting me lose faith in myself and my father always believing in

me, I couldn’t even dream of accomplishing this work. Hence this work is totally

yours…

I gratefully acknowledge that this research has been supported by the Turkish Scientific

and Technological Research Council (TÜBİTAK)’s Grant 106M044.

08/05/2009
Emre YAMANGİL

 ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. ii

TABLE OF CONTENTS... iii

LIST OF SYMBOLS.. v

LIST OF FIGURES ...viii

LIST OF TABLES... ix

ABSTRACT.. x

RÉSUMÉ ... xi

ÖZET ..xii

1 INTRODUCTION .. 1

2 SYSTEM PERFORMANCE MEASURES.. 4

2.1 BASIC RELIABILITY THEORY.. 4

2.2 SYSTEM RELIABILITY... 10

2.2.1 Series Systems .. 11

2.2.2 Serial Connection of Redundant Subsystems ... 12

2.2.3 Serial Connection of k-out-of-n Subsystems .. 12

2.2.4 Serial Connection of Standby Redundant Subsystems 13

2.3 SYSTEM MEAN TIME TO FAILURE... 13

2.3.1 Coherent Systems ... 13

2.3.2 Series Systems .. 15

2.3.3 Serial Connection of Redundant Subsystems ... 15

2.3.4 Serial Connection of k-out-of-n Subsystems .. 16

2.3.5 Serial Connection of Standby Redundant Subsystems 17

2.4 SYSTEM AVAILABILITY ... 17

2.4.1 Coherent Systems ... 18

2.4.2 Series Systems .. 19

2.4.3 Serial Connection of Redundant Subsystems ... 20

2.4.4 Serial Connection of k-out-of-n Subsystems .. 21

 iii

2.4.5 Serial Connection of Standby Redundant Subsystems 22

3 SYSTEM-BASED COMPONENT TESTING PROBLEM................................... 24

3.1 FORMULATION ... 26

3.2 FORMULATION WITH MULTIPLE PERFORMANCE MEASURES 29

3.2.1 Joint Multiple Performance Measures Formulation 30

3.2.2 Separate Multiple Performance Measures Formulation 30

3.3 SOLUTION PROCEDURE.. 31

4 SOLUTION METHODS TO SOLVE SUBPROBLEMS...................................... 36

4.1 DC PROGRAMMING ... 38

4.1.1 DC Functions .. 38

4.1.2 Canonical DC Programming... 39

4.2 SIGNOMIAL GEOMETRIC PROGRAMMING .. 44

4.2.1 Linear Relaxation.. 46

4.2.2 Deletion Technique... 48

4.2.3 Branching.. 49

5 NUMERICAL EXAMPLES... 53

5.1 EXAMPLES FOR MTTF... 53

5.2 EXAMPLES FOR AVAILABILITY ... 58

5.3 EXAMPLES FOR SMPM.. 62

5.4 EXAMPLES FOR JMPM... 65

6 CONCLUSION... 68

REFERENCES ... 70

BIOGRAPHICAL SKETCH .. 74

 iv

LIST OF SYMBOLS

 System availability as a function of component reliabilities

 Test cost for component

 Expected system lifetime as a function of component reliabilities

 Feasible solution index set associated with

 Feasible solution index set associated with

 Optimum solution of type I problem at iteration , new column generated

from

 Optimum solution of type II problem at iteration , new column

generated from

 Null hypothesis

 Alternative hypothesis

 Least number of components required to function for subsystem

 Lower bound of component ’s failure rate

 Maximum number of total allowable failures

 Optimum

 Number of subsystems

 Number of components in subsystem

 Total number of failures

 Total number of failures for component

 System reliability as a function of component reliabilities

 Reliability of component at time

 Component reliability vector at time

 dimensional real vectors

 Time

 Test time of component

 Test time of component until a total of failures occur

 v

 Optimum test time of component until a total of failures occur

 Upper bound on component ’s failure rate

 Optimum dual solution of

 , minimum total test cost

 Minimum total test cost for a given

 Optimum objective value of type I problem for a given at iteration

 Optimum objective value of type II problem for a given at iteration

 A given upper bound on consumer risk

 A given upper bound on producer risk

 Set of feasible component failure rates for which system rejection is

correct

 Set of feasible component failure rates for which system acception is

correct

 Component failure rates

 Component failure rate for component

 Poisson parameter for which

 A performance measure as a function of component reliabilities

 Unacceptable performance level

 Unacceptable reliability level

 Unacceptable mean time to failure level

 Unacceptable availability level

 Acceptable performance level

 Acceptable reliability level

 Acceptable mean time to failure level

 Acceptable availability level

 Structure function

 Cumulative Poisson distribution with parameter

 Canonical DC

 Difference of two convex

 vi

 Dual linear program for a given

 Dual linear program for a given at iteration

 Joint multiple performance measures

 Linear programming

 System-based component test problem

 System-based component test problem with joint multiple performance

measures

 System-based component test problem with separate multiple

performance measures

 after exponential variable transformation

 linear relaxation of

 Primal linear program for a given

 Primal linear program for a given at iteration

 Reverse convex programming

 Signomial geometric programming

 Separate multiple performance measures

 vii

LIST OF FIGURES

Figure 2.1 Series system ... 5

Figure 2.2 Parallel system... 6

Figure 2.3 Structure of a 2-out-of-3 system.. 6

Figure 2.4 The bridge system ... 9

Figure 4.1 Outer approximation scheme for general nonconvex optimization. 42

Figure 5.1 Sequence of total test costs versus for Example 5.1. 54

Figure 5.2 Sequence of total test costs versus for Example 5.9. 58

Figure 5.3 Sequence of total test costs versus for Example 5.15. 62

Figure 5.4 Generated columns for the joint case JMPM. ... 67

Figure 5.5 Generated columns for the separate case SMPM.. 67

 viii

LIST OF TABLES

Table 5.1 First data set for MTTF examples. ...53

Table 5.2 Second data set for MTTF examples. ...56

Table 5.3 First data set for availability examples. ..59

Table 5.4 Second data set for availability examples...61

Table 5.5 Data set for SMPM examples. ..63

 ix

ABSTRACT

Testing the system as a whole might be found economically infeasible or physically

impossible in many cases. For instance, testing a nuclear device is currently banned by

international agreements or testing a space shuttle might be found too risky because of

its financial consequences. Instead, various components can be tested separately to

meet some desired level of performance for the whole system, while achieving a

minimal total testing cost. This problem is called system based component testing

problem and is investigated in this thesis.

Although system reliability is the only considered measure in the available literature on

this problem, there exist other more practical measures such as mean time to failure or

availability worth to take into account. Here we extend previous studies by

incorporating various performance measures separately or jointly.

The problem is formulated as a semi-infinite linear programming problem, and the

optimum component test times are obtained by combining the well-known cutting plane

method with the well-known column generation technique. The columns are generated

by solving two different optimization subproblems which are proved to be d.c.

(difference of two convex functions) programming or signomial geometric

programming problems depending on the performance measures examined. These

subproblems are solved to optimality by adapting an outer approximation method and

by a special branch and bound technique. Several numerical examples are provided to

illustrate the approach.

 x

RÉSUMÉ

Dans plusieurs cas, tester un système comme un tout peut sembler non-faisable

économiquement ou impossible physiquement. Par exemple, tester une machine

nucléaire est actuellement interdit par les accords internationaux et tester une navette

spatiale peut paraître risqué étant donné les conséquences monétaires. Il est plutôt

préféré de tester les divers composants pour atteindre le niveau désiré de la performance

du système. Le problème investigué dans cette thèse est nommé le problème d’essai des

composantes selon le système.

Même si la fiabilité du système est la seule mesure considérée dans la littérature

disponible sur ce problème, il existe d’autres mesures pratiques à dévisager, comme

durée moyenne de fonctionnement avant défaillance, disponibilité, etc. Les études

précédentes sont élargies dans cette étude par l’intégration de ces mesures de

performance séparément ou conjointement.

Le problème est formulé comme un problème de programmation linéaire semi-infinie et

la durée optimale de test de composant est obtenue par la combinaison d’une technique

réputée, nommé méthode des plans sécants avec une autre technique réputée, nommé

méthode de génération de colonnes. Les colonnes sont engendrées en résolvant deux

sous-problèmes différents d’optimisation, prouvés être des problèmes de

programmation d.c. (la différence des deux fonctions convexes) ou de programmation

géométrique signomiale, suivant la mesure de performance examinée. Ces sous-

problèmes sont résolus à l’optimalité par l’adaptation d’une technique d’approximation

par l’extérieure et par une méthode spéciale de séparation et d'évaluation progressive.

Plusieurs exemples numériques sont fournis afin d’illustrer l’approche.

 xi

ÖZET

Dizgeyi bir bütün halinde sınamak olanaksız veya katlanılamayacak bir maliyete

olabilir. Örneğin nükleer silahların denenmesi uluslararası anlaşmalar çerçevesinde

sınırlandırılmıştır. Benzer şekilde bir uzay mekiğini sınamanın mali sonuçları oldukça

belirsizdir. Bu gibi durumlarda bileşenler, dizgenin bütünü için öngörülmüş başarım

ölçütlerini sağlayacak şekilde ve olabilecek en düşük maliyette ayrı ayrı denenebilirler.

Bu problem dizge tabanlı bileşen sınamı olarak bilinmektedir ve bu tezin konusunu

oluşturmaktadır.

Probleme ilişkin yazında sadece sistem güvenilirliği dikkate alınmaktadır. Ancak

beklenen yaşam süresi veya kullanılırlık gibi ölçütler uygulamada daha kullanışlı

bulunabilir. Bu çalışma farklı başarım ölçütlerini hem ayrık hem de bir arada

kullanarak varolan diğer çalışmaları genellemektedir.

Problemin yarı-sonsuz doğrusal programlama modeli oluşturulmuş ve eniyi bileşen

sınam süreleri kesme-düzlem yöntemi ile sütun üretme yordamının bir araya

getirilmesiyle hesaplanmıştır. Sütunlar, ele alınan başarım ölçütleri doğrultusunda d.c.

(dışbükey fonksiyonların farkı) programlama veya genel geometrik programlama

problemi oldukları kanıtlanmış iki eniyileme alt probleminin çözülmesi ile üretilmiştir.

Bu alt problemlerin çözümünde dıştan yaklaşıklama veya dal-sınır yöntemlerinden

faydalanılmıştır. Yaklaşımın ayrıntılarını gözler önüne sermek için çok sayıda sayısal

örnek hazırlanmıştır.

xii

 1

1 INTRODUCTION

Increasing product complexity, challenging environment and competition in global

market have led to an increase in performance demands from consumers. For example

many military devices carry out critical missions in a growingly hostile territory where a

system failure can result in operator injury, damage to property, and a significant

economic loss.

When a system failure occurs, no matter how benign, its impact is felt. For example,

even a screw fallen from a chair may have consequences. A small injury or at least a

need to repair the chair before utilizing its full use thereafter. However, a disfunctional

flap in an airplane may result in a plane crash or an inevitable landing.

Although it is almost impossible to fully avoid system failure in the long run, it is still

important to reduce its occurrence probability. Instead of trying to eliminate a system

failure, system can be tested for whether it satisfies a certain performance measure or

not, at some pre-determined level before undertaking its mission. These tests can

provide information about a system’s capacity to fulfill its requirements. For example,

using these statistics, one can either design a system to meet its objective, avoid a

system breakdown using preventive maintenance at critical phases or know the limits of

a system before assigning it a mission. Then the question becomes “How do we design

a test model to examine the system against a desired performance measure?”

There are two well-known approaches for testing a system. First, one can either test the

system as a whole, simulating the circumstances of mission’s environment as best as

possible and examine how does the system act in this simulation. Second, one can

conduct individual component tests for the prediction and verification of the system

performance. Although it is cheaper and less dangerous to examine the components of

a system rather than the whole, the first approach provides better insights into the

 2

system’s capacity. However the cost of these tests can be overwhelming, preventing its

usage in many situations. In this thesis, we are concerned with the alternative test

approach that combines the strong features of the two, the identification of cost-efficient

component test plans to demonstrate a desired performance measures for a system.

Component testing is carried out when it is economically infeasible or physically

impossible to test the system as a whole. For example, testing a nuclear device is

currently banned by international agreements or testing a space shuttle might be found

too risky because of its financial consequences. These are extreme but typical examples

where one needs to attain a certain performance level without testing the system.

Instead the test is done on various components to meet a desired performance measure

for the whole system, while achieving a minimal testing cost.

This approach, known as system-based component testing, drew a lot of attention in the

past three decades. It amounts to find a component testing plan that assures some

system performance within predetermined limits with minimum total testing cost.

Researchers considered different system topologies, extended the problem from

independent to dependent environments, introduced systems designed to accomplish

multi-phased missions. However, system reliability is regarded as a single performance

criterion in most of the available literature. In this work, we consider the case in which

setting a system’s expected lifetime or availability are more practical than determining

its reliability. Furthermore, we formulate the situation where system is expected to

satisfy a set of performance measures rather than only satisfying single criterion at pre-

determined levels. We formulate the multiple performance measure system-based

component testing problem in two modeling approaches.

Within the existing definition and formulation of the problem, there are two main

difficulties which make this problem hard solve to optimality. First, even it is a linear

programming problem and has finitely many variables, it also has infinitely many

constraints. This type of problems are called semi-infinite linear programming

problems. Approaches to solve this problem typically include a column generation

scheme to generate a finite subset of the constraints to satisfy optimality conditions.

3

Instead of generating rows and solving the problem from scratch every time a row is

generated, the applied methodology works on the dual of the original problem using the

“revised simplex” method to save from the valuable computational time.

Second, our main problem requires solving two separate subproblems to optimality

within the column generation process. These subproblems have compact but non-

convex solution sets. Hence any standard convex programming approach is not useful.

Meanwhile, it can be shown that the constraints of these subproblems can be explicitly

expressed as a difference of two convex functions or as a ratio of two posynomials

whenever it is most convenient. It is well-known that exploiting these special structures

is very convenient for solving the resulting non-convex optimization problems globally.

In this thesis, we adapt some existing deterministic procedures in the literature and

embed within the column generation scheme to solve the system based component

testing problem to optimality.

The remaining parts of this thesis are composed of six sections. In Section 2, we

present a brief introduction to basic reliability theory, and formulate system reliability,

expected system lifetime and system availability for various system topologies. Then

the semi-infinite linear programming formulation of system-based component testing

problem is provided along with the solution method in Section 3. After we give detailed

information on procedures used in the solution of the subproblems in Section 4, we

illustrate the theoretical work with numerical examples in Section 5. Finally, Section 6

includes concluding remarks.

 4

2 SYSTEM PERFORMANCE MEASURES

In this chapter, we give a brief introduction to the basic reliability theory and derive

reliability, mean time to failure and availability performance measures for serially

connected redundant, standby redundant and -out-of- subsystems. The random

variables representing the state of the components are assumed to be independent.

2.1 BASIC RELIABILITY THEORY

Consider a system of components, and suppose that each component is either

functioning or failed. To indicate if the th component is functioning or not, we define

the indicator binary variable as,

 (2.1)

Similarly, the binary variable is indicating the state of the system:

 (2.2)

Further, we assume that the state of the system is a function of the state of the

components. If we denote the state vector of components with .

Then the state of the system regarding the component state vector can be given by

 5

 (2.3)

Here is called the structure function of the system.

Example 2.1 (Series System)

A system consisting of components that is functioning if and only if all of its

components are functioning is called a series system. The structure function of a series

system can be given as follows

 (2.4)

A series structure is illustrated by the reliability block diagram in Figure 2.1.

Figure 2.1 Series system

Example 2.2 (Parallel System)

A system that is functioning if and only if at least one of its components is functioning

is called a parallel system. Its structure function can be given by,

 (2.5)

The corresponding reliability block diagram is given in Figure 2.2.

 6

Figure 2.2 Parallel system

Example 2.3 (k-out-of-n System)

A system which is functioning if and only if at least out of of its components are

functioning, is called a -out-of- system. In terms of comparability, a series system is

a -out-of- system and a parallel system is a -out-of- system. Hence one can say

that -out-of- systems is a generalization of both series and parallel systems. The

structure function of a -out-of- system can be given as follows,

 (2.6)

The reliability block diagram of a 2-out-of-3 structure is provided in Figure 2.3 for

illustration.

Figure 2.3 Structure of a 2-out-of-3 system

Definition 2.1 (Monotone System)

A system is said to be monotone if

 7

i. Its structure function is nondecreasing in each argument, and

ii. and .

The first argument says that a system cannot deteriorate by improving the state of a

component, namely by replacing a failed component with a functioning one. The

second argument says that the system is in functioning state if all the components are

functioning at the moment and in failed state if all the components are failed.

Let denote the state of th component .

Definition 2.2 (Coherent System)

A system is said to be coherent if

i. Its structure function is nondecreasing in each argument, and

ii. Each component is relevant, i.e., there exists at least one vector such that

 and .

Detailed information on these definitions can be found in Barlow and Proschan [1].

Definition 2.3 (Minimal Path Set)

A state vector is called a minimal path vector if

i. and

ii. for all .

If is a minimal path vector, then the set is called a minimal path set.

In other words, a minimal path set is a minimal set of components whose functioning

ensures the functioning of the system.

Let denote the minimal path sets of a given system. We define ,

the indicator function of the th minimal path set, by

 8

It follows that the system will function if all the components of at least one minimal

path set are functioning; that is for some . Hence,

or equivalently

 (2.7)

Definition 2.4 (Minimal Cut Set)

A state vector is called a minimal cut vector if

i. and

ii. for all .

If is a minimal cut vector, then the set is called a minimal cut set. In

other words, a minimal cut set is a minimal set of components whose failure ensures the

failure of the system.

Let denote the minimal cut sets of a given system. We define ,

the indicator function of the th minimal cut set, by

 9

Since a system is not functioning if and only if all the components of at least one

minimal cut set are not functioning, it follows that

 (2.8)

For example let’s consider the bridge system.

Figure 2.4 The bridge system

The system structure is as illustrated in Figure 2.4. The minimal path sets are

, and . Hence by equation (2.7), its structure function

may be expressed as

 10

The minimal cut sets of the bridge system are .

Hence, from equation (2.8), the structure function of a bridge system can be given as

follows

2.2 SYSTEM RELIABILITY

We assign each component a random variable , denoting the state of the th

component at time , such that,

 (2.9)

 11

Here the value is called the reliability of the th component at time . If we define

 by

 (2.10)

then is called the reliability of the system. By assuming that the random variables

 are independent than each other, we can express as a function of component

reliabilities . That is,

 (2.11)

This function is known as the reliability function. We now provide system reliability

function for some coherent and noncoherent structures with components having

exponential lifetimes.

2.2.1 Series Systems

Assuming that the components fail exponentially with rate , the reliability function of

the series system of independent components is given by

 (2.12)

 12

2.2.2 Serial Connection of Redundant Subsystems

The reliability function of serially connected redundant subsystems with each

subsystem having , independent identical components with exponential

failure rate , is given by

 (2.13)

2.2.3 Serial Connection of k-out-of-n Subsystems

Consider serially connected -out-of- subsystems. Subsystem consists of

identical components with exponential failure rates , and requires the functionality of

 of its components to survive. Reliability of this system is given below.

 (2.14)

 13

2.2.4 Serial Connection of Standby Redundant Subsystems

It is well known that a standby redundant system is not a coherent system. Consider

serially connected standby redundant subsystems. Each subsystem has ,

 independent identical components with exponential failure rate . The

reliability function of such a system is given by,

 (2.15)

2.3 SYSTEM MEAN TIME TO FAILURE

2.3.1 Coherent Systems

Consider a system that consists of subsystems and each subsystem is composed of

identical components. Each component of subsystem fails independently and

exponentially with rate . If is the random variable for the system lifetime, then

 denotes the expected lifetime or Mean Time To Failure (MTTF) of the system and

 denotes the system reliability expressed as a

function of component reliabilities, where p(t) = (p1(t); : : : ;pn(t))p(t) = (p1(t); : : : ;pn(t))

= (e¡¸1t; : : : ; e¡¸nt)= (e¡¸1t; : : : ; e¡¸nt). Then the relation between the system's expected lifetime and

reliability can be given as

 (2.16)

Let and denote the set

of all path and cut vectors respectively. For any state , let

 14

denote the set of functioning components and denote the set of

failed components. Now we can equivalently represent the structure function (2.7) as

follows

 . (2.17)

By substituting

 , (2.18)

we can equally represent (2.17) by

 , (2.19)

where for all and , and represents

different combinations of the elements of . Now assuming that

i. components fail exponentially and independent than each other,

ii. failed components are repaired immediately and separately after a system break

down [2],

we can give the explicit reliability function of a coherent system [3] by

 . (2.20)

 15

by taking the definite integral of reliability function (2.16), we can express MTTF of a

coherent system as follows

 . (2.21)

2.3.2 Series Systems

The reliability and expected system lifetime of a series system consisting of

components can be given as

 (2.22)

 (2.23)

2.3.3 Serial Connection of Redundant Subsystems

Assuming that each subsystem consists of identical components, the reliability and

expected system lifetime of a serial connection of redundant subsystems can be given as

 (2.24)

 16

 (2.25)

Here and .

2.3.4 Serial Connection of k-out-of-n Subsystems

MTTF of -out-of- systems is analyzed in [4]. The author assumes that all lifetimes

and repair times are independent and exponentially distributed, there are enough

repairmen for all failed components and replacement for a component starts

immediately after failure. Assuming each subsystem consists of identical

components, expected lifetime of the serial connection of -out-of- subsystems can be

derived from the reliability function such as given below.

 (2.26)

 (2.27)

 17

2.3.5 Serial Connection of Standby Redundant Subsystems

It is well-known that the structure function of this kind of systems is not coherent.

Therefore, the results in the previous sections are not applicable. However, by

assuming that all components have exponential lifetimes and the components in each

subsystem are identical [5], system reliability can be expressed explicitly. Suppose that

there are subsystems and subsystem consists of identical components with

exponential failure rates . Then one can explicitly express system reliability (2.15),

and hence expected system lifetime as [3]

 (2.28)

and

 (2.29)

2.4 SYSTEM AVAILABILITY

Assuming that all component lifetimes and repair times are exponential, availability can

be determined using Markovian analysis. The states of the corresponding Markov

process will depend on the system structure and we need to find limiting distribution. In

this section availability functions of coherent systems and non-coherent systems are

derived by Çekyay and Özekici [3] using the Markovian analysis.

 18

2.4.1 Coherent Systems

Let for any . It is assumed

that the repair starts when the system enters some state , which takes an

exponentially distributed amount of time with some rate . After the repairing

process, all of the components are in functioning state. Let represent the

perfect state. Now we can say that the states of the system follow a Markov process

with state space since all lifetimes and repair times are exponential. We

need to find the limiting distribution to express system availability in terms of

component failure rates. Therefore we need to solve the system of linear equations

 (2.30)

Then we can give the system availability in terms of functioning states as follows

 . (2.31)

Note that since for all and for all , the embedded

Markov chain is irreducible with non-null recurrent states. Hence, the system of linear

equations (2.30) has a unique solution [3].

As the serial connection of series subsystems, passive redundant subsystems and -out-

of- subsystems falls under coherent system category, their availability can be

formulated using (2.30) and (2.31).

 19

2.4.2 Series Systems

Let’s consider the series system of components and assume that all component fails

exponentially with failure rate . Let the state space represent the number of available

components in each subsystem such that

 .

System starts in the initial state and it will be repaired whenever one of

its components enters a failure state with . We can give the failure states in

terms of a failed component by

and all of the failure states by

 .

It takes an exponentially distributed amount of time with some rate , for all

, to repair the system upon entering the failure state. It is clear that states of the

system follow a Markov process with state space since all lifetimes and

repair times are exponentially distributed and the limiting distribution can be found by

solving the system of linear equations

 (2.32)

 20

where and for

.

Availability function can be formulated with (2.31), using the solution of (2.32)

2.4.3 Serial Connection of Redundant Subsystems

Let’s consider the serial connection of redundant subsystems each of which is

consisting identical components and assume that all components of subsystem fail

exponentially with failure rate . Let the state space represent the number of available

components in each subsystem such that

 .

System starts in the initial state and it will be repaired whenever one

of its subsystems enters a failure state with . We can give the failure states in

terms of a failed subsystem by

Repairing takes an exponentially distributed amount of time with some rate

whenever system enters a state . We can determine the limiting

distribution using Markov process with state space by solving the system

of linear equations

 21

 (2.33)

where . We need to obtain the solution of (2.33), before

formulating availability function using (2.31).

2.4.4 Serial Connection of k-out-of-n Subsystems

Let’s consider the serial connection of -out-of- subsystems and assume that all

components of subsystem fail exponentially with failure rate . Let the state space

represent the number of available components in each subsystem such that

 .

System starts in the initial state and it will be repaired whenever one

of its subsystems enters a failure state with . We can give the failure states

in terms of a failed subsystem by

If system enters a state belonging to the set repairing phase is triggered

and it takes an exponentially distributed amount of time with some rate , for all

, to repair the system thereafter. Again the states of the system follow a Markov

process with state space and the limiting distribution can be found by

solving the system of linear equations

 22

 (2.34)

where . After obtaining the solution of (2.34), we can formulate

availability function using (2.31).

2.4.5 Serial Connection of Standby Redundant Subsystems

We inspect a system of serially connected standby redundant subsystems each having

 identical components. Let the state space is represented as follows

and the failure states in terms of subsystem fails

 .

It is obvious that the system fails whenever it enters a state and it

takes an exponentially distributed time to get the system fully operational. We

can formulate availability function using (2.31) upon solving the set of linear equations

23

 (2.35)

In the following chapters, we are going to assume that without loss of

generality

 24

3 SYSTEM-BASED COMPONENT TESTING PROBLEM

Let denote some performance measure for a system with components and

component failure rate vector . Then the component testing problem

can be stated in terms of the hypothesis testing problem

 (3.1)

where and indicate unacceptable and acceptable system performance levels

respectively (by definition). It is widely known that two errors can occur when

testing a hypothesis. Type I error is known as rejecting when is true and type II

error is rejecting H when H is true. 1H1 1H1

Our focus is to devise a model that minimizes the total component testing cost, while

assuring type I and type II error probabilities to be less than desirable levels. Let and

 denote the upper bounds on type I and type II errors. Let also denotes the test time,

 the non-negative test cost and the number of failures of component , and the

upper bound on the total number of component failures. Then the system-based

component testing problem can be formulated as

 (3.2)

 (3.3)

 (3.4)

 (3.5)

 25

This problem was first mentioned by Gal [6]. In this work, the author proposes to

minimize total component testing cost, , for a system where a certain

unacceptable reliability level, , needs to be demonstrated at confidence interval

(3.3). He also assumes exponential life distributions for components. Mazumdar [7]

extends Gal’s model by also considering an acceptable system reliability level that

needs to be demonstrated at a specified confidence, . This boils down to including

constraint (3.4) in his model. Further, instead of accepting a system if and only if there

are no component failures during the test as Gal did (), Mazumdar proposes to

accept a system if the total number of component failures, , is less than a

threshold value, say , and reject otherwise. This rule is referred as “sum

rule”. Note that this is a generalization of Gal’s rule, which he considers the case

 only. Easterling et al. [8] give a justification for using the sum rule for a series

system.

Using the sum rule, Mazumdar provides an algorithm to compute optimum number of

component failures, , which minimizes the total component testing cost, also meets

the unacceptable and acceptable reliability levels. He gives two numerical examples; a

series system and a series system with redundant subsystems with the assumption of

component lifetimes are independently exponentially distributed.

In their respective formulations, both Gal [6] and Mazumdar [7] show that for a series

system, the optimum component test times are independent of component test costs and

are identical. They both assume that no prior information is available about component

reliabilities. Altınel [9] considers the case where some prior information on component

reliabilities exists as a mean of setting upper bounds on component failure rates. With

the use of this prior information, he shows that the optimum component test times are

not identical, and the use of such information also leads to reduced total test cost. He

also develops a procedure to compute optimum component test times. Altınel and

Özekici [10] extend these results to a dynamically changing environment where these

upper bounds on component failure rates change with respect to time. For modeling

this concept, they introduce arbitrary distributions for component failure rates which can

 26

be approximated by distributions that have piecewise constant failure rates. This is

accomplished through a dynamic environmental process that modulates component

failure rates. Since the failure rate of each component is constant during any

environment, components still fail exponentially. However, the failure rates change

whenever the state of the environment changes. Therefore, lifetime distributions are not

necessarily exponential, but the piecewise constant structure of the failure rates is

exploited to obtain tractable expressions for the reliability function at the expense of an

enlarged set of failure rates. A major assumption of the previous formulations of

system-based component test problem is the independence of component failure rates,

which is a rather restrictive and unrealistic assumption for most cases. Altınel and

Özekici [11] use an interesting model of stochastic component dependence introduced

by Çınlar and Özekici [12] and generalize these results further in order to compute

optimum component test times with dependent components. In all of the above models

the system is assumed nonrepairable, hence no maintenance is done throughout the

mission time. Altınel et al. [13] introduce missions that involve a sequence of stages

where a maintenance operation is carried away in the beginning of each stage. This

maintenance operation consists of checking the device and replacing failed components

with identical ones so that the functioning state of the system at the start of each stage is

preserved. Altınel et al. [14] analyze the case where there is a given set of missions and

the device can be assigned randomly to these missions. Feyzi ğlu et al. [15-16] extends

the variety of systems considered by including

o

-out-of- and standby redundant

subsystems. They also show that serial connection of different subsystems can also be

odeled for both single and multi-phased missions.

.1 FORMULATION

 co in ((3.4)

me performance measure

m

3

Let us reconsider the system-based mponent testing problem given 3.2) -

with so needs to be demonstrated at and

levels.

 27

 (3.6)

 (3.7)

(3.8)

 (3.9)

We denote and , as the feasible

failure rate sets satisfying constraints (3.7) and (3.8), respectively. We also assume that

some prior information as lower and upper bounds on each component’s failure rate

exists and is obtained witho t addi onal u ti costs. With this information, we can rewrite

e feasible failure rate sets th and as

 (3.10)

nd

a

 (3.11)

ng that a

respectively. Assumi ll components fail exponentially, is Poiss strib

with

on di uted

mean , and is Poisson distributed with mean . If and

 are nonempty, there exists at least one solution to the system (3.6) - 3.9)(

s (3.7) and (3.8) are surely guaranteed for all feasible

. The

probability constraint vectors if

ey are modified as th

 (3.12)

nd

a

 28

 (3.13)

Let be a Poisson random variable with parameter and denotes

the cumulative Poisson distribution function. Then

is the system acceptance probability and we can rearrange the probability constraints

.12) and (3.13) as (3

 (3.14)

nd

a

 (3.15)

As is strictly decreasing and continuous for a given value of , it is also

 respect to invertible with . Let be the Poisson parameter value for which

. Therefore (3.14) and (3.15) can be further arranged as

 (3.16)

nd

a

 (3.17)

ith this inversion, the problem given in (3.6) - (3.9) can be reformulated as follows:

W

 29

 (3.18)

 (3.19)

 (3.20)

 (3.21)

The solution of is denoted by . These are the component

st times which yields the minimum total component testing cost for a given value of te

, and is the associated total to test cost. Then the minimum tal test cost is

 and it is obtained by solving parametrically

with respect to . Then the optimum component test times is the

optimal solution of . In the following chapters, optimization problems on the left

and side of (3.19) and (3.20) are referred as type I and type II problems.

 FORMULATION WITH MULTIPLE PERFORMANCE MEASURES

h

3.2

Let us reconsider the system-based component testing problem in the following multiple

performance measure formulations. Let denote the set of performance

measures, denotes system reliability, denotes system expected lifetime and

m availability, respectively. Furthermore let denotes syste ,

 and . Let and , denote unacceptable and acceptable

performance levels for each performance measure , respectively. The multiple

performance measures formulation can be handled using two approaches. Either we can

formulate one type I and one type II problem with performance constraints each, or

we can separately formulate type I and type II problems each one capturing the

unacceptable and acceptable performance levels of one performance measure,

spectively.

re

 30

3.2.1 Joint Multiple Performance Measures Formulation

Now let’s consider given in (3.18) - (3.21). One can formulate the multiple

performance measure system-based component testing problem as a Joint Multiple

Performance Measure (abbreviated as JMPM so forth) formulation given below,

 (3.22)

 (3.23)

 (3.24)

 (3.25)

where

 (3.26)

 (3.27)

denote the set of feasible failure rate vectors, respectively.

3.2.2 Separate Multiple Performance Measures Formulation

Instead of taking the intersection of performance measures, one can convert

given in (3.18) - (3.21) to a multiple performance measure test problem considering

each performance measure separately. Hence forming type I and type II problems

and generating columns by solving each of these optimization problems separately.

 31

 (3.28)

 (3.29)

 (3.30)

 (3.31)

We will call as the Separate Multiple Performance Measures (abbreviated as

SMPM so forth) formulation. It is especially useful when the JMPM formulation

becomes difficult to solve.

3.3 SOLUTION PROCEDURE

The optimization problem given in (3.18) - (3.21) has finitely many variables and

infinitely many constraints. In other words, it is a semi-infinite linear programming

problem. We now give a brief description of a solution procedure which solve this type

of problems and which is also based on earlier works of Altınel [17-18].

With a computational point of view, we assume that and are finite sets, in

other words and for every and , respectively. This

discretization strategy is also used to solve other semi-infinite linear programming

problems effectively [19]. Let and denote the primal and dual

problems associated with . Then

 , (3.32)

 (3.33)

 (3.34)

 (3.35)

 32

 , (3.36)

 (3.37)

 . (3.38)

Here, if and are finite and chosen so that the component test times which solve

 to optimality are in the feasible solution set of , then solving

solves . A close investigation shows that it is more convenient to work on

since the number of columns can be substantially larger than the number of rows.

Moreover, is always feasible for all given that test costs are non-

negative in (3.32).

The formulation of allows us also to introduce nonnegative slack variables for

each row, hence () identity matrix as a basis for . The solution algorithm

proposed here is based on the general cutting plane method for convex programs

combined with the column generation technique. Starting with empty and or

equivalently unconstrained , we generate new linear inequalities and solving

 until an optimal solution (more precisely, a solution arbitrarily close to the

optimal solution) is obtained. Since adding a new constraint to is equivalent to

adding a new variable to its dual , instead of solving from scratch, we

solve by using the revised simplex algorithm. The basis is updated by pivoting

on the new generated column to be added to the constraint matrix of .

Since is always feasible, the procedure can stop only in two possible cases.

Either we detect the unboundedness of or we solve it to optimality. It is well

known that the unboundedness of the dual problem means the infeasibility of the primal

problem. In other words, is infeasible, and in turn, the original problem

is infeasible due to the fact that the current constraint set with indices and is a

relaxation of the feasible set of .

 33

When the above procedure does not stop, at least one column is generated and added to

the constraint matrix of , and then the optimum solution of updated is

found. By the linear programming duality, the optimum dual solution of with

this new column set is the optimum solution of with the new constraint set. The

above procedure stops after computing an optimal solution of . This implies

that the current optimal solution is also optimal for any larger column sets containing

the current column set as a subset. Hence the dual of an optimal solution of

is an optimal solution of ; it is in fact an optimal solution of the semi-

infinite linear programming problem .

Let us consider for a given set of columns with indices and , and assume

that it is bounded. Then, the simplex algorithm stops if and only if the reduced cost

 for all nonbasic columns of , or equivalently

 (here is used to avoid confusion with the

unit test cost vector). We observe that the index of a nonbasic column can be either in

 or in . Moreover, for all , and for all

. Then, by denoting an optimal solution of by and using the fact that

, we can write the stopping condition of the simplex algorithm as

 (3.39)

or equivalently as

 (3.40)

If we slightly modify this stopping condition to consider all possible nonbasic columns,

which are to be generated from the feasible failure rate sets and , then the

simplex algorithm stops if and only if type I and type II constraints given as inequalities

(3.19) and (3.20) in the original formulation of are satisfied, or equivalently, if

and only if

 34

 (3.41)

This condition requires the solution of two optimization problems in , whose objective

coefficients are the current optimal dual solution of . Any optimum solution of

these two optimization problems which violate its related inequality (3.41) generates a

new column to be added to the constraint matrix of , which is a new cut for

. This procedure is more formally illustrated in the next algorithm proposed by

Altınel [17].

Algorithm 3.1 Column generation algorithm to solve P(m).

Step 0. Input , , , , , , ; Initialize dual solution ,

inverse basis , dual objective and iteration counter ;

Step 1. and call the optimum solution ;

 and call the optimum solution ;

Step 2. if

STOP, are the optimum component test times and is

the minimum total test cost for this value of ;

 else

 UPDATE with , as two new columns;

 UPDATE dual solution ;

 ;

 end if

Step 3. Solve with inverse basis ;

Step 4. if is BOUNDED, go to Step 1;

 else, STOP and output “INFEASIBLE ”;

 end if

35

We must also search for the optimum value of to compute the optimum test times.

As it is explained in Altınel [17], is approximately a convex function of .

Consequently, it is possible to search for , the value of for which holds

for the first time, starting from by using the column generation algorithm for

computing values. We can assume that for any value of , is

unbounded, or equivalently is infeasible. Although this does not always

guarantee the optimum solution, stopping at the first that minimize turns out

to be a good heuristic rule in practice.

 36

4 SOLUTION METHODS TO SOLVE SUBPROBLEMS

Within the general solution framework given above, it is required to optimally solve

type I and type II problems explicitly. Most of the time, these subproblems are

nonconvex. Feyzioğlu et al. [16] proves that the reliability functions given in (2.12) -

(2.15) log-concave functions. This means after taking the natural logarithm of the

reliability constraint, type I problem becomes a linear reverse convex optimization

problem and type II problem becomes a convex minimization problem. We also exploit

this structure and solve subproblems involving reliability constraints with an outer

approximation procedure proposed by Horst and Tuy [20]. MTTF functions given in

(2.21), (2.23), (2.25), (2.27) and (2.29) and availability functions constructed from the

limiting distributions (2.30), (2.32), (2.33), (2.34) and (2.35) can be also transformed to

a difference of two convex functions with algebraic manipulations. But the resulting

optimization problems are rather complicated to solve after these derivations. By

rearranging the terms appropriately, MTTF functions can be reformulated as a ratio of

two posynomials [3]. To illustrate, consider the serial connection of one 2-out-of-3 and

one 3-out-of-4 subsystems:

Therefore, we can equivalently represent system expected lifetime as

 (4.1)

 37

where and are positive coefficients, and are integer constant exponents. Let

 denote the unacceptable level of MTTF and similarly denote the acceptable level

of MTTF. Using general representation function given in (4.1), optimization problems

in (3.19) and (3.20) can be restated as

Both type I and type II problems are now Signomial Geometric Programming problems,

which can be solved globally using a branch and bound scheme described in Shen et al.

[21]. We describe the details of this algorithm in section 4.2.

This case also applies if availability is considered. Let us consider the serial connection

of a single component and a 2-out-of-3 subsystem. Using the limiting distribution

formulated in (2.30) for coherent systems, we need to solve the following system of

linear equations

 38

After obtaining the unique solution to the above system, we can formulate the

availability function from (2.31) as follows

It is clear that this availability function has the same structure with (4.1). Hence

availability sub problems can be handled using the same procedure.

4.1 DC PROGRAMMING

4.1.1 DC Functions

Convexity is a nice property of functions which, unfortunately, is not preserved even

under such simple algebraic operations as scalar multiplication or lower envelope. Now

we give a brief definition to the d.c. structure (also called the complementary convex

structure) which is the common underlying mathematical structure of virtually all

nonconvex optimization problems [22].

Let be a convex set in . We say that a function is d.c. on if it can be expressed as

the difference of two convex functions on , i.e. , where

 are convex functions on .

An inequality of the form , where the function is convex, is called a

convex inequality (because the set of all satisfying this inequality is a convex set). If

 is concave, then the inequality is called complementary convex or reverse convex

because its solution set is the complement of a convex set. Thus a reverse convex

inequality is of the form , where is convex. If is a d.c. function then

the inequality is called a d.c. inequality. The following proposition shows the

 39

wide range of applicability of d.c. functions. Let denotes the class of functions

on continuously differentiable up to order .

Proposition 4.1

Every function is d.c. on any compact convex set [22].

However, it is not very easy to find the d.c. representation of a given function.

Introductory information on the d.c. decomposition of basic composite functions,

separable functions and polynomials can be found in the work of Horst and Tuy [20]. A

d.c. set can be represented as where both

functions are convex. In other words, where

 and .

4.1.2 Canonical DC Programming

A global optimization problem is called a d.c. programming problem if it has the form,

 (4.2)

where is convex and all functions are d.c. on , which is usually given by a

set of convex inequalities. By introducing at most two additional variables, every d.c.

programming problem can be transformed into an equivalent canonical d.c.

programming (CDC) problem

 (4.3)

where , and where and are real valued convex functions on .

 40

Let and . If an optimal solution of the

convex program satisfies , then the problem is solved.

However the reverse convex constraint is not essential in the problem. Therefore,

without loss of generality we may assume that there exists a point satisfying

 (4.4)

The next important property is an immediate consequence of this assumption.

Proposition 4.2 (boundary property)

Every global optimal solution lies on [22].

Proof Let be any feasible solution. If , then the line segment meets

 at a point such that . By convexity we have from

(4.4), , so is a better feasible solution than .

Problem CDC is said to be regular if the feasible set is robust or, which

amounts to,

 (4.5)

Theorem 4.1 (global optimality condition)

In order that a feasible solution to CDC be global optimal it is necessary that [22]

 (4.6)

This condition is also sufficient if the problem is regular. To exploit this optimality

criterion, it is convenient to introduce the next concept. Given , a vector is said

to be -approximate optimal solution to CDC if

 41

 (4.7)

 (4.8)

Clearly as , any accumulation point of a sequence of -approximate optimal

solutions to CDC yields an exact global optimal solution. Therefore, in practice one

should be satisfied with an -approximate optimal solution for sufficiently small.

Denote . In view of (4.4) it is natural

to require that

 (4.9)

Define and let .

In view of (4.9) and Proposition 4.2, it is easily seen that coincides with the set of -

approximate optimal solutions of CDC, so the problem amounts to searching for a point

. Denote by the family of polytopes for which there exists

 satisfying .

Consider the general problem of searching for an element of an unknown set

(for instance, is the set of optimal solutions of a given problem). Suppose there exist

a closed set and a family of polyhedrons , such that for each

polyhedron a point (called a distinguished point associated with)

can be defined satisfying the following conditions:

1. always exists and can be computed if , and whenever a sequence of

distinguished points , ,…, converges to a point

then (in particular, implies that).

2. Given any distinguished point , , we can recognize when

and if , we can construct and affine function (called a “cut”) such

that and strictly separates from , i.e.

satisfies

 42

 (4.10)

Figure 4.1 Outer approximation scheme for general nonconvex optimization.

Then, for every , it is possible to define

 (4.11)

Where is the vertex set of . We now verify the use of outer approximation scheme

for problem CDC. First condition is obvious because exists and can be computed

provided ; moreover, since , we must have , so any

accumulation point of a sequence , satisfies , and hence

 whenever . To verify second condition, let any associated to a

polytope such that for some . Note that . If

 then , hence , which implies

that is an -approximate optimal value if or the problem is infeasible if

. If then and since

, we can compute a point such that

 (4.12)

 43

Two cases are possible:

a. : since this event may occur only if and so

 can be separated from by a cut with

 evaluated at .

b. : then , so is an -approximate solution in the sense of

(4.7). Furthermore, since with , it

follows that , so can be

separated from by a cut with

evaluated at .

In either case, if we set then , i.e.

. Thus an outer approximation scheme can be applied to solve CDC [22].

Algorithm 4.1 OA algorithm for CDC.

Step 0. Let be the best feasible solution available, (if no feasible solution

is known, set ,). Take a polytope and let

. Determine the vertex set of . Set .

Step 1. Compute . If , then terminate:

a) If , is an -approximate optimal solution.

b) If , the problem is infeasible.

Step 2. Compute such that . If then

set and let

Step 3. If then set if ,

 otherwise. Let

Step 4. Compute the vertex set of , set and

go back to step 1.

 44

4.2 SIGNOMIAL GEOMETRIC PROGRAMMING

Signomial Geometric Programming (SGP) problem can be given as

 (4.13)

where

 (4.14)

and is a positive and real coefficient; = +1 or -1; is an arbitrary real constant

exponent; and are -vectors with . In general, SGP corresponds to a

nonlinear optimization problem with nonconvex objective function and constraints.

SGP is a special nonlinear programming problem that has many applications in

engineering design [23-26], economics and statistics [27-30], manufacturing [31,32] and

chemical equilibrium [33,34]. There are many local optimization approaches for SGP,

however the global optimization algorithms based on the characteristic of SGP are

scarce. Maranas and Gloudas [33] proposed such a global optimization algorithm based

on the exponential variable transformation of SGP, the convex relaxation and branching

and bounding on some hyperrectangle region. By using linear relaxation, Shen and

Zhang [35] reduce the problem SGP to a sequence of linear programming problems

through successive refinement of a linear relaxation of feasible region using exponential

variable transformation, tangential hypersurfaces and convex envelop approximations.

They report efficient results for the global solution of SGP.

Another global optimization algorithm for SGP is proposed by Wang and Liang [36].

They use the popular exponential variable transformation to convert the problem into a

 45

Reverse Convex Programming RCP problem. Then by successively approximating

convex constraint with a linear constraint and using the linear relaxation of RCP, they

propose a convergent cutting-plane algorithm and give robust results for famous SGP

benchmark problems. However, Tuy [37] shows that the -approximate solutions

offered by the above relaxation schemes quite often tend to be far from the actual global

optimum solution of SGP. Therefore, he proposes a DC programming and monotonic

optimization procedure for a robust solution of generalized nonconvex optimization

problems. Using the results due to Tuy, Shen et al. [38] provide another robust

optimization algorithm for the solution of SGP. However, the performance of their

algorithm varies on some of the problems encountered in literature.

Previous results in the global optimization of SGP using linear relaxation have been

gathered by Shen et al. [21]. They propose an acceleration method using a suitable

deletion technique. Their technique offers the possibility to cut away a significant

portion of the currently investigated feasible region which does not contain the global

minimum of SGP. Using the new deletion technique they report less number of

iterations and the execution time of their algorithm is significantly reduced. We

implement this algorithm for the solution of type I and type II problems consisting of

MTTF and availability functions.

We apply the exponent variable transformation and equivalently represent

SGP as follows,

 (4.15)

where

 (4.16)

 46

and .

4.2.1 Linear Relaxation

The principal construct in the development of a solution procedure for solving problem

P1 is the construction of a linear relaxation for obtaining the lower bound of the optimal

value for this problem, as well as for its partitioned subproblems. Such a linear

relaxation can be realized by lower estimating every convex term and upper estimating

ever concave term of each constraint, in either the initial bounds on the variables of the

problem, or modified bounds as defined for some partitioned subproblems in a branch

and bound scheme. In other words, this linear function is constructed by finding the

linear lower bound function of each implicitly separable term ,

; .

Let , ,

denote the lower and upper bound of in the hyper-rectangle respectively.

Consider a function for any ,

where and . Then the following statements are valid:

i. Let . Then,

 ,

 ,

denote an affine concave envelope of and an affine function

corresponding to a supporting hyperplane of the graph of over parallel

to , respectively. In other words,

 47

ii. The differences and satisfy

 where

and .

The details can be found in [35]. From this result, it follows that and

converge to as . Now we can give the linear relaxation problem P2

related to P1 as follows:

 (4.17)

where

 (4.18)

Based on the above linear under-estimators, every feasible point of P1 in sub-domain

is feasible for P2, and the objective function value of P2 is less than or equal to that of

P1 for all points in . Thus, the minimum of P2 provides a valid lower bound for the

globally optimal value of P1 over a partition set . Therefore we can use the linear

relaxation problem P2 to derive a lower bound of the solution of P1, which can be

calculated by solving P2 inside some rectangle defined by with

.

 48

4.2.2 Deletion Technique

The accelerated deletion technique described in Shen et al. [21] is based upon on two

important global optimality theorems in some hyper rectangle space . We now give

brief descriptions of those theorems. To this end, let

Theorem 4.2

Assume that is a known upper bound of the optimal objective value of P1, and let

 with be a sub-rectangle of . If there exists some index

 satisfying and , then there is no globally optimal

solution of P1 over ; if and for some then there is no globally

optimal solution of P1 over [21], where

 49

Theorem 4.3

Assume that is a known upper bound of the optimal objective value of P1, and let

 with be a sub-rectangle of . If there exists some index

 satisfying and , then there is no globally optimal

solution of P1 over ; if and for some then there is no globally

optimal solution of P1 over [21], where

The proofs of Theorem 4.2 and Theorem 4.3 can be found in Shen et al. [21].

4.2.3 Branching

During each iteration of the algorithm, the branching process creates a more refined

partition that cannot yet be excluded from further consideration in searching for a

globally optimal solution of P1. In the branching process we are going to use simple

bisection rule which is defined in Shen and Zhang [35]. This rule is sufficient to ensure

convergence since it drives all the intervals shrinking to a singleton for all the variables.

Bisection branching rule can be given as follows.

 50

Consider any node sub-problem identified by the rectangle . Let

We partition by bisecting the interval into the sub-intervals

and . With the help of above definitions we can formulate the global

optimization algorithm proposed in Shen et al. [21]. Let refer to the optimal

objective function value of P2 for the sub-rectangles and refer to an

element of corresponding argmin.

Algorithm 4.2 Modified branch and bound algorithm for SGP.

Step 0. Given a convergence tolerance , a feasibility tolerance and a

deleting tolerance ; iteration counter the upper bound ; the

active node set ; the set of feasible points . Solve P2 for to

obtain the lower bound and . If is feasible for P1, update

and if necessary. If , stop, and is the globally optimal solution of

P1. Otherwise, proceed to Step 1.

Step 1. If the midpoint of is feasible for P1, update and such that

 and ; if , the incumbent point is denoted by

;

Step 2. for to do

Step 2.0. Calculate as defined in Theorems 1 and 2 for ;

 if , then go to Step 3;

 else if then go to Step 2.1;

 else if then go to Step 2.3;

Step 2.1. if , then

 if , then go to Step 2.2;

 51

 else set , and go to Step 3;

 if , then set , and go to Step 6;

Step 2.2. if , then

 if , then

 if , then set , and go to Step 2.0;

 else go to Step 3;

 else set and go to Step 3;

 if , then set , and go to Step 6.

Step 2.3. if , then

 if , then go to Step 2.4;

 else set , and go to Step 3;

 if , then set , and go to Step 6;

Step 2.4. if , then

 if , then

 if , then set , and go to Step 2.0;

 else go to Step 3;

 else set and go to Step 3;

 if , then set , and go to Step 6.

Step 3. According to the above rectangle bisection rule for , we can get two new sub-

rectangles, and denote the set of new partition rectangles as .

Step 4. For each , compute the lower bound of over , i.e.,

, , where

52

If or for some , then the corresponding sub-

rectangle will be removed from , i.e., let and skip to next element of

. If , then solve P2 for each to obtain and . If

 then .

Step 5. If is feasible for P1, then update , and as Step 1. Set

 and the new lower bound

Step 6. Set . If then stop and

 is the optimal value of P1, is an optimal solution of P1. Otherwise, ,

select an active node such that and for further

considering, and return to Step 1.

 53

5 NUMERICAL EXAMPLES

In this section, we give some numerical examples to clarify the theoretical work. The

main algorithm, branch and bound schemes are coded in C/C++ environment. The

CDC algorithm is coded in MATLAB environment and implemented in C/C++

environment by using MATLAB C callable library generated by MATLAB compiler.

The linear programming problems are solved using standard LP solver provided by

CPLEX 11.1 callable library. The execution times are collected on a x64 HP

workstation with 2.40 GHz dual CPU and 4096 MB RAM.

5.1 EXAMPLES FOR MTTF

In this section we provide two sets of numerical examples to illustrate the system-based

component testing problems with MTTF performance measure. The first example set

consists of four systems. Lower and upper bounds on component failure rates and unit

component testing costs are given in Table 5.1. We set , , and

 in all examples.

Table 5.1 First data set for MTTF examples.

redundant -out-of- standby redundant mixed

1 0.010 0.481 77.3 0.007 0.547 77.9 0.091 0.814 14.1 0.073 0.939 67.8

2 0.010 0.388 28.4 0.005 0.138 93.4 0.091 0.126 42.1 0.089 0.823 75.7
3 0.106 0.388 77.3 0.053 0.149 12.9 0.097 0.814 191 0.010 1.383 74.3

Example 5.1

The first example of this set is a serial connection of redundant subsystems with 2

components each. Component reliabilities and unit test costs are provided in Table 5.1.

 54

We calculate the first feasible as with . Then . Hence

 and the corresponding test times are .

The least reliable subsystem 1 is tested the most and between the similar subsystems 2

and 3, 3 is tested less as it has a higher testing cost. A total of 74 columns are generated

in 490.70 CPU seconds. If we modify the unit component testing costs as

, the optimum becomes , with .

The optimum component test times are . The

increased test time of subsystem 1 is a result of the reduction in subsystem 1’s unit

testing cost. However as a consequence of the longer test time of less reliable

subsystem, the optimum number of observed component failures, namely , is

increased. This solution is illustrated Figure 5.1.

Figure 5.1 Sequence of total test costs versus for Example 5.1.

Example 5.2

As a second case, we study the serial connection of three 2-out-of-3 subsystems.

Component reliabilities and unit test costs are provided in Table 5.1. The feasible is

 55

detected as 7 with . Then and . Therefore

 and the corresponding test times are .

A total of 70 columns are generated in 486.75 CPU seconds to find this solution. In this

example, we increase the unacceptable expected system lifetime level from to

. As a result the optimum is 19 with total component testing cost

. The component test times are

. The increase in total component testing cost and test

times are notable, which is a clear result because we started to apply the probability of

type I error to a wider range of unacceptable performance level. Similarly if we set

 and , new optimum solution, , ,

, follows the same result as well. Because we

started to apply type II error probability, to a wider range of acceptable performance

level. To clarify this result, let’s recall type II problem given in (3.20). By decreasing

the acceptable MTTF level , we increase the size of the column generation set

given in (3.11). Therefore we are solving the problem in a tighter, more

constrained region, which results in a higher component testing cost.

Example 5.3

All subsystems of the third system are assumed to have a common redundancy .

Component reliabilities and unit test costs are provided in Table 5.1. The column

generation algorithm generates 37 columns in total to find with

and in 6.79 CPU seconds. The problem has no

feasible solution for smaller values. Arguments similar to the previous cases remain

valid here. Subsystems 1 and 3 are quite similar and the one having higher unit test cost

is less tested. The most reliable subsystem 2 is not tested at all. We modify the

component failure rate lower bounds as . In the

new setup, the column generation algorithm stops at with increasing component

testing cost and , indicating . The component test

times are . The shorter test time of subsystem 1

clearly depicts the increase in the reliability as a result of the change in lower bounds.

However to balance the reduction in component testing time of subsystem 1, subsystem

3 is tested slightly longer as a tradeoff between two similar setups.

 56

Example 5.4

In the fourth system, we investigate a mixed system that contains one redundant

subsystem with 2 components, one standby redundant subsystem with 2 components

and one 2-out-of-3 subsystem connected in series. Component reliabilities and unit test

costs are provided in Table 5.1. The first feasible and optimum and the total

test cost is . The component test times are

. 72 columns are generated in 611.75 CPU seconds to solve

this case.

In the second examples set, we investigate systems with subsystems having different

redundancies. In line with the first set subsystems’ redundancies, lower and upper

bounds on component failure rates and unit component testing costs are given in Table

5.2. We set , , and in all examples.

Table 5.2 Second data set for MTTF examples.

redundant -out-of- standby redundant

1 4 0.014 0.043 70.6 2/3 0.010 0.092 32.9 4 0.059 0.236 48.9
2 3 0.042 0.168 3.18 2/4 0.013 0.312 32.9 3 0.059 0.845 44.5
3 2 0.091 0.649 27.6 3/4 0.029 0.312 87.4 2 0.164 0.845 64.6

Example 5.5

The first example of this set is a serial connection of redundant subsystems. Component

reliabilities, unit test costs and subsystem redundancies are provided in Table 5.2. We

calculate the first feasible with . Then . Therefore

and the corresponding test times are . Subsystem

1 with most reliable and more redundant components is not tested as it has longer

expected lifetime. Component test times increase as subsystems reliabilities decrease.

A total of 37 columns are generated in 3249.79 CPU seconds to find this solution.

Example 5.6

The second example consists of a serial connection of three -out-of- subsystems.

Component reliabilities, unit test costs and subsystem redundancies are provided in

 57

Table 5.2. No feasible solution is detected . The optimum with total

test cost sequence , . The corresponding test times are

. It can be again observed that the test times

increase as reliabilities decrease. Comparing subsystems 1 and 2, the second requires

less number of components to survive. However it is also less reliable according to the

component reliabilities and thus needs more testing time. This solution is found in

1844.79 CPU seconds with the generation of 71 columns.

Example 5.7

The last example of this set is the serial connection of standby redundant subsystems.

Component reliabilities, unit test costs and subsystem redundancies are provided in

Table 5.2. We compute the first feasible as 9 with . Then we compute

. Therefore, is the optimum solution of the component testing

problem. The corresponding test times are . 44

columns were generated for this solution in 179.04 CPU seconds.

Example 5.8

In this example we compare passive redundancy with active redundancy. We design a

system consisting three serially connected subsystems with 3 components each. We set

, ,

, , and . First we obtain the solution for the passive

redundant case, , and .

Then we solve the system for the active redundancy case, the solution is ,

 and . Here, smaller total component

testing cost for the active redundancy case is an expected result, because standby

redundant subsystems have a longer expected system lifetime.

Example 5.9

As previously mentioned, stopping at the first feasible for which the next feasible

has higher total test cost turns out to be a good heuristic rule in practice. Though rarely

occurs, it is also possible to find cases where this rule does not apply. As an example,

let’s consider a serial connection of three -out-of- subsystems with common

 58

redundancies 2-out-of-3. Let ,

 and . Furthermore,

unacceptable and acceptable expected system lifetimes are selected as and

 respectively. The first feasible with . Given that the

total test cost for the next is , the column generation algorithm

stops with . However, if calculations are further carried, we find a sequence of

total test costs such as 2148.54, 2153.44, 2157.36, 2155.88, 2145.51, 2126.19, 2098.58,

2063.98, 2022.79, 1975.31, 1955.68, 2046.94, 2137.81, 2228.33, 2318.51, 2408.39.

Obviously, with . This case is illustrated in Figure 5.2.

Figure 5.2 Sequence of total test costs versus for Example 5.9.

5.2 EXAMPLES FOR AVAILABILITY

In this section we formulate system-based component testing problem with availability

performance measure. Again the first set of examples consists of systems having same

 59

redundancy in each subsystem. Lower and upper bounds on component failure rates

and unit component testing costs are given in Table 5.3. We set , ,

 and in all examples.

Table 5.3 First data set for availability examples.

redundant -out-of- standby redundant mixed

1 0.032 0.187 44.5 0.037 0.247 77.9 0.083 0.421 82.3 0.173 0.830 34.9

2 0.032 0.795 44.5 0.075 0.138 33.4 0.083 0.728 38.9 0.104 0.585 19.6
3 0.095 0.187 64.6 0.073 0.149 42.9 0.093 0.728 74.3 0.180 0.549 25.1

Example 5.10

First of the availability examples is a system consisting of three serially connected

redundant subsystems with redundancy each. Component reliabilities and unit

testing costs are provided in Table 5.3. We compute with and

the component test times corresponding to this solution as

. 63 columns were generated in 127.53 CPU

seconds to compute this solution. We can again observe the increase in test times with

decreasing subsystem reliabilities. We change the unit test cost of subsystem 1 to

, and we also set the upper bounds on component failure rates as

. In the new solution optimum is found as

, optimum total component testing cost and

. An interesting result is that subsystem 1 is not tested as a

result of its increased reliability. However, subsystem 3 is tested in the current solution

because of its decreased reliability.

Example 5.11

Secondary, we inspect a serial connection of three 2-out-of-3 subsystems. Component

reliabilities and unit testing costs are provided in Table 5.3. There is no feasible for

. Then we compute and which indicates the optimum

 is . The optimum test times are . This

solution is computed in 107.45 CPU seconds by generating 45 columns. In this solution

it is again clear that the least reliable subsystem, namely subsystem 1, is the one with a

 60

longer test time. We set , and the new optimum solution is, ,

 and . The lesser total component

testing cost is a clear result of the relaxation of type I problem. We started to apply the

probability of type I error to a narrower range of unacceptable performance level.

Similarly if we set , the optimum solution is, , and

. Again the lesser total component testing cost is a

result of the relaxed type II problem.

Example 5.12

Third example involves a serial connection of 3 standby redundant subsystems, each

with redundant components. Component reliabilities and unit testing costs are

provided in Table 5.3. The optimum is computed with total test cost values

 and . are the

optimum test times corresponding with this solution. 136 columns were generated in

468.98 CPU seconds to find this solution.

Example 5.13

The forth system consists the serial connection of one redundant subsystem with two

components, one standby redundant subsystem with two components and one 2-out-of-3

subsystem. Component reliabilities and unit testing costs are provided in Table 5.3.

The algorithm generates 103 columns in 950.10 CPU seconds to compute

and which indicates the optimum is . The optimum test times

are . In this example, we set .

The optimum is calculated as with total component testing cost sequence

, . Also the component test times in this solution are

. The increased reliability of subsystem 1 results

in a shorter test time and the reduced reliability of subsystem 3 results in a longer test

time in the new solution.

The second set consists subsystems with varying redundancy. The component

reliabilities, unit test costs and subsystem redundancies are provided in Table 5.4.

 61

Table 5.4 Second data set for availability examples.
redundant -out-of- standby redundant

1 4 0.141 0.379 11.9 2/3 0.039 0.353 4.61 4 0.163 0.278 96.4
2 3 0.201 0.615 49.8 2/4 0.065 0.116 9.71 3 0.181 0.546 15.7
3 2 0.195 0.362 95.9 3/4 0.017 0.138 82.3 2 0.025 0.957 97.0

Example 5.14

The first example of second data set is a system consisting of three serially connected

redundant subsystems with component reliabilities, unit testing costs and subsystem

redundancies provided in Table 5.4. We compute with and the

component test times corresponding to this solution as

. 57 columns were generated in 3012.50 CPU seconds to

compute this solution. We can again observe the increase in test times with decreasing

subsystem reliabilities.

Example 5.15

Secondly we investigate a serial connection of three -out-of- subsystems.

Component reliabilities, unit testing costs and subsystem redundancies are provided in

Table 5.4. The column generation algorithm computes the total test cost sequence

illustrated in Figure 5.3, starting from , which indicates with

. The component test times corresponding to this solution are

. 145 columns were generated in 6578.31 CPU seconds to

compute this solution.

 62

Figure 5.3 Sequence of total test costs versus for Example 5.15.

Example 5.16

The final example of second set is a serial connection of 3 standby redundant

subsystems. Component reliabilities, unit testing costs and subsystem redundancies are

provided in Table 5.4. There is no feasible for , then we compute

 and . Hence the column generation algorithm stops with

 and . 99 columns were generated in

648.46 CPU seconds to find this solution. We observe the most reliable system

subsystem 1 is not tested and the comparison between subsystem 2 and 3 is clear as the

less reliable one, namely 3 is tested longer.

5.3 EXAMPLES FOR SMPM

In this section, we formulate system-based component testing problems taking all three

performance measures into account, namely we set . Let and for

 63

 denote the unacceptable and acceptable performance levels

respectively.

Table 5.5 Data set for SMPM examples.

redundant -out-of- standby redundant mixed

1 0.011 0.334 34.0 0.005 0.067 86.9 0.075 0.699 54.7 0.081 1.188 95.7

2 0.049 0.438 58.5 0.023 0.209 86.9 0.050 0.699 13.8 0.090 1.439 48.5
3 0.095 0.438 34.0 0.048 0.209 57.9 0.050 0.959 14.9 0.012 0.983 80.0

Example 5.17

In the first example we analyze the serial connection of three redundant subsystems

with component reliabilities given in Table 5.5. We set , , ,

and , , as unacceptable and acceptable performance

measures, respectively. The redundancies of all subsystems are set to a common

redundancy, i.e. for all . No feasible solution is found for .

Then, we compute and and deduce that . The

associated optimum test times are . A total of

277 columns are generated in 971.05 CPU seconds to find this solution. Note that unit

test costs are equal but lower and upper bounds are different for subsystem 1 and 3 and

more reliable subsystem 1 has a shorter test time. Meanwhile, subsystem 2 and 3 are

quite similar in terms of lower and upper bounds of component failure rates, but

subsystem 2 with higher unit test cost is tested less.

We modify the desired performance levels as follows, , ,

, , and , and obtain the solution, ,

 and . From this point on, we add

the additional modification of acceptable MTTF level, and an interesting

result occurs. The solution remains precisely the same, which means that type II

problem including the MTTF constraint is redundant with this data set. Therefore we

can remove it from the column generation scheme without changing the solution.

 64

Example 5.18

Our second example consists of a serial connection of three 2-out-of-3 systems. Let the

component failure rates and unit testing costs for each subsystem be as in Table 5.5.

We set , , , , , and . The first

feasible is detected as 12 with . Then and

. Therefore and the corresponding test times are

. A total of 216 columns are generated in

2758.31 CPU seconds to find this solution. We can note that among similar systems

subsystem 1 and subsystem 2, the less reliable one, namely the second subsystem is

tested more. If we modify the component test costs as ,

the optimum solution changes to, , and

. In this solution we can note that the increased

test time of the reliable subsystem, namely subsystem 1, resulted in a lower optimum .

Example 5.19

The third system consists of three standby redundant subsystems with each, and

the component failure rates are given in Table 5.5. For the third example the

performance levels are set as , , , , , and

. The column generation algorithm generates 305 columns in total to find

 with and in 1054.46

CPU seconds. The problem has no feasible solution for smaller values. Arguments

similar to the previous case remain valid here. Among subsystems 2 and 3, the more

reliable system 2 is tested less and among the similar subsystems 1 and 2, the one with

the larger test cost, subsystem 1, is tested less.

When we modify the upper bounds for this example as

, the optimum solution changes to ,

 and . The increased component

failure rate for subsystem 1 results in a longer test time, similarly also the decreased

component failure rate for subsystem 2 results in a shorter test time.

 65

Example 5.20

Finally we investigate a mixed system that contains one redundant subsystem with two

components, one standby redundant subsystem with two components and one 2-out-of-3

subsystem connected in series. Again the component reliabilities and unit test costs for

each subsystem are set to the values provided in Table 5.5. Let the performance levels

for fourth system be , , , , , and

. The first feasible and optimum and the total test cost is

. The component test times are .

290 columns are generated in 4458.02 CPU seconds to solve this case. Upon changing

the desired performance levels to , , , ,

, and , hence relaxing the optimization problem, we calculate the

optimum solution as , and .

The decreased total component testing cost is a clear result of relaxed performance

levels.

5.4 EXAMPLES FOR JMPM

Example 5.21

We now illustrate this case for a series system with two components. The reliability,

MTTF and availability functions are

 (5.1)

respectively. Using the above performance functions we can derive the semi-infinite

linear programming problem as follows,

 66

 (5.2)

 (5.3)

 (5.4)

 (5.5)

In the above formulation, type I and type II problems are both linear programming

problems. For this example we set ,

, , and the desired performance levels as

, , , , , and .

The optimum solution , and for the

JMPM case (Figure 5.4) is found in 0.26 CPU seconds with the generation of 17

columns.

For the SMPM case (Figure 5.5), we find the optimum solution ,

 and in 1.59 CPU seconds by generating

273 columns.

We now illustrate the generated columns for each level of and compare the results of

two formulations.

67

Figure 5.4 Generated columns for the joint case JMPM.

Figure 5.5 Generated columns for the separate case SMPM.

As we include more constraints with the same confidence interval in the SMPM

formulation, it is also a tighter problem. Therefore the smaller total component testing

cost found by the JMPM formulation is a result of its relaxed formulation compared to

its SMPM counterpart.

 68

6 CONCLUSION

The determination of cost efficient test plans to accept or reject a system with minimum

total test cost is an important concern in reliability testing. These plans become more

critical when it is impossible or economically infeasible to test the system as a whole. In

the existing literature on system-based component testing, system reliability is regarded

as a single performance measure. In this work, we generalize this concept to a multi-

performance measure environment, where system reliability, expected system lifetime

and system availability need to be demonstrated to accept or reject a system. We

formulate expected system lifetime and system availability for various system

topologies including the serial connection of redundant, -out-of- and active redundant

subsystems.

Type I and type II subproblems arising in the main formulation are reverse convex

optimization problems and can be solved to global optimality using outer approximation

exploiting this structure. However expected system lifetime and availability functions

are rather complicated for this case and it is a well-known fact that outer approximation

grows cumbersome with the increase in dimension. Therefore, we prefer to work with

another representation involving signomial geometric programming and we choose a

branch and bound algorithm with a relaxation scheme to solve these optimization

problems.

We have obtained some notable results, such as

 the component test times increase as subsystem reliabilities decrease,

 a counter example to the stopping criterion for the column generation algorithm

is also provided. It is also shown that stopping at the first feasible with

increasing total component testing cost may not be appropriate for some cases,

 the subsystem requiring more components to survive is tested more,

69

 among subsystems with similar component reliabilities, the one with the smaller

unit testing cost is tested more.

Furthermore, probably the most important result, the JMPM formulation gives a better

solution with smaller total test cost and smaller first feasible m, compared to SMPM

formulation. Therefore, an interesting line of research lies in formulating JMPM

problem for different system topologies and comparing the results.

Another future line of research can be to deal with the variation of the time to failure for

various systems. It is a common fact that a system with smaller expected system

lifetime and time to failure variance is preferred in practice. If the variance can be

explicitly expressed in functional form and bounded, it can be considered as an

additional constraint in type I and type II problems involving expected system lifetime

function.

It has been proven in the literature that, setting upper bounds on component failure rates

is beneficial to reduce total test cost. However, it is assumed that upper bounds are

obtained without any additional cost. The case where upper bounds are obtained at a

price is an interesting line of research that is not addressed.

Finally, we want to point that the increasing complexity of expected system lifetime and

availability functions also increases the intractability of the problem. In spite of this

fact, we certainly hope that the analysis of this new type of testing problems leads to

interesting stochastic models and optimization results. The new testing approach

provides a more realistic setting to determine optimal component testing policies for

devices that are designed to satisfy a set of performance measures.

 70

REFERENCES

[1] Barlow R. E., Proschan F., Statistical Theory of Reliability and Life Testing,

Holt, Rinehart and Winston, New York, (1975).

[2] Barlow R., Proschan F., “Theory of maintained systems - Distribution of time to

first system failure”, Mathematics of Operations Research, 1, 33-42, (1976).

[3] Çekyay B., Özekici S., “Reliability, MTTF and availability analysis of systems

with exponential lifetimes”, Koç University Technical Report, (2008).

[4] Angus J., “On computing MTBF for k-out-of-n: G repairable system”, IEEE

Transactions on Reliability, 37 (3), 312-313, (1988).

[5] Natarajan R., “A reliability problem with spares and multiple repair facilities”,

Operations Research, 16 (5), 1041-1057, (1968).

[6] Gal S., “Optimal test design for reliability demonstration”, Operations Research

22, 1236-1242, (1974).

[7] Mazumdar M., “An optimum procedure for component testing in the

demonstration of series system reliability”, IEEE Transactions on Reliability, R-

26, 342-345, (1977).

[8] Easterling R. G., Mazumdar M., Spencer F. W., Diegert K. V., “System based

component test plans for operating characteristics: binomial data”,

Technometrics, 33 (3), 287-299, (1991).

[9] Altınel İ. K., “The design of optimum component test plans in demonstration of a

series system reliability”, Computational Statistics and Data Analysis, 14, 281-

292, (1992).

[10] Altınel İ. K., Özekici S., “A dynamic model for component testing”, Naval

Research Logistics, 44, 187-197, (1997).

[11] Altınel İ. K., Özekici S., “Optimum component test plans for systems with

dependent components”, European Journal of Operational Research, 111, 175-

186, (1998).

 71

[12] Çınlar E., Özekici S., “Reliability of a complex device in random environment”,

Probability in the Engineering and Informational Sciences, 1, 97-115, (1987).

[13] Altınel İ. K., Özekici S., Feyzioğlu O., “Component testing of repairable systems

in multistage missions”, Journal of Operations Research Society, 52, 937-944,

(2001).

[14] Altınel İ. K., Özekici S., Feyzioğlu O., “Component testing of a series system in

a random mission”, Reliability Engineering and System Safety, 78 (1), 33-43,

(2002).

[15] Feyzioğlu O., Altınel İ. K., Özekici S., “The design of optimum component test

plans for system reliability”, Computational Statistics and Data Analysis, 50,

3099-3112, (2006).

[16] Feyzioğlu O., Altınel İ. K., Özekici S., “Optimum component test plans for

phased-mission systems”. European Journal of Operations Research, 185, 255-

265, (2008).

[17] Altınel İ. K., System based component test problem: The design of optimum

system based component test plans, Ph.D. Thesis, Department of Industrial

Engineering, University of Pittsburgh, (1990).

[18] Altınel İ. K., “The design of optimum component test plans in demonstration of

system reliability”, European Journal of Operations Research, 78, 318-333,

(1994).

[19] Goberna M. A., Lopez M. A., Linear Semi-infinite Optimization, Wiley,

Chichester, (1998).

[20] Horst R., Tuy H., Global optimization: deterministic approaches, Springer-

Verlag, Berlin, (1996).

[21] Shen P., Li X., Jiao H., “Accelerating method of global optimization for

signomial geometric programming”, Journal of Computational and Applied

Mathematics, 214, 66-77, (2008).

[22] Tuy H., Convex analysis and global optimization, Kluwer Academic Publishers,

Dordrecht, (1998).

[23] Avriel, M., Williams, A.C., “An extension of geometric programming with

applications in engineering optimization”, Journal of Engineering Mathematics,

5(3), 187–199, (1971).

 72

[24] Jefferson, T.R., Scott, C.H., “Generalized geometric programming applied to

problems of optimal control: I. Theory”, Journal of Optimization Theory and

Applications, 26, 117–129, (1978).

[25] Nand, K.J., “Geometric programming based robot control design”, Computers

and Industrial Engineers, 29(1–4), 631– 635, (1995).

[26] Das, K., Roy, T.K., Maiti, M., “Multi-item inventory model with under imprecise

objective and restrictions: a geometric programming approach”, Production

Planning and Control, 11(8), 781–788, (2000).

[27] Jae Chul, C., Bricker Dennis, L., “Effectiveness of a geometric programming

algorithm for optimization of machining economics models”, Computers and

Operations Research, 23(10), 957–961, (1996).

[28] EI Barmi, H., Dykstra, R.L., “Restricted multinomial maximum likelihood

estimation based upon Fenchel duality”, Statistics and Probability Letters, 21,

121–130, (1994).

[29] Bricker, D.L., Kortanek, K.O., Xu, L., “Maximum Likelihood Estimates with

Order Restrictions on Probabilities and Odds Ratios: A Geometric Programming

Approach”, Applied Mathematical and Computational Sciences, the University

of IA, Iowa City, IA, (1995).

[30] Jagannathan, R., “A stochastic geometric programming problem with

multiplicative recourse”, Operations Research Letters, 9, 99–104, (1990).

[31] Sönmez, A.I., Baykasoglu, A., Dereli, T., Filiz, I.H., “Dynamic optimization of

multipass milling operations via geometric programming”, International Journal

of Machine Tools and Manufacture, 39, 297–320, (1999).

[32] Scott, C.H., Jefferson, T.R., “Allocation of resources in project management”,

International Journal of Systems Science, 26, 413–420, (1995).

[33] Maranas C. D., Floudas C. A., “Global optimization in generalized geometric

programming”, Compututers and Chemical Engineers, 21 (4), 351–369, (1997).

[34] Rijckaert, M.J., Martens, X.M., “Analysis and optimization of the Williams-Otto

process by geometric programming”, AIChE Journal, 20(4), 742–750, (1974).

[35] Shen P. P., Zhang K. C., “Global optimization of signomial geometric

programming using linear relaxation”, Applied Mathematics and Compututation,

150, 99–114, (2004).

73

[36] Wang Y., Liang Z., “A deterministic global optimization algorithm for

generalized geometric programming”, Applied Mathematics and Computation,

168, 722-737, (2005).

[37] Tuy H., “Robust solution of nonconvex global optimization problems”, Journal

of Global Optimization, 32, 357–374, (2005).

[38] Shen P., Ma Y., Chen Y., “A robust algorithm for generalized geometric

programming”, Journal of Global Optimization, 41, 593-612, (2008).

 74

BIOGRAPHICAL SKETCH

Emre YAMANGİL is a Master of Science candidate in Industrial Engineering at

Galatasaray University. He was born on December 17th, 1984, in İzmir / Turkey. He

graduated from İzmir Anatolian Highschool and he holds a B.S. degree in Industrial

Engineering from Dokuz Eylül University. He has presented a conference paper in

YAEM’08 and he has been accepted to present a paper in YAEM’09. He has another

conference paper among the proceedings of IESM’09. His current research involves

applications of global optimization methods for non-convex optimization and he is a

research fellow supported by Turkish Scientific and Technological Research Council’s

106M044 Grant.

	1 INTRODUCTION
	2 SYSTEM PERFORMANCE MEASURES
	2.1 BASIC RELIABILITY THEORY
	2.2 SYSTEM RELIABILITY
	2.2.1 Series Systems
	2.2.2 Serial Connection of Redundant Subsystems
	2.2.3 Serial Connection of k-out-of-n Subsystems
	2.2.4 Serial Connection of Standby Redundant Subsystems

	2.3 SYSTEM MEAN TIME TO FAILURE
	2.3.1 Coherent Systems
	2.3.2 Series Systems
	2.3.3 Serial Connection of Redundant Subsystems
	2.3.4 Serial Connection of k-out-of-n Subsystems
	2.3.5 Serial Connection of Standby Redundant Subsystems

	2.4 SYSTEM AVAILABILITY
	2.4.1 Coherent Systems
	2.4.2 Series Systems
	2.4.3 Serial Connection of Redundant Subsystems
	2.4.4 Serial Connection of k-out-of-n Subsystems
	2.4.5 Serial Connection of Standby Redundant Subsystems

	3 SYSTEM-BASED COMPONENT TESTING PROBLEM
	3.1 FORMULATION
	3.2 FORMULATION WITH MULTIPLE PERFORMANCE MEASURES
	3.2.1 Joint Multiple Performance Measures Formulation
	3.2.2 Separate Multiple Performance Measures Formulation

	3.3 SOLUTION PROCEDURE

	4 SOLUTION METHODS TO SOLVE SUBPROBLEMS
	4.1 DC PROGRAMMING
	4.1.1 DC Functions
	4.1.2 Canonical DC Programming

	4.2 SIGNOMIAL GEOMETRIC PROGRAMMING
	4.2.1 Linear Relaxation
	4.2.2 Deletion Technique
	4.2.3 Branching

	5 NUMERICAL EXAMPLES
	5.1 EXAMPLES FOR MTTF
	5.2 EXAMPLES FOR AVAILABILITY
	5.3 EXAMPLES FOR SMPM
	5.4 EXAMPLES FOR JMPM

	6 CONCLUSION
	thesis_ver21.pdf
	1 INTRODUCTION
	2 SYSTEM PERFORMANCE MEASURES
	2.1 BASIC RELIABILITY THEORY
	2.2 SYSTEM RELIABILITY
	2.2.1 Series Systems
	2.2.2 Serial Connection of Redundant Subsystems
	2.2.3 Serial Connection of k-out-of-n Subsystems
	2.2.4 Serial Connection of Standby Redundant Subsystems

	2.3 SYSTEM MEAN TIME TO FAILURE
	2.3.1 Coherent Systems
	2.3.2 Series Systems
	2.3.3 Serial Connection of Redundant Subsystems
	2.3.4 Serial Connection of k-out-of-n Subsystems
	2.3.5 Serial Connection of Standby Redundant Subsystems

	2.4 SYSTEM AVAILABILITY
	2.4.1 Coherent Systems
	2.4.2 Series Systems
	2.4.3 Serial Connection of Redundant Subsystems
	2.4.4 Serial Connection of k-out-of-n Subsystems
	2.4.5 Serial Connection of Standby Redundant Subsystems

	3 SYSTEM-BASED COMPONENT TESTING PROBLEM
	3.1 FORMULATION
	3.2 FORMULATION WITH MULTIPLE PERFORMANCE MEASURES
	3.2.1 Joint Multiple Performance Measures Formulation
	3.2.2 Separate Multiple Performance Measures Formulation

	3.3 SOLUTION PROCEDURE

	4 SOLUTION METHODS TO SOLVE SUBPROBLEMS
	4.1 DC PROGRAMMING
	4.1.1 DC Functions
	4.1.2 Canonical DC Programming

	4.2 SIGNOMIAL GEOMETRIC PROGRAMMING
	4.2.1 Linear Relaxation
	4.2.2 Deletion Technique
	4.2.3 Branching

	5 NUMERICAL EXAMPLES
	5.1 EXAMPLES FOR MTTF
	5.2 EXAMPLES FOR AVAILABILITY
	5.3 EXAMPLES FOR SMPM
	5.4 EXAMPLES FOR JMPM

	6 CONCLUSION

