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ABSTRACT 
 
 
 

Urban rapid transit network design consists of the location of train alignments and 

stations in an urban traffic context.  There are so many criteria that may be taken into 

account by many decision makers that are involved in design and construction of these 

alignments because transit networks, like other types of transportation networks, have 

social and economical affects on the inhabitants of any city or region. 

  

Since the importance of sustainability in urban planning increases in the last decades, 

authorities pay attention to create more environment-friendly solutions.  Air pollution in 

many cities in the world, especially in highly populated regions, is attributed to the 

emissions of vehicles.  An important mean to reduce these side effects is to enhance 

public transportation.  This study focuses on the design of rapid transit networks 

because public surface transportation with or without privileged lanes also release 

harmful gases most of the time.  However, it should be noted that the most significant 

aspect of this type of networks is their required investment costs which are relatively 

higher than any other means.  Moreover, the higher the number of stations involved in 

the alignment, the more costly the construction will be.  In this study, the design of a 

single transit line with no predetermined origin and destination is investigated while 

considering the existing road network.  The problem is formulated as a bi-level multi-

objective optimization problem where the minimization of line investment and vehicle 

emissions are considered as two separate objectives at the upper level, and user traffic 

behavior is considered at the lower level.  The model reflects the mode choice of the 

users which are assumed to act rationally by selecting the shortest time path to their 

destination.  The well known multi-objective genetic algorithm NSGA-II is adapted so 

as to find non-dominated solutions of the problem, and a variant of Frank-Wolfe 

algorithm is used to solve the lower level traffic assignment problem.  The proposed 
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algorithm is applied on a benchmark problem existing in the literature and important 

insights are provided. 



RÉSUMÉ 
 
 
 
La conception du réseau urbain rapide des transports détermine l’emplacement où 

devront se poser les rails des trains et les stations selon les conditions de la circulation 

urbaine.  Comme les réseaux de transport rapide semblables aux autres types de 

transport, ont des répercussions économiques et sociales sur la population urbaine, il y a 

plusieurs critères qui doivent être pris en considération par plusieurs personnes qui ont 

été incluses dans les différentes étapes des travaux de conception et de construction. 

 
Compte tenu de l’importance de la durabilité dans l’accroissement de la planification 

urbaine durant les dernières décennies, les pouvoirs locaux ont attribué beaucoup plus 

d’importance pour trouver des solutions qui ne nuisent pas à l’environnement.  La 

pollution de l’air dans plusieurs villes,  spécialement dans les régions à forte population, 

est due à l’émission des véhicules.  Un moyen important de réduire ces effets 

secondaires est d’améliorer les transports publics.  Cette étude se concentre sur la 

conception de réseaux urbains rapides de transport car, la plus part du temps, la surface 

des transports publics avec ou sans couloirs privilégiés, dégage aussi des gaz nocifs.  

Toutefois il est juste de noter que l’aspect le plus significatif de ce type de réseaux est 

dans le coût des investissements qu’ils nécessitent et qui sont relativement plus hauts 

que ceux de tous les autres moyens.  En outre, plus le nombre de stations incluses dans 

l’alignement sera élevé plus la construction sera coûteuse.  Dans cette étude, la 

conception d’une seule ligne de transport sans origine et sans destination 

prédéterminées est  examinée en même temps que l’on considère le réseau des routes 

existantes.  Le problème est formulé comme un problème d’optimisation à plusieurs 

objectifs, où la minimisation de ligne d’investissement et les émissions des véhicules 

sont considérés en tant que deux objectifs séparés au plus haut niveau et le 

comportement de l’utilisateur de la circulation est considéré au niveau le plus bas.  Le 

modèle reflète le choix des utilisateurs qui sont supposés á être réaliste en choisissant le 
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chemin le plus court pour aller á leur destination.  Le fameux algorithme NSGA-II à 

objectifs multiples est adapté de façon à trouver des solutions non dominantes au 

problème et une variante de l’algorithme Frank-Wolfe a été utilisée pour résoudre le 

problème de l’affectation de la circulation de bas niveau.  L’algorithme proposé est 

appliqué sur un problème de critères qui existent dans la littérature et d’importantes 

argumentations sont fournies. 

 



ÖZET 
 
 

 

Kent içi hızlı ulaşım ağı tasarımı, mevcut kentsel trafik şartlarında, ray hatlarının ve 

istasyonların konumlandırılacağı yerleri belirler.  Diğer ulaşım tiplerine benzer bir 

şekilde hızlı ulaşım ağlarının, kent halkı üzerinde sosyal ve ekonomik etkileri 

bulunduğundan, tasarım ve yapım aşamalarında konuya dâhil olan birçok kişi tarafından 

dikkate alınması gereken birçok ölçüt vardır. 

 

Son yıllarda kentsel planlamada sürdürülebilirliğin önemi arttığından, uzmanlar daha 

çevre dostu çözümler bulmaya dikkat etmektedirler.  Başta yoğun nüfuslu bölgeler 

olmak üzere birçok şehirde hava kirliliği araçlardan çıkan gazlarla ilişkilendirilir.  Bu 

yan etkileri azaltabilmenin önemli bir yolu toplu taşımayı teşvik etmektir.  Otobüs ve ya 

metrobüs gibi toplu taşıma araçları da zehirli gazlar saldığından dolayı, bu çalışma hızlı 

ulaşım ağları üzerine yoğunlaşmaktadır.  Ancak bu tip ağların en belirgin özelliğinin, 

diğer toplu taşıma tiplerine oranla daha yüksek bir yatırım maliyetine sahip olması 

olduğunu belirtmek gerekir.  Dahası, istasyon sayısı arttıkça, yapım maliyeti de 

artacaktır.  Bu çalışmada, mevcut araç ağını da dikkate alarak, başlangıç ve bitiş 

noktaları önceden belirlenmemiş tek bir hattın tasarımı incelenmiştir.  Problem, gaz 

salınımının ve yapım maliyetinin iki ayrı amaç olarak üst seviyede en azlanacağı, 

kullanıcıların trafik davranış eğilimlerinin ise alt seviyede incelendiği çok ölçütlü iki 

seviyeli bir model olarak tasarlanmıştır.  Model, gidecekleri noktaya mümkün olan en 

kısa yolu seçerek gerçekçi davranacağı varsayılan kullanıcıların seçimlerini 

yansıtmaktadır.  Baskın çözümleri bulabilmek amacıyla, NSGA-II çok ölçütlü evrimsel 

algoritması probleme uyarlanmış ve alt seviyedeki trafik atama problemini çözebilmek 

için de Frank-Wolfe Algoritmasının bir uyarlaması kullanılmıştır.  Önerilen algoritma, 

literatürde çokça kullanılan bir probleme uygulanmış ve önemli çıkarımlar sunulmuştur. 



1 INTRODUCTION 
 

 

 

Public transportation is one of the main services that inhabitants of a city or a region 

require for not only traveling but also other economic and social issues.  This is 

because, public transportation systems, in fact well-designed public transportation 

systems may help decrease air pollution, reduce traffic congestion and as a result travel 

time, besides providing a cheaper way of traveling.  Of course, the design of these 

systems and methods to provide it, are of great importance.  For instance, if these 

systems were conducted by only buses using the roads of private vehicles, it would 

provide no benefit to use public transportation because of the congestion when the 

maximum capacity of links is reached.  However, if rapid transit networks are available, 

users will be encouraged for using public transportation because of its short travel time 

and low cost comparing to the traveling by private vehicles. 

 

For such reasons, in cities especially with high levels of population, the portion of 

budgets dedicated to rapid transit network investments increase in the last decades.  

This type of networks is also preferred because of that it reduces air pollution much 

more than the classical transportation tools such as buses or buses with privileged lanes. 

 

However, it is very costly to construct such networks even with few stations and 

municipalities may not be eager to spend huge amounts on this type of investment.  The 

problem here is determining an optimum solution between sustainability issues, that is, 

the amount of emission decreased by constructing this network and available budget of 

municipality while taking user behavior into account.  In this study, it is aimed to find a 

solution to the problem described above. Our study differs from other ones in such 

aspects; 
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• To the best of our knowledge, this is the first study that takes environmental 

issues into account in constructing a rapid transit line.  Since air pollution is a 

serious problem and traffic congestion is an important source of this pollution, it 

is aimed to construct a line that minimizes the emission of the vehicles as much 

as possible.  Because the number of vehicles, traffic congestion and gas 

emission are not at the same level in each link, the route which the line will pass 

through, nodes that  stations will be located at and decision of which OD pairs 

will be connected by a transit line must be planned carefully. 

 

• Travel times of the links are not constant in this study.  That means, for every 

possible solution (a solution is a rapid transit line with stations located.) travel 

times are computed considering the users’ choice because according to the travel 

times of transit line and private road network, users choose their travel modes 

among these alternatives by comparing their travel times.  

 

• Most of the studies until now use one objective such as maximizing trip 

coverage and population covered or a normalized equation including these 

objectives with predetermined weights.  Since the problem is a tradeoff between 

minimizing emission and minimizing cost and the effectiveness of the solution is 

determined by user behavior, a multi-objective bi-level model is proposed in this 

study.  This problem is actually a Stackelberg game in which the municipality is 

the leader that makes decisions and the followers are the users that can make 

their choices when a rapid transit line is constructed according to the priorities of 

the municipality.  The upper level problem (leader) has two objectives 

mentioned above and the lower problem (followers) aims to find user 

equilibrium in the entire network.  That means users will change their 

transportation modes until all alternatives have the same travel time between the 

same OD pairs. 

 
The organization of this study is as follows; Chapter 2 reviews previous studies on 

RTNDP dealing with both station locations and generating alignments.  In Chapter 3, 

methods and algorithms used are elaborated and at the end of this chapter our multi-
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objective approach to RTNDP is presented.  Chapter 4 is dedicated to the case study of 

our algorithm which is a well-known problem, Sioux-Falls Networks. Mathematical 

model is provided in Chapter 5 and our objective functions and constraints are 

explained in detail and finally, conclusion and future directions are described in Chapter 

6. 



2 LITERATURE REVIEW 
 

 

 

Transit Network Design Problem (TNDP) deals with the optimal design of the routes 

and frequencies in urban public transit systems.   It has two main sub-problems; the 

first one is continuous of which subject is expansion of existing links.  The other one, 

discrete transit network design, deals with adding new links to the original network. 

Rapid Transit Network Design Problem (RTNDP) is included in the latter one and it 

finds the optimal line (metro, railway etc) and locations of stations on it.  

 

2.1 NETWORKS, LINK PERFORMANCE FUNCTIONS AND USER 
EQUILIBRIUM 

 

The term network is commonly used to describe a structure that can be either physical 

(e.g. streets and intersections, telephone lines and exchanges, etc.) or conceptual (e.g. 

information lines and people, affiliation relationships and television stations, etc.).  

Each of these networks includes two types of elements: a set of points and a set of line 

segments connecting these points.  This observation loads to the mathematical 

definition of a network as a set of nodes (vertices, points) and a set of links (arcs, 

edges) connecting these nodes.  

 

Each network link is typically associated with some impedance that affects the flow 

using it.  The units of impedance depend on the nature of the network and the link 

flows.  Impedance can represent electrical resistance, time, cost, utility and other 

relevant measure. 

 

The networks discussed in RTND problem are typically connected.  In other words, it is 

possible to get from any node to any other node by following a path (route) through the 

network.  A path is a sequence of directed links leading from one node to another.
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The movement of vehicular traffic through streets and intersections is not the only flow 

in the urban area.  A transit link can be represented by a simple linear network in which 

the transit stations are represented by nodes and the line haul-portion by links.  The 

impedance on each of these links includes “in-vehicle” travel disutility elements such 

as travel time. 

 

The transportation planning process for urban areas is typically based on a partition of 

the area into traffic zones.  The size of each zone can vary from a city block to a whole 

neighborhood or a town within an urban area.  The number of traffic zones can vary 

from several dozens to several thousands.  Each traffic zone is represented by a node 

known as centroid.  The centroids are those source and sink nodes where traffic 

originates and to which traffic is destined.  Once the set of centroids is defined, the 

desired movement over an urban network can be expressed in terms of an origin-

destination (O-D) matrix.  This matrix specifies the flow between every origin centroid 

and every destination centroid in the network. 

 

The travel impedance or level of service, associated by links representing an urban 

network can include many components, reflecting travel time, safety, cost of travel, 

stability of flow and so on.  The primary component of this impedance is, however, is 

travel time which is often used as the sole measure of link impedance.  Generalized 

impedance, which combines several measure can be used and the term travel time can 

be understood as such a combined impedance.  

 

The level of service offered by many transportation systems is a function of the usage 

of these systems.  By congestion, travel time on urban streets and intersections is an 

increasing function of flow.  Consequently, a performance function rather than a 

constant travel-time measure should be associated with each of the links representing 

the urban network.  The performance function relates the travel time on each link to the 

flow traversing this link.  

 

The travel time with zero flow is known as the free-flow time.  At this point, a traveling 

car would not be delayed because of interaction with any other car moving along the 
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link.  The only source of delay at this point is the time associated with traversing the 

link (and the probability of being stopped by a red signal indication).  As the flow 

increases, the travel time monotonically increases since both the travel time along the 

approach increases and the intersection delay increase with the flow.  

Characteristically, the performance function is asymptotic to a certain level of flow 

known as the capacity of the transportation facility under consideration.  The capacity 

is the maximum flow that can go through any transportation capacity.  The performance 

function is undefined for higher values of flow, since such flows can not be observed. 

 

The general shape of the performance functions is similar for links representing most 

types of urban streets.  The physical characteristics of each street such as length, width, 

parking restrictions, turning pockets and signal green time, determine the exact 

parameters of the function for each street. 

 

In this study, performance function for each link is identical.  A simplified function that 

is often used in practice is the equation developed by the U.S. Bureau of Public Roads 

(BPR).  This equation is given by: 

 

  (2.1) 

 

In this formula,  and  are the travel time and flow respectively on link a.   is the 

free-flow time and  is the capacity of link .  The quantities  and  are model 

parameters, for which the value  and  are typically used.  These values 

imply that the practical capacity of a link is the flow at which the travel time is 15% 

higher than the free-flow time.  This does not equal the capacity of the road, that is, the 

maximum possible flow through a link. 

 

The only travel choice in a networks consisting of just a road network is the motorists’ 

choice of routed between their origins and destinations.  The problem can be put as 

follows: 

 



 7 

Given: 

 

1. A graph representation of urban transportation network 

2. The associated link performance functions 

3. An origin-destination matrix 

 

This problem is known as traffic assignment since the issue is how to assign the O-D 

matrix to the network.  To solve the traffic assignment problem, it is required a rule by 

which the motorists choose a route be specified.  The interaction between the routes 

chosen between all O-D pairs, on the one hand, and the performance functions on all 

the network is on the other determines the equilibrium flows and the corresponding 

travel times throughout the network. 

 

It is reasonable to assume that every motorist will try to minimize his or her own travel 

time when traveling from origin to destination.  However, this does not mean all 

travelers between each origin and destination pair should be assigned to a single path. 

The travel time on each link changes with the flow and therefore, the travel time on 

several of the network path changed as the link flows change.  A stable condition is 

reached only when no traveler can improve his travel time by unilaterally changing the 

routes. This is the characterization of the user-equilibrium (UE) condition. 

 

The user equilibrium condition assumes that motorists have full information that means 

they know the travel time on every possible route and that they consistently make the 

correct decisions regarding route choice.  Furthermore, it assumes that all individuals 

are identical in their behavior.  These presumptions can be relaxed by making a 

distinction between the travel time that individuals perceive and the actual time.  The 

perceived travel time can be looked upon as a random variable distributed across the 

population of drivers.  In other words, each motorist may perceive a different travel 

time, over the same link.  Equilibrium will be reached when no traveler believes that 

his travel time can be improved by unilaterally changing routes.  This definition 

characterizes the stochastic-user-equilibrium (SUE) condition [1]. 
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2.2 NETWORK DESIGN 
 

Network design deals with designing the transportation network.   Public transportation 

networks (i.e. bus routes, train lines) are determined by using network design tools.   In 

most of the real life cases, existing public transit networks are modified.  These 

modifications can include; 

 

• finding new stations in a railway or bus network, 

• closing existing stations, 

• finding a sub-network for opening rapid transit lines [2] 

 

The Network Design Problem (NDP) can be classified in according to four criteria:  

system-optimal (SO) / user optimal (UO) behavior  static/dynamic traffic assignment 

 discrete/ continuous investment variable  deterministic/stochastic parameters. 

The SO behavior is mathematically tractable but unrealistic.  The static traffic 

assignment assumes the steady-state condition, whereas the dynamic traffic assignment 

(DTA) accounts for time dynamics.  The discrete investment variable allows entire-lane 

or new link addition.  The continuous investment permits a fraction of lane addition. 

The continuous investment variable has extensively been employed in the literature and 

the justification is that because most roads in the urban area are already constructed. 

The continuous link expansion can be implemented by altering lane width, median and 

shoulder area.  Alternatively, the continuous NDP can be considered as a possible 

heuristic for the discrete NDP [3].  Lastly, the problem parameters have typically 

considered deterministic where all users have perfect information about the travel times 

of each alternative, as opposed to stochastic where the travel time of the same link may 

be perceived differently by different users. 

 

The flow pattern that minimizes SO program does not generally represent an 

equilibrium condition.  Except in some special cases, it can result only from joint 

decisions by all motorists to act so as to minimize the total system travel time rather 

than their own.  In other words, at the SO flow pattern; drivers may be able to decrease 

their travel time by unilaterally changing routes.  Such a situation is likely to sustain 
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itself and consequently SO flow pattern is not stable and should not be used as a model 

of actual behavior and equilibrium.  

 

The significance of SO formulation and the resulting flow pattern is that the value of 

the SO objective function may serve as a yardstick by which different flow patterns can 

be measured.  Indeed system wide travel time is a common measure of performance of 

a network under a given scenario.  This measure can be computed in a straightforward 

manner given the equilibrium flows and it does not require any data in addition to those 

required for the equilibrium analysis itself.  Thus the flow pattern associated with any 

proposed project can be measured in terms of the total travel time associated with it 

relative to the minimum possible travel time.  This program can be expressed as 

follows: 

   

  

    

         (2.2) 

 

However, it is reasonable to assume that every motorist will try to minimize his or her 

own travel time when traveling from origin to destination.  The travel time changes in 

each link changes with the flow and therefore the travel time on several of the networks 

paths change as the link flows change.  A stable condition is reached only when no 

traveler can improve his travel time by unilaterally changing routes.  In other words, for 

each OD pair, the travel time on all used paths are equal and also less than or equal to 

the travel time that would be experienced by a single vehicle on any unused paths.  This 

is the characterization of the user equilibrium (user optimum) condition. The objective 

function of UO is the minimization of; 

 

  (2.3)  

 

subject to the same constraints of SO. 
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In this study, a transit line is to be constructed from scratch in such a way that 

minimizes the total gas emission releasing from the vehicles in private network.  It is 

assumed that traveling by bus is not an alternative so this study mostly deals with the 

third item.  It is modeled as steady-stated because peak time of the day is used for 

analysis, deterministic because each user perceive the travel times of each link and 

alternative the same and discrete because decision to be made is to connect two nodes 

by transit line or not.  The model uses UO which is more realistic comparing to SO in 

the lower problem where total travel time is minimized. 

 

2.3 RAPID TRANSIT NETWORK DESIGN 
 

The Rapid Transit Network Design problem consists of the location of train alignments 

and stations, in context where the demand makes its own decisions about the mode and 

the route [4].  In this context, the core issue-location of a single line and corresponding 

stations is a classical multi-objective network design problem [5].  For the design of the 

rapid transit line, both quantifiable and non-quantifiable criteria have to be considered: 

construction and operating costs, travel times, demand satisfaction, utilization and 

accessibility of open space and historic sites, air and noise pollution and so forth [6].  

Decisions are the consequences of the interaction of several actors: engineers, central 

and local administrators, environmentalists and lobbies [5].  Because of the very large 

cost of constructing and operating rapid transit systems, it is important to pay close 

attention to their efficiency and effectiveness [7].   The Rapid Transit Network Design 

Problem contains two intertwined problems: determining an alignment and locating 

stations on it [8]. 

 

Bruno et al [6] compares his model with Maximum Covering Shortest Path Problem 

(MCSPP) and the Median Shortest Path Problem (MSPP) and bi-level programming 

models are introduced for generation of efficient solutions considering main criteria.  

The MCSPP deals with the minimization of the total path construction cost and the 

maximization of the total demand satisfied (sum of the nodal demands covered by this 

path).  The criterion of coverage, which supposes that a nodal demand  is satisfied or 

covered if a RTL station is located within a given fixed distance from node , is the 
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basis of the formulation of the MCSPP.  The MSPP objectives are the minimization of 

the total construction cost, like MCSPP, and the maximization of the accessibility of 

the path.  However, because of the lack of realistic assumptions about the users’ 

behavior, neither model provides satisfactory results.  In this study, a bi-criterion path 

location model with predetermined origin and destination nodes is proposed.  It 

assumes that each user chooses the path with the least travel cost among different 

alternatives.  Travel cost includes travel time, monetary cost and comfort.  In particular, 

the model is a sort of generalization of MSPP. 

 

There are 4 different networks in this study: private, public, pedestrian, and pedestrian-

public.  Users can choose any of these travel modes comparing their travel costs. The 

model is mainly based on these assumptions: 

 

• Mobility demand is described by an origin-destination matrix. 

• Users can use private mode or the hybrid pedestrian-public transportation 

system to be designed. 

• Demand is assigned to the transportation system corresponding to the least 

travel cost. 

• Travel costs are independent of flows. 

• Mobility demands and cost are deterministic. 

 

To estimate the set of non-inferior solutions, the procedure identifies  shortest paths 

on the public network with starting node “ ” and terminus “ ” using a label correcting 

technique, referring to construction costs, .  For each generated path, the 

corresponding bi-level network is built by augmenting the pedestrian network with the 

arcs and nodes of the path.  Then, the total weighted travel cost incurred by the users,  

associated with that path is calculated.  Finally, the efficient solutions are selected in 

the set of the generated paths using the dominance relationships. 

 

Hamacher et al [9] analyzed the effects of adding new train stops to an existing rapid 

transit line by using genetic algorithm.  The problem is a tradeoff between the number 
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of people attracted by adding some extra stops and people that change the travel mode 

because of longer travel times.  It is also shown that the problem is NP-hard.  

 

Let  denote the set of coordinate points, each of them representing a settlement and let 

 be the set of feasible points along the tracks of the railway company.  A solution  to 

the problem is given by a set of points in the plane, representing the stops that should 

be installed.  is feasible if  , i.e., if each  satisfies .  To evaluate a 

feasible solution , we are interested in how many settlements are covered by . A 

settlement  is covered by a point  if; 

 

  (2.4) 

 

where  refers to the Euclidean distance and  is some given radius.  Basically, the 

number of new stops is interested in, it is aimed to cover as many settlements as with as 

few stops as possible. 

 

It is supposed that  is given as a network  embedded in the plane.  For a 

point ,  denotes the edge of  on which  is located.  Furthermore, for 

each edge , the number of customers traveling along  is denoted by . Then for a set 

 of new stops,  

 

  (2.5) 

 

gives the amount of additional travel time for customers, which is caused by the 

additional stop activities of the trains.  It is assumed that a constant time delay  is 

caused by any additional stop of train. 

  

On the other hand, some of the customers will save travel time, since a new train stop 

may reduce the distance to their closest train stop and hence the time they need to get 

on a train.  In the model, the reduction of the distance for a point  is calculated 

by, 
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  (2.6) 

 

where  denotes the set of already existing train stops and  is the closest 

Euclidean distance from  to any point in .  

 

To transform the possible reduction of distance into an amount of saved access time a 

piecewise linear function is introduced  in two variables, assigning an 

amount of saved time to each reduction of distance, given as a pair old and new 

distance of a settlement from the nearest train stop. 

 

Denoting for each  the number of customers from the corresponding settlement 

by , the positive effect to the travel time through saved access time can be calculated 

by  

 

  (2.7) 

 

The travel time model can be summarized: 

 

  

such that  

  (2.8) 

 

The change in train riding time that is caused by starting or ending the trip at a different 

train stop is neglected, assuming that these gains and losses in train riding time roughly 

even out. 

 

Laporte et al [10] aims to locate stations on a given line so as to maximize the coverage 

of people by the stations.  The coverage provided by a station situated in a central area 

will depend on the pedestrian network around it and the limits of the coverage will be 

determined by the maximum distance that users are able or decide to walk the transit 
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network.  The percentage of covered users depends on the required time to reach the 

nearest station, thus several levels of attraction are stated.  

 

The number of stations to be located in a section with fixed extremes is a function of 

the length and inter-station spaces.  There are two parameters,  and , which are 

bounds on the minimum and maximum inter-station spacing.  The number of stations to 

be located is  

  (2.9) 

 

where  is the length of the section and  is the average inter-station space.   is fixed 

and the distance between two adjacent stations is assumed to belong the interval 

 which is called “constraint on inter-station spacing” (CIS). 

 

 is the catchment area of the transit line, divided into census tracts cjcj  such that; 

 

  (2.10) 

 

where each zone  is assumed to be a polygonal region with population density  , 

 If data about jobs are available,  could be reinterpreted as a sum of the 

population and employment density.   is a distance measure in the plane with  

as associated norm   The set of points in the plane whose distance to 

the station  is not greater than  (usually called the ball of radius ) is denoted by 

.  For each station ,  different levels of attraction is considered. Then, 

 and  

 

  if and only if . (2.11) 

 

These attraction levels correspond to concentric annuli around each location site. 

 

There are several studies about modeling the attraction by function.  In this study, the 

function derived by the gravitational model is used. 

 



 15 

  (2.12) 

 

Here,  in which  is a constant to be calibrated. 

 

In order to discretize the objective function, the attraction in each annulus, determined 

by two consecutive levels, will be considered constant.  Thus, the coverage provided by 

the station located at  is  

 

  (2.13) 

 

Finally, the objective function is the cover provided by the stations situated in 

alignment , which in the plane corresponds to the section of the line under 

consideration subject to CIS. This yields 

 

  (2.14) 

 

In the study of Bruno et al. [11], a two-phase heuristic is proposed and objective is 

defined as the maximization of the total population covered by the alignment.  This 

objective is used because obtaining reliable O/D demands is costly and travel demand 

available at the network planning stage may differ from the actual demand observed 

after the system has been built.  However, population coverage is an approximation 

because the use of the public transportation also depends on the factors such as income 

level, car ownership, etc.  It is assumed that all population associated with a vertex 

where a station is located uses the transit system.  A grid network is used and it is 

assumed that a population  is associated with each integer coordinate vertex 

. The population covered by a station , called the cover of , is defined as 

 

  (2.15) 
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where  denotes the Manhattan distance between  and . 

 

Distances between consecutive stations are also restricted by a constraint in the model. 

 and  are the minimum and maximum distances allowed respectively.  This 

constraint ensures a balance between the additional time by stopping in a station and 

additional number of users attracted by the located station. 

 

The heuristic proposed consists of two phases; construction of an alignment and 

solution improvement.  The first phase constructs a feasible alignment by adding one 

station at a time.  It gradually extends a partial alignment  by first 

determining the location  outside  having the largest cover  and then 

checking whether  is -linkable with the nearest of , that means  and  

can be linked by a partial alignment containing at most  intermediate stations 

satisfying the interspacing constraints.  In the second phase, an attempt is made to 

improve upon the best known alignment  by extracting from it a partial alignment 

and extending it into several full alignments. 

 

Laporte et al [8] estimates actual demand between two nodes and then, generates an 

alignment that maximizes the trip coverage (total station-to-station ridership covered by 

the alignment) by using greedy heuristics proposed.  An alignment location 

methodology based on O/D information is presented. O/D information is said to be 

needed because other methods such as corridor approach and catchment areas are 

unsatisfactory.  Corridor approach assumes that someone living near close to metro line 

but far from a station will be attracted by this line which is obviously not the case. 

Catchment area method also has a major drawback.  According to this method, 

someone travelling along North-South axis will be attracted by the station located in an 

East-West alignment.  Planners use the data provided by the census tracts to evaluate 

the population covered by a station. Let  be the set of census 

tracts and  the respective density of each  Then the coverage  

provided by the station  is defined by; 
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  (2.16) 

 

where  is a ring index,  is the number of rings per station, 

 is the ring centered at  and comprised between 

radii  and ,  is an intermediate value between radii  and . 

 

To combine the estimation of passenger O\D patterns with the notion of population 

coverage, Mesa et al [10] proposed the following approach. 

 

Each station pair  has an associated  matrix, denoted by , whose 

elements  (for all ) represent the weighted sum of portions 

of values  (predicted the number trips produced in zone  and attracted to zone , 

for all ).  Weights are defined by taking into consideration attraction 

radii  and  (respectively, at origin and destination stations) yielding the following 

O\D values: 

 

  (2.17) 

 

Therefore, the trip coverage  provided by a pair of different stations  can be 

obtained by adding all matrix elements: 

 

  (2.18) 

 

The model assumes that potential users choose between only two transport modes; a 

transit line , defined on a set of  stations and private car that uses the street 

grid.  The proportion of trips between  and , using the rapid transit network on set  

is obtained by; 
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  (2.19) 

 

where  denotes the time of the quickest path connecting  and  using the 

network based on ,  represents the time of the quickest path connecting  and  by 

using another means of transport and  is a positive parameter to be calibrated. 

 

The objective of the model can be described as follows: 

 

  (2.20)  

  

 can be used to represent the passenger flow between  and  in the presence of 

an alignment on .  Hamiltonian path is used for generating the alignment and 

alignment is forced to be at most 20 km.   

 

The first heuristic may be viewed as a greedy algorithm. 

 

1. Include in  the edge . 

2. Extend the current alignment  at either end by adding a new edge, 

 or , yielding the maximum objective , not 

intersecting the current alignment and not causing  to exceed 

.  Repeat until the current alignment can no longer be extended. 

 

The second heuristic is the extension of an alignment through greedy stations.  That is; 

 

1. Include in  the edge  yielding max . 

2. Consider in turn for each non-inserted station and insert it in the current 

alignment. 
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After applying the second heuristic, solution may be improved by a post-optimization 

procedure. 

 

1. Given a solution, remove in turn each station, link its predecessor to its 

successor and reinsert the station just removed. 

2. Stop when no station removal and reinsertion can yield an improvement in 

objective function. 

 

These heuristics are also applied on real data, Sevilla metro and the results are 

compared. 

 

Laporte et al [13] describes three stages of the process of designing a rapid transit 

system as selecting key nodes, designing the core network and locating secondary 

stations.  It is aimed to maximize coverage and designing the core network is achieved 

by using a short list of lines, which are supported by the key nodes previously selected, 

that means second stage is addressed.  Key nodes are selected by using weighted 

demands of nodes according to their number of inhabitants and visitors among 

candidate locations such as hospitals, universities, commercial zones, etc. 

 

After having located the stations that must belong to some of the lines of the network, 

the problem of connecting them with a small number of alignments 

, with origins  and destinations  given, in competition with 

the private mode, is tackled. 

 

Let  be the set of feasible edges linking the key stations.  Therefore, there is a 

network  from which the core network is to be selected.  For each node 

, the set of nodes adjacent to node  is denoted by . Let  and  denote the 

costs of constructing a section of an alignment on edge  and that of constructing a 

station at node .  The generalized routing cost (under demand point of view) of 

satisfying the demand of pair  through the private and public network are  and 

, respectively.  The first one is a given value, but the latter cost depends on the 

final topology of the public network and therefore on the edges that are selected; for 
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this reason a generalized cost  is given for each edge.  This value is taken equal to 

the distance between  and . Depending on the available budget for the total 

construction cost of each alignment, bounds  and ,  on the 

construction cost of each alignment and bounds  and  on the total construction 

network cost are known. 

 

The problem consists of choosing a low number  of lines  covering as 

much as possible the travel demand between the points of , subject to constraints on 

the construction cost. 

 

In the formulation of the model, there is not a constraint for sub-tour elimination, but 

when a solution contains a cycle, then such a constraint is imposed.  The model takes 

cost into consideration via a constraint instead of an objective function.   

  

Marin et al [4] extends the study of Laporte et al [8] and incorporates the line locations 

constraints with a bounded but variable number of lines with no predetermined origins 

and destinations.  The model proposed, Extended Rapid Transit Network Design 

(ERTND), has a greater degree of freedom: the number of lines and their origin 

destination are variables within the bounds.  The lines are not initially given and they 

do not have fixed origin and destinations. 

 

Key stations are selected in a similar manner to [8]. The set  of feasible edges linking 

the key stations  is defined. That means, there an undirected graph  from 

which the rapid transit network is to be selected. 

 

The set of possible links is a subset defined by  of the set of all 

bidirectional links.  That is,  and  are identical because the links are assumed 

to be undirected edges.  The demand is, again, given by O\D pairs of nodes as in [8]. 

The matrix  of distances between pairs of nodes is used to define public cost and 

since the system is designed to be underground, the values of  matrix could 

correspond to Euclidean distances.  and  are the costs of constructing an edge  

and station at node , respectively.  There are cost upper and lower limits for each line, 



 21 

 and  and for the entire network  and .  Finally, the users make their 

decisions considering the generalized cost of satisfying it through the public and private 

networks which are  and .  The first one is an input data while the latter one 

depends on the final topology of the network. 

 

The objective functions of the model are; 

 

• Maximize the public trip covering, . 

• Minimize routing cost upper bound, . 

 

The overall objective function is; 

 

  (2.21) 

 

where  is typically a number close to 1.  As it can be seen, the overall objective 

function is a normalization of two objectives rather than a multi-objective 

programming.  

 

Up to this point, there is not much difference than the model of [8].  However, the 

problem is extended by adding new constraints which is named as ERTND. 

 

The extension of RTND studies the following topics; 

 

• The number of lines is variable within a given bound. 

• The lines do not have predetermined origins and destinations, all nodes in the 

network are available. 

 

The design of Marin et al [14] incorporates with the fact that users can choose their 

transportation modes and trips.  Objective functions consist of maximizing the public 

transportation, minimizing routing cost and minimizing locating costs, ,  and  

respectively.  These objective functions are then normalized in order to be integrated in 

a single objective function as follows: 
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  (2.22) 

 

Several variations of Benders decompositions are implemented in order to accelerate 

the convergence towards a solution.  The problem has two decision levels: first, the 

system operator chooses network location and the second; the users choose mode and 

routes.  To apply Benders decomposition, the problem is divided into a master problem 

defining a feasible network (the location problem) and a sub-problem assigning 

demand to this network.  Benders decomposition iterates between the Master Model 

and the Sub Model to find an optimal solution.  In each iteration , the dual variables of 

the SM define optimality or feasibility Benders Cut, which are added to the constraints 

of the master problem.  The process continues until it converges under convexity 

assumptions verified by the model.  

 

Aggregated Benders Decomposition is the classic Benders algorithm and the base for 

the next convergence-acceleration extensions.  The Benders convergence assumptions 

require that the SM be a convex problem and then it is necessary to relax the sub model 

variables.  

  

Extended rapid transit network design problem is modified in [15] to allow circular 

lines.  A two-stage approach is proposed and compared to the results obtained from the 

model of [4].   

 

Let  be the set of potential lines to be constructed. Theoretically,  

should be large enough to allow the achievement of maximum possible total expected 

number of users.  If there are  lines going through a location  or linking two stations  

and , then the associated construction costs are  and  corresponding to 

constructing a station and linking locations respectively. 

 

The model considered in [4] is modified since that model allows cycle consisting of 

more than one line (for example, two lines of which endpoints coincide), in this case, it 

would be preferable to define a unique circular line as the union of the initial lines, 
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since this would reduce the construction costs at their endpoints, as well as the number 

of transfers that should be done by the users to arrive their destinations. 

 

In the first stage, an integer model is solved for selecting the stations and the links 

between them are determined and in the second stage the line design problem is solved 

by means of a procedure that assigns each selected link to exactly one line under certain 

constraints. 

 

There are two models proposed in this study with the same objective function used in 

[4].  An undesirable property of the feasible solutions for the first model is that given 

two opposite pairs  and , the paths recommended to the users 

of these pairs have distinct total lengths.  Another undesired property is that the users of 

an O\D pair of locations can be recommended to follow a path that goes through the 

same location more than once (i.e. contains a circuit).  It is assumed that the users of 

pair  will utilize the rapid transit network if and only if total distance covered by the 

users of pair  whenever they follow the recommended path is less than or equal to 

generalized cost of satisfying the demand through an existing network. 

 

Model 2 is a modified version of Model 1. Model 1 allows the possibility of more than 

one linking two locations.  However, if there were  lines linking two locations, where 

, it can easily be shown that it would be possible to eliminate all but one of those 

links and redefine the lines for the rapid transit network in such a way that its number 

would be increased be  units at most and obviously, this would reduce the total 

construction cost without modifying the value of the objective function for the 

considered feasible solution of Model 1.  Therefore any two locations can be connected 

by at most one line.  

 

In our model, the upper problem contains minimizing the construction cost and 

minimizing the gas emission raised from the vehicles on private network, while the user 

traffic behavior is considered at the lower problem.  Since construction of a rapid 

transit line is quite expensive, it should be designed effectively. 

 



Table 2.1 A Review of the Studies in RTNDP 

  Bruno(98) Hamacher(01) Bruno(02) Laporte(02) Laporte(05) Laporte(07) Marin(07) Marin(09) Escudero(09) Our 
Model(10) 

alternative 
modes yes yes no no no yes yes yes yes yes 

Multiple\single 
objective 

multiple 
(bi-level) single single single single single 

two 
objectives, 
normalized 
in a single 
equation 

three 
objectives, 
normalized 
in a single 
equation 

single multiple 

Multiple\single 
lines single single single single single many many many many single 

circular lines 
allowed no no no no no no no no yes no 

objective 
function(s) 

minimizing 
construction 

cost, 
minimizing 
total user 
travel cost 

maximize 
travel time 
difference 

between new 
network 

and existing 
network 

maximize 
population 
coverage 

maximize 
weighted 
coverage 

maximize  
trip coverage 

maximize  
trip coverage 

maximize  
 trip 

coverage, 
minimize 
routing 

cost upper 
bound 

maximize 
trip 

coverage, 
minimize 
routing 

cost upper 
bound, 

minimize 
location 

cost 

maximize 
 trip coverage 

minimize 
emission 

 
minimize 

cost 

OD pairs 
predetermined yes 

extension of an 
existing 

line 
no 

locating 
stations on a 

predetermined 
line 

no no no no no no 
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According to Laporte et al [13] the classical 4-stage model for forecasting the travel 

demand is as follows; 

 

1. Trip Generation Analysis: computation of the number of trips starting in each 

zone for each particular trip purpose. 

2. Trip Distribution Analysis: production of a table containing the number of trips 

starting in each zone and ending in each other zone. 

3. Mode Choice Analysis: allocation of trips among the currently available 

transportation systems. 

4. Trip Assignment Analysis: assignment of trip flows for the specific routes on 

each transportation system that will be selected by the users. 

 

This study primarily addresses the last two stages.  There are two alternatives for the 

users; private network which is the road network for the vehicles and the rapid transit 

line.  Users will select their routes and modes according to the travel times in each 

mode.  It is aimed to design a rapid transit network that minimizes the gas emission and 

construction cost of the line. 

 

2.4 VEHICLE GAS EMISSION  
 
Gas emission released from the vehicles is an important source of air pollution.  The 

most important pollutants emitted by road vehicles include ozone precursors, 

greenhouses gases, acidifying substances, particulate matter mass, carcinogenic species, 

toxic substances and heavy metals.  Exhaust emissions from road transport arise from 

the combustion of fuels such as gasoline, diesel, liquefied petroleum gas (LPG) and 

natural gas in internal combustion engines.  The air/fuel charge may be ignited by a 

spark or it may ignite spontaneously when compressed. 

 

The gas emission depends on several factors such as; type of the car, fuel used, engine 

size, weight, technology level of vehicle etc.  It is also depends on the road types such 

as rural, urban or highway.  The combustion process produces  and  as the 

main products.  Unfortunately, combustion also produces several by-products. 
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Given the diversity in the in propulsion concepts, the calculation of emissions from 

road vehicles is a complicated and demanding procedure which requires good quality 

activity data and emission factors [16].  In this study, it is assumed that all vehicles are 

the same type and the gas emission functions of all vehicles are identical.  The emission 

function and parameters used in the model are obtained from the website of Copert 4 

which is an Microsoft Windows software program aiming at the calculation of air 

pollutant emissions from road transport.  The technical development of COPERT is 

financed by European Environment Agency in the framework of the activities of the 

European Topic Center on Air and Climate Change. Since 2007, European 

Commission’s Joint Research Center has been coordinating the further scientific 

development of the model.  In principle, COPERT has been developed for use from 

National Experts to estimate emissions from road transport to be included in official 

annual national inventories.   

 

2.5 BI-LEVEL PROGRAMMING 
 

Of the various types of mathematical two-level structures, the general bi-level 

programming problem is the most challenging.  It was originally proposed as a model 

for a leader-follower game in which two players try to minimize their individual 

objective functions  and , respectively, subject to a series of 

interdependent constraints.  Once again, the underlying assumptions are that full 

information is available, at least to the leader and that cooperation is prohibited.  This 

precludes the use of correlated strategies and side payments [17]. 

  

The hierarchical relationship results from the fact that the mathematical program 

related to the users’ behavior is part of the manager’s constraints.  This is the major 

feature of bi-level programs: they include two mathematical programs within a single 

instance, one of these problems being part of the constraints of other one.  In view of 

this hierarchical relationship, the program can be separated into upper-level problem 

and lower-level problem [18]. 
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The general formulation of bi-level programming problem is; 

 

   

  

  

  (2.23) 

 

where   and . The variables of the problem are divided in to two classes, 

namely the upper level variables  and the lower level variables . 

Similarly, the functions  and  are the upper 

level and lower level objective functions respectively, while the vector valued functions 

 and  are called the upper level and lower 

level constraints respectively.  Upper level constraints involve variables from both 

levels and play a very specific role.   Indeed they must be enforced indirectly, as they 

do not bind the lower level decision maker [18]. 

  

The relaxed problem corresponding to (2.23) is; 

 

  

   

       (2.24) 

        

and its optimal value is a lower bound for the optimal value of (2.23). The relaxed 

feasible region is 

  

  (2.25)  

  

For a fixed vector , the lower level feasible region is 

 

  (2.26) 
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while the lower reaction set is defined by 

 

   (2.27)  

 

Every   is a rational response.  For a given ,   is an implicitly defined 

multi-valued function of x that may be empty for some values of its argument. Finally 

the set; 

 

  (2.28) 

 

that regroups the feasible points of the BLPP, corresponding to the feasible set of the 

leader and is known as the induced region.  This set is usually non-convex and it can 

even be disconnected or empty in presence of upper level constraints [18]. 

 

Both problems (lower and upper) are equivalent provided that the lower level problem 

is a convex one with a unique optimal solution and validity of a regularity assumption 

for all parameter values [19]. 

 

Being generically non-convex and non-differentiable, bi-level programs intrinsically 

hard.  Even the simplest instance, the linear BLLP, was shown to be NP-hard by 

Jeroslaw et al [20].  Bi-level programming problem is generally a non-convex and non-

differentiable optimization problem with implicitly determined objective and constraint 

functions [19]. 

 

Stackelberg Game 

 

The Stackelberg game is a problem of mathematical game theory identical to the bi-

level programming problem [19].  In the particular framework of Stackelberg games, 

the leader is assumed to anticipate the reaction of the followers; this allows him to 

choose his best –or optimal- strategy accordingly.  More precisely, the leader chooses a 

strategy  in a set  and every follower  has a strategy set  

corresponding to each .  The sets  are assumed to be closed and convex.  In 
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an oligopolistic situation, Stackelberg problems possess a hierarchical structure similar 

to that of BLPP, although the lower level problem is equilibrium rather than an 

optimization problem [18]. 

 

Many decision-making problems for transportation planning and management can be 

described as a Stackelberg game.  In a Stackelberg game, the leader knows how the 

follower will respond to any decision he may make, that is, the system manager can 

influence but  can not control travelers’ choices.  In the light of any control decision, 

travelers make their own travel choices, specifically, route choices in a user optimal 

manner.  It is assumed that for any given control pattern, there is a unique equilibrium 

flow distribution.  The equilibrium flow distribution is also called as response or 

reaction [21]. 

 

It is assumed that the travelers make their route choices in a user-optimal manner; 

hence the lower level problem can be formulated as a standard user equilibrium traffic 

assignment problem [1].  

 

2.6 MULTI-OBJECTIVE PROGRAMMING 
 

A multi-objective optimization problem (MOOP) deals with more than one objective 

function.  In most practical decision-making problems, multiple objectives or multiple 

criteria are evident.  Because of a lack of suitable solution methodologies, an MOOP 

has been mostly cast and solved as a single-objective optimization problem in the past. 

However, there exist a number of fundamental differences between the working 

principles of single and multi-objective optimization algorithms.  In a single-objective 

optimization problem, the task is to find one solution (except in some specific multi-

modal optimization problems where multiple optimal solutions are sought) which 

optimizes the sole objective function.  Extending the idea to multi-objective 

optimization is to find an optimal solution corresponding to each objective function.  
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The general form of the MOOP [22]: 

 

  ,   

      

      

        (2.29) 

 

A solution x is a vector of n decision variables, .  The last set of 

constraints is called variable bounds, restricting each decision variable  to take values 

within a lower  and an upper  bound.  These bounds constitute a decision 

variable space , or simply the decision space. 

  

One of the striking differences between single-objective and multi-objective 

optimization is that in multi-objective optimization the objective functions constitute a 

multi-dimensional space, in addition to the usual decision variable. 

 

Definition 2.1. A function  is a convex function if for any two pair of 

solutions , the following condition is true: 

 

  (2.30) 

 

for all  

 

Definition 2.2. A multi-objective optimization problem is convex if all objective 

functions are convex and the feasible region is convex (or all inequality constraints are 

non-convex and equality constraints are linear. 

 

According to this definition, a Multi-Objective Linear Programming is a convex 

problem.  Since MOOPs has two spaces, the convexity in each space (objective and 

decision variable space) is important to multi-objective optimization algorithm.   
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Definition 2.3. A solution  is said to dominate the other solution , if both 

conditions 1 and 2 are true: 

 

1. The solution   is no worse than   in all objectives. 

2. The solution  is strictly better than  in at least one objective

  

 

It is intuitive that if a solution  dominates another solution , the solution  is 

better than   in the parlance of multi-objective optimization. 

 

Definition 2.4 (Strong dominance). A solution  strongly dominates a solution , 

if solution   is strictly better than solution   in all M  objectives.  

 

Definition 2.5 (Weekly non-dominated set). Among a set of solutions , the weekly 

non-dominated set of solutions  are those that are not strongly dominated by any 

other member of the set . 

 

If two solutions,  and , can not dominate each other, it is customary to say that 

solutions are non-dominated with respect to each other.  When both objectives are 

important, it can not be said which of these solutions is better. 

 

Definition 2.6 (Non-dominated set). Among a set of solutions , the non-dominated 

set of solutions are those that are not dominated by any member of the set .   

 

When the set  is the entire search space, or , the resulting non-dominated set  

is called the Pareto-optimal set.  It should be noted that although the search space can 

be non-convex, the Pareto-optimal front may be convex.  

 

From definitions, it is clear that a Pareto-optimal set is always a non-dominated set.  

But there may exist non-dominated sets containing some Pareto-optimal solutions and 

some non-Pareto-optimal solutions.  Thus, it is important to realize that the non-
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dominated solutions found by an optimization algorithm need not represent the true 

Pareto-optimal set [22]. 

 

In the case of conflicting objectives, usually the set of optimal solutions contains more 

than one solution.  In the presence of multiple Pareto-optimal solutions, it is difficult to 

prefer one solution over the other without any further information about the problem. 

However, in the absence of any such information, all Pareto-optimal solutions are 

equally important.  In the light of ideal approach, it is important to find as many Pareto-

optimal solutions as possible in a problem.  Thus, it can be conjectured that there are 

two goals in a multi-objective optimization. 

 

1. To find a set of solutions as close as possible to the Pareto-optimal front. 

2. To find a set of solutions as diverse as possible.  

 

The first goal is mandatory in any optimization task.  Converging to a set of solutions 

which are not close to the true optimal set of solutions is not desirable.  This goal of 

multi-objective optimization is common to the similar optimality goal in the single-

objective optimization. 

 

On the other hand, the second goal is entirely specific to multi-objective optimization. 

In addition to being converged close to the Pareto-optimal front, they must be sparsely 

spaced in the Pareto-optimal region.  Only with a diverse set of solutions, having a 

good set of trade-off solutions among objectives can be assured [22].  

 



3 MATHEMATICAL MODEL  
 

 

 

The rapid transit network design (RTND) problem defined in [11] finds the optimal 

lines and station, considering simultaneously the optimal user route and mode.  For 

given possible stations, it studies the problem of selecting and then connecting them 

with a small number of RTN lines  in competition with the rest 

of the modes, that is considered by the alternative mode [14].  The aim of this model is 

minimizing the construction cost and emission raised from the vehicles and at the same 

time keeping the network at equilibrium that minimizes total travel time.  

 

3.1 ASSUMPTIONS 
 
The assumptions made in this study are; 

 

• Travel times depend on the number of vehicles on each link. 

• All users have perfect information about the travel times in each link. 

• OD matrix is used instead of corridor approach and catchment areas. 

• A single line with no predetermined origin destination nodes is to be 

constructed. 

• Users respond to the changes in the system rationally. In other words, users will 

select the mode or the route with the shortest traveling time. 

• Vehicles are identical, they are the same model, at the same age and use gasoline 

for combustion and occupying factor (capacity) of each vehicle is 1.  

• A user can use transit line if and only if both of his/her origin and destination 

nodes are included by the alignment. 

• It is assumed that links with shorter distances last less than the longer ones. 

 

 



3.2 NOTATION 
 

 

 

 set of links in the existing network 

 set of possible links in the transit network where  

 set of centroids and stations 

 set of nodes adjacent to node  

 set of nodes in which stations are located where  

 

 

 

 flow on link between node  and node  originating from origin  to destination   

 flow on transit link between node  and node  originating from origin  to  

destination 
     

 demand using transit network originating from origin  to destination  

 demand using existing network originating from origin  to destination  

  total flow using link between node  and node  

  flow using transit link between node  and node     
 perceived time difference between transit and road networks for users traveling   

 from origin   to destination  

 average vehicle speed on link  given flow  

 unit vehicle emission on link  given average vehicle speed  
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 total demand originating from origin  to destination  

 a parameter that is calibrated from observations regarding users’ choices of   

 destination 

 free flow time in the link ( , ) 

 a constant used in (2.1) with value 0,15. 

 a constant used in (2.1) with value 4. 

 cost of connecting the links  and  with transit network 

 length of the transit link between nodes  and  

 capacity of the link  

 

3.3 CONSTRAINTS  
 

3.3.1 Upper-Level Constraints  
 

      (3.1)  

 

Constraint (6.1) ensures that a transit link originating from node  to node  does not 

exist if a station is not located at node . 

  (3.2) 

 

Constraint (6.2) states that a transit link does not exist from node  to node  if a station 

is not located at node . 

 

   (3.3) 

 

In Constraint (6.3), it is shown that transit links are unidirectional, that means it is 

possible to travel in both ways. 

  

  (3.4) 
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Constraint (6.4) dictates that the number of incoming and outgoing links from node  

could not exceed 2.  For only origin and terminus nodes of the alignment, this value 

could be 1 and it will be 0 if a station is not located at node .  
 

 (3.5) 

 

Constraint (6.5) forces that the number of stations in a line must exceed the number of 

links connecting these stations by one. 
     

  (3.6) 

 
Possible sub-tours are prevented by Constraint (6.6) which is needed in the model to 

ensure that there is only one line to be constructed. 

 

3.3.2 Lower-Level Constraints 
 
 

                       (3.7) 

 

Constraint (6.7) ensures that node  is the origin of the  pair if the number of 

outgoing flow from this node, which is traveling between  and , is more than the 

number of incoming flow to this node which is traveling between   and .  Node   is 

destination of this  pair if the number of incoming flow to this node, which is 

traveling between   and , is more than the number of outgoing flow from this node, 

which is traveling between   and .  If they are equal, node  is neither origin nor 

destination of this pair. Here,  represents the number of users traveling by their 

vehicles. 

 

   (3.8) 
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It is shown that flows between any  pair using the link ( , ) must be non-negative 

in Constraint (6.8).    

 

   (3.9) 

 

In Constraint (6.9), it is shown that the total flow on any link is obtained by the sum of 

flows of all OD pairs passing through that link. 

 

    (3.10) 

 

Similar to (6.7), Constraint (6.8) ensures that node  is the origin of the  pair if the 

number of outgoing flows from this node, which is traveling between  and  by transit 

line, is more than the number of incoming flow to this node, which is traveling between  

 and  by transit line.  Node   is destination of this  pair if the number of 

incoming flow to this node, which is traveling between   and  by transit line, is more 

than the number of outgoing flow from this node, which is traveling between   and  

by transit line.  If they are equal, node  is neither origin nor destination of this pair.  As 

mentioned before,  represents the number of users traveling by transit line. 

   

   (3.11) 

 

Constraint (6.11) ensures that if the link ( , ) is not included in the transit line, then no 

flow can be assigned to it.  

  

   (3.12) 

 

In Constraint (6.12) it is assured that if a station is not located at origin , then flows 

originating from this node can not use transit line.  
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   (3.13) 

 

In a similar manner to the (6.12), Constraint (6.13) shows that if a station is not located 

at destination , flows destined to this node can not use transit line. 

 

3.4 OBJECTIVE FUNCTIONS 
 
Before presenting the objective functions, it will be useful to give information about 

gas emission objective function.  The parameters and the function are obtained from 

[14] which is available in the website of the Copert 4 Software.  Because  has the 

biggest portion in all of the harmful gases released from the vehicles, parameters 

corresponding to it are used in the formula.  This formula is derived for a EURO 3 type 

vehicle which uses gasoline for combustion.  Since extraction of the formula in the 

objective function and the meanings of the parameters are out of scope of this study, 

only necessary information is given. 

 

However the parameter , which is the average speed of the vehicles in the network, is 

closely related to our formulation.  As mentioned earlier, travel time of one vehicle in a 

given link is computed by using (2.1).  Since the length of any link is the product of the 

average speed and the travel time on that link, it can be easily figured out what the 

average speed of the vehicles is because time and length values are available. Given the 

number of vehicles in the link , average speed of one vehicle in terms of (km\h) is; 

  

                                                                            (3.14) 

 

Given the average vehicle speed in link , gas emission per vehicle in terms of 

(g\km), is computed by 

 

                                                                               (3.15) 
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where  

  

  

  

 . 

   

  (3.16) 

 

 

  (3.17) 

 

(6.16) and (6.17) are the objective functions of the upper level problem in our model. 

The first one is minimizing the gas emission in the entire network while the second one 

is the construction cost minimizing objective function. 

 

                   (3.18) 

 

(6.18) is the objective function of the lower level problem. This function aims to 

minimize travel time of the users.  The first term is the total travel time spent by users 

traveling by their vehicles.  Likewise, the second term is the travel time spent by users 

traveling by transit line.  At the point where the sum of these terms is minimized, the 

model finds user equilibrium which travel times of all paths and all modes are the same.
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4 SOLUTION METHODOLOGY 
 

 

 

4.1 NON-DOMINATED SORTING GENETIC ALGORITHM-II 
 

Deb et al [23] suggested an elitist non-dominated sorting genetic algorithm, termed 

NSGA-II. NSGA-II uses an explicit diversity-preserving mechanism instead of using 

only an elite-preservation mechanism.  

 

At the beginning of NSGA-II, for each solution two entities are calculated, domination 

count , the number of solutions which dominate the solution  and , a set of 

solutions that the solution  dominates.  All solutions in the first non-dominated front 

will have their non-domination count as zero.  For each solution  with , each 

member  of its set  is visited and its domination count is reduced by one.  In doing 

so, if for any member , the domination count becomes zero, it is put in a separate list 

.  These members belong to the second non-dominated front. The above procedure is 

continued with each member of  and the third front is identified.  This process 

continues until all front are identified [23].  The procedure of fast non-dominated sort is 

outlined below: 

 

  and , . 

 

 , if  dominates , , else . 

 

 If , . . 

 

 Initialize . While , .   and . If 

,  and . Set  and . 
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In NSGA-II, the offspring population  is first created by using the parent population 

.  However, instead of finding the non-dominated front of  only, the first two 

populations are combined together to form  of size .  Then, a non-dominated 

sorting is used to classify the entire population .  Although, this requires more effort 

compared performing a non-dominated sorting on  alone, it allows a global non-

domination check among the offspring and parent solutions.  Once the non-dominated 

sorting is over, the new population is filled by solutions of different non-dominated 

front and continues with solutions of the second non-dominated fronts, one at a time. 

The filling starts with the best non-dominated front and continues with solutions of the 

second non-dominated front, followed by the third non-dominated front, and so on. 

Since the overall population size of  is , not all fronts may be accommodated in  

slots available in the new population.  All fronts which could not be accommodated are 

simply deleted.  When the last allowed front is being considered, there may exist more 

solutions in the last front than the remaining slots in the new population. 

 

A strategy like the above does not affect the proceeding of the algorithm much in the 

early stages of the evolution.  This is because, early on, there exist many fronts in the 

combined population.  It is likely that solutions of many good non-dominated fronts are 

already included in the new population, before they add up to .  It then hardly matters 

which solution is included to fill up the population.  However, during the latter stages 

of the simulation, it is likely that most solutions in the population lie in the best non-

dominated front.  It is also likely that in the combined population  of size , the 

number of solutions in the first non-dominated front exceeds .  The above algorithm 

then ensures that niching will choose a diverse set of solutions from this set.  When the 

entire population converges to the Pareto-optimal front, the continuation of this 

algorithm will ensure a better spread among the solutions [22]. 

 

 Combine parent and offspring populations and create . Perform a 

non-dominated sorting to  and identify different fronts:  etc. 

 

 Set new population. Set .  

 Until , perform  and . 
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 Perform the Crowding-sort  procedure and include the most widely 

spread  solutions by using the crowding distance values in the sorted  to 

. 

 

 Create offspring population  from  using the crowded tournament 

selection, crossover and mutation operators. 

 

Crowded Tournament Selection Operator  

 

 Crowded Tournament Selection Operator: A solution  wins a 

tournament with another solution  if any of the following conditions are true: 

1. If solution  has a better rank, that is  . 

2. If they have the same rank but solution  has a better crowding distance than 

solution , that is,  and . 

 

Crowding Distance 

 

To get an estimate of the density of solutions surrounding a particular solution  in the 

population, the average distance of two solutions on either side of solution  along each 

objective is computed.  This quantity  serves as an estimate of the perimeter of the 

cuboid formed by using nearest neighbors as the vertices.  Crowding distance 

assignment procedure , is as follows: 

 

 Call the number of solutions in  as . For each  in the set, first assign 

. 

 

 For each objective function , sort the set in worse order of  

or, find the sorted indices vector: . 

 

 For , assign a large distance to the boundary solutions, or 

, and for all other solutions  to , assign: 
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 . (4.1) 

 

Advantages 

 

Since solutions compete with their crowding distances, no extra niching parameter is 

required in NSGA_II.  Furthermore, the elitism mechanism does not allow an already 

found Pareto-optimal solution to be deleted.  

 

Disadvantages 

 

As long as the size of the first non-dominated set is not larger than the population size, 

the algorithm preserves all of them.  However, in latter generations, when more than  

members belong to the first non-dominated set in the combined parent-offspring 

population, some closely-packed Pareto-optimal solutions may give their places to 

other non-dominated yet non-Pareto-optimal solutions. 

 

4.2 OTHER EVOLUTIONARY ALGORITHMS FOR MOOP 
 

4.2.1 Non-Elitist Multi-Objective Evolutionary Algorithms 
 
4.2.1.1 Vector Evaluated Genetic Algorithm 
 

Schaffer et al [24] implemented the first multi-objective GA to find a set of non-

dominated solutions.  Subsequently, he compared his GA with an adaptive random 

search technique in [25] and observed a better performance obtained by his algorithm. 

The name is appropriate for multi-objective optimization because the algorithm 

evaluates an objective vector (instead of a scalar objective function) with each element 

of the vector representing each objective function.  

 

Vector Evaluated Genetic Algorithm (VEGA) is the simplest possible multi-objective 

Genetic Algorithm (GA) and is a straightforward extension of a single objective GA. 

Since a number of objectives  have to be handled, GA population is divided at 
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every iteration into  equal subpopulations randomly.  Vector Evaluated Genetic 

Algorithm procedure is as follows: 

 

 Set an objective function counter  and define . 

 

 For all solutions  to , assign fitness a: 

   

  (4.2) 

 

 If  , go to Step 5. Otherwise, increment  by one and go to Step 2. 

 

 Combine all mating pools together: . Perform crossover an 

mutation on  to create a new population. 

 

In order to find intermediate trade-off solutions, crossover between any two solutions in 

the entire population is allowed.  In this way, it is aimed to find good compromised 

solutions between the objectives. 

 

Advantages 

 

The main advantage of VEGA is the ease of implementing.  Only minor changes are 

required to be made in a simple GA to convert it to a multi-objective GA and this does 

not incur any additional computational complexity 

 

Disadvantages 

 

Because each solution in a VEGA is evaluated with only one objective function, it is 

likely that solutions near the optimum of an individual objective function would be 

preferred by the selection operator in a subpopulation.  Eventually, the VEGA 

converges to individual champion solutions only. 
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4.2.1.2 Non-Dominated Sorting Genetic Algorithm 
 

The idea of using the non-dominated sorting concept in GAs of Goldberg et al [26] was 

more directly implemented by Srinivas et al [27].  The dual objectives in a multi-

objective optimization algorithm are maintained by using a fitness assignment scheme 

which prefers non-dominated solutions and by using a sharing strategy which preserves 

diversity among solutions of each non-dominated front. 

 

The first step of Non-Dominated Sorted Genetic Algorithm (NSGA) is to sort the 

population according to non-domination.  This classifies the population into a number 

of mutually exclusive equivalent classes : 

 

  (4.3) 

 

Any two members from the same class can not be said to be better than one another 

with respect to all objectives.  The total number of classes (fronts), denoted as , in the 

above equation, depends on the population  and the underlying problem. 

 

Once the classification is over, it is obvious that all solutions in the first front, that is, 

all , belong to the best non-dominated set in the population.  That means, the 

solutions in the first front, are best in terms of their closeness to the true Pareto-optimal 

front in the population. 

 

The fitness assignment procedure begins with the first non-dominated set with the 

highest fitness and successively proceeds to dominated sets.  Assignment more fitness 

to solutions belonging to a better non-dominated set ensures a selection pressure 

towards the Pareto-optimal front.  However, in order to achieve the second goal, 

diversity among solutions in a front must also be maintained.  In NSGA, the diversity is 

maintained by degrading the assigned fitness based on the number of neighboring 

solutions. Diversity is important because it provides a better representation of solutions 

among the Pareto-optimal set. 
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The sharing function method is used front-wise.  That is, for each solution  in the front 

, the normalized Euclidean distance  from another solution  in the same front is 

calculated.  Once these distances are calculated, they are used to compute a sharing 

function.  The sharing function takes a value between zero and one, depending on the 

distance .  After all sharing function values are calculated, they are added together to 

calculate the niche count  of the  solution.  The niche count denotes the number of 

solutions in the neighborhood of the  solution.  The process of degrading fitness of a 

solution which is crowded by many solutions helps emphasize the solutions residing in 

less crowded regions.  

 

The sharing function method works with the proportionate selection operator and this 

assigns copies in the mating pool proportional to the shared fitness.  In this way, each 

solution in the first front has a better chance of surviving in the mating pool than in the 

second front, and so on. 

 

Advantages 

 

The main advantage of NSGA is the assignment of fitness according to non-dominated 

sets. Since better non-dominated sets are emphasized systematically, an NSGA 

progresses towards the Pareto-optimal region front-wise.  Moreover, performing 

sharing in the parameter space allows phenotypically diverse solutions to emerge when 

using NSGAs. 

 

Disadvantages 

 

The sharing function approach requires fixing the parameter . It has been 

observed earlier that the performance of an NSGA is sensitive to this parameter. 

 

4.2.1.3 Niched –Pareto Genetic Algorithm 
 

The Niched Pareto Genetic Algorithm (NPGA) proposed by Horn et al [28] uses the 

binary tournament selection operator, unlike the proportionate selection methods in 
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other algorithms.  It has been shown that the tournament selection has better growth 

and convergence properties compared to the proportionate selection.  However, when a 

tournament selection is to be applied to multi-objective GAs which use the sharing 

approach, it is necessary to use the proportionate selection operator. 

 

NPGA Tournament Selection Procedure 

 

 

 

 Pick a subpopulation  of size  from the parent population . 

 

 Find  as the number of solutions in  that dominates . Calculate  as the 

number of solutions in  that dominates . 

 

 If  and , then  is the winner. The process is complete. 

 Otherwise, if  and , then  is the winner. The process is complete. 

 

 Otherwise, current offspring population, ,  and  is chosen as the 

winner with probability 0.5.  The process is complete.  Alternatively, the niche counts 

 and  are calculated by placing  and  in the current offspring population , 

independently. With the niching parameter ,  is calculated as the number of 

offspring  within a  distance  from .  The distance  is the Euclidean 

distance between solutions  and  in the objective space. 

 

 If , solution  is the winner.  Otherwise, solution  is the winner. 

 

NPGA Procedure 

 

 Shuffle , set  and set . 

 

 Perform tournament selection and find the first parent,  

. 
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 Set  and find the second parent, . 

 

 Perform crossover with  and  create offspring  and .  Perform mutation 

on  and . 

 

 Update offspring population . 

 

 Set . If , go to Step 2.  Otherwise, if , shuffle , set 

 and go to Step 2. Otherwise, process is complete. 

 

Advantages 

 

One of the main advantages of the NPGA is that no explicit fitness assignment is 

needed.  Another advantage of the NPGA is that this is the first proposed multi-

objective evolutionary algorithm which uses the tournament selection operator. 

 

Disadvantages 

 

The NPGA requires fixing two important parameters:  and .  In addition, 

 parameter has more effect on an NPGA than NSGA. 

 

4.2.2 Elitist Multi-Objective Evolutionary Algorithms 
 
4.2.2.1 Strength Pareto Evolutionary Algorithm 
 

This algorithm which is proposed by Zitzler et al [29] introduces elitism by explicitly 

maintaining an external population .  This population stores a fixed number of the 

non-dominated solutions that are found until beginning of a simulation.  At every 

generation, newly found non-dominated solutions are compared with the existing 

external population and the resulting non-dominated solutions are preserved.  The 

Strength Pareto Evolutionary Algorithm (SPEA) does more than just preserving the 

elites; it also uses these elites to participate in the genetic operations along with the 
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current population in the hope of influencing the population to steer towards good 

regions in the search space. 

 

Strength Pareto Evolutionary Algorithm 

 

 Find the best non-dominated set  of .  Copy these solutions to , or 

perform . 

 

 Find the best non-dominated solutions  of the modified population  and 

delete all dominated solutions, or perform  . 

 

 If , use clustering technique to reduce the size to .  Otherwise, keep 
¹Pt¹Pt  unchanged. The resulting population is the external population  of the next 

generation. 

 

 Assign fitness to each elite solution  by using equation . 

Then, assign fitness to each population member  by using equation; 

  

  (4.4) 

 

 Apply a binary tournament selection with these fitness values, a crossover and a 

mutation operator to create the new population  of size  from the combined 

population  of size . 

 

Clustering algorithm is used when the size of the external population  is more than 

the fixed external population size  . 
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Clustering Algorithm 

 

 Initially, each solution belongs to the distinct cluster or , so that  

. 

 

 If , go to Step 5.  Otherwise, go to Step 3. 

 

 For each pair of clusters, calculate the cluster-distance by using equation  

 

  (4.5) 

 

Find the pair  which corresponds to the minimum cluster-distance. 

 

 Merge two clusters  and  together.  This reduces the size of  by one. Go 

to Step 2. 

 

 Choose only one solution from each cluster and remove the others from the 

clusters.  The solution having the minimum average distance from other solutions in the 

cluster can be chosen as the representative solution of a cluster. 

 

Advantages 

 

Once a solution in the Pareto-optimal front is found, it immediately gets stored in the 

external population.  The only way it gets eliminated is when another Pareto-optimal 

solution, which leads to a better spread in the Pareto-optimal solutions, is discovered. 

Clustering algorithm which is parameter-less, provides a better spread of the obtained 

non-dominated solutions. 
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Disadvantages 

 

The SPEA introduces an extra parameter , the size of external population.  A balance 

between the regular population size  and this external population size  is important 

in the successful working of the SPEA.  

 

Since clustering algorithm has an  complexity which is larger than the 

crowding strategy used in NSGA-II.  Thus, an SPEA’s niche-preservation operator can 

be made faster by using crowded strategy. 

 

Since non-dominated sorting of the whole population is not used for assigning fitness, 

the fitness values do not favor all non-dominated solutions of the some rank equally. 

This bias in fitness assignment in the solutions of the same front is dependent on the 

exact population and densities of solutions in the search space. 

 

Moreover, in the SPEA fitness assignment, an external solution which dominates more 

solutions gets a worse fitness. This assignment is justified when all dominated solutions 

are concentrated near the dominating solution.  Since in most cases this is not true, the 

crowding effect should come only from the clustering procedure. Otherwise, this fitness 

assignment may provide a wrong selection pressure for the non-dominated solutions. 

 

4.2.2.2  Pareto-Archived Evolution Strategy 
 

Knowles et al [30] suggested a multi-objective evolutionary algorithm which uses an 

evolution strategy.  In simplest form, the Pareto-archived Evolution Strategy (PAES) 

uses a .  The main motivation for using an ES came from their experience 

in solving real world telecommunications network design problem.  In the single-

objective version of the network design problem, they observed that a local search 

strategy (such as simulated annealing and tabu search method) worked better than a 

population-based approach. Motivated by this fact, they investigated whether a multi-

objective evolutionary algorithm with a local search strategy can be developed to solve 

the multi-objective version of the telecommunications network design problems.  Since 
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a  uses only mutation on a single parent to create a single offspring, this is 

a local search strategy, and thus the investigators developed their first multi-objective 

evolutionary algorithm using . 

 

Archive and Parent Update in PAES  

 

 If  (the offspring) is dominated by any member of  (the archive), set 

 (  is not updated). Process is complete.  Otherwise, if  dominates a set of 

members from , perform the following steps: 

 

  (4.6) 

 

  (4.7) 

 

  (4.8)  

 

Process is complete.  Otherwise, go to Step 2. 

 

 Count the number of archived solutions in each hypercube (the entire search 

space is divided into  unique, equal-sized M-dimensional hypercubes).  The 

parent  belongs to a hypercube having  solutions, while the offspring belongs to a 

hypercube having  solutions.  The highest count hypercube contains the maximum 

number of archived solutions. 

 

If (maximum number of archive), include the offspring in the archive, or 

 and  , and return.  Otherwise (that is if 

), check if  belongs to the highest-count hypercube.  If yes, reject , set 

, and return. Otherwise, replace a random solution  from the highest-count 

hypercube with : 

  (4.9) 

 

  (4.10) 
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  (4.11) 

 

The process is complete. The  chooses , if .  Otherwise, it 

chooses . It is important to note that in any parent-offspring scenario, only one of the 

above will be invoked. 

 

Advantages 

 

The PAES has a direct control on the diversity that can be achieved in the Pareto-

optimal solutions.  Step 2 of the algorithm emphasizes the less populated the 

hypercubes to survive, thereby ensuring the diversity. 

 

Furthermore, since equal-sized hypercubes are chosen, the PAES should perform better 

when compared to other methods in handling problems having a search space with non-

uniformly dense solutions. 

 

Disadvantages 

 

In addition to choosing an appropriate archive size , the depth parameter , which 

directly controls the hypercube size, is also an important parameter.  A change of  

changes the number of hypercubes exponentially, thereby making it difficult to 

arbitrarily control the spread solutions. 

 

There is another difficulty with the PAES. Since the sizing of the hypercubes is 

performed with the minimum and the maximum bounds of the entire search space, 

when solutions converge near the Pareto-optimal front, the hypercubes are 

comparatively large. 

 

4.2.2.3 Multi-objective Messy Genetic Algorithm 
 

Veldhuizen et al [31], in his doctoral dissertation, proposed an entirely different 

approach to multi-objective optimization.  He modified the single-objective messy GAs 
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of Goldberg et al. [32] to find multiple Pareto-optimal solutions in multi-objective 

optimization. 

 

Single-Objective Messy GAs 

 

The main motivation in this study of messy GAs was to sequentially solve the two main 

issues of identifying salient building blocks in a problem and then combining the 

building blocks together to form the optimal or near-optimal solution.  Messy GAs 

were successful in solving problems which can be decomposed into a number of 

overlapping or non-overlapping building blocks (partial solutions corresponding to the 

true optimal solution).  Since the genic combination is an important matter to be 

discovered in a problem, messy GAs use both genic and allelic information in a string. 

 

The above tasks of identification and combination of building blocks are achieved in 

two phases,  the primordial phase and  the juxtapositional phase.  In the 

primordial phase, the main focus is to identify and maintain the salient building blocks 

of a certain maximum order .  After the partial string is embedded in a template and is 

evaluated, a binary tournament selection with a niching approach is used to emphasize 

the salient partial strings in the primordial phase.  Since the salient building constitute 

only a small fraction of all primordial strings, a systematic reduction in population 

sizing is also used.  After a fair number of repetitive applications of tournament 

selection followed by a population reduction, the primordial phase is terminated. 

 

In the juxtapositional phase, the salient building blocks are allowed to combine together 

with the help of a cut-and-splice and a mutation operator.  The cut-and-splice operator 

is similar in principle to the single-point crossover, except that the cross sites in both 

parents need not fall at the same place.  This causes variable-length chromosomes to 

exist in the population.  The purpose of tournament selection with thresholding, cur-

and-splice and the mutation operator is to find better and bigger building blocks, 

eventually leading to the true optimal solution. 
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The issue of using a locally optimal template string is crucial one.  In the level-1 era of 

an mGA, all order one  substrings are initialized and evaluated with a template 

string created at random.  At the end of this era, the obtained best solution is saved and 

used as a template for the level-2 era. In this era, all order two  substrings are 

initialized.  This process is continued until a specified number of eras have elapsed or a 

specific number of function evaluations have been exceeded. 

 

Modification for Multi-Objective Optimization 

 

The primordial phase in multi-objective form of mGA, begins with a population 

identical to the single-objective mGAs.  However, a different tournament selection 

procedure is used.  The niched tournament selection operator is exactly the same as that 

in the NPGA approach. In order to compare two solutions in a population, a set of  

solutions are chosen from the latter.  If one solution is non-dominated with respect to 

the chosen set and the other is not, the former solution is selected.  On the other hand, if 

neither of them or both of them are terminated in the chosen set, a niching method is 

used to find which of the two solutions resides in a least crowded area.  For both 

solutions, the niche count is calculated by using the sharing function approach with a 

predefined  value.  The solution with a smaller niche count is selected. The 

preference of non-dominated and less-crowded solutions using the above tournament 

selection helps to provide a selection advantage towards the non-dominated solutions 

and simultaneously maintains a diverse set of solutions.  In all simulations, the 

investigator used the phenotypic sharing approach.  The population reduction procedure 

is the same as that used in the single-objective mGAs. 

 

The juxtapositional phase is also similar to that in the original mGA study, except that 

the above-mentioned niched tournament selection procedure is used.  At the end of the 

juxtapositional phase, the current population is combined with an external population 

which stores a specified number of non-dominated solutions found thus far.  Before 

ending this era, the external population is replaced with non-dominated solutions of the 

combined population.  This dynamically updated procedure introduces elitism, which is 
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an important property in any evolutionary algorithm.  At the end of all MOMGA eras, 

the external set is reported as the obtained non-dominated set of solutions. 

 

4.3 FRANK-WOLFE ALGORITHM  
 

Frank-Wolfe Algorithm (also known as convex combinations method) was suggested 

by Frank and Wolfe as a procedure for solving quadratic programming problems with 

linear constraints [1].  

 

It will be useful to mention about all-or-nothing assignment here briefly. In each 

iteration, travel times on each link and accordingly, total travel time of each path 

changes and all flow for a given OD pair , , is assigned to the minimum-travel-

time path connecting this pair.  All other paths connecting this OD pair do not carry 

flow.  This procedure is known as “all-or-nothing” assignment. 

 

 Initialization.  Perform all-or-nothing assignment based on . This 

yields . Set counter  

 Update.  Set  

 Direction finding.  Perform all-or-nothing (AON) assignment based on . 

This yields a set of auxiliary flows . 

  Line search.  Find  that solves  

  Move. Set   

 Convergence test. If convergence criterion is met, stop. The current solution, 

, is the set of equilibrium set flows.  Otherwise, Set  and go to Step 

1. 

4.4 AUGMENTED FRANK-WOLFE ALGORITHM 
 

The Frank-Wolfe Algorithm updates network flows using an arc perspective and lacks 

carrying path information.  However, to examine whether a network could achieve an 

-UE state, path information is required for examining the definition of UE.  That is, the 
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arc-based FW algorithm can not determine whether a path belongs to the UE solutions. 

In fact, path information is hidden in all-or-nothing step.  To overcome this weakness, 

Cho et al. [33] proposed the augmented Frank-Wolfe (AFW) algorithm.  The design of 

AFW aims to eliminate the non-UE path flow.  The AFW algorithm utilizes path 

information to switch a non-UE path flow and is described as follows: 

 

 

 

 Initialization. Set iteration counter   and , use free flow travel cost  

. 

 

 Direction finding. Find each OD pair’s shortest path  and update arc flow 

 via an AON assignment. 

 

 Update arc and path information. Record these found shortest paths  to the 

path set P (n)
r sP (n)
r s  and AON path flow ,  and set . 

 

 

 

 Update counter. Set iteration counter , , and 

. 

 

 Direction finding. Set , and find each OD pair’s shortest path  

to update arc flow  using an AON assignment. 

 

 Step size determination. Find a step size; 

 

 

 Update all path sets.  If a shortest path , update the path set 

, otherwise . 
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 Update path flag.  if , otherwise ,  

. 

 

 Update arc flow. . 

 

 Update path flow.  

 

 Check whether a non-UE path flow exists.  If a non-UE path flow exists, 

switch a non-EU path flow to the cheapest one; otherwise go to the next step. 

 

 Convergence test. If  is met, then stop, otherwise go to Step 2.1. 

 

The differences between AFW and FW algorithms are path information and 

examination of non-UE paths.  Path information provides max-cost and min-cost paths. 

Furthermore, a max-cost path is used to examine whether a descent property is satisfied 

by switching a max-cost path flow to a cheapest cost one [33]. 

 

4.5 HAMILTONIAN PATH PROBLEM 
 
The Hamiltonian Path Problem (HPP), a close cousin of Traveling Salesman Problem 

(TSP), can be posed as follows: Given a set   of  nodes (cities) with 

starting and terminal nodes  and , respectively and distances for each pair of 

nodes, what is the shortest path that starts at X sX s and terminates at  and visits each 

node exactly once?  Like TSP, HPP is also known to NP-hard. 

 

It is interesting to note that the independent solutions to HPP are few.  This is because 

the HPP can be solved using the solution to the TSP as follows: 

 

1. The distance between  and  is set to an arbitrarily small value , or, 

2. A new node is added to the set of nodes with distances between is and , as 

well as  are set to zero. 
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It is easy to see that since the path between  and  has to be included in the 

corresponding TSP, both of the above strategies will indeed yield a solution to the 

underlying HPP [34]. 

 

In this study, Hamiltonian Path Problem is solved via a genetic algorithm adapted to 

TSP named TSP_GA. TSP_GA is an available code that finds the TSP tour by using 

genetic algorithm. In this algorithm, solutions are obtained by only mutation operator. 

There are three different methods available in this algorithm.  These are 2-opt method, 

node exchange method and node insertion method.  After selecting the best solution 

found so far, these mutation methods are applied to this solution.  Then, new solutions 

are compared again and the best solution is used in the next iteration.  After finding a 

path, the longest link in the path is excluded to find the Hamiltonian path.  Hamiltonian 

path is required because the alignment considered is not allowed to be circular, that is, 

there must be two separate start and terminus nodes.  

 
4.6 AN ALGORITHM FOR MULTI-OBJECTIVE RTNDP 
 
Standard network design techniques can not easily be applied to such contexts because 

the problem is typically of very large scale and involves non-linearity, as well as 

multiplicity of criteria [11].  To cope with such difficulties, we designed an algorithm 

that determines an alignment and stations on it as to minimize both construction cost 

and gas emission while preserving user equilibrium in the network.  The main 

algorithm and two subroutines are shown in Figures 4.1 – 4.3. 
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Figure 4.1 Main Algorithm 
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Figure 4.2 Creating Offsprings with Crossover and Mutation Operators 
 

 



 62 

 
 

Figure 4.3 Calculating Objective Functions 
 

 

The main algorithm is summarized below; 

 

 Initialize population. Generate  (population size) chromosomes with  

(number of nodes in the network) genes. 

 

 Calculate objective function values. 
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 Set counter 1. 

 

 Apply Tournament Selection Algorithms described in Section .  Compare 

the solutions according to their objective function values.  Randomly, select two 

individuals of which only one will be selected and added to the mating pool. Selection 

is performed based on two criteria.  The first one is the front which the solution reside 

and the second one, if the solutions are at the same front, their crowding distances. 

 

 Create offsprings with crossover and mutation operators. Assign a random 

number.  If random number  , go to Step 6, otherwise go to Step 7. 

 

 Apply crossover operation.  Select two parent chromosomes. Select a random 

cut point. Generate the offspring by combining the parent chromosomes. Go to Step 8. 

 

 Apply mutation operation.  Select one parent chromosome.  If probability  

0.5, change a “0” to “1” in the chromosome, otherwise change a “1” to “0” in the 

chromosome. Go to Step 8. 

 

 Check if there are at least 2 “1”s in the chromosome to be able to construct a 

line. 

 

 Calculate the objective function values as shown in Figure 4.3. 

 

 Create intermediate population with current population and the offsprings. 

 

 Apply non-dominated sorting algorithm described in Section . 

 

 Fill the current population based on the front and crowding distance.  

 

 counter counter 1. 

 

 If counter  , go to step 4. Otherwise, stop. 



5 NUMERICAL STUDY 
 
 
 

 
 

    
Figure 5.1 Sioux Falls Network

  
 
Our algorithm is tested on Sioux Falls Network which is first used by LeBlanc et al 

[35].  The network has 24 nodes, 76 links and 528 OD pairs. The parameters of each 

link are available in Table 5.2.  This table shows the start and end nodes of each link, 

their link capacities and lengths, free flow times and other parameters that are used in 

(2.1) and the peak hour demands between network nodes.  
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Table 5.1 Link Parameters in Sioux Falls Network 
 

Initial 
node  

Term  
node  Capacity ( ) Length 

( ) 

Free 
Flow  
Time 
( )  

 
 
 

Power 
 

              
1 2 25900.20 6 6 0.15 4 
1 3 23403.47 4 4 0.15 4 
2 1 25900.20 6 6 0.15 4 
2 6 4958.18 5 5 0.15 4 
3 1 23403.47 4 4 0.15 4 
3 4 17110.52 4 4 0.15 4 
3 12 23403.47 4 4 0.15 4 
4 3 17110.52 4 4 0.15 4 
4 5 17782.79 2 2 0.15 4 
4 11 4908.82 6 6 0.15 4 
5 4 17782.79 2 2 0.15 4 
5 6 4947.99 4 4 0.15 4 
5 9 10000.00 5 5 0.15 4 
6 2 4958.18 5 5 0.15 4 
6 5 4947.99 4 4 0.15 4 
6 8 4898.58 2 2 0.15 4 
7 8 7841.81 3 3 0.15 4 
7 18 23403.47 2 2 0.15 4 
8 6 4898.58 2 2 0.15 4 
8 7 7841.81 3 3 0.15 4 
8 9 5050.19 10 10 0.15 4 
8 16 5045.82 5 5 0.15 4 
9 5 10000.00 5 5 0.15 4 
9 8 50501.93 10 10 0.15 4 
9 10 13915.78 3 3 0.15 4 

10 9 13915.78 3 3 0.15 4 
10 11 10000.00 5 5 0.15 4 
10 15 13512.00 6 6 0.15 4 
10 16 4854.91 4 4 0.15 4 
10 17 4993.51 8 8 0.15 4 
11 4 4908.82 6 6 0.15 4 
11 10 10000.00 5 5 0.15 4 
11 12 4908.82 6 6 0.15 4 
11 14 4876.50 4 4 0.15 4 
12 3 23403.47 4 4 0.15 4 
12 11 4908.82 6 6 0.15 4 
12 13 25900.20 3 3 0.15 4 
13 12 25900.20 3 3 0.15 4 
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Table 5.1 Link Parameters in Sioux Falls Network (continued)
 

 

Initial 
node  

Term  
node  Capacity ( )  Length 

( )  

Free 
Flow  
Time 
( )  

 Power 
 

              
13 24 5091.25 4 4 0.15 4 
14 11 4876.50 4 4 0.15 4 
14 15 5127.52 5 5 0.15 4 
14 23 4924.79 4 4 0.15 4 
15 10 13512.00 6 6 0.15 4 
15 14 5127.52 5 5 0.15 4 
15 19 14564.75 3 3 0.15 4 
15 22 9599.18 3 3 0.15 4 
16 8 5045.82 5 5 0.15 4 
16 10 4854.91 4 4 0.15 4 
16 17 5229.91 2 2 0.15 4 
16 18 19679.89 3 3 0.15 4 
17 10 4993.51 8 8 0.15 4 
17 16 5229.91 2 2 0.15 4 
17 19 4823.95 2 2 0.15 4 
18 7 23403.47 2 2 0.15 4 
18 16 19679.89 3 3 0.15 4 
18 20 23403.47 4 4 0.15 4 
19 15 14564.75 3 3 0.15 4 
19 17 4823.95 2 2 0.15 4 
19 20 5002.60 4 4 0.15 4 
20 18 23403.47 4 4 0.15 4 
20 19 5002.60 4 4 0.15 4 
20 21 5059.91 6 6 0.15 4 
20 22 5075.69 5 5 0.15 4 
21 20 5059.91 6 6 0.15 4 
21 22 5229.91 2 2 0.15 4 
21 24 4885.35 3 3 0.15 4 
22 15 9599.18 3 3 0.15 4 
22 20 5075.69 5 5 0.15 4 
22 21 5229.91 2 2 0.15 4 
22 23 5000.00 4 4 0.15 4 
23 14 4924.79 4 4 0.15 4 
23 22 5000.00 4 4 0.15 4 
23 24 5078.50 2 2 0.15 4 
24 13 5091.25 4 4 0.15 4 
24 21 4885.35 3 3 0.15 4 
24 23 5078.50 2 2 0.15 4 

 
 



Table 5.2 OD Demands
 

DESTINATION 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 0 100 100 500 200 300 500 800 500 1300 500 200 500 300 500 500 400 100 300 300 100 400 300 100 
2 100 0 100 200 100 400 200 400 200 600 200 100 300 100 100 400 200 0 100 100 0 100 0 0 
3 100 100 0 200 100 300 100 200 100 300 300 200 100 100 100 200 100 0 0 0 0 100 100 0 
4 500 200 200 0 500 400 400 700 700 1200 1400 600 600 500 500 800 500 100 200 300 200 400 500 200 
5 200 100 100 500 0 200 200 500 800 1000 500 200 200 100 200 500 200 0 100 100 100 200 100 0 
6 300 400 300 400 200 0 400 800 400 800 400 200 200 100 200 900 500 100 200 300 100 200 100 100 
7 500 200 100 400 200 400 0 100 600 1900 500 700 400 200 500 1400 1000 200 400 500 200 500 200 100 
8 800 400 200 700 500 800 1000 0 800 1600 800 600 600 400 600 2200 1400 300 700 900 400 500 300 200 
9 500 200 100 700 800 400 600 800 0 2800 1400 600 600 600 900 1400 900 200 400 600 300 700 500 200 

10 1300 600 300 1200 1000 800 1900 1600 2800 0 4000 2000 1900 2100 4000 4400 3900 700 1800 2500 1200 2600 1800 800 
11 500 200 300 1500 500 400 500 800 1400 3900 0 1400 1000 1600 1400 1400 1000 100 400 600 400 1100 1300 600 
12 200 100 200 600 200 200 700 600 600 2000 1400 0 1300 700 700 700 600 200 300 400 300 700 700 500 
13 500 300 100 600 200 200 400 600 600 1900 1000 1300 0 600 700 600 500 100 300 600 600 1300 800 800 
14 300 100 100 500 100 100 200 400 600 2100 1600 700 600 0 1300 700 700 100 300 500 400 1200 1100 400 
15 500 100 100 500 200 200 500 600 1000 4000 1400 700 700 1300 0 1200 1500 200 800 1100 800 2600 1000 400 
16 500 400 200 800 500 900 1400 2200 1400 4400 1400 700 600 700 1200 0 2800 500 1300 1600 600 1200 500 300 
17 400 200 100 500 200 500 1000 1400 900 3900 1000 600 500 700 1500 2800 0 600 1700 1700 600 1700 600 300 
18 100 0 0 100 0 100 200 300 200 700 200 200 100 100 200 500 600 0 300 400 100 300 100 0 
19 300 100 0 200 100 200 400 700 400 1800 400 300 300 300 800 1300 1700 300 0 1200 400 1200 300 100 
20 300 100 0 300 100 300 500 900 600 2500 600 500 600 500 1100 1600 1700 400 1200 0 1200 2400 700 400 
21 100 0 0 200 100 100 200 400 300 1200 400 300 600 400 800 600 600 100 400 1200 0 1800 700 500 
22 400 100 100 400 200 200 500 500 700 2600 1100 700 1300 1200 2600 1200 1700 300 1200 2400 1800 0 2100 1100 
23 300 0 100 500 100 100 200 300 500 1800 1300 700 800 1100 1000 500 600 100 300 700 700 2100 0 700 

O
R

IG
IN

 

24 100 0 0 200 0 100 100 200 200 800 600 500 700 400 400 300 300 0 100 400 500 1100 700 0 



Table 5.3 Construction Costs of Links Between Nodes 
 

  1 2 3 4 5 6 7 8 9 10 11 12 
1 0.00 270.00 70.00 106.30 183.85 278.,93 392.17 299.67 214.01 254.95 206.16 190.00 
2 270.00 0.00 278.93 202.48 122.07 70.00 164.01 130.00 164.01 214.71 268.70 330.15 
3 70.00 278.93 0.00 80.00 170.00 270.00 374.83 276.59 180.28 208.09 144.22 120.00 
4 106.30 202.48 80.00 0.00 90.00 190.00 296.14 199.25 108.17 150.00 120.00 144.22 
5 183.85 122.07 170.00 90.00 0.00 100.00 208.81 116.62 60.00 120.00 150.00 208.09 
6 278.93 70.00 270.00 190.00 100.00 0.00 116.62 60.00 116.62 156.21 224.72 295.47 
7 392.17 164.01 374.83 296.14 208.81 116.62 0.00 100.00 200.00 208.81 296.14 374.83 
8 299.67 130.00 276.59 199.25 116.62 60.00 100.00 0.00 100.00 116.62 199.25 276.59 
9 214.01 164.01 180.28 108.17 60.00 116.62 200.00 100.00 0.00 60.00 108.17 180.28 

10 254.95 214.71 208.09 150.00 120.00 156.21 208.81 116.62 60.00 0.00 90.00 170.00 
11 206.16 268.70 144.22 120.00 150.00 224.72 296.14 199.25 108.17 90.00 0.00 80.00 
12 190.00 330.15 120.00 144.22 208.09 295.47 374.83 276.59 180.28 170.00 80.00 0.00 
13 460.00 533.39 390.00 398.12 425.44 474.34 495.78 426.38 371.21 319.06 281.60 270.00 
14 329.85 372.16 262.49 250.00 265.71 314.01 346.70 268.70 210.24 158.11 130.00 152.64 
15 362.35 335.26 302.32 265.71 250.00 269.26 275.86 214.71 190.00 130.00 158.11 214.01 
16 330.15 190.00 295.47 224.72 156.21 120.00 116.62 60.00 116.62 100.00 190.00 270.00 
17 367.97 250.00 324.50 261.73 205.91 180.00 156.21 120.00 156.21 116.62 199.25 276.59 
18 415.93 214.71 388.97 313.85 233.24 156.21 60.00 116.62 208.81 200.00 290.00 370.00 
19 418.69 320.00 367.97 314.01 269.26 250.00 214.71 190.00 214.71 164.01 230.22 299.67 
20 533.39 460.00 474.34 433.82 402.62 390.00 344.82 330.00 344.82 287.92 330.15 381.84 
21 490.41 470.74 425.44 400.25 390.00 402.62 385.88 344.82 330.00 270.00 284.61 319.06 
22 416.29 392.94 353.55 322.80 310.00 325.73 320.16 269.26 250.00 190.00 210.24 254.95 
23 388.33 424.85 320.16 310.00 322.80 363.59 382.88 314.01 265.71 210.24 190.00 206.16 
24 466.90 497.69 398.12 390.00 400.25 433.82 439.32 380.79 342.05 284.61 270.00 281.60 



Table 5.3 Construction Costs of Links Between Nodes (continued)

  13 14 15 16 17 18 19 20 21 22 23 24 
1 460.00 329.85 362.35 330.15 367.97 415.93 418.69 533.39 490.41 416.29 388.33 466.90 
2 533.39 372.16 335.26 190.00 250.00 214.71 320.00 460.00 470.74 392.94 424.85 497.69 
3 390.00 262.49 302.32 295.47 324.50 388.97 367.97 474.34 425.44 353.55 320.16 398.12 
4 398.12 250.00 265.71 224.72 261.73 313.85 314.01 433.82 400.25 322.80 310.00 390.00 
5 425.44 265.71 250.00 156.21 205.91 233.24 269.26 402.62 390.00 310.00 322.80 400.25 
6 474.34 314.01 269.26 120.00 180.00 156.21 250.00 390.00 402.62 325.73 363.59 433.82 
7 495.78 346.70 275.86 116.62 156.21 60.00 214.71 344.82 385.88 320.16 382.88 439.32 
8 426.38 268.70 214.71 60.00 120.00 116.62 190.00 330.00 344.82 269.26 314.01 380.79 
9 371.21 210.24 190.00 116.62 156.21 208.81 214.71 344.82 330.00 250.00 265.71 342.05 

10 319.06 158.11 130.00 100.00 116.62 200.00 164.01 287.92 270.00 190.00 210.24 284.61 
11 281.60 130.00 158.11 190.00 199.25 290.00 230.22 330.15 284.61 210.24 190.00 270.00 
12 270.00 152.64 214.01 270.00 276.59 370.00 299.67 381.84 319.06 254.95 206.16 281.60 
13 0.00 161.25 220.23 381.84 342.05 458.04 304.14 270.00 170.00 187.88 113.14 80.00 
14 161.25 0.00 90.00 230.22 202.48 317.81 190.00 236.01 166.43 108.17 60.00 140.00 
15 220.23 90.00 0.00 164.01 122.07 238.54 100.00 172.05 140.00 60.00 108.17 166.43 
16 381.84 230.22 164.01 0.00 60.00 100.00 130.00 270.00 287.92 214.71 268.70 330.15 
17 342.05 202.48 122.07 60.00 0.00 116.62 70.00 210.00 232.59 164.01 230.22 283.20 
18 458.04 317.81 238.54 100.00 116.62 0.00 164.01 287.92 336.01 275.86 346.70 396.23 
19 304.14 190.00 100.00 130.00 70.00 164.01 0.00 140.00 172.05 116.62 199.25 236.01 
20 270.00 236.01 172.05 270.00 210.00 287.92 140.00 0.00 100.00 128.06 206.16 190.00 
21 170.00 166.43 140.00 287.92 232.59 336.01 172.05 100.00 0.00 80.00 120.42 90.00 
22 187.88 108.17 60.00 214.71 164.01 275.86 116.62 128.06 80.00 0.00 90.00 120.42 
23 113.14 60.00 108.17 268.70 230.22 346.70 199.25 206.16 120.42 90.00 0.00 80.00 
24 80.00 140.00 166.43 330.15 283.20 396.23 236.01 190.00 90.00 120.42 80.00 0.00 



Table 5.4 Travel Times of Possible Transit Links between Nodes
 

  1 2 3 4 5 6 7 8 9 10 11 12 
1 0.00 10.56 7.04 14.08 17.59 19.35 28.15 22.87 26.39 31.67 24.63 14.08 
2 10.56 0.00 17.59 19.35 15.83 8.80 17.59 12.32 24.63 28.15 29.91 24.63 
3 7.04 17.59 0.00 7.04 10.56 17.59 26.39 21.11 19.35 24.63 17.59 7.04 
4 14.08 19.35 7.04 0.00 3.52 10.56 19.35 14.08 12.32 17.59 10.56 14.08 
5 17.59 15.83 10.56 3.52 0.00 7.04 15.83 10.56 8.80 14.08 14.08 17.59 
6 19.35 8.80 17.59 10.56 7.04 0.00 8.80 3.52 15.83 19.35 21.11 24.63 
7 28.15 17.59 26.39 19.35 15.83 8.80 0.00 5.28 21.11 15.83 24.63 33.43 
8 22.87 12.32 21.11 14.08 10.56 3.52 5.28 0.00 17.59 15.83 24.63 28.15 
9 26.39 24.63 19.35 12.32 8.80 15.83 21.11 17.59 0.00 5.28 14.08 24.63 

10 31.67 28.15 24.63 17.59 14.08 19.35 15.83 15.83 5.28 0.00 8.80 19.35 
11 24.63 29.91 17.59 10.56 14.08 21.11 24.63 24.63 14.08 8.80 0.00 10.56 
12 14.08 24.63 7.04 14.08 17.59 24.63 33.43 28.15 24.63 19.35 10.56 0.00 
13 19.35 29.91 12.32 19.35 22.87 29.91 33.43 33.43 29.91 24.63 15.83 5.28 
14 31.67 36.95 24.63 17.59 21.11 28.15 29.91 29.91 21.11 15.83 7.04 17.59 
15 40.47 33.43 33.43 26.39 24.63 24.63 21.11 21.11 15.83 10.56 15.83 26.39 
16 31.67 21.11 29.91 22.87 19.35 12.32 8.80 8.80 12.32 7.04 15.83 26.39 
17 35.19 24.63 33.43 26.39 22.87 15.83 12.32 12.32 15.83 10.56 19.35 29.91 
18 31.67 21.11 29.91 22.87 19.35 12.32 3.52 8.80 17.59 12.32 21.11 31.67 
19 38.71 28.15 36.95 29.91 26.39 19.35 15.83 15.83 19.35 14.08 21.11 31.67 
20 38.71 28.15 35.19 29.91 26.39 19.35 10.56 15.83 24.63 19.35 28.15 28.15 
21 31.67 38.71 24.63 31.67 33.43 29.91 21.11 26.39 24.63 19.35 22.87 17.59 
22 35.19 36.95 28.15 31.67 29.91 28.15 19.35 24.63 21.11 15.83 21.11 21.11 
23 29.91 40.47 22.87 24.63 28.15 35.19 26.39 31.67 28.15 22.87 14.08 15.83 
24 26.39 36.95 19.35 26.39 29.91 35.19 26.39 31.67 29.91 24.63 17.59 12.32 



Table 5.4 Travel Times of Possible Links between Nodes (continued) 
 

 

  13 14 15 16 17 18 19 20 21 22 23 24 
1 19.35 31.67 40.47 31.67 35.19 31.67 38.71 38.71 31.67 35.19 29.91 26.39 
2 29.91 36.95 33.43 21.11 24.63 21.11 28.15 28.15 38.71 36.95 40.47 36.95 
3 12.32 24.63 33.43 29.91 33.43 29.91 36.95 35.19 24.63 28.15 22.87 19.35 
4 19.35 17.59 26.39 22.87 26.39 22.87 29.91 29.91 31.67 31.67 24.63 26.39 
5 22.87 21.11 24.63 19.35 22.87 19.35 26.39 26.39 33.43 29.91 28.15 29.91 
6 29.91 28.15 24.63 12.32 15.83 12.32 19.35 19.35 29.91 28.15 35.19 35.19 
7 33.43 29.91 21.11 8.80 12.32 3.52 15.83 10.56 21.11 19.35 26.39 26.39 
8 33.43 29.91 21.11 8.80 12.32 8.80 15.83 15.83 26.39 24.63 31.67 31.67 
9 29.91 21.11 15.83 12.32 15.83 17.59 19.35 24.63 24.63 21.11 28.15 29.91 
10 24.63 15.83 10.56 7.04 10.56 12.32 14.08 19.35 19.35 15.83 22.87 24.63 
11 15.83 7.04 15.83 15.83 19.35 21.11 21.11 28.15 22.87 21.11 14.08 17.59 
12 5.28 17.59 26.39 26.39 29.91 31.67 31.67 28.15 17.59 21.11 15.83 12.32 
13 0.00 17.59 21.11 31.67 29.91 29.91 26.39 22.87 12.32 15.83 10.56 7.04 
14 17.59 0.00 8.80 21.11 17.59 26.39 14.08 21.11 15.83 14.08 7.04 10.56 
15 21.11 8.80 0.00 12.32 8.80 17.59 5.28 12.32 8.80 5.28 12.32 14.08 
16 31.67 21.11 12.32 0.00 3.52 5.28 7.04 12.32 21.11 17.59 24.63 26.39 
17 29.91 17.59 8.80 3.52 0.00 8.80 3.52 10.56 17.59 14.08 21.11 22.87 
18 29.91 26.39 17.59 5.28 8.80 0.00 12.32 7.04 17.59 15.83 22.87 22.87 
19 26.39 14.08 5.28 7.04 3.52 12.32 0.00 7.04 14.08 10.56 17.59 19.35 
20 22.87 21.11 12.32 12.32 10.56 7.04 7.04 0.00 10.56 8.80 15.83 15.83 
21 12.32 15.83 8.80 21.11 17.59 17.59 14.08 10.56 0.00 3.52 8.80 5.28 
22 15.83 14.08 5.28 17.59 14.08 15.83 10.56 8.80 3.52 0.00 7.04 8.80 
23 10.56 7.04 12.32 24.63 21.11 22.87 17.59 15.83 8.80 7.04 0.00 3.52 
24 7.04 10.56 14.08 26.39 22.87 22.87 19.35 15.83 5.28 8.80 3.52 0.00 
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Figure 5.2 Amount of Gas Emission Corresponding to Vehicle Speed 
 
 

 
 

Figure 5.3 Change in Transit Network Construction Cost in Each Iteration 
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Figure 5.2 shows the change in gas emission of one vehicle as its speed increases.  It 

can be easily seen that amount of gas emission is decreasing in the first portion of the 

graph and then it increases regularly as the speed of the vehicle increases.  That means 

gas emission in a link is at the top level when traffic is congested.  However, when 

vehicle travels with high speed, it exposes, again, a high level of harmful gases.  The 

model calibrates the number of vehicles in each link, thereby their speeds, so as to 

minimize the gas emission and the construction cost of the network. 

 
Figures 5.3 and 5.4 explain why number of iterations is fixed at 150 in Genetic 

Algorithm. These figures show the variation in the objective function means, 

construction cost and gas emission respectively, calculated over all population. 

Obviously, after approximately 100 iterations, the population almost converges.  In fact, 

up to this point, changes in both objective functions become quite small.  But for the 

sake of the quality of the results, the number of iterations is extended to 150.  In 

addition, to provide diversity and obtain better solutions using strong ones, the 

probability of crossover and mutation in NSGA-II algorithm is determined as 0.9 and 

0.1, respectively.  

 
 

Figure 5.4 Change in Gas Emission in Each Iteration
 



 74 

 
 

Figure 5.5 Pareto Front of Our Algorithm 
 
 
Figure 5.5 shows the Pareto Front of our results.  The solutions represented by circles 

are the initial solutions that are selected randomly to begin the algorithm.  In each 

iteration, solutions get closer to Pareto Front and this behavior is pictured with dots 

between circles and stars.  It can be also seen that diversity is provided as the number of 

iterations increase besides obtaining non-dominated solutions.  Final solutions also 

seem to be satisfactory because many solutions are found in a wide range. 

 

Solutions in the non-dominated set and corresponding values of each objective function 

are shown in the Table 5.3.  From these data, reduction in the gas emission for different 

number of station can be observed.  The original gas emission amount in the network 

when transit line is not available is 577,469 (g/km).  The amount of reduction of each 

solution is also available in the Table 5.3.  It can be seen that as the number of stations 

increases, the gas emission in the network reduces.  If faster trains are used in the 

alignment, it may be reduced further since more people will tend to use transit line.



Table 5.5 Non-Dominated Solutions and Corresponding Objective Function Values 
 

Construction  
Cost 

Gas  
Emission 

(g/km) 

Reduction in  
Gas 

Emission 
# of 

Stations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
80 574.5 0.51% 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
150 572.6 0.84% 3 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
170 569.1 1.45% 3 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
230 565.8 2.02% 4 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

286.6 562.1 2.66% 4 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
346.6 560.6 2.92% 5 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
366.6 558.2 3.34% 6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 
396.6 557.4 3.48% 6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 
450 556.2 3.68% 5 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 

456.6 550.7 4.64% 7 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 
522.1 550.5 4.67% 7 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 
532.6 549.5 4.84% 7 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 
540 546.3 5.40% 8 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 0 
570 544.5 5.71% 8 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 

609.3 542.3 6.09% 8 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 
630 540.9 6.33% 9 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 

646.2 538.5 6.75% 8 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 
652.6 535.7 7.23% 9 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 0 
710 533.6 7.60% 10 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 0 1 1 0 



Table 5.3 Non-dominated solutions and corresponding objective function values (continued) 
 

Construction  
Cost 

Gas  
Emission 

(g/km) 

Reduction in  
Gas 

Emission 
# of 

Stations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
763.1 533.3 7.65% 10 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1 1 1 0 
769.3 533.1 7.68% 10 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 
773.2 530.5 8.13% 10 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 0 
809.3 528.1 8.55% 10 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 0 
816.6 526.9 8.76% 11 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 
852.6 525 9.09% 11 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 1 0 
883.2 520.8 9.81% 11 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 
925.9 520.2 9.92% 11 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 
926.6 515.8 10.68% 12 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 
970 514.7 10.87% 13 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 

986.6 512.4 11.27% 13 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 
1030 510.9 11.53% 14 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 
10831 509.9 11.70% 14 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 
11598 508.1 12.01% 15 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 
11981 507.7 12.08% 15 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 
12031 506.7 12.26% 16 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 
1274.7 506.6 12.27% 16 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 
1297.3 505.3 12.50% 16 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 
1333.8 503 12.90% 16 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 
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(c) 

 

Figure 5.6 Examples of Transit Lines Constructed by the Algorithm
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Population size to be used in NSGA-II is taken as 50.  The reason why 38 solutions 

exist in Table 5.3 is that some solutions are repeated in the population.  Figure 5.6 

shows 3 examples of transit line constructed by the algorithm.  Figure 5.6 (a) is a transit 

line with 5 stations while 5.6(b) and 5.6(c) are transit lines with 10 and 15 stations 

respectively.  As expected, as the number of stations in an alignment because more OD 

pairs will be connected by this line.  In these examples, the construction costs are 450, 

809.3 and 1198.1 respectively. Consequently, their gas emissions are inversely 

proportional with their costs.  Emission rates released to the air are 556.2, 528.1 and 

507.7 (g/km) for each solution. 
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6 CONCLUSION 
 

 

 

In this study, a multi-objective bi-level model is proposed because there are two 

contradicting objectives in the problem.  The optimum solution for minimizing gas 

emission is probably constructing a line that passes through all nodes in the network so 

it is possible to travel between each OD pair by using rapid transit line.  In contrary, to 

minimize investment cost of the alignment, no line, as a result no station should be 

constructed.  To find a compromising solution between these two objectives, a multi-

objective approach is introduced.  The result for this problem is a Pareto-Chart that 

shows different solutions with different objective function values that allows decision 

makers to select one according to their priorities.  Because the problem is a Stackelberg 

game, to take user behavior into account, the model is formed as a bi-level model and 

the municipality which is the leader of this game, makes changes to affect users’ 

decisions. 

 

Minimizing gas emission is introduced into RTNDP for the first time, although there 

are many studies on this topic.  Most of these studies use maximizing trip coverage, 

maximizing population covered while some of them also consider minimizing the 

construction cost in a normalized equation with other objectives.  The originality of this 

study mainly comes from that environmental impacts are taken into account for the first 

time.  Air pollution is a serious problem, especially for crowded cities and since gas 

emission from vehicles is a major source for air pollution, rapid transit lines are 

considered as a solution for air pollution because of its high potential to reduce traffic 

congestion.  

 

RTNDP is a fruitful subject that can be studied further.  This study primarily focuses on 

the deterministic aspect of the problem, in other words, all users in the network have 

perfect information about the travel times in each alternative they can choose.  A 
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stochastic model that enables users choose their routes and travel modes according to 

their perceived travel times rather than the actual travel times may be developed.  The 

perceived travel time can be looked upon as a random variable distributed across the 

users, that is, each motorist may perceive a different travel time over the same link and 

this definition characterizes the stochastic-user-equilibrium (SUE) condition. 

 

A dynamic model that analyzes the network over a specific period is another direction 

for further research. Our study generates solutions by including demands and 

corresponding travel times in peak hours.  Instead of making computations according to 

the maximum demands possible, the network may be analyzed for a period so that a 

thorough analysis of the user behavior may be obtained.  

 

Furthermore, in this study park-and-ride and kiss-and-ride alternatives do not exist; a 

user traveling between an OD pair is not allowed to travel from his/her starting node to 

the nearest station by his/her car and then continue the remaining part by transit line. 

Rapid transit lines can be chosen if and only if there exist stations on both origin and 

destination nodes of the users.  This assumption is restrictive because it does not 

consider potential users of the transit line.  It may be relaxed to obtain more realistic 

results because these are widely used methods and they are also encouraged by 

municipalities to increase the effectiveness of the lines.  Parking zones are available, 

especially near busy stations, thus it is assured that users starting their travels from 

nodes that do not have stations can also use the line. 

 

As a last point, it is also possible to construct multiple lines instead of one.  This 

extension may lead a more flexible solution and more reduction in emission minimizing 

objective while keeping cost minimizing objective constant may be obtained or vice 

versa.  
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