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ABSTRACT 

 

 

 

The Traveling Salesman Problem with Pickup and Delivery (TSPPD) is an extension of 

the famous Traveling Salesman Problem (TSP). In the literature there are many problems 

related to pickup and delivery but they have different features (i.e. single commodity or 

multi commodities, single vehicle or multi vehicles, one-to-one or one-to-many etc.). 

TSPPD is a static simultaneous pickup delivery problem with a “one-to-many-to-one” 

structure where there is only one vehicle and that each customer is visited exactly once.  

The problem involves two sets of customers. “Delivery Customers” are served by 

delivery of the goods from a central warehouse. “Pickup Customers” need to deliver 

goods from their locations to the central warehouse. We call the central warehouse as 

“Depot” and all delivery and pickup services are done by a single vehicle with a given 

capacity which is equal to Q. Given two types of goods (delivery and pickup goods), a 

vehicle which departs from the depot with fully loaded satisfies all the customer’s needs 

and returns back to the depot. The objective of the TSPPD is to minimize the total 

travelling distance. The additional constraint of the TSPPD is that the vehicle load must 

be feasible throughout the tour; it must remain nonnegative and the total load should not 

exceed the vehicle capacity. TSPPD is an NP-hard combinatorial optimization problem 

since it as an extension of the well known TSP. To the best of our knowledge there is not 

many publications on the TSPPD. The motivation of this thesis is to propose an efficient 

Genetic Algorithm (GA) to solve TSPPD instances. 

 

GAs are search algorithms based on the mechanics of natural selection and natural 

genetics. The basic principle of the GAs comes from “survival of the fittest” which is 

stated by Charles Darwin in “The Origins of Species”. They are adaptive methods which 

may be used to solve search and optimization problems. The power of GA comes from 

the fact that the method is robust and which can be used successfully for a wide range of 

problem areas including those which are difficult for other methods to solve. 
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The motivation behind of the proposed GA, lies in the Mosheiov Theorem. Mosheiov has 

proved that when we construct a Hamiltonian tour covering all pickup and delivery 

customers without the depot, there exists at least one point ik on this tour such that when 

we insert the depot between ik and ik+1 the resulting tour is feasible. Considering this 

theorem we have devised an efficient algorithm which consists of three steps. The first 

step is to solve Hamiltonian tour through all customers by using the GA. The second step 

is to find the best starting point to insert the depot. The final step is to apply a local 

neighborhood search which we term as “Tuning Phase”. Computational experiments are 

reported on standard test instances from the literature. The experimental results show that 

our algorithm yields promising performance in terms of both accuracy and efficiency 

compared to existing algorithms in the literature. We should also report that the tuning 

phase step considerably improves the solution obtained after the second step. This shows 

us the power of our tour improvement procedure, which is specially designed for the 

TSPPD.  

 

 



RESUME 

 

 

 

Le Problème de Voyager-Vendeur avec ramassage et de livraison (TSPPD) est une 

extension du célèbre problème Voyageur-Vendeur. (TSP). Dans la littérature il existe 

de nombreux problèmes liés à la ramassage et la livraison, mais ces problèmes ont des 

caractéristiques différentes ( Unique Commodité ou Multi Commodités, Unique 

véhicule ou plusieurs véhicules, une-à-une ou une-à-plusieurs).Le problème examinée 

dans cette thèse est un problème de Voyager-Vendeur avec ramassage et de livraison 

qui est statique et simultanée avec une « une-à-une » structure où il n'y a qu'un seul 

véhicule, et que chaque clients ont visité exactement une fois. Le problème comporte 

deux types de clients. "Les clients de livraison" sont servis par la livraison des 

marchandises dans un entrepôt central et «Les clients ramassage" nécessitent de fournir 

ses biens de leur location à l'entrepôt central. Nous appelons l'entrepôt central le 

"Depot" et tous les services de livraison et de ramassage sont fournis par un seul 

véhicule d'une capacité donnée, qui est égal à Q. Etant deux types de produits 

différents, un véhicule départ du dépôt, satisfait tous les besoins des clients et retourne 

au dépôt. L'objectif de TSPPD est de minimiser la distance totale du parcourus. La 

contrainte supplémentaire du TSPPD est que la charge du véhicule doit être faisable 

tout au long du tour. Elle doit rester positif et que la charge totale ne doit pas dépasser 

la capacité du véhicule. TSPPD est un problème NP-hard d'optimisation combinatoire 

comme TSP. Au meilleur de notre connaissance, il n'existe pas beaucoup de 

publications concernant le TSPPD dans la littérature. L'objectif de cette thèse est de 

proposer une Algorithme Génétique (GA) efficace pour résoudre le TSPPD. 

 

Des GAs sont des algorithmes de recherche basés sur la mécanique de la sélection 

naturelle et de la génétique naturelle. Le principe de base du GA provient de «survie 

des meilleurs» qui est énoncée par Charles Darwin dans "The Origins of Species". Ils 

sont des méthodes adaptatives qui peuvent être utilisé pour résoudre les problèmes de
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recherche et d'optimisation. La force des GA vient du fait que la méthode est robuste et 

qui peut être utilisé avec succès pour un large éventail de problèmes, y compris celles 

qui sont difficiles à résoudre avec d'autres méthodes  

 

L'idée de base de notre approche évolutive vient du théorème Mosheiov. Mosheiov a 

prouvé que si nous construisons une tournée Hamiltonien couvrant l'ensemble des 

clients sans le dépôt, il existe au moins un point ik sur ce tour de telle sorte que si l'on 

insère le dépôt entre ik et ik+1 le tour reste toujours faisable. Selon ce théorème, nous 

avons développé un algorithme génétique efficace qui consiste en trois étapes. La 

première étape est de résoudre le tour Hamiltonien en utilisant le GA. La deuxième 

étape est de trouver le meilleur point de départ pour insérer le dépôt. Enfin la dernière 

étape consiste à appliquer une recherche locale qu’on le nomme "Post optimalité". Les 

résultats expérimentaux montrent que notre algorithme évolutionnaire une 

performance prometteuse  en termes d'exactitude et d'efficacité par rapport aux 

algorithmes existants dans la littérature. Nous devons aussi signaler que l'utilisation de 

l’étape « post optimalité » améliore nettement la solution obtenue après la deuxième 

étape. Cela nous montre la puissance de notre procédure d'amélioration du tour, qui est 

spécialement désigné pour le TSPPD. 



ÖZET 

 

 

 

Gezgin Satıcı Problemi (GSP) bir şehirden başlayıp, listedeki tüm şehirleri sadece bir 

kez ziyaret edip, tekrar başladığı şehre dönen bir satıcı için en kısa turun belirlenmesi 

problemidir. Toplamalı Dağıtımlı Gezgin Satıcı Problemi (TDGSP) de GSP’nin farklı 

bir türüdür. Literatürde toplamalı dağıtımlı problemlerin bir çok farklı karakteristikteki 

çeşitleri mevcuttur. (Ör: Tek ürünlü-çok ürünlü, tek araçlı – çok araçlı, tekten-teke, 

çoktan-çoka, vs.). Bu çalışmada incelenen problem, statik, eşzamanlı, tek araç ile 

yapılan ve bütün şehirlerin tek bir seferde ziyaret edildiği dağıtım ve toplama 

problemidir. Problem iki çeşit müşteriyi barındırır. Dağıtım yapılan müşteriler depodan 

mal talep müşterilerdir. Toplama yapılan müşteriler ise depoya mal gönderen 

müşterilerdir. Bütün toplama ve dağıtım işlemleri, sığası Q değerine eşit olan bir araç 

vasıtasıyla gerçekleştirilir. Bu araç tam yüklü olarak depodan çıkar ve bütün müşteri 

ihtiyaçlarına cevap vererek tekrar depoya geri döner. TDGSP’nin en önemli ilave kısıtı 

araç yükünün tur boyunca olurlu olması gerektiğidir. Araç yükü tur boyunca negatif 

olmamalı ve yük araç sığasını geçmemelidir. TDGSP, GSP gibi NP-zor problemler 

sınıfında yer almaktadır. Yapmış olduğumuz yazın taramalarına göre TDGSP hakkında 

çok sayıda yayın bulunmamaktadır. Bu tezin amacı bu boşluğu doldurmak ve 

TDGSP’nin çözümü için etkin bir Genetik Algoritma (GA) geliştirmektir.      

 

GA’lar temelinde doğal seçimi esas alan arama algoritmalarıdır ve doğadaki evrim 

sürecini taklit etmeye dayalı sezgisel teknikleri barındırırlar. GA’nın temel prensibi 

Charles Darwin’in “Türlerin Kökeni” kitabında tanımladığı “güçlü olanın hayatta 

kalması” ilkesine dayanır. GA’lar diğer metotlar ile çözülemeyecek bir çok farklı 

alandaki problemin çözümünde fayda sağlamaktadır.  
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Bu tezde geliştirilen GA’nın temel prensibi Mosheiov’un TDGSP için ispatlamış 

olduğu teoreme dayanmaktadır. Mosheiov şu sonucu ispatlamıştır: ”Eğer depo hariç 

diğer müşterilerin hepsini kapsayan bir Hamilton turu oluşturulursa bu tur içerisinde en 

az bir ik noktası vardır ki; depo, ik ve ik+1 arasına yerleştirilirse yeni oluşan Hamilton turu 

TSPPD için olurlu olur. Bu teoreme dayanarak bu tezde üç aşamalı bir algoritma 

geliştirilmiştir. Algoritmanın birinci aşamasında depo hariç diğer bütün müşterileri 

içinde barındıran bir Hamilton turu GA kullanılarak oluşturulur. Đkinci aşamada depo, 

en optimum olurlu noktadan tura yerleştirilir. Son olarak ise “iyileştirme aşaması” 

olarak adlandırdığımız bir yerel arama metodu kullanılır. Geliştirilen algoritma 

literatürdeki mevcut TDGSP örnekleri ile test edilmiştir. Yapılan denemelerde gerek 

hız gerek çözüm iyiliği açısından iyi sonuçlar elde edilmiştir. Bununla birlikte 

algoritmanın 3. aşamasında kullanılan ve TDGSP’ye özel olarak geliştirilmiş 

iyileştirme aşamasının 2. aşamadan çıkan sonuçlar üzerinde hatırı sayılır iyileştirmelere 

sebep olduğu gözlemlenmiştir.  
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1 I�TRODUCTIO�  

 

 

 

1.1 The Traveling Salesman Problem 
 

The Traveling Salesman Problem (TSP) is a well known NP-hard combinatorial 

optimization problem in which a salesman who starts from a home location visits N 

cities under the condition that each city is visited exactly once [1]. The objective of the 

TSP is to find a Hamiltonian tour. A Hamiltonian tour is a tour which visits all vertices 

exactly one time.  

 

The TSP is one of the hardest of the Operation Research. The precise origins of TSP are 

unclear but to the best of our knowledge its history started with Euler as early as 1759, 

who has interested in solving the Knight’s Tour Problem [2]. In 1832, a handbook was 

published for German travelling salesmen, which included examples of tours. In 1850s, 

Sir William Rowan Hamilton studied Hamiltonian circuits in graphs but the first use of 

the terms “Traveling Salesman Problem” in mathematical circles may date back to 1931-

1932 [3]. The TSP has been studied in the first half of the twentieth century in the 

agricultural context [4]. An integer programming based solution approach for the TSP 

was provided by Dantzig et al. in 1954 [5]. The authors have solved a TSP instance with 

49 cities to optimality. Within the last few decades researchers have offered algorithms 

to generate approximate solutions [2]. One of the first heuristics has been devised by Lin 

[6]. Ever since several heuristic and metaheuristic approaches have been proposed. 

Several real-world applications of the TSP arise in logistics, scheduling, production 

planning, etc… [1]. Several mathematical programming models have been proposed for 

TSP. Recently, an analytical comparison of these formulations have been discussed by 

Öncan et al [7]. One of the best known formulations of the TSP is designed by Dantzig 

et al. [5]. 
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Given a finite set of points � = ��, 	, 
 … �
 and a cost matrix  � = �������� (also 

referred to as the distance matrix or weight matrix) defined between each vertex i and j ∈ 

V, let � = (�, �) be a graph and F be the family of all Hamiltonian tours in G. For each 

edge e ∈ E a cost �� is prescribed. Then the TSP is to find a tour in G such that the sum 

of the edge costs forming the tour is as small as possible [1]. According to the cost 

matrix TSPs can be divided in two categories;  

 

•  Symmetric TSP (STPS) with symmetric cost matrix;  c�� =  c�� ∀ i, j ∈ V, for  ' ≠ )  

•  Asymmetric TSP (ATSP) with asymmetric cost matrix;  c�� ≠  c�� ∀ i, j ∈ V, for  ' ≠ )  

 

An integer programming formulation of the ATSP can be formulated as follows [8]; 

 

*'+ , = - .��/��∀�,� �0�                                                                                                           (1.1)  
 

Subject to 

 

- /�� = 1�
�23 �0�            ' = 1, … . , +                                                                                        (1.2) 

 

- /�� = 1�
�23 �0�            ' = 1, … . , +                                                                                         (1.3) 

 

- /�� ≤ |7| − 1 ,�
�,�∈9     ∀ 7 ⊂ ;;     2 ≤ |7| ≤ + − 2                                                        (1.4) 

 

 /�� = �1, 0
                                  ∀ ', ) = 1, … . , +; ' ≠ )                                                    (1.5)  
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Where  /�� = 1, when the salesman visits city j immediately after city i. Constraints 

(1.2) and (1.3) ensure that each costumer is visited exactly once. They are the 

assignment constraints. Constraint (1.4) obviates subtours.  

 

The TSP can also be viewed as a permutation problem. Any single permutation of n 

cities yields a solution in the search space with a size N! [2]; Given a set of cities { k1, 

k2,… k� } and assume that for each pair of distinct cities a distance of d( ki, kj ) is defined. 

The aim of the TSP is to find an ordering π which minimize the total tour length; [9] 

 

*'+ , = - .(�@('), �@('+1)) ,�
�,�∈9   + .(�@(;), �@(1)                                                   (1.6) 

 

As an illustrative example let us consider four cities in Turkey: Bursa, Đstanbul, Ankara 

and Trabzon. Then we have;  

 � = �CDEFG, HEGIJK�, L�MGEG, İFOG�IDP
.    
The TSP is defined as follow; “In which order should the salesman visit these cities in 

order to minimize the total distance according to the cost matrix C given below?   
                                              � = Q 0 900 350 220900 0 620 1100350 620 0 450220 1100 450 0 S                                        (1.7) 

 

Note that when the cost matrix is symmetric there are (N-1)! feasible TSP tours. 

Considering all possible permutations clearly there are 6 possible tours. Clearly speaking 

they are;   

 S1 = Bursa → İstanbul → Ankara → Trabzon → Bursa S2 = Bursa → İstanbul → Trabzon → Ankara → Bursa S3 = Bursa → Ankara → İstanbul → Trabzon → Bursa S4 = Bursa → Trabzon → Ankara → İstanbul → Bursa 
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S5 = Bursa → Trabzon → İstanbul → Ankara → Bursa S6 = Bursa → Ankara → Trabzon → İstanbul → Bursa  
When we calculate the total tour lengths of these 6 tours, we obtain the following vector;  
                        b =

c
dd
eℒ(71)ℒ(72)ℒ(73)ℒ(74)ℒ(75)ℒ(76)g

hh
i =

c
dde

219022902800219028002290g
hhi                                                     (1.8) 

 

Where L(s) denotes the length of the tour S. Since the cost matrix is symmetric we have 

two optimum solutions. S = {S1, S4}. Note that when N is small enough it’s possible to 

find the optimal solution by enumeration. However when N is large the need to use an 

ingenious approach becomes obvious. To better expose this we give in Table 1.1 the 

computations time required to find the optimal solution of different TSP instances on a 

standard computer. 

 

1.2 TSP Variants 
 

With the simple transformations it’s possible to formulate several variants of the TSP; 

 

• The MAX TSP: The objective for this TSP variants is to find a tour in G where 

the total tour length is maximum [1]. 

 

• The bottleneck TSP: The objective of this problem is to find a tour in G such 

that the largest distance of edges in the tour is as small as possible [1]. 

 

• TSP with multiple visits: In this variant, a salesman starts from a node, visits 

each node at least once and returns back to the starting node. Objective of this 

problem is to find a tour with minimum total distance. [1] 
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• Clustered TSP: In this problem there are clusters V1, V2,….,Vk  in G The 

constraint of this problem is that each city in the cluster must be consecutively 

visited. For example if the salesman enters into a city which belongs to cluster 

Vk, then he must visit all the cities belonging to cluster located inside the cluster 

Vk.      Table 1.1: Computationals time required to solve TSP instances.  

�umber 

of cities 

Required time 

in sec. 

Required time 

in min. 

Required time in 

hours 

Required 

time in days 

15 8,7 0,1 0,002 0,0001 

16 130,8 2,2 0,04 0,002 

17 2092,3 34,9 0,58 0,024 

18 35568,7 592,8 9,88 0,412 

19 640237,4 10670,6 177,84 7,410 

20 12164510,0 202741,8 3379,03 140,793 

 

 

• Generalized TSP (GTSP):  In the Generalized TSP, given clusters V1, V2,… ,Vk., 

the objective is to find a shortest tour which passes through exactly one city from 

each cluster. 

 

There are many other extensions and variants of the TSP which we cannot enumerate all 

of them here for the sake of conciseness. Some of them are Time Dependent TSP, Period 

TSP, Black and White TSP, Angle TSP, The Selective TSP, Resource Constraint TSP, 

Serdyukov TSP, Ordered Cluster TSP, Precedence Constrained TSP, k-Peripatetic 

Salesman Problem, Covering Salesman Problem, Stochastic TSP, TSP with Time 

Windows, Moving Target TSP, Remote TSP [1, 3, 10, 11].  
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1.3 Real life applications of the TSP  
There are many practical real-life applications of the TSP. Furthermore several other 

combinatorial optimization problems can be considered as a generalization or restriction 

of the TSP.  Some of these extensions are as follows; 

 

• Vehicle Routing Problem: Some instances of the Vehicle Routing Problem 

(VRP) can be modeled as a TSP. The VRP is to find which customers should be 

served by which vehicles and the minimum number of vehicles needed to serve 

each customer. There are several variations of the VRP [12]. 

 

• Minimum Spanning Tree Problem: A spanning tree of a graph is a tree 

connecting all vertices.  The objective is to find a spanning tree of minimum total 

length. This problem is a relaxation of the TSP and the TSP is a restriction of the 

minimum spanning tree problem [10].  

 

• Computer Wiring Problem: We have several modules each with a number of 

pins. We need to connect a subset of these pins with wires in such a way that no 

pin has more than two wires attached to it and the length of the wire is 

minimized [1]. 

 

• Frequency Assignment Problem: In a communication network the frequency 

assignment problem is to assign a frequency to each transmitter [1]. 

 

• Machine Scheduling Problem:  Scheduling problems are the most studied 

application areas for TSP. Consider that there are n jobs {1,2.,…,n} to process on 

a machine. Let ��� be the set up cost for processing the job j immediately after 

the job i. The objective is to find an order such that the total setup cost of jobs is 

minimum [1]. 

 

• Longest Path Problem: The objective of the longest path problems is to find a 

longest path in a network between a specified pair of vertices. Maximization and 
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minimization problems can be converted into one another by multiplying the 

objective with -1 [3].   

 

The TSP is applicable in a variety of other situations including, data analysis in 

psychology, X ray crystallography, overhauling gas turbine engine, warehouse order-

picking, wall paper cutting, arc routing problems, VLSI chip fabrication, matroid 

intersection, etc… [3, 9, 1]. There are many other TSP applications which we do not cite 

all of them here.  

  



 

2   THE TRAVELI�G SALEMA� PROBLEM WITH PICKUP A�D DELIVERY 

 

 

 

Traveling Salesman Problem with Pickups and Deliveries (TSPPD) is a generalization of 

the TSP. In the literature there are many problems related to pickup and delivery but they 

have different features (single commodity or multi commodities, single vehicle or multi 

vehicles, one-to-one or one-to-many etc…) [13]. In this section we will give a short 

description of various Pickup and Delivery Routing Problems in order to show their 

relations to the TSPPD.  

 

2.1 Pickup and Delivery Problems Variants 

 

2.1.1 The TSP with Pickup and Delivery  

 

The TSPPD is a simple generalization of the TSP. The problem involves two sets of 

customers. “Delivery Customers” are served by delivery of the goods from a central 

warehouse. “Pickup Customers” need to deliver goods from their locations to the central 

warehouse [14]. We call the central warehouse as “Depot” and all delivery and pickup 

services are done by a single vehicle with a given capacity which is equal to Q. There are 

two types of goods (delivery and pickup goods), a vehicle which departs from the depot 

with fully loaded, satisfies all the customer’s needs and returns back to the depot. The 

objective of the TSPPD is to minimize the total travelling distance. The additional 

constraint of the TSPPD is that the vehicle load must be feasible throughout the tour; it 

must remain nonnegative and the total load should not exceed the vehicle capacity [14].        

 

There are many real world applications of the TSPDP. In several industries, vehicles 

must visit customers and perform at each visit a pickup and a delivery without exceeding 

the vehicle capacity [15].  Two real applications of the TSPPD are as follows; 
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• One common application arises in the soft drinks delivery where full bottles are 

delivered to the customers and the empty bottles are picked-up.  

    

• Another specific application of the TSPPD has been provided by the Fresh Air 

Fund which is a non-profit welfare organization.  The organization arranges 

summer vacations for under privileged children. Children were sent to the 

volunteer families to spend two weeks out of the city. The children are picked up 

and transported by buses. Each bus has a defined region. After assigning the 

regions to the buses, the remaining problem becomes TSPPD [14].           

 

2.1.2 The One – Commodity Pickup and Delivery TSP  

 

Like Pick-up and Delivery Problems, the one commodity Pick-up and Delivery TSP is a 

generalization of the TSP where a finite set of cities are identified as customers and one 

specific city is considered as a vehicle depot. Customers are divided into two different 

groups according to the type of service required: Delivery Customers and Pickup 

Customers. Each delivery customer requires a given product amount and each pickup 

customer provides a given product amount. Any amount collected from a pickup 

customer can be supplied to a delivery customer. A vehicle must start and end its route at 

the depot with a fixed upper limit capacity. Then the objective of the problem is to 

minimize the total distance route to satisfy the customers’ requirements without 

exceeding the capacity [10]. There are two versions of the problem; The symmetric 1-

PDTSP where cost matrix is symmetric and the asymmetric 1-PDTSP where cost matrix 

is asymmetric.  

 

As we have mentioned, an important assumption of the 1-PDTSP is that a product 

collected from a pickup customer can be served to the delivery customer. Real-life 

applications of the 1-PDTSP arise in the collection of milk from cow farms to serve the 

private residences [10]. Another application is the transfer of money between bank 

branch offices. An important application can be cited in the retailers inventory 

repositioning where there is a finite set of retailers dispersed in a region. Due to the 

different demands some retailers may have an excess of inventory and the others may 
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have surplus of products. In this case the objective is to transfer the inventory between 

retailers to satisfy the client’s demands.     

   

Differences between 1-PDTSP and TSPPD 

 

• In TSPPD, one type of commodity is collected from customers and the other 

type is delivered from the depot to the customers. From this point of view, 

TSPPD is a many to one commodity and one to many commodity type problem. 

On the other hand in 1-TSPPD there is only one type of commodity and this 

commodity which is collected from a pickup customer is served to a delivery 

customer [13]. 

 

• A TSPPD solution is feasible if and only if the vehicle capacity is greater or 

equal to the maximum of the total sum of pickup demands and the total sum of 

the delivery demands. This condition is not required for 1-PDTSP in which the 

vehicle capacity should be equal to at least the maximum customer demand.     

 

2.1.3 The Capacitated TSP With Pickup and Delivery 

 

The problem the special case of the 1-PDTSP is called Capacitated TSP with Pick and 

Delivery where all delivery and pick-up quantities are equal to one unit. It consists of 

picking up and delivering single objects from source. This problem is also called Q-

Delivery TSPPD where Q is the capacity of the vehicle [13]. Q-Delivery TSPPD is a 

single vehicle and single-commodity problem and that that each city, except the depot, 

supplies or demands one unit. Anily and Bramel have proposed a better worst case 

algorithm based on a matching procedure and they have discussed an important 

application of the CTSPPD in the context of inventory repositioning [10, 16]. 

 

2.1.4 The Swapping Problem 

 

The swapping problem is a more general problem where several commodities must be 

transported from many origins to many destinations with a limited vehicle capacity [13]. 
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The problem is many – to many structure with multi-commodity. There is non-necessary 

Hamiltonian route and the commodity could be stored in an intermediate customer. The 

problem has been introduced in [17] and “The Swapping Problem on a Line” has been 

analyzed in [18].    

 

2.1.5 The Traveling Salesman Problem With Backhauls 

 

The TSP with Backhauls is a closely related problem with TSP where an uncapacitated 

vehicle must visit all delivery customers before visiting pick-up customers [19]. In other 

words it’s a particular case of the TSP with the additional constraints that a set of 

locations must be routed before the rest of locations [13].    

 

2.1.6 The Dial - a - Ride Problem 

 

The Dial - a - Ride Problem (DARP) is a special case of the pick-up and delivery 

problem where there is a one-to-one correspondence between each pick-up and delivery 

customers. Mostly the commodities transported in the DARP are people [13]. There are 

many variants of the DARP according requirements, features and optimization functions 

which can be quoted as follows; 

  

• Capacitated Dial-a-Ride Problem: In Capacitated Dial-a-Ride Problem 

(CDARP) the vehicle with a given capacity should move one unit of the 

commodity from its origin to its destination.  

 

• The Stacker Crane Problem: When the capacity Q is equal to 1, the CDARP is 

known as the stacker crane problem. Frederickson et al. have proposed an 

efficient heuristic algorithm for this problem [20].  

 

• The Pick-up and Delivery Traveling and Salesman Problem: When there is 

no vehicle capacity the problem is called “The Pick-up and Delivery Traveling 

Salesman Problem – PDTSP” [13].  
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Most articles which refer to the DARP consider additional features, such as multi vehicle 

version, time windows and/or dynamic requests. Also the objective functions may be 

different than to minimize the total distance such as; to minimize number of vehicles, to 

minimize the waiting time of the people, etc…  

 

2.1.7 The Multi Commodity Pickup and Delivery TSP 

 

The M-commodity Pick-up and Delivery Problem is an extended version of the 1-

PDTSP. The number of products is incremented from 1 to m [13]. The vehicle must visit 

a set of customers exactly once with a limited vehicle capacity. Additionally there are 

several products and each customer can require and / or offer quantities of m different 

products. In this problem the separation of the customers as delivery and pick-up 

customers is not possible customer can collect some units of a product and supply some 

units of a product. TSPPD is also a special case of the 2-PDTSP where the depot is the 

only origin of one commodity and the only destination of the other. The other particular 

case of the m-PDTSP is called “One-to-One Multi Commodity PDTSP” where each 

commodity has only one destination and one origin. Hernandez and Gonzalez [21] have 

proposed two mixed integer linear programming models to solve this problem.   

 

2.1.8 The General Pickup and Delivery Problem 

 

In the survey paper by Savelsberg and Sol [22] it has been summarized several pickup 

and delivery problems until mid nineties. The survey describes the General Pickup and 

Delivery (GPDP) as the problem of transporting different products between different 

locations [13]. Each vehicle has a given capacity, a start location and a finish location. 

For each transportation request the size of the load and its destination has been defined 

[22]. There are three well known particular cases of the GPDP in the literature; 

 

• The pick-up and delivery problems: The vehicles depart from and return to a 

central depot. Also each transportation request has only one pick-up and delivery 

location.  
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• The Dial - a - Ride Problem: The quantity transported for each product is equal 

to one unit. (Typically the different products are people)   

 

• Vehicle Routing Problem: All origins and all destinations are located at the 

same location i.e. depot.  

 

A wide variety of objective functions can be found in the GPDP; “to minimize duration, 

to minimize completion time, to minimize travel time, to minimize route length, to 

minimize client inconvenience, to minimize the number of vehicles, to minimize profit 

etc...” [22].   

 

2.1.9 Pickup and Delivery Problem with Time Windows 

 

The problem is called Pickup and Delivery Problem with Time Windows (PDPTW) 

where a time window is introduced in which the service at any location must take place 

[22]. Given a delivery and pickup plan, a time window and a loading and unloading time 

are specified [23]. The customers and the depot have time windows. The time window of 

a location i is determined by an interval [ei, li], where ei, and li represent the earliest and 

latest arrival times. Vehicles must arrive at a location before the end of the time window 

li. They may arrive early but they have to wait until time ei to begin service [24]. The 

PDPTW models a variety of operational planning problems in transportation logistics. 

Applications range from local area courier services to less-than truck load transportation 

and long-distance haulage. PDPTW also matches typical situations in public transit [23]. 

 

2.1.10 Pickup and Delivery Problem With FIFO Loading 

 

The problem is called TSPPD with FIFO Loading (TSPPDF) where the pickup and 

delivery operations must be done in a first- in-first-out approach. If the pickup of a 

request i is done before the pickup request j, then the delivery request i must be 

performed before the delivery request j [25]. 
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2.1.11 Dynamic Pickup and Delivery Problem 

 

A problem is said to be static when all input data of the problem are known before routes 

are constructed. In a dynamic approach some of the input data are updated during the 

operations. In contrast to what happens in a static problem, the planning horizon of a 

dynamic problem may be unbounded [26]. One example of a dynamic PDP is the 

transportation of handicapped and elderly people in urban areas. The dynamic PDP 

arises when the transportation requests are sometimes received the same day they need 

to be served. The basic strategy for solving a dynamic problem is to adapt an algorithm 

to solve the static version of the problem. At this point two different approaches can be 

formulated; [26] 

 

• The first approach consists of solving the static version of the problem each time 

with new updated information. The weakness of this approach is that 

reoptimization of the new information will require too much time and may 

occurs incoherence with real time setting.  

 

• The second approach is to solve once a time the static version of the problem 

then to use different heuristics such as insertion heuristics, deletion heuristics 

and interchange moves to update new information to the static optimum solution 

of the problem. These update mechanisms are sufficiently fast to adapt to the real 

time setting.       

 

2.2 Pickup and Delivery Problems Variants Classification 

 

There are two important surveys in the literature for TSPPD. Savelsberg and Sol [22] 

give a definition of the GPDP and classify the problem according to objective functions, 

time constraints and transportation requests. In their survey, they have divided pickup 

and delivery problems in two main subgroups; “static” and “dynamic” pickup and 

delivery problems. For each static PDP one can formulate its dynamic version. The 

survey prepared by Berbeglia et al. [27] introduce three fields of classification scheme 

for the static pickup and delivery problems. These fields are “Structures”, “Visits” and 
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“Vehicles”. The first field namely “structure”, defines the number of origins and 

destinations. “many-to-many” problems, “one-to-many-to-one” problems and “one-to-

one” problems are three subclasses on this field.  The second field which is “Visits” 

provides information for pickup and delivery operations at customers. The third field i.e 

“vehicles”  gives the number of vehicles used in the operation.  Henceforth according to 

the Figure 2.1 we can state that the TSPPD is a static simultaneous pickup delivery 

problem with a “one-to-many-to-one” structure where there is only one vehicle and that 

each customers have visited exactly once.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Classification of Pickup and Delivery Problems.  
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2.3 A Mathematical Programming Formulation of the TSPPD  

 

Before presenting the mathematical model we would like to recall the assumptions of the 

TSPPD;  

 

• The product collected from the pick-up customer is different than the product 

delivered to the delivery customers. To ensure the feasibility of the problem the 

vehicle capacity must be equal or greater than the maximum of the total delivery 

and total pick-up quantities. When the capacity is less than one of these two 

quantities there is no feasible solution. When the capacity is greater than their 

sum the problem is automatically reduced to TSP [14]. 

 

• There is only one vehicle which serves to the customers.  The vehicle departs 

from the depot fully loaded with the total demand and returns back to the depot 

with total pick-up quantities. 

 

• Each city is visited exactly once. The delivery and pick-up quantities are served 

simultaneously for each city. The total load of the vehicle along the tour should 

never exceed the vehicle capacity [28]. We can clearly see that if delivery and 

pickup quantities are equal for each city than the problem is automatically 

reduced to TSP. 

 

To formulate a standard form of the problem we assume both the total pick-up and total 

delivery quantities are equal to the vehicle capacity. According to the assumptions 

TSPPD can be formulated as follows [14]; 

 

Let  / be a set of pick-up locations, 0 be a set of delivery locations, 1 be a set of all 

locations with  1 = / ∪ 0 and |1| = 5. Let 0 be the depot location. 6(8, :) be the 
distance between i and j, <= be the pick-up demand at location i with i ∈ /, ?= be the 
pick-up demand at location i with i ∈ 0 and @ be the vehicle capacity.  (<= ≥0 for all 8 ∈ /, ?= ≥ 0 for all 8 ∈ 0)   
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For standardization we assume that;  

 

E pG =H
=∈I E dG = q                                                                                                                  (2.1)H

=∈I  

                                                                    

Decision variable L=M equals to 1 when the vehicle travels along the arc  (i, j), N=M equals 
to 1 if and only if the total load picked-up carried along arc (i, j) and O=M equals to 1 if 
and only if the total load on the vehicle carried along arc (i, j)   

 

TSPPD can be formulated as follows;  

 

Min E E P(8, :)L=M
H

MQR
H

=QR  

 

                                                             (2.2) 

Subject to   

 

E L=M = 1,              H
=QR  

 

: = 0, … , 5                                           (2.3) 
 

E L=M = 1,              H
MQR  

 

 

8 = 0, … , 5                                           (2.4) 

E N=M – E NU=  =  V <=         8W 8 ∈ / – @     8W 8 = 0 0        8W 8 ∈ 0 XH
UQR

H
MQR         
 

 

                                                             (2.5) 

E O=M − E OU=  =  V −?=       8W 8 ∈ 0 @         8W 8 = 0 0        8W 8 ∈ / XH
UQR

H
MQR                                                               (2.6) 
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 N=M + O=M  ≤ @. O=M                  8, : = 0, … , 5     
 

                                                             (2.7)      

L=M = 0,1         
N=M ≥ 0                    
O=M ≥ 0                                                              (2.8) 

 

In this formulation; constraints (2.3) and (2.4) guarantee that each costumer is visited 

exactly once. (2.5) and (2.6) are the “multi commodity flow” constraints. If i is a pick up 

location than by constraints (2.5) the amount of <= is added to the load pick-up without 
changing the delivery load. If i is a delivery location than by constraints (2.5) the amount 

of ?= is unloaded without changing the pick-up load [14]. Constraint (2.5) and (2.6) 
ensure that the vehicle departs from the depot with a load equal to the total delivery 

amount and returns back to the depot with a load equal to the total pick-up load. Finally 

constraints (2.7) guarantee that the total load of the vehicle will never exceed the vehicle 

capacity. 

 

2.4 TSPPD Literature Review  

 

In his seminal work Mosheiov [14] defined the TSPPD and proposed a mathematical 

formulation. He also analyzed two TSP-based methods to solve the problem. Anily and 

Mosheiov [29] have proposed an efficient polynomial heuristic based on the 

computation of shortest spanning trees. After constructing the minimum spanning tree, 

they used a linear time exact algorithm for the special case of TSPPD. Renaud [30] 

proposed a new heuristic which is composed of two phases: The first phase is the Double 

Insertion heuristic (DI), which inserts each delivery customer simultaneously with its 

associated pickup customer and the second phase, namely the Deletion and Re-Insertion 

heuristic, is an improvement procedure that employs the 4-Opt improvement heuristic. 

Gendreau et al. [15] have developed two different heuristics: One is based on the optimal 

solution of the special case arising when the graph G is a cycle and the other is “tabu 

search” approach using a two-exchange neighborhood. Baldacci [28] has proposed a 

two commodity flow formulation of the TSPPD. Hernandez-Perez and Salazar-Gonzalez 
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[31] have proposed two methods to solve 1- PDTSP instances. First method is a greedy 

algorithm with a k-optimality criterion and second method is an incomplete optimization 

based on the branch-and-cut procedure. They have also used these two methods to find 

the exact solution of the TSPPD instances. Hernandez-Perez and Salazar-Gonzalez have 

focused on 1- PDTSP and proposed several methods; a branch and cut algorithm in [32], 

another branch and cut algorithm for new inequalities in [33] and finally a mixed 

heuristic which combines Greedy Randomized Search Procedure (GRASP) and Variable 

Neighborhood Descent (VND) in [34]. Recently Zhao et al. have proposed a GA to solve 

the TSPPD and 1-PDTSP [35, 36]. To the best of our knowledge there are no other 

articles on TSPPD and especially about the use of the GA for TSPPD.  

 

  



 

 

3 EVOLUTIO	ARY ALGORITHMS 

 

 

 

3.1 Evolutions Programs  

 

During the last thirty years there has been a growing interest in problem solving systems 

based on principles of evolution and hereditary. These systems have some selection 

processes based on fitness of individuals and some genetic operators. Evolution 

Programs (EP) is the common term of these systems. The structure of an EP can be 

formulated as follows [37]. Let P(t) denote the population at time t;         

 

begin  

    t ⟵ 0 

    initialize P(t) 

    evaluate P(t) 

    while ( not termination condition ) do 

    begin  

        t ⟵ t+1 

        select P(t) from P(t-1) 

        alter P(t) 

evaluate P(t) 

     end 

end 

 

Any EP must have the following five components to formulate a given problem;  

 

• a genetic presentation for potential solutions, 

• a way to create an initial population of potential solutions,  
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• an evolution function as the role of the environment to rate solutions according 

their fitness,  

• a genetic operator that alters the composition of children,  

• various parameters; population size,  probabilities of using genetic operators and 

mutation operators etc... 

 

Clearly, any EP can be formulated for a given problem, such programs may differ in 

many ways; they can use different data structures for implementing a single individual, 

“genetic” operators for transforming individuals, method for creating an initial 

population, methods for handling constraints of the problem and parameters ( population 

size, probabilities of applying different operators) [37]. However, they share a common 

principle: The population of individuals undergoes some transformations and during this 

evolution processes strong individuals strive for survival [37]. This common principle of 

evolution program constitutes also the basic idea of GA. The conceptual difference 

between GA and EP can be illustrated with Figure 3.1; 

 
 
 
 
 
 
 
 
 
 
 

 Figure 3.1: GA and EP approaches.  

 

To solve a problem with GAs, we require a modification of the original problem like 

mapping between potential solutions, binary representations, taking care of decoders or 

repair algorithms etc... On the other hand evolution programs leave the problem 

unchanged and adapt the GA process to the problem by modifying genetic operators like 
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chromosome representation of the potential solutions. In summary we can define 

“Evolution Programs” such as modified GA [37]. The purpose of this chapter is to give 

detailed information about genetic algorithm which will constitute the basic idea of our 

evolutionary approach to solve TSPPD.   

 
3.2 Genetic Algorithms  

 

3.2.1 Basic Principle of Genetic Algorithm 

 

GAs are search algorithms based on the mechanics of natural selection and natural 

genetics [38]. They are adaptive methods which may be used to solve search and 

optimization problems [39]. The basic principle of the GAs comes from the “survival of 

the fittest” which is stated by Charles Darwin in “The Origins of Species”. In the nature, 

individuals in a population competes each other for water, food and shelter. Naturally the 

individuals which are more successful in surviving will have relatively larger numbers of 

offspring but on the other side poorly performing individuals will produce relatively few 

offspring [39]. This means that the genes of the strong individual will spread in an 

increasing number for the successive generations. Then the combination of good 

characteristics from different parents will produce fitness offspring. The GA uses the 

direct analogy of this natural behavior. It starts with an initial population and try to 

obtain fitness offspring by crossing with a predefined rule. The traditional GA can be 

formulated as follows;  

 

Begin  

   Generate initial population  

   Compute the fitness of each individual 

   while not finished do  

   begin 

          for population size / 2 

          begin 

               Select two individuals from old generation for mating  

               Recombine the two individuals to give two offspring 

               Compute fitness of the two offspring  

Insert offspring  
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Compute fitness of the two offspring  

          end 

          if population has converged then 

            finished: = TRUE 

   end 

end 

 

The power of GA comes from the fact that the method is robust and which can be used 

successfully for a wide range of problem areas including those which are difficult for 

other methods to solve [39]. GA differs from the other optimization and search 

procedures in four ways [38];   

 

• GA works with a coding of the parameter set, not the parameters themselves: 

The first step of the GA is always to find a way to code the parameters as a finite 

–length string over some finite alphabet.  

 

• GA searches from a population of points not a single point: In the application of 

many optimization methods we move in the search space from one single point 

to the next using some transition rules to determine the next point. The method 

point-to-point could be dangerous if we are in a multimodal ( many peaked ) 

search space. On the other hand GA works with a rich database of points thus the 

probability of finding a false peak is reduced over methods that go point to point. 

GA starts with a population of strings and thereafter generates successive 

population of strings.  

 

• GA uses payoff (objective function) information, not derivative or other auxiliary 

knowledge: Many search techniques require auxiliary information like gradient 

techniques which require derivatives. By contrast GAs have no need for an extra 

information. They only need payoff values (objective function values) associated 

with individuals strings.   
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• GA uses probabilistic transition rules, not deterministic rules: GAs use random 

choice as a tool to guide a search toward regions of the search space with likely 

improvement.  

 

Assembling together these four differences, use of coding, search from a population, 

blindness to auxiliary information and randomized information” assure to GAs 

robustness In the next section we will discuss about the elements of a GA.          

 
3.2.2 The Elements of a Genetic Algorithm 

 

GA is significantly more complicated than neighborhood search methods, with several 

interacting elements [40]; 

 

3.2.2.1 Chromosome Representation – Coding 

 

The potential solution to a problem may be represented as a set of parameters. These 

parameters so called genes are joined together to form a chromosome [39]. The position 

of a gene in a string called its locus and allele is the set of values that the genes can 

assume [40]. Many researchers still believe that the ideal to represent a chromosome is 

to use a binary alphabet for the string [39]. On the other hand, Janikow and 

Michalewichz [41] made a comparison between binary and floating-point 

representations and have shown that the floating point version gave faster and more 

accurate results. The important advantage of using non-binary representation is that we 

can easily adapt and use different mutation and crossover techniques [42]. Let us 

consider a simple example; suppose that we have a black box with bank of five input 

switches. For every setting of the five switches there is an output signal. Simple code can 

be generated by considering a string of five 1’s and 0’s where each of the five switches 

is presented by a 1 if the switch is on and a 0 if the switch is off. A coding (10000) 

represents that the first switch is on and the others are off. Chromosome representation is 

a very important and difficult step which affects clearly the accuracy of the GA.           
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3.2.2.2 Fitness Function    

 

A fitness function must be formulated for each problem to be solved. For a chosen 

crossover the fitness function returns a single numerical “fitness”. For many problems 

especially for function optimization the fitness function should measure the value of the 

function. But this is not always the case, for example with combinatorial optimization. In 

a realistic bridge design task there are many performance measures which we may want 

to optimize such as strength/weight ratio, span, maximum load, cost, construction time 

etc… [39].      

 

3.2.2.3 Initial Population 

 

The size of the initial population and the method to generate an initial solution are two 

important questions for initial population. GAs converge more rapidly with smaller 

population but better results are obtained with larger population. Intuitively, there should 

be some optimal value for a given chromosome length [40]. Goldberg has reported that 

the population size increase as an exponential function of the chromosome length. [43, 

44] The author has shown that a linear dependence of population size on chromosome 

length is adequate, but even there is a linear relation between population size and 

chromosome length in some cases we have to work with larger population. At this point 

the question we could ask is to find a minimum population size for a meaningful search 

[40]. According to the principle of “every point in the search space should be reachable 

from the initial population by crossover only” which was adopted in [45] we can 

conclude that there is at least one instance of every allele at each locus in the whole 

population [40]. Assume that the initial population is generated by a random sample. 

According to this assumption the probability that at least one allele is present at each 

locus can be formulated as follows;  

 

                                                       = (1 − (1/2)&'())                                              (3.1) 

 

using an exponential function approximation;  

 

                                                        ≈ +,-(−./2&'()                                                (3.2) 



26 
 

We can easily establish that; 

 

                                            0 ≈ 1 + log 2− )
)3 4 5 /.672  holds.                                  (3.3) 

 

According to this formulation; A population of size 17 is strong enough to ensure a 

probability of 99.9% for strings of length 50.  

 

On the other hand the method to generate an initial solution is also another important 

issue. Many researchers assume that initialization of the initial solution should be 

random [40] but Schmitt and Amini have reported that for various problem classes and 

sizes, a hybrid initial population yields superior results over a pure random initial 

population [46]. Ahuja and Orlin have also reported that an initial solution obtained from 

a heuristic can help a GA to find better solutions more quickly than a random start [47].  

 

3.2.2.4 Convergence and Termination Criterion  

 

Neighborhood search methods terminate when a local optimum is reached [40]. On the 

other hand GAs could in principle run forever if we don’t determine a termination 

criterion. Common approaches are to set a limit for fitness evaluation, computer clock or 

to track the population diversity [40].  

 

3.2.2.5 Reproduction: Crossover and Mutation 

 

During the reproduction phase of the GA, parents are selected from the population and 

recombined to obtain offspring for the new generation. Crossover is a methodology to 

recombine selected parents. Basically crossover takes two individuals, cuts their 

chromosome strings at some randomly chosen positions to produce two “head” and two 

“nail” segments. At this stage the tail segments are then swapped to produce two new 

chromosomes. This crossover method called “single point crossover” can be observed in 

the Figure 3.2;  
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      Figure 3.2: Crossover Operation 

 

The Mutation operation has been applied to each child after crossover. The principle of 

the mutation is to change randomly a gene of a chromosome with a small probability. 

(see Figure 3.3) 

 

 

 

 

 

 

 

 

 Figure 3.3: Mutation Operation 

 

Mutation provides a small amount of random search and helps us that there isn’t any 

point in the search space which has a zero probability of being examined.  

 

3.2.2.6 	ew Population  

 

When the reproduction phase is completed we need to define a selection strategy 

between parents and offspring to generate the new population. Slightly different 

strategies are commonly used in the literature.  Some GAs assume that parents are 

Offspring 

Mutated offspring 

1 0 1 0 0000 0 1 1 1 0 

Mutation Point 

1 0 1 0 1111 0 1 1 1 0 
 

Parents 

Offspring 

1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 

Crossover Point Crossover Point 

1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 
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replaced by their children [40]. Many implementations use the tactic of deleting the 

worst members of the population [48]. However this strategy may need large 

populations and high mutation rates to prevent a rapid loss of diversity [49].   

 
3.2.3 An Illustrative Example 

 

At this stage, let us try to solve a simple function by using GA. Suppose that we have the 

following with one variable.  

 

>(,) = ,. sin(10?. ,) + 1.0                                                                                         (3.4)                              

 

The problem is to find the value of x which maximizes the function f from the range [-1, 

2] (See Figure 3.4 for the graph of the function f)   

 

>@  (,) = sin(10?. ,) + 10?. ,. cos(10?. ,) = 0   ⇒   BCD(10?. ,) = −10?. ,     (3.5) 

 

The equation (3.5) has an infinite number of solutions. Since the domain of the problem 

is , ∈ [−1,2] the function reaches his maximum at ,IJK = LM
NO + P where P is very small 

number. >(,IJK) is slightly larger than > 2LM
NO5 = LM

NO ∗ sin 218? + R
N5 = 2.85 

 

Now we will devise a simple GA for the solution of this problem.  

 

3.2.3.1 Chromosome Presentation 

 

The domain of the variable x is in the interval [-1,2] and the length of this interval is 3. 

Suppose that we wish solve the problem with a required precision of six digits. This 

precision implies that the interval [-1,2] should be divided into at least 3*10000000 

equal size range. For our binary vector 22 bits is required;  

 

2097152 = 2N( < 3000000 ≤ 2NN = 4194304   
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Figure 3.4: Graph of the function f(x). 

 
The transformation of a binary string to a real number x from the interval [-1,2] will be 

done in two steps;  

 

• Convert the binary string from the base 2 to base 10.  

 

y = (b21; b20; ….; b0)2 

 

• Find a corresponding number x from the range [-1,2]; 

   

   x =  −1,0 +  y ∗ L
NXX'( 

 

For instance to transform a chromosome (1000101110110101000111) to a real number x 

from the interval [-1,2], we perform the following operations; 

 

First we transform the chromosome from base 2 to base 10; 

 

y = (1000101110110101000111)2 = 2288967 where 

 

Than we compute the corresponding number within the interval [1, 2]. 

 

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

-1,00 -0,75 -0,50 -0,25 0,00 0,25 0,50 0,75 1,00 1,25 1,50 1,75 2,00
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x =  −1,0 +  2288967 ∗ LM
NXX'( = 0.637197 

 

Note that the following chromosomes (0000000000000000000000) and 

(1111111111111111111111) represent of the boundaries of the domain -1.0 and 2.0 

respectively. 

 
3.2.3.2 Initial Population.  

 

The initial population of the genetic algorithm is generated randomly. We create a 

population of chromosomes where each chromosome is a binary vector of 22 bits.  

 

3.2.3.3 Fitness Function  

 

The fitness function for binary vectors is equivalent to function f; fit(v) = f(x). The 

fitness function plays the role of the environment to evaluate potential solutions of the 

problem. For example, three chromosomes;  

v1 = (1110110110110110110110)   corresponds x1=1.785714 

v2 = (0010010010010010010010)   corresponds x2=-0.571430 

v3 = (1110001110001110000000)   corresponds x3=1.666657 

 

fit(v1) = f(x1) = 0.225193 

fit(v2) = f(x2) = 0.553254 

fit(v3) = f(x3) = 2.443620 

Clearly the third chromosome is the best of the three because its fitness value returns the 

highest value. 

  

3.2.3.4 Crossover and Mutation Operators 

 

“The single point crossover” is used with a probability pc and a simple one point 

mutation is used with a probability pm (Recall that genetic operators have been discussed 

in the section 2.2.5)  
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3.2.3.5 Parameters  

 

The following parameters have been used in our genetic algorithm;  

 

• Population size is equal to 50. 

• Crossover and mutation probabilities pc and pm are equal to 0.25 and 0.01 

respectively 

• The new population is generated by replacing the 25 best solutions of the 

offspring with 25 worst solution of the parents population. The algorithm ends by 

obtaining 150 generations.  

 

3.2.3.6 Experimental Results 

 

The best chromosome after 150 generations was vmax= (1111001101000100000101)   

corresponds to xmax=1.850773 where f(xmax) = 2.850227 

 

The Table 3.1 shows the observed improve of the generations;  

 

Table 3.1: Improvements of the generations. 

Generation number 1 10 40 99 145 

Fitness Function 1.441942 2.250363 2.345087 2.849246 2.850227 

 

 

3.2.4 Mathematical Background of Genetic Algorithm 

 

3.2.4.1 Schemata Theorem  

 

Holland’s schemata theorem was the first rigorous explanation of GAs mathematical 

background [50]. The theoretical foundations of GAs rely on binary string presentation 

of solutions and on the notion of a schema [37]. A schema (similarity template) is a 

pattern of gene values which may be presented by a string of characters in the alphabet 

{1, 0, *} In this alphabet * means “wild card” or “don’t care symbol”. As an example 

consider the strings (chromosomes) of length 6 in a population A. The schema (1110*0) 
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represents two strings {(111000), (111010)} and the schema (*0000*) describes a subset 

of 4 strings; {(100001), (100000), (000001), (000000)} Of course the schema (111100) 

represents one string only and the schemata (******) represents all strings of length 6. 

The total number of schemata in a population A consists of strings with a length l is 3
l
. 

In the previous example there are 3.3.3.3.3.3 = 3
6
 = 729 schemata because each of the 

six positions may be 1, 0 and *. Without loss of generality for an alphabet with k 

elements (in our example k is equal to 2) there are only (k+1)
 l
 schemata in a population. 

Note that in the previous example with l = 6 there are 2
6
 = 64 strings. Why should we 

consider 729 schemata instead of 64 strings? Why to make the problem more difficult by 

enlarging the space of concern? The answer of these questions is that by interesting in 

strings alone we have restricted information about the population but if we consider the 

similarities among the strings in a population we add a wealth of new information to 

help our search [38]. Each string of the length l is matched by 2
l
 schemata [37]. For 

example let us consider a string (10100000000011111111) from a population A. This 

string is matched with the following 2
20

 schemata; 

 

(1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1) 

(* 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1) 

(1 * 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1) 

(1 0 * 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1) 

. 

. 

(1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 *) 

(* * 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1) 

(* 0 * 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1) 

. 

. 

(1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1**) 

(* * * 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1) 

. 

. 

(* * * * * * * * * * * * * * * * * * * *) 
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In a population of size n there are n×2
l 
different schemata may be presented. We will 

especially interest in the transportation of n×2
l
 different schemata to the next population 

in order to define an explanation of how GAs work. Then we will try to measure the 

effect of the “selection”, “crossover” and “mutation” to these schemata.  

 

All schemata are not created equal. Different schemata have different characteristics. 

There are three important properties to evaluate schemata; “schemata order”,  “defining 

length” and “fitness of a schema”. The order of a schema denoted by ο(H) is the number 

non “*” symbol it contains [39]. For example the following three schemata each of 

length 15.  

 

H1 = (1*10*100**1****) 

H2 = (*****100**1****) 

H3 = (1110100**1**110)  

 

have the following orders; ο(H1) = 7, ο(H2) = 4, ο(H3) = 11. As you can observe the 

schema H3, is the most specific one. The order of a schema is useful to calculate the 

survival probabilities of the schemata for mutations [37]. The defining length of the 

schema, denoted by δ(H) is the distance between the first and the last non “*” symbol. It 

defines the compactness of information contained in a schema [37]. For example δ(H1) = 

11 - 1 = 0, δ (H2) = 11 – 6 = 5 and δ(H3) = 15 – 1 = 14. The defining length of a schema 

is useful to calculate the survival probabilities of the schema for crossovers [37]. The 

fitness of a schema denoted by f(H) is the average fitness of the strings which belong to 

the subset represented by schemata. The effect of “selection” on the expected number of 

schemata is easy to determine. Let us denote m(H,t) the number of strings which belong 

to the subset represented by schemata H at a time t within the population A. During 

selection a string is selected according to its fitness. More precisely a string gets selected 

with probability -Y = Z[
∑ Z]

. The growth equation of number of the schemata at time t+1 

can be written as follows;  

 

                                                ^(_, B + 1) = ^(_, B) Z(`)
Za                                           (3.6) 
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where f(H) is the average fitness of the schemata H and >a is the average fitness of the 

population A In other words the number of strings in the population grows as the ratio of 

the fitness of the schemata to the average fitness of the population. If we define f(H) as 

f(H) = >a + c>a  the long term effect of the selection can be formulated as follows;       

 

                                     ^(_, B + 1) = ^(_, 0)(1 + b)c                                (3.7) 

 

This is a geometric progression equation; if c  >  0 “above average” schema receives an 

increasing number of strings in the next generation, if c  <  0 “below average” schema 

receives a decreasing number of strings in the next generation. Recall that the usage of 

crossovers and mutations are essential for the convergence of GAs to the optimum 

solution. To show the effect of a single point crossover with a random selection of a 

mate to the schemata let us consider the following example. Suppose that H1 and H2 are 

two different schema which both represent a string S and that we apply a single point 

crossover for the string S just between third and forth position of the string;   

 

S = 1 0 1| 0 1 1 1 

H1 = * 0 *| * * * 1 

H2 =   * * * | 0 1 * * 

 

As it can be observed when we apply the single point crossover the schema H1 will be 

destroyed because 0 at position 2 and 1 at position 7 will be placed in different offspring. 

(They are on opposite sides of the cut point.) On the other hand H2 will not be destroyed 

because the two non “*” symbols placed in one side of the cut point.  The order of two 

schemata is equal but their defining lengths are different; δ(H1)=5 and δ(H2)=1. If the 

crossover cut point is defined uniformly at random according to the length l = 7 -1 = 6 of 

possible points, we can say that H1 is destroyed according to the probability pd = δ(H1)/(l 

– 1). More generally the survival probability may be given as just below;             

 

                                                      -d  ≥  1 − -f
g(`)
)'(                                                           (3.8) 

 

Then if we recombine the effect of selection and crossover we obtain the estimate;  
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                                          ^(_, B + 1) = ^(_, B) Z(`)
Za h 1 − -f

g(`)
)'( i                         (3.9) 

 

This estimation tells us about the expected number of strings matching the schemata H 

in the next generation as a function of the actual number of strings matching the schema, 

relative fitness of the schema, and its defining length [37].  

 

Finally, the effect of the mutation can be adapted to the formulation as follows; the 

mutation is the random alteration of a single position with probability pm. For a schema 

H to survive, all of the non”*” symbols must survive. So survival probability of a 

schema is equal to (1- pm)
 ο(H.

. For small values of pm  (pm << 1) the schema survival 

probability may be approximated by the expression (1- pm). ο(H). Then we can enlarge 

our estimation by adding the mutation survival probability; 

 

                                 ^(_, B + 1) = ^(_, B) Z(`)
Za h 1 − -f

g(`)
)'( − -I. j(_) i          (3.10) 

 

The conclusion of this estimation is that short and low order, receive exponentially 

increasing trials in subsequent generations [38]. This conclusion is also named 

“Schemata Theorem” which constitutes the basic idea of GAs.  An immediate result of 

this theorem is that GAs explore the search space by short and low order schemata which 

are used for information exchange during crossover [37].   

 
3.2.4.2 Implicit Parallelism 

 

In the previous section we have mentioned that in a population A with n strings of length 

l there are at least 2
l 

and at most n×2
l 

schemata [37]. Some of these schemata are 

processed in a useful manner (desirably manner). Holland has shown that at least n
3
 

schemata are processing in a useful manner. Holland called this property “implicit 

parallelism” and proved this equality [50]; 

 

                                                    Dd = ()')kl().mn

o ⇒ C. nL                                           (3.11) 
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where Dd is the number of schemata, l is the length of the string and ls is the length of the 

schemata. Holland obtained this equation by restricting the population size to 2
ls/2

. 

 

We conclude that the number of schemata is proportional to the cube of the population 

size and that despite the perturbation of long and high-order schemata, genetic 

algorithms process a large quantity of schemata while processing relatively small 

quantities of strings [38].   

 
3.2.4.3 Building Block Hypothesis 

 

As a result of the schemata theorem GAs work well, when short and low order, highly fit 

schemata recombine to form even more highly fit schemata [51]. These short and low 

order schemata are called “Building Blocks” by Goldberg [38]. On the other hand by 

working with these particular schemata we have reduced the complexity of our problem 

because we construct better and better strings from best partial solutions [38].      

     

3.2.5 Application Areas of Genetic Algorithms 

 
There are a variety of application areas for genetic algorithms. Some of these 

applications have been used in practice while others remain as research topics [39];  

 

• �umerical Function Optimization: GAs have been used to solve difficult, 

discontinuous, multi model and noisy functions. 

 

• Image Processing: With medical or satellite images, we often need to align two 

images of the same area taken at different times. GAs can efficiently find a set of 

equations which transform one image to fit onto the other.   

 

• Combinatorial Optimization: The most widely studied combinatorial task is 

“The Travelling Salesman Problem”. The task is to find the shortest route by 

visiting each city exactly once. Another one is called “Bin Packing” which deals 

the task with determining how to fit a set of objects into a minimum number of 

bins. This problem has many applications in industry such as “job shop 



37 
 

scheduling”, “time tabling” etc... For solving these kinds of problem we need 

different coding, recombination and fitness function techniques.  

 

• Design Task: These tasks are mix problem of combinatorial and function 

optimizations. Bridge structures, fire hose nozzle and neural network structure 

are examples of the design tasks.  

 

• Machine Learning: There are many applications of GAs for learning systems; 

the usual paradigm being of a classifier system. GAs try to evolve a set of if-

then-else rules to deal with some particular situation. This can be applied to the 

game playing, maze solving and economic modeling [39]. 

 
3.3 Solving TSP with Genetic Algorithm 

 

In this section we give a discussion on solving the TSP by using GA. As we have 

mentioned before the problem is NP Hard. This implies that there is no polynomial time 

algorithm for the TSP unless P = NP [52]. The aim of this section is to define the settings 

of the GAs.  

 
3.3.1 Chromosome Representation 

 

In the literature there are three common vector presentations mostly used since 1980s; 

“adjacency”, “ordinal” and “path”. We will explain these representations by using an 

example of nine cities.     

 

Adjacency Representation 

 

This representation encodes a tour as a list of n cities [2]. If the tour leads from the city i 

to the city j according adjacency representation city j will be listed in a position i. For 

example the vector (3 8 5 2 6 4 1 9 7) represent the following tour; 1 – 3 – 5 – 6 – 4 – 2 – 

8 – 9 – 7. However some adjacency lists can present an illegal tour; vector (2 4 8 1 9 3 5 

7 6) leads to a subtour; 1 – 2 – 4 – 1.       
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Ordinal Representation 

 

The ordinal representation encodes a tour as a list of n cities; the i-th element of the list 

is a number from 1 to n-i+1. There is some ordered list of cities C which serves as a 

reference point for lists [2, 37]. For example given an ordered list (reference point) C = 

(9 8 7 6 5 4 3 2 1), a tour A = (9 – 8 – 6 – 7 – 2 – 5 – 4 – 3 – 1) is presented as a list l of 

references l = (1 1 2 1 4 1 3 1 1).     

 

The first number of list l is 1 so the first city of ordered city C is 9 as the first city of tour 

A. Remove the selected city from C and continue to the iteration until the element 

number of C is null. The main advantage of the ordinal presentation is that the classical 

“cut-and-splice” method works. This method means that if we split two different tours 

with ordinal representation and if we exchange the splitted parts between tours, we will 

always generate a legal tour [2]. 

 

For example, according to the reference list C = (1 2 3 4 5 6 7 8 9) the two parents; p1 = 

(1 1 4 6 | 3 2 1 1 1) and p2 = (2 2 2 1 | 1 1 1 1 1) corresponds the tours t 1 = 1 – 2 – 6 – 9 

– 5 – 4 – 3 – 7 – 8 and t2 = 2 – 3 – 4 – 1 – 5 – 6 – 7 – 8 – 9.  With the cross point marked 

“|” we apply “cut-and-splice” method and produce the offspring o1 = (1 1 4 6 | 1 1 1 1 

1) and o2 = (2 2 2 1 | 3 2 1 1 1). These offspring correspond to the tours t3 = 1 – 2 – 6 – 

9 – 3 – 4 – 5 – 7– 8 and t4 = 2 – 3 – 4 – 1 – 7 – 6 – 5 – 8 – 9. 

 

Path Representation 

 

The path representation is the most natural representation of a tour. For example a tour   

 

5 – 3 – 1 – 2 – 9 – 7 – 8 – 4 – 6 is represented as  (5 3 1 2 9 7 8 4 6) 

 
3.3.2 Crossovers for TSP 

 

In this section we will present the best known crossovers for “Path Representation”;  
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3.3.2.1 Partially Mapped Crossover (PMX) 

 

The PMX builds an offspring by choosing a subsequence of a tour from one parent and 

preserving the order and position of as many cities as possible from the other parent [2, 

53]. Two random cut points are selected and cities inside this two cut points are swapped 

with each other. For example, the two parents with two cut point can be presented as 

follows;  

 

p1 = (9 8 7 | 1 2 3 5 | 4 6) and p2 = (9 2 1 | 6 5 4 3 | 8 7)  

 

Firstly the cities between cut points are swapped each other. (The symbol “x” can be 

seen as “at present unknown”)  

 

o1 = (x x x | 6 5 4 3 | x x) and o2 = (x x x | 1 2 3 5 | x x) 

 

where 6 ↔ 1, 5 ↔ 2, 4 ↔ 3, 3 ↔ 5, are swapped.  According to this match we can fill in 

additional cities from original parents.  

 

o1 = (9 8 7 | 6 5 4 3 | x x) and o2 = (9 x x | 1 2 3 5 | 8 7) 

 

The first x in o1 should be 4 but 4 is replaced 3 because of mapping. The match of the 4 

is 3 but there is also a conflict because 3 is also replaced 5 in the first offspring. 

Furthermore we search the match of 3 which is 5 and then the match of the 5 which is 2. 

We replace the first x of the first spring by 2 because 2 has not been used yet. According 

this rule we fill the others x and obtain 2 new offspring;  

 

o1 = (9 8 7 | 6 5 4 3 | 2 1) and o2 = (9 4 6 | 1 2 3 5 | 8 7) 

 
3.3.2.2 Order Crossover (OX) 

 

The OX builds an offspring by choosing a subsequence of a tour from one parent and 

preserving the relative order of cities from the other parents [2, 54]. From the same 

example 2.6.2.1 we obtain;   
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p1 = (9 8 7 | 1 2 3 5 | 4 6) and p2 = (9 2 1 | 6 5 4 3 | 8 7)  

 

First of all we copy the segments between cut points to the offspring;    

 

o1 = (x x x | 1 2 3 5 | x x) and o2 = (x x x | 6 5 4 3 | x x) 

 

Then starting from the second cut point of one parent the cities from the other parent are 

copied in the same order. We select the second offspring and write the sequence of the 

cities;  8 – 7 – 9 – 2 – 1 – 6 – 5 – 4 – 3, by removing 1, 2, 3, 5 which are already in the 

first offspring we obtain; 8 – 7 – 9 – 6 – 4. Finally according this sequence we fill the 

unknown symbols of the first offspring starting from the second cut point.  

 

o1 = (9 6 4 | 1 2 3 5 | 8 7) Similarly we produce the other offspring;  o2 = (7 1 2 | 6 5 4 3 

| 9 8) 

 
3.3.2.3 Cycle Crossover (CX) 

 

The CX builds an offspring in such a way that each city and its position comes from one 

of the parents [2, 55] This crossover works as follows;  

 

p1 = (1 2 3 4 5 6 7 8 9) and p2 = (4 1 2 8 7 6 9 3 5)  

 

First of all the first city of the first parent is chosen to be equal to 1. 

 

o1 = (1 x x x x x x x x)  

 

Since every city should be chosen from one of its parents, the next city must be city 4.    

o1 = (1 x x 4 x x x x x)  

 

Furthermore we continue until we have a cycle;  

 

o1 = (1 x x 4 x x x x x)  

o1 = (1 x x 4 x x x 8 x) 



41 
 

o1 = (1 x 3 x4 x x x 8 x) 

o1 = (1 2 3 4 x x x 8 x) 

 

The remaining cities are filled in from the other parent  

 

o1 = (1 2 3 4 7 6 9 8 5) 

 

Similarly; 

 

o2 = (4 1 2 8 5 6 7 3 9) 

 

CX preserves the position of cities in the parent sequence [2].   

 
3.3.2.4 	earest 	eighborhood Crossover (		X) 

 

The NNX randomly selects a node as a starting point. Than a single offspring is 

generated by visiting the nearest unvisited node. If all neighbors of the selected city has 

already be used in the offspring then we choose the nearest city according to the cost 

matrix. Suppose that we have a distance matrix (see Table 3.2) for a STSP with 7 cities 

and that two parents A = (1 3 2 4 7 6 5) and B = (7 5 6 4 1 2 3). The fitness value of A 

and B are 32 and 31 respectively according to the distance matrix.  

 

For a starting point we randomly select city 3 which is the first node of our offspring.  

 

o1= (3 x x x x x x ) 

 

In the two parents A and B there are 3 neighbors to city 3 which are {1, 2, 7} and the 

distance of the neighbors to city 3 are {7, 2, 8} respectively. Then we choose city 2 as 

the second node of the offspring because its distance to city 3 is the minimum.    

 

o1= (3 2 x x x x x ) 
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The unvisited neighbors of city 2 are {1, 4} and their distance to city 2 are {5, 1}. Where 

we choose city 4 as the third node of the offspring because its distance to the city 2 is the 

minimum.     

 

Table 3.2: Cost matrix for illustrative example.  

	ode 1 2 3 4 5 6 7 8 

1 0        

2 5 0       

3 7 2 0      

4 4 1 10 0     

5 8 4 11 4 0    

6 2 3 12 3 4 0   

7 1 4 8 2 5 8 0  

8 9 12 1 2 3 4 6 0 

 

o1= (3 2 4 x x x x ) 

 

According to this rule we generate the offspring o1 = (3 2 4 7 5 6 1). The fitness value of 

the new offspring is 23 which is less than the fitness values of both parents.  

 
3.3.2.5 Edge Assembly Crossover (EAX)   

  

EAX is one of the most efficient and effective crossovers for TSP. The basic steps of the 

crossover can be quoted as follows [56, 57]; 

        

• Define a graph GAB by merging the edges of two parents A and B. Each edge in 

GAB is annotated with the parent to whom it belongs. Note that GAB may contain 

two instances of the same edge.     

 

• Divide the edges on GAB into AB-cycles. These cycles have been generated by 

alternately tracing the edges of the tours A and B.  
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• Construct an E-set by selecting AB cycles according to a predefined rule. There 

are two important  methods proposed in the literature;  

 

o E-set constructed by randomly selecting AB cycles. 

 

o The E-set is constructed from a single AB cycles. The intermediate 

solution is similar to tour-A. Children are constructed by removing a 

small number edges from tour A and adding the same number of edges 

from tour B to tour A.  

 

• Generate intermediate tour by applying the E-set to tour A by removing tour A’s 

edges in the E –set from tour-A and adding tour B’s edges in the E-set to it.  

 

• Modify the intermediate solution to obtain a valid tour.  

 

An illustrative example of the EAX is given with Figure 3.5. 

 

3.3.3 Heuristics for TSP 

 

In this section we will discuss about tour construction and tour improvement procedures. 

Tour construction procedures build an optimal tour starting from the distance matrix. 

Tour improvement procedures start with a feasible tour and seek to improve the tour 

with interchanges [13].    

 

3.3.3.1 Tour Construction Heuristics  

 

Tour construction heuristics for the TSP starts with a partial tour of a few nodes, next 

selects a non tour node according to a particular criterion, inserts that node at a position 

in the partial tour and repeats selection-insertion moves until all nodes have been 

inserted to the complete tour. There are three key components of the tour construction; 

“choice of an initial sub tour”, “the selection criterion” and “the insertion criterion” 

[3]. According to this definition we will present 4 tour construction heuristics;  
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Figure 3.5: An illustrative example of the EAX. 

 
3.3.3.1.1 	earest 	eighbor Heuristic 

 

The aim of the Nearest Neighbor (NN) heuristic is to always visit the nearest city. Firstly 

we randomly select a city and then we find the nearest unvisited city. We repeat the 

selection procedure until there is not any unvisited city [58]. Consider the same example 

of the Section 2.6.4.2 and suppose that we select the city 3 as a starting point. The 

second city of the tour will be the city 8, because this city is the nearest city to the city 3. 

According to the NN the complete tour of the example will be (3 8 4 2 3 1 7 5 6), and the 

fitness value of the tour is 35.       
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3.3.3.1.2 	earest Insertion Heuristic 

 

Nearest Insertion (NI) heuristic selects the non tour node whose distance to tour node is 

minimum and inserts the selected node at a position such that the increase in cost is 

minimized. Suppose that we have a node k which we want to replace it between nodes i 

and j. The variation in cost can be calculated as; ∆c = cik + ckj - cij 

 

Considering the example of Section 2.6.4.2 and suppose that we select three city as a 

starting tour; (3 8 4) we first calculate the distance of the non tour node to tour node and 

we select the city 1. After the selection, we define the position of city 1 in the tour by 

calculating the increase in total cost if we insert the city 1 between nodes (3, 8), (8, 4) 

and (4, 3) respectively. These are ∆c1 = c31 + c18 – c38 = 7 + 9 – 1 = 15, ∆c2 = c81 + c14 – 

c84 = 4 + 9 – 2 = 11, ∆c3 = c41 + c13 – c43 = 4 + 7 – 10 = 1. Since c3 has the minimum 

increase we insert the city 1 between 4 and 3. The new tour is (3 8 4 1). According to the 

NI the complete tour of the example will be (3 8 5 4 7 1 6 2), and the fitness value of the 

tour is 18.           

 

3.3.3.1.3 Farthest Insertion 

 

Farthest Insertion (FrI) selects the node whose minimum distance to a cycle node is 

maximum and inserts the selected node at a position such that the increase in cost is 

minimized. Considering the example of Section 2.6.4.2 and suppose that we select three 

city as a starting tour (3 8 4). According to the FrI the complete tour of the example will 

be (3 8 5 4 6 1 7 2), and the fitness value of the tour is 20. 

 
3.3.3.1.4 Cheapest Insertion 

 

Cheapest Insertion (CI) selects the node that can be inserted at the lowest increase in cost 

and inserts the selected node at a position such that the increase in cost is minimized. 

Considering the example of Section 2.6.4.2 and suppose that we select three city as a 

starting tour (3 8 4). According to the CI the complete tour of the example will be (3 8 5 

4 6 1 7 2), and the fitness value of the tour is 16. Figure 3.6 visualizes the difference 

between insertions heuristics. NI selects the node k, FI selects the node m and CI selects 

the node n.   
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            Figure 3.6: The difference between insertions heuristics. 

 
3.3.3.2 Tour improvement heuristics   

 

Tours generated by the construction heuristics are moderate quality and they are not 

satisfactory in general. The improvement heuristics are used to cover the weakness of 

the construction heuristics. Improvement heuristics are characterized by a certain type of 

basic move to alter the current tour. There are two important modifications to improve 

the tour. These are 4ode Research and Edge Research. 4ode Research consists of 

removing a node from the current tour and reinserting it at the best possible location. 

Edge Research consists of removing an edge from the tour and inserting at the best 

possible position. 

 

3.3.3.2.1 K-opt move 

 

K-opt move is one of the most widely used move operation. Here k is a number greater 

than 2. The 2-opt move removes two edges from the tour and reconnects the two paths 

created. There is only one way to reconnect the two paths. Suppose that we have a tour 

(1 … i j ..k m… n) with n nodes, a 2-opt move will change the tour as follows (1… i k 

….j m…n). The change in the cost function after the 2-opt operation is ∆ = c(i,k) + 

c(j,m) - c(i,j) - c(k,m) (See Figure 3.7) [58, 1]. 

 

3-opt move works as 2-opt move but instead of removing 2 edges we remove three. 

There are eight possible 3-opt move.    

kkkk    nnnn    

mmmm    
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 Figure 3.7: 2-opt move 

 

3.3.3.2.2 Or-opt move  

 

Or-opt move is a generalization of the edge insertion move where a path is removed 

from the tour and reinserted at the best possible location [59]. 

aaaa    

bbbb    



4 EVOLUTIO	ARY APPROACH TO SOLVE TSPPD 

 

 

 

4.1 Mosheiov’s Theorem  

 

The basic idea of our evolutionary algorithm comes from the Mosheiov’s Theorem. In 

his early paper Mosheiov [14] has proved the following result: Given a Hamiltonian tour 

(i1, i2, …, ik, …, in,) covering all the pickup and delivery nodes but the depot, there exists 

at least one starting point ik on this tour such that when the depot is inserted between ik 

and ik+1 the resulting tour, (i1, i2, …, ik, 0, ik+1, …, in,) is feasible for the TSPPD. Using 

this result Mosheiov [14] has proposed a two stage Depot Insertion (DI) heuristic. In this 

heuristic first a Hamiltonian tour consisting of pickup and delivery points is found. Then 

a starting point ik on this tour is found such that the depot is feasibly inserted right after it. 

Mosheiov [14] has noted that since the starting point that we will insert the depot is not 

necessarily unique, among all possible starting points, the one which yields the minimum 

tour length should be chosen.   

 

4.2 Genetic Algorithm for TSPPD 

 

According to the Mosheiov’s proof, the stages of our approach can be detailed as 

follows;   

 

Stage 1: Find a travelling salesman tour through all customers by using the GA.  

 

begin  

 generate initial population P 

 improve initial population with 2-opt 

 compute the fitness of each individual for P  

 while stopping condition is not satisfied do 

 for i = 1 to pop_size  
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     select two parents p1 and p2 from P according to a random selection rule 

cross p1 and p2 by using NNX or PMX and obtain an offspring o1 

improve o1 with 2-opt 

mutate o1 according to a predefined mutation rule  

end for // a new offspring population O is created  

           compute the fitness of each individual for O  

           replace the worst half of the P with the best half of the O 

replace the worst %10 parents by generating new parents according to the 

random generation of the initial population.  

 end while 

improve the best solution with 2-opt 

end 

 

Stage 2: Identify all feasible starting points where the depot can be inserted and choose 

the best one which yields the minimum tour length.  

 

Stage 3: Use a local neighborhood search to improve the solution. (TUNING PHASE)  

 

There are two different methods to improve the solution obtained from the second step. 

The first method (classical method) proposed by Gendreau et al. [15] is to use a local 

neighborhood search scheme. This method applied after the insertion of the depot 

employs the feasible arc exchange. The second method which is also used in our GA 

employs local search strategies by removing the depot, applying 2-exchanges operations 

and then reinserting the depot among the candidate positions. Given a feasible TSPPD 

tour (0,1,2,3,4,0) for a five node problem, when we apply the classical method on this 

TSPPD we obtain the following 5 neighbor solutions;  

 

(i)  (0,3,2,1,4,0) (ii) (0,1,3,2,4,0) (iii) (0,1,2,4,3,0) 

(iv)  (0,2,1,3,4,0)   (v)  (0,1,4,3,2,0)  

 

Observe that we can disregard (i) and (v) because we have already checked that they are 

not better than the given original tour. 
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When we apply the second method of local search we first disconnect the depot from the 

original tour (0,1,2,3,4,0) and we get the Hamiltonian tour (1,2,3,4,1). When we apply 2-

exchange operation to this tour we obtain the following neighbors: 

 

(vi) (1,2,4,3,1) (vii)  (1,3,2,4,1) 

 

For each of these tours and the initial tour (1,2,3,4,1) we have 4 alternative locations to 

reinsert the depot. Hence, we obtain the following tours;  

 

(viii) (0,1,3,4,2,0) (xii)  (0,1,4,2,3,0) (xvi)    (0,1,4,3,2,0) 

(ix)   (0,1,2,4,3,0) (xiii) (0,1,3,2,4,0) (xvii)   (0,2,1,4,3,0) 

(x)    (0,2,1,3,4,0) (xiv) (0,2,4,1,3,0) (xviii)  (0,3,2,1,4,0) 

(xi)   (0,3,1,2,4,0) (xv)  (0,2,3,1,4,0) (xix)    (0,1,2,3,4,0) 

 

Observe that (i) and (xviii), (ii) and (xiii), (iii) and (ix), (iv) and (x), (v) and (xvi), are the 

same tours. Hence, we can say that the depot removal, 2-exchange and depot reinsertion 

operations include all the neighbor solutions obtained with classical local search method 

applied to the original tour (0,1,2,3,4,0).  

 

In Figure 4.1, we present the depot insertion move. Black (white) nodes represent the 

deliveries (pickups). The vehicle capacity Q=10. In the left hand side the solution is 

(0,3,2,1,4,5,6,7,8,0) with the tour length 34.05 while in the right hand side the solution is 

(0,6,5,4,3,2,1,8,7,0) with the tour length 23.28. There are 8 customers indicated by 

numbers on nodes and their demands are given in parentheses. Positive (negative) 

demands correspond to pickup (delivery) requests. Observe that we delete edges  (0,8), 

(3,0), (7,6), (1,4) and add edges  (1,8), (7,0), (0,6), (3,4). 

 



 

                    Figure 4.1: De
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  o(k) � q; 

       end for 

 end. 

 

There are many tour improvement methods in the literature such as “k-opt”, “Or-opt”, 

“Lin Kernighan Procedure” etc… [14]. To accelerate the convergence of our GA we 

have employed 2-opt. 2-opt procedure proceeds by replacing two non adjacent edges 

(b1,k1) and (b2,k2) with two others (b1,b2) and (k1,k2).  The change is the cost function 

after the 2-opt operation is � = c(b1,b2) + c(k1,k2) - c(b1,k1) - c(b2,k2). In our model 2-

opt is applied if and only if � ≥ 0. As a mutation operator we have used a simple 3-

exchange mutation operator. [9] We randomly choose 3 cities and exchange their places 

in the tour. In case there are no improvements the tour is not changed.      

 

In parent selection first of all we form a mating pool from the current population by 

replicating each chromosome. Then we randomly select the pairs of parents. The 

crossover operator generates one offspring from each pair. With newly generated 

offspring, we sort parents and offspring separately according to their fitness values. Then 

we carry the best half of offspring and parents to the next generation. We stop our GA if 

average fitness is exactly the same in two consecutive generations. In addition to this 

condition we use an iteration limit of 100 for offspring generation.  

 

4.4 Computational Results  

 

Our proposed GA is tested on standard instances taken from the literature. Two classes 

of instances that are generated by Gendreau et al. [15] are considered as our test bed. In 

the generation of test instances Gendreau et al. [15] have used a non-negative β 

parameter to indicate the percentage of the demand allocated to the pickup quantity. 

More specifically, given the demand quantity qi of each node i of VRP test instance, the 

delivery quantity of that node is set to di and the pickup quantity pi is determined 

according to the following rule: 

 

�	 =   ��1 − �� ∗ �     if i is even 
�1 + β� ∗ d�     if i is odd �      for i = 1, …, n 
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For each instance size, we set β = 0.00, 0.05, 0.10, 0.20, ∞. For β = 0 we have a TSP 

instance, and for β = ∞, the di and pi values are uncorrelated. The first class of instances 

generated by Gendreau et al. [15] consists of 26 test problems with customer sizes 

varying from 6 to 261. The instances in the first class are derived from the symmetric 

VRP instances in the literature. The second class consists of randomly generated 

instances with n = 25, 50, 75, 100, 150 and 200. For each pair of n and β values, ten 

instances are generated by Gendreau et al. [15]. Note that for instances in the second 

class with β = ∞, di and pi values are uncorrelated and generated uniformly random in 

[1,100]. Table 4.1 and Table 4.2 summarize the results of the first class of test instances. 

Each cell of these tables stand for the average value obtained with 26 instances on the 

first class. In Table 4.3 and Table 4.4 we present the results obtained with the instances 

on the second class, where each cell indicates the average results of ten instances for 

each pair of n and β values. In Table 4.1 and Table 4.3 we present the results obtained 

with several upper bounding approaches. The values reported are computed as 100 ×
� !"/ $%&� where zUB is the upper bound obtained with the corresponding algorithm and 

zTSP is the optimum TSP solution value. In Table 4.2 and Table 4.4 we give the average 

CPU times. In Table 4.1, Table 4.2, Table 4.3 and Table 4.4, the first columns include β 

parameters. The second columns indicate the results obtained with the TS algorithm by 

Gendreau et al [15]. IOA columns include the results reported with the incomplete 

optimization algorithm by Hernández-Perez and Salazar-González [31]. The fourth 

columns indicate the results of the GA devised by Zhao et al [35]. The fifth columns 

display the results obtained with our GA. The last rows of the tables provide the 

averages of the corresponding columns. In order to compare the CPU time requirements 

of the algorithms we consider the performance evaluation and benchmarking approach 

proposed by Dongarra [60]. The author proposes to measure the power of a computer by 

its floating-point rate of execution in Mflops. Both the TS and IOA are run on an AMD 

1.333 GHz PC with 649 Mflops. The GA is tested on a Pentium 1.33 GHz PC with 352 

Mflops. Our experiments were performed on an Intel Pentium 2.2 GHz PC with 400 

Mflops. The estimated powers of these computers, in terms of Mflops are taken from 

Dongarra [60].  We scale the average CPU times to the slowest computer, namely, the 

computer on which the TS and IOA are run. Considering the scaled CPU times reported 

in Table 4.5, we can say that the most efficient approach is the GA with Zhao et al., 

which is slightly better than our GA. However, for the instances in the second class, our 
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GA is the most efficient algorithm. Therefore, we can conclude that the proposed GA 

yields a comparable efficiency to the GA by Zhao et al. with a better accuracy. Recall 

that our GA performs the proposed tour improvement procedure at the final step for each 

Hamiltonian tour in the population and our GA outputs the best solution. For the sake of 

clarity, we should report that when our GA is run without the final tour improvement 

procedure we have obtained average bounds of 100.29 for the first class of test instances 

and 100.68 for the second class of test instances. However, the average bounds obtained 

with our EA using the tour improvement procedure are 100.04 and 100.13 for the first 

and second classes of test instances, respectively. This shows us the power of our tour 

improvement procedure, which is specially designed for the TSPPD. 

 

Table 4.1: Best bounds obtained on the first class of instances. 

β EA GA TS IOA

0,00 100,046 100,05 100,51 100,05

0,05 100,028 100,04 102,45 100,61

0,10 100,038 100,08 104,34 100,72

0,20 100,058 100,06 106,16 100,90

Average 100,04 100,06 103,37 100,57
 

 

Table 4.2:  Average CPU times spent on the first class of instances. 

β EA GA TS IOA

0,00 1,690 1,41 3,10 0,93

0,05 1,784 1,41 2,18 0,87

0,10 1,784 1,42 2,31 1,07

0,20 1,587 1,43 2,26 1,02

Average 1,71 1,42 2,46 0,97
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Table 4.3: Best bounds obtained on the second class of instances. 

β N EA GA TS IOA

25 100,00 100,00 100,00 100,00

50 100,00 100,00 100,20 100,00

75 100,00 100,00 100,78 100,00

100 100,01 100,10 101,27 100,10

150 100,10 100,33 102,37 100,34

200 100,41 100,36 103,13 100,35

25 100,00 100,00 107,36 102,07

50 100,00 100,00 103,95 100,17

75 100,04 100,12 110,13 100,83

100 100,02 100,13 107,23 100,39

150 100,11 100,26 108,72 100,35

200 100,39 100,57 108,57 100,69

25 100,00 100,00 108,21 101,18

50 100,00 100,00 106,34 100,47

75 100,15 100,15 113,28 101,32

100 100,15 100,12 111,53 100,50

150 100,12 100,46 110,90 100,68

200 100,44 100,72 111,31 100,76

25 100,05 100,00 107,28 102,59

50 100,05 100,00 106,53 100,79

75 100,06 100,12 114,25 101,77

100 100,12 100,20 113,09 100,96

150 100,17 100,60 111,69 101,02

200 100,46 100,85 113,28 100,99

25 100,00 100,00 105,64 101,32

50 100,03 100,00 110,86 102,47

75 100,10 100,13 111,86 100,91

100 100,13 100,15 110,34 100,87

150 100,29 100,39 112,85 100,63

200 100,46 100,71 113,03 100,83

100,13 100,22 108,20 100,85Average

0,00

0,05

0,10

0,20

oo
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Table 4.4: Average CPU times spent on the second class of instances. 

β N EA GA TS IOA

25 0,04 0,25 0,16 1,10

50 0,25 0,51 0,75 1,20

75 0,39 0,90 1,82 1,50

100 1,00 2,25 3,24 1,60

150 4,15 4,25 8,35 2,70

200 7,32 6,93 15,27 3,40

25 0,05 0,24 0,18 1,00

50 0,25 0,50 0,60 1,20

75 0,40 0,89 1,32 1,10

100 0,90 2,28 2,37 1,90

150 3,49 4,15 5,46 2,80

200 7,87 6,71 11,15 3,00

25 0,05 0,24 0,17 1,10

50 0,27 0,51 0,63 1,10

75 0,39 0,95 1,42 1,40

100 0,93 2,25 2,60 2,30

150 3,28 4,18 6,19 3,00

200 7,98 6,92 11,93 3,10

25 0,06 0,24 0,20 1,10

50 0,28 0,50 0,72 1,10

75 0,42 0,88 1,44 1,50

100 0,91 2,26 2,61 2,00

150 3,27 4,30 6,01 2,50

200 7,12 6,94 11,85 3,50

25 0,07 0,25 0,18 1,00

50 0,30 0,51 0,73 1,20

75 0,44 0,92 1,42 1,20

100 0,94 2,29 2,59 1,70

150 3,62 4,22 5,78 2,40

200 7,65 6,98 11,21 3,60

2,14 2,51 3,95 1,91Average

0,00

0,05

0,10

0,20

oo
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Table 4.5: Scaled CPU times. 
Instance Set EA GA TS IOA

First Class 1,050 0,77 2,46 0,97

Second Class 1,320 1,36 3,95 1,91

Average 1,19 1,07 3,21 1,44
 

 

 

 

 

 

 

 

 

 

 

 



 

5.  CO�CLUSIO� 

 

 

 

In this dissertation we have focused on TSPPD which is an extension of the famous TSP. 

The problem involves two sets of customers: “Delivery Customers” and “Pickup 

Customers” We term the central warehouse as “Depot” and all delivery and pickup 

services are done by a single vehicle with a given capacity Q. There are two types of 

goods: delivery and pickup goods. A vehicle which departs from the depot fully loaded 

satisfies all the customer’s needs and returns back to the depot. The objective of the 

TSPPD is to minimize the total travelling distance. TSPPD is NP-hard combinatorial 

optimization problem. To the best of our knowledge there are not many publications on 

TSPPD. The aim of this thesis is to propose an efficient GA for the TSPPD. 

 

The basic idea of our GA comes from the Mosheiov’s Theorem. According to his result 

when we construct a Hamiltonian tour covering all pickup and delivery customers except 

the depot, there exists at least one node ik on this tour such that if we insert the depot 

between ik and ik+1 the resulting tour is feasible. Based on this theorem we have 

developed a GA which consists of three stages. The first stage is to solve travelling 

salesman tour through all customers by using the genetic algorithm. The second stage is 

to find best starting point to insert the depot. Finally the third stage is to apply local 

neighborhood search which we term “Tuning Phase”. Computational experiments are 

reported on the standard test instances from the literature. Two classes of instances that 

are generated by Gendreau et al. [4], are considered as our test bed. The first class of 

instances consists of 26 test problems with customer sizes varying from 6 to 261. The 

second class consists of randomly generated instances with n= 25, 50, 75, 100, 150 and 

200.  We have compared our EA with 3 different algorithms; The TS algorithm by 

Gendreau et al [4], the incomplete optimization algorithm by Hernández-Perez and 

Salazar-González [6] and the GA devised by Zhao et al [13]. According to the 

experimental results, we can say that the proposed GA yields promising performance in 
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terms of both accuracy and efficiency compared to these existing algorithms. We should 

also report that the usage of the tuning phase clearly improves the solution obtained after 

the second step. This shows us the power of our tour improvement procedure, which is 

specially designed for the TSPPD.  As a further research we suggest the adaptation of 

the proposed GA to One – Commodity Pickup and Delivery TSP.   
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APPE�DIX:  C++ Coding  

 

 

 

#include <iostream> 

using namespace std; 

#include <fstream> 

#include <math.h> 

#include <time.h> 

#include "Header_1.h" 

int main(){ 

int i,j,N,p,h; 

double x,c,l,a; 

double bas,son,best,time,skor,toplamtime,toplamskor,besttime,D,beta; 

char dos[50]; 

char atla[3000]; 

double **K=new double*[M];   

for(i=0;i<M;i++) K[i]=new double[N+2]; 

double **DIS=new double*[N+2];   

for(i=0;i<N+2;i++) DIS[i]= new double[N+2]; 

double **D=new double*[N+2];  for(i=0;i<N+2;i++) D[i]= new double[2]; 

double **B=new double*[N+2];  for(i=0;i<N+2;i++) B[i]= new double[2]; 

double **INS=new double*[N+4];   for(i=0;i<N+2;i++) INS[i]= new double[N+4]; 

double **IN=new double*[N+2];  for(i=0;i<N+2;i++) IN[i]= new double[N+2]; 

double **X=new double*[N+1];  for(i=0;i<N+1;i++) X[i]= new double[5]; 

int *BEST=new int [N+4];  

double *U=new double [SDD]; 

int *V=new int [SDD]; 

double *UU=new double [SDD]; 

int *VV=new int [SDD]; 
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D=0; 

skor=1000000000; 

besttime=100000000; 

toplamtime=0; 

toplamskor=0; 

best=0; 

int q;  

for ( q=0;q<SDD;q++ ) {  

for ( h=0;h<T;h++) { 

bas=cpu_time();  

GENETIK( N,M,O,BEST,IN,best,q); //   

best= UZ(N,BEST,IN); 

TURINSERT( N,BEST,X,INS,c,l); 

POSTTWOP(N,BEST,X,INS,c,l); 

best= UZ(N+1,BEST,INS); 

U[q]=best; 

V[q]=q+1; 

son=cpu_time(); 

time = son - bas; 

UU[q]=time; 

VV[q]=q+1; 

if (best<skor){ 

skor=best; 

 } 

if (time<besttime){ 

 besttime=time; 

 } 

 } // end of for T  

 } 

heapsort(UU,VV,0,SDD-1); 

heapsort(U,V,0,SDD-1); 

toplamtime=0; 

toplamskor=0;  
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for (q=0;q<Q;q++){ 

 toplamtime=toplamtime+UU[q]; 

 toplamskor=toplamskor+U[q]; 

 } 

toplamtime=toplamtime/(Q); 

toplamskor=toplamskor/(Q); 

skor=U[0]; 

besttime=UU[0]; 

} // p dongusunun sonu  

return 0;  

} 

 

void GENETIK( int nn, int mm, int oo,  int *&BEST, double **&INS, double best, double 

sdd){ 

int i,j,k,t,q,a,s,l; 

srand(sdd); 

int **P=new int*[mm];  //populasyon matrisi 

for(i=0;i<mm;i++) P[i]=new int[nn+2]; 

int *Y=new int[nn+2]; 

double *U=new double[nn+2]; 

double *UU=new double[mm+2]; 

int *VV=new int[mm+2]; 

POP(nn,mm,P,k,sdd); 

 

for (i=0;i<mm;i++){ 

for (j=0;j<nn;j++){ 

  Y[j]=P[i][j] 

 } 

 TWOP1(nn,Y,INS); 

for (j=0;j<nn;j++){  

P[i][j]=Y[j]; 

} 

UU[i] = UZ(nn,Y,INS); 
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VV[i] = i+1; 

} 

heapsort(UU,VV,0,mm-1); 

 

i=VV[0]; 

 

for (j=0;j<nn;j++){ 

BEST[j]=P[i-1][j]; 

} 

best=UU[0]; 

for (t=0;t<oo;t++){ 

cout<<"hata4"; 

ESNX(nn,mm,P,UU,VV,INS,i); 

for (i=0;i<mm;i++){ 

for (j=0;j<nn;j++){ 

Y[j]=P[i][j];    

 } 

TWOP1(nn,Y,INS); 

MUTASYON(nn,Y,INS,3); 

 UU[i] = UZ(nn,Y,INS); 

 VV[i] = i+1; 

for (j=0;j<nn;j++){ 

  P[i][j]=Y[j];    

 } 

} 

heapsort(UU,VV,0,mm-1); 

 

  if((UU[0]<best)){ 

  i=VV[0];     

  for (j=0;j<nn;j++){ 

  BEST[j]=P[i-1][j]; 

  } 

  best=UU[0]; 
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}  

} 

for (i=mm-3;i<mm;i++){    

  q = VV[i]; 

  for(j=0;j<nn;j++){  

  U[j]=0; 

  } 

  for (k=0;k<nn;k++){ 

  s=0; 

  l=rand()%(nn-k)+1; 

  for (a=0;a<nn;a++){ 

  if (U[a]==0) s=s+1; 

  if (s==l)   

  { 

   U[a]=1; 

   P[q-1][k]=a+1; 

   break; 

  } 

  } 

  } 

  } 

for (i=0;i<mm;i++){ 

for (j=0;j<nn;j++){  

  Y[j]=P[i][j]; 

     

 } 

UU[i] = UZ(nn,Y,INS); 

VV[i] = i+1;  

} 

heapsort(UU,VV,0,mm-1); 

}  

TWOP2(nn,BEST,INS); 

delete [] Y; 
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delete [] UU; 

delete [] VV; 

delete [] U; 

for (i=0;i<mm;i++) delete [] P[i];  

delete [] P; 

} 
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