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ABSTRACT 

 

 

The facility location-allocation problem is an important topic that arises in many 

practical settings.  These applications arise in various areas such as transportation, 

distribution, production, supply chain decisions and telecommunication.  As a result, the 

studies on the facility location problems are steadily increasing in the literature. 

 

In this work, we have concentrated on the Single Source Capacitated Multi-Facility 

Weber Problem (SSCMWP) which aims to tackle the optimal location of a number of 

facilities such as plants, warehouses or concentrators that will serve a set of customers 

with known locations under single source assumption. The SSCMWP is a non-convex 

optimization problem and hence difficult to solve. 

 

The SSCMWP can be considered as the Capacitated Multi-facility Weber Problem 

(CMWP) when the customers are not forced to serve from exactly one facility and the 

CMWP becomes Multi-Facility Weber Problem (MWP) when the capacity restrictions 

on facilities are ignored.  Furthermore, the MWP reduces to the Weber Problem (WP) 

when the objective is to find optimal location for a single facility that will serve a set of 

customers.  It is well-known that the WP is solved by Weiszfeld’s algorithm to 

optimality. 

 

Previous studies on the WP and its extensions have shown that the optimal facility 

locations lie on the points obtained by the intersection of vertical and horizontal lines 

drawn by passing through the customer locations.  Keeping in mind this result, we have 

presented Discrete Approximation Problem (DAP) which can yield the optimal solution 

of the rectilinear distance SSCMWP. One weakness of the DAP approach is its drastic 

CPU time requirement. Especially for large instances, it may not be possible to find the 

optimal solution of the rectilinear distance SSCMWP by solving DAP to optimality.  
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Hence, this fact is one of our motivations to construct efficient and accurate heuristics 

for the rectilinear distance SSCMWP. 

 

The first heuristic that we consider in this study is an Alternate Location Allocation type 

(ALA) heuristic which is inspired from the seminal work of Cooper (1972).  We have 

adopted his approach in order to compare it with other heuristic algorithms which we 

propose for the rectilinear distance SSCMWP.  The ALA heuristic consists of two 

phases: allocation phase and location phase.  In the allocation phase, we have employed 

a commercial MILP solver (i.e. CPLEX) to solve the Single Source Transportation 

Problem (SSTP).  In the location phase, we have performed the Weiszfeld’s algorithm.  

We have observed that especially for the large SSTP instances, running the ALA type 

heuristic becomes a computationally painstaking task.  Thus, we have resorted to 

improve the allocation phase of the ALA type heuristic by heuristically solving the 

SSTP either by a Very Large Scale Neighbourhood (VLSN) search algorithm or by a 

Tabu Search (TS) algorithm. 

 

The second heuristic that we suggest incorporates a VLSN search algorithm to solve the 

SSTP.  That is to say, the VLSN search algorithm is performed as a subprocedure 

within the ALA heuristic in order to heuristically solve the SSTP.  The VLSN search 

heuristic is constructed by using multi-exchange moves with some ejection rules. We 

have designed two versions of the VLSN search algorithms: feasible chasing and 

allocation improvement.  As ejection rules, we have employed only two simple rules: 

Random Ejection (RE) rule and Recency Based Memory (RBM) rule.   

 

The third heuristic that we propose includes a TS algorithm to solve the SSTP.  Within 

this algorithm, we have devised swap moves. Furthermore, we have devised two 

versions of the TS algorithm.  In the first version, we allow infeasible moves while in 

the second version we do not allow infeasible moves.  

 

By performing computational experiments on test instances obtained from the OR-

library, we have observed that both VLSN search and TS algorithms yield substantial 

improvements over the ALA type heuristic.  Especially we should note that the 
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proposed VLSN search algorithm yields significantly better results especially in 

reasonable CPU times.   

 

 



 

 

RESUME 

 

 

Les modèles de localisation allocation sont des sujets importants qui se posent dans de 

nombreux contextes pratiques.  Ces applications peuvent être employées dans de divers 

domaines comme le transport, la distribution, la production des décisions d'inventaire et 

de télécommunication.  Ainsi, les recherches pour les problèmes de la localisation et 

allocation augmentent de plus en plus dans la littérature. 

 

Dans ce travail, nous nous sommes concentrés sur le Problème de Weber multi-service 

avec la capacité qualifiée par la source unique (en Anglais : SSCMWP) qui vise à 

aborder l’endroit optimal d'un certain nombre d'équipements tels que les usines, les 

entrepôts ou concentrateurs qui serviront un ensemble de clients avec des lieux connus 

sous l'hypothèse de source unique.  Le SSCMWP appartient à l’optimisation non-

convexe et donc c’est un problème difficile á résoudre. 

 

Le SSCMWP peut être considéré le problème de Weber multi-service avec capacité 

(CMWP) lorsque les clients ne sont pas obligés de servir d'exactement un établissement 

et CMWP devient le Problème de Weber multi-service (MWP) lorsque les restrictions 

de capacité sur les établissements sont ignorées.  Par ailleurs, le MWP sera réduit au 

Problème de Weber (WP) quand l'objectif est de trouver l'endroit optimal pour un seul 

établissement qui servira un ensemble de clients.  Il est bien connu que la WP peut être 

résolu par l'algorithme de Weiszfeld de façon optimale. 

 

Les études antérieures sur la WP et ses extensions ont montré que les endroits optimaux 

se situent sur les points obtenus par l'intersection des lignes verticales et horizontales 

tracées en passant par les sites des clients.  De plus, nous avons présenté problème 

d'approximation discrète (DAP) qui peut rapporter la solution optimale pour l'SSCMWP 

rectiligne.  Une faiblesse de l'approche DAP est son exigence drastique du temps CPU. 

Surtout pour les instances grandes, il peut être impossible de trouver la solution 
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optimale de la distance rectiligne de l'SSCMWP en résolvant DAP à l'optimalité.  Ainsi, 

ce fait est une de nos motivations pour construire des heuristiques efficaces et précis 

pour la distance rectiligne de SSCMWP. 

 

La première heuristique que nous considérons dans cette étude est l’heuristique de type 

Localisation Allocation Alterné (ALA) qui est inspiré du travail séminal de Cooper 

(1972).  Nous avons adopté son approche pour le cas SSCMWP afin de le comparer 

avec d'autres algorithmes heuristiques que nous proposons pour la distance rectiligne 

SSCMWP.  ALA heuristique se compose de deux phases: la phase d’allocation et la 

phase de localisation.  Dans la phase d'allocation, nous avons utilisé CPLEX, un 

solutionneur commercial pour résoudre le Problème de Transport par un Source Unique 

(SSTP).  Dans la phase de localisation, nous avons effectué l'algorithme de Weiszfeld.  

Nous avons observé que surtout pour les grandes instances, la phase d’allocation dans 

l'heuristique d’ALA type devient une tâche de calcul minutieux. Ainsi, nous avons 

recouru à améliorer la phase d'allocation de l'heuristique de type heuristique ALA pour 

la résolution du SSTP, par un algorithme de recherche du Voisinage de Très Grande 

Echelle (VLSN) ou par un algorithme de Tabu Recherche (TS). 

 

La deuxième heuristique que nous proposons pour résoudre le SSTP est l'algorithme de 

recherche de VLSN.  L'algorithme de recherche de VLSN est réalisé comme une sous-

procédure dans l'ALA, afin de résoudre heuristiquement le SSTP. L'heuristique de 

recherche de VLSN est construite en employant plusieurs multi-échanges des 

mouvements qui se déplace avec certaines règles d'éjection.  Nous avons conçu deux 

versions des algorithmes de recherche de VLSN: chasser par VLSN et l’amélioration 

d’allocation.  Comme les règles d'éjection, nous avons employé seulement deux règles 

simples: la règle d’Ejection Aléatoire (RE) et la règle de la Mémoire Récence Basé 

(RBM). 

 

Le troisième heuristique que nous suggérons est un algorithme de TS qui est l'une des 

techniques bien connues dans la recherche locale en optimisation combinatoire.  Dans 

cet algorithme, nous avons des mouvements d’échange.  Par ailleurs, nous avons conçu 

deux versions de l'algorithme de TS.  Dans la première version, nous permettons des 
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mouvements infaisables alors que dans la deuxième version nous ne permettons pas des 

mouvements infaisables. 

 

En effectuant des expériences sur les instances de la bibliothèque d’OR, nous avons 

observé que les algorithmes de VLSN et de TS rapportent des améliorations 

substantielles au-dessus de l'heuristique de type ALA.  Particulièrement il faut noter que 

l'algorithme de recherche de VLSN donne des résultats significativement meilleurs que 

les autres surtout dans un temps de CPU raisonnable. 

 



 

 

ÖZET 

 

 

Tesis yerleştirme ve atama problemi, birçok alanda pratik uygulaması olan önemli bir 

konudur.  Bu uygulamalar; ulaşım, dağıtım, üretim, tedarik zinciri yönetimi ve 

telekomünikasyon gibi alanlarda görülebilir.  Bu nedenle, yazında tesis planlama 

problemleri için araştırmalar  giderek artmaktadır. 

 

Bu çalışmada, birçok farklı tipteki tesis planlama problemleri arasından, tek kaynaktan 

tedarik edildiği varsayımı altında, yerleri bilinen istemciler için depo, işletme gibi 

birden fazla tesisin en iyi yerini bulmayı amaçlayan Tek Kaynaklı Sınırlı Sığalı Çok 

Tesisli Weber Problemi (TKSÇWP) ele alındı.  TKSÇWP bir dış bükey olmayan 

eniyileme problemi olmasından ötürü, çözümü zor bir problemdir. 

 

Đstemcilerin tek bir tesisten hizmet almak zorunda olmadığı durumda problem, Sınırlı 

Sığalı Çok Tesisli Weber Problemi (SÇWP) olarak tanımlanırken; tesisler üzerindeki 

sığa kısıtları dikkate alınmadığı durumda Çok Tesisli Weber Problemine (ÇWP) 

indirgenmektedir.  ÇWP ise birçok istemcinin tek bir tesis tarafından hizmet aldığı ve 

bu tesisin en iyi yerinin arandığı durumda Weber Problemine (WP) indirgenir.  Bilindiği 

üzere Weiszfeld yöntemi, Weber Probleminin en iyi çözümünü bulabilmektedir. 

 

WP ile ilgili geçmişteki çalışmalar, en iyi tesis yerlerinin, alıcıların bulunduğu 

noktalardan geçen yatay ve dikey doğruların kesiştiği noktalar üzerinde olduğunu 

göstermiştir.  Bu sebeple, dik uzaklıklı TKSÇWP’nin en iyi çözümünü bulabilmek için 

Kesikli Yaklaşım Problemi sezgiselini (KYP) çözmek yeterli olacaktır.   Uzun süreye 

duyulan gereksinim, KYP sezgiselin zayıf bir yanıdır.  Özellikle büyük boyutlu örnekler 

için dik uzaklıklı TKSÇWP probleminin KYP sezgiseli yardımıyla en iyi çözümünü 
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bulmak mümkün olmayabilir.  Dolayısıyla, bu gerçek bizi, dik uzaklı TKSÇWP 

problemi için daha etkili ve verimli sezgiselleri tasarlamaya yöneltti. 

 

Bu çalışmada geliştirdiğimiz ilk sezgisel yöntem, Cooper’ın çalışmasından yararlanarak 

önerdiğimiz Almaşık Yerleştirme – Atama (AYA) tipinde bir sezgisel dizgi işlemidir.  

Dik uzaklıklı TKSÇWP için önerilen diğer dizgi işlemlerle karşılaştırabilmek adına, bu 

basit yöntemi TKSÇWP için uyarladık.  AYA sezgiseli iki aşama içermektedir: atama 

aşaması ve yerleştirme aşaması.  Atama aşamasında, Tek Kaynaklı Taşıma Problemini 

(TKTP) çözebilmek adına CPLEX isimli ticari bir çözücü kullandık.  Yerleştirme 

aşamasında ise, Weiszfeld yöntemini kullandık.  Özellikle büyük boyutlu TKTP 

örnekleri için AYA tipinde bir sezgisel dizgi işleminin oldukça zahmetli bir iş olduğunu 

gözlemledik.  Bunun üzerine, AYA tipinde bir sezgisel dizgi işleminin atama 

aşamasındaki TKTP problemini sezgisel olarak çözmek için Çok Büyük Ölçekli 

Komşuluk (ÇBÖK) arama dizgi işlemi ve Tabu Arama (TA) dizgi işlemi gibi 

yöntemlere başvurduk. 

 

ÇBÖK arama dizgi işlemi, TKTP problemini çözmek için düşündüğümüz ikinci 

sezgiseldir.  ÇBÖK arama dizgi işlemi AYA sezgiselinin içinde yer alan TKTP 

problemini sezgisel olarak çözmek için bir alt yöntem olarak çalışmaktadır.  ÇBÖK 

arama dizgi işlemi, çeşitli eşleme kurallarıyla birlikte çoklu yapısı kullanılarak 

geliştirildi.  ÇBÖK arama dizgi işleminin iki farklı türü geliştirildi: olurlu yapma ve 

atama iyileştirme.  Eşleme kuralları olarak iki basit kural kullandık: Rassal Eşleme (RE) 

kuralı ve Kısa Dönemli Bellek (KDB) kuralı. 

 

Çalışmamızda önerdiğimiz üçüncü sezgisel yöntem, birleşi eniyilemesinde bilinen yerel 

arama yöntemlerinden biri olan TA dizgi işlemidir.  Bu dizgi işlemde, ikili değişimler 

kullanıldı.  Bununla birlikte, TA dizgi işleminin iki farklı sürümü geliştirildi.  Đlk 

sürümünde, olursuz hareketlere izin verirken, ikinci sürümünde olursuz hareketlere izin 

verilmedi. 
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OR-kütüphanesinden alınan deneme örneklerindeki sayısal deneylerde, gerek ÇBÖK 

arama, gerekse TA dizgi işlemlerinin AYA tipinde bir sezgisel dizgi işleminde olumlu 

sonuçlar verdiğini ve iyileştirme sağladığını gözlemledik.  Özellikle ÇBÖK arama dizgi 

işleminin hissedilir oranda kabul edilebilir bir sürede sonuç verdiğini söyleyebiliriz. 
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1. INTRODUCTION 

 
 
 
Facility location problems deal with the question of where to locate a single object or a 

set of objects.  Broadly speaking, there are basically two groups of facility location 

problems: discrete location problems and continuous location problems. In many real 

world applications, the facilities to be located can be warehouses, factories, depots, 

service centers, concentrators, distribution centers, antennas or retailers.  Furthermore, 

the existing facilities are usually customers which require the collection or distribution 

of a single product or a set of products.   

 

Studies on the facility location problems date back to the seminal work by Weber [1] 

who has defined the well-known Weber Problem (WP) which deals with the optimum 

location of a single facility on the Euclidean space such that the sum of the distances 

from this facility to the existing customers with fixed locations is minimized.  In other 

words, the WP tries to find the location of a single facility in the plane, such that given a 

weight jq  for each fixed customer Nj ,...,1= , the total distance from customers to the 

facility, i.e. ( )∑
=

J

j

jd
1

a,x , is minimized.  Here, x  is the unknown location of facility, ja  

is the fixed location of customer j  and ( )
jd a,x  denotes the distance between the 

facility and customer j . 

 

Since its introduction, the WP and its variants have been addressed by several 

researchers.  Cooper [2] has published his pioneer work on the Multi-facility Weber 

Problem (MWP) which consists of the location of M  uncapacitated facilities in the 

plane to satisfy the demand of N  customers at minimum total transportation cost.  Yet a 

further extension of the MWP is the Capacitated Multi-Facility Weber Problem 

(CMWP).  Given the locations of N  customers and their fixed demands, the CMWP 

deals with locating M  capacitated facilities in the plane and satisfying the demands of 
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N  customers at minimum total transportation cost which is proportional to the 

distances between them.  The CMWP is shown to be NP-hard by Sherali and Nordai [3] 

even if the customers are located on a line.  Observe that the CMWP becomes the MWP 

when the capacity restrictions on facilities are ignored.  Furthermore note also that, the 

MWP reduces to the WP when we consider the optimal location of a single facility.  

However, in an optimal solution of the MWP each customer is served from the nearest 

facility which is not true for the more restricted CMWP because the facilities have 

limited capacities and the demand of customers can be satisfied from different facilities.  

As a further extension of the CMWP, we can mention the Single Source Capacitated 

Multi-facility Weber Problem (SSCMWP).  The SSCMWP is concerned with the 

optimal location of M  capacitated facilities in the plane and satisfying the demand of 

N  customers at minimum total transportation cost such that each customer satisfies all 

his demand from exactly one facility.  The single source restriction in the SSCMWP 

may arise in several real life problem contexts such as custom regulations and trade 

agreements.  The single source restriction is also incorporated in several other problems 

in the literature.  Two examples for this are the Single Source Transportation Problem 

(SSTP) and the Covering Assignment Problem (CAP).  The SSTP incorporates the 

Transportation Problem (TP) together with the additional requirement that the entire 

demand at each customer is supplied from an exactly one supplier.   

 

On the other hand, the CAP has also a similar structure to the SSTP.  The CAP is first 

studied by Foulds and Wilson [4].  Both the CAP and the SSTP can be considered as 

special cases of the Generalized Assignment Problem (GAP).  As an interesting real-

world application of the CAP, Foulds and Wilson [4] have mentioned a problem which 

arises in the New Zealand dairy industry, where the milk demand of dairy companies is 

supplied from different farms.  In this application the CAP consists of finding the 

optimal allocation of farms to factories such that each farm supplies exactly one factory.  

There may exist various extensions of the CMWP.  One such extension is the Multi-

Commodity Capacitated Multi-Facility Weber Problem (MCMWP) which has been 

studied by Akyüz et al. ([5, 6, 7, 8]).  Moreover, all these problems, i.e., WP, MWP, 

CMWP, MCMWP, SSCMWP, can be categorized according to their distance functions.  

The most frequently used distance functions are given in Table 1.1., where ( )2,1 xx ii  
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stands for the coordinates of the facility i  and ( )21 a,a jj  denotes the location of 

customer j . 

 

Table 1.1. Formula for the CMWP Distance Functions Used in the Literature 

 

Distance Functions Formula 

Rectilinear or Manhattan Distance ( 1l  Distance) 2211 axax jiji −+−  

Euclidean Distance ( 2l  Distance) ( ) ( )[ ] 2/12
22

2
11 axax jiji −+−  

Squared Euclidean Distance ( 2
2l  Distance) ( ) ( )222

2
11 axax jiji −+−  

pl  Distance [ ] pp

ji

p

ji

/1

2211 axax −+−  

q

pl  Distance [ ] pqp

ji

p

ji

/

2211 axax −+−  



 

 

2. LITERATURE REVIEW 

 
In this section, we first introduce studies on the WP and its extensions, then we give a 

brief discussion on the VLSN search algorithms. 

 

2.1. The Weber Problem and Its Extensions 

 

In his pioneering work, Cooper [2] has addressed the MWP.  The author noted that the 

objective function of the MWP is neither convex nor concave and hence it is NP-hard.  

A couple of exact solution procedures have been proposed for the MWP.  In his early 

work, Rosing [9] has developed a Branch-and-Bound (BB) algorithm to solve the 

MWP, Krau [10] has utilized a column generation approach and a BB algorithm to 

tackle this problem.  Then, Cooper [11] has developed the Alternate Location-

Allocation (ALA) algorithm for obtaining approximate solutions of the MWP.  Hansen 

et al. [12] have also focused on the MWP.  They have considered all fixed points as 

potential facility sites, and then they have applied the ALA algorithm to determine 

proper locations for the facilities.  Subsequently, two procedures which are based on the 

furthest distance rule and the forbidden points rule have been used within the ALA 

algorithm in order to generate efficient initial feasible solutions.  Brimberg et al. [13] 

have proposed a solution approach for the MWP by exploiting a combination of 

Variable Neighbourhood Search (VNS) and the ALA algorithms.  Gamal and Salhi [14] 

have developed a two-phase heuristic method which is named as a cellular heuristic.  In 

another study, Salhi and Gamal [15] have proposed Genetic Algorithm (GA) to solve 

the MWP.  Taillard [16] has suggested a decomposition heuristic to partition the MWP 

into smaller problems.  Brandeau and Chiu [17] have addressed ALA heuristic and 

proposed statistical estimation approach for MWP.  Aras et al. [18] have considered the 

MWP.  The authors have concentrated on both rectilinear and Euclidean distance cases 

and they have proposed new quantization and Self-Organizing Map (SOM) algorithms 

by incorporating the properties of the distance function within their update rules.  Liu et 

al. [19] have proposed Simulated Annealing (SA) to solve MWP for the rectilinear case.  
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To tackle MWP, two other studies have been accomplished by Lozano et al. [20] and 

Hsieh and Tien [21].  The methods in the last two works have been based on Kohonen’s 

SOM algorithm.   

 

The exact solution procedures of the CMWP were designed to enumerate all basic 

feasible solutions of the Transportation Problem (TP) polyhedron.  Regarding the 

integrity of this approach, any feasible solution can be used as a start point in order to 

construct the connected graph of all basic feasible solutions.  Sherali et al. [22] have 

introduced an exact solution method to tackle the rectilinear distance CMWP.  In their 

proposed method, a reformulation of the problem as a mixed integer bi-objective linear 

programming model with Reformulation-Linearization Technique (RLT) is constructed.  

Al-Loughani [23] has also presented an exact method to deal with the Euclidean 

distance CMWP where a BB algorithm is designed.  That algorithm has enumerated all 

vertices of the feasible region of the TP polyhedron.  In addition, Sherali et al. [24] have 

developed a BB algorithm that is derived from a partitioning of the allocation space.  

The authors have addressed the CMWP for the Euclidean and pl  distances.  Two 

bounding schemes have also been designed based on identifying a projected location 

space subproblem and a variant of the RLT by reformulating the CMWP as a Linear 

Programming (LP) relaxation problem.  Another method developed by Sherali et al. 

[25] for the rectilinear distance CMWP is a convergent cutting plane algorithm.  This 

approach is based on a Bilinear Programming (BP) problem whose decision variables 

are substituted by the difference of two non-negative variables.  This approach has 

further been investigated by Sherali et al. [26].  The authors have used a distance 

proportional to the square of the Euclidean and the problem was transformed into a 

quadratic convex maximization problem.  Sherali et al. [26] promoted an identical 

approach based on a BB algorithm to obtain strong upper bounds via a Lagrangean 

Relaxation (LR) scheme and a partitioning approach based on dichotomy that adopts a 

special structure of the transportation constraints.   

 

In his early work, Cooper [2] has suggested the well-known Alternate Transportation-

Location (ATL).  Aras et al. [27] have devised a Mixed Integer Linear Programming 

(MILP) approximation of the CMWP, and then they have established three heuristic 
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methods to manage the constructed MILP problem with Euclidean, squared Euclidean 

and pl  distances.  The experiments by Aras et al. [28] have indicated that earlier studies 

could be adopted and modified to solve the CMWP with rectilinear distance.  In order to 

prove this, Aras et al. [29] have addressed the CMWP with rectilinear, Euclidean, 

squared Euclidean, and pl  distances and they have developed a SA algorithm, 

Threshold Accepting (TA) algorithm and GA.  A perturbation-based heuristic method 

has been designed by Zainuddin and Salhi [30] which yields extraordinary results in 

comparison to the classical ATL when monitored on large-size instances given by 

Brimberg et al. [13].  A perturbation scheme was developed regarding the borderline 

customers to form clusters, and these customers were those that locate approximately 

half-way between their nearest and their second nearest facilities.  Selected customer 

clusters were then organized and taken out temporarily during the construction of the 

TP.  The clusters were introduced back again when finding the new location afterward.  

Recently, Luis et al. [31] have used the ATL algorithm by Cooper [2] with a Greedy 

Randomized Adaptive Search Procedure (GRASP) in order to obtain robust solutions.   

 

Luis et al. [32] have also concentrated on the CMWP.  The capacity restrictions are 

debated and it assumed that these capacities are given with a fixed number.  They have 

inspired from Cooper’s ALA heuristic where the facility locations are randomly defined 

at the first step of the algorithm.  Instead of this, they have proposed a Region-Rejection 

based Approach (RRA) which forbids some areas that are not close to customers and 

which assure the initial location as possible as close to the density of the customers.  

They have developed four different extensions of the algorithm RRA with fixed radius 

(RRAFR), RRA with dynamic radius (RRADR), a cell-based approach with fixed 

radius (CBAFR) and cell-based-approach with dynamic radius (CBADR). 

 

The MCMWP is a quite new problem comparing to the CMWP.  To the best of our 

knowledge, Akyüz et al. [5] is the first work on the MCMWP.  For other studies on the 

MCMWP, we refer to [6, 7, 8].   
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For all we know, the SSCMWP has first been addressed by Gong et al. [33].  The 

authors have suggested an iterative approach containing location and allocation phases 

known as Hybrid Evolutionary Method (HEM) to solve the SSCMWP.  In the location 

phase, a GA is used to obtain the proper locations for the facilities.  When the locations 

of facilities are established, the problem reduces to GAP.  Following the previous steps, 

a LR scheme is employed to solve the resulting GAP in the allocation phase where the 

capacity constraints are dualized.  Another work on the SSCMWP is accomplished by 

Manzour-al-Ajdad et al. [34].  They have proposed a heuristic to tackle SSCMWP.  In 

their work, a SA is embedded in the improvement phase of ALA type heuristic.  The 

results obtained by SA algorithm are more efficient than the results of the 

straightforward ALA type heuristic version. 

 

As a special case of CMWP, we can consider discrete facility location problems.  There 

is a vast amount of research interest on these problems.  Some of them are as follows:  

Rönnqvist et al. [35] have suggested Single Source Capacitated Facility Location 

Problem (SSCFLP) with Euclidean distances that aims to locate the facilities on the 

candidate sites in order to minimize the total transportation cost under the capacity 

constraints and the single source assumption.  The objective function tries to minimize 

the number of facilities as well as the distances between the facilities and customers.  

They have proposed a repeated matching algorithm for the SSCFLP.  Pirkul et al. [36] 

have addressed the Multi-Commodity Capacitated Facility Location Problem (MCFLP).  

They have presented an MILP model of the problem and they have proposed an 

efficient heuristic based on a LR scheme, but instead of considering the whole of the 

plane as suggested by Cooper [2], they have also determined the locations of facilities 

between candidate places.  For other studies, we refer to  [37, 42, 43, 44, 45, 46, 47, 48, 

49, 50].  On the other hand, for a more detailed literature survey on the continuous 

location-allocation problems we can cite the study by Brimberg et al. [47]. 

 

2.2. VLSN Search Algorithms and Their Applications  

 

VLSN search algorithm is a Local Search (LS) algorithm with high efficiency; but very 

limited flexibility.  Since the roots of our work consist of VLSN search algorithm, we 
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prefer to cite some of the crucial works on the VLSN search algorithms as follows: 

Yagiura et al. [48] have addressed the Multi-Resource Generalized Assignment Problem 

(MRGAP) which concerns assigning the tasks to the agents with respect to multi-

resource constraints in order to minimize the total assignment cost where each task must 

be assigned to exactly one agent.  To tackle the problem, the authors have proposed a 

TS with chained shift neighbourhood.  Minic and Punnen [49] have also focused on the 

MRGAP.  A VLSN search algorithm which combines a Variable Neighbourhood 

Search (VNS) procedure is constructed.  Ahuja et al. [50] have proposed two VLSN 

search algorithms to tackle the Capacitated Minimum Spanning Tree (CMST) problem.  

Ergun and Orlin [51] have considered the symmetric Travelling Salesman Problem 

(TSP) for which they have proposed a VLSN search algorithm embedded with a 

Dynamic Programming (DP) approach.   

 

Furthermore, Ahuja et al. [52] have addressed the Quadratic Assignment Problem 

(QAP) and have proposed a VLSN search algorithm which contains k-exchange 

neighbourhood structure to explore larger neighbourhoods.  For a detailed survey on the 

VLSN search algorithms, we refer to Ahuja et al. [53].  Recently, Öncan et al. [54] have 

proposed VLSN search algorithms for partitioning type problems.  Ahuja et al. [55] 

have addressed the Single-Source Capacitated Facility Location Problem (SSCFLP) 

which tackles with the optimal location of a number of facilities that will serve a set of 

customers with known locations.  Similar to the SSCMWP, in the SSCFLP each 

customer must satisfy all its demand from exactly one facility, as well.  Ahuja et al. [55] 

have claimed that SSCFLP is NP-hard and hence difficult to solve.  This was their 

motivation to propose an efficient LS algorithm, namely a VLSN search algorithm, for 

the SSCFLP.  Their VLSN search algorithm consists of customer exchange and facility 

move operations.  These operations are realized on a specially constructed graph, i.e. the 

improvement graph.  Their VLSN search heuristic has been tested on benchmark 

instances from the literature and on a real life instance, as well.  Ahuja et al. [55] have 

reported that their VLSN search algorithm beats the LR heuristics proposed by 

Holmberg et al. [56] and Hindi and Pienkosz [57].  Furthermore, Ahuja et al. [55] have 

also stated that their VLSN search algorithm also outperforms CPLEX MILP solver in 

terms of both accuracy and efficiency. 



 

 

3. DEFINITION OF THE SSCMWP 

 
 
3.1. A Mathematical Programming Formulation for the SSCMWP 

 

Let N  be a set of customers whose known locations are indicated by ( )T
jjj 21 a,aa =  

and let jq  define the demand of a customer j  for Nj ,...,1= .  Furthermore, let M  

denote a set of facilities whose unknown locations are indicated by ( )Tiii 21 x,xx =  and 

let is  stand for the supply quantity of facility i  for Mi ,...,1= .  We define binary 

decision variable ijw  which is equal to 1 if and only if the demand of customer j  is 

completely satisfied from facility i  for all Mi ,...,1=  and Nj ,...,1= .  As it can be 

seen, this formulation consists of two decision variables: ix  and ijw .  Moreover, ijc  

denotes unit shipment cost per unit distance.  The distances are computed using the 

rectilinear distance ( ) 2211 axaxa,x jjjijid −+−=  between facility i  and customer 

j .  Finally, the objective function consists of the minimization of total transportation 

cost with respect to capacity constraints and under a single source assumption.  Then, a 

mathematical programming formulation of the SSCMWP can be given as follows: 

  

SSCMWP :     ( )∑∑
= =

=
M

i

N

j

jiijjij dcqwz
1 1

a,xmin   (3.1) 

 
 
subject to 
 
  

 ∑
=

≤
N

j

iijj swq
1

 Mi ,...,1= , (3.2) 
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 ∑
=

=
M

i

ijw
1

1  Nj ,...,1= , (3.3) 

 
 

 ∈ijw {0;1} NjMi ,...,1;,...,1 == . (3.4) 

 

 

 

Figure 3.1. Illustration of an SSCMWP Instance 

 

In Figure 3.1. we illustrate a feasible solution of SSCMWP instance with 11 customers 

and 4 facilities.  The customers are indicated by circles and the facilities are shown by 

stars.  Observe that each customer is assigned to exactly one facility. 

 

The objective function (3.1) calculates the total transportation cost which is assumed to 

be directly proportional to the customer demands times the distance between facility i  

and customer j  which is denoted by the rectilinear distance.   Constraints (3.3) 

guarantee that every customer must be served from exactly one facility while a facility 

is allowed to serve more than one customer.  Constraints (3.2) ensure that the capacity 

of each facility is not exceeded.  Finally, we should note that the SSCMWP has the 

balancedness assumption.  That is to say, the total demand of all the customers is 

exactly equal to the total capacity of the facilities.  In other words, ∑∑
==

=
M

i

i

N

j

j sq
11

 holds.  
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3.2. The Single Source Transportation Problem  

 

The SSTP can be considered as a special case of the SSCMWP. Note that the 

constraints of both the SSCMWP and the SSTP are the same but their objective 

functions are different. An MILP formulation of the SSTP is given below. 

 

SSTP :    ∑∑
= =

=
M

i

N

j

ijijCwz
1 1

min   (3.5) 

 

subject to 

 

 ∑
=

≤
N

j

iijj swq
1

 Mi ,...,1= , (3.6) 

 
 

 
∑
=

=
M

i

ijw
1

1
 Nj ,...,1= , (3.7) 

 
 

 { }1;0∈ijw  NjMi ,...,1;,...,1 == . (3.8) 

 

 

Here, ijC  indicates the transportation cost of sending one unit from facility i  to 

customer j .  Note that whenever the locations of facilities are known, the SSCMWP 

reduces to the SSTP. In other words, for ( )
jiijjij dcqC a,x..= , the SSTP becomes the 

SSCMWP.  Furthermore, when constraints (3.6) are of type “≥ ” instead of “≤ ”, then 

the SSTP refers to the CAP [58].  

 

 



 

 

4. SOLUTION PROCEDURES 

 

 

First of all, we present the Discrete Approximation Problem (DAP) heuristic for the 

SSCMWP.  Then, we present ALA type heuristic for the SSCMWP. 

 

4.1. Discrete Approximation Problem Heuristic for the SSCMWP 

 

On the rectilinear distance case, Thisse et al. [59] have demonstrated that the optimum 

facility locations lie on the intersection points obtained by drawing the extreme 

directions of the block norm on customer locations for the WP by generalizing Wendell 

and Hurter's [60] results.  As for instance, we can state that the optimum solution of the 

rectilinear distance WP lies in one of the points on the intersection of vertical and 

horizontal lines drawn by passing through customer locations.   

 

 

 

Figure 4.1. Illustration of Candidate Facility Locations in the DAP formulation 
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In Figure 4.1., there are 11 customers.  The candidate facility locations lie within the 

convex hull defined by customers 1, 2, 7, 10, 11, 6, 5 and 3.  All intersection points 

obtained by drawing vertical and horizontal lines through customer locations and 

remaining within the convex hull are candidate facility locations.  Notice that these 

vertical and horizontal lines constitute the extreme rays of the rectilinear-norm which is 

a block norm.   

 

These properties are also valid for the multi-facility extensions of the WP, namely, 

MWP, CMWP and SSCMWP, because these problems reduce to M  WPs when feasible 

allocations are given.  Furthermore, Hansen et al. [61] have generalized the properties 

obtained for the rectilinear distance WP by Wendell and Hurter [60] to show that the 

optimal solutions of the two-dimensional location problems with rectilinear distance 

function always occur within the convex hull of the customer locations and at the 

intersection of vertical and horizontal lines drawn through them.  Aras et al. [28] have 

taken advantage of these properties.  They have reformulated the rectilinear distance 

CMWP as an MILP problem by restricting optimal facility locations to belong within 

the candidate location set.   

 

These results can also be applied for the rectilinear distance SSCMWP.  When there are 

a finite number of candidate points at which facilities can be located, the optimal 

solution of the corresponding rectilinear distance SSCMWP can be obtained by solving 

an MILP problem namely the Discrete Approximation Problem (DAP).  Given P a set 

of candidate points denoted by p=1,…,P, we define a binary decision variable p

ijw  

which is equal to 1 if and only if the demand of customer j is completely satisfied from 

facility i that is located at candidate point p.  Note that whenever the candidate points 

p=1,…,P are selected as the intersection points obtained by vertical and horizontal lines 

drawn through customers, the solution of the DAP becomes the optimum solution of the 

rectilinear distance SSCMWP, according to the results by Wendell and Hurter [60].  

Then, the DAP formulation is presented as follows : 
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DAP :   ∑∑∑
= = =

=
M

i

N

j

P

p

p

ijj

p

ij wqcz
1 1 1

min  (4.1) 

 
 
subject to 

 
 

 p

i

N

j

i

p

ijj yswq∑
=

≤
1

 PpMi ,...,1,,...,1 == , (4.2) 

 
 

 ∑∑
= =

=
P

p

M

i

p

ijw
1 1

1  Nj ,...,1= , (4.3) 

 
 

 1
1

=∑
=

P

p

p

iy   Mi ,...,1= , (4.4) 

 
 

 { }1;0∈piy  PpMi ,...,1,,...,1 == , (4.5) 

 
 

 { }1;0∈pijw  PpNjMi ,...,1,,...,1,,...,1 ===  . (4.6) 

 
 

Here, binary decision variable p

iy  is equal to 1 if and only if facility i  is located at 

candidate point p .  Although solving DAP yields the optimal solution of the rectilinear 

distance SSCMWP, this task may require drastic CPU time.  As for example, consider a 

SSCMWP instance with 5 facilities and 100 customers. For this case, the DAP 

formulation includes 22 10051001005 ×+××  binary decision variables and 

51001005 2 ++×  constraints.  Hence, we can say that for large instances solving DAP 

to optimality is not a viable option.   
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On the other hand, note that solving the DAP with a CPU time limit may yield an upper 

bound for the SSCMWP. Therefore, we employ this approach as a heuristic and we 

name it as “DAP heuristic”.  

 

4.2. ALA Type Heuristic 

 
Location-Allocation Problems (LAPs) try to find the optimal locations of a set of 

facilities and optimal allocations of customer demands to the facilities with respect to 

capacities of facilities and demand restrictions at minimum total transportation cost.  

Any LAP becomes a pure multi-facility location problem when an allocation scheme is 

known.  Conversely, it becomes a pure allocation problem when facility locations are 

defined.  First of all, we suggest an ALA type heuristic for the rectilinear distance 

SSCMWP which is inspired from the seminal work by Cooper [2].   

 

Our ALA type heuristic consists of two phases which are performed consecutively and 

iteratively.  In the first phase, we aim to locate the facilities in the continuous plane and 

in the second one, our goal is to find the optimal allocation plan of customers to 

facilities by solving a TP.  These two phases are performed repeatedly until there is no 

improvement in the objection function value.  We know that the quality of the final 

solution that ALA computes depends on its initial solution very much where the facility 

locations are randomly determined at the initialization step of the ALA type heuristic.   

 

In our implementation of the ALA type heuristic for the SSCMWP, we first try to locate 

the facilities and then assign each customer to a single facility with considering capacity 

constraints.  We change the allocations by solving an MILP problem (i.e. SSTP) then, 

we determine new facility locations.  Namely, in the location phase, we have to solve 

M  WPs by running M  times Weiszfeld’s Algorithm in order to find the optimum 

facility locations for each facility.  The WP is formulated as follows: 
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 ∑
=

=
N

j

jiij
x

dCz
i 1

)a,x(min   Mi ,...,1=  (4.7) 

 
 

where ijC  is computed as ijijjij wcqC =  holds. Here ijw  stands for the fixed assignment 

of facility i  to customer j .  Recall that the WP can be solved by running the 

Weiszfeld’s algorithm [62] or one of its generalizations [63].  Next, we give the steps of 

the Weiszfeld’s algorithm. 

 

4.2.1. Weiszfeld’s Algorithm for the SSCMWP 

 

Weiszfeld’s algorithm is an iterative method which aims to optimally locate a single 

facility that serves its customers in the continuous plane.  Namely, the objective is to 

find the optimal location in order to minimize total transportation cost. 

 

Given the assignments of customer j  to facility i , i.e. ijw , the steps of the Weiszfeld’s 

algorithm is as follows : 

 

Step 1: 0←χ  

 

Step 2: Initialize the facility location. 

 

 

∑

∑

=

==
N

j

ijj

N

j

jjij

i

wq

qw

1

1
1

0
1

a

x  and 

∑

∑

=

==
N

j

ijj

N

j

jjij

i

wq

qw

1

1
2

0
2

a

x   ; (4.8) 

 

Step 3: Calculate the rectilinear distances ( ) ( )( )jiij dd a,x χχ =  between new locations of 

facilities and the locations of customers. 

 

Step 4: Update the location of facility i  for the next iteration : 
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( )
( )

( )∑

∑

=

=+ =
N

j ij

jij

N

j ij

ijij

i

d

qw

d

qw

x

1

1

1

1
1

a

χ

χ
χ  and ( )

( )

( )∑

∑

=

=+ =
N

j ij

jij

n

j ij

ijij

i

d

qw

d

qw

x

1

1

2

1
2

a

χ

χ
χ ; (4.9) 

 

Step 5:  Increase iteration counter 1+← χχ  

 

Step 6: Go to Step 3 until the termination criteria is satisfied.     

 

In this work, we have defined two stopping criteria for the Weiszfeld’s Algorithm.  The 

first one is an iteration limit number that is equal to 5000.  The second one consists of 

the changes in the facility locations.  In other words, when both abscise and ordinate are 

changed smaller than 0.0001, then the algorithm stops.  

 

4.2.2. The Outline of the ALA Type Heuristic 

 

The steps of ALA Type Heuristic are described as follows : 

 

Step 1: Locate M  facilities at arbitrarily selected points ( )Tiii 21 x,xx =  for Mi ,...,1=  

within the convex hull of customers. 

 

Step 2: For each facility i  and customer j , calculate the rectilinear distance ( )
jid a,x  

between them and set the new transportation cost as ( )
jiijjij dcqC a,x= . 

 

Step 3: Determiner feasible allocations ∗
ijw  by solving the SSTP.  

 

Step 4: Solve M  WPs to relocate M  facilities. 
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Step 5: Repeat Steps 4-3 until either facility locations ( )Tiii 21 x,xx =  for Mi ,...,1=  or 

allocations ∗
ijw  for Mi ,...,1= ; Nj ,...,1=  remain unchanged. 

 

ALA type heuristic is a simple and quite efficient heuristic; however the quality of its 

final solution depends very much on its initial solution.  The most difficult part of the 

proposed ALA type heuristic is Step 3 which requires solving the SSTP, namely a 

MILP problem.  We have employed CPLEX MILP solver to deal with the SSTP.  

However, for large size instances, using CPLEX MILP solver may require excessive 

CPU times and hence for these instances (especially instances bigger than 10 facilities 

100 customers), ALA type heuristic was unable to obtain feasible solutions in 

acceptable computation times.    

 

4.3.  ALA with VLSN Search Algorithm 

 

For large instances, the CPU time required for solving the SSTP via CPLEX MILP 

solver becomes excessive.  One way to deal with this difficulty is to solve the SSTP by 

running a LS algorithm.  For that purpose, we have employed the VLSN search 

algorithm which uses the matching neighbourhood.  This neighbourhood is proposed by 

Öncan et al. [54] for partitioning type problems including the SSTP. 

 

A LS algorithm tries to find better feasible solutions starting from an initial feasible 

solution, by replacing new feasible solutions with the previous ones repeatedly until 

some stopping criteria is satisfied.  A crucial issue in the design of LS algorithms is the 

choice of a proper neighbourhood structure.  In the next discussion, we introduce the 

matching neighbourhood which is employed within our VLSN search algorithm. 

 

4.3.1. The Matching Neighbourhood for the SSTP 

 

Let { }JN ,...,2,1=  be a finite set and { }IFFF ,...,, 21  be families of prescribed subsets of 

N .  Let ( )IAAAA ,...,, 21=  be an ordered partition of N , i.e.  NAi
I

i =∪ =1  and 

∅=∩ ki AA  for Ikiki ,...,1,, =≠ .  We say that the ordered partition A  is feasible if 
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and only if ii FA ∈  for all i .  For the SSTP case, iF  is defined as 

{ }
ijSjii sqNAA ≤⊆ ∑ ∈;:  for Ii ,...,1= .  For each Ii ,...,2,1=  and iFS ∈  a cost 

function ( )Sci  is also prescribed where ∑ ∈= ijSji cSc )(  for Ii ,...,1= .  Then the 

partitioning problem is to find a feasible partition A  such that ( )∑ =
=

I

i ii AcAf
1

)(  is 

minimum.  Furthermore, for any ordered partition ( )IAAAA ,...,, 21=  define 1=ijw  if 

iAj∈ , Ii ,...,2,1=  and zero otherwise.  Then it can be verified that this solution is 

feasible for the SSTP if and only if A  is a feasible partition. 

 

For each set iA  in A , choose a subset iB .  Note that iB  could be the empty set.  The 

ordered collection ( )IBBBB ,...,, 21=  is called an ejection vector of A .  Given A  and 

an ejection vector B , we construct a bipartite graph G
~

, called the improvement graph 

as follows.  The generic bipartition of its vertex set is 21

~~
VV ∪  where { }ItttV ,...,,

~
211 =  

and { }IrrrV ,...,,
~

212 = .  Node it  in 1

~
V  represents the subset iA  and node jr  in 2

~
V  

indicates the subset jB .  Furthermore, an edge ( )
ji rt ,  is added to the graph G

~
 if and 

only if ( )
ji BA ∪ \ ii FB ∈  holds.  For example, in the case of SSTP verifying this 

condition is equivalent to testing ( ) ( )
ijii sBqBqAq ≤+−)(  that is node it  in 1

~
V  is 

connected to a node jr  in 2

~
V  by an edge ( )

ji rt ,  if and only if ( ) ( )
ijii sBqBqAq ≤+−)(  

holds.  Here, )( iAq  and ( )iBq  denote the total customer demands in sets iA and iB  

respectively.  The edge, ),( ji rt  signifies adding jB  to iA  while jB  is ejected from iA .  

The cost of ),( ji rt  is given by )()( iijiij BcBc −=ς  where, for the SSTP case 

∑ ∈
=

iBj
jijijii dqcBc )a,x()(  holds.  Note that for each Ii ,...,2,1=  the edge ),( ii rt is in 

G
~

 and 0=ijς .  Let ( ){ }IjIirtM ji ,...,2,1;,...,2,1, ===  be any perfect matching in G
~

.  

Note that G
~

 contains at least one perfect matching.  Then ( )IAAAA ,...,,
~

21=  is a 

feasible ordered partition.  The operation of building A  from A  is called an M-

matching exchange.  The simple matching neighbourhood of S with respect to a given 

ejection vector { }IBBBB ,...,, 21= , denoted by )(BM I , is the collection of all feasible 
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ordered partitions each of which can be obtained by a M-matching exchange from A  

using some perfect matching M  of G
~

.  As shown by Öncan et al. [54] computing the 

best member in )(AM  is NP-hard for the SSTP therefore we resort to a heuristic 

approach to find the ejection vector { }IBBBB ,...,, 21= .  For that purpose we have 

employed a LS scheme.  Given a feasible partition A , we assume that a heuristic 

procedure )(AH  is available which with input A  searches approximately )(AM  for an 

improving solution and outputs such a solution if obtained.  The algorithm is terminated 

when )(AH  fails to detect an improving solution.  The task of )(AH  is to search for an 

improving solution in )(AM .  However, we already know that finding an efficient 

search scheme seems difficult.  Note that a best solution in )(AM  is a best solution in 

)(AM I  for some ejection vector B .  Further, )(AM I  can be searched for a best 

improving solution in polynomial time.  Thus, in case we can generate a good enough 

ejection vector B , we are likely to find an improving solution in )(AM  if one exists.  It 

is possible to consider a simple rule to generate the ejection vectors.  For that purpose, 

we use two parameters λ  and γ  which stand for the minimum and maximum number 

of items to be ejected, respectively.  The components of the ejection vector B  have 

cardinality between these parameters.  It is possible to set 0=λ  which implies ∅=rB  

for some component rB  of B  and in all our experiments we set 0=λ  or 1.  On the 

other hand, λ  is set to a random number between 1 and rA , for each component rA  of 

A .  As a straightforward ejection rule we have applied the random ejection rule because 

of its simplicity.  Note that it is possible to employ many different ejection rules [54].  

However for the SSTP arising in the allocation phase of the ALA type heuristic, we 

have observed that the random ejection yields acceptable solutions within reasonable 

computation times.  The random ejection rule is as follows.  For a given partition 

{ }IAAAA ,...,, 21=  eject a random subset rB  from each non-empty rA  for Ir ,...,1=  

such that rr kB =  where rk  is a random number between λ  and min{ }γ,rA .  We set 

∅=rB  when ∅=rA .  Yet another ejection rule is the Recency Memory Based (RBM) 

ejection rule.  We keep track of ejected customers and the ejection probability of each 

customer j  is inversely proportional to the number of times customer j  is ejected from 
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facility i . The VLSN search algorithm as presented above is called as Allocation 

Improvement VLSN (AI-VLSN) search algorithm. 

 

The proposed VLSN search heuristic can also be used to construct a feasible solution.  

To accomplish this, given an infeasible solution we relax constraints (3.2) of the SSTP 

formulation and we add a penalty for the violating constraints.  In other words, we 

construct an improvement graph by defining the cost  

( ) ( )( ){ }
ijiiij sBqBAq −+= /,0maxτ  for each edge ),( ji rt .  The modified graph is called 

as feasibility improvement graph on which we perform M-matching exchange 

operations using the random ejection rules until a feasible solution is reached.  The 

VLSN search algorithm with the feasibility improvement scheme is named as 

Feasibility Chasing VLSN (FC-VLSN) search algorithm. 

 

4.3.2. The Outline of the ALA with VLSN Search Algorithm 

 

Step 1: Initial assignment of customers to facilities is performed randomly.  

Step 2: A feasible assignment is constructed by running FC-VLSN search algorithm.  

Step 3: The facility locations are determined by running Weiszfeld’s Algorithm and the 

distances between customers and facilities are computed.   

Step 4: Given the feasible solution obtained in Step 2, an improved feasible solution for 

the SSCMWP is reached by running AI-VLSN search heuristic algorithm. 

Step 5:  Step 4 and Step 5 are repeated until there is no improvement in the objective 

function value of the SSCMWP. 

Step 6: Steps 1-5 are repeated until a fixed number of SSCMWP solutions are generated 

and the best SSCMWP solution among them is output. 

 

4.4. ALA with Tabu Search Algorithm 

 

TS is an iterative LS method applied for several combinatorial optimization problems.  

Starting from an initial solution, the TS method moves at each iteration from the current 

solution to the best one in a subset of its neighbourhood, even if this causes a 

deterioration in the objective function value.  To avoid cycling, solutions possessing 
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some attributes of recently visited solutions are declared forbidden or tabu for a given 

number of iterations, called tabu tenure.  The algorithm stops whenever a preset 

criterion is satisfied.  During the search, the algorithm maintains short term and long 

term memory structures.  When an attribute is declared tabu, all solutions possessing 

this attribute are implicitly declared tabu.  However, in fact some of these solutions may 

never have been considered by the search.  To remedy this, an aspiration criterion is 

defined to override the tabu status of a solution.  One common aspiration criterion is to 

allow tabu solutions yielding better solution values than that of the best known solution.  

In our TS, we apply an extension of the aspiration level concept by associating an 

attribute to each assignment of customer j  to facility i .  Hence, the attribute set )(πΩ  

of solution π  consists of customer-facility assignments.  We define the tabu rule as 

follows.  If customer i  is removed from the facility j , reinserting it into that facility is 

forbidden for the next θ  iterations, where θ  is the tabu tenure.  The last iteration for 

which attribute ),( ji  is declared tabu is denoted by ( )ji ,β .  The tabu status of an 

attribute can be revoked if it leads to a solution with smaller cost than that of the best 

solution identified having that attribute.  The aspiration level ),( jiγ  of an attribute is 

initially set equal to the cost of initial solution 0π  where customer j  is assigned and to 

∞  otherwise.  At every iteration, the aspiration level of each attribute ( ) ( )πΩ∈ji,  of 

the current solution is updated to min{ })(,),( πγ cji , where )(πc  stands for the cost value 

of solution π .  Given a solution π , its neighbour solutions are defined by )(sN .  At 

each iteration, we consider a subset ( ) )(ππ NT ⊆  which consists of all solutions 

)(ππ N∈  reachable from π  without incurring the risk of cycling, i.e., that are not tabu 

or that satisfy the aspiration criterion. 

 

4.4.1. An Attribute Based Tabu Search Algorithm for the SSTP 

 

We now describe the steps of the TS algorithm used to solve the SSTP arising in the 

allocation phase of the ALA type heuristic for the SSCMWP. 

 



  

 

23

 

In order to construct an initial feasible solution we randomly locate facilities then, we 

perform FC-VLSN search algorithm.  Then, this initial solution is set as the best 

solution ∗π .  We first initialize the number of times attribute ),( ji  has been added to 

the solution.  This parameter is set equal to 1 for all assignments ),( ji  in the current 

solution (i.e.  1),( =jiκ  for all )(),( πΩ∈ji , and 0),( =jiκ  for all ( )πΩ∉),( ji ).  Then, 

the last iteration for which attribute ),( ji  is declared as tabu is set equal to 0 for all 

assignments (i.e., 0),( =jiβ  for all ( )ji, ).  The aspiration levels ),( jiγ  are set equal to the 

initial solution value ( )πc  for all assignments in the current solution (i.e., ( )πγ cji =),(  

for all ( )πΩ∈),( ji  and ∞=),( jiγ  for all ( )πΩ∉),( ji ).  The number of times customer 

j  has been considered for the neighbourhood search is set equal to 0 for all customers 

(i.e., 0=jδ  for all Jj ,...,1= ).  Finally, improvement iteration counter χ  is set equal 

to 0. 

 

The first step of our neighbourhood scheme is the customer selection procedure which 

is crucial for the performance of the neighbourhood ( )πN  and hence to the performance 

of the TS algorithm.  As a simple rule, we can randomly select customers.  However, 

during the run of the TS algorithm this may cause the algorithm to repeatedly visit the 

same customers and hence the same space without improving the solution.  Especially, 

when the TS algorithm runs for a small number of iterations, some customers are 

selected less often than the others.  Therefore, we propose a diversification scheme for 

the customer selection considering the customer visit frequencies, i.e.  jδ  which 

denotes the number of times a customer j  has been selected for the exchange or swap 

operation.  The customer selection is performed with probabilities proportional to the 

inverse of the jδ  values.  Hence, the lower the value of jδ , the higher the probability of 

selecting customer j .  When all customers have been visited an equal number of times, 

we apply the random selection rule for at most Λ  non-improving iterations.  If the 

random selection of customers has not yielded an improved solution for successive Λ  

iterations, we again switch to customer selection by visit frequencies rule, and so on. 
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Suppose that customer j′  which is assigned to facility i′ , is selected for an exchange 

operation.  Then among all customers which are not assigned to facility i′  and the most 

profitable one, say i ′′  is considered for an exchange operation.  In other words, the 

assignments ( )ji ′′,  and ( )ji ′′′′ ,  are replaced with ( )ji ′′′,  and ( )ji ′′′ ,  respectively.  This 

yields an exchange operation.  By performing this exchange operation, we move from 

solution π  to solution π  then the profit of this operation is computed as follows:  

 

 ( )
( ) ( ) ( )

jjijjijjijji qqqq ′′′′′′′′′′′′′′′′′′ +−+= ϕϕϕϕϑ π
π . (4.10) 

 

Note that performing the most profitable exchange operation can yield an infeasible 

solution.  Therefore, the LS phase has to be confined with feasible moves.  In case it is 

not possible to find a feasible and profitable move for a predetermined number of 

iterations then the TS algorithm may stop.  Therefore, assume that by an exchange 

operation we move from a solution π  to a solution π  then it means that we incur a 

profit of ( )
( ) ( )πζϑ π
π − , where 
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1 1

ˆ,0max . (4.11) 

 
 

In case, the new solution π  is infeasible and hence ( )πζ  is positive then we perform the 

VLSN feasibility chasing procedure to escape form infeasibility.  In other words, the 

cost of the new solution π  is computed as 

 

 

 ( ) ( ) ( )
( ) ( )πζϑππ π
π +−= cc . (4.12) 
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The next step after the customer selection is to evaluate a subset ( )πT  of neighbour 

solutions.  For this purpose, we first initialize ( ) ∅=πT .  Then, for each neighbour 

solution π  of the current solution π , if there exists an attribute ( ) ( )πΩ∈ji, \ ( )πΩ  such 

that <),( jiβ χ  or ( ) ( )jic ,γπ < , we set ( ) ( ) { }πππ ∪= TT .  In other words, we add to 

( )πT  the neighbour solutions π  such that either π  is non-tabu or the cost of π  is lower 

than the aspiration level ( )ji,γ  of one of the attributes ( )πΩ∈),( ji .  To penalize the 

vertices frequently added into the solution, we define a penalized cost value for each 

solution π  in the subset of neighbourhoods ( )πT  as follows: 

 

 

 ( )
( ) ( )

( ) ( )
( ) ( )

( )




 ≥+
=

∑
∈

.,

,/
/),(

otherwisec

ccifIJcc

p AAji

ij

π

ππχκπφπ
π ππ  (4.13) 

 

 

Here, φ  is a factor used to adjust the intensity of the diversification, while the square 

root factor IJ , which was first proposed by Taillard [64] in the context of the Vehicle 

Routing Problem (VRP), is used to compensate for instance size.  Finally, considering 

all solutions π  in ( )πT  we identify the solution π ′  with minimum penalized cost value 

( )π ′p . 

 

Considering the new solution s′  we update the following parameters.  First, we update 

the tabu status of the removal of customer j  from facility i , ),( ji ( )πΩ∈ \ ( )π ′Ω  in 

order to forbid the pair ),( ji  from entering into the solution for at least θ  iterations 

(i.e., θχβ +=ij ).  Second, for each attribute ( )π ′Ω∈i \ ( )πΩ , the number of times 

attribute ),( ji  has been added to the solution is increased by one (i.e., 1),(),( += jiji κκ ).  

Third, if the new solution is better than the current best solution (i.e., ( ) ( )∗<′ ππ cc ) we 
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update the current best solution (i.e., ππ ′=∗ ).  Finally, for each vertex of the new 

solution we update its aspiration level (i.e., ( ){ }πγγ ′= cijij ,min  for all ( )π ′Ω∈),( ji ). 

 

Several stopping criteria can be adopted for the TS algorithm such as a time limit, an 

iteration limit or an absence of improvement for a given number of iterations.  We 

choose our criterion so as to achieve a balance between computation time and solution 

quality.  The TS algorithm stops when the iteration counter χ  reaches the iteration limit 

η . 

 

4.4.2. The Outline of the ALA with Tabu Search Algorithm 

 

Step 1: Initial assignment of customers to facilities is done randomly.  

Step 2: A feasible solution is constructed by FC-VLSN search algorithm. 

Step 3: The locations of facilities are found by running the Weiszfeld’s algorithm and 

the distances with the customers and facilities are calculated. 

Step 4: The objective function value of the SSCMWP is computed. 

Step 5: TS phase is processed in order to reach an improved SSTP solution. 

Step 6: Steps 2-5 are repeated until a specified number of new solutions are generated 

and the best solution is output. 

 



 

 

5. COMPUTATIONAL RESULTS 

 
 
 
In this section, we present computational results obtained with our solutions procedures 

implemented on the SSCMWP.  The experiments are performed on a Dell Server 

PE2900 with two 3.0 GHz Core2Duo Processors and 4 GB RAM operating within 

Microsoft Windows Server 2003 environment in C++.  Cplex 11.0 with default options 

is used as a subroutine to solve the resulting MILPs which are part of the heuristic 

algorithms.  We have totally considered 35 test instances.  Benchmark test instances for 

the CMWP from OR-library are used to assess the performance of the proposed 

algorithms developed for the rectilinear distance SSCMWP.   These instances can be 

grouped in two classes.  The first class consists of 25 instances with size ranging as 

104 ≤≤ M  and 1008 ≤≤ N  and the second class involves 10 instances with size 

ranging as 5010 ≤≤ M  and 25050 ≤≤ N .  The instances in the first class can be 

considered as small instances and the ones in the second class can be classified as large 

instances. 

 

In our experiments, we have especially focused on small instances because we can not 

obtain solutions of large instances using the DAP heuristic and the ALA type heuristic 

in reasonable computation times. Recall that the DAP heuristic may yield the optimal 

solution for the SSCMWP at the expense of excessive CPU time.  In our experiments, 

we allow DAP heuristic to run up to 7200 seconds.  Thus, notice that for the instances, 

for which CPLEX MILP solver has run for less than 7200 seconds, the optimum 

solution is reached.  In Table 5.1, we give the results obtained with DAP heuristic and 

ALA type heuristic on small instances.  In Table 5.1., the first column includes the 

names of the test instances.  The second and the third columns in the Table 5.1 present 

the results obtained with the DAP heuristic.  CPLEX MILP solver is run with a CPU 

time limit of 7200 seconds.  Therefore, for most of the cases UB indicates the best upper 

bound found by CPLEX MILP solver within time limit of 7200 seconds.  The last two 

columns in Table 5.1., the results computed by ALA-CPX are given.  As it can be 
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observed for the second and third columns of Table 5.1, we could only obtain optimal 

solutions for first two instances.  

 

We propose three versions of the ALA-type heuristic: ALA-CPX, ALA-VLSN and 

ALA-TS.  These three versions are different in terms of their solution approach 

employed to solve the SSTP which arises in the allocation phase of the ALA-type 

heuristic (i.e.  Step 3).   In the first version of ALA-type heuristic (i.e. ALA-CPX), the 

SSTP is solved to optimality by using CPLEX MILP solver.  This is straightforward 

implementation of the ALA-type heuristic for the SSCMWP.  In the second version of 

the ALA type heuristic (i.e. ALA-VLSN), the SSTP is solved by the VLSN search 

heuristic presented in Section 4.3.  In the third version (i.e. ALA-TS), the SSTP is 

solved by TS algorithm presented in Section 4.4.  We have also considered the DAP 

heuristic for the SSCMWP where the DAP formulation is solved by CPLEX MILP 

solver.  As a result, we report computational results with four heuristics.  These are 

DAP, ALA-CPX, ALA-VLSN and ALA-TS.  Furthermore, two versions of the ALA-

VLSN are designed.  These are ALA-VLSN-R and ALA-VLSN-RBM. ALA-VLSN-R  

stands for the ALA-VLSN search algorithm with random ejection rule.  This ejection 

mechanism is performed up to JI ×  times and the best feasible solution is reported.  

ALA-VLSN-RBM denotes the ALA-VLSN search algorithm with recency based 

Ejection rule.  On the other hand, we have two versions of ALA-TS.  These are TS-with 

feasible chasing phase (ALA-TSwFC) and TS-without feasible chasing phase (ALA-

TSwoFC).   

 

Table 5.2 and Table 5.3 contain the computational results including both CPU time and 

upper bounds obtained with ALA-VLSN and ALA-TS respectively.  When we consider 

large instances, none of the DAP and ALA-CPX were able to yield upper bounds in 

reasonable CPU times (i.e.  with a running time limit of 2 hours).  Hence, in Table 5.3, 

we report only the results obtained with ALA-VLSN search algorithm and ALA-TS 

heuristic.  The first column indicates the names of the test instances, columns 2, 4, 6 and 

8 indicate the CPU times (in seconds) required and columns 3, 5, 7 and 9 are for upper 

bounds obtained. 
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In Table 5.4, a summary of the computational results are reported.  In this table, the 

average CPU times and average upper bound values of the proposed algorithms on 

small instances are given.  We can observe that the best upper bounds are obtained by 

ALA-VLSN-RBM.  On the other hand, ALA-VLSN-R yields also promising results in 

terms of efficiency.  Generally speaking, we can conclude that ALA-VLSN algorithms 

yield more promising results than the ALA-TS algorithms do.  The accuracies of the 

proposed algorithms are illustrated with Figure 5.3. 

 

In comparison between ALA-TS and ALA-VLSN, it can be easily noticed that ALA-

VLSN is more efficient than ALA-TS in average.  In our TS algorithm, only swap 

moves are performed while in ALA-VLSN multiple swap operations are allowed 

through the matching neighbourhood.  Therefore, we expect ALA-VLSN to be more 

appropriate in reaching very good solutions in reasonable computation times.   

 

Finally, in Table 5.5., we report computational experiments with the ALA-TS-woFC for 

different stopping criterion.  In Table 5.5., we consider maximum iteration numbers 

200, 500, 1000, 2000 and 3000, and we take non-improving iteration numbers of 50, 

125, 250, 500 and 750.  For a set of combinations of maximum iteration number and 

number of non-improving iterations, we have performed some experiments on small 

instances.  We observed that when the CPU time increases, the accuracy of the ALA-

TS-woFC improves considerably.  We should note that in our experiments for ALA-

VLSN and ALA-TS, the maximum iteration number is set to 100 and the non-

improving iteration limit is fixed to be 20. 
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Table 5.1. Performance of the Upper Bounding Procedures on Small Instances 

 

DAP ALA-CPX 

Instances 

# of Binary 

Variables / 

Constraints CPU UB 

# of Binary / 

Continuous 

Variables / 

Constraints 
CPU UB 

chgn_4_8 2304/268 0,9 308,00 32/4/12 0,3 370,00 

chgn_4_24 57600/2332 1172,5 1301,00 96/4/28 0,8 1627,26 

chgn_5_20 42000/2025 7202,1 10276,00 100/5/25 2,3 12738,40 

chgn_5_25 81250/3155 7204,8 14683,00 125/5/30 3,3 13570,83 

chgn_5_30 139500/4535 7211,9 23769,00 150/5/35 3,2 17680,60 

chgn_5_40 328000/8045 7238,2 30184,00 200/5/45 10,0 30855,40 

chgn_5_50 637500/12555 7948,9 26829,00 250/5/55 3,7 25129,21 

chgn_5_100a 5050000/50105 16644,8 41300,00 500/5/105 2,9 33357,60 

chgn_5_100b 5050000/50105 15049,3 51197,00 500/5/105 6,8 36509,01 

chgn_5_100c 5050000/50105 20186,3 53022,00 500/5/105 3,4 41149,67 

chgn_5_100d 5050000/50105 15559,1 N/A 500/5/105 2,2 34677,63 

chgn_5_100e 5050000/50105 20613,2 93653,00 500/5/105 1,2 37795,16 

chgn_6_20 50400/2426 7202,9 14956,00 120/6/26 8,1 15160,69 

chgn_6_25 97500/3781 7205,8 9647,00 150/6/31 2,5 12869,22 

chgn_6_30 167400/5436 7214,6 N/A 180/6/36 7,8 16623,24 

chgn_7_20 58800/2827 7203,1 N/A 140/7/27 2,7 9114,74 

chgn_7_25 113750/4407 7216,4 26417,00 175/7/32 4,6 12015,09 

chgn_7_30 195300/6337 7223,6 27256,00 210/7/37 22,1 18672,01 

chgn_8_25 130000/5033 7209,9 N/A 200/8/33 7,9 14282,95 

chgn_8_30 223200/7238 7226,5 N/A 240/8/38 43,4 16001,70 

chgn_9_25 146250/5659 7210,8 N/A 225/9/34 4,8 12326,52 

chgn_9_30 251100/8139 7233,4 N/A 270/9/39 51,7 15209,66 

chgn_10_25 162500/6285 7227,2 N/A 250/10/35 7,0 10082,65 

chgn_10_30 279000/9040 7276,0 N/A 300/10/40 151,8 15209,07 

chgn_10_40 656000/16050 7797,6 N/A 400/10/50 120,2 15036,32 

Average 1162774/14643,9 8819,2 28319,87 14643,9/252,5/48,5 19,0 18722,59 
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Table 5.2. Performance of the Upper Bounding Procedures on Small Instances 

(continued) 

 

ALA – VLSN  ALA – TS 

R-VLSN RBM-VLSN ALA-TS-wFC ALA-TSwoFC Instances 

CPU UB CPU UB CPU UB CPU UB 

chgn_4_8 0,41 310,00 
3,56 308 1,10 310,00 0,08 310,00 

chgn_4_24 1,26 1315,29 
4,33 1301 0,49 1519,53 0,50 1449,64 

chgn_5_20 3,14 9748,97 
5,36 9209 98,30 9748,97 1,17 11251,30 

chgn_5_25 1,70 11095,37 
6,11 9814 29,59 11208,09 0,51 13481,18 

chgn_5_30 3,41 15885,64 
6,02 15204 33,61 17047,73 0,66 21936,96 

chgn_5_40 2,37 23449,20 
9,13 22060 25,20 25106,00 0,98 30977,85 

chgn_5_50 7,81 20904,44 
10,74 19678 4,45 22164,13 1,56 27558,89 

chgn_5_100a 7,14 32109,45 
28,16 29889 10,07 38738,45 8,95 36910,20 

chgn_5_100b 10,40 31859,11 
29,15 30239 20,03 37297,84 13,56 36639,58 

chgn_5_100c 9,35 38659,01 
27,81 35376 17,12 42352,63 8,08 45857,72 

chgn_5_100d 15,00 37637,78 
26,15 33767 16,19 41889,98 9,41 44388,53 

chgn_5_100e 13,69 39759,75 
28,27 37087 22,11 43300,90 9,00 45702,60 

chgn_6_20 1,19 10717,01 
7,16 10420 250,27 10385,93 5,21 12480,01 

chgn_6_25 1,25 9132,02 
6,12 7895 47,17 9361,01 0,62 14426,94 

chgn_6_30 1,77 15502,34 
6,44 14574 69,40 16545,72 1,11 22469,06 

chgn_7_20 5,79 8726,38 
6,95 8187 438,90 8726,38 2,18 9141,02 

chgn_7_25 1,75 10027,00 
6,43 9822 141,52 10069,08 1,23 14046,06 

chgn_7_30 2,65 14784,96 
7,8 14528 110,03 15892,08 1,95 19685,14 

chgn_8_25 4,12 9272,31 
11,21 9048 515,66 9455,46 4,84 14042,21 

chgn_8_30 2,18 14354,66 
9,28 13378 234,73 16891,04 3,17 21157,13 

chgn_9_25 1,15 8916,00 
10,65 9521 355,92 9196,02 10,28 13613,02 

chgn_9_30 6,36 12811,97 
12,32 11973 446,75 14616,22 2,61 19845,67 

chgn_10_25 5,77 7033,02 
15,04 6213 321,52 8736,01 19,05 9944,96 

chgn_10_30 7,68 14620,06 
10,77 12675 403,54 15583,21 15,85 17698,10 

chgn_10_40 4,39 15980,30 
13,36 14245 239,11 17633,35 6,26 23868,13 

Average 4,87 16584,48 12,33 15456,44 154,11 18151,03 5,15 21155,28 
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Table 5.3. Performance of the Upper Bounding Procedures on Large Instances 

 

ALA – VLSN ALA – TS  

R-VLSN RBM-VLSN ALA-TSwFC ALA-TSwoFC Instances 

CPU UB CPU UB CPU UB CPU UB 

chgn_10_100 26,1 45046,93 45,8 40691,06 108,1 52597,61 8,7 64559,21 

chgn_20_50 63,7 19970,06 203,7 15865,03 522,8 20166,04 14,5 22376,15 

chgn_20_250 140,5 68670,43 158,6 68048,86 403,3 97657,17 201,4 114118,71 

chgn_25_250a 121,6 72083,02 254,0 69637,64 339,6 9485,46 159,2 103842,13 

chgn_25_250b 96,5 81006,58 329,5 79616,47 494,6 131657,34 70,5 149052,31 

chgn_25_250c 165,8 73937,26 214,6 70665,13 386,3 98711,34 151,1 104877,89 

chgn_25_250d 184,2 63204,11 226,8 62705,45 830,0 86841,62 87,8 109839,10 

chgn_25_250e 168,7 81029,13 238,7 79277,41 615,3 101650,11 78,4 115153,77 

chgn_30_100 18,4 31855,92 43,9 26440,64 767,7 48515,61 30,0 54017,28 

chgn_50_250 221,2 48766,91 288,3 48217,84 583,7 61229,54 182,7 101735,64 

Average 120,7 58557,04 200,4 56116,55 505,1 70851,18 98,4 93957,22 
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Table 5.4. The Average Computational Results on Small Instances 

 

Algorithm Version CPU UB % 

DAP DAP 8819,19 28319,87 83,22% 

ALA-CPX ALA-CPX 19,04 18722,59 21,13% 

ALA-VLSN-R R-VLSN 4,87 16584,48 7,30% 

ALA-VLSN-RBM RBM-VLSN 12,33 15456,44 0,00% 

ALA-TS-wFC TS with FC 154,11 18151,03 17,43% 

ALA-TS-woFC TS without FC 5,15 21155,28 36,87% 
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Figure 5.1. The Average Upper Bound Values Obtained with the Proposed Algorithms 

on Small Instances 
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Table 5.5. Performance of the TS Algorithm with the Increasing CPU Time 

 

ALA-TSwoFC 

(200 / 50) (500 / 125) (1000 / 250) (2000 / 500) (3000 / 750) Instances 

CPU UB CPU UB CPU UB CPU UB CPU UB 

chgn_4_8 0,1 310,00 1,71 310,00 3,40 310,00 6,81 310,00 10,14 310,00 

chgn_4_24 0,5 1372,49 11,44 1375,08 21,61 1340,01 43,70 1340,01 65,98 1373,81 

chgn_5_20 1,3 10808,20 11,99 9652,68 22,76 10040,82 60,37 9748,97 65,81 10029,81 

chgn_5_25 0,9 14736,28 15,12 12712,71 35,89 11873,56 58,68 13273,13 88,73 10268,11 

chgn_5_30 1,1 17620,56 22,67 17658,97 41,66 17556,72 84,82 17777,16 139,84 17030,96 

chgn_5_40 2,24 29718,34 35,29 29110,06 72,75 27580,44 153,62 26146,13 204,67 25360,02 

chgn_5_50 2,48 24840,54 56,08 24129,87 106,68 23607,79 207,00 23422,90 308,22 23954,94 

chgn_5_100a 10,62 37272,11 229,87 35377,34 383,48 35663,95 761,28 36532,71 1129,54 34984,08 

chgn_5_100b 14,11 36822,71 205,51 36306,83 388,71 35915,19 900,97 35822,90 1242,79 35519,08 

chgn_5_100c 13,26 43626,64 191,52 43024,63 379,21 41073,22 884,37 40181,15 1143,60 40140,14 

chgn_5_100d 12,50 41811,05 218,86 40594,64 404,46 40847,17 762,54 41119,98 1202,11 39837,70 

chgn_5_100e 11,30 44861,44 204,68 43322,71 383,37 43011,80 829,24 39453,00 1781,88 42041,04 

chgn_6_20 2,58 12040,61 24,30 10909,89 39,76 11412,88 80,01 11022,30 121,21 10909,89 

chgn_6_25 0,96 10412,09 17,31 10636,62 34,52 10722,77 67,76 10543,14 121,17 10225,49 

chgn_6_30 1,28 18874,44 24,42 18393,54 49,38 16907,55 99,10 19059,88 151,74 16486,97 

chgn_7_20 5,42 9092,39 21,76 8228,39 57,26 8228,39 94,64 8228,39 136,20 8228,39 

chgn_7_25 1,68 12936,04 25,48 11367,05 45,46 11169,72 94,90 10696,75 128,45 11036,07 

chgn_7_30 1,58 19189,15 29,19 19051,36 60,81 18080,10 120,86 16865,90 171,47 18149,92 

chgn_8_25 6,61 10973,78 42,76 11064,16 66,75 10683,02 140,25 11121,24 227,05 10151,76 

chgn_8_30 3,05 18516,62 34,64 15873,86 74,48 17041,54 153,85 15688,08 220,91 14110,06 

chgn_9_25 9,08 11868,03 49,02 12354,01 87,30 9806,02 184,56 10099,84 302,39 9667,02 

chgn_9_30 5,40 17139,74 45,64 17630,86 83,59 17220,75 174,18 16065,77 264,11 14763,64 

chgn_10_25 15,22 7660,02 69,33 7768,67 135,37 7288,41 281,62 6838,02 438,36 7441,02 

chgn_10_30 7,82 17309,44 59,29 17702,05 115,46 16169,57 226,22 15812,28 411,21 15547,07 

chgn_10_40 6,24 24765,59 84,18 21121,52 139,98 19722,07 285,69 20180,24 422,01 19188,80 

Average 5,50 19783,13 69,28 19027,10 129,36 18530,94 270,28 18294,00 419,98 17870,23 

 

 



 

 

6. CONCLUSION 

 
 
 
In this work, we have addressed the rectilinear distance SSCMWP which aims to find 

the optimal location of a number of facilities that will serve a set of customers with 

known locations in the continuous plane under the single source assumption in order to 

minimize the total transportation cost which is proportional to the customer demands 

and distances between facilities and customers.  We assume that the distances between 

facilities and customers are rectilinear.  To the best of our knowledge, we have 

encountered with only two studies on the SSCMWP in the literature.  These two studies 

are focused on the Euclidean distance SSCMWP. We have proposed four upper 

bounding approaches for the SSCMWP.  These are DAP heuristic, ALA-CPX heuristic, 

ALA-VLSN heuristic and ALA-TS heuristic.  We have devised two versions of the 

ALA-VLSN algorithm.  They are which consider random ejection rule (ALA-VLSN-R) 

and the one which works with the RBM rule (ALA-VLSN-RBM).   

 

Two versions of the ALA-TS heuristic are developed.  These are ALA-TS heuristic with 

feasibility chasing phase (ALA-TS-FC) and ALA-TS heuristic without feasibility 

chasing phase (ALA-TSwoFC).  We have also proposed the DAP heuristic which 

requires excessive CPU time.  DAP heuristic is the least efficient method for obtaining 

upper bounds on the SSCMWP.  According to our experiments, we have observed that 

both ALA-VLSN and ALA-TS heuristics yield outstanding performance. 

 

The computational results indicate that both R-VLSN and RBM-VLSN heuristics are 

accurate and efficient for the rectilinear distance SSCMWP and competitive with other 

well-known algorithms.  According to our computational experiments, comparing all 

methods, ALA-VLSN heuristic yields significantly better results in reasonable CPU 

times.  Thus, considering the trade-off between accuracy and efficiency we can also 
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recommend ALA-VLSN heuristic as a reasonable solution approach.  In average VLSN 

heuristics clearly outperform TS approach. 

 

Comparing four heuristics, ALA-CPX heuristic is the worst one.  Even if the 

computational time of the ALA-CPX heuristic is acceptable, its accuracy is not good.  

The accuracy of ALA-CPX in the final solution depends on its initial solution where the 

facility locations are determined randomly in the initialization step of the heuristic.   

 

As a further research avenue, we believe that combining VLSN search strategy with 

other search schemes such as TS or SA has yield more efficient and accurate upper 

bounding heuristics for the rectilinear SSCMWP.  Moreover, many other metaheuristics 

such as GA and Greedy Randomized Adaptive Search Procedure (GRASP) can also be 

implemented. 

 

 



 

 

REFERENCES 

 

 

[1] Weber, A., “Theory of the Location of Industries”, Chicago, III., The University of 

Chicago Presss, (1909). 

 

[2] Cooper, L., “The Transportation-Location Problem”, Operations Research, 20 (1), 

94–108, (1972). 

 

[3] Sherali, H.D., Nordai, F.L., “NP-Hard, Capacitated, Balanced p-Median Problems 

on a Chain Graph with a Continuum of Link Demands”, Mathematics of Operations 

Research, 13, 32–49, (1988). 

 

[4] Foulds, L.R., Wilson, J.M., “A Variation of the Generalized Assignment Problem 

Arising in the New Zealand Dairy Industry”, Annals of Operations Research, 69, 105–

114, (1997). 

 

[5] Akyüz, M.H., Öncan, T., Altınel, Đ.K., “Efficient Approximate Solution Methods for 

the Multi-Commodity Capacitated Multi-Facility Weber Problem”, Computers and 

Operations Research , 39 (2), 225–237, (2012). 

 

[6] Akyüz, M.H., Öncan, T., Altınel, Đ.K., “The Multi-Commodity Capacitated Multi-

Facility Weber Problem: Heuristics and Confidence Intervals”, IIE Transactions, 

42(12), 825–841, (2010). 

 

[7] Akyüz, M.H., Öncan, T., Altınel, Đ.K., “Efficient Lower and Upper Bounds for the 

Multi-Commodity Capacitated Multi-Facility Weber Problem with Rectilinear 

Distances”,  In: Voss, S. , Pahl, J. , Schwarse, S., editors.  Logistik Management Systeme 

Methoden Integration Berlin, Heidelberg: Springer-Verlag, 229–245, (2009). 

 



  

 

38

 

[8] Akyüz, M.H., Öncan, T., Altınel, Đ.K., “The Multi-Commodity Capacitated Multi-

Facility Weber Problem: Heuristics and Confidence Intervals”, In: Ao, SI., Castillo, O., 

Douglas, C., Dagan Feng, D., Lee, J-A., editors.  Proceedings of the International Multi 

Conference of Engineers and Computer Scientists, IMECS, vol.  II, 2042– 2047,(2009). 

 

[9] Rosing, K.E., “An Optimal Method for Solving the (Generalized) Multi-Weber 

Problem”, European Journal of Operational Research, 58 (3), 414–426, (1992). 

 

[10] Krau, S., “Extensions du Problème de Weber”, PhD Thesis, Ecole Polytechnique 

de Montréal, (1997). 

 

[11] Cooper, L., “Heuristic Methods for Location-Allocation Problems”, Siam Review, 

6 (1), 37–53, (1964). 

 

[12] Hansen, P., Mladenović, N., Taillard, E., “Heuristic Solution of the Multisource 

Weber Problem as a p-Median Problem”, Operations Research Letters, 22 (2-3), 55–62, 

(1998). 

 

[13] Brimberg, J., Hansen, P., Mladenović, N., Taillard, E.D., “Improvements and 

Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem”, 

Operations Research, 48 (3), 444–460, (2000). 

 

[14] Gamal, M.D.H., Salhi, S., “A Cellular Type Heuristic for the Multisource Weber 

Problem”, Computers and Operations Research, 30 (11), 1609–1624, (2003). 

 

[15] Salhi, S., Gamal, M.D.H., “A GA-Based Heuristic for the Multi-Weber Problem”, 

Annals of Operations Research, 123, 203–222, (2003). 

 

[16] Taillard, E.D., “Heuristic Methods for Large Centroid Clustering Problems”, 

Journal of Heuristics, 9 (1), 51–73 , (2003). 

 



  

 

39

 

[17] Brandeau, M.L., Chiu, S.S., “Sequential Location and Allocation: Worst Case 

Performance and Statistical Estimation”, Location Science, 1 (4), 289–298, (1993). 

 

[18] Aras, N., Özkısacık, K.C., Altınel, Đ.K., “Solving the Uncapacitated Multi-Facility 

Weber Problem by Vector Quantization and Self-Organizing Maps”, Journal of the 

Operational Research Society, 57, 82–93, (2006). 

 

[19] Liu, C.M., Kao, R.L., Wang, A.H., “Solving Location-Allocation Problems with 

Rectilinear Distances by Simulated Annealing”, Journal of the Operational Research 

Society, 45, 1304–1315, (1994). 

 

[20] Lozano, S., Guerrero, F., Onieva L., Larraneta, J., “Kohonen Maps for Solving a 

Class of Location-Allocation Problems”, European Journal of Operational Research, 

108, 106–117, (1998). 

 

[21] Hsieh, K.H., Tien, F.C., “Self-Organizing Feature Maps for Solving Location-

Allocation Problems with Rectilinear Distances”, Computers and Operations Research, 

31, 1017–1031, (2004). 

 

[22] Sherali, H.D., Ramachandran, S., Kim, S., “A Localization and Reformulation 

Discrete Programming Approach for the Rectilinear Distance Location-Allocation 

Problem”, Discrete Applied Mathematics, 49 (1-3), 357–278, (1994). 

 

[23] Al-Loughani, L., “Algorithmic Approaches for Solving the Euclidean Distance 

Location-Allocation Problems”, PhD Dissertation, Blacksburg, Virginia: Industrial and 

System Engineering, Virginia Polytechnic Institute and State University, (1997). 

 

[24] Sherali, H.D., Al-Loughani, I., Subramanian, S., “Global Optimization Procedures 

for the Capacitated Euclidean and pl  Distance Multifacility Location-Allocation 

Problem”, Operations Research, 50, 433–448, (2002). 

 



  

 

40

 

[25] Sherali, H.D., Shetty, C.M., “The Rectilinear Distance Location-Allocation 

Problem”, Journal of Regional Science, 16, 309–315, (1975). 

 

[26] Sherali, H.D., Tunçbilek, C.H., “A Squared-Euclidean Distance Location-

Allocation Problem”, Naval Research Logistics, 39, 447–469, (1992). 

 

[27] Aras, N., Altınel, Đ.K., Orbay, M., “New Heuristic Methods for the Capacitated 

Multi-facility Weber Problem”, Naval Research Logistics, 54, 21–32, (2007). 

 

[28] Aras, N., Orbay, M., Altınel, Đ.K., “Efficient Heuristics for the Rectilinear Distance 

Capacitated Multi-Facility Weber Problem”, Journal of the Operational Research 

Society, 59, 64–79, (2008). 

 

[29] Aras, N., Yumuşak, S., Altınel, Đ.K., “Solving the Capacitated Multi-Facility 

Weber Problem by Simulated Annealing Threshold Accepting and Genetic 

Algorithms”, In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W.J., Hartl, 

R.F., Reimann, M., editors.  Metaheuristics: progress in complex systems optimization, 

Berlin: Springer, 91–112, (2007). 

 

[30] Zainuddin, Z.M., Salhi, S., “A Perturbation-Based Heuristic for the Multisource 

Weber Problem”, European Journal of Operational Research, 179, 1194–1207, (2007). 

 

[31]  Luis, M., Said, S., Nagy, G., “A Guided Reactive GRASP for the Capacitated 

Multi-Source Weber Problem”, Computers and Operations Research, 38 (7), 1014–

1024, (2011). 

 

[32] Luis, M., Salhi, S., Nagy, G., “Region-rejection Based Heuristics for the 

Capacitated Multi-source Weber Problem”, Computers and Operations Research, 36, 

2007–2015, (2009). 

 

 



  

 

41

 

[33] Gong, D., Gen, M., Yamazaki, G., Xu, W., “Hybrid Evolutionary Method for 

Capacitated Location-Allocation Problem”, Computers and Industrial Engineering, 33 

(3-4), 577–580, (1997). 

 

[34] Manzour-al-Ajdad, S.M.H., Torabi, S.A., Eshghi, K.  “Single-Source Capacitated 

Multi-Facility Weber Problem - An Iterative Two Phase Heuristic Algorithm”, 

Computers and Operations Research, 39, 1465-1476, (2012). 

 

[35] Rönnqvist, M., Tragantalerngsak, S., Holt, J., “A Repeated Matching Heuristic for 

the Single-Source Capacitated Facility Location Problem”, European Journal of 

Operational Research, 116, 51–68, (1999). 

 

[36] Pirkul, H., Jayaraman, V., “A Multi-commodity, Multi-Plant, Capacitated Facility 

Location Problem formulation and Efficient Heuristic Solution”, Computers and 

Operations Research, 25, 869–878, (1998). 

 

[37] Darby-Dowman, K., Lewis, H.S., “Lagrangian Relaxation and the Single Source 

Capacitated Facility Location Problem”, Journal of the Operational Research Society, 

39, 1035–1040, (1988). 

 

[38] Cortinhal, M.J., Captivo, M.E., “Upper and Lower Bounds for the Single Source 

Capacitated Location Problem”, European Journal of Operational Research, 151 (2), 

333–351, (2003). 

 

[39] Tragantalerngsak, S., Holt, J., Rönnqvist, M., “An Exact Method for the Two-

Echelon, Single Source, Capacitated Facility Location Problem”, European Journal of 

Operational Research, 123 (3), 473–489 (2000). 

 

[40] Tragantalerngsak, S., Holt, J., Rönnqvist, M., “Lagrangian Heuristics for the Two-

Echelon, Single-Source, Capacitated Facility Location Problem”, European Journal of 

Operational Research, 102, 611–625 (1997). 

 



  

 

42

 

[41] Ghiani, G., Guerriero, F., Musmanno, R., “The Capacitated Plant Location Problem 

with Multiple Facilities in the Same Time”, Computers and Operations Research, 50, 

268–274, (1999). 

 

[42] Chen, C.H., Ting, C.J., “Combining Lagrangian Heuristic and Ant Colony System 

to Solve the Single Source Capacitated Facility Location Problem”, Transportation 

Research Part E, 44(1), 1099–1122, (2008). 

 

[43] Chen, C.H., Ting, C.J., “Applying Multiple Ant Colony System to Solve the Single 

Source Capacitated Facility Location Problem”, Lecture Notes in Computer Science, 

4150, 508–509, (2006). 

 

[44] Bornstein, C.T., Azlan, H.B., “The Use of Reduction Tests and Simulated 

Annealing for the Capacitated Location Problem”, Location Science, 6, 67–81, (1998). 

 

[45] Lin, C.K.Y., “Stochastic Single-Source Capacitated Facility Location Model with 

Service Level Requirements”, International Journal of Production Economics, 117, 

439–451, (2009). 

 

[46] Singhtaun, C., Charnsethikul, P., “Efficient Heuristics for Single-Source 

Capacitated Multi-Facility Weber Problems”, Applied Operations Research, 

Proceedings of the 38th International Conference on Computers and Industrial 

Engineering, 35–39, (2008). 

 

[47] Brimberg, J., Hansen, P., Mladenović, N., Salhi, S., “A Survey of Solution 

Methods for the Continuous Location-Allocation Problem”, International Journal of 

Operations Research, 5 (1), 1–12, (2008). 

 

[48] Yagiura, M., Iwasaki, S., Ibaraki, T., Glover, F., “A Very Large-Scale 

Neighbourhood Search Algorithm for the Multi-Resource Generalized Assignment 

Problem”, Discrete Optimization, 1, 87–98, (2004). 

 



  

 

43

 

[49] Minic, S.M., Punnen, A.P., “Local Search Intensified: Very Large-Scale Variable 

Neighborhood Search for the Multi-Resource Generalized Assignment Problem”, 

Discrete Optimization, 6, 370–377, (2009). 

 

[50] Ahuja, R.K., Orlin, J.B., Sharma, D., “A Composite Very Large-Scale 

Neighbourhood Structure for the Capacitated Minimum Spanning Tree Problem”, 

Operations Research Letters, 31, 185–194, (2003). 

 

[51] Ergun, Ö.,  Orlin, J.B., “A Dynamic Programming Methodology In Very Large 

Scale Neighborhood Search Applied to the Traveling Salesman Problem”, Discrete 

Optimization, 3, 78–85, (2006). 

 

[52] Ahuja, R.K., Jha, K.C., Orlin, J.B., Sharma, D., “Very Large-Scale Neighbourhood 

Search for the Quadratic Assignment Problem”, INFORMS Journal on Computing, 19 

(4), 646–657, (2007). 

 

[53] Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P., “A Survey of Very Large-Scale 

Neighbourhood Search Techniques”, Discrete Applied Mathematics, 123, 75–102, 

(2002). 

 

[54] Öncan, T., Kabadi, S.N., Nair, K.P.K., Punnen, A.P., “VLSN Search Algorithms 

for Partitioning Problems Using Matching Neighbourhoods”, Journal of the 

Operational Research Society, 59, 388–398, (2008). 

 

[55] Ahuja, R.K., Orlin, J.B., Pallottino, S., Scaparra, M.P., Scutellá, M.G., “A Multi-

Exchange Heuristic for the Single-Source Capacitated Facility Location Problem”, 

Management Science, 50 (6), 749–760, (2004). 

 

[56] Holberg, K., Ronnqvist, M., Yuan, D., “An Exact Algorithm for the Capacitated 

Facility Location Problems with Single Sourcing”, European Journal of Operational 

Research, 113, 544–559 (1999). 

 



  

 

44

 

[57] Hindi, H., Pienkosz, K., “Efficient Solution of Large Scale, Single-Source, 

Capacitated Plant Location Problem”, Journal of the Operational Research Society, 50, 

268–274, (1999). 

 

[58] Martello, S., Toth, P., “Knapsack Problems: Algorithms and Computer 

Implementations”, Wiley Series in Discrete Mathematics and Optimization, New York, 

(1990). 

 

[59] Thisse, J.F., Ward, J.E., Wendell, R.E., “Some Properties of Location Problems 

with Block and Round Norms”, Operations Research, 32 (6), 1309–1327, (1984). 

 

[60] Wendell, R.E., Hurter, A.P., “Location Theory, Dominance and Convexity”, 

Operations Research, 21, 314–320, (1973). 

 

[61] Hansen, P., Perreur, J., Thisse, F., “Location Theory, Dominance and Convexity: 

Some Further Results”, Operations Research, 28(5), 1241–1250, (1980). 

 

[62] Weiszfeld, E., “Sur le Point Lequel la Somme des Distances de n Points Donnés est 

Minimum”, Tôhoku Mathematical Journal, 43, 355–386, (1937). 

 

[63] Brimberg, J., Love, R.F., “Global Convergence of a Generalized Iterative 

Procedure for the Minimum Location Problem with pl  Distances”, Operations 

Research, 41, 1153–1163, (1993). 

 

[64] Taillard, E.D., “Parallel Iterative Search Methods for Vehicle Routing Problems”, 

Networks, 23, 661–673, (1993). 

 

 



 

 

APPENDIX : C++ Codes 

 

 

// THESE CODES BELONG TO ONLY ONE VERSION OF AN ALGORITM: RBM-

VLSN 

#include "resource.h" #include <iostream> #include <stdlib.h> #include 

<cstdio> #include <stdio.h> #include <math.h> #include <fstream> 

#include <time.h> #include <string> #include <ostream> #include 

<Windows.h> 

#define INF 100000000   

#define ITNUMBERTWOPHASE 100 

#define MAKSZAMAN 10000 

#define WEISITNUMBER 5000  

#define MAKSDENEME 10000 

#define FEASIBLEDENEME 100 

#define DENEMEBIPARTITEALTKISIM 50 

#define MODSAYISI 3  

#define IYISONUCCIKMADI  20 

using namespace std; 

//MAIN 

int main (int argc, char **argv) 

{ 

 clock_t start, finish; 

 start = clock(); 

 int i,j,m,facility,boyut ; 

 char *dosyaismi=new char[128]; 

    if(argc>0) 

     dosyaismi=argv[1]; 

 double kobay;  

   ifstream girdi1; 

   girdi1.open(dosyaismi); 

   if(!girdi1) 

    exit(1);  

     girdi1>>kobay; 

  facility=(int)kobay; 
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  girdi1>>kobay; 

  boyut=(int)kobay; 

    girdi1.close(); 

 double cputime, oandakizaman=0; 

    double *x=new double[boyut];  

      double *y=new double[boyut]; 

      double *w=new double[boyut];  

 double *wyeni=new double[boyut] ;  

double **uzaklik=new double*[facility]; 

     for(int i=0;i<facility;i++)  

    uzaklik[i]=new double[boyut]; 

 double *capacite=new double[facility];         

 double **atama=new double *[facility]; 

   for(i=0;i<facility;i++) 

    atama[i]=new double[boyut]; 

 double *xson=new double[facility]; 

 double *yson=new double[facility];  

 double iterasyonmaliyet=100000000, minimummaliyet=100000000, 

ortalama; 

 int itmaliyetsayaci=0,sayactoplami=0,sayachesap, 

sayac3,altsayac;; 

 double **atamatut=new double *[facility]; 

   for(i=0;i<facility;i++)      

    atamatut[i]=new double[boyut]; 

 double **atamaeniyi=new double *[facility]; 

   for(i=0;i<facility;i++)    

    atamaeniyi[i]=new double[boyut]; 

   double 

bipartite2maliyet,altbipartite2maliyet,altkobaymaliyet,kobaymaliyet; 

   ifstream girdi2; 

   girdi2.open(dosyaismi); 

   if(!girdi2) 

    exit(1); 

     girdi2>>kobay; girdi2>>kobay; girdi2>>kobay; 

  for(i=0;i<boyut;i++) 

  { 

    girdi2>>kobay; girdi2>>kobay; 

    x[i]=kobay; 

    girdi2>>kobay; 
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    y[i]=kobay; 

  } 

       girdi2>>kobay; 

   for(i=0;i<facility;i++) 

    for(j=0;j<boyut;j++) 

     girdi2>>kobay; 

  for(i=0;i<facility;i++) 

  { 

   girdi2>>kobay; 

   capacite[i]=kobay; 

  } 

  for(j=0;j<boyut;j++) 

  { 

   girdi2>>kobay; 

   w[j]=kobay; 

  } 

    girdi2.close(); 

   srand(time (NULL)); 

for(m=0;m<ITNUMBERTWOPHASE && oandakizaman<MAKSZAMAN;m++)     

 { 

  ilkatama(facility,boyut,atama); 

  if((boyut/facility)>=11) 

 bipartitematchingustsinirli(facility,boyut,atama,w,capacite,saya

chesap,MAKSDENEME,FEASIBLEDENEME,0.3); 

  else if((boyut/facility)>=7) 

 bipartitematchingustsinirli(facility,boyut,atama,w,capacite,saya

chesap,MAKSDENEME,FEASIBLEDENEME,0.4); 

  } 

  else 

 bipartitematchingustsinirli(facility,boyut,atama,w,capacite,saya

chesap,MAKSDENEME,FEASIBLEDENEME,1); 

  sayactoplami=sayactoplami+sayachesap; 

  ortalama=(double)(sayactoplami/(m+1)); 

  for(i=0;i<facility;i++) 

  { 

   for(j=0;j<boyut;j++) 

   { 

     if(atama[i][j]==0) 

      wyeni[j]=0; 
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    if(atama[i][j]==1) 

      wyeni[j]=w[j]; 

   } 

weisfeld(x,y,wyeni,boyut,WEISITNUMBER,xson[i],yson[i]); 

  } 

  for(i=0;i<facility;i++)     

   for(j=0;j<boyut;j++) 

  uzaklik[i][j]=rectlindistance(x[j],y[j],xson[i],yson[i]);  

  sayac3=0; 

  kobaymaliyet=100000000;//yüz milyon 

  while(sayac3<facility*boyut) 

  {    

   altsayac=0; 

   altkobaymaliyet=100000000;//yüz milyon 

   matristutma(facility,boyut,atamatut,atama); 

   while(altsayac<DENEMEBIPARTITEALTKISIM) 

   { 

bipartitematchingallocationimpr(facility,boyut,atamat

ut,w,capacite,uzaklik,MODSAYISI); 

altbipartite2maliyet=amacfonkdegeri(atamatut,uzaklik,

w,facility,boyut); 

      if(altbipartite2maliyet<altkobaymaliyet) 

      { 

      matristutma(facility,boyut,atamaeniyi,atamatut); 

      altkobaymaliyet=altbipartite2maliyet; 

      matristutma(facility,boyut,atamatut,atama); 

      } 

      altsayac=altsayac+1;                 

   } 

   bipartite2maliyet=altkobaymaliyet; 

   matristutma(facility,boyut,atama,atamaeniyi); 

   if(bipartite2maliyet<kobaymaliyet) 

   { 

    kobaymaliyet=bipartite2maliyet; 

     for(i=0;i<facility;i++) 

     { 

      for(j=0;j<boyut;j++) 

      { 

       if(atama[i][j]==0) 



  

 

49

 

        wyeni[j]=0; 

       if(atama[i][j]==1) 

        wyeni[j]=w[j]; 

      }     

 weisfeld(x,y,wyeni,boyut,WEISITNUMBER,xson[i],yson[i]); 

     } 

      for(i=0;i<facility;i++)    

       for(j=0;j<boyut;j++) 

  uzaklik[i][j]=rectlindistance(x[j],y[j],xson[i],yson[i]); 

      sayac3=0; 

   } 

   sayac3=sayac3+1; 

  } 

     for(i=0;i<facility;i++) 

     { 

      for(j=0;j<boyut;j++) 

      { 

       if(atama[i][j]==0) 

        wyeni[j]=0; 

       if(atama[i][j]==1) 

        wyeni[j]=w[j]; 

      } 

    wendellhurter(x,y,wyeni,boyut,xson[i],yson[i]); 

     } 

      for(i=0;i<facility;i++)    

       for(j=0;j<boyut;j++)  

  uzaklik[i][j]=rectlindistance(x[j],y[j],xson[i],yson[i]); 

 iterasyonmaliyet=amacfonkdegeri(atama,uzaklik,w,facility,boyut); 

  if(iterasyonmaliyet<minimummaliyet && iterasyonmaliyet>0) 

  { 

   itmaliyetsayaci=0; 

   minimummaliyet=iterasyonmaliyet; 

  } 

  else  

   itmaliyetsayaci=itmaliyetsayaci+1; 

  if(itmaliyetsayaci>IYISONUCCIKMADI) 

   goto atla; 

  finish = clock(); 

  oandakizaman = (double)(finish-start)/CLOCKS_PER_SEC; 
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 } 

 atla: 

   finish = clock(); 

   cputime = (double)(finish-start)/CLOCKS_PER_SEC; 

   ofstream cikti; 

   cikti.open("sonuclarRBMVLSN.txt",ios::app); 

   cikti.precision(10); 

   if(!cikti) 

    exit(1); 

   cikti<<dosyaismi<<"Cpu Suresi:"<<cputime<<"     

Maliyet:"<<minimummaliyet<<"Ort. Matching:"<<ortalama<<"Iterasyon 

Sayisi:"<<m<<endl; 

   cikti.close(); 

 delete [] x; 

 delete [] y; 

 delete [] w; 

 delete [] wyeni; 

 delete [] capacite; 

 delete [] xson; 

 delete [] yson; 

 for (i=0; i<facility; i++){ delete uzaklik[i];}delete [] 

uzaklik; 

 for (i=0; i<facility; i++){ delete atama[i];}delete [] atama; 

 return 0; 

} 

//FONCTIONS 

int indexyeni(int I,int i, int j) 

{ return (I*i)+j; } 

void matristutma(int facility,int boyut,double **matris1,double 

**matris2) 

{ 

 int i,j; 

 for(i=0;i<facility;i++) 

  for(j=0;j<boyut;j++) 

   matris1[i][j]=matris2[i][j]; 

} 

void hungarian(int size, double **Cost_Matrix,double &cost, int 

*&Solution) 

{ 
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http://ranger.uta.edu/~weems/NOTES5311/hungarian.c 

} 

int feasiblekontrol(double **atama, double *w, double *capacite, int 

facility, int boyut) 

{ 

  int i,j,sayac=0; 

  double kisit; 

    for(i=0;i<facility;i++) 

    { 

 kisit=0; 

      for(j=0;j<boyut;j++) 

      kisit=kisit+(atama[i][j]*w[j]); 

   if(kisit<=capacite[i]) 

   sayac=sayac+1; 

    } 

 if(sayac==facility) 

  return 1; 

 else 

  return 0; 

} 

double amacfonkdegeri(double **atama, double **distance, double *w,int 

facility,int boyut) 

{ 

  double sonuc=0,aradeger; 

  int i,j; 

  for(i=0;i<facility;i++) 

  { 

 aradeger=0; 

 for(j=0;j<boyut;j++) 

  aradeger=aradeger+(atama[i][j]*distance[i][j]*w[j]); 

 sonuc=sonuc+aradeger; 

  } 

  return sonuc; 

} 

void weisfeld(double *xkoor, double *ykoor, double *weight,int 

boyut,int itnumber,double &sonnoktax,double &sonnoktay) 

{ 

int i, j; 

  double toplamx=0,toplamy=0,toplamw=0; 
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  double toplamx2=0,toplamy2=0,toplamw2=0; 

  double xilk, yilk, xiki, yiki;   

  for(i=0;i<boyut;i++) 

  toplamw=toplamw+weight[i]; 

  for(i=0;i<boyut;i++) 

  { 

  toplamx=toplamx+(weight[i]*xkoor[i]); 

  toplamy=toplamy+(weight[i]*ykoor[i]);   

  }   

  xilk=(double)toplamx/toplamw; 

  yilk=(double)toplamy/toplamw;  

  for(j=0;j<itnumber;j++) 

  { 

     double kokici,*g=new double[boyut]; 

      

        for(i=0;i<boyut;i++) 

        { 

            if(xilk==xkoor[i]  && yilk==ykoor[i]) 

              g[i]=weight[i]; 

            else{        

                kokici=(double)(xilk-xkoor[i])*(xilk-xkoor[i])+(yilk-

ykoor[i])*(yilk-ykoor[i]); 

                g[i]=(double)weight[i]/(sqrt(kokici)); 

                } 

        } 

       toplamx2=0,toplamy2=0,toplamw2=0; 

       for(i=0;i<boyut;i++) 

       toplamw2=toplamw2+g[i];      

       for(i=0;i<boyut;i++) 

       { 

       toplamx2=toplamx2+(xkoor[i]*g[i]); 

       toplamy2=toplamy2+(ykoor[i]*g[i]);   

       } 

    if(toplamw2==0) 

      {        

          xiki=xilk ; 

          yiki=yilk;      

      }                       

    else                           
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      {                            

          xiki=toplamx2/toplamw2; 

          yiki=toplamy2/toplamw2; 

      }     

 double dongukosulu1,dongukosulu2; 

 dongukosulu1=fabs(xiki-xilk); 

 dongukosulu2=fabs(yiki-yilk); 

     if(xiki==xilk && yiki==yilk) 

  {  

   sonnoktax=xiki; 

   sonnoktay=yiki; 

   break; 

  } 

     if(dongukosulu1<(0.0001) && dongukosulu2<(0.0001)) 

  {  

   sonnoktax=xiki; 

   sonnoktay=yiki; 

   break; 

  } 

       if(j==itnumber-1) 

    {  

   sonnoktax=xiki; 

   sonnoktay=yiki; 

    } 

  delete [] g; 

  }         

} 

void wendellhurter(double *xkoor, double *ykoor, double *weight,int 

boyut,double &sonnoktax,double &sonnoktay) 

{ 

   int i,m,k, j,farklixsayisi,farkliysayisi,aynicikti,sayi; 

   double totalcost,kobaymaliyet=10000000;//on milyon 

   double *xsakla=new double[boyut], *ysakla=new double[boyut]; 

   for(i=0;i<boyut;i++) 

    xsakla[i]=xkoor[i]; 

   farklixsayisi=1; 

   for(i=0;i<boyut;i++) 

   { 

   aynicikti=1; 
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   if(weight[i]!=0) 

   { 

  for(j=0;j<i;j++) 

  { 

   if(xkoor[i]==xsakla[j]) 

   { 

    aynicikti=0; 

    xsakla[i]=-1; 

   } 

  } 

   } 

   else 

    xsakla[i]=-1; 

   farklixsayisi=farklixsayisi+aynicikti; 

   } 

   for(i=0;i<boyut;i++) 

    ysakla[i]=ykoor[i]; 

   farkliysayisi=1; 

   for(i=0;i<boyut;i++) 

   { 

   aynicikti=1; 

   if(weight[i]!=0) 

   { 

  for(j=0;j<i;j++) 

  { 

   if(ykoor[i]==ysakla[j]) 

   { 

    aynicikti=0; 

    ysakla[i]=-1; 

   } 

  } 

   } 

   else 

    ysakla[i]=-1; 

   farkliysayisi=farkliysayisi+aynicikti; 

   } 

 double *adayyerx=new double[(farklixsayisi*farkliysayisi)]; 

 double *adayyery=new double[(farklixsayisi*farkliysayisi)]; 

 sayi=0; 
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 for(k=0;k<boyut;k++) 

 { 

  for(i=0;i<farkliysayisi;i++) 

  { 

   if(xsakla[k]!=-1) 

   { 

       adayyerx[sayi]=xsakla[k]; 

    sayi=sayi+1; 

   } 

  } 

 } 

 sayi=0; 

 for(k=0;k<farklixsayisi;k++) 

 { 

  for(m=0;m<boyut;m++) 

  { 

   if(ysakla[m]!=-1) 

   { 

    adayyery[sayi]=ysakla[m]; 

    sayi=sayi+1; 

   } 

  } 

 } 

 for(i=0;i<farklixsayisi*farkliysayisi;i++) 

 { 

  totalcost=0; 

  for(j=0;j<boyut;j++) 

  { 

  totalcost=totalcost+weight[j]*(fabs(xkoor[j]-

adayyerx[i])+fabs(ykoor[j]-adayyery[i])); 

  } 

  if(totalcost<kobaymaliyet) 

{ 

   sonnoktax=adayyerx[i]; 

   sonnoktay=adayyery[i]; 

   kobaymaliyet=totalcost; 

  } 

 } 

   delete [] xsakla; 
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   delete [] ysakla; 

   delete [] adayyerx; 

   delete [] adayyery; 

} 

double rectlindistance(double xcord,double ycord,double xnoktasi, 

double ynoktasi) 

{ 

   double distance; 

   distance=fabs(xcord-xnoktasi) + fabs(ycord-ynoktasi);   

   return distance; 

} 

void ilkatama(int facility,int boyut,double **atama) 

{ 

    int i,j,k,t,tut=0; 

    double toplam,toplam2,maks=0; 

    double *satirtoplamlari=new double[facility]; 

    double butuntoplam=0; 

   for(i=0;i<facility;i++) 

   { 

    for(j=0;j<boyut;j++) 

    { 

     toplam=0; 

     toplam2=0; 

     atama[i][j]=rand()%2;  

          for(k=i-1;k>=0;k--) 

     toplam=toplam+atama[k][j]; 

    if(toplam>0) 

     atama[i][j]=0; 

    if(i==facility-1 && toplam==0)          

     atama[i][j]=1;    

                if(j==boyut-1) 

                {     

                  for(k=0;k<boyut;k++) 

                  { 

                  toplam2=toplam2+atama[i][k]; 

                  satirtoplamlari[i]=toplam2; 

                    if(toplam2>maks) 

                      { 

                      maks=toplam2; 
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                      tut=i; 

                      } 

                  }  

                }   

                if(satirtoplamlari[i]==0) 

                { 

                    for(k=0;k<boyut;k++) 

                    { 

                      if(atama[tut][k]==1) 

                        { 

                        atama[tut][k]=0; 

                        atama[i][k]=1; 

                        maks=maks-1; 

                        satirtoplamlari[i]=1; 

                        satirtoplamlari[tut]=satirtoplamlari[tut]-1; 

                        break; 

                        } 

                    } 

                } 

                for(t=0;t<i;t++) 

                { 

                  if(satirtoplamlari[t]>maks) 

                  { 

                    maks=satirtoplamlari[t]; 

                    tut=t; 

                  } 

                }                               

    } 

   } 

   delete [] satirtoplamlari; 

} 

void bipartitematchingustsinirli(int facility,int boyut,double 

**atama, double *w,double *capacite,int &sayachesap,int maksdeneme,int 

feasibledeneme,double ustsinir) 

{ 

  int i,j, sayi,rassal, a,b,umut,sayac,genelsayac ; 

  int *atamasayisisol=new int[facility]; 

  int *atamasayisisag=new int[facility ; 

  double **maliyet=new double *[facility]; 
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    for(i=0;i<facility;i++) 

     maliyet[i]=new double[facility]; 

  double **atamatut=new double *[facility];  

    for(i=0;i<facility;i++) 

     atamatut[i]=new double[boyut]; 

  double toplam1,toplam2,totalcost; 

  int *sonuc=new int[facility];  

  matristutma(facility,boyut,atamatut,atama); 

  sayac=0; 

  genelsayac=0; 

  birdaha: 

   for(i=0;i<facility;i++) 

    atamasayisisol[i]=0; 

   for(i=0;i<facility;i++)    

      for(j=0;j<boyut;j++)      

        if(atama[i][j]==1) 

      atamasayisisol[i]=atamasayisisol[i]+1;  

   for(i=0;i<facility;i++) 

   { 

    gel: 

    atamasayisisag[i]=rand()%(atamasayisisol[i]+1); 

  if(atamasayisisag[i]>(ustsinir*atamasayisisol[i])) 

     goto gel; 

   } 

  int **soltaraf=new int *[facility]; 

    for(i=0;i<facility;i++) 

     soltaraf[i]=new int[atamasayisisol[i]]; 

  int **sagtaraf=new int *[facility]; 

    for(i=0;i<facility;i++) 

     sagtaraf[i]=new int[atamasayisisag[i]];  

   for(i=0;i<facility;i++) 

   { 

     sayi=0; 

     for(j=0;j<boyut;j++) 

     { 

      if(atama[i][j]==1) 

      { 

       soltaraf[i][sayi]=j; 

       sayi=sayi+1; 
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      } 

     } 

   } 

   for(i=0;i<facility;i++) 

   { 

     for(j=0;j<atamasayisisag[i];j++) 

     { 

          yeniden: 

       rassal=rand()%atamasayisisol[i]; 

          if(soltaraf[i][rassal]==-1) 

             goto yeniden; 

    sagtaraf[i][j]=soltaraf[i][rassal]; 

    soltaraf[i][rassal]=-1; 

     } 

   } 

   for(i=0;i<facility;i++) 

   { 

    toplam1=0; 

    for(a=0;a<atamasayisisol[i];a++)    

     if(soltaraf[i][a]!=-1) 

      toplam1=toplam1+w[soltaraf[i][a]];  

     for(j=0;j<facility;j++) 

     { 

      toplam2=0;      

      for(b=0;b<atamasayisisag[j];b++) 

    toplam2=toplam2+w[sagtaraf[j][b]]; 

    maliyet[i][j]=capacite[i]-(toplam1+toplam2); 

      if(maliyet[i][j]<0) 

       maliyet[i][j]=10000;  

     } 

   } 

    hungarian(facility,maliyet,totalcost,sonuc); 

   for(i=0;i<facility;i++) 

    for(j=0;j<boyut;j++) 

     atama[i][j]=0; 

   for(i=0;i<facility;i++) 

   { 

     for(j=0;j<atamasayisisol[i];j++)   

      if(soltaraf[i][j]!=-1) 
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     atama[i][soltaraf[i][j]]=1;  

     for(umut=0;umut<atamasayisisag[sonuc[i]];umut++)  

      if(sagtaraf[sonuc[i]][umut]!=-1)    

     atama[i][sagtaraf[sonuc[i]][umut]]=1;  

   } 

   for (i=0; i<facility; i++) 

{ delete soltaraf[i];}delete [] soltaraf; 

   for (i=0; i<facility; i++) 

{ delete sagtaraf[i];}delete [] sagtaraf; 

   sayac=sayac+1; 

  

 if(feasiblekontrol(atama,w,capacite,facility,boyut)!=1 && 

sayac<maksdeneme) 

    goto birdaha;  

   sayachesap=sayac; 

   if(sayac>=maksdeneme) 

   { 

    for(i=0;i<facility;i++) 

     for(j=0;j<boyut;j++) 

      atama[i][j]=atamatut[i][j]; 

    genelsayac=genelsayac+1; 

    if(genelsayac>feasibledeneme) 

    { 

     exit(1); 

    } 

    sayac=0; 

    goto birdaha; 

   } 

 delete [] atamasayisisol; 

 delete [] atamasayisisag; 

 delete [] sonuc; 

 for (i=0; i<facility; i++){ delete atamatut[i];}delete [] 

atamatut; 

 for (i=0; i<facility; i++){ delete maliyet[i];}delete [] 

maliyet; 

} 

void bipartitematchingallocationimpr(int facility,int boyut,double 

**atama, double *w,double *capacite,double **distance,int modsayi) 

{ 
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  int i,j,sayi,rassal,a,b,umut; 

  int *atamasayisisol=new int[facility];  

  int *atamasayisisag=new int[facility];  

  double **maliyet=new double *[facility]; 

    for(i=0;i<facility;i++) 

     maliyet[i]=new double[facility]; 

  double toplam1,toplam2,toplam3,toplam4,totalcost; 

  int *sonuc=new int[facility]; 

  for(i=0;i<facility;i++) 

   atamasayisisol[i]=0; 

  for(i=0;i<facility;i++)    

     for(j=0;j<boyut;j++)      

       if(atama[i][j]==1) 

     atamasayisisol[i]=atamasayisisol[i]+1;  

  for(i=0;i<facility;i++) 

  { 

   if(atamasayisisol[i]>0) 

   { 

    tekrarla: 

    atamasayisisag[i]=rand()%modsayi + 1; 

    if(atamasayisisag[i]>atamasayisisol[i]) 

     goto tekrarla; 

   } 

   else 

    atamasayisisag[i]=0; 

  } 

  int **soltaraf=new int *[facility]; 

   for(i=0;i<facility;i++) 

    soltaraf[i]=new int[atamasayisisol[i]]; 

  int **sagtaraf=new int *[facility]; 

   for(i=0;i<facility;i++) 

    sagtaraf[i]=new int[atamasayisisag[i]]; 

  for(i=0;i<facility;i++) 

  { 

    sayi=0; 

    for(j=0;j<boyut;j++) 

    { 

     if(atama[i][j]==1) 

     { 
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      soltaraf[i][sayi]=j; 

      sayi=sayi+1; 

     } 

    } 

  } 

  for(i=0;i<facility;i++) 

  { 

    for(j=0;j<atamasayisisag[i];j++) 

    { 

         yeniden: 

      rassal=rand()%atamasayisisol[i]; 

         if(soltaraf[i][rassal]==-1) 

            goto yeniden; 

   sagtaraf[i][j]=soltaraf[i][rassal]; 

   soltaraf[i][rassal]=-1; 

    } 

  } 

  for(i=0;i<facility;i++) 

  { 

   toplam1=0; 

   for(a=0;a<atamasayisisol[i];a++)     

    if(soltaraf[i][a]!=-1) 

     toplam1=toplam1+w[soltaraf[i][a]];   

    for(j=0;j<facility;j++) 

    {  

     toplam2=0;      

     for(b=0;b<atamasayisisag[j];b++) 

      toplam2=toplam2+w[sagtaraf[j][b]]; 

    maliyet[i][j]=capacite[i]-(toplam1+toplam2); 

     if(maliyet[i][j]!=0) 

      maliyet[i][j]=1000000; 

     else  

     { 

      toplam3=0; 

      toplam4=0; 

      for(a=0;a<atamasayisisag[i];a++) 

 toplam3=toplam3+(distance[i][sagtaraf[i][a]]*w[sagtaraf[i][a]]); 

      for(b=0;b<atamasayisisag[j];b++) 

 toplam4=toplam4+(distance[i][sagtaraf[j][b]]*w[sagtaraf[j][b]]); 
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      maliyet[i][j]=toplam4-toplam3; 

     } 

    } 

  } 

  for(i=0;i<facility;i++) 

   for(j=0;j<boyut;j++) 

    atama[i][j]=0; 

  for(i=0;i<facility;i++) 

  { 

    for(j=0;j<atamasayisisol[i];j++)      

     if(soltaraf[i][j]!=-1) 

    atama[i][soltaraf[i][j]]=1;       

    for(umut=0;umut<atamasayisisag[sonuc[i]];umut++)   

     if(sagtaraf[sonuc[i]][umut]!=-1)    

    atama[i][sagtaraf[sonuc[i]][umut]]=1; 

  } 

 for (i=0; i<facility; i++){ delete soltaraf[i];}delete [] 

soltaraf; 

 for (i=0; i<facility; i++){ delete sagtaraf[i];}delete [] 

sagtaraf; 

 delete [] atamasayisisol; 

 delete [] atamasayisisag; 

 delete [] sonuc; 

 for (i=0; i<facility; i++){ delete maliyet[i];}delete [] 

maliyet; 

}
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