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ABSTRACT 

 

 

 

In recent years, product recovery business that is concerned with all activities related to 

regaining materials and value added out of used products has been receiving growing 

attention for various reasons such as consumer awareness, economic incentives, 

environmental concerns and legal pressure.  Product recovery can be performed in many 

ways; e.g. remanufacturing, reconditioning, recycling, and refurbishing of products.  

Remanufacturing is one of the highly important fields of product recovery.  In the 

context of our study, it refers to the process through which used products (also called 

cores or returns) are brought to as good as new condition by inspecting their 

components, and performing repairing, replacing, restoring operations and/or updating 

them with new specifications when necessary. 

 

Remanufacturing differentiates from brand-new production basically in two aspects.  

One of the major differences between remanufacturing and new product manufacturing 

systems lies in the supply side which is to take back used products before the end of 

their useful life cycle due to the fact that manufacturers would like to retain some 

fraction of the original manufactured value besides the value of the extracted and 

refined material.  Another main issue encountered by the manufacturers is the 

uncertainty in the timing, quantity and quality of product returns which may affect the 

cost of remanufacturing considerably, and may result in several challenging issues in 

the (re)assembly stage.  To cope with such uncertainties, firms involve take-back 

campaigns and leasing agreements to reduce the uncertainty in the timing and quantity 

of returns. 

 

Many firms have been looking for ways to decrease their response times to the market 

because the pressure for serving customers speedily and the impact of product 

obsolescence increases.  One way to deal with the aforementioned issues is to adopt an 

assemble-to-order (ATO) manufacturing strategy and/or its variations (i.e., reassemble-

to-order (RATO), configure-to-order (CTO) etc.) instead of employing a traditional 

make-to-stock system.  In an (R)ATO system, the inventories are held at component or  
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part levels, which substantially reduces the inventory holding costs.  This (R)ATO 

system further increases customer satisfaction through decreasing response times to the 

demands and increasing fill rates (i.e., the fraction of demands satisfied from on-hand 

inventory to the total demands).  

 

In this dissertation, a hybrid manufacturing and remanufacturing system in which a 

remanufacturing plant operates along with a manufacturing facility in fulfilling 

customer demand is analyzed. We consider a multi-component, multi-product, periodic-

review (re) assemble-to-order system (ATO) that uses an independent base-stock policy 

for inventory replenishment of the components.  Initially, end-of-lease cores are 

returned at the beginning of each period.  Since the quality of cores are random, they are 

sorted, tested and graded into four pre-specified quality levels regarding their 

conditions. Then, the random, jointly and continuously distributed demands for the 

products are realized.  Since some components, parts and modules are common to 

several products, they can be pooled together and then allocated to the respective 

products in accordance with their quality levels at the (re)assembly stage. In our 

problem, partial fulfillment is not allowed.  The system quotes a predetermined response 

time window for each product, and it penalizes if the demand is not satisfied within this 

time window. 

 

We model this problem through a risk-averse, two-stage stochastic programming 

problem, where the first stage decisions are the base stock levels for all components, 

and the second stage decisions are the allocations of components to different products.  

In order to control the manufacturers’ risk of losses/costs, a risk measure such as 

conditional value-at risk (CVaR) is incorporated into the model.  Risk adjustment is 

modeled through a chance constraint, which is then replaced by a CVaR constraint. We 

assume that the joint distribution of the random data is known, therefore, we 

approximate the problem through the sample average approximation (SAA) method, 

and we solve this approximation through the L-shaped method.  We further analyze the 

validity of our results and present some encouraging numerical results. 
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RESUME 

 

 

 

Suite à la sensibilisation des consommateurs, à sanctions légales et à la sensibilisation 

du peuple à l’environnement les activités de recyclage deviennent de plus en plus 

importantes.  Ces activités consistent à regagner les matériaux et aux profits obtenus à 

partir des produits utilisés.  C’est grâce à la reproduction, à la réparation, au 

renouvellement et grâce au recyclage qu’on obtient un profit du produit.  La 

reproduction est le point le plus important au niveau d’avoir un profit du produit.  A 

notre travail la reproduction contient le contrôle des morceaux des produits utilises (les 

retours ou les produits retournes aux producteurs), la réparation, le changement, le 

renouvellement et/ou au moment nécessaire à l’aide des nouvelles spécifications 

l’actualisation et mis à l’état neuf de ces morceaux. 

 

La reproduction se différencie de la nouvelle  production par deux points : La différence 

la plus importante entre la reproduction et la nouvelle production est au point de 

l’approvisionnement, parce que les producteurs reprennent les produits utilises avant la 

date d’expiration; ainsi ils ont dans leurs mains une partie du produit original et en 

même temps avec l’amélioration des morceaux utilisés ils essaient de gagner des profits.  

La gestion du temps de retour des produits, leurs quantités et l’imprécision de leurs 

qualités ont une grande influence sur la reproduction et créent des problèmes au 

moment du remontage.  Pour écarter les imprécisions de la gestion du temps de retour 

des produits et l’imprécision de leurs qualités, les firmes font une campagne de 

récupération des produits et établissent des contrats de location. 

 

A cause de la pression de service rapide aux clients, le risque que le produit ne soit plus 

a la mode, plusieurs firmes essaient de minimaliser le délai de réponse à la demande des 

clients.  La meilleure façon de traiter le problème est, au lieu de suivre le système 

classique qui consiste à la production liée aux stocks; est de suivre la stratégie de 

montage sur commande : MSC, et/ou ses variations: par exemple remontage sur 

commande : RMSC, configuration sur commande: CSC.  En suivant le système de 

remontage sur commande on ne fait que l’inventaire des composants et des pièces, ainsi  
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on minimalise le prix de revient de l’inventaire.  Le système de remontage sur 

commande, en diminuant le délai de réponse aux demandes et en augmentant le 

pourcentage de réponse aux demandes (c’est-a-dire la fraction de réponse aux demandes 

d’après les inventaires), augmente la satisfaction des clients.  

 

Cette thèse analyse la coopération entre une firme de reproduction et une firme de 

production de nouveaux produits.  Production hybride et système de reproduction sont 

également analysés.  Multi pièce, multi produit, les suivis périodiques du système de 

l’inventaire de montage sur commande sont des sujets d’étude de ce travail.  L’étude du 

renouvellement de l’inventaire des morceaux utilise le niveau de stock de base 

indépendant.  Premièrement au début de chaque période les produits utilisés dont les 

contrats sont finis, reviennent aux producteurs.  Les qualités des produits utilises étant 

aléatoires, les produits retournés, testés et classifiés, sont gradues d’après quatre niveaux 

déterminés à l’avance.  Ensuite réalisent pour les produits les demandes aléatoires 

combines.  On réunit les composants, morceaux et modules pareils pour plusieurs 

produits ; et par rapport à leurs degrés de qualités, pendant le période de de montage 

sont attribués aux produits.  Notre problème ne donne pas l’autorisation aux réponses 

pour les demandes partielles.  Le système fixe une date précise pour la réponse aux 

clients et la demande non satisfaite dans ces périodes est pénalisée. 

 

Nous modelons le problème avec l’aide du critère d’éviter les risques et avec une 

programmation d’excès de stock a deux étapes.  Le premier est la détermination des 

stocks fondamentaux de tous les morceaux et la deuxième est l’attribution des morceaux 

aux différents produits.  Pour pouvoir conjecturer les pertes et les prix de revient des 

producteurs ; un critère de valeur de risque dépendant des conditions (VRDC) est ajoute 

au modèle.  L’adaptation de risque est formulée avec une contrainte probabiliste et 

ensuite est changée avec VRDC.  La distribution conjointe des données aléatoires étant 

supposée connue le problème est valorisé avec la moyenne d’exemplification et cette 

approche est résolue avec méthode de forme L.  En outre l’analyse de la validité des 

résultats nous donne des résultats numériques encourageant. 
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ÖZET 
 
 
 
Tüketici bilinci, ekonomik te!vikler, çevreye olan farkındalık, ve yasal yaptırımlar gibi 

sebeplerden, malzemelerin yeniden kazanılması ve kullanılmı! ürünlerden elde edilecek 

de"erlere ili!kin tüm aktiviteleri kapsayan ürün kazanım faaliyetlerine olan ilgi son 

yıllarda büyüyerek artmı!tır.  Ürün kazanımı, örne"in; ürünlerin yeniden üretimi, 

onarımı, geri dönü!ümü, ve yenilenmesi gibi birçok !ekilde yapılabilmektedir.  Yeniden 

üretim, ürün kazanımında en önemli alanlardan biridir.  Çalı!mamızda yeniden üretim, 

kullanılmı! ürünlerin (iadeler veya üreticiye geri dönen ürünler olarakta tabir 

edilmektedir) parçalarının kontrol edilmesi, onarılması, de"i!tirilmesi, yenilenmesi 

operasyonlarını ve/veya gerekti"inde yeni spesifikasyonlarla güncellenerek yenisi kadar 

iyi duruma getirilmesini içermektedir. 

 
Yeniden üretim, yepyeni üretimden temelde iki açıdan farklılık gösterir.  Yeniden 

üretim ve yeni ürün üretimi arasındaki en önemli farklardan biri tedarik bölümündedir; 

çünkü, üreticiler kullanılmı! ürünleri kullanım sürelerinin tamamlanmadan geri alarak 

orjinal ürünün bir bölümünü elinde bulundurmanın yanısıra üründe kullanılan 

malzemelerin iyile!tirilmesi ile de de"er sa"lamak istemektedirler.  Üreticilerin 

kar!ıla!tı"ı yeniden üretimi ciddi bir !ekilde etkileyen, ve sonucunda (yeniden) montaj 

safhasında güçlük ya!anmasına sebep olan bir di"er önemli konu ise geri dönen 

ürünlerin zamanlaması, miktarı ve kalitesindeki belirsizliklerdir.  Geri dönen ürünlerin 

zamanlamasında ve miktarlarındaki belirsizlikleri gidermek için firmalar, ürünleri geri-

alma kampanyaları ve kiralama anla!maları yapmaktadırlar.  

 
Mü!teriye hızlı hizmet verme baskısı, ve ürünün modasının geçme etkisinin hızla 

artmasından dolayı birçok firma pazarda talebe cevap verme sürelerini azaltmanın 

yollarını aramaktadırlar.  Sözü edilen konu ile ba!a çıkmanın yollarından biri klasik 

sto"a-üretim sistemi yerine sipari!-üzerine-montaj (SÜM) üretim stratejisinin ve/veya 

onun varyasyonlarının (örn., yeniden sipari!-üzerine-montaj (YSÜM), sipari!-üzerine-

yapılandırma (SÜY) vs.) kullanılmasıdır.  Bir (Y)SÜM sisteminde, envanterler 

bile!enler ve parçalar seviyesinde tutulmaktadır, böylece envanter tutma maliyeti de  
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önemli ölçüde azalmaktadır.  (Y)SÜM sistemi, taleplere cevap verme sürelerini 

azaltarak ve talep kar!ılama oranlarını (bir di"er deyi!le, toplam talebin eldeki 

envanterden kar!ılanma fraksiyonunu) arttırarak mü!teri memnuniyetini 

yükseltmektedir. 

 
Bu tezde, mü!teri taleplerini kar!ılamada bir yeniden üretim tesisinin, yeni ürün üretim 

tesisi ile birlikte faaliyet göstermesini kapsayan bir melez üretim ve yeniden üretim 

sistemi analiz edilmektedir.  Çalı!mada, çoklu parça, çoklu ürün, periyodik takip edilen 

(yeniden) sipari!-üzerine-montaj (SÜM) envanter sistemi, parçalara ili!kin envanterin 

yenilenmesinde ba"ımsız temel stok seviyesini kullanarak incelemekteyiz.  #lk olarak, 

her bir periyodun ba!ında sözle!mesi biten kullanılmı! ürünler üreticiye geri 

gelmektedir.  Kullanılmı! ürünlerin kalitelerinin rassal olmasından ötürü, test edilen, 

sınıflanan geri dönen kullanılmı! ürünler önceden belirlenmi! olan dört adet kalite 

seviyesine göre derecelendirilirler.  Ardından, ürünler için birle!ik sürekli da"ılan rassal 

talepler gerçekle!ir.  Bazı bile!enler, parçalar ve modüller birçok üründe ortak olması 

sebebiyle, hepsi bir araya getirilir ve sırasıyla ürünlere kalite seviyeleri ile ili!kili olarak 

(yeniden) montaj safhasında tahsis edilirler.  Problemimizde, kısmi talep kar!ılamaya 

izin verilmemektedir. Sistemde her bir ürün için önceden karar verilmi! mü!teriye cevap 

verme süresi belirtilir, ve belirlenen bu süre içerisinde kar!ılanamayan talep 

cezalandırılmaktadır.  

 
Biz, bu problemi riskten kaçınma ölçütlü, iki-a!amalı stokastik programlama aracılı"ı 

ile modellemekteyiz.  #lk a!ama kararı, tüm parçaların temel stok seviyelerinin 

belirlenmesi ve ikinci a!ama kararı da parçaların farklı ürünlere tahsis edilmesidir.  

Üreticinin, kayıplarının/maliyetlerinin riskini ölçümlemek için !arta ba"lı-risk-de"eri 

(CVaR) gibi bir risk ölçütü modele eklenmi!tir.  Risk uyarlaması, bir olasılıksal kısıt ile 

formule edilip, ardından CVaR kısıtı ile de"i!tirilmektedir.  Rassal verilerin ortak 

da"ılımının bilindi"i varsayılmaktadır, böylece problem örneklem ortalaması yakla!ımı 

(SAA) ile de"erlendirilmekte, ve bu yakla!ım L-!ekilli metot ile çözümlenmektedir.  

#lave olarak, sonuçların geçerlili"i analiz edilip ortaya te!vik edici sayısal sonuçlar 

konmaktadır. 
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1 INTRODUCTION 

 

 

 

Remanufacturing is the process where a used product is disassembled and its modules, 

components and parts are recovered, processed, and used in the production of new 

products.  The reuse of product returns can be very profitable, especially for the high-

tech products that have quite long product life cycles [1].  For instance, the 

characteristic life cycle of a computer chip is 80,000 hours for which only 20,000 hours 

are used; therefore, that chip can still be economically used for 60,000 hours in some 

other products through, say, remanufacturing; see [2].  This high level recovery option 

is broadly found for industrial products such as photocopiers, computers, cellular 

phones, aviation equipments, vehicle engines, telecommunication, and medical 

equipments [3]. 

 

Economic incentives, ethical responsibilities, environmental concerns, legislation, 

market share and brand protection are some of the principal reasons why many firms 

engage in remanufacturing activities (e.g., [4], [5], and [6]).  From this point of view, 

we consider a remanufacturing plant that operates along with a manufacturing facility in 

meeting customer order.  These systems are also known as hybrid manufacturing and 

remanufacturing systems in the literature.  Remanufacturing a used product, in general, 

is less costly than manufacturing a new one [7].  However, remanufacturing has some 

general attributes, which complicate the supply chain and production, i.e., uncertainty in 

the timing, quantity, and quality of returns, compared to manufacturing.  At this point, 

leasing which is an ownership-based relationship will be a viable approach that aids to 

manage the return processes.  [8] discusses factors that complicate management and 

planning of supply chain functions in a recoverable manufacturing system, including the 

uncertainty in timing and quantity of cores, and the uncertainty in quality of cores. It is 

found that lease agreements and take-back arrangements provide for greater certainty 

regarding the return time and quantity of cores; see the Xerox Europe case study in [8].  

Nevertheless, the quality of cores is difficult to predict.  In a remanufacturing system, 

components and modules can typically differentiate in quality so that some modules 

have higher quality level and longer residual life than others.  Under such conditions, 
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reassembly policy and inventory management are more complicated than traditional 

assembly systems because the manufacturer must jointly manage inventories across 

variable quality modules besides different types of modules. 

 

In our model, end-of-lease cores at the beginning of each period are returned.  Since the 

quality of cores is random; they are tested, sorted, and graded into four pre-specified 

quality levels.  Then, production decisions are made based on these quality levels, see 

Figure 1.1. 

 

"

 

Figure 1.1. Hybrid manufacturing and remanufacturing system. 

 

 

In this dissertation, we consider a multi-component, multi-product, periodic review 

inventory problem for a hybrid (re)assemble-to-order system, and we jointly analyze 

assemble-to-order (ATO) and reassemble-to-order (RATO) inventory strategies.  In the 

ATO inventory strategy, products are designed around interchangeable items and 

modules.  A firm makes and keeps only the modules and the main components in 

inventory, however, final products that may have common components, are assembled 

only after customer orders are realized such as Dell Computer (e.g., [9] and [10]).  ATO 

systems can be found in the personal computer (PC) industry, in which customers are 

offered a wide range of product configurations and specifications such as processors, 

hard drives, memory cards, and other components (DVD, modem etc.) with a 

reasonably short response time after the demands are realized.  In the RATO inventory 

strategy, on the other hand, returns are not remanufactured to stock and have chosen to 

reassemble the required components and items per each customer order.  The 

remanufactured inventories are held at the component and part level.  For instance, 
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Xerox uses a reassemble-to-order policy, due to the Xerox’s products are based on 

modular design principles.  This enables the firm to configure a remanufactured product 

at the reassembly stage based on customer needs and preferences [8].  These strategies 

are mainly advantageous to firms that have significant component replenishment lead 

times, and the assembly times of products are relatively short.  

 

In our system, partially order service, in which a customer order may be only partially 

accepted, yet guaranteed to be met eventually is not allowed.  For instance, 

Amazon.com which is a e-commerce company, sells goods over the Internet.  Their 

product portfolio includes DVDs, music CDs, softwares, video games, electronics, 

furnitures etc.  If there is no available stock on their hand regarding the ordered product, 

they may split customer orders into multiple shipments (i.e., the rest of the items may be 

shipped from different fulfillment centers).  In other words, if customer orders include 

five products, and only if three of them are available in stock, then they will satisfy the 

orders with available ones, and remaining orders are supplied to customer within a 

predetermined time.  However, if the remaining orders are not available in the other 

fulfillment centers, these orders will be rejected at the beginning.  We do not employ a 

partial fulfillment in our model.  That is, customer orders are satisfied within their 

response window times if all items/parts requested are available in inventory.  Our 

system quotes a predetermined response time window for each product, and it penalizes 

if the demand is not met within this time window.  Firms whose inventory model is a 

make-to-stock system, commonly employ partially order services, in addition, firms can 

also use this model to evaluate customer impatiance. 

 

Our presented inventory problem is defined through risk-adjusted (averse) settings that 

the objective is to minimize the total expected cost/loss of the production system. This 

mathematically refers to a stochastic optimization problem with chance constraints [11].  

The risk-aversion is formulated through a probabilistic constraint, which is then 

replaced by a Conditional Value-at-Risk (CVaR) constraint (see, e.g.[12]).  [13] 

describes a Conditional Value-at-Risk (CVaR), coherent risk measure, as the expected 

value of tail distributions of returns or losses.  Coherent risk measures meet stochastic 

dominance conditions and cause a convex optimization problem [14]. 
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To address our inventory problem, we formulate a two-stage stochastic program through 

a risk-adjusted setting, where the first-stage decisions are the base-stock levels for all 

components, and the second-stage decisions are the allocations of components to 

different products.  We solve the first stage of the problem to determine the base-stock 

(order-up-to level) policy of the components for inventory replenishments by exploiting 

a Monte Carlo simulation based technique called sample average approximation (SAA) 

method, which approaches the expected objective function of the stochastic program 

with a sample average estimation on a number of randomly generated scenarios; see 

[15] and we solve this approximation through the L-shaped method that is an exact 

mathematical technique, and the main idea of it is to approximate the non-linear term in 

the objective (i.e., the recourse function).  We assume that the replenishment lead time 

of each component can be variable for different components.  In the second-stage, we 

determine component allocation decisions according to the on-hand inventory and the 

received orders.  Some components are common to several products, thus component 

allocation decision is used to determine the amounts of components to be allocated to 

each product.  The growing popularity of fast serving and mass customization in 

production systems has led to a new direction of study in fields of component 

commonality and ATO systems (see, e.g., [16] and [17]). 

 

In this study, multi-component, multi-product, periodic review hybrid (re)assemble-to-

order inventory system is considered and defined through a risk-adjusted manner.  We 

model this system as a two-stage stochastic programming problem.  The risk-aversion is 

formulated through a probabilistic constraint, which is then replaced by a CVaR 

constraint.  We assume that the joint distribution of the random data is known, thus we 

approximate the problem through the SAA method, and we solve this approximation 

through the L-shaped method.  We solve the model using CPLEX using MATLAB as 

its interface and report the results for different data instances. 

 

The rest of the study is organized as follows.  We present a review of the related 

literature and the contibutions of this study in Section 2, we present a motivating 

example, the description of the system and our risk-adjusted two-stage optimization 

problem in Section 3.  We define the Sample Average Approximation and the L-shaped 

methods in Section 4. We present our numerical results in Section 5.  Finally, we 

summarize our contributions and discuss future research possibilities in Section 6. 



2 LITERATURE REVIEW 
 

 

 

This review is structured as follows.  First, in Section 2.1, we shortly discuss the quality 

uncertainties in remanufacturing systems.  Section 2.2, continues with the related 

literature on quality uncertainties in hybrid production systems.  In Section 2.3, we 

present the related literature of the (re) assemble-to-order inventory policies with 

performance measures.  Finally, in Section 2.4, we point out contributions of this study 

to the existing literature. 

 

2.1  Literature Review on Quality Uncertainty in Remanufacturing  

 

 

There is a growing body of literature addressing core quality uncertainties and quality 

based categorizations for remanufacturing systems.  Firms include quality based 

categorization in which returns are categorized with respect to their qualities, i.e., 

specification and functionality variations, in their production environment to have a key 

competitive advantage in lowering costs, to facilitate remanufacturing and disposal 

decisions of a manufacturer.  

 

[18] considers production decisions of a remanufacturer under core quality 

uncertainties. In this study, cores are graded with respect to their conditions.  After 

learning the product’s quality level, the firm decides to either remanufacture the product 

or sell it as-is at a lower price to get some revenue from on-hand stock.  This study 

shows that the choice of optimal product combination is a critical decision for a 

manufacturer because it may determine the long-term profitability of the firm.  [19] 

studies the issue of core quality overestimation and analyze its impact on the 

remanufacturer’s profitability.  We refer the reader to [20] and [21] for more 

information on these systems. 

 

Acquisition and sorting policies under return quality uncertainties are some of the other 

important focuses in remanufacturing.  [22] analyzes the optimal acquisition and sorting 

policies for remanufacturers that encounter variable core conditions. 
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[23] considers the acquisition and remanufacturing decisions for situations with multiple 

discrete quality categories under core quality uncertainties. 

 

In the majority of the published papers, graded cores are completely disassembled and 

stocked as components/parts at a remanufacturable inventory.  We depart from the 

existing literature in that not all of our graded used products are stored only as parts or 

components.  After required sorting and grading operations, cores are stocked as 

products and parts separately according to their quality levels.  Only the cores that 

belong to the third class, are totally disassembled and stored as parts/items. If there is no 

available component in this level to use, at this stage component procurement decision 

will be made for a certain type of product(s).  

 

2.2  Literature Review on Quality Uncertainty in Hybrid Production Systems  

 

 

In hybrid production systems, where simultaneous remanufacturing of used products 

and manufacturing of new ones are considered, firms initially tend to satisfy market 

orders from remanufactured products since cores can be remanufactured at a lower cost 

than the initial manufacturing cost.  If there is no available stock on hand, then they will 

fulfill the demand with the manufactured ones. 

 

As proved in many researches, such an approach affects the profitability of companies 

significantly.  A considerable number of studies (e.g., [24], [25], [26], [27], [28] and 

[29]) cope with cases in which both used and new products are used to meet the product 

demand.   

 

Quality uncertainty in returns and quality based categorization are also investigated 

under hybrid manufacturing and remanufacturing context. [30] studies the issue of 

stochastic nature of the returned products and analyze the conditions under which 

quality-based categorization is most cost effective in a joint production system.  [31] 

focuses on a product recovery system in a hybrid manufacturing/remanufacturing 

environment.  In this study, the optimal recovery and production policies are assessed 

and the effects of various sources of uncertainty are analyzed.  
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2.3  Literature Review on (Re) Assemble-to-Order Systems 

 

 

Assemble-to-order (ATO) manufacturing system deals with multiple demand classes in 

which many different types of customized products are produced using common 

components, items or modules and share the component inventories.  ATO enhances the 

probability of meeting a customized demand in terms of time and low cost.  In the 

reassemble-to-order (RATO) system, on the other hand, returns are not remanufactured 

to an inventory and have chosen to (re)assemble the required components and items per 

each customer order.  The remanufactured inventories are held at the component and 

part level.   

 

One of the other commonly used inventory strategy, which is configure-to-order (CTO) 

system, is a special case of the assemble-to-order system, and it is widely employed 

especially in the electronic products industry.  In the CTO strategy, components are 

divided into parts, and the customer chooses components from those parts [32].  

According to [33], the CTO strategy allows customers to select a finished product by 

choosing a customized set of components that go into the product.  In this study, the aim 

of CTO policy is defined as the minimization of the expected inventory investment 

subject to fulfilling the service requirement for each product family.  

 

Component allocation rules are considered in production systems to provide an effective 

inventory management.  If the component allocation decisions are poorly managed 

which leads to the excessive on-hand inventories, the expected service level may not be 

achieved.  According to [34], the replenishment decisions and the component allocation 

decisions should simultaneously be taken into consideration to lower the base stock 

levels and to deliver better service to customers. 

 

In our inventory model, product returns are classified into four different quality classes 

that are determined by the quality of each module for remanufacturing.  The 

manufacturer must jointly manage inventories across variable quality modules as well 

as different types of modules.  However, these policies and inventory control are more 

complicated than traditional assembly systems due to the wide variety of items, 

products and variable quality modules.  
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A large body of literature within the context of ATO system focuses on base-stock 

policies under some allocation rules, for instance, the first-come first-served (FCFS) 

basis is used in continuous review models and the fixed priority rule is used in periodic-

review (discrete-time) models.  In the majority of these studies, order fullfillment 

performances are also incorporated into the multi-component ATO systems.  [10] who 

considers order fulfillment performance measures, incorporating the probability of 

satisfying a customer demand within a specified time window for a multi-component 

assemble-to-order inventory system with stochastic leadtimes.  Demands are met on a 

FCFS basis, and unsatisfied ones are backlogged.  In this study, partial fullfillment is 

allowed that can be applicable in case of customer impatiance, e.g. to avoid the risk of 

losing customer.  [17] studies a single product periodic-review ATO model under base-

stock control.  They assume multivariate normal distributions for demand and constant 

lead times for component replenishments.  [9] analyzes the order-based backorders in a 

continuous review, multi-component base-stock inventory system with constant lead 

times and multiple demand classes.  Order-based backorder refers to the average 

number of customer demands that are not yet completely met, perceived as an important 

measure to demonstrate customer satisfaction. 

 

In some papers, heuristics are proposed for component allocations.  [35] analyzes a 

periodic-review model for joint order fullfillment probability (the probability of 

satisfying all orders that arrive in a period within a pre-established time limit) in a 

multi-component inventory system.  Demands follow a multivariate normal distribution.  

In this study, equal fractile heuristic is employed in terms of component allocation rule. 

[16] studies a multi-component inventory control problem with component 

commonality and correlated end product orders in any period.  In this research, 

component allocation is based on the fair shares allocation rule that a fraction of the 

available stock is allocated to the different demands in case of shortages of item stocks.  

Apart from them, we do not consider fair shares policies for component allocation.  We 

optimize our inventory problem, whereas they use heuristics to solve their model.  [34] 

considers an ATO system that uses the independent base-stock policy for inventory 

replenishment.  They model a two-stage stochastic integer program in order to 

determine the optimal replenishment rule and the optimal component allocation policy 

in an ATO system.  They incorporate performance measures into their model, in which 
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the long-run average reward ratio is used to diminish the Type-II service level, also 

called as the fill rate, for identical reward rates.  The component allocation problem is 

formulated as a general multidimensional knapsack problem (MDKP), and an order-

based heuristic is proposed to solve this problem.  In this paper, the sample average 

approximation method is also presented in order to determine the optimal order-up-to 

levels, and compared with two variations of the equal fractile heuristic.  

 

2.4  Contributions to the Literature 

 

 

Our study differs from the existing literature in the following ways: 

 

• This study considers the joint optimization of the base-stock levels and 

component allocation in case there are cores of uncertain quality. 

• The problem is considered in a risk-adjusted manner by considering the so-

called conditional value-at-risk constraint. 

The first item was also considered in [34], yet they analyzed this item for ATO systems 

without considering core quality uncertainties and in a risk- neutral enviroment.  Our 

study differs from them in that we have a risk adjusted approach in a hybrid 

manufacturing and remanufacturing environment.  We consider return (input) quality 

uncertainties, and lastly we do not allow a partial fulfillment in our research.  

 

To the best of our knowledge, the problem of inventory replenishment and component 

allocation in a (R)ATO system in a risk-averse environment has not been addressed in 

the literature.  Thus, our study is the first that includes the combination of all these 

aforementioned subjects.   
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3  PROBLEM DEFINITION AND FORMULATION  
 

 

 

3.1  Motivating Example and the Model Description 

 

 

We consider a firm that produces brand-new products and remanufactures cores into as 

“good” as new ones to meet market orders. In the remanufacturing process, used 

products are returned to the producer at the end of their leasing periods and 

remanufactured.  In this system, products are constituted based on an (re)assemble-to-

order inventory system and the orders are met based on a first-come first-served (FCFS) 

inventory commitment rule.  Finished product is assembled to order from a set of 

components.  That is to say, no serviceable goods inventory is kept for any finished 

product, while each component has its own inventory, replenished from a supplier 

following an order-up-to (base-stock) level.  The cores are sorted into four different 

quality classes and after the demand is realized, cores of the quality class 1 are 

refurbished and cores of quality class 2 are remanufactured, and only if there is no 

available stock on hand for remanufacturing, manufacturing decision will be made for a 

certain type of product(s).  From consumer’s point of view, remanufactured products are 

perceived as good as manufactured products in terms of both price and quality.  

 

In the remanufacturing plant, different quality levels could be processed, yet the 

variation in core qualities may lead to a higher processing time and cost.  We refer the 

reader to [18] for more information who describe remanufacturing operations at 

ReCellular for quality grading and remanufacturing processes. We analyze a joint (re) 

assemle-to-order inventory system and the problem of interest is analyzed in two stages.  

 

In the two-stage stochastic programming method for optimization under uncertainty, the 

decision parameters are partitioned into two sets, and this approach is described in the 

study of [36] as follows.  The first stage parameters are those that have to be determined 

prior to the actual realization of the random variables.  Then, once the realizations of the  

random variable occur, the second stage or recourse variables are decided to make 

further design or operational system advancements.  The aim is to select the first stage  
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decision variables in a way that the sum of first stage costs and the expected value of the 

random second stage costs is minimized.  

 

A standard formulation of the two-stage stochastic program is as follows [36, 37, 38]:   

 

 

                                             ,                                  (3.1) 

 

where 

 

                                                                               (3.2) 

 

 

is the optimal value and  represents the potential random vector.  It is 

supposed that some (or all) of the components/parts of  are random, and the 

expectation in (3.1) is taken with respect to the probability distribution of  that is 

assumed to be known.  Problem (3.1), with variables , form the first stage that 

entails to be determined before a realization of  occurs, and problem (3.2), with 

variables , form the recourse for given first stage decision x and realization of 

the random data.  In our model, in the first stage, the base-stock levels for all 

components, and in the second stage, the allocation of components to different products 

are decided.  In addition, we incorporate a response time window, which is a 

performance criterion and measures the time to meet customer orders into our system. 

 

To illustrate the model, we provide some numerical data from the existing research of 

[33] and we demonstrate our model on this small instance, for details, see, Section 5.1.  

Since the size of this instance is small, we take the number of Monte Carlo sample as 

three for a simple example.  The return time and quantity of the used products are 

considered as deterministic (i.e., leasing contract etc.).  In our model, we have the 

following assumptions: (i) The joint distribution of demands follows a multivariate 

normal distribution; (ii) The expected processing times, manufacturing and 

remanufacturing costs are known; (iii) The manufactured products do not differentiate 

from remanufactured ones.  
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In Section 5.1 and Section 5.2, test problems from the study of [33] and test problems 

from the real-life (actual data) are presented, respectively.  Then, computational results 

are given to provide more insight into our model. 

 

3.2  The System 

 

 

We consider a hybrid assemble-to-order (ATO) and reassemble-to-order (RATO) 

system with m components, indexed by i = 1, …, m, and n products, indexed by j = 1, 

…, n.  The following sequence of events is typical for the system for every period t, t = 

0, 1, 2, ….  At the beginning of a period, the inventory position of each component is 

reviewed, and the component replenishment orders are placed according to the 

inventory policy.  After the receipt of the replenishment for earlier orders and update of 

the inventory positions of the components, end-of-lease products (cores) are returned.  

These cores are subject to be tested, graded, and sorted into a number of quality levels, 

so that the random amounts of cores, which fall into each quality level are revealed.  

Then, random orders for different products arrive through lease agreements. 

 

Each component i operates under a periodic-review, independent base-stock policy with 

the base-stock (order-up-to level) policy for component i denoted by .  That is, if at 

the beginning of a period, the inventory position of component i is less than , the 

system orders up to ; otherwise, it does not order.  Furthermore, the ordering 

decisions for component i are made on the basis of the inventory position of component 

i only.  Such a policy is in general not optimal, but it has been adopted in analysis and in 

practice due to its simplicity and minimal requirement of system-wide information.  

Moreover, the replenishment lead time of component i, denoted by , is a constant 

integer which is an integer multiple of the review interval.  These lead times can be 

different for different components.  

 

The lease agreements for the n products enable us to consider the return time and 

quantity of the cores as deterministic.  However, the quality of the cores is difficult to 

predict; hence, they are tested, graded, and sorted into, say, four quality levels; see the 

Xerox Europe case study in [8].  The cores of quality level 1 (i.e., best cores) are unused 

products requiring only minor servicing, and the cores of quality level 2 are in good 
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condition, but they require some of the components to be replaced during the 

remanufacturing process.  Moreover, the cores of quality level 3 are in good condition, 

but not economically fit for remanufacturing.  Therefore, these cores are disassembled, 

and after being repaired, some of their components enter the reusable parts inventory.  

Finally, the cores of quality level 4 are immediately disposed off.  For product j, the 

cores that are classified into four quality levels in period t are denoted by the vector of 

the random variables , and the sum 

 equals the deterministic amount of cores for product j returned 

in period t.  For product j, 
 
are correlated in the same period, but 

are independently and identically distributed (iid) vectors across different periods.  

Furthermore, the random amounts  and  are independent of the 

random demands for product j in the same period.  

 

The major barrier to the success of remanufacturing has been the misperception among 

some customers that remanufactured products are inferior to brand-new ones.  In this 

study, however, we assume no market segmentation between remanufactured and 

manufactured products.  In other words, the remanufactured products are perceived as 

good as manufactured ones, and hence, for product j there is a single demand stream.  

This demand stream for product j in period t is denoted by the random variable , 

where 
 
are correlated in the same period, but are iid vectors across 

different periods. 

 

Each brand-new product is assembled from multiple units of a subset of m components, 

and each core of quality level 2 is remanufactured by replacing a pre-specified number 

of components.  Let  and  denote the usage rates of component i to manufacture 

and to remanufacture unit demand of product j, respectively, where .  The 

system quotes a response time window, , for product j.  This time window is pre-

specified and fixed for every product type by the system.  We assume that the system is 

penalized by a unit penalty, , if a demand for product j cannot be filled within  

periods after its arrival.  Furthermore, a demand for product j is considered to be filled if 

that demand is allocated  or  units of component i; in other words, the product is 
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really a product (incomplete if any of its components is missing), and partial shipment is 

not allowed.  The system uses the following order to fill the demands: first, the cores of 

quality level 1, then the cores of quality level 2, and finally the brand-new products.  

This order is reasonable because the production times and component requirements 

increase in the same order. 

 

The problem of interest is analyzed in two stages.  The first-stage decisions are the 

optimal base-stock levels  for i = 1, …, m, and these decisions are taken without 

observing the realizations of the random demands for the n  products.  After the cores 

are tested and graded, and customers’ demands are received, the second-stage decisions, 

namely the amounts of inventories to be allocated to the unfilled demands, are made in 

each period.  We assume that the inventories are allocated to the unfilled demands 

subject to a first-come first-served (FCFS) inventory commitment rule.  Under the 

FCFS rule, the allocation problem is concerned with the demands for different product 

types that occur in the same period.  The FCFS rule enhances analytical tractability, and 

has been adopted by [16], [34], and [35]. 

 

Now, we introduce new random variables, which depend on the joint random demands 

 
for the n products and the joint random amounts of the cores that fall 

into four quality levels .  These new random variables will be used 

to derive an equation for the inventory on-hand that simplify the formulation of our 

model in the next section.  For i = 1, …, m, j = 1, …, n, and t = 0, 1, … 

 be the total demand for component i in period t  

  i.e.,

 

 

      
   be the total amount of component i disassembled from cores of quality level 

3 in period t with being rate of disassembled component i from product j. 

 i.e., 
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 be the total amount of replenishment for component i in period t. 

 

 
 be the inventory level (i.e., on-hand inventory minus backlog) of component 

i at the end of period t. 

 

where, for any two random variables X and Y, .  We further 

denote the total demand, the total replenishment, and the total disassembled amount for 

component i  from period s through period t inclusive by , 

, and   respectively, where 

 

    

 

Whenever s > t,  , , and . 

 

Now, we derive an equation for the inventory on hand. Assume that k is a nonnegative 

integer such that  for any lead time .  Later, we use k as an index of response 

time windows for all products.  Because each component is operated under an 

independent base-stock level , based on Hadley and Whitin [39], the following 

equation for the inventory level at the end of period t + k can be written 

 

                  (3.3) 

 

Furthermore, using balance equations and FCFS inventory commitment rule, the 

inventory level at the end of period t + k is related to the one at the end of period t – 1 as 

follows 

 

                                         (3.4) 

 

Substituting (3.4) and (3.3), we reach the following result 

 

 
 (3.5) 
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Note that  is the net inventory level at the end of 

period t + k after having received all replenishment orders and having disassembled all 

repairable component i from cores of quality level 3, but before allocating any inventory 

to the demands realized after period t – 1.  Furthermore, because of the FCFS rule, if the 

amount  is positive, that inventory will be 

committed to the demands  of period t before any demands of the 

subsequent periods.  Now, suppose that the response time windows for the n products 

can be ordered as .  Then, the on-hand inventory of component i to be 

committed to  for k = 0,1, …, wn is given by 

 

                                                       (3.6) 

 

Before presenting the formulation, we assume the following: the longest response 

window wn does not exceed the shortest of the lead times Li ; i.e., .  This is 

a plausible assumption because if there exists any product j for which the lead time of 

component i satisfies Li < wj, that component i can be replenished to fill the orders of 

product j before its response time window wj.  Hence, the component i will not be 

considered in the allocation problem for product j. 

 

We consider an infinite horizon, and we shall focus on stationary random data; i.e., 

 and  are invariant in distribution over time, and 

hence denoted by , and . Moreover, the on-hand 

inventory level of component i in (3.6) becomes 

 

                                                     
    

                               (3.7) 
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3.3  Risk-Adjusted Two-Stage Stochastic Programming Formulation 

 

 

We consider the following problem with a chance constraint: 

 

                                                    (3.8) 

where . ! is significance level where !  (0,1).   is the -

quantile of the standard normal distribution. For a realization  

of , the second-stage cost  is given by  

 

 

                   

                  (3.9a) 

                                                                          (3.9b)

     

                              

 

                                   
                                        

                                                      (3.9c) 

                                                                                    (3.9d) 

    
 

 

In the following, we define the notation in (3.8) and (3.9).  is vector of 

procurement costs per unit of the m components,  is vector of base-

stock levels of the m components, and " is upper bound on random second-stage cost
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.  The first-stage here-and-now decisions are the base-stock levels , 

and these decisions are made before observing the random data.  Furthermore, 

is vector of shortage costs per unit of n products, and is 

vector of shortage amounts of the n products.  The second-stage wait-and-see decisions 

are the remanufactured and manufactured amounts  and  of product j 

respectively, within its response time window , and the shortage amounts 

.  The second-stage decisions are made after observing the random demands and the 

random amounts of cores that fall into each of the four quality levels.  Moreover, (3.9a) 

and (3.9b) imply that the amount of component i used for remanufacturing and 

manufacturing within response time windows cannot exceed its on-hand inventory level 

respectively; (3.9c) implies that the total remanufactured and manufactured amounts of 

product j within its response time window wj plus the shortage amount has to be equal 

to the net demand   for product j, because the cores of quality level 1 (i.e., 

) are ready to fill the net demand for product j after only minor servicing.  

Furtheromore, (3.9d) implies that the total remanufactured amounts of product j within 

 cannot exceed the remanufacturable amount 
 
for product j.  Additionally, in case 

all penalty costs are , the objective function in (3.9) divided by the sum of the 

expected demands for all n products equals the expected average no-fill rate (i.e., the 

complement of fill rate with respect to one). 

 

The formulation (3.8) provides a risk-averse approach to the problem; i.e., it minimizes 

the random second-stage cost on average, while controlling its upper limit  for 

different realizations of the random data.  A well-known problem of such a formulation 

is that chance constraints usually define non-convex feasible sets.  It was suggested in 

Rockafellar and Uryasev [40] to replace chance constraints by conditional value-at-risk 

constraints, where the Conditional Value-at-Risk of a random variable Z at significance 

level  is defined as 

                                      .                          (3.10) 
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It was further shown in [40] that (3.10) is a convex conservative approximation to its 

corresponding chance constraint; i.e., the feasible set defined by  is 

contained in the feasible set defined by .  Therefore, in our analysis, 

we will replace the chance constraint in (3.8) by its corresponding constraint. 

 

Ignoring the chance constraint in (3.8), the formulations in (3.8) and (3.9) satisfy the 

well-known relatively complete recourse assumption; i.e., given any feasible first-stage 

solution , there exists a feasible second-stage solution

 
for almost every (a.e.) realization of .  To see this, 

consider the worst-case situation in which a feasible solution with 
 
for each 

component i for (3.8) is given, but the right-hand-sides in (3.9a) and (3.9b) are all zero; 

i.e., there is no on-hand inventory for any component i.  Then, for a.e. realization of , 

, , and for  and  constitutes a 

feasible solution for (3.9).  However, the chance constraint and consequently the 

constraint can make (3.8) infeasible.  Therefore, we relax the 

constraint as follows.  Let 

 

                                     (3.11) 

 

be a real-valued function of the random variable , where  is assumed 

to be well-defined and finite.  In (3.11),  is a parameter that can be tuned for a 

tradeoff between minimizing on average and risk control.  Using (3.10) and (3.11), we 

reformulate the first-stage problem (3.8) as follows, which we will use throughout the 

study: 

 

                                                                           (3.12) 

 

where . Now, the second-stage objective 

function in (3.9) is given by .  By introducing a new 

variable such that  and , the formulation in (3.9) becomes 
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                                                                                 (3.13) 

                         

  

                                   
 

                                  
 

                                    

                                  

 

                                  

                                               

 

                                   
 

                     
 

 

We assume that we can sample from the joint distributions of 
#
and

 for  through Monte Carlo simulation and solve the 

problems in (3.12) and (3.13) through the sample average approximation method 

combined with the L-shaped algorithm. 



4 SAMPLE AVERAGE APPROXIMATION AND THE L-SHAPED 

METHODS 

 

 

 

In this section, based on [36], [38], and [41], we give further details on the Sample 

Average Approximation method, and the L-shaped algorithm. 

 

4.1  Sample Average Approximation Method 

 

 

The main objective of Sample Average Approximation (SAA) method for solving 

stochastic programs is as follows [36, 41]. 

 

Initially, a sample of N realizations of the random vector  is generated, 

therefore, the expected value function  is approximated by the sample 

average function .  The obtained sample average approximation  

 

 

                                                                       (4.1) 

 

 

of the stochastic program (3.1) is then solved by a deterministic optimization method.   

 

4.2  L-Shaped Method 

 

 

The L-shaped method which is a decomposition technique, is helpful to solve problems 

that have the form of a master (main) problem and many subproblems.  This technique 

consists of a number of iterations, and combined solution of it approaches in a finite 

number of iterations to the optimum.  

 

Except for the last iteration, each iteration adds one or many new constraints to the main 

problem that limits the set of feasible values for the related parameters.  They are called  
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feasibility or optimality cuts; the optimality cuts cut-off solutions that cannot be optimal.  

As the iterations proceed, the upper bound increases for a minimization problem.  When 

the upper and lower bound difference is less than the predefined tolerance level, the 

process terminates and shows the best feasible solution found.  

 

The essential idea of the L-shaped method is to approximate the nonlinear term in the 

objective.  The fundamental concept of this approach is that, since the nonlinear 

objective term involves a solution of all second-stage recourse linear programs, we 

would like to avoid many function assessments for it.  Hence, that term is used to build 

a master problem in s, yet only the recourse function is precisely assessed as a 

subproblem. 

 

The following extensive form of a stochastic program is considered with S realizations, 

and be the probability that the s
th

 realization takes place: 

 

 

                                                                                   (4.2) 

"""""""""""""""""""""""""""""""""""""""""""  " 

 

The above-stated structure of this extensive form has a L-shape and this algorithm is 

defined by [38] as follows.  

 

Step 0.  Initialization: Set , where r is the index for the feasiblity cuts, s is 

the index for the optimality cuts, and v is the number of iterations. 

 

Step 1.  Set Solve the following master LP (4.3), where . We add 

a lower bound t= -50,000,000, because otherwise the optimal objective value 

would be . 

 

                                                                                            (4.3) 
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Let  be an optimal solution.  If no constraint on is present in the above 

formulation, is set equal to  and is not assessed in the computation of and . 

 

Step 2.  For each scenario .  Solve the following subproblem. 

 

 

                                                                                   (4.4) 

                         

  

                                   
 

                                  
 

                                    

                                  

 

                                  

                                               

 

                                  
 

 
 

 

in which   until for some s, the optimal value .  In this case, is 

the vector of simplex multipliers and define 
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and 

                                                                                                          

 

to generate a feasibility cut, and  set .   is a matrix which consists of the 

coefficient of the first-stage decision variables, namely and t, and is a vector that 

consists of the realizations of the random right-hand sides in (4.4).  That is, , , 

, and .  Add the resulting feasibility constraint to the master problem 

and return to Step 1.  If for all s, , go to Step 3. 

 

Note that because for our problem, the relatively complete recourse problem is satisfied, 

we skip step 2 in our application. 

 

Step 3.  For   solve the LP 

 

                                                                                 (4.5) 

                         

  

                                   
 

                                  
 

                                   

                                  

 

                                  

                                               

 

                                   
 

 
 

Let be the vector of simplex multipliers obtained at the optimal solution of (4.5) 

Define 
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and 

                                                                                                             

 

Note that because we use sample average approximation method  for our 

application, where N denotes the Monte Carlo sample size. 

 

Let .  If , terminate;  is an optimal solution, 

else set , add the optimality cut to the master problem, and return to Step 1.  

Firstly, feasibility cuts are added to determine , and then optimality 

cuts that are linear approximation to  on its domain of finiteness are added to the 

model. 
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5   COMPUTATIONAL RESULTS 
 

 

 

5.1 Test Problems from the Literature 

 

 

We implement all experiments on a PC with Windows XP, Intel Pentium 4 CPU of 1.60 

GHz, and 1.00 GB RAM. Because for now the instances that are detailed below are 

small, the CPU times are negligible, and hence they are not presented. 

 

The parameter values for our numerical study is taken from the existing research of 

[33].  In this study, a family of three desktop computers are assembled from a set of 12 

different components.  Components used in the assembly of a finished product are 

procured from outside suppliers, and also if available some components are taken form 

parts/items inventory.  The supplier leadtimes are assumed to be deterministic that 

represents the time required to manufacture the component and ship it from a supplier 

warehouse to the manufacturing plant.  The lead times, the unit acquisition costs and the 

bill-of-materials structure are given in Table 5.1, and Table 5.2, respectively.  

 

Table 5.1. Components, Lead Times, and Unit Acquisition Costs For the Example 

Configure-to-Order Systems In [33]  

i Description Lead time  Unit acquisition cost 

1 Base unit 5 215 

2 128 MB Card 15 232 

3 450 MHz board 12 246 

4 500 MHz board 12 316 

5 600 MHz board 12 639 

6 7 GB disk drive 18 215 

7 13 GB disk drive 18 250 

8 Preload A 4 90 

9 Preload B 4 90 

10 CD ROM 10 126 

11 Video graphics card 6 90 

12 Ethernet card 10 90 
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We assume that the demands for the three products are multivariate normally distributed 

with the mean vector (150, 100, 125), the variances (750, 625, 675), and the correlations 

between the demands are randomly generated from the uniform distribution on (-1, 1).  

The response window times are first considered as w1= 1, w2= 2, w3= 3 for products 1, 

2, and 3.  Later,  we also consider w1= w2= w3= 0, which enables us to observe 

immediate fill rates for products 1, 2, and 3.  Moreover, the amounts of cores (returned 

products) are considered as (10, 15, 20) for products 1, 2, and 3.  We assume that for 

each product, the numbers of cores that fall into the quality levels 1, 2, 3, and 4 follow 

multivariate normal distributions with the following mean vectors and variances: (1200, 

1500, 2500, 2200) as the mean vector and (300, 500, 1000, 560) as the variances for the 

product 1, (3500, 1200, 2200, 1800) as the mean vector and (1000, 600, 1200, 900) as 

the variances for product 2, and (1500, 1500, 1500, 300) as the mean vector and (900, 

900, 900, 125) as the variances for product 3.  For each product, the correlations 

between the quality levels are again randomly generated from the uniform distribution  

(-1, 1).   

 

 
Table 5.2. Bill-of-Materials Structure For the Example Configure-to-Order Systems In [33] 

i Description Product 1 Product 2 Product 3 

1 Base unit 1.0 1.0 1.0 

2 128 MB Card 1.0 1.0 1.0 

3 450 MHz board 1.0 - - 

4 500 MHz board - 1.0 - 

5 600 MHz board - - 1.0 

6 7 GB disk drive 1.0 0.4 - 

7 13 GB disk drive - 0.6 1.0 

8 Preload A 0.7 0.5 0.3 

9 Preload B 0.3 0.5 0.7 

10 CD ROM 1.0 1.0 1.0 

11 Video graphics card - 0.3 0.6 

12 Ethernet card - 0.2 0.5 

 

 

We denote the realizations of these multivariate normally distributed random variables 

by , , and .  

Note that because for a fixed product j, the sum of the fractions of cores that fall into the 

four quality levels has to be equal to one, we compute these four fractions from the  
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through , , , and ,where .  

Then, for example, we find the realizations of the cores of quality levels 1, 2, 3, and 4 

for product 1 by , , , and , respectively.  

The penalty costs are . 

 

We consider and  in (3.12) and (3.13) as parameters, and solve these problems for 

several values of and .  We first solve the problems for w1= 1, w2= 2, w3= 3 

(instance 1), and then repeat the experiments for w1= w2= w3= 0 (instance 2).  We obtain 

very similar results for both instances, hence we present results in Figures 5.1 and 5.2 

only for instance 1.  Note that after sampling the demands and the random amounts of 

cores that fall into each quality levels, the problems in (3.12) and (3.13) are formulated 

as two linear programming problems, which are then solved through CPLEX 12.2 using 

MATLAB as its interface. 

 

 

 

 

Figure 5.1.  Effects of Changing on the Optimal Objective Value of the First-Stage 

Problem In (3.12) : = 10% and Fixed. 

 
 

Note that increasing  or decreasing  would increase the relative importance of the 

risk adjustment term, and hence would lead to a more conservative system; for , this 

can also be seen from the chance constraint in (3.8).  Both Figures 5.1 and 5.2 reflect 
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the increase in the conservatism of the system because the optimal objective value of the 

first-stage problem in (3.12) increases as  increases in Figure 5.1, and it increases as 

decreases in Figure 5.2. 

 

 

 
 

 

Figure 5.2.  Effects of Changing on the Optimal Objective Value of the First-Stage 

Problem In (3.12) : = 0.5 and Fixed. 

 

 

5.2 Test Problems from Real-Life (Actual Data) 

 

 

The choice of paramater values for our numerical study is based on actual data provided 

by an International Data Corporation*, in which the data includes the quantity of 

desktop PCs and portable PCs sold within 2008 and 2011 in Turkey.  In order to 

demonstrate the demand distributions of the acquired data, the input analyzer of Arena 

10.0 is used, and the histogram and distribution summaries of demands for five products 

are presented in Appendix A.   

 

In our numerical analysis, we consider a family of five personal computers, i.e. desktop 

PCs and portable PCs, are assembled from a set of 12 different components.  Some 

components are common to different products.  Components used in the assembly of a 

finished product are procured from external suppliers, and also if available some 
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components are taken form parts/items inventory that the components of third quality 

cores take place.  

 

 

Table 5.3. Average Lead Times, and Unit Acquisition Costs of Each Component.  

 

i Description   Lead time  Unit acquisition cost 

1 Base unit  6 214 

2 Processor: 2.2 GHz   15 90 

3 Processor: 3.4 GHz   15 117 

4 Memory: 2 GB  12 58 

5 Memory: 4 GB  12 75 

6 Memory: 8 GB  12 105 

7 Hard Drive:500 GB  18 100 

8 Hard Drive:1 TB  18 130 

9 Operating system 1.0  7 186 

10 Operating system 2.0  7 249 

11 Software (Common programmes) 5 180 

12 Optical drive   17 47 

 

 

In this research, like [33], the supplier leadtimes are assumed to be deterministic which 

represents the time required to manufacture the component and ship it from a supplier 

warehouse to the production plant.  The average lead times, the unit acquisition costs of 

each component and the bill-of-materials of each product are illustrated in Table 5.3, 

and Table 5.4, respectively.  

 

The first stage in analyzing multivariate data is computing the mean vector and the 

variance-covariance matrix.  The mean vector consists of the mean of each variable and 

the variance-covariance matrix consists of the variances of the variables along the main 

diagonal and the covariances between each pair of variables in the other matrix 

positions.  

 

Covariance is a measure of how much two variables change or vary together. To 

demonstrate the relationship between demands and products, we present the covariance 

matrices in our research.  The definitions, notations and formulations of mean vector 

and variance-covariance matrix are available in Appendix B. 

 
 

* Confidential data cannot be disclosed. 
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Table 5.4. Bill-of-Materials of Each Product.  

 

i Description P: 1 2 3 4 5 

1 Base unit  1 1 1 1 1 

2 Processor: 2.2 GHz   1 1 - - - 

3 Processor: 3.4 GHz   - - 1 1 1 

4 Memory: 2 GB  1 - - - - 

5 Memory: 4 GB  - 1 - 1 - 

6 Memory: 8 GB  - - 1 - 1 

7 Hard Drive:500 GB  - 1 - - - 

8 Hard Drive:1 TB  1 - 1 1 1 

9 Operating system 1.0  - 1 1 - - 

10 Operating system 2.0  1 - - 1 1 

11 Software (Common programmes)  1 1 1 1 1 

12 Optical drive   - 1 - 1 1 

 

 

We consider the set of 15 observations (demand periods), measuring 5 variables 

(products) is described by its mean vector and variance-covariance matrix as illustrated 

in Appendix C, and the results are as follows: 

 

 

 

 

 

It is clear to see that covariance values are both positive and negative in different points, 

and we can deduce that there are linear dependencies between variables. 

 

We run the program with different penalty costs, and we found out that when these 

penalty costs are high compared to the acquisition costs, the total estimated objective 

value can become higher when the parameter  decreases.  Hence, we fixed the penalty 

costs as 1,5 times of the cost of original products, where the costs of original products 

are taken as follows: 921,58; 892,76; 932,82; 1012,52; 1042,52.  We run the program 

for 6 different  values and two different  values, and in Figure 5.3, we obtained the 

following changes 
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Figure 5.3.  Effects of Changing  and on the Lower Bound of the Objective Value  

 

 
When the parameter  decreases, our problem becomes more conservative, yet we 

cannot say this for  due to the fact that it highly depends on the parameter values of 

the . 
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6 CONCLUSIONS  

 

 

 

In this dissertation, we consider a multi-component, multi-product, periodic-review (re) 

assemble-to-order system, and find the joint optimal base-stock levels and component 

allocation policies in a risk-adjusted environment.  We model this problem through a 

risk-adjusted two-stage stochastic programming problem, where the first stage decisions 

are the base-stock levels for all components, and the second-stage decisions are the 

allocations of components to different products.  Risk adjustment is achieved through 

the conditional-value-at-risk constraint.  We solve the resulting problem through  the 

sample average approximation combined with the L-shaped method.  Our preliminary 

numerical results are intuitively sound: as we make the system more conservative (by 

increasing the parameter  or by decreasing the parameter ), our expected total 

optimal objective value increases. 

 

Further research should include more numerical results by using different multivariate 

distributions for demands.  The majority of the published studies which consider joint 

production systems,  assume that there is no quality differences between manufactured 

and remanufactured products that may have an effect on the consumers’ preferences.  

Yet, consumers can be heterogeneous in their willingness to pay and they do not 

necessarily value remanufactured products as good as brand new ones.  Hence, this 

perception of consumers can lead to market segmentations and multiple demand classes 

for products.  Consideration of segmented markets for manufactured and 

remanufactured products is a further important issue.   
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APPENDICES 
 

 

 

Appendix A.  Demand Distribution Histograms of Five Products. 
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Appendix B.  Definition, Formulation and Notation of a Variance-Covariance Matrix. 

 

 

Let   be a random vector with mean vector . 

The covariance cov  of the pair  is a measure of the linear coupling 

between these two variables. The covariance of two random variables, and  is 

denoted by  in (B1)   and the covariance matrix is denoted by  in 

(B2).  

 

                                                             (B1) 

 

where  and  and let,  

 

                                     .                                       (B2) 

Since cov = cov , we have .  Hence, 
 
is symmetric with   

(i, j)
th 

and  (j, i)
th

 elements indicates the covariance between 
 
and . Moreover, 

since var = cov = , the i
th 

diagonal place of 
 
includes the variance of 

. The matrix is called the Variance-Covariance Matrix of . 
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Appendix C.  Variance-Covariance Matrix of a Sample Data 
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