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Abstract 

 

 

 

In recent years, cyber-attack, one of the most apparent subjects in social media, will 

continue to be on the agenda with increasing its importance.   Malicious software which 

is used heavily in cyber-attacks has become indispensable object of the cyber war.  

Malicious softwares are used for different purposes such as steal sensitive information, 

create a backdoor to access system persistently, create a botnet in order to drive 

distributed denial of service attacks, etc.  They may include one or more objectives and 

the objectives depend on the purpose of the malicious software writer.   Stuxnet which 

contains tree 0-day exploits and target to Iran’s nuclear facilities, is a good example to 

show us that how malicious software may be used during cyber war. 

 

As is knows to all, to analyze malicious software first of all malware analyst need to 

detect these files and then classify them appropriately. The analysis methods are 

collected under two headings.  These are static and dynamic analysis methods.  In this 

study the new cascade malicious software detection method was developed by 

combining the mention two methods.  In the study the dynamic analysis methods were 

used in order to detect malicious software.  By the way static properties of the file were 

used during the classification phase. 

 

Static analysis method is performed via only the static properties of the file and does not 

include the execution of the malicious file.  In this study, we purpose the new 

classification algorithm that uses byte sequences (n-gram) of the malicious file. 
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In dynamic analysis the malicious file is need to be executed in secure environment 

because it investigates the behavior of the malicious software.  In dynamic analysis 

network connections, file system operations, the active processes on the system, etc. are 

tracked.  To carry out the dynamic analysis we created a tool called as Dynamic 

Malware Analysis (DMA).  The developed tool which is quite simple to use, can be run 

as system tray icon on the Windows operating system and it is capable of alerting the 

user if there is any malicious activity on the system.  

 

Nowadays, malicious softwares use anti-debugger and anti-virtualization technique in 

order to prevent detection by dynamic analysis methods.  In the study the dynamic 

analysis was performed on VMware virtualization environment.  To bypass the anti-

virtualization methods used by malwares the Pin tool was used.  It is a free tool 

provided by Intel for the dynamic instrumentation of programs.  With the help of this 

tool the processes, files and registry keys searching methods which are used by 

malicious software can be bypass.  

 

The following features are considered when analyzing malicious software: 

 Network connection changes on the system 

 Registry changes 

 Process changes 

 Service changes 

 

After detection step, the found malicious softwares are classified by using n-gram based 

malware classification mechanism.  In this method, each malicious file is pointed by n-

gram vector (byte sequences obtained from malicious file) of the file and the 

classification is performed over these vectors. 
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To evaluate the developed malicious software detection and classification modules the 

public Pahadus malware set was used and promising results were obtained.  We 

obtained 86% accuracy over the specified public malware set.  After the detection of the 

file n-gram based classification method was used.  In the learning phase of the 

classification algorithm the malicious softwares which are provided by BILGEM were 

used.  We were obtained 92% success rate when we choose n as 4 and L as 60. 

 



 

 

Résumé 

 

 

 

Ces dernières années les medias sociaux sont sujets à de nombreuses cyber-attaques et 

leurs nombres semblent augmenter chaque année et dans tous les secteurs.  Les logiciels 

infectés sont les plus utilisés pour les attaques et sont devenus l’outil indispensable dans 

la guerre cybernétique.  Ces logiciels sont utilisés pour le vol de données personnelles, 

créer des «backdoor» pour les accès aux systèmes persistant, créer des «botnet» pour 

mettre hors service les machines par déni de service.  Les attaques sont menées pour 

différentes raisons et dépendent de l’intention du créateur du logiciel.  Stuxnet exploite 

une vulnérabilité 0-day et avait prit pour cible les exploitations nucléaires de l’Iran, 

c’est un exemple type pour nous montrer les utilisations de logiciels infectés durant une 

guerre cybernétique 

 

Comme nous le savons pour l’analyse d’un logiciel infecté il faut tout d’abord le 

détecter.  Ainsi, une fois que l’expert a détecté les fichiers, il doit les classifier.  Les 

méthodes d’analyse sont de 2 catégories: les analyses statiques et dynamiques.  La 

combinaison de ces deux méthodes mise en cascade a permis de trouver une nouvelle 

méthode pour la détection des logiciels malveillants.  Les recherches représentent 

l’analyse dynamique et la classification des logiciels infectés représente l’analyse 

statique.  

 

La méthode d'analyse statique est exécutée seulement via les propriétés statiques du 

dossier et n'inclut pas l'exécution du dossier malveillant.  Dans cette étude, nous 
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proposons un nouvel algorithme de classification qui utilise des séquences d'octet (n-

gram) du dossier malveillant. 

 

L’analyse dynamique doit se faire dans un environnement sécurisé puis le dossier doit 

être lancé pour analyser les comportements du logiciel malveillant.  Toutes les analyses 

dynamiques sont suivis: les connections réseaux, les opérations sur les fichiers 

systèmes, les processus actifs du système.  Pour effectuer l’analyse dynamique nous 

avons créé un outil nommé «Dynamic Malware Analysis (DMA)».  L’outil développé 

est simple d’utilisation et peut être exécuté dans le système d’exploitation Windows qui 

est capable de nous alerter s’il y a une activité malveillante en cours de fonctionnement. 

 

De nos jours, les logiciels malveillants sont plus développés et utilisent des anti-

debuggers et des techniques d’anti-machine virtuelle pour contrer la détection via 

l’analyse dynamique.  Dans notre étude l’analyse dynamique est effectuée sous un 

environnement virtuelle VMware.  Pour contrer les protections du logiciel malveillant 

l’outil Pin a été utilisé.  C’est un outil libre d’utilisation mis en place par Intel pour les 

programmes d’instrumentation dynamique.  Ainsi, à l’aide de cet outil la méthode de 

recherche du logiciel malveillant sur les processus, les dossiers et les registres est parée.  

 

Les caractéristiques trouvées durant l’analyse du logiciel malveillant: 

 Changement des connexions réseaux du système 

 Changement des registres 

 Changement des processus 

 Changement des services 

 

Après la détection, les logiciels infectés sont classés en utilisant n-gram pour définir la 

famille.  Dans cette méthode chaque dossier infecté est ponté par un vecteur n-gram (la 

séquence est obtenu par le dossier infecté) et la classification est effectué via ce vecteur. 
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Pour évaluer le logiciel de détection et classification des modules  nous avons utilisé le 

jeu de logiciel malveillant public  Pahadus qui est en libre utilisation et nous avons 

obtenu des résultats très encouragent.  Nous avons obtenu 86% d’exactitude sur la 

détection.  Après la détection des fichiers nous avons utilisé la méthode de classification 

n-gram.  L’algorithme sur la classification des logiciels malveillant nous a été fournit 

par BILGEM  et nous avons obtenu 92% d’exactitude avec n=4 et L=60. 

 

  



 

 

 

Özet 

 

 

 

Son yıllarda sosyal medyada fazlaca yer alan konulardan biri olan “siber saldırılar” 

görünüşe bakılacak olursa önemini arttırarak gündemde kalmaya devam edecek.  Siber 

saldırılarda etkin şekilde kullanılan zararlı yazılımlar siber savaşın vazgeçilmezi haline 

gelmiştir.  Zararlı yazılımlar hassas veri çalma, sistemlere bağlantı için arka kapı 

oluşturma, servis dışı bırakma saldırılarında kullanılan (ddos) botnetler oluşturma gibi 

farklı amaçların birine ya da hepsine birden hizmet edebilmekte ve saldırganlar için 

gerekli ortamı sağlamaktadır.  Iran nükleer tesislerine düzenlenen ve daha önce tespit 

edilmemiş (0-day) 3 tane açıklığı barındıran stuxnet zararlı yazılımı siber saldırı 

dünyasında zararlı yazılımların ne derece etkin kullanıldığını göstermesi açısından güzel 

bir örnektir. 

 

Bilindiği gibi zararlı yazılımların incelenebilmesi için öncelikle tespit edilmesi ve 

sınıflandırılması gerekmektedir. İnceleme yöntemleri iki başlık altında toplanır. Bunlar 

statik ve dinamik analiz yöntemleridir. Bu çalışmada bahsedilen iki yöntem 

birleştirilerek kademeli yapıda yeni bir zararlı yazılım tespit yöntemi geliştirilmiştir.  

Çalışmada dinamik analiz yöntemleri kullanılarak zararlı yazılımların tespit edilmesi 

sağlanmıştır.  Zararlı yazılımların sınıflandırılması esnasında zararlı dosyanın statik 

özellikleri kullanılmıştır. 

 

Statik analiz yöntemi zararlı dosyanın çalıştırılmadan sadece statik özellikleri göz 

önünde bulundurularak gerçekleştirilir.  Bu çalışmada zararlı dosyadan elde edilen byte 

dizileri ile yeni bir sınıflandırma algoritması kullanılmıştır.  
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Dinamik analiz yöntemi zararlı yazılımın davranışını incelediği için zararlı dosyanın 

güvenli bir ortamda çalıştırılması gerekmektedir.  Dinamik analiz aşamasında ağ 

bağlantıları, dosya sistemi işlemleri, sistem üzerindeki aktif işlemler, vb. objeler takip 

edilir.  Dinamik analizi gerçekleştirebilmek amacıyla çalışma kapsamında DMA adında 

bir araç gerçekleştirilmiştir.  Kullanıcı etkileşimine sahip ve kullanımı oldukça basit 

olan uygulama Windows işletim sistemi üzerinde sistem tray ikon olarak çalışabilmekte 

ve her hangi bir zararlı aktivite tespit etmesi durumunda kullanıcıyı uyarma yeteneğine 

sahiptir. 

 

Günümüzde zararlı yazılımların dinamik analiz yöntemi ile tespit edilmesinin önüne 

geçmek için sanal makina ve hata ayıklayıcı (debugger) tespit eden yöntemler 

kullanılmaktadır.  Çalışmada zararlı yazılımların Vmware sanallaştırma ortamında 

çalıştırılıp incelenmesi gerçekleştirilmiştir.  Zararlı yazılımların sanal makina tespit 

yöntemini aşmak için Intel tarafından geliştirilen ve uygulamaları yönlendirebilme 

özelliğine sahip pin aracı kullanılmıştır.  Bu araç yardımıyla sanal makina tespitinde 

kullanılan işlem, dosya, registry anahtarı sorgulama gibi yöntemler alt edilmekte ve 

zararlı yazılımın gerçek makinada çalıştığını zannetmesini sağlanmaktadır.  

 

Davranış analizinde incelenen çalıştırılabilir dosyanın aşağıdaki özellikleri dikkate 

alınmıştır: 

 Sistem üzerindeki ağ bağlantılarındaki değişiklikler 

 Sistem üzerindeki işlemlerdeki değişiklikler 

 Registry dosyasındaki değişiklikler 

 Servislerde gerçekleşen değişiklikler 

 

Dinamik analiz ile tespit edilen zararlı yazılımlar daha sonra n-gram tabanlı zararlı 

yazılım sınıflandırma metodu kullanılarak zararlı yazılımın ailesi belirlenmektedir.  Bu 

yöntemde her zararlı yazılım n-gram vektörü (dosyada en fazla bulunan byte dizileri) ile 

ifade edilmekte ve sınıflandırma işlemi bu vektör üzerinden gerçekleştirilmektedir.   
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Geliştirilen zararlı yazılım tespit ve sınıflandırma modülleri testi için herkese açık 

Pahadus zararlı yazılım seti kullanılmıştır ve ümit verici sonuçlar elde edilmiştir.  

Belirtilen zararlı yazılım kümesi üzerinde %86 oranında tespit etme başarısı elde 

edilmiştir.  Zararlı yazılım tespitinden sonra sınıflandırma yöntemi olarak n-gram 

tabanlı sınıflandırma metodu kullanılmıştır.  Sınıflandırma yönteminin öğrenme 

sürecinde (trainning phase) BILGEM zararlı yazılım yakalama sistemlerinden 

(honeypot) elde edilen zararlı yazılımlar kullanılmıştır.  Sınıflandırma aşamasında 

seçilen n=4 ve L=60 çifti için başarı oranı %92 olarak elde edilmiştir.  
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1 Introduction 

 

 

 

In the recent years the information security incidents have been increasing rapidly [1].  

Nowadays the first targets of attackers become well-known industry companies like 

Sony [2], or government agencies such as Turkish Information and Communications 

Authority [3] and Iranian Nuclear Facilities [4].  In these security incidents malicious 

softwares; any software that causes harm to a computer, network, firm or especially 

user, play major roles. 

 

Since the malwares and anti-malware solutions adopt entirely different purposes, there 

is an endless war between malware authors (writers) and malware analyzers.  In this war 

both part advance methods to overwhelm each other.  Malware authors try to prevent 

successful analysis by employing a variety of techniques such as anti-debugging, anti-

reversing to evade detection mechanisms and prevent successful analysis.  On the other 

hand malware analyzers search new methods to defeat malwares techniques. 

 

To effectively fight malware, security researchers need to detect and classify them. In 

further step analyst must dissect malwares; learn it’s stealthy and obfuscation methods, 

target and so on.  One of the most important needs for malware analyst is the safe 

environment to investigate malware behavior as stated in [5].  In this thesis we created a 

tool which runs inside a secure virtual machine image to examine malware behavior and 

classified it according to our purposed statistical n-gram feature of the malware.
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1.1 Thesis Organization 

 

The rest of this thesis is organized as follows and summarized in Figure 1.1. 

 

Chapter 2, “Prerequisites”, introduces terms, concepts and that form the prerequisites 

for the following chapters.  The chapter clarifies the definition malware and types of 

malware, shows why it is crucial to analyze malware.  Furthermore it introduces the 

malware detection methods. 

 

Chapter 3, “Anti-virtual Machines Techniques” states the anti-virtual machine 

techniques to prevent to analysis attempt.  The chapter include state-of-the-art 

techniques that malware is being run inside a virtual machine.  

 

Chapter 4, “Implementation of the Dynamic Malware Analyzer”, describes the 

implementation of the dynamic malware analyzer in depth.  It clarifies the question of 

“why do we need this kind of tool”.  Strengths and limitation of the tool are also 

summarized in this section. 

 

Chapter 5, “Implementation of n-gram Based Malware Classifier”, mentions the n-gram 

based classification method to classify the detected malware by our dynamic malware 

analyzer tool. 

 

Chapter 6, “Fusion”, explains the fusion of the DMA tool and n-gram based malware 

classification methods to make cascade malware analyzer tool and describes accuracy of 

the proposed detection and classification methods.  

 



3 

 

Chapter 7, “Conclusion”, comments on the results, highlights the achievements of our 

work as well as inadequate part of the work. It concludes with an outlook to our future 

works.  
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Figure 1.1. Overview of the Thesis Organization 

 

 

 



 

 

2 State of the Art 

 

 

 

The term malware is a conjunction of the words “malicious” and “software” and can be 

defined as a piece of software that is intended to perform tasks on computer systems 

without the users’ intention.  It is designed to disrupt or deny operation, gather personal 

information or gain unauthorized access to system resources.  This section first presents 

some malware-related terminology and types of malwares in section 2.1 and the next 

section presents the most common method that is used for malware detection. 

 

2.1 Types of Malwares 

 

When talking about malware you may heard virus, worm, backdoors, etc.  These are the 

categories of the malware that is defined by the task they performed.   Malware often 

spans multiple categories.  For example, a program might have a key logger that 

collects passwords and a worm component that sends spam.  In this section we are 

going to give the most common malware types that are usually used by attackers. 

 

2.1.1 Backdoor 

 

Malicious code that installs itself onto a computer to allow the attacker access later.  

Backdoors usually let the attacker connect to the computer with little or no 

authentication and execute command on the system.  The idea has often been suggested 
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that computer manufacturers preinstalls backdoors on their systems to provide technical 

support for customers [6].  Hackers typically use backdoors to secure remote access to 

computer.  To install backdoors, hackers may use trojan horses, worms, or other 

methods. 

 

2.1.2 Trojan Horses 

 

Trojan horse (or short trojan) is any program includes harmful or malicious payload that 

invites the user to run it as something normal or desirable so user may be encouraged to 

install it.  The payload may take effect immediately and can lead to many undesirable 

effects or installing additional harmful software.  Trojans are most commonly used for 

marketing.  Today’s advanced trojans are capable of taking complete control of web 

browser and possibly modify a computer’s registry file. 

 

2.1.3 Rootkits 

 

Once a malicious program is installed on a system, it is essential that it stays concealed, 

to avoid detection and disinfection.  The same is true when a human attacker breaks into 

a computer directly.  Techniques known as rootkits allow this concealment, by 

modifying the host's operating system so that the malware is hidden from the user.  

Rootkits can prevent a malicious process from being visible in the system's list of 

processes, or keep its files from being read.  Rootkits are usually paired with other 

malware, such as a backdoor, to allow remote access to the attacker and make the code 

difficult for the victim to detect.  

  

http://en.wikipedia.org/wiki/Rootkit
http://en.wikipedia.org/wiki/Process_(computing)
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2.1.4 Viruses 

 

The computer virus is the most famous form of malware.  It is a self-replicating 

program that infects a system without authorization.  A virus is often transmitted via e-

mail but can also be distributed through various storage mediums such as a flash drive.  

Once installed, it will execute itself, infect system files, and attempt to propagate to 

other systems.  The impact of a virus ranges widely from slow system performance to 

wiping out every file on your computer. 

 

2.1.5 Botnet 

 

The term bot is short for “robot" and is used to refer to software that acts autonomously 

on behalf of its owner.  Non-malicious bots are used by search engines to automatically 

index websites, or on Internet Relay Chat (IRC) to provide useful functionality to users 

of a particular IRC network or channel.  Malicious bots typically form botnets 

consisting of up to several thousand infected computers.  These botnets can be 

controlled by their owners through one or more command & control (C&C) servers, 

which commonly run an IRC server (or a slightly modified one) to which the bots 

connect and then wait for commands.  Other means of communication that are 

employed by bots are the HTTP protocol, or peer-to-peer protocols. 

 

Botnets can be used to launch distributed denial-of-service (DDoS) attacks, e.g., for the 

botnet owners' entertainment, or, to blackmail companies by threatening to attack on 

their critical infrastructure.  Other uses of botnets are for sending illegitimate bulk e-

mail, spying on infected computers and their users (e.g., stealing their authentication 

credentials, credit card information or other private data).  More information about bots 

and botnets can be found in [7]. 
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2.2 Malware Analysis Methods 

 

Usually when performing malware analysis, you have only the malware executable, 

which is not human-readable.  In order to make sense of the executable, there are 

variety of tools and tricks which reveal some information about them.  These tools use 

two fundamental approaches to analysis malware: static and dynamic analysis.  Static 

analysis involves examining the malware without running it.  Dynamic analysis 

involves running malware.  Both techniques have pros and cons in certain case. Static 

analysis helps to produce malware signatures but it is largely ineffective against armed 

(sophisticated) malware and it may miss important behaviors. 

 

2.2.1 Static Analysis 

 

Static analysis consists of examining the executable file without viewing the actual 

instructions.  It is usually the first step in examining malware and can confirm whether a 

file is malicious, provide information about its functionality, and sometimes provide 

information that will allow you to produce simple network signatures.  It is 

straightforward and can be quick, but it’s largely ineffective against sophisticated 

malware, and it can miss important behaviors.  By the way it is pretty safe because you 

do not execute the dangerous code but it is still best to undertake on an isolated 

machine. 

 

In first step of static analysis consists of looking for obvious indicators as to what the 

attacker is.  Basically the file fingerprint (usually a MD5 hash) is calculated and 

determined if the match is found with a known malware.  The first step sounds like 

traditional antivirus. 
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In the deep file analysis, the study focus on the file format and content.  The following 

checks are used; 

 

File Packing: Determine if the file is packed before deep search.  If it is packed try to 

unpacked it and obtain pure executable. 

 

Plain Text Matching: Look for the plain text of the executable and obtain as much 

information as possible.  Generally strings utility is used to explorer plain text in the 

file. 

 

Disassembly: The last static analysis technique is disassembly.  In this step the 

disassembly is used to examine the machine code of the executable and step thorough it 

(as in a debugger) to figure out exactly what the program is doing.  This is pretty 

advanced method, but it may not reveal all the details of what the malware does unless 

you won’t execute it. 

 

2.2.2 Dynamic Analysis 

 

Dynamic analysis techniques involve running the malware and observe its behavior on 

the system.  These techniques can give valuable information that is difficult to obtain 

with other techniques.  Like static analysis techniques, dynamic analysis techniques 

won’t be effective with all types of malware and can miss important functionality 

because of anti-dynamic analysis techniques such as anti-virtual machine, anti-debugger 

and so on.  Therefore the malware analyst must give attention to these types of tricks.  

 

Malware typically can change all sorts of things on the compromised device, so 

dynamic analysis consists of monitoring the followings; 
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Volatile Memory: Malware can overflow buffers and use this memory location to gain 

access to the device.  By capturing and analyzing the device memory, it is possible to 

figure out whether and how the malware uses memory. 

 

Registry/Configuration Changes:  Look for any evidence of the registry changes when 

performing dynamic analysis because malware often changes registry values to gain 

persistent access to the system. 

 

File Activity: Malwares may also add, alter or delete files.  So by monitoring file 

activity the analyst obtains valuable information about the behavior of the suspicious 

file. 

 

Processes/Services: Look for new or stopped processes or services because a lot of 

malware shuts down AV engines, or install new services to obtain persistent access to 

system. 

 

Network Connection: The network connection monitoring is essential part of dynamic 

analysis to understand what malware is doing.  We can obtain the malware’s destination 

IP address, port and protocol that are used by malware to communicate with 

compromised system.  

 



 

 

3 Anti-Virtual Machine Techniques 

 

 

 

Malware authors sometimes use anti-virtual machine (anti-VM) techniques to prevent 

from analysis attempts.  With these techniques, the malware attempts to detect whether 

it is being run inside a virtual machine.  If a virtual machine is detected, it can act 

differently or simply do not run.  This can, of course, cause problems for the analyst.  

 

Today both system administrators and users use virtual machines in order to make it 

easy to rebuild a machine from a snapshot.  Since malware authors realized that 

virtualization technology is used to dissect malicious executable, they started to 

obfuscate their source with the anti-virtual machine tricks.  Because anti-VM techniques 

typically target VMware, in this chapter we’ll focus on anti-VMware techniques.   

 

3.1 Hardware Fingerprinting 

 

Hardware fingerprinting involves looking for special virtualized hardware pattern 

unique to virtual machine.  For example the MAC address of the network card, specific 

hardware controllers, BIOS, graphic card, etc. Table 3.1 shows the results of hardware 

fingerprinting which obtained on a host and on a guest OS running on VMware.  This 

fingerprinting carried out using Windows Management Instrumentation (WMI) classes 

and APIs [8]. 
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Table 3.1. Hardware Fingerprinting of Native and VMware Machine, [12] 

Hardware 

Component  

Attribute VMware Machine Native Machine 

Motherboard Serial No - .2GTP3BS.CN7016697MG1DN. 

SCSI 

Controller 

Caption VMware SCSI 

Controller 

Microsoft iSCSI Initiator 

BIOS Serial 

Number 

VMware-56 4d 68 

4c f9 e5 62 f4-fb 
4d f0 5b 88 28 29 

d9 

2GTP3BS 

USB 

Controller 

Caption 1.  Intel(R) 

2371AB/EB  
PCI to USB 

Universal  

Host Controller  

2.  Standard 
Enhanced PCI  

to USB Host 

Controller 

1.  Intel(R) ICH9 Family USB 

Universal Host  
Controller – 2936  

2.  Intel(R) ICH9 Family USB 

Universal Host  

Controller – 2938  
3.  Intel(R) ICH9 Family USB 

Universal Host  

Controller – 2937 

Network 
Adapter 

Caption VMware 
Accelerated  

AMD PCNet 

Adapter 

1.  WAN Miniport (SSTP)  
2.  WAN Miniport (IKEv2)  

3.  WAN Miniport (L2TP) 

Network 
Adapter 

Mac 
Address 

00:0C:29:28:29:D9  
(This MAC address 

falls in VMware 

MAC Address 

Range) 

50:50:54:50:30:30 

 

 

3.2 Registry Check 

 

The registry is a centralized, hierarchical database for application and system 

configuration information in Windows operating system.  Access to the registry is 

through registry keys, which are analogous to file system directories.  A key can contain 

other keys or key/value pairs, where the key/value pairs are analogous to directory 

names and file names.  Each value under a key has a name, and for each key/value pair, 

corresponding data can be accessed and modified. 
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The user or administrator can view and edit the registry contents through the registry 

editor, for example using the regedit command.  Alternatively, programs can manage 

the registry through the registry Windows API functions.  UNIX systems store similar 

information in the directory and files in the user’s home directory.  The registry 

centralizes all this information in a uniform way.  

 

The Figure 3.1 shows a typical view from the registry editor and gives an idea of the 

registry structure and contents. 

 

 

Figure 3.1. Startup Programs Obtained from Registry 

 

 

The registry contains information such as the following and is stored hierarchically in 

key/value pairs; 

 

• Windows version number, build number, and registered users 

• Similar information for every properly installed application 
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• Information about the computer’s processor type, number of processors, memory, and 

so on 

• Security information such as user account names 

• Installed services 

 

Tobias Klein’s tool ScoopyNG [9] includes a small code that looks for certain keys 

within the Windows registry to determine that if the machine is virtual. 

 

3.3 Memory Check 

 

This technique involves looking at the values of specific memory locations after the 

execution of instructions such as SIDT (Store Interrupt Descriptor Table), SLDT (Store 

Local Descriptor Table), SGDT (Store Global Descriptor Table), and STR (Store Task 

Register)  [9] [10] [11].  It is the most widespread detection technique employed by the 

present VM detecting malware [12]. 

 

RedPill, discovered by Joanna Rutkowska, is based on checking the Interrupt Descriptor 

Table (IDT).  More info on this can be obtained from Joanna’s web page [13], and in 

[11].  Both techniques are based on the simple fact that any machine, virtual or not, will 

need its own instance of some registers.  Systems such as VMware will create dedicated 

registers for each virtual machine. These registers will have a different address than the 

one used by the host system, and by checking the value of this address, the virtual 

system’s presence can be detected.  Code samples can be seen Figure 3.2. 

 

Besides that, Red Pill succeeds only on a single-processor machine.  It won’t work 

consistently against multicore processors because each processor (guest or host) has an 
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IDT assigned to it. Therefore, the result of the SIDT instruction can vary, and the 

signature used by Red Pill can be unreliable. 

 

int swallow_redpill() { 

 unsigned char m[2+4],rpill[]=”\x0f\x01\x0d\x00\x00\x00\x00\xc3”; 

 *((unsigned*)&rpill[3])=(unsigned)m; 

 ((void(*)())&rpill)(); 

 return (m[5]>0xd0)?1:0; 

} 

 

Figure 3.2. Snap Code of Red Pill Technique 
 

 

3.4 VMware Communication Channel Check 

 

Ken Kato discovered the presence of a host-guest communication channel so called 

backdoor Input/Output (I/O) port [14].  VMware uses the I/O port 0x5658 (‘VX’ in 

ASCII) to communicate with the host machine.  It is obvious this port is not real. The 

verification is as follows: 

 

1. The magic number 0x564D5868 (‘VMXh’ in ASCII) is loaded in the EAX 

register. 

2. The proper parameter of the command that is to be sent is loaded in EBX 

register. 

3. The command to be used is loaded in the ECX register.  For example, the 

command 0x0A brings back the VMware version. 

4. It is read from ‘VX’ port.  If we have ‘VMXh’ in the EBX register, this means 

that we are under VMware. 
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There are more commands supported by the backdoor I/O port; for example to obtain 

data from the Windows clipboard or the speed in MHz of the microprocessor.  The most 

important commands are displayed in Figure 3.3.  A detailed documentation can be 

found on the VM Back website [14]. 

 

 

VMware 
Backdoor

Get Virtual 
Hardware 

Version

Get BIOS ID

Get VMware 
Version

Get 
Processor 

Speed

Get Memory 
Size

Get Device 
Info

…

 

Figure 3.3. VMware I/O Backdoor's Main Functionalities 

 

 

MOV EAX, 564D5868h;  ‘VMXh’ magic number 

MOV ECX,0Ah ; get VMware version command-specific-parameter 

MOV DX, 5658h ; ‘VX’  backdoor-command-number 

MOV DX,  5658h;  VMware I/O Port  

IN EAX, DX; “returns” version number in EAX 

 

Figure 3.4. Assembly Code to Detect VMware Machine via VMware I/O Port 
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3.5 File & Process Check 

 

The VMware environment creates many artifacts on the system, especially when 

VMware Tools is installed.  There are many VMware specific processes such as 

VMwareUser.exe, vmacthlp.exe, VMwareService.exe, VMwareTray.exe that constantly 

run in the background. There also exist some VMware specific files and folders. Hence 

querying for these objects could also serve as a method for VM detection.  

 

Malware can use these artifacts, which are present in the file system and process listing, 

to detect VMware.  For example, Figure 3.5 shows the process listing for a standard 

VMware image with VMware Tools installed.  Notice that three VMware processes are 

running: VMwareService.exe, VMwareTray.exe, and VMwareUser.exe.  Any one of 

these can be found by malware as it searches the process listing for the VMware string. 

 

 

Figure 3.5. Process Listing on a VMware Image 
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WMwareService.exe runs the VMware Tools Service as a child of services.exe.  It can 

also be identified by searching the registry for services installed on a machine or by 

listing services using the “tasklist” or “net start” command (Look at Figure 3.6). 

 

 

Figure 3.6. Search VMware Processes in Process List 

 

 

The VMware installation directory (default path C:\Program Files\VMware\VMware 

Tools) may also contain artifacts. A quick search for “VMware” in a virtual machine’s 

file system might find clues about existing of the VMware image.  

 

 



 

 

4 Implementation of Dynamic Malware Analyzer 

 

 

 

We have developed an application called “Dynamic Malware Analyzer” in order to 

analyze malicious software by running on safe virtualized environment.  .Net 

framework was used to create DMA.  It can monitor anomalies occurred on the system 

through checking out all processes, connection table and service details on Windows 

operating system.  DMA has a user-friendly graphical user interface, can be used easily 

and efficiently in dynamic analysis by malware researchers.  Before running DMA you 

have to configure some simple settings. 

 

In this section, firstly we will present our methods used to bypass the countermeasures 

taken by malware (known as anti-virtual machine aware malware or split personality 

malware) to run itself on the virtual machine.  Then, the actions taken to monitor 

changes occur on the system will be explained.  To evaluate the accuracy of the 

developed application we tested it over the samples obtained from [15].  Finally, we 

will cover the pros and cons of our dynamic malware analyzer tool.  

 

4.1 Binary Instrumentation Tool: Pin  

 

Pin is a free tool provided by Intel for the dynamic instrumentation of programs, i.e. 

arbitrary code (written in C or C++) can be injected at arbitrary places in the executable.  

It supports Linux binary executables for IA-32, Intel64 (64 bit x86), and Itanium (R) 

processors; Windows executables for IA-32 and Intel64; and MacOS executables for 

IA-32. 
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Pin does not instrument an executable statically by rewriting it, but rather adds the code 

dynamically while the executable is running. This also makes it possible to attach Pin to 

an already running process. 

 

Pin come up with the source code for a large number of example instrumentation tools.  

If you look at the source code of these examples you can easily understand that it is easy 

to derive new tools using the examples as a template. 

 

4.1.1 Intended use of Pin  

 

As indicated in “Anti-Virtual Machine Techniques” section, some malicious software 

has special controls as listed follows to check if it is running on the virtual machine and 

if it detects virtual machine it modifies behavior, acts harmless or simply not run.  

 

 Hardware fingerprinting 

 Registry lookup 

 Memory lookup 

 VMware communication lookup 

 File & Process lookup 

 

In this study we have used pin tool provided by Intel to detect and execute anti-VM 

aware malwares on the VMware.  Figure 4.1 illustrates the step by step with pseudo-

code. 
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Algorithm used to detect and trick anti-VM aware malware as used in [12] 

Input: Malware sample to be tested. 
Output: If anti-VM aware malware detected return true  

else return false 

 

Maintain a list of API calls and low level instruction that help in VM detection. 
Run the sample under test. 

Hook into sample. 

while the sample executes do 

Intercept the API calls and low level instructions being executed by the 
sample 

If match is found with the monitored set of API calls or low level 

instructions then 

Log the activity 
Mark malware as anti-VM aware malware 

Provide false values to the testing sample 

else 

Do nothing 
end if 

end while 

 
 

Figure 4.1. Our Approach for Detecting anti-VM Aware Malware 
 

 

Maintained list of Windows API calls, split into two categories; hardware and registry 

APIs, listed as follows to detect anti-VM aware malware. 

1. Hardware Querying API list 

a. SetupDiEnumDeviceInfo() 

b. SetupDiGetDeviceInstanceId() 

c. SetupDiGetDeviceRegistryProperty() 

d. WMI APIs 

 

2. Registry Querying API list 

a. RegEnumKey() 

b. RegEnumValue() 

c. RegOpenKey() 

d. RegQueryInfoKeyValue() 
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e. RegQueryMultipleValues() 

f. RegQueryValue() 

 

Let us consider the example of a sample that makes the following API calls with the 

given arguments:  

 RegOpenKeyEx(  

HKEY_LOCAL_MACHINE,  

TEXT ("HARDWARE\\DEVICEMAP\\Scsi\\Scsi Port 0\\Scsi Bus 

0\\Target Id 0\\Logical Unit Id 0"), 0,  

KEY_QUERY_VALUE,  

&hKey); 

 RegQueryValueEx(   

HKey,  

TEXT ("Identifier"),  

NULL, NULL,  

(LPBYTE) PerfData,  

&cbData);  

 

In the above cases, the key value returned in a VMware machine will contain the string 

“VMware”.  Thus, we monitor the values returned by the OS in response to the API 

calls made by the sample.  If it contains the string “VMware”, the control passes to our 

replacement routine where we change the value to a more appropriate value such as 

“Microsoft” or to a value that would have been returned on a host Windows OS.  
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Similarly when VM specific instructions such as SIDT are in the curse of being 

executed by the sample, the control passes to our replacement routine where we set the 

value of the destination operand to a value that would be obtained on the host Windows 

OS. 

 

4.2 Monitor System  

 

In dynamic analysis methods, monitoring the usage of the system resources is an 

important topic that must be taken into account by an analyst. Process handle details and 

connection table are two major concepts in the system that is used to detect and analyze 

malware.  Therefore DMA has four main monitoring capabilities listed as follows in 

order to monitor system details; 

1. Monitoring Processes 

2. Monitoring Connections 

3. Monitoring Services 

4. Monitoring Register (comparison based monitoring) 

 

4.2.1 Monitor Processes  

 

Processes are the essential building blocks of any Microsoft Windows system. Knowing 

what processes are active on the system at any given time can help you understand how 

system resources are being used, and it can assist you in diagnosing problems and 

identifying malware.  

 

All windows versions were shipped with Task Manager to provide users insight into 

process activity for viewing the processes (application and services) that are running on 

the system.  To avoid confusing users, Task Manager provides limited information 

about the processes.  
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Task Manager is the application that users usually used it in order to find out why their 

system is slow and to kill degenerate processes. It often doesn’t give deep enough 

knowledge about what is causing a process to misbehave, nor does it provide key data 

that can help a technical user to identify a process as malware. 

 

 

Figure 4.2. Process Monitoring Feature of DMA 
 

 

DMA tool likes standard Task Manager on windows and its purpose is to evaluate the 

newly created and the state-changing processes.  In addition to this feature the location 

of the running application on the file system can be easily obtained from the “Image 

Location” title of the Process tab.  Even though users with limited privileges can see all 

running processes, they can’t see all information about the processes such as location of 

the executable and handles of the process. 

 

If the user clicks on an active process, the advanced features of the process like threads, 

registry key handles, file handles, and etc. appears on the bottom side of the application.  

As you guess these advanced features don’t show to the limited privileged user.  The 
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user also has the ability to kill the process that he/she wants to end within his/her 

privilege level. 

 

4.2.2 Monitor Connections  

 

As malware often try to communicate with a command-and-control server to manage 

the system remotely we take into account the network connections.  The following basic 

attributes of network activity; 

 

1. Destination IP address  

2. TCP and UDP port (TCP/IP transport layer protocols ) 

3. Domain Names 

4. Traffic Content  

 

are used extensively by security analysts to ensure defense.  DMA is capable of keeping 

an eye on networking events.  On other words, DMA can display and log the list of all 

currently opened TCP/IP ports on the system.  For each connection on the list, 

information about that open connection is also displayed, including the process name. 

 

In addition, just as described in “Process Monitor” section if the user clicks on an active 

connection, the handlers of this connection appear on the bottom side of the application. 

On the other hand, DMA allows the users to close the suspicious connection by killing 

the related process. 
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Figure 4.3. Network Monitoring Feature of DMA 

 

 

4.2.3 Monitor Services  

 

Windows services are critical processes that provide server functionality, such as Active 

Directory, e-mail, DNS, automatic updates, etc. One example is Microsoft Exchange 

Server, which has several services, such as Information Store and SMTP; the failure of 

even one of these services results in suspended e-mail delivery or even lost messages 

until the services are started again. 

 

After going through all the hard work of exploiting a system, malware often create 

services to maintain access to system.  This way, if the connection breaks, you can still 

gain access to the system.  Thus, DMA is capable of monitoring changes occurred in 

Windows services. 
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Figure 4.4 illustrates that an attacker installed Meterpreter as a service on the exploited 

system in order to access the victim box later and can proceed with further recognition, 

enumeration and exploitation for the specific system and/or the network.   

  

 

Figure 4.4. Service Monitoring Feature of DMA 

 

 

4.2.4 Monitor Registry 

 

Malware often uses the registry for persistence or configuration data.  The malware adds 

entries into the registry that will allow it to run automatically when computer reboots.  

The registry is so large that there are many ways for malware to use it for persistence.  It 

seems like more and more programs are attempting to install spyware, advertisements, 

or other garbage without your knowledge. 

 

To detect registry changes we inspired open source Regshot [16] that the program will 

create snapshot of the actual states of registry. This means that at any time you can open 

the snap file and view the contents of the registry just as they were when you've scanned 
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the registry. The program can compare two different snapshot files so you'll see exactly 

what changed in the registry between the two scans.  

 

Figure 4.5 displays a subset of the results generated by DMA during malware analysis.  

Registry snapshots were taken before and after running the “Lab07_01.exe” malware 

obtained from [5]. 

 

As you can see a new service is installed on the system, you can check it by looking at 

services and registry tables on the compromised system.  Sample malware added 

“HKLM\SYSTEM\ControlSet001\services\Malservice\Start” key and set the start key as 

2 (means autostart) to start malware automatically when system reboots. 

 

 

Figure 4.5. An Example of Registry Changes Made by Malware to Gain Persistence 
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4.3 Basic Configuration  

 

To work properly with DMA there are a few settings to be set.  These requirements are 

discussed in this chapter.  First of all, we have to set the exact location of the pin on the 

file system.  Then we select the possible application that may create network connection 

and finally we restrict the destination point with the aid of public malware domain lists 

published at regular intervals by [17] and [18]. 

 

4.3.1 Restrict Connectable Process  

 

The application which is not determined as a connectable application by user and 

creates network connection is reported by DMA while informing the users. 

 

These mentioned processes can be decided by the following two ways: 

1. When the user wants all the applications except active application not to make 

network connection he/she can snapshot application meaning that the user 

determines the connectable applications. 

2. User may save the applications which can make connection, into a file called 

“connectable.txt”  

 

If an application that is not in determined list establishes network connection, the DMA 

informs the users and log the activities as seen Figure 4.6. In this example, a malicious 

executable called “custom.exe” which is not in the connectable application list is trying 

to establish connection in order to control the victim host machine remotely. 
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Figure 4.6. A Malicious File Establishes Connection without User’s Intent 

 

 

4.3.2 Restrict Destination Domain  

 

DMA has also the ability to filter network connection by checking the destination 

domain or IP.  If the DMA detects that system establishes connection to the malicious 

domain, DMA logs the malicious connection and informs users via popups. In the study 

we used the malicious domains collected by [17] and [18] to restrict the destination 

points.  These domain lists are live list and updated frequently.  To derive IP details 

from domain information we used the following Ruby script: 
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require 'resolv' 

file=File.open("malwareips.txt","w")   
IO.foreach("malware_domainlist.txt") do | line|  

begin 

array=Resolv.getaddresses(line.strip) 

if(array.length>0) 
array.each {|element| puts element; file.puts element} 

end 

rescue Exception 

puts "" 
end 

end 

 

Figure 4.7 DNS Resolver Script for Malware Domains 
 

 

Derived IP list must be saved a file which is called “Domainlist.txt” that locates in the 

same directory of the DMA.  After all these procedures, if an application tries to 

connect to a specified malicious destination, as shown in Figure 4.8 DMA produces a 

warning massage and the user is notified.  In this example, chrome.exe, attempting to 

connect a malicious target which exists in the “Domainlist.txt” file, is detected and the 

user is notified by DMA.   

 

 

Figure 4.8. A Malicious Process Tries to Connect Malicious Domain 
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4.4 Comparison of Dynamic Analysis Techniques  

 

In this chapter, firstly we will talk about the existing dynamic malware analysis 

methods.  Then we will mention the existing methods and DMA tool and finally we will 

cite the future works and pros & cons of DMA. 

 

4.4.1 Overviewing Existing Dynamic Analysis Techniques  

 

Currently dynamic malware analysis is a very popular research topic.  Several methods 

exist for automatically analyzing malicious software behaviors. These can be gathered 

into two groups [19]: 

1. Analysis the difference between two snapshots of the system, one taken before 

the malware execution, the other after. 

2. Monitor the actions performed by malware during its execution. 

 

API hooking is mostly used technique in order to trace the behavior of the malware and 

though this technique it can be possible to get a control flow of the executable. Most 

dynamic analysis framework such as CWSandbox [20], BitBlaze [21] and TTANalyze 

[22] use this technique.  The concept of hooking is simple, each time an application 

accesses an API function it gets sent to different location, where the modified code is 

located. 

 

API hooking has to be done in a careful way in order to be transparent and undetectable 

for the malware.  It is never good if a malware detects that it is running in a simulated 

environment as then it is modifying its behavior.  This has been stated in previous 

chapters. 

 

A way to bypass the API hooking trap would be call the kernel functions directly and 

avoid the usage of the API, anyhow this is uncommon as for this the programmer has to 

know exactly what version of operating system and on what service pack patch level.  
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As the goal of most malware is to infect a huge user base and not only targeted persons, 

directly kernel function calling is not easy to realize.  

 

Another popular method used in dynamic analysis is DLL (Dynamic Link Library) 

injection.  This can be realized through API hooking with inline code overwriting. 

Therefore the applications have to be patched once it has been loaded into the memory.  

The address space of the malware has to contain our hooked function in order to be able 

to call the hook from inside the malware’s address space.  This technique is realized by 

a specialize thread located into the malware’s memory allocation.  CWSandbox [20] 

framework uses this technique to make the malicious code load their DLL in their 

address space.  

 

A further technique that is widely used is Virtual Machine Introspection (VMI).  This 

technique allows a monitoring of a virtual machine without risk.  This method allows us 

to have both advantages, a good resistance against attacks on the one hand, and full 

control of what is happening in the host on the other hand.  Therefore the VMI uses 

access to the hardware-level state, for example the state of the physical memory pages 

and registers and also events like memory accesses and interrupts. The knowledge of 

these events and states allows us to map the events to OS-level semantics.  For example 

livewire [23] implement this technique to detect intrusion.  

 

To remind, there has to be said that malware can implement some functionalities to 

detect if it is running on a virtual machine. If this is the case the malware can adapt its 

behavior.  One famous project implementing this detection functionality is the Red Pill 

project of Joanna Rutkowska. [11] 
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4.4.2 Pros & Cons of Our Dynamic Analysis Techniques 

 

First of all, unlike other dynamic malware analysis methods our developed application 

can overcome anti-VM techniques described in 3. Chapter, thus in this perspective it is 

significantly different from other methods.  Although there exists studies to detect anti-

VM aware malware [24] [25] [26] [27], we couldn’t find the work that examines anti-

VM aware malware behavior by running it.  Therefore our method offers an advantage 

of dynamic analysis of anti-VM aware malwares. 

 

Since the application has user-friendly interface and works as a system tray in the 

background, the application don’t interfere the user. If there is an anomaly DMA logs 

the event with a sufficient detail and informs the user about the situation. DMA can be 

run on any system that is installed .Net framework 3.0 and it doesn’t require any extra 

installation and configuration except the requirements stated in Chapter 4.3. 

 

DMA, can be used as an anti-malware software, can reduce dependency on the anti-

virus software and make to feel more safe the users since as stated before anti-virus 

solution is based on signature and can be bypassed easily.  

 

DMA is currently still under development stage so it can’t handle all the tasks 

automatically.  For example suppose that you want to analyze a set of malicious 

software.  If the sample in the set is detected as malware and make same changes to 

system then you have to come back the original image via snapshot technology in the 

virtual machine.  This steps cause too much workload.  Therefore, it is clearly apparent 

that DMA have to automate malware analysis in order to carry out the dynamic analysis 

effectively  

 



34 

 

On the other hand while detecting the malware samples, there may be scoring 

mechanism to describe the harmfulness degree of the file.  The realization of the scoring 

mechanism will provide fast, more reliable, less struggle and user-independent analysis.  

  



 

 

5 Implementation of n-gram Based Malware Classifier  

 

 

 

In this section firstly we will give the definition of n-gram and usage fields in computer 

science.   After then the existing n-gram approaches is explained we will propose our n-

gram based malware classification methodology. Finally we will elaborate and compute 

the accuracy of the proposed methodology.  

 

5.1 Definition of n-gram  

 

N-gram is a fixed size sliding window of byte array, where n is the size of the window.  

For example the “558D6C24948B45…400085C0” sequence is segmented (represented) 

into 4-gram as “558D6C24”, “8D6C2494”, “6C24948B” and “24948B45” as seen in the 

Figure 5.1. 

 

Figure 5.1. N-gram Sequences 
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An n-gram of size 1 is referred to as a “unigram”; size 2 is a "bigram" (a.k.a “digram”); 

size 3 is a “trigram”.  Larger sizes are sometimes referred to by the value of n, e.g., 

“four-gram”, “five-gram”, and so on.  

 

N-gram is used in different fields such as natural language processing, authorship 

detection, information gathering and also malware detection.  They have been used in 

the following application; 

 

 Find likely candidates of misspelled words 

 Improve compression in compression algorithm 

 Improve accuracy of the speech recognition 

 Improve performance of the information retrieval process 

 … 

 

5.2 Existing n-gram Approaches to Analyze Malware  

 

The representation of malware by using n-gram profiles has been presented in the open 

literature; see for example [28], [29] and [30].  In these studies some promising results 

towards malware detection are presented.  However malware domain has been evolving 

due to survivability requirements. 

 

Malware has to evade anti-virus scanners to perform its functions.  Obfuscation 

techniques have been developed in order to avoid detection by antivirus scanner.  And 

these techniques disturb n-gram features of binary form of the malware used by the 

previous work.  Similar methodologies have been used in source authorship, 

information retrieval and natural language processing [31], [32]. 
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The first known use of machine learning in malware detection is presented by the work 

of Tesauro et al. in [33]. This detection algorithm was successfully implemented in 

IBM’s antivirus scanner. They used 3-grams as a feature set and neural networks as a 

classification model. When the 3-grams parameter is selected, the number of all n-gram 

features becomes 2563, which leads to some spacing complexities. Features are 

eliminated in three steps: first 3-grams in seen viral boot sectors are sampled, then the 

features found in legitimate boot sectors are eliminated, and finally features are 

eliminated such that each viral boot sectors contained at least four features. Size of 

feature vectors in n-grams based detection models becomes very large so feature 

elimination is very important in these models. The presented work has been limited by 

the boot sector viruses’ detection because boot sectors are only 512 bytes and 

performance of technique is degraded significantly for larger size files. 

 

As a historical track, IBM T.J. Watson lab extended boot virus sector study to win32 

viruses in 2000 [34].  At this stage, 3 and 4 grams were selected and encrypted data 

portions within both clean files and viral parts were excluded due to the fact that 

encryption may lead to random byte sequences.  At the first instance, n-grams existed in 

constant viral parts were selected as features and then, the ones existed in clean files 

more than a given threshold value were removed from the feature list. In this study, 

along the use of neural networks boosting was also performed.  Results of this study 

showed that the developed method performance was not sufficient. Schultz et al. has 

used machine learning methods in [35].  Function calls, strings and byte sequence were 

used as the feature sets. Several machine learning methods such as RIPPER, Naive 

Bayes and Multi Naive Bayes were applied, the highest accuracy of 97.6%  with Multi 

Naive Bayes was achieved.  

 

Abou-Assaleh et al. [29] contributed to the ongoing research while using common n-

gram profiles. k nearest neighbor algorithm with k=1 instead of the other learners was 

used. Feature set was constituted by using the n-grams and the occurrence frequency, 

where the occurrence frequency is denoted by L. Tests have been done with different n 
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(ranging from 1 to 10) and L (ranging from 20 to 5000) values. Data set used in these 

experiments was kept fairly conservative of 25 malware and 40 benign files. With this 

set, test results shown 98% of success. Using the data in [29], the accuracy slightly 

dropped to the 94% level. 

 

Kolter et al. [28] used 4-grams as features and selected top 500 n-grams through 

information gain measure.  They used instance based learners, TFIDF, naive bayes, 

support vector machines, and decision trees and also boosted last three learners.  

Boosted decision tree outperformed all others and gave promising results such as ROC 

curve of 0.996. 

 

While the battle between malware authors and anti-virus producers are continuing, our 

motivation is to find the statistical method to classify the malware instance by using n-

gram features (profiles) of disassembled malware.  In our methodology, we use n-gram 

feature of the malware to classify the malware instance with respect to their family. 

 

5.3 Our n-gram Based Malware Classifier 

 

As stated in the introduction, current malware samples cannot be analyzed easily based 

on their statistical features’ as in the previous decade because of the increasing use of 

the obfuscation techniques by the malware authors.  

 

The proposed algorithm consists of preprocessing, training and testing phase. Malware 

samples are collected through TR-CERT [36] activities in The National Research 

Institute of Electronics and Cryptology. We classified our dataset by using Microsoft 

Security Essential (MSE) antivirus tool [37].  In other words, naming of the malware 

instance is performed by the MSE tool. Malware naming is not a well standardized area 

where all vendors, players can name and classify malware according to their intentions, 
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and common sense in naming cannot be achieved among the stakeholders [38].  After 

that preprocessing step, PEid as a useful tool to inspect PE files, is used to dissemble 

malware instances [39].  We extract a malware instance’s n-gram profile through 

opcode sequences obtained from PEid. We are using opcode sequences instead of byte 

sequences of the malware. 

 

In our study, machine codes to extract malwares’ n-gram profile instead of byte 

sequences are considered and the n-gram feature space is considerably reduced.  In this 

manner calculations are performed faster and efficiently.  Each malware sample is used 

to determine its subfamily vector which is named as the centroid of the subfamily.  

 

Family of the malware is a descriptor of the malware used to classify malware samples 

according to their features especially in terms of the tasks performed and the purpose of 

the creation.  Subfamily is the specialized version of the family that describes malware 

samples definitely.  For instance if a malware labeled as Win32-Ramnit.F by an anti-

virus scanner, this means the malware belongs Win32-Ramnit family and Win32-

Ramnit.F subfamily. 
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Label malware intances
with Microsoft Security Essential 

Diassemble all instances

Extract n-gram profiles

Generate centroid for each subfamily
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instance for each subfamily 
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Extract n-gram profiles

Training Phase

Preprocessing Phase

Testing Phase
 

Figure 5.2. Architecture of the Malware Classification System 
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Centroid of the subfamily comprises the most frequent n-gram of the subfamily 

instances.  In other words, n-grams (words or terms), which occur with higher document 

frequency in the subfamily instances, are used to construct the centroid vector.  So the 

subfamily is represented by its centroid vector.  For instance, centroid of the subfamily 

is presented by   
⃗⃗  ⃗ as follows: 

 

  
⃗⃗  ⃗  (

                            
                                   

 
                                

)    (5.1) 

 

 

where df is the document frequency. 

 

To classify an instance, similarity function is calculated by counting the number of 

matching n-gram (term) for each centroid of the subfamily.  

 

      (     ⃗⃗ )  {
         ⃗⃗  

           
    (5.2) 

       ⃗⃗⃗⃗  ⃗  ⃗⃗⃗   ∑             ⃗⃗⃗  
 
     (5.3) 

       ⃗⃗        ⋃    (   ⃗⃗ ⃗⃗  ⃗⃗  )          
       (5.4) 

 

 

where m denotes malware whose family is unknown and it will be determined via 

presented method.   ⃗⃗  is the n-gram feature vector extracted from unknown malware 

instance denoted by m.  Subindice is the subfamily indexing for s=1, 2…15.  The 
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function, denoted by       , returns 1 if malware n-gram profile ( ⃗⃗   consists i-th  n-

gram of the centroid of taken subfamily(  
⃗⃗  ⃗  denoted by     otherwise return 0.  

Equation 5.3 gives similarity measure between the unknown instance and the subfamily 

centroid. Similarity measure is the sum of the common n-grams. In Equation 5.4, after 

all similarity measures are calculated, the unknown instance is classified as the closest 

centroid’s subfamily. 

 

Process flow is illustrated in Figure 5.2.  When an instance has two or more equal 

similarity value for two different subfamilies, an error occurs.  However this error will 

be named as the small error because these two or more equal similarity values for 

subfamily may belong to the same family.  As we know, the subfamilies sustain their 

common family feature.  Other types of error are named as big error. 

 

5.4 Obtained Results  

 

In order to perform our experiments, we collect significantly large malware database as 

stated in the section 5.3. To obtain more accurate results we count in the subfamilies 

that contain maximum number of samples in our dataset. In this manner, experiments 

are carried out 1056 samples belonging to ten families, five of them have two 

subfamilies, and therefore there exists 15 subfamilies in our dataset.  Table 5.1 indicates 

how many samples were taken from which subfamily in our dataset.  This data set 

consists only a 2% of the original database.  The amount of the sample is sufficient to 

demonstrate whether n-gram centroid of the subfamily may be used to classify malware 

instance or may not. 
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Table 5.1 Number of the Instances for Each Subfamily 

 

Subfamily Name Instance Number Subfamily Name Instance Number 

Win32-Vobfus.Y 13 Win32-Sality.AT 64 

Win32-Alureon.H 19 Win32-Small.AHY 69 

Win32-Ramnit.F 19 Win32-Renos.NS 95 

Win32-Virut.BG 19 Win32-Sality.AM 100 

Win32-Alureon.CT 22 Win32-Renos.LT 137 

Win32-Agent.ACF 23 Win32-Vobfus.gen!D 183 

Win32-Viking.CR 30 Win32-Ramnit.B 200 

Win32-Vobfus.AH 42     

 

 

To evaluate our methodology, five-fold cross-validation is used: the selected malwares’ 

subfamilies are randomly partitioned into five disjoint sets of approximately equal size, 

named as “folds”.  Training and testing phases are performed five times.  At each 

iteration step, one fold is selected as a testing set, and other four folds are combined to 

form a training set.  Therefore, each sample is used five times for training and once for 

testing.  And the estimated error is computed as the total error generated from the five 

iterations, divided by the total number of the initial tuples. 

 

There are two main parameters in the experimental setup: the first parameter is the size 

of the n-grams and the second parameter is the number of the list size which is 

constituted by ranking the n-grams according to their df values in the subfamilies.  The 

size of the n-grams, denoted by n, allows us to decide how long in bytes the n-gram will 

be.  In the experiments, tests are run with n=3, n=4, n=5 and n=6.  The second 

parameter, denoted by L, is chosen to express a subfamily in a simple way.  Tests are 

run with L=40, L=50 and L=60. 
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Table 5.2 shows the obtained training error over the parameters n and L as well as Table 

5.3 shows the resulting testing error.  As can be seen from the Table 5.2 and Table 5.3, 

to increase the size of the n-gram does not produce accurate results every time.  Because 

if the parameter n increases, n-grams cannot capture the subfamily features, in contrary 

the selected n-grams can only represent a feature specific of the sample.  However, the 

opposite case, namely if the n is chosen very small, n-grams can mostly become the 

common feature of the all subfamilies as well as all samples. 

 

We achieved the highest success rate when n=4 as confirmed by the results in [28] also.  

Elaborating the parameter choice effects, if the parameter L is increased, the error rate 

decreases.  Since the more common n-gram makes it easy to classify instance 

appropriately.  As maintained in the previous section, the n-gram profiles are captured 

from the disassembled malware, therefore the space of the n-gram decreases 

dramatically.  For all that, L could not be taken more than 60, due to having very small 

sized n-gram space (i.e., for Win32-Agent.ACF n-gram feature space is 74). 

 

As a result of the experiment, the most appropriate parameter pair is obtained when n=4 

and L=60.  The obtained training and testing errors rate for n and L pairs from our 

experiment are listed in the following Table 5.2 and Table 5.3, respectively. 

 

Table 5.2. Training Error 

N-gram 

Length 

Top L N-gram in the Subfamily Malwares 

L=40 L=50 L=60 

Total Error 

Without 

Subfamily 

Error 

Total Error 

Without 

subfamily 

Error 

Total Error 

Without 

subfamily 

Error 

n=3 0.231 0.101 0.150 0.058 0.090 0.024 

n=4 0.143 0.056 0.106 0.021 0.053 0.014 

n=5 0.124 0.041 0.109 0.024 0.058 0.015 

n=6 0.123 0.038 0.115 0.024 0.108 0.019 

n=7 0.151 0.031 0.115 0.031 0.098 0.019 

n=8 0.125 0.041 0.124 0.037 0.111 0.028 
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Table 5.3 Testing Error 

N-gram 

Length 

Top L N-gram in the Subfamily Malwares 

L=40 L=50 L=60 

Total Error 

Without 

Subfamily 

Error 

Total Error 

Without 

subfamily 

Error 

Total Error 

Without 

subfamily 

Error 

n=3 0.262 0.109 0.184 0.066 0.131 0.038 

n=4 0.169 0.069 0.141 0.037 0.082 0.023 

n=5 0.150 0.056 0.128 0.038 0.082 0.026 

n=6 0.143 0.043 0.140 0.027 0.134 0.023 

n=7 0.170 0.039 0.140 0.036 0.125 0.025 

n=8 0.139 0.042 0.148 0.040 0.138 0.034 

 



 

 

6 Fusion 

 

 

 

In this section, we will explain the combination of the DMA tool and n-gram based 

malware classification methods to make cascade malware analyzer tool which is 

capable of detection and classification of malware.  Thus, thanks to the fusion of the 

two mentioned methods, one file can be easily analyzed.  

 

Figure 6.1 summarizes the performed work and shows the relationship between 

detection and classification module.  We can shortly explain the fusion procedure as 

follows; 

 

 Execute the executable file which is wanted to dissect with DMA’s execute 

option.  Which means the file is executed by pin tool in order to bypass anti-

VMware aware techniques. 

 If the executable file tries to call the suspicious API which is monitored by our 

pin tool, the file is marked as anti-VMware aware malware.  Besides, the pin 

tool returns the results of the called API such a native machine, not as a 

VMware.  Thus anti-VMware aware malware continues to run and reveals its 

behavior.  
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Figure 6.1. Fusion of DMA and n-gram Based Classification Module 
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 In the meantime, the monitor module of DMA tool track the processes, 

connections, services and registry changes and if the following situation occurs 

DMA will alert that the file is malware; 

 

o The process except that determined process set in 4.3.1 section tries to 

make connection. 

o A process tries to establish a connection to malicious domain which is 

determined in 4.3.2 section. 

o A process tries to create a service on the system.  

o A process tries to add key into registry to gain persistence on the system. 

 

 If there occurs any anomaly in the monitored features of the system the file is 

named as malware. On the other hand if there is not any unexpected situation the 

file is executed normally. 

 After the determining the malicious file we carry out the classification task with 

our proposed n-gram based malware classification method.  Briefly in this 

method we classify the malicious file by comparing it with the previously 

trained malware set.  As stated before to classify sample it is not executed since 

the method uses the static n-gram feature of the file.  The details are stated in the 

5.3 section. 

 

6.1 Evaluation Methodology & Obtained Results 

 

To evaluate the work we have selected only the executable files in the Pahadus public 

malware set [15].  Test is carried out with the 64 bits Windows 7 operating system and 

VMware workstation.  These malware set is scanned with MSE anti-virus solutions to 

detect and classify samples.  Since the dataset is public, means there exists signature for 

samples in MSE, all samples detected easily.   
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Since we have malware detection and classification module in our study we need to 

evaluate each module separately.  So we determined the accuracy of the DMA with the 

captured malware samples in the testing set.  On the other hand, the accuracy of the n-

gram based classification module is measured with the ratio of the properly classified 

sample with respect to MSE to previously detected malware samples.  

 

Before the results, let’s give you the details of the dataset.  In the dataset there are 72 

samples but we didn’t execute all the samples.  As you can see in Figure 6.2 only 49 

(69% of the dataset) samples are executed normally in our test environment.  

 

 

Figure 6.2. Details of Executed Malwares 

 

 

As seen in Figure 6.3, DMA has detected the 86% (42 samples over 49) of the malware 

set as a malware.  Figure 6.4 shows that which module of the DMA detects the present 

of the malicious activity.  We can obviously say that majority of the malware set is 

detected by registry and process monitoring features of the DMA.  By the way, there are 

5 samples that try to create service to gain persistence on the system and 7 samples that 

try to establish network connection.  

not 
compatible 
with 64-bit 

3% 

probably 
exploit 

7% 
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21% 

executed 
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Malware Dataset 
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Figure 6.3. Malware Detection Ratio 
 

 

In the test dataset DMA didn’t detect 7 samples.  To understand our limitations we 

wanted to analysis these samples with publicly available dynamic analysis tool like 

Anubis [40].  While we were performing dynamic analysis with Anubis web service, we 

realized that undetected malware samples are generally performs file operations such as 

delete itself, modifies and destruct windows native files, copies itself in the Windows 

directory to stay undetected by users, etc.  By the way the 3 samples were also not 

detected by Anibus and one of the samples wasn’t analyzed because Anibus didn’t 

consider the file as a Windows executable. 

 

Detected 
86% 

Undetected 
14% 

Detection Ratio 
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Figure 6.4. Number of Samples Detected by DMA’s Modules 

 

 

As stated before after determining step we classify malware samples with n-gram based 

classification method. We have taken L=60 and n=4 which is the best pairs stated in 

section 5.4.  Our n-gram classifier was trained with the same data set in section 5.4.  

The previously detected 49 malware samples classified %92 accurately with respect to 

MSE anti-virus solution’s report.  
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7 Conclusion 

 

 

 

The main task of this thesis was to identify malwares and then classify them.  It is not as 

simple task as it sounds because of the advanced obfuscation techniques generated by 

malware authors in order to avoid detection of the anti-malware solutions.  In the study 

we focused on anti-virtual machine evasion techniques to provide secure and 

reproducible environment to the malware analyst.  

 

We have argued that existing anti-VMware detection methods exists but there is a lack 

of research to analyze this samples’ behavior.  Consequently, we have developed our 

dynamic malware analyzer tool which is called DMA.  It can execute anti-Virtual aware 

malware samples in VMware machine.  

 

Pin [41] is the main trick to bypass anti-virtual machines techniques that is used in our 

Dynamic Malware Analyzer (DMA).  So the first step of the malware detection relies 

on pin tool.  To this end we developed our pin tool based on the study carried out by 

Vishnani et al [12]. 

 

The DMA is capable of monitoring system resources such as connections, processes and 

which are highly used to dynamic analysis methods.  It also informs the analyst when 

Windows Registry is changed.   
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DMA’s detection accuracy is tested over the Pahadus public malware set [15] and the 

obtained results are pretty encouraging.  We have detected malware samples with 86% 

accuracy. After the detection of malware, the classification carries out with n-gram 

features of the binary form of the malware.  For the classification task we used malware 

dataset given by BILGEM which is collected with its honeypots. Experimental results 

show that the classification accuracy for the detected samples when n and L are chosen 

4 and 60, is 92% which seems to be very promising. 

 

DMA is currently still under development stage so it can’t handle all the tasks 

automatically. We will add this functionality in the future version of the DMA. On the 

other hand while detecting the malware samples, there may be scoring mechanism to 

describe the harmfulness degree of the file.  The realization of the scoring mechanism 

will provide fast, more reliable, less struggle and user-independent analysis. 

 

Besides that, we realized that undetected malware samples by using DMA are generally 

performs file operations so we decided to add file monitoring feature to the DMA as fast 

as possible to make it more accurate and functional. 

 

During the course of evaluating DMA with real malware samples, it became apparent 

that dynamic analysis alone might not be the perfect way to analyze unknown 

executables.  

 

Finally, to improve the classification accuracy of n-gram based technique, experiments 

by using large dataset while using variable length n-gram feature vector of the malware 

is underway. 
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