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Abstract

In recent years, cyber-attack, one of the most apparent subjects in social media, will
continue to be on the agenda with increasing its importance. Malicious software which
is used heavily in cyber-attacks has become indispensable object of the cyber war.
Malicious softwares are used for different purposes such as steal sensitive information,
create a backdoor to access system persistently, create a botnet in order to drive
distributed denial of service attacks, etc. They may include one or more objectives and
the objectives depend on the purpose of the malicious software writer.  Stuxnet which
contains tree 0-day exploits and target to Iran’s nuclear facilities, is a good example to

show us that how malicious software may be used during cyber war.

As is knows to all, to analyze malicious software first of all malware analyst need to
detect these files and then classify them appropriately. The analysis methods are
collected under two headings. These are static and dynamic analysis methods. In this
study the new cascade malicious software detection method was developed by
combining the mention two methods. In the study the dynamic analysis methods were
used in order to detect malicious software. By the way static properties of the file were

used during the classification phase.

Static analysis method is performed via only the static properties of the file and does not
include the execution of the malicious file. In this study, we purpose the new

classification algorithm that uses byte sequences (n-gram) of the malicious file.



In dynamic analysis the malicious file is need to be executed in secure environment
because it investigates the behavior of the malicious software. In dynamic analysis
network connections, file system operations, the active processes on the system, etc. are
tracked. To carry out the dynamic analysis we created a tool called as Dynamic
Malware Analysis (DMA). The developed tool which is quite simple to use, can be run
as system tray icon on the Windows operating system and it is capable of alerting the

user if there is any malicious activity on the system.

Nowadays, malicious softwares use anti-debugger and anti-virtualization technique in
order to prevent detection by dynamic analysis methods. In the study the dynamic
analysis was performed on VMware virtualization environment. To bypass the anti-
virtualization methods used by malwares the Pin tool was used. It is a free tool
provided by Intel for the dynamic instrumentation of programs. With the help of this
tool the processes, files and registry keys searching methods which are used by

malicious software can be bypass.

The following features are considered when analyzing malicious software:

¢ Network connection changes on the system
e Registry changes
e Process changes

e Service changes

After detection step, the found malicious softwares are classified by using n-gram based
malware classification mechanism. In this method, each malicious file is pointed by n-
gram vector (byte sequences obtained from malicious file) of the file and the

classification is performed over these vectors.

Xi



To evaluate the developed malicious software detection and classification modules the
public Pahadus malware set was used and promising results were obtained. We
obtained 86% accuracy over the specified public malware set. After the detection of the
file n-gram based classification method was used. In the learning phase of the
classification algorithm the malicious softwares which are provided by BILGEM were

used. We were obtained 92% success rate when we choose n as 4 and L as 60.
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Résumé

Ces derniéres années les medias sociaux sont sujets a de nombreuses cyber-attaques et
leurs nombres semblent augmenter chaque année et dans tous les secteurs. Les logiciels
infectés sont les plus utilisés pour les attaques et sont devenus I’outil indispensable dans
la guerre cybernétique. Ces logiciels sont utilisés pour le vol de données personnelles,
créer des «backdoor» pour les acces aux systémes persistant, créer des «botnet» pour
mettre hors service les machines par déni de service. Les attaques sont menées pour
différentes raisons et dépendent de I’intention du créateur du logiciel. Stuxnet exploite
une vulnérabilité 0-day et avait prit pour cible les exploitations nucléaires de I’Iran,
c’est un exemple type pour nous montrer les utilisations de logiciels infectés durant une

guerre cybernétique

Comme nous le savons pour I’analyse d’un logiciel infecté il faut tout d’abord le
détecter. Ainsi, une fois que I’expert a détecté les fichiers, il doit les classifier. Les
méthodes d’analyse sont de 2 catégories: les analyses statiques et dynamiques. La
combinaison de ces deux méthodes mise en cascade a permis de trouver une nouvelle
méthode pour la détection des logiciels malveillants. Les recherches représentent
I’analyse dynamique et la classification des logiciels infectés représente I’analyse

statique.

La méthode d'analyse statique est exécutée seulement via les propriétés statiques du

dossier et n'inclut pas I'exécution du dossier malveillant. Dans cette étude, nous



proposons un nouvel algorithme de classification qui utilise des séquences d'octet (n-

gram) du dossier malveillant.

L’analyse dynamique doit se faire dans un environnement sécuris¢ puis le dossier doit
étre lancé pour analyser les comportements du logiciel malveillant. Toutes les analyses
dynamiques sont suivis: les connections réseaux, les opérations sur les fichiers
systemes, les processus actifs du systéme. Pour effectuer I’analyse dynamique nous
avons créé un outil nommé «Dynamic Malware Analysis (DMA)». L’outil développé
est simple d’utilisation et peut étre exécuté dans le systéme d’exploitation Windows qui

est capable de nous alerter s’il y a une activité malveillante en cours de fonctionnement.

De nos jours, les logiciels malveillants sont plus développés et utilisent des anti-
debuggers et des techniques d’anti-machine virtuelle pour contrer la détection via
I’analyse dynamique. Dans notre étude I’analyse dynamique est effectuée sous un
environnement virtuelle VMware. Pour contrer les protections du logiciel malveillant
I’outil Pin a été utilisé. C’est un outil libre d’utilisation mis en place par Intel pour les
programmes d’instrumentation dynamique. Ainsi, & ’aide de cet outil la méthode de

recherche du logiciel malveillant sur les processus, les dossiers et les registres est parée.

Les caractéristiques trouvées durant 1’analyse du logiciel malveillant:

e Changement des connexions réseaux du systeme
e Changement des registres
e Changement des processus

e Changement des services

Apreés la détection, les logiciels infectés sont classés en utilisant n-gram pour définir la
famille. Dans cette méthode chaque dossier infecté est ponté par un vecteur n-gram (la

séquence est obtenu par le dossier infecté) et la classification est effectué via ce vecteur.

Xiv



Pour évaluer le logiciel de détection et classification des modules nous avons utilisé le
jeu de logiciel malveillant public Pahadus qui est en libre utilisation et nous avons
obtenu des résultats tres encouragent. Nous avons obtenu 86% d’exactitude sur la
detection. Apres la détection des fichiers nous avons utilisé la méthode de classification
n-gram. L’algorithme sur la classification des logiciels malveillant nous a été fournit

par BILGEM et nous avons obtenu 92% d’exactitude avec n=4 et L=60.
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Ozet

Son yillarda sosyal medyada fazlaca yer alan konulardan biri olan “siber saldirilar”
goriiniise bakilacak olursa 6nemini arttirarak giindemde kalmaya devam edecek. Siber
saldirilarda etkin sekilde kullanilan zararli yazilimlar siber savasm vazgecilmezi haline
gelmistir.  Zararli yazilimlar hassas veri calma, sistemlere baglanti i¢in arka kapi
olusturma, servis dig1 birakma saldirilarinda kullanilan (ddos) botnetler olusturma gibi
farkli amaglarin birine ya da hepsine birden hizmet edebilmekte ve saldirganlar igin
gerekli ortami1 saglamaktadir. Iran nikleer tesislerine diizenlenen ve daha Once tespit
edilmemis (0-day) 3 tane acikligi barindiran stuxnet zararli yazilimi siber saldiri
diinyasinda zararli yazilimlarin ne derece etkin kullanildigmi gostermesi agisindan guzel

bir 6rnektir.

Bilindigi gibi zararhh yazilimlarm incelenebilmesi i¢cin Oncelikle tespit edilmesi ve
smiflandiriimasi gerekmektedir. Inceleme yontemleri iki baslik altinda toplanir. Bunlar
statik ve dinamik analiz yontemleridir. Bu c¢alismada bahsedilen iki yo6ntem
birlestirilerek kademeli yapida yeni bir zararli yazihm tespit yontemi gelistirilmistir.
Calismada dinamik analiz yontemleri kullanilarak zararli yazilimlarin tespit edilmesi
saglanmistir. Zararli yazilimlarm smiflandirilmasi esnasmnda zararli dosyanin statik

Ozellikleri kullanilmistir.

Statik analiz yontemi zararli dosyanin g¢alistirilmadan sadece statik Ozellikleri g6z
oniinde bulundurularak gerceklestirilir. Bu calismada zararli dosyadan elde edilen byte

dizileri ile yeni bir simiflandirma algoritmasi kullanilmigtir.



Dinamik analiz yontemi zararli yazilimin davranisini inceledigi i¢in zararli dosyanin
giivenli bir ortamda calistirilmas: gerekmektedir. Dinamik analiz asamasinda ag
baglantilari, dosya sistemi igslemleri, sistem tizerindeki aktif islemler, vb. objeler takip
edilir. Dinamik analizi ger¢eklestirebilmek amaciyla ¢alisma kapsaminda DMA adinda
bir ara¢ gerceklestirilmistir. Kullanic1 etkilesimine sahip ve kullanimi oldukg¢a basit
olan uygulama Windows isletim sistemi iizerinde sistem tray ikon olarak ¢aligabilmekte
ve her hangi bir zararl aktivite tespit etmesi durumunda kullanicty1 uyarma yetenegine

sahiptir.

Giinlimilizde zararli yazilimlarin dinamik analiz yontemi ile tespit edilmesinin Oniine
gecmek i¢cin sanal makina ve hata ayiklayic1i (debugger) tespit eden yontemler
kullanilmaktadir. Calismada zararli yazilimlarm Vmware sanallastirma ortamimda
calistirilp incelenmesi gerceklestirilmistir. Zararli yazilimlarm sanal makina tespit
yontemini asmak i¢in Intel tarafindan gelistirilen ve uygulamalari yonlendirebilme
0zelligine sahip pin aract kullanilmistir. Bu ara¢ yardimiyla sanal makina tespitinde
kullanilan islem, dosya, registry anahtar1 sorgulama gibi yontemler alt edilmekte ve

zararli yazilimin gercek makinada c¢alistigin1 zannetmesini saglanmaktadir.

Davranis analizinde incelenen calistirilabilir dosyanmn asagidaki oOzellikleri dikkate

almmuistir:

e Sistem lizerindeki ag baglantilarindaki degisiklikler
e Sistem lizerindeki islemlerdeki degisiklikler

e Registry dosyasindaki degisiklikler

e Servislerde gergeklesen degisiklikler

Dinamik analiz ile tespit edilen zararli yazilimlar daha sonra n-gram tabanl zararlh
yazilim siniflandirma metodu kullanilarak zararli yazilimin ailesi belirlenmektedir. Bu
yontemde her zararl yazilim n-gram vektori (dosyada en fazla bulunan byte dizileri) ile

ifade edilmekte ve smiflandirma islemi bu vektor izerinden gerceklestirilmektedir.
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Gelistirilen zararli yazilim tespit ve smiflandirma modiilleri testi i¢in herkese agik
Pahadus zararli yazilim seti kullanilmistir ve {imit verici sonuglar elde edilmistir.
Belirtilen zararli yazilim kiimesi iizerinde %86 oraninda tespit etme basarisi elde
edilmistir.  Zararli yazilim tespitinden sonra siniflandirma yontemi olarak n-gram
tabanh smniflandrma metodu kullanilmistir.  Smiflandirma ydnteminin 6grenme
sirecinde (trainning phase) BILGEM zararli yazilim yakalama sistemlerinden
(honeypot) elde edilen zararli yazilimlar kullanilmistir. Smiflandirma asamasmda

secilen n=4 ve L=60 ¢ifti i¢in basar1 oran1 %92 olarak elde edilmistir.
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1 Introduction

In the recent years the information security incidents have been increasing rapidly [1].
Nowadays the first targets of attackers become well-known industry companies like
Sony [2], or government agencies such as Turkish Information and Communications
Authority [3] and Iranian Nuclear Facilities [4]. In these security incidents malicious
softwares; any software that causes harm to a computer, network, firm or especially

user, play major roles.

Since the malwares and anti-malware solutions adopt entirely different purposes, there
is an endless war between malware authors (writers) and malware analyzers. In this war
both part advance methods to overwhelm each other. Malware authors try to prevent
successful analysis by employing a variety of techniques such as anti-debugging, anti-
reversing to evade detection mechanisms and prevent successful analysis. On the other

hand malware analyzers search new methods to defeat malwares techniques.

To effectively fight malware, security researchers need to detect and classify them. In
further step analyst must dissect malwares; learn it’s stealthy and obfuscation methods,
target and so on. One of the most important needs for malware analyst is the safe
environment to investigate malware behavior as stated in [5]. In this thesis we created a
tool which runs inside a secure virtual machine image to examine malware behavior and

classified it according to our purposed statistical n-gram feature of the malware.



1.1 Thesis Organization

The rest of this thesis is organized as follows and summarized in Figure 1.1.

Chapter 2, “Prerequisites”, introduces terms, concepts and that form the prerequisites
for the following chapters. The chapter clarifies the definition malware and types of
malware, shows why it is crucial to analyze malware. Furthermore it introduces the

malware detection methods.

Chapter 3, “Anti-virtual Machines Techniques” states the anti-virtual machine
techniques to prevent to analysis attempt. The chapter include state-of-the-art

techniques that malware is being run inside a virtual machine.

Chapter 4, “Implementation of the Dynamic Malware Analyzer”, describes the
implementation of the dynamic malware analyzer in depth. It clarifies the question of
“why do we need this kind of tool”. Strengths and limitation of the tool are also

summarized in this section.

Chapter 5, “Implementation of n-gram Based Malware Classifier”, mentions the n-gram
based classification method to classify the detected malware by our dynamic malware
analyzer tool.

Chapter 6, “Fusion”, explains the fusion of the DMA tool and n-gram based malware
classification methods to make cascade malware analyzer tool and describes accuracy of

the proposed detection and classification methods.



Chapter 7, “Conclusion”, comments on the results, highlights the achievements of our

work as well as inadequate part of the work. It concludes with an outlook to our future
works.

States Virtual Machine
Aware Techniques

Chapter 3

Analyze Behavior of the
Executable (Malware
Detection Module)

Chapter 4

}

v

Classify Executable if it is
Marked as Malicious in
Chapter 4
(Malware Classification
Module)

Chapter 5

Combine Malware Detection and
Classification Module

Chapter 6

Figure 1.1. Overview of the Thesis Organization



2 State of the Art

The term malware is a conjunction of the words “malicious” and “software” and can be
defined as a piece of software that is intended to perform tasks on computer systems
without the users’ intention. It is designed to disrupt or deny operation, gather personal
information or gain unauthorized access to system resources. This section first presents
some malware-related terminology and types of malwares in section 2.1 and the next

section presents the most common method that is used for malware detection.

2.1 Types of Malwares

When talking about malware you may heard virus, worm, backdoors, etc. These are the
categories of the malware that is defined by the task they performed. Malware often
spans multiple categories. For example, a program might have a key logger that
collects passwords and a worm component that sends spam. In this section we are

going to give the most common malware types that are usually used by attackers.

2.1.1 Backdoor

Malicious code that installs itself onto a computer to allow the attacker access later.
Backdoors usually let the attacker connect to the computer with little or no

authentication and execute command on the system. The idea has often been suggested



that computer manufacturers preinstalls backdoors on their systems to provide technical
support for customers [6]. Hackers typically use backdoors to secure remote access to
computer. To install backdoors, hackers may use trojan horses, worms, or other
methods.

2.1.2 Trojan Horses

Trojan horse (or short trojan) is any program includes harmful or malicious payload that
invites the user to run it as something normal or desirable so user may be encouraged to
install it. The payload may take effect immediately and can lead to many undesirable
effects or installing additional harmful software. Trojans are most commonly used for
marketing. Today’s advanced trojans are capable of taking complete control of web

browser and possibly modify a computer’s registry file.

2.1.3 Rootkits

Once a malicious program is installed on a system, it is essential that it stays concealed,
to avoid detection and disinfection. The same is true when a human attacker breaks into
a computer directly. Techniques known as rootkits allow this concealment, by
modifying the host's operating system so that the malware is hidden from the user.
Rootkits can prevent a malicious process from being visible in the system's list of
processes, or keep its files from being read. Rootkits are usually paired with other
malware, such as a backdoor, to allow remote access to the attacker and make the code

difficult for the victim to detect.


http://en.wikipedia.org/wiki/Rootkit
http://en.wikipedia.org/wiki/Process_(computing)

2.1.4 Viruses

The computer virus is the most famous form of malware. It is a self-replicating
program that infects a system without authorization. A virus is often transmitted via e-
mail but can also be distributed through various storage mediums such as a flash drive.
Once installed, it will execute itself, infect system files, and attempt to propagate to
other systems. The impact of a virus ranges widely from slow system performance to

wiping out every file on your computer.

2.1.5 Botnet

The term bot is short for “robot™ and is used to refer to software that acts autonomously
on behalf of its owner. Non-malicious bots are used by search engines to automatically
index websites, or on Internet Relay Chat (IRC) to provide useful functionality to users
of a particular IRC network or channel. Malicious bots typically form botnets
consisting of up to several thousand infected computers. These botnets can be
controlled by their owners through one or more command & control (C&C) servers,
which commonly run an IRC server (or a slightly modified one) to which the bots
connect and then wait for commands. Other means of communication that are

employed by bots are the HTTP protocol, or peer-to-peer protocols.

Botnets can be used to launch distributed denial-of-service (DDoS) attacks, e.g., for the
botnet owners' entertainment, or, to blackmail companies by threatening to attack on
their critical infrastructure. Other uses of botnets are for sending illegitimate bulk e-
mail, spying on infected computers and their users (e.g., stealing their authentication
credentials, credit card information or other private data). More information about bots

and botnets can be found in [7].



2.2 Malware Analysis Methods

Usually when performing malware analysis, you have only the malware executable,
which is not human-readable. In order to make sense of the executable, there are
variety of tools and tricks which reveal some information about them. These tools use
two fundamental approaches to analysis malware: static and dynamic analysis. Static
analysis involves examining the malware without running it. Dynamic analysis
involves running malware. Both techniques have pros and cons in certain case. Static
analysis helps to produce malware signatures but it is largely ineffective against armed

(sophisticated) malware and it may miss important behaviors.

2.2.1 Static Analysis

Static analysis consists of examining the executable file without viewing the actual
instructions. It is usually the first step in examining malware and can confirm whether a
file is malicious, provide information about its functionality, and sometimes provide
information that will allow you to produce simple network signatures. It is
straightforward and can be quick, but it’s largely ineffective against sophisticated
malware, and it can miss important behaviors. By the way it is pretty safe because you
do not execute the dangerous code but it is still best to undertake on an isolated

machine.

In first step of static analysis consists of looking for obvious indicators as to what the
attacker is. Basically the file fingerprint (usually a MD5 hash) is calculated and
determined if the match is found with a known malware. The first step sounds like

traditional antivirus.



In the deep file analysis, the study focus on the file format and content. The following
checks are used;

File Packing: Determine if the file is packed before deep search. If it is packed try to

unpacked it and obtain pure executable.

Plain Text Matching: Look for the plain text of the executable and obtain as much
information as possible. Generally strings utility is used to explorer plain text in the
file.

Disassembly: The last static analysis technique is disassembly. In this step the
disassembly is used to examine the machine code of the executable and step thorough it
(as in a debugger) to figure out exactly what the program is doing. This is pretty
advanced method, but it may not reveal all the details of what the malware does unless

you won’t execute it.

2.2.2 Dynamic Analysis

Dynamic analysis techniques involve running the malware and observe its behavior on
the system. These techniques can give valuable information that is difficult to obtain
with other techniques. Like static analysis techniques, dynamic analysis techniques
won’t be effective with all types of malware and can miss important functionality
because of anti-dynamic analysis techniques such as anti-virtual machine, anti-debugger

and so on. Therefore the malware analyst must give attention to these types of tricks.

Malware typically can change all sorts of things on the compromised device, so

dynamic analysis consists of monitoring the followings;



Volatile Memory: Malware can overflow buffers and use this memory location to gain
access to the device. By capturing and analyzing the device memory, it is possible to
figure out whether and how the malware uses memory.

Registry/Configuration Changes: Look for any evidence of the registry changes when
performing dynamic analysis because malware often changes registry values to gain
persistent access to the system.

File Activity: Malwares may also add, alter or delete files. So by monitoring file
activity the analyst obtains valuable information about the behavior of the suspicious
file.

Processes/Services: Look for new or stopped processes or services because a lot of
malware shuts down AV engines, or install new services to obtain persistent access to
system.

Network Connection: The network connection monitoring is essential part of dynamic
analysis to understand what malware is doing. We can obtain the malware’s destination

IP address, port and protocol that are used by malware to communicate with
compromised system.



3 Anti-Virtual Machine Techniques

Malware authors sometimes use anti-virtual machine (anti-VM) techniques to prevent
from analysis attempts. With these techniques, the malware attempts to detect whether
it is being run inside a virtual machine. If a virtual machine is detected, it can act

differently or simply do not run. This can, of course, cause problems for the analyst.

Today both system administrators and users use virtual machines in order to make it
easy to rebuild a machine from a snapshot. Since malware authors realized that
virtualization technology is used to dissect malicious executable, they started to
obfuscate their source with the anti-virtual machine tricks. Because anti-VM techniques
typically target VMware, in this chapter we’ll focus on anti-VMware techniques.

3.1 Hardware Fingerprinting

Hardware fingerprinting involves looking for special virtualized hardware pattern
unique to virtual machine. For example the MAC address of the network card, specific
hardware controllers, BIOS, graphic card, etc. Table 3.1 shows the results of hardware
fingerprinting which obtained on a host and on a guest OS running on VMware. This
fingerprinting carried out using Windows Management Instrumentation (WMI) classes
and APIs [8].
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Table 3.1. Hardware Fingerprinting of Native and VMware Machine, [12]
Hardware Attribute VMware Machine | Native Machine
Component
Motherboard Serial No - 2GTP3BS.CN7016697MG1DN.
SCSI Caption VMware SCSI Microsoft iSCSI Initiator
Controller Controller
BIOS Serial VMware-56 4d 68 | 2GTP3BS
Number 4c f9e5 62 f4-fb
4d 0O 5b 88 28 29
do
USB Caption 1. Intel(R) 1. Intel(R) ICH9 Family USB
Controller 2371AB/EB Universal Host
PCl to USB Controller — 2936
Universal 2. Intel(R) ICH9 Family USB
Host Controller Universal Host
2. Standard Controller — 2938
Enhanced PCI 3. Intel(R) ICH9 Family USB
to USB Host Universal Host
Controller Controller — 2937
Network Caption VMware 1. WAN Miniport (SSTP)
Adapter Accelerated 2. WAN Miniport (IKEv2)
AMD PCNet 3. WAN Miniport (L2TP)
Adapter
Network Mac 00:0C:29:28:29:D9 | 50:50:54:50:30:30
Adapter Address (This MAC address
falls in VMware
MAC Address
Range)

3.2 Registry Check

The registry is a centralized, hierarchical database for application and system

configuration information in Windows operating system. Access to the registry is

through registry keys, which are analogous to file system directories. A key can contain

other keys or key/value pairs, where the key/value pairs are analogous to directory

names and file names. Each value under a key has a name, and for each key/value pair,

corresponding data can be accessed and modified.
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The user or administrator can view and edit the registry contents through the registry
editor, for example using the regedit command. Alternatively, programs can manage
the registry through the registry Windows API functions. UNIX systems store similar
information in the directory and files in the user’s home directory. The registry

centralizes all this information in a uniform way.

The Figure 3.1 shows a typical view from the registry editor and gives an idea of the

registry structure and contents.

- - —— T — o — - - - - &) -
& s i R 2
|| File Edit View Favorites Help |

PropertySystem ~ || Name Tups Data

Eehablhtz]l 2b] (Default) REG_SZ (value not set)

Rename R 2b|BCSSync REG_SZ "C:\Program Files\Microsoft Office\Officel4\

Ru:o,.ce 25| HotKeysCmds REG_SZ C:\Windows\system32\hkcmd.exe

u
Setup ab|IgfxTray REG_SZ C\Windows\system32\igfxtray.exe
SharedDLLs ‘?5; Logitech Download Assistant REG_SZ C:\Windows\system32\rundli32.exe C:\Windo!

ab|MSC REG_SZ "C:\Program Files\Microsoft Security Client\
REG_EXPAND_SZ %ProgramFiles%\Synaptics\SynTP\SynTPEnh|
REG_EXPAND_SZ C:\Program Files\IDT\WDM\sttray64.exe

Shell Extensions
ShellCompatibility
ShellServiceObjectDelaylLoad
Sidebar

SideBySide

SMDEn

SMI

Stilllmage

StructuredQuery

Syncmgr

SysPrepTapi

Tablet PC v

[

i »

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run I

Figure 3.1. Startup Programs Obtained from Registry

The registry contains information such as the following and is stored hierarchically in

key/value pairs;

* Windows version number, build number, and registered users

» Similar information for every properly installed application
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* Information about the computer’s processor type, number of processors, memory, and
SO on

* Security information such as user account names

* Installed services

Tobias Klein’s tool ScoopyNG [9] includes a small code that looks for certain keys

within the Windows registry to determine that if the machine is virtual.

3.3 Memory Check

This technique involves looking at the values of specific memory locations after the
execution of instructions such as SIDT (Store Interrupt Descriptor Table), SLDT (Store
Local Descriptor Table), SGDT (Store Global Descriptor Table), and STR (Store Task
Register) [9] [10] [11]. It is the most widespread detection technique employed by the
present VM detecting malware [12].

RedPill, discovered by Joanna Rutkowska, is based on checking the Interrupt Descriptor
Table (IDT). More info on this can be obtained from Joanna’s web page [13], and in
[11]. Both techniques are based on the simple fact that any machine, virtual or not, will
need its own instance of some registers. Systems such as VMware will create dedicated
registers for each virtual machine. These registers will have a different address than the
one used by the host system, and by checking the value of this address, the virtual

system’s presence can be detected. Code samples can be seen Figure 3.2.

Besides that, Red Pill succeeds only on a single-processor machine. It won’t work

consistently against multicore processors because each processor (guest or host) has an
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IDT assigned to it. Therefore, the result of the SIDT instruction can vary, and the
signature used by Red Pill can be unreliable.

int swallow_redpill() {
unsigned char m[2+4],rpill[ ]=""\x0f\Ax01\x0d\x00\x00\x00\x00\x c3”’;
*((unsigned*)&rpill[3])=(unsigned)m;
((void(*)()) &rpill)();
return (m[5]>0xd0)?1:0;

Figure 3.2. Snap Code of Red Pill Technique

3.4 VMware Communication Channel Check

Ken Kato discovered the presence of a host-guest communication channel so called
backdoor Input/Output (1/0) port [14]. VMware uses the I/O port 0x5658 (‘VX’ in
ASCII) to communicate with the host machine. It is obvious this port is not real. The

verification is as follows:

1. The magic number 0x564D5868 (‘VMXh’ in ASCII) is loaded in the EAX
register.

2. The proper parameter of the command that is to be sent is loaded in EBX
register.

3. The command to be used is loaded in the ECX register. For example, the
command Ox0A brings back the VMware version.

4. Tt is read from ‘VX’ port. If we have ‘VMXh’ in the EBX register, this means

that we are under VMware.
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There are more commands supported by the backdoor 1/0O port; for example to obtain
data from the Windows clipboard or the speed in MHz of the microprocessor. The most
important commands are displayed in Figure 3.3. A detailed documentation can be
found on the VM Back website [14].

Get Virtual
Hardware
Version
A

<—L Get BIOS ID

VMware

Get Device <J_\ Backdoor
Info \ Get VMware

Version
Get Memory Get
Size Processor
Speed

Figure 3.3. VMware 1/0O Backdoor's Main Functionalities

MOV EAX, 564D5868h; ‘VMXh’ magic number

MOV ECX,0Ah ; get VMware version command-specific-parameter
MOV DX, 5658h ; ‘VX’ backdoor-command-number

MOV DX, 5658h; VMware I/O Port

IN EAX, DX; “returns” version number in EAX

Figure 3.4. Assembly Code to Detect VMware Machine via VMware /O Port
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3.5 File & Process Check

The VMware environment creates many artifacts on the system, especially when
VMware Tools is installed. There are many VMware specific processes such as
VMwareUser.exe, vmacthlp.exe, VMwareService.exe, VMwareTray.exe that constantly
run in the background. There also exist some VMware specific files and folders. Hence

querying for these objects could also serve as a method for VM detection.

Malware can use these artifacts, which are present in the file system and process listing,
to detect VMware. For example, Figure 3.5 shows the process listing for a standard
VMware image with VMware Tools installed. Notice that three VMware processes are
running: VMwareService.exe, VMwareTray.exe, and VMwareUser.exe. Any one of

these can be found by malware as it searches the process listing for the VMware string.

B Windows Task Manage E=Tra>

File Options View Help
Applications | Processes I Services I Performance | Networking | Users ‘
Image Name User Name CPU Memory (... Description -
Csrss.exe 00 5,216 K
dwm.exe apektas 00 5,088K Desktop ...
explorer.exe apektas 00 9,100K Windows ...
jusched.exe *32 apektas 00 768K Java(TM)...
msseces.exe apektas 00 568 K Microsoft ...
SearchProtocolHost.exe apektas 00 1,736 K Microsoft ...
taskhost.exe apektas 00 1,268 K HostProc...
taskhost.exe apektas 00 3,044K HostProc... =
taskmgr.exe apektas 00 1,976 K Windows ...
TPAutoConnect.exe apektas 00 1,200K TPAutoCo...
uTorrent.exe *32 apektas 00 3,928K pTorrent
VMwareTray.exe apektas 00 816K VMwareT...
VMwareUser.exe apektas 00 2,108K VMwareT...
winlogon.exe 00 72K
wuauclt.exe apektas 00 136K  Windows ... )
[ 1% show processes from all users J End Process
Processes: 51 CPU Usage: 5% Physical Memory: 68%

Figure 3.5. Process Listing on a VMware Image
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WMwareService.exe runs the VMware Tools Service as a child of services.exe. It can
also be identified by searching the registry for services installed on a machine or by
listing services using the “tasklist” or “net start” command (Look at Figure 3.6).

== — = _ '

Fﬁﬁc:\Windows\systemsz_\m.d.,,, = | &

Microsoft Windows [Uersion 6.1.76001 A
opyright (c)> 280? Microsoft Corporation. All rights reserved. -
:\Users\apektas>tasklist | findstr UMuare i
MuareTray.exe 2208 Console 1 2,868 K
MuarelUser.exe 2556 Console 1 8. K

:\Users\apektas>_

Figure 3.6. Search VMware Processes in Process List

The VMware installation directory (default path C:\Program Files\VMware\\V Mware
Tools) may also contain artifacts. A quick search for “VMware” in a virtual machine’s

file system might find clues about existing of the VMware image.



4 Implementation of Dynamic Malware Analyzer

We have developed an application called “Dynamic Malware Analyzer” in order to
analyze malicious software by running on safe virtualized environment.  .Net
framework was used to create DMA. It can monitor anomalies occurred on the system
through checking out all processes, connection table and service details on Windows
operating system. DMA has a user-friendly graphical user interface, can be used easily
and efficiently in dynamic analysis by malware researchers. Before running DMA you

have to configure some simple settings.

In this section, firstly we will present our methods used to bypass the countermeasures
taken by malware (known as anti-virtual machine aware malware or split personality
malware) to run itself on the virtual machine. Then, the actions taken to monitor
changes occur on the system will be explained. To evaluate the accuracy of the
developed application we tested it over the samples obtained from [15]. Finally, we

will cover the pros and cons of our dynamic malware analyzer tool.

4.1 Binary Instrumentation Tool: Pin

Pin is a free tool provided by Intel for the dynamic instrumentation of programs, i.e.
arbitrary code (written in C or C++) can be injected at arbitrary places in the executable.
It supports Linux binary executables for 1A-32, Intel64 (64 bit x86), and Itanium (R)
processors; Windows executables for 1A-32 and Intel64; and MacOS executables for
IA-32.
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Pin does not instrument an executable statically by rewriting it, but rather adds the code
dynamically while the executable is running. This also makes it possible to attach Pin to

an already running process.

Pin come up with the source code for a large number of example instrumentation tools.
If you look at the source code of these examples you can easily understand that it is easy

to derive new tools using the examples as a template.

4.1.1 Intended use of Pin

As indicated in “Anti-Virtual Machine Techniques” section, some malicious software
has special controls as listed follows to check if it is running on the virtual machine and

if it detects virtual machine it modifies behavior, acts harmless or simply not run.

e Hardware fingerprinting

e Registry lookup

e Memory lookup

e VVMware communication lookup

e File & Process lookup

In this study we have used pin tool provided by Intel to detect and execute anti-VM
aware malwares on the VMware. Figure 4.1 illustrates the step by step with pseudo-
code.
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Algorithm used to detect and trick anti-VM aware malware as used in [12]

Input: Malware sample to be tested.
Output: If anti-VM aware malware detected return true
else return false

Maintain a list of API calls and low level instruction that help in VM detection.
Run the sample under test.
Hook into sample.
while the sample executes do
Intercept the API calls and low level instructions being executed by the
sample
If match is found with the monitored set of API calls or low level
instructions then
Log the activity
Mark malware as anti-VM aware malware
Provide false values to the testing sample
else
Do nothing
end if
end while

Figure 4.1. Our Approach for Detecting anti-VM Aware Malware

Maintained list of Windows API calls, split into two categories; hardware and registry
APIs, listed as follows to detect anti-VM aware malware.

1. Hardware Querying API list
a. SetupDiEnumDevicelnfo()
b. SetupDiGetDevicelnstanceld()
c. SetupDiGetDeviceRegistryProperty()
d. WMI APIs

2. Registry Querying API list
a. RegEnumKey()
b. RegEnumValue()
c. RegOpenKey()
d. RegQueryinfoKeyValue()




21

e. RegQueryMultipleValues()
f. RegQueryValue()

Let us consider the example of a sample that makes the following API calls with the
given arguments:

e RegOpenKeyEXx(
HKEY_LOCAL_MACHINE,

TEXT ("HARDWARE\DEVICEMAP\\Scsi\\Scsi Port 0\\Scsi Bus
O\Target Id O\\Logical Unit Id 0"), 0,

KEY_QUERY_VALUE,
&hKey);

e RegQueryValueEx(
HKey,
TEXT ("ldentifier"),
NULL, NULL,
(LPBYTE) PerfData,

&cbData);

In the above cases, the key value returned in a VMware machine will contain the string
“VMware”. Thus, we monitor the values returned by the OS in response to the API
calls made by the sample. If it contains the string “VMware”, the control passes to our
replacement routine where we change the value to a more appropriate value such as

“Muicrosoft” or to a value that would have been returned on a host Windows OS.
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Similarly when VM specific instructions such as SIDT are in the curse of being
executed by the sample, the control passes to our replacement routine where we set the
value of the destination operand to a value that would be obtained on the host Windows
OsS.

4.2 Monitor System

In dynamic analysis methods, monitoring the usage of the system resources is an
important topic that must be taken into account by an analyst. Process handle details and
connection table are two major concepts in the system that is used to detect and analyze
malware. Therefore DMA has four main monitoring capabilities listed as follows in

order to monitor system details;

1. Monitoring Processes

2. Monitoring Connections

3. Monitoring Services

4. Monitoring Register (comparison based monitoring)

4.2.1 Monitor Processes

Processes are the essential building blocks of any Microsoft Windows system. Knowing
what processes are active on the system at any given time can help you understand how
system resources are being used, and it can assist you in diagnosing problems and

identifying malware.

All windows versions were shipped with Task Manager to provide users insight into
process activity for viewing the processes (application and services) that are running on
the system. To avoid confusing users, Task Manager provides limited information

about the processes.
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Task Manager is the application that users usually used it in order to find out why their
system is slow and to kill degenerate processes. It often doesn’t give deep enough
knowledge about what is causing a process to misbehave, nor does it provide key data
that can help a technical user to identify a process as malware.

S — - (=
»  Dynamic Malware Analyzer =
File  SnapShot Monitor View
Processes | Network I Services ] Registry ‘
Process ID Process Name Image Location =
5104 HpgToaster.exe C:\Program Files {x86)\Hewlett-Packard\...
5180 chrome exe C:\Users\apektas\AppData\Local\Goodl...
5312 cplusplyus03.exe C:\Users\apektas\Documents\Visual Stu...
) 5660 chrome exe C:\Users\apektas\AppData\Local\Googl...
)| 5760 chrome exe C:\Users\apektas\AppData'‘\Local\Googl...
5848 chrome exe C:\Users\apektas\AppData'\Local\Googl...
6108 audiodq exe - -
E Y
Handle ID Type Name &
28 Key \REGISTRY\USER\S-1-5-21-1327479631-1125394547-2496745625-1000 N
72 Window Station \Sessions\1\Windows\Window Stations\WinSta0 3
76 Desktop \Default
80 Window Station \Sessions\1\Windows\Window Stations\WinStal
148 Directory \Sessions\1\BaseNamedObjects
236 Desktop \sbox_altemate_desktop_0x143C
| 340 Window Station \Sessions\1\Windows\Window Stations\Service-(x0-70859c$
584 Event BaseNamedObjects\c:luserslapektas!appdatallocallgoogle!ch lapplication!ch...
824 Key \REGISTRY\USER\S-1-5-21-1327479631-1125394547-2496745629-1000_CLAS...
Dynamic Malware Analyzer started and registry snapshot is taken ...
| &

Figure 4.2. Process Monitoring Feature of DMA

DMA tool likes standard Task Manager on windows and its purpose is to evaluate the
newly created and the state-changing processes. In addition to this feature the location
of the running application on the file system can be easily obtained from the “Image
Location” title of the Process tab. Even though users with limited privileges can see all
running processes, they can’t see all information about the processes such as location of

the executable and handles of the process.

If the user clicks on an active process, the advanced features of the process like threads,
registry key handles, file handles, and etc. appears on the bottom side of the application.

As you guess these advanced features don’t show to the limited privileged user. The
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user also has the ability to Kill the process that he/she wants to end within his/her

privilege level.

4.2.2 Monitor Connections

As malware often try to communicate with a command-and-control server to manage
the system remotely we take into account the network connections. The following basic

attributes of network activity;

Destination IP address

TCP and UDP port (TCP/IP transport layer protocols )
Domain Names

Traffic Content

A w0 e

are used extensively by security analysts to ensure defense. DMA is capable of keeping
an eye on networking events. On other words, DMA can display and log the list of all
currently opened TCP/IP ports on the system. For each connection on the list,
information about that open connection is also displayed, including the process name.

In addition, just as described in “Process Monitor” section if the user clicks on an active
connection, the handlers of this connection appear on the bottom side of the application.
On the other hand, DMA allows the users to close the suspicious connection by killing

the related process.
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-
' Dynamic Malware Analyzer = I =
File  SnapShot Monitor  View
l Processes | Network Services I Registry

Process ID Process Name Protocol Remote Host Remote Port Local Host Local Port Status o
3952 Dropbox exe TCP 199.47.216.144 80 192.168.1.2 22108 ESTABLISHED
5180 chrome exe TCcP 80.239.230.153 80 192.168.1.2 26731 ESTABLISHED
5180 chrome exe TCP 80.239.230.168 80 192.168.12 26710 ESTABLISHED
5180 chrome exe TCP 80.239.230.168 80 192.168.1.2 26711 ESTABLISHED
5180 chrome exe TCcP 80.239.230.168 80 192.168.1.2 26722 ESTABLISHED
5180 chrome exe TCP 80.239.230.168 80 192.168.1.2 26723 ESTABLISHED
3952 Dropbox exe TCP 19947217172 443 192.168.1.2 26010 CLOSE-WAIT
3952 Dropbox.exe TCP 199.47217.172 443 192.168.1.2 26011 CLOSE-WAIT
3952 Dropbox exe TCP 19947217177 443 192.168.12 22101 CLOSE-WAIT
5180 chrome exe TCcp 65.55.58.199 80 192.168.1.2 26734 ESTABLISHED
5180 chrome exe TCcP 208.117.2392.. 80 192.168.1.2 26780 ESTABLISHED =
5180 chrome exe TCP 65.55.11.240 80 192.168.1.2 26708 ESTABLISHED g
5180 chrome exe TCcP 207.249.186.82 443 192.&8,1 2 26866 SYN-SENT -~

Handle ID Type Name

76 Window Station \Sessions\1\Windows\Window Stations\WinSta0

80 Desktop \Default

84 Window Station \Sessions\1\Windows\Window Stations\WinSta0

116 Key \REGISTRY\USER\S-1-5-21-1327479631-1125394547-2496745623-1000

164 Directory \Sessions'\1\BaseNamedObjects

832 Mutant \Sessions'1\BaseNamedObjects\dropbox_35848a61

i 856 Key \REGISTRY\USER\S-1-5-21-1327479631-1125394547-2496745623-1000_CLAS...
1844 Key \REGISTRY\USER\S-1-5-21-1327479631-1125394547-2496745629-1000_CLAS....

Figure 4.3. Network Monitoring Feature of DMA

4.2.3 Monitor Services

Windows services are critical processes that provide server functionality, such as Active
Directory, e-mail, DNS, automatic updates, etc. One example is Microsoft Exchange
Server, which has several services, such as Information Store and SMTP; the failure of
even one of these services results in suspended e-mail delivery or even lost messages

until the services are started again.

After going through all the hard work of exploiting a system, malware often create
services to maintain access to system. This way, if the connection breaks, you can still
gain access to the system. Thus, DMA is capable of monitoring changes occurred in

Windows services.
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Figure 4.4 illustrates that an attacker installed Meterpreter as a service on the exploited
system in order to access the victim box later and can proceed with further recognition,

enumeration and exploitation for the specific system and/or the network.

1=
- SnapShot  Monitor  View

Processes | Netwok  Services | Regsty |
Name | Display Name | Type | Status | Process Name |PD 4
LanmanServer Server Win32 Share Process Running svchost.exe 1016
LanmanWorkstation Workstation Win32 Share Process Running svchost.exe 1084
ltdsve Link-Layer Topology Discovery Mapper Win32 Share Process Stopped
Imhosts TCP/IP NetBIOS Helper Win32 Share Process Running svchost exe 940
metsve Metempreter Win32 Own Process & Interact With Users Running metsvc exe 1336
Microsoft Office Groove Audit Serv... Microsoft Office Groove Audit Service Win32 Own Process Stopped
MMCSS Muttimedia Class Scheduler Win32 Share Process Stopped J
MpsSve Windows Firewall Win32 Share Process Running svchost.exe 1312
MSDTC Distributed Transaction Coordinator Win32 Own Process Running msdtc.exe 2592
MSiSCSI Microsoft iSCSI Initiator Service Win32 Share Process Stopped
msiserver Windows Installer Win32 Own Process Stopped
MSSQLSSQLEXPRESS SQL Server (SQLEXPRESS) Win32 Own Process Running sqlservr.exe 1736
MSSQLServerADHelper100 SQL Active Directory Helper Service Win32 Own Process Stopped
MySQL MySQL Win32 Own Process Running mysqld.exe 3668
napagent Network Access Protection Agent Win32 Share Process Stopped
Netlogon Netlogon Win32 Share Process Stopped
Netman Network Connections Win32 Share Process Running svchost.exe 1140
NetMsmaActivator Net.Msmq Listener Adapter Win32 Share Process Stopped
Net PineActivatar Net Pine | istener Adanter Win3? Share Pmcess Stonned LI

Figure 4.4. Service Monitoring Feature of DMA

4.2.4 Monitor Registry

Malware often uses the registry for persistence or configuration data. The malware adds
entries into the registry that will allow it to run automatically when computer reboots.
The registry is so large that there are many ways for malware to use it for persistence. It
seems like more and more programs are attempting to install spyware, advertisements,

or other garbage without your knowledge.

To detect registry changes we inspired open source Regshot [16] that the program will
create snapshot of the actual states of registry. This means that at any time you can open

the snap file and view the contents of the registry just as they were when you've scanned
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the registry. The program can compare two different snapshot files so you'll see exactly
what changed in the registry between the two scans.

Figure 4.5 displays a subset of the results generated by DMA during malware analysis.
Registry snapshots were taken before and after running the “Lab07_01.exe” malware
obtained from [5].

As you can see a new service is installed on the system, you can check it by looking at
services and registry tables on the compromised system. Sample malware added
“HKLM\SYSTEM\ControlSet001\services\Malservice\Start” key and set the start key as

2 (means autostart) to start malware automatically when system reboots.

File  SnapShot Moniter View
iProc&ss&e Network lServices ’ Registry

Key Added2

HKLM\SYSTEM\ControlSet001\services\Malservice ‘
HKLM\SYSTEM\CumentControl Set'\services\Malservice =l

Value Added14 -

H v CONTOloetuU 1 Services wialservice soorcontrol
HKLM\SYSTEM\ControlSet001\services \Malservice \ImagePath

HKLM\SYSTEM\ControlSet 001 \services\Malservice\DisplayName

HKLM\SYSTEM\ControlSet001\services\Malservice \WOW64

HKLM\SYSTEM\Control Set001\services \Malservice \ObjectName

_HKLM\SYSTEM\CumentControl Set\services\Malservice\Tvoe _S

To monitor registry changes you have to execute file with open option ...

Figure 4.5. An Example of Registry Changes Made by Malware to Gain Persistence
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4.3 Basic Configuration

To work properly with DMA there are a few settings to be set. These requirements are
discussed in this chapter. First of all, we have to set the exact location of the pin on the
file system. Then we select the possible application that may create network connection
and finally we restrict the destination point with the aid of public malware domain lists
published at regular intervals by [17] and [18].

4.3.1 Restrict Connectable Process

The application which is not determined as a connectable application by user and

creates network connection is reported by DMA while informing the users.

These mentioned processes can be decided by the following two ways:

1. When the user wants all the applications except active application not to make
network connection he/she can snapshot application meaning that the user
determines the connectable applications.

2. User may save the applications which can make connection, into a file called

“connectable.txt”

If an application that is not in determined list establishes network connection, the DMA
informs the users and log the activities as seen Figure 4.6. In this example, a malicious
executable called “custom.exe” which is not in the connectable application list is trying

to establish connection in order to control the victim host machine remotely.
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|2 Dynamic Malware Analyzer P

File BSEILE Monitor  View

‘p,mm, ‘Nawok |services | Regsty

Process ID Process Name Protocol Remote Host Remote Port Local Host Local Port Status. 2
3716 vmware-vmrc. exe TCP 1921686206 443 192.1684.109 51576 ESTABLI...
3716 VMWare-vmrc exe TCP 192.168.6.206 443 192.1684.109 51579 ESTABLI
3716 vmware-vmrc.exe TCP 1921686206 443 192.1684.109 51580 ESTABLI... ‘
3716 vmware-vmrc.exe TCP 1921686206 902 192.1684.109 51581 ESTABLI
1552 VpxClient exe TCP 1921686206 443 192.1684.109 52200 ESTABLI... =
1552 VpxClient exe TCP 1921686206 443 1921684109 52242 ESTABLI... ‘E!
2652 custom exe TCP 1931407470 443 192.1684.109 52250 ESTABLI... e

Handle ID Type Name

12 ALPC Port \RPC Control\ConsoleLPC-(x0000000000000480-559729877-188289531472568....

12 ALPC Port \RPC Control\ConsoleLPC- 821035742741831...

16 Window Station \Sessions\1\Windows\Window Stations\WinSta0

16 Window Station \Sessions\1\Windows\Window Stations\WinStal

16 Window Station \Sessions\1\Windows\Window Stations\WinSta0

24 Desktop \Default

24 Desktop \Default

24 Desktop \Default

28 i \Sessions\1\Windows'\Window Stations\WinSta0

@ Information R x

/’-—\ Malicious Executable Detected custom.exe

- O Ir 192.168.6.206 - ... F demo-windows o... | (W9 &0 F CUsers\apektas\... 2B O BTM [

4/18/2012

Figure 4.6. A Malicious File Establishes Connection without User’s Intent

4.3.2 Restrict Destination Domain

DMA has also the ability to filter network connection by checking the destination
domain or IP. If the DMA detects that system establishes connection to the malicious
domain, DMA logs the malicious connection and informs users via popups. In the study
we used the malicious domains collected by [17] and [18] to restrict the destination
points. These domain lists are live list and updated frequently. To derive IP details

from domain information we used the following Ruby script:
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require 'resolv'
file=File.open("malwareips.txt","w"
10.foreach("malware_domainlist.txt™) do | line|
begin
array=Resolv.getaddresses(line.strip)
if(array.length>0)
array.each {|element| puts element; file.puts element}
end
rescue Exception
puts "
end
end

Figure 4.7 DNS Resolver Script for Malware Domains

Derived IP list must be saved a file which is called “Domainlist.txt” that locates in the
same directory of the DMA. After all these procedures, if an application tries to
connect to a specified malicious destination, as shown in Figure 4.8 DMA produces a
warning massage and the user is notified. In this example, chrome.exe, attempting to
connect a malicious target which exists in the “Domainlist.txt” file, is detected and the
user is notified by DMA.
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Figure 4.8. A Malicious Process Tries to Connect Malicious Domain
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4.4 Comparison of Dynamic Analysis Techniques

In this chapter, firstly we will talk about the existing dynamic malware analysis
methods. Then we will mention the existing methods and DMA tool and finally we will

cite the future works and pros & cons of DMA.

4.4.1 Overviewing Existing Dynamic Analysis Techniques

Currently dynamic malware analysis is a very popular research topic. Several methods
exist for automatically analyzing malicious software behaviors. These can be gathered

into two groups [19]:

1. Analysis the difference between two snapshots of the system, one taken before
the malware execution, the other after.

2. Monitor the actions performed by malware during its execution.

API hooking is mostly used technique in order to trace the behavior of the malware and
though this technique it can be possible to get a control flow of the executable. Most
dynamic analysis framework such as CWSandbox [20], BitBlaze [21] and TTANalyze
[22] use this technique. The concept of hooking is simple, each time an application
accesses an API function it gets sent to different location, where the modified code is

located.

API hooking has to be done in a careful way in order to be transparent and undetectable
for the malware. It is never good if a malware detects that it is running in a simulated
environment as then it is modifying its behavior. This has been stated in previous

chapters.

A way to bypass the API hooking trap would be call the kernel functions directly and
avoid the usage of the API, anyhow this is uncommon as for this the programmer has to

know exactly what version of operating system and on what service pack patch level.
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As the goal of most malware is to infect a huge user base and not only targeted persons,
directly kernel function calling is not easy to realize.

Another popular method used in dynamic analysis is DLL (Dynamic Link Library)
injection. This can be realized through API hooking with inline code overwriting.
Therefore the applications have to be patched once it has been loaded into the memory.
The address space of the malware has to contain our hooked function in order to be able
to call the hook from inside the malware’s address space. This technique is realized by
a specialize thread located into the malware’s memory allocation. CWSandbox [20]
framework uses this technique to make the malicious code load their DLL in their

address space.

A further technique that is widely used is Virtual Machine Introspection (VMI). This
technique allows a monitoring of a virtual machine without risk. This method allows us
to have both advantages, a good resistance against attacks on the one hand, and full
control of what is happening in the host on the other hand. Therefore the VMI uses
access to the hardware-level state, for example the state of the physical memory pages
and registers and also events like memory accesses and interrupts. The knowledge of
these events and states allows us to map the events to OS-level semantics. For example
livewire [23] implement this technique to detect intrusion.

To remind, there has to be said that malware can implement some functionalities to
detect if it is running on a virtual machine. If this is the case the malware can adapt its
behavior. One famous project implementing this detection functionality is the Red Pill
project of Joanna Rutkowska. [11]
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4.4.2 Pros & Cons of Our Dynamic Analysis Techniques

First of all, unlike other dynamic malware analysis methods our developed application
can overcome anti-VM techniques described in 3. Chapter, thus in this perspective it is
significantly different from other methods. Although there exists studies to detect anti-
VM aware malware [24] [25] [26] [27], we couldn’t find the work that examines anti-
VM aware malware behavior by running it. Therefore our method offers an advantage

of dynamic analysis of anti-VM aware malwares.

Since the application has user-friendly interface and works as a system tray in the
background, the application don’t interfere the user. If there is an anomaly DMA logs
the event with a sufficient detail and informs the user about the situation. DMA can be
run on any system that is installed .Net framework 3.0 and it doesn’t require any extra

installation and configuration except the requirements stated in Chapter 4.3.

DMA, can be used as an anti-malware software, can reduce dependency on the anti-
virus software and make to feel more safe the users since as stated before anti-virus

solution is based on signature and can be bypassed easily.

DMA is currently still under development stage so it can’t handle all the tasks
automatically. For example suppose that you want to analyze a set of malicious
software. If the sample in the set is detected as malware and make same changes to
system then you have to come back the original image via snapshot technology in the
virtual machine. This steps cause too much workload. Therefore, it is clearly apparent
that DMA have to automate malware analysis in order to carry out the dynamic analysis

effectively



34

On the other hand while detecting the malware samples, there may be scoring
mechanism to describe the harmfulness degree of the file. The realization of the scoring

mechanism will provide fast, more reliable, less struggle and user-independent analysis.



5 Implementation of n-gram Based Malware Classifier

In this section firstly we will give the definition of n-gram and usage fields in computer
science. After then the existing n-gram approaches is explained we will propose our n-
gram based malware classification methodology. Finally we will elaborate and compute
the accuracy of the proposed methodology.

5.1 Definition of n-gram

N-gram is a fixed size sliding window of byte array, where n is the size of the window.
For example the “558D6C24948B45...400085C0” sequence is segmented (represented)
into 4-gram as “558D6C24”, “8D6C2494”, “6C24948B” and “24948B45” as seen in the
Figure 5.1.
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Figure 5.1. N-gram Sequences
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An n-gram of size 1 is referred to as a “unigram”; size 2 is a "bigram™ (a.k.a “digram”);
size 3 is a “trigram”. Larger sizes are sometimes referred to by the value of n, e.g.,

“four-gram”, “five-gram”, and so on.

N-gram is used in different fields such as natural language processing, authorship
detection, information gathering and also malware detection. They have been used in

the following application;

e Find likely candidates of misspelled words
e Improve compression in compression algorithm
e Improve accuracy of the speech recognition

e Improve performance of the information retrieval process

5.2 Existing n-gram Approaches to Analyze Malware

The representation of malware by using n-gram profiles has been presented in the open
literature; see for example [28], [29] and [30]. In these studies some promising results
towards malware detection are presented. However malware domain has been evolving

due to survivability requirements.

Malware has to evade anti-virus scanners to perform its functions. Obfuscation
techniques have been developed in order to avoid detection by antivirus scanner. And
these techniques disturb n-gram features of binary form of the malware used by the
previous work.  Similar methodologies have been used in source authorship,

information retrieval and natural language processing [31], [32].
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The first known use of machine learning in malware detection is presented by the work
of Tesauro et al. in [33]. This detection algorithm was successfully implemented in
IBM’s antivirus scanner. They used 3-grams as a feature set and neural networks as a
classification model. When the 3-grams parameter is selected, the number of all n-gram
features becomes 256°, which leads to some spacing complexities. Features are
eliminated in three steps: first 3-grams in seen viral boot sectors are sampled, then the
features found in legitimate boot sectors are eliminated, and finally features are
eliminated such that each viral boot sectors contained at least four features. Size of
feature vectors in n-grams based detection models becomes very large so feature
elimination is very important in these models. The presented work has been limited by
the boot sector viruses’ detection because boot sectors are only 512 bytes and

performance of technique is degraded significantly for larger size files.

As a historical track, IBM T.J. Watson lab extended boot virus sector study to win32
viruses in 2000 [34]. At this stage, 3 and 4 grams were selected and encrypted data
portions within both clean files and viral parts were excluded due to the fact that
encryption may lead to random byte sequences. At the first instance, n-grams existed in
constant viral parts were selected as features and then, the ones existed in clean files
more than a given threshold value were removed from the feature list. In this study,
along the use of neural networks boosting was also performed. Results of this study
showed that the developed method performance was not sufficient. Schultz et al. has
used machine learning methods in [35]. Function calls, strings and byte sequence were
used as the feature sets. Several machine learning methods such as RIPPER, Naive
Bayes and Multi Naive Bayes were applied, the highest accuracy of 97.6% with Multi
Naive Bayes was achieved.

Abou-Assaleh et al. [29] contributed to the ongoing research while using common n-
gram profiles. k nearest neighbor algorithm with k=1 instead of the other learners was
used. Feature set was constituted by using the n-grams and the occurrence frequency,

where the occurrence frequency is denoted by L. Tests have been done with different n
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(ranging from 1 to 10) and L (ranging from 20 to 5000) values. Data set used in these
experiments was kept fairly conservative of 25 malware and 40 benign files. With this
set, test results shown 98% of success. Using the data in [29], the accuracy slightly
dropped to the 94% level.

Kolter et al. [28] used 4-grams as features and selected top 500 n-grams through
information gain measure. They used instance based learners, TFIDF, naive bayes,
support vector machines, and decision trees and also boosted last three learners.
Boosted decision tree outperformed all others and gave promising results such as ROC
curve of 0.996.

While the battle between malware authors and anti-virus producers are continuing, our
motivation is to find the statistical method to classify the malware instance by using n-
gram features (profiles) of disassembled malware. In our methodology, we use n-gram
feature of the malware to classify the malware instance with respect to their family.

5.3 Our n-gram Based Malware Classifier

As stated in the introduction, current malware samples cannot be analyzed easily based
on their statistical features’ as in the previous decade because of the increasing use of

the obfuscation techniques by the malware authors.

The proposed algorithm consists of preprocessing, training and testing phase. Malware
samples are collected through TR-CERT [36] activities in The National Research
Institute of Electronics and Cryptology. We classified our dataset by using Microsoft
Security Essential (MSE) antivirus tool [37]. In other words, naming of the malware
instance is performed by the MSE tool. Malware naming is not a well standardized area

where all vendors, players can name and classify malware according to their intentions,
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and common sense in naming cannot be achieved among the stakeholders [38]. After
that preprocessing step, PEid as a useful tool to inspect PE files, is used to dissemble
malware instances [39]. We extract a malware instance’s n-gram profile through
opcode sequences obtained from PEid. We are using opcode sequences instead of byte

sequences of the malware.

In our study, machine codes to extract malwares’ n-gram profile instead of byte
sequences are considered and the n-gram feature space is considerably reduced. In this
manner calculations are performed faster and efficiently. Each malware sample is used

to determine its subfamily vector which is named as the centroid of the subfamily.

Family of the malware is a descriptor of the malware used to classify malware samples
according to their features especially in terms of the tasks performed and the purpose of
the creation. Subfamily is the specialized version of the family that describes malware
samples definitely. For instance if a malware labeled as Win32-Ramnit.F by an anti-
virus scanner, this means the malware belongs Win32-Ramnit family and Win32-
Ramnit.F subfamily.
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Centroid of the subfamily comprises the most frequent n-gram of the subfamily
instances. In other words, n-grams (words or terms), which occur with higher document
frequency in the subfamily instances, are used to construct the centroid vector. So the
subfamily is represented by its centroid vector. For instance, centroid of the subfamily

is presented by C_; as follows:

n—gram with highest df value
— n—gram with second highest df value

(5.1)

S H
n—gram with Lth highest df value

where df is the document frequency.

To classify an instance, similarity function is calculated by counting the number of
matching n-gram (term) for each centroid of the subfamily.

_, 1, (C;,em)
C Cs,m) = { i 5.2
ommon( Si m) 0, otherwise (52)
Sim(C, m) = Yl Common(Cg,, ) (5.3)
Class(im) = max(U$¥g ””mberSim(C_S:TTi ) (5.4)

where m denotes malware whose family is unknown and it will be determined via
presented method. 1 is the n-gram feature vector extracted from unknown malware

instance denoted by m. Subindice is the subfamily indexing for s=1, 2...15. The
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function, denoted by Common, returns 1 if malware n-gram profile (i) consists i-th n-
gram of the centroid of taken subfamily(C_S’) denoted by Cs otherwise return O.

Equation 5.3 gives similarity measure between the unknown instance and the subfamily
centroid. Similarity measure is the sum of the common n-grams. In Equation 5.4, after
all similarity measures are calculated, the unknown instance is classified as the closest

centroid’s subfamily.

Process flow is illustrated in Figure 5.2. When an instance has two or more equal
similarity value for two different subfamilies, an error occurs. However this error will
be named as the small error because these two or more equal similarity values for
subfamily may belong to the same family. As we know, the subfamilies sustain their

common family feature. Other types of error are named as big error.

5.4 Obtained Results

In order to perform our experiments, we collect significantly large malware database as
stated in the section 5.3. To obtain more accurate results we count in the subfamilies
that contain maximum number of samples in our dataset. In this manner, experiments
are carried out 1056 samples belonging to ten families, five of them have two
subfamilies, and therefore there exists 15 subfamilies in our dataset. Table 5.1 indicates
how many samples were taken from which subfamily in our dataset. This data set
consists only a 2% of the original database. The amount of the sample is sufficient to
demonstrate whether n-gram centroid of the subfamily may be used to classify malware

instance or may not.
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Table 5.1 Number of the Instances for Each Subfamily

Subfamily Name Instance Number Subfamily Name Instance Number

Win32-Vobfus.Y 13 Win32-Sality. AT 64
Win32-Alureon.H 19 Win32-Small. AHY 69

Win32-Ramnit.F 19 Win32-Renos.NS 95

Win32-Virut.BG 19 Win32-Sality. AM 100
Win32-Alureon.CT 22 Win32-Renos.LT 137
Win32-Agent. ACF 23 Win32-Vobfus.gen!D 183
Win32-Viking.CR 30 Win32-Ramnit.B 200
Win32-Vobfus.AH 42

To evaluate our methodology, five-fold cross-validation is used: the selected malwares’
subfamilies are randomly partitioned into five disjoint sets of approximately equal size,
named as “folds”. Training and testing phases are performed five times. At each
iteration step, one fold is selected as a testing set, and other four folds are combined to
form a training set. Therefore, each sample is used five times for training and once for
testing. And the estimated error is computed as the total error generated from the five
iterations, divided by the total number of the initial tuples.

There are two main parameters in the experimental setup: the first parameter is the size
of the n-grams and the second parameter is the number of the list size which is
constituted by ranking the n-grams according to their df values in the subfamilies. The
size of the n-grams, denoted by n, allows us to decide how long in bytes the n-gram will
be. In the experiments, tests are run with n=3, n=4, n=5 and n=6. The second
parameter, denoted by L, is chosen to express a subfamily in a simple way. Tests are
run with L=40, L=50 and L=60.
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Table 5.2 shows the obtained training error over the parameters n and L as well as Table
5.3 shows the resulting testing error. As can be seen from the Table 5.2 and Table 5.3,
to increase the size of the n-gram does not produce accurate results every time. Because
if the parameter n increases, n-grams cannot capture the subfamily features, in contrary
the selected n-grams can only represent a feature specific of the sample. However, the
opposite case, namely if the n is chosen very small, n-grams can mostly become the

common feature of the all subfamilies as well as all samples.

We achieved the highest success rate when n=4 as confirmed by the results in [28] also.
Elaborating the parameter choice effects, if the parameter L is increased, the error rate
decreases. Since the more common n-gram makes it easy to classify instance
appropriately. As maintained in the previous section, the n-gram profiles are captured
from the disassembled malware, therefore the space of the n-gram decreases
dramatically. For all that, L could not be taken more than 60, due to having very small

sized n-gram space (i.e., for Win32-Agent.ACF n-gram feature space is 74).

As a result of the experiment, the most appropriate parameter pair is obtained when n=4
and L=60. The obtained training and testing errors rate for n and L pairs from our
experiment are listed in the following Table 5.2 and Table 5.3, respectively.

Table 5.2. Training Error

Top L N-gram in the Subfamily Malwares
L=40 L=50 L=60
Te?]rgatw Withoqt Withon_Jt WithOL_Jt
Total Error | Subfamily |Total Error| subfamily | Total Error | subfamily
Error Error Error
n=3 0.231 0.101 0.150 0.058 0.090 0.024
n=4 0.143 0.056 0.106 0.021 0.053 0.014
n=5 0.124 0.041 0.109 0.024 0.058 0.015
n=6 0.123 0.038 0.115 0.024 0.108 0.019
n=7 0.151 0.031 0.115 0.031 0.098 0.019
n=8 0.125 0.041 0.124 0.037 0.111 0.028
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Table 5.3 Testing Error

Top L N-gram in the Subfamily Malwares

N-gram L=40 _ L=50 _ L=60 _
Length Wlthoqt WIthOl:It WlthOl_Jt
Total Error | Subfamily | Total Error| subfamily | Total Error| subfamily
Error Error Error
n=3 0.262 0.109 0.184 0.066 0.131 0.038
n=4 0.169 0.069 0.141 0.037 0.082 0.023
n=5 0.150 0.056 0.128 0.038 0.082 0.026
n=6 0.143 0.043 0.140 0.027 0.134 0.023
n=7 0.170 0.039 0.140 0.036 0.125 0.025
n=8 0.139 0.042 0.148 0.040 0.138 0.034




6 Fusion

In this section, we will explain the combination of the DMA tool and n-gram based
malware classification methods to make cascade malware analyzer tool which is
capable of detection and classification of malware. Thus, thanks to the fusion of the

two mentioned methods, one file can be easily analyzed.

Figure 6.1 summarizes the performed work and shows the relationship between
detection and classification module. We can shortly explain the fusion procedure as

follows;

e Execute the executable file which is wanted to dissect with DMA’s execute
option. Which means the file is executed by pin tool in order to bypass anti-
VMware aware techniques.

e |f the executable file tries to call the suspicious APl which is monitored by our
pin tool, the file is marked as anti-VMware aware malware. Besides, the pin
tool returns the results of the called APl such a native machine, not as a
VMware. Thus anti-VMware aware malware continues to run and reveals its

behavior.
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Figure 6.1. Fusion of DMA and n-gram Based Classification Module
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e In the meantime, the monitor module of DMA tool track the processes,
connections, services and registry changes and if the following situation occurs
DMA will alert that the file is malware;

o The process except that determined process set in 4.3.1 section tries to
make connection.

o A process tries to establish a connection to malicious domain which is
determined in 4.3.2 section.

o A process tries to create a service on the system.

o A process tries to add key into registry to gain persistence on the system.

e If there occurs any anomaly in the monitored features of the system the file is
named as malware. On the other hand if there is not any unexpected situation the
file is executed normally.

e After the determining the malicious file we carry out the classification task with
our proposed n-gram based malware classification method. Briefly in this
method we classify the malicious file by comparing it with the previously
trained malware set. As stated before to classify sample it is not executed since
the method uses the static n-gram feature of the file. The details are stated in the
5.3 section.

6.1 Evaluation Methodology & Obtained Results

To evaluate the work we have selected only the executable files in the Pahadus public
malware set [15]. Test is carried out with the 64 bits Windows 7 operating system and
VVMware workstation. These malware set is scanned with MSE anti-virus solutions to
detect and classify samples. Since the dataset is public, means there exists signature for

samples in MSE, all samples detected easily.
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Since we have malware detection and classification module in our study we need to
evaluate each module separately. So we determined the accuracy of the DMA with the
captured malware samples in the testing set. On the other hand, the accuracy of the n-
gram based classification module is measured with the ratio of the properly classified

sample with respect to MSE to previously detected malware samples.

Before the results, let’s give you the details of the dataset. In the dataset there are 72
samples but we didn’t execute all the samples. As you can see in Figure 6.2 only 49

(69% of the dataset) samples are executed normally in our test environment.

not

compatible Malware Dataset ‘7"
with 64-bit

7%
3%

not executed
21%

executed
normally
69%

Figure 6.2. Details of Executed Malwares

As seen in Figure 6.3, DMA has detected the 86% (42 samples over 49) of the malware
set as a malware. Figure 6.4 shows that which module of the DMA detects the present
of the malicious activity. We can obviously say that majority of the malware set is
detected by registry and process monitoring features of the DMA. By the way, there are
5 samples that try to create service to gain persistence on the system and 7 samples that
try to establish network connection.
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In the test dataset DMA didn’t detect 7 samples. To understand our limitations we
wanted to analysis these samples with publicly available dynamic analysis tool like
Anubis [40]. While we were performing dynamic analysis with Anubis web service, we
realized that undetected malware samples are generally performs file operations such as
delete itself, modifies and destruct windows native files, copies itself in the Windows
directory to stay undetected by users, etc. By the way the 3 samples were also not
detected by Anibus and one of the samples wasn’t analyzed because Anibus didn’t
consider the file as a Windows executable.
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As stated before after determining step we classify malware samples with n-gram based
classification method. We have taken L=60 and n=4 which is the best pairs stated in
section 5.4. Our n-gram classifier was trained with the same data set in section 5.4.
The previously detected 49 malware samples classified %92 accurately with respect to

MSE anti-virus solution’s report.




7 Conclusion

The main task of this thesis was to identify malwares and then classify them. It is not as
simple task as it sounds because of the advanced obfuscation techniques generated by
malware authors in order to avoid detection of the anti-malware solutions. In the study
we focused on anti-virtual machine evasion techniques to provide secure and

reproducible environment to the malware analyst.

We have argued that existing anti-VMware detection methods exists but there is a lack
of research to analyze this samples’ behavior. Consequently, we have developed our
dynamic malware analyzer tool which is called DMA. It can execute anti-Virtual aware

malware samples in VMware machine.

Pin [41] is the main trick to bypass anti-virtual machines techniques that is used in our
Dynamic Malware Analyzer (DMA). So the first step of the malware detection relies
on pin tool. To this end we developed our pin tool based on the study carried out by
Vishnani et al [12].

The DMA is capable of monitoring system resources such as connections, processes and
which are highly used to dynamic analysis methods. It also informs the analyst when

Windows Registry is changed.
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DMA'’s detection accuracy is tested over the Pahadus public malware set [15] and the
obtained results are pretty encouraging. We have detected malware samples with 86%
accuracy. After the detection of malware, the classification carries out with n-gram
features of the binary form of the malware. For the classification task we used malware
dataset given by BILGEM which is collected with its honeypots. Experimental results
show that the classification accuracy for the detected samples when n and L are chosen

4 and 60, is 92% which seems to be very promising.

DMA is currently still under development stage so it can’t handle all the tasks
automatically. We will add this functionality in the future version of the DMA. On the
other hand while detecting the malware samples, there may be scoring mechanism to
describe the harmfulness degree of the file. The realization of the scoring mechanism

will provide fast, more reliable, less struggle and user-independent analysis.

Besides that, we realized that undetected malware samples by using DMA are generally
performs file operations so we decided to add file monitoring feature to the DMA as fast
as possible to make it more accurate and functional.

During the course of evaluating DMA with real malware samples, it became apparent
that dynamic analysis alone might not be the perfect way to analyze unknown

executables.

Finally, to improve the classification accuracy of n-gram based technique, experiments
by using large dataset while using variable length n-gram feature vector of the malware

is underway.
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