

BEHAVIOR BASED MALICIOUS SOFTWARE DETECTION AND

CLASSIFICATION

(DAVRANIŞ TABANLI ZARARLI YAZILIM TESPİTİ VE

SINIFLANDIRILMASI)

by

Abdurrahman PEKTAŞ, B.S.

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

Date of Submission : May 25, 2012

Date of Defense Examination : June 22, 2012

Supervisor : Assoc. Prof. Dr. Tankut Acarman

Committee Members : Asst. Prof. Dr. Murat Akın

 Dr. Hayretdin Bahşi

ii

Acknowledgements

I would like to thank particularly to Assoc. Prof. Dr. Tankut Acarman for giving me the

opportunity to work such an interesting project and also for giving interesting

approaches that help me a lot. I am also grateful for his understanding of my time

limitations and encourage he has provided.

I would like to present my deepest appreciation to all my colleagues at Bilişim ve Bilgi

Güvenliği İleri Teknolojiler Araştırma Merkezi (BILGEM) for their great support and

understanding. Finally, I want to thank my dear parents and my sisters for their love

and support.

Abdurrahman PEKTAŞ

İstanbul, May 25th, 2012

Table of Contents

Acknowledgements ... ii

Table of Contents ... iii

List of Symbols .. vi

List of Figures... viii

List of Tables .. ix

Abstract .. x

Résumé.. xiii

Özet ... xvi

1 Introduction ... 1

1.1 Thesis Organization ... 2

2 State of the Art .. 4

2.1 Types of Malwares... 4

2.1.1 Backdoor ... 4

2.1.2 Trojan Horses ... 5

2.1.3 Rootkits ... 5

2.1.4 Viruses .. 6

2.1.5 Botnet .. 6

2.2 Malware Analysis Methods ... 7

2.2.1 Static Analysis .. 7

2.2.2 Dynamic Analysis .. 8

iv

3 Anti-Virtual Machine Techniques ... 10

3.1 Hardware Fingerprinting ... 10

3.2 Registry Check ... 11

3.3 Memory Check ... 13

3.4 VMware Communication Channel Check ... 14

3.5 File & Process Check... 16

4 Implementation of Dynamic Malware Analyzer .. 18

4.1 Binary Instrumentation Tool: Pin ... 18

4.1.1 Intended use of Pin ... 19

4.2 Monitor System .. 22

4.2.1 Monitor Processes .. 22

4.2.2 Monitor Connections.. 24

4.2.3 Monitor Services .. 25

4.2.4 Monitor Registry .. 26

4.3 Basic Configuration ... 28

4.3.1 Restrict Connectable Process .. 28

4.3.2 Restrict Destination Domain ... 29

4.4 Comparison of Dynamic Analysis Techniques.. 31

4.4.1 Overviewing Existing Dynamic Analysis Techniques 31

4.4.2 Pros & Cons of Our Dynamic Analysis Techniques.................................. 33

5 Implementation of n-gram Based Malware Classifier .. 35

5.1 Definition of n-gram .. 35

5.2 Existing n-gram Approaches to Analyze Malware .. 36

5.3 Our n-gram Based Malware Classifier ... 38

5.4 Obtained Results .. 42

6 Fusion .. 46

v

6.1 Evaluation Methodology & Obtained Results ... 48

7 Conclusion ... 52

References.. 54

Biographical Sketch .. 59

List of Symbols

DMA : Dynamic Malware Analyzer

ASCII : American Standard Code for Information Interchange

I/O : Input/Output

MAC : Media Access Control

OS : Operating System

BIOS : Basic Input-Output System

WMI : Windows Management Instrumentation

SIDT : Store Interrupt Descriptor Table

SLDT : Store Local Descriptor Table

SGDT : Store Global Descriptor Table

STR : Store Task Register

IDT : Interrupt Descriptor Table

API : Application Programming Interface,

MSE : Microsoft Security Essential

TR-CERT : Turkey Computer Emergency Response Team

IRC : Internet Relay Chat

vii

IP : Internet Protocol

DDoS : Distributed Denial of Service

HTTP : Hyper Text Transfer Protocol

SMTP : Simple Mail Transfer Protocol

List of Figures

Figure 1.1. Overview of the Thesis Organization ... 3

Figure 3.1. Startup Programs Obtained from Registry ... 12

Figure 3.2. Snap Code of Red Pill Technique ... 14

Figure 3.3. VMware I/O Backdoor's Main Functionalities .. 15

Figure 3.4. Assembly Code to Detect VMware Machine via VMware I/O Port 15

Figure 3.5. Process Listing on a VMware Image .. 16

Figure 3.6. Search VMware Processes in Process List ... 17

Figure 4.1. Our Approach for Detecting anti-VM Aware Malware 20

Figure 4.2. Process Monitoring Feature of DMA ... 23

Figure 4.3. Network Monitoring Feature of DMA ... 25

Figure 4.4. Service Monitoring Feature of DMA.. 26

Figure 4.5. An Example of Registry Changes Made by Malware to Gain Persistence .. 27

Figure 4.6. A Malicious File Establishes Connection without User’s Intent 29

Figure 4.7 DNS Resolver Script for Malware Domains ... 30

Figure 4.8. A Malicious Process Tries to Connect Malicious Domain 30

Figure 5.1. N-gram Sequences ... 35

Figure 5.2. Architecture of the Malware Classification System 40

Figure 6.1. Fusion of DMA and n-gram Based Classification Module 47

Figure 6.2. Details of Executed Malwares... 49

Figure 6.3. Malware Detection Ratio ... 50

Figure 6.4. Number of Samples Detected by DMA’s Modules 51

List of Tables

Table 3.1. Hardware Fingerprinting of Native and VMware Machine, [12] 11

Table 5.1 Number of the Instances for Each Subfamily ... 43

Table 5.2. Training Error .. 44

Table 5.3 Testing Error ... 45

Abstract

In recent years, cyber-attack, one of the most apparent subjects in social media, will

continue to be on the agenda with increasing its importance. Malicious software which

is used heavily in cyber-attacks has become indispensable object of the cyber war.

Malicious softwares are used for different purposes such as steal sensitive information,

create a backdoor to access system persistently, create a botnet in order to drive

distributed denial of service attacks, etc. They may include one or more objectives and

the objectives depend on the purpose of the malicious software writer. Stuxnet which

contains tree 0-day exploits and target to Iran’s nuclear facilities, is a good example to

show us that how malicious software may be used during cyber war.

As is knows to all, to analyze malicious software first of all malware analyst need to

detect these files and then classify them appropriately. The analysis methods are

collected under two headings. These are static and dynamic analysis methods. In this

study the new cascade malicious software detection method was developed by

combining the mention two methods. In the study the dynamic analysis methods were

used in order to detect malicious software. By the way static properties of the file were

used during the classification phase.

Static analysis method is performed via only the static properties of the file and does not

include the execution of the malicious file. In this study, we purpose the new

classification algorithm that uses byte sequences (n-gram) of the malicious file.

xi

In dynamic analysis the malicious file is need to be executed in secure environment

because it investigates the behavior of the malicious software. In dynamic analysis

network connections, file system operations, the active processes on the system, etc. are

tracked. To carry out the dynamic analysis we created a tool called as Dynamic

Malware Analysis (DMA). The developed tool which is quite simple to use, can be run

as system tray icon on the Windows operating system and it is capable of alerting the

user if there is any malicious activity on the system.

Nowadays, malicious softwares use anti-debugger and anti-virtualization technique in

order to prevent detection by dynamic analysis methods. In the study the dynamic

analysis was performed on VMware virtualization environment. To bypass the anti-

virtualization methods used by malwares the Pin tool was used. It is a free tool

provided by Intel for the dynamic instrumentation of programs. With the help of this

tool the processes, files and registry keys searching methods which are used by

malicious software can be bypass.

The following features are considered when analyzing malicious software:

 Network connection changes on the system

 Registry changes

 Process changes

 Service changes

After detection step, the found malicious softwares are classified by using n-gram based

malware classification mechanism. In this method, each malicious file is pointed by n-

gram vector (byte sequences obtained from malicious file) of the file and the

classification is performed over these vectors.

xii

To evaluate the developed malicious software detection and classification modules the

public Pahadus malware set was used and promising results were obtained. We

obtained 86% accuracy over the specified public malware set. After the detection of the

file n-gram based classification method was used. In the learning phase of the

classification algorithm the malicious softwares which are provided by BILGEM were

used. We were obtained 92% success rate when we choose n as 4 and L as 60.

Résumé

Ces dernières années les medias sociaux sont sujets à de nombreuses cyber-attaques et

leurs nombres semblent augmenter chaque année et dans tous les secteurs. Les logiciels

infectés sont les plus utilisés pour les attaques et sont devenus l’outil indispensable dans

la guerre cybernétique. Ces logiciels sont utilisés pour le vol de données personnelles,

créer des «backdoor» pour les accès aux systèmes persistant, créer des «botnet» pour

mettre hors service les machines par déni de service. Les attaques sont menées pour

différentes raisons et dépendent de l’intention du créateur du logiciel. Stuxnet exploite

une vulnérabilité 0-day et avait prit pour cible les exploitations nucléaires de l’Iran,

c’est un exemple type pour nous montrer les utilisations de logiciels infectés durant une

guerre cybernétique

Comme nous le savons pour l’analyse d’un logiciel infecté il faut tout d’abord le

détecter. Ainsi, une fois que l’expert a détecté les fichiers, il doit les classifier. Les

méthodes d’analyse sont de 2 catégories: les analyses statiques et dynamiques. La

combinaison de ces deux méthodes mise en cascade a permis de trouver une nouvelle

méthode pour la détection des logiciels malveillants. Les recherches représentent

l’analyse dynamique et la classification des logiciels infectés représente l’analyse

statique.

La méthode d'analyse statique est exécutée seulement via les propriétés statiques du

dossier et n'inclut pas l'exécution du dossier malveillant. Dans cette étude, nous

xiv

proposons un nouvel algorithme de classification qui utilise des séquences d'octet (n-

gram) du dossier malveillant.

L’analyse dynamique doit se faire dans un environnement sécurisé puis le dossier doit

être lancé pour analyser les comportements du logiciel malveillant. Toutes les analyses

dynamiques sont suivis: les connections réseaux, les opérations sur les fichiers

systèmes, les processus actifs du système. Pour effectuer l’analyse dynamique nous

avons créé un outil nommé «Dynamic Malware Analysis (DMA)». L’outil développé

est simple d’utilisation et peut être exécuté dans le système d’exploitation Windows qui

est capable de nous alerter s’il y a une activité malveillante en cours de fonctionnement.

De nos jours, les logiciels malveillants sont plus développés et utilisent des anti-

debuggers et des techniques d’anti-machine virtuelle pour contrer la détection via

l’analyse dynamique. Dans notre étude l’analyse dynamique est effectuée sous un

environnement virtuelle VMware. Pour contrer les protections du logiciel malveillant

l’outil Pin a été utilisé. C’est un outil libre d’utilisation mis en place par Intel pour les

programmes d’instrumentation dynamique. Ainsi, à l’aide de cet outil la méthode de

recherche du logiciel malveillant sur les processus, les dossiers et les registres est parée.

Les caractéristiques trouvées durant l’analyse du logiciel malveillant:

 Changement des connexions réseaux du système

 Changement des registres

 Changement des processus

 Changement des services

Après la détection, les logiciels infectés sont classés en utilisant n-gram pour définir la

famille. Dans cette méthode chaque dossier infecté est ponté par un vecteur n-gram (la

séquence est obtenu par le dossier infecté) et la classification est effectué via ce vecteur.

xv

Pour évaluer le logiciel de détection et classification des modules nous avons utilisé le

jeu de logiciel malveillant public Pahadus qui est en libre utilisation et nous avons

obtenu des résultats très encouragent. Nous avons obtenu 86% d’exactitude sur la

détection. Après la détection des fichiers nous avons utilisé la méthode de classification

n-gram. L’algorithme sur la classification des logiciels malveillant nous a été fournit

par BILGEM et nous avons obtenu 92% d’exactitude avec n=4 et L=60.

Özet

Son yıllarda sosyal medyada fazlaca yer alan konulardan biri olan “siber saldırılar”

görünüşe bakılacak olursa önemini arttırarak gündemde kalmaya devam edecek. Siber

saldırılarda etkin şekilde kullanılan zararlı yazılımlar siber savaşın vazgeçilmezi haline

gelmiştir. Zararlı yazılımlar hassas veri çalma, sistemlere bağlantı için arka kapı

oluşturma, servis dışı bırakma saldırılarında kullanılan (ddos) botnetler oluşturma gibi

farklı amaçların birine ya da hepsine birden hizmet edebilmekte ve saldırganlar için

gerekli ortamı sağlamaktadır. Iran nükleer tesislerine düzenlenen ve daha önce tespit

edilmemiş (0-day) 3 tane açıklığı barındıran stuxnet zararlı yazılımı siber saldırı

dünyasında zararlı yazılımların ne derece etkin kullanıldığını göstermesi açısından güzel

bir örnektir.

Bilindiği gibi zararlı yazılımların incelenebilmesi için öncelikle tespit edilmesi ve

sınıflandırılması gerekmektedir. İnceleme yöntemleri iki başlık altında toplanır. Bunlar

statik ve dinamik analiz yöntemleridir. Bu çalışmada bahsedilen iki yöntem

birleştirilerek kademeli yapıda yeni bir zararlı yazılım tespit yöntemi geliştirilmiştir.

Çalışmada dinamik analiz yöntemleri kullanılarak zararlı yazılımların tespit edilmesi

sağlanmıştır. Zararlı yazılımların sınıflandırılması esnasında zararlı dosyanın statik

özellikleri kullanılmıştır.

Statik analiz yöntemi zararlı dosyanın çalıştırılmadan sadece statik özellikleri göz

önünde bulundurularak gerçekleştirilir. Bu çalışmada zararlı dosyadan elde edilen byte

dizileri ile yeni bir sınıflandırma algoritması kullanılmıştır.

xvii

Dinamik analiz yöntemi zararlı yazılımın davranışını incelediği için zararlı dosyanın

güvenli bir ortamda çalıştırılması gerekmektedir. Dinamik analiz aşamasında ağ

bağlantıları, dosya sistemi işlemleri, sistem üzerindeki aktif işlemler, vb. objeler takip

edilir. Dinamik analizi gerçekleştirebilmek amacıyla çalışma kapsamında DMA adında

bir araç gerçekleştirilmiştir. Kullanıcı etkileşimine sahip ve kullanımı oldukça basit

olan uygulama Windows işletim sistemi üzerinde sistem tray ikon olarak çalışabilmekte

ve her hangi bir zararlı aktivite tespit etmesi durumunda kullanıcıyı uyarma yeteneğine

sahiptir.

Günümüzde zararlı yazılımların dinamik analiz yöntemi ile tespit edilmesinin önüne

geçmek için sanal makina ve hata ayıklayıcı (debugger) tespit eden yöntemler

kullanılmaktadır. Çalışmada zararlı yazılımların Vmware sanallaştırma ortamında

çalıştırılıp incelenmesi gerçekleştirilmiştir. Zararlı yazılımların sanal makina tespit

yöntemini aşmak için Intel tarafından geliştirilen ve uygulamaları yönlendirebilme

özelliğine sahip pin aracı kullanılmıştır. Bu araç yardımıyla sanal makina tespitinde

kullanılan işlem, dosya, registry anahtarı sorgulama gibi yöntemler alt edilmekte ve

zararlı yazılımın gerçek makinada çalıştığını zannetmesini sağlanmaktadır.

Davranış analizinde incelenen çalıştırılabilir dosyanın aşağıdaki özellikleri dikkate

alınmıştır:

 Sistem üzerindeki ağ bağlantılarındaki değişiklikler

 Sistem üzerindeki işlemlerdeki değişiklikler

 Registry dosyasındaki değişiklikler

 Servislerde gerçekleşen değişiklikler

Dinamik analiz ile tespit edilen zararlı yazılımlar daha sonra n-gram tabanlı zararlı

yazılım sınıflandırma metodu kullanılarak zararlı yazılımın ailesi belirlenmektedir. Bu

yöntemde her zararlı yazılım n-gram vektörü (dosyada en fazla bulunan byte dizileri) ile

ifade edilmekte ve sınıflandırma işlemi bu vektör üzerinden gerçekleştirilmektedir.

xviii

Geliştirilen zararlı yazılım tespit ve sınıflandırma modülleri testi için herkese açık

Pahadus zararlı yazılım seti kullanılmıştır ve ümit verici sonuçlar elde edilmiştir.

Belirtilen zararlı yazılım kümesi üzerinde %86 oranında tespit etme başarısı elde

edilmiştir. Zararlı yazılım tespitinden sonra sınıflandırma yöntemi olarak n-gram

tabanlı sınıflandırma metodu kullanılmıştır. Sınıflandırma yönteminin öğrenme

sürecinde (trainning phase) BILGEM zararlı yazılım yakalama sistemlerinden

(honeypot) elde edilen zararlı yazılımlar kullanılmıştır. Sınıflandırma aşamasında

seçilen n=4 ve L=60 çifti için başarı oranı %92 olarak elde edilmiştir.

1

1 Introduction

In the recent years the information security incidents have been increasing rapidly [1].

Nowadays the first targets of attackers become well-known industry companies like

Sony [2], or government agencies such as Turkish Information and Communications

Authority [3] and Iranian Nuclear Facilities [4]. In these security incidents malicious

softwares; any software that causes harm to a computer, network, firm or especially

user, play major roles.

Since the malwares and anti-malware solutions adopt entirely different purposes, there

is an endless war between malware authors (writers) and malware analyzers. In this war

both part advance methods to overwhelm each other. Malware authors try to prevent

successful analysis by employing a variety of techniques such as anti-debugging, anti-

reversing to evade detection mechanisms and prevent successful analysis. On the other

hand malware analyzers search new methods to defeat malwares techniques.

To effectively fight malware, security researchers need to detect and classify them. In

further step analyst must dissect malwares; learn it’s stealthy and obfuscation methods,

target and so on. One of the most important needs for malware analyst is the safe

environment to investigate malware behavior as stated in [5]. In this thesis we created a

tool which runs inside a secure virtual machine image to examine malware behavior and

classified it according to our purposed statistical n-gram feature of the malware.

2

1.1 Thesis Organization

The rest of this thesis is organized as follows and summarized in Figure 1.1.

Chapter 2, “Prerequisites”, introduces terms, concepts and that form the prerequisites

for the following chapters. The chapter clarifies the definition malware and types of

malware, shows why it is crucial to analyze malware. Furthermore it introduces the

malware detection methods.

Chapter 3, “Anti-virtual Machines Techniques” states the anti-virtual machine

techniques to prevent to analysis attempt. The chapter include state-of-the-art

techniques that malware is being run inside a virtual machine.

Chapter 4, “Implementation of the Dynamic Malware Analyzer”, describes the

implementation of the dynamic malware analyzer in depth. It clarifies the question of

“why do we need this kind of tool”. Strengths and limitation of the tool are also

summarized in this section.

Chapter 5, “Implementation of n-gram Based Malware Classifier”, mentions the n-gram

based classification method to classify the detected malware by our dynamic malware

analyzer tool.

Chapter 6, “Fusion”, explains the fusion of the DMA tool and n-gram based malware

classification methods to make cascade malware analyzer tool and describes accuracy of

the proposed detection and classification methods.

3

Chapter 7, “Conclusion”, comments on the results, highlights the achievements of our

work as well as inadequate part of the work. It concludes with an outlook to our future

works.

C
h

a
p

te
r

6

C
h

a
p

te
r

3

States Virtual Machine
Aware Techniques

Combine Malware Detection and
Classification Module

C
h

a
p

te
r

5

Classify Executable if it is
Marked as Malicious in

Chapter 4
(Malware Classification

Module)

C
h

a
p

te
r

4 Analyze Behavior of the
Executable (Malware
Detection Module)

Figure 1.1. Overview of the Thesis Organization

2 State of the Art

The term malware is a conjunction of the words “malicious” and “software” and can be

defined as a piece of software that is intended to perform tasks on computer systems

without the users’ intention. It is designed to disrupt or deny operation, gather personal

information or gain unauthorized access to system resources. This section first presents

some malware-related terminology and types of malwares in section 2.1 and the next

section presents the most common method that is used for malware detection.

2.1 Types of Malwares

When talking about malware you may heard virus, worm, backdoors, etc. These are the

categories of the malware that is defined by the task they performed. Malware often

spans multiple categories. For example, a program might have a key logger that

collects passwords and a worm component that sends spam. In this section we are

going to give the most common malware types that are usually used by attackers.

2.1.1 Backdoor

Malicious code that installs itself onto a computer to allow the attacker access later.

Backdoors usually let the attacker connect to the computer with little or no

authentication and execute command on the system. The idea has often been suggested

5

that computer manufacturers preinstalls backdoors on their systems to provide technical

support for customers [6]. Hackers typically use backdoors to secure remote access to

computer. To install backdoors, hackers may use trojan horses, worms, or other

methods.

2.1.2 Trojan Horses

Trojan horse (or short trojan) is any program includes harmful or malicious payload that

invites the user to run it as something normal or desirable so user may be encouraged to

install it. The payload may take effect immediately and can lead to many undesirable

effects or installing additional harmful software. Trojans are most commonly used for

marketing. Today’s advanced trojans are capable of taking complete control of web

browser and possibly modify a computer’s registry file.

2.1.3 Rootkits

Once a malicious program is installed on a system, it is essential that it stays concealed,

to avoid detection and disinfection. The same is true when a human attacker breaks into

a computer directly. Techniques known as rootkits allow this concealment, by

modifying the host's operating system so that the malware is hidden from the user.

Rootkits can prevent a malicious process from being visible in the system's list of

processes, or keep its files from being read. Rootkits are usually paired with other

malware, such as a backdoor, to allow remote access to the attacker and make the code

difficult for the victim to detect.

http://en.wikipedia.org/wiki/Rootkit
http://en.wikipedia.org/wiki/Process_(computing)

6

2.1.4 Viruses

The computer virus is the most famous form of malware. It is a self-replicating

program that infects a system without authorization. A virus is often transmitted via e-

mail but can also be distributed through various storage mediums such as a flash drive.

Once installed, it will execute itself, infect system files, and attempt to propagate to

other systems. The impact of a virus ranges widely from slow system performance to

wiping out every file on your computer.

2.1.5 Botnet

The term bot is short for “robot" and is used to refer to software that acts autonomously

on behalf of its owner. Non-malicious bots are used by search engines to automatically

index websites, or on Internet Relay Chat (IRC) to provide useful functionality to users

of a particular IRC network or channel. Malicious bots typically form botnets

consisting of up to several thousand infected computers. These botnets can be

controlled by their owners through one or more command & control (C&C) servers,

which commonly run an IRC server (or a slightly modified one) to which the bots

connect and then wait for commands. Other means of communication that are

employed by bots are the HTTP protocol, or peer-to-peer protocols.

Botnets can be used to launch distributed denial-of-service (DDoS) attacks, e.g., for the

botnet owners' entertainment, or, to blackmail companies by threatening to attack on

their critical infrastructure. Other uses of botnets are for sending illegitimate bulk e-

mail, spying on infected computers and their users (e.g., stealing their authentication

credentials, credit card information or other private data). More information about bots

and botnets can be found in [7].

7

2.2 Malware Analysis Methods

Usually when performing malware analysis, you have only the malware executable,

which is not human-readable. In order to make sense of the executable, there are

variety of tools and tricks which reveal some information about them. These tools use

two fundamental approaches to analysis malware: static and dynamic analysis. Static

analysis involves examining the malware without running it. Dynamic analysis

involves running malware. Both techniques have pros and cons in certain case. Static

analysis helps to produce malware signatures but it is largely ineffective against armed

(sophisticated) malware and it may miss important behaviors.

2.2.1 Static Analysis

Static analysis consists of examining the executable file without viewing the actual

instructions. It is usually the first step in examining malware and can confirm whether a

file is malicious, provide information about its functionality, and sometimes provide

information that will allow you to produce simple network signatures. It is

straightforward and can be quick, but it’s largely ineffective against sophisticated

malware, and it can miss important behaviors. By the way it is pretty safe because you

do not execute the dangerous code but it is still best to undertake on an isolated

machine.

In first step of static analysis consists of looking for obvious indicators as to what the

attacker is. Basically the file fingerprint (usually a MD5 hash) is calculated and

determined if the match is found with a known malware. The first step sounds like

traditional antivirus.

8

In the deep file analysis, the study focus on the file format and content. The following

checks are used;

File Packing: Determine if the file is packed before deep search. If it is packed try to

unpacked it and obtain pure executable.

Plain Text Matching: Look for the plain text of the executable and obtain as much

information as possible. Generally strings utility is used to explorer plain text in the

file.

Disassembly: The last static analysis technique is disassembly. In this step the

disassembly is used to examine the machine code of the executable and step thorough it

(as in a debugger) to figure out exactly what the program is doing. This is pretty

advanced method, but it may not reveal all the details of what the malware does unless

you won’t execute it.

2.2.2 Dynamic Analysis

Dynamic analysis techniques involve running the malware and observe its behavior on

the system. These techniques can give valuable information that is difficult to obtain

with other techniques. Like static analysis techniques, dynamic analysis techniques

won’t be effective with all types of malware and can miss important functionality

because of anti-dynamic analysis techniques such as anti-virtual machine, anti-debugger

and so on. Therefore the malware analyst must give attention to these types of tricks.

Malware typically can change all sorts of things on the compromised device, so

dynamic analysis consists of monitoring the followings;

9

Volatile Memory: Malware can overflow buffers and use this memory location to gain

access to the device. By capturing and analyzing the device memory, it is possible to

figure out whether and how the malware uses memory.

Registry/Configuration Changes: Look for any evidence of the registry changes when

performing dynamic analysis because malware often changes registry values to gain

persistent access to the system.

File Activity: Malwares may also add, alter or delete files. So by monitoring file

activity the analyst obtains valuable information about the behavior of the suspicious

file.

Processes/Services: Look for new or stopped processes or services because a lot of

malware shuts down AV engines, or install new services to obtain persistent access to

system.

Network Connection: The network connection monitoring is essential part of dynamic

analysis to understand what malware is doing. We can obtain the malware’s destination

IP address, port and protocol that are used by malware to communicate with

compromised system.

3 Anti-Virtual Machine Techniques

Malware authors sometimes use anti-virtual machine (anti-VM) techniques to prevent

from analysis attempts. With these techniques, the malware attempts to detect whether

it is being run inside a virtual machine. If a virtual machine is detected, it can act

differently or simply do not run. This can, of course, cause problems for the analyst.

Today both system administrators and users use virtual machines in order to make it

easy to rebuild a machine from a snapshot. Since malware authors realized that

virtualization technology is used to dissect malicious executable, they started to

obfuscate their source with the anti-virtual machine tricks. Because anti-VM techniques

typically target VMware, in this chapter we’ll focus on anti-VMware techniques.

3.1 Hardware Fingerprinting

Hardware fingerprinting involves looking for special virtualized hardware pattern

unique to virtual machine. For example the MAC address of the network card, specific

hardware controllers, BIOS, graphic card, etc. Table 3.1 shows the results of hardware

fingerprinting which obtained on a host and on a guest OS running on VMware. This

fingerprinting carried out using Windows Management Instrumentation (WMI) classes

and APIs [8].

11

Table 3.1. Hardware Fingerprinting of Native and VMware Machine, [12]

Hardware

Component

Attribute VMware Machine Native Machine

Motherboard Serial No - .2GTP3BS.CN7016697MG1DN.

SCSI

Controller

Caption VMware SCSI

Controller

Microsoft iSCSI Initiator

BIOS Serial

Number

VMware-56 4d 68

4c f9 e5 62 f4-fb
4d f0 5b 88 28 29

d9

2GTP3BS

USB

Controller

Caption 1. Intel(R)

2371AB/EB
PCI to USB

Universal

Host Controller

2. Standard
Enhanced PCI

to USB Host

Controller

1. Intel(R) ICH9 Family USB

Universal Host
Controller – 2936

2. Intel(R) ICH9 Family USB

Universal Host

Controller – 2938
3. Intel(R) ICH9 Family USB

Universal Host

Controller – 2937

Network
Adapter

Caption VMware
Accelerated

AMD PCNet

Adapter

1. WAN Miniport (SSTP)
2. WAN Miniport (IKEv2)

3. WAN Miniport (L2TP)

Network
Adapter

Mac
Address

00:0C:29:28:29:D9
(This MAC address

falls in VMware

MAC Address

Range)

50:50:54:50:30:30

3.2 Registry Check

The registry is a centralized, hierarchical database for application and system

configuration information in Windows operating system. Access to the registry is

through registry keys, which are analogous to file system directories. A key can contain

other keys or key/value pairs, where the key/value pairs are analogous to directory

names and file names. Each value under a key has a name, and for each key/value pair,

corresponding data can be accessed and modified.

12

The user or administrator can view and edit the registry contents through the registry

editor, for example using the regedit command. Alternatively, programs can manage

the registry through the registry Windows API functions. UNIX systems store similar

information in the directory and files in the user’s home directory. The registry

centralizes all this information in a uniform way.

The Figure 3.1 shows a typical view from the registry editor and gives an idea of the

registry structure and contents.

Figure 3.1. Startup Programs Obtained from Registry

The registry contains information such as the following and is stored hierarchically in

key/value pairs;

• Windows version number, build number, and registered users

• Similar information for every properly installed application

13

• Information about the computer’s processor type, number of processors, memory, and

so on

• Security information such as user account names

• Installed services

Tobias Klein’s tool ScoopyNG [9] includes a small code that looks for certain keys

within the Windows registry to determine that if the machine is virtual.

3.3 Memory Check

This technique involves looking at the values of specific memory locations after the

execution of instructions such as SIDT (Store Interrupt Descriptor Table), SLDT (Store

Local Descriptor Table), SGDT (Store Global Descriptor Table), and STR (Store Task

Register) [9] [10] [11]. It is the most widespread detection technique employed by the

present VM detecting malware [12].

RedPill, discovered by Joanna Rutkowska, is based on checking the Interrupt Descriptor

Table (IDT). More info on this can be obtained from Joanna’s web page [13], and in

[11]. Both techniques are based on the simple fact that any machine, virtual or not, will

need its own instance of some registers. Systems such as VMware will create dedicated

registers for each virtual machine. These registers will have a different address than the

one used by the host system, and by checking the value of this address, the virtual

system’s presence can be detected. Code samples can be seen Figure 3.2.

Besides that, Red Pill succeeds only on a single-processor machine. It won’t work

consistently against multicore processors because each processor (guest or host) has an

14

IDT assigned to it. Therefore, the result of the SIDT instruction can vary, and the

signature used by Red Pill can be unreliable.

int swallow_redpill() {

 unsigned char m[2+4],rpill[]=”\x0f\x01\x0d\x00\x00\x00\x00\xc3”;

 ((unsigned)&rpill[3])=(unsigned)m;

 ((void(*)())&rpill)();

 return (m[5]>0xd0)?1:0;

}

Figure 3.2. Snap Code of Red Pill Technique

3.4 VMware Communication Channel Check

Ken Kato discovered the presence of a host-guest communication channel so called

backdoor Input/Output (I/O) port [14]. VMware uses the I/O port 0x5658 (‘VX’ in

ASCII) to communicate with the host machine. It is obvious this port is not real. The

verification is as follows:

1. The magic number 0x564D5868 (‘VMXh’ in ASCII) is loaded in the EAX

register.

2. The proper parameter of the command that is to be sent is loaded in EBX

register.

3. The command to be used is loaded in the ECX register. For example, the

command 0x0A brings back the VMware version.

4. It is read from ‘VX’ port. If we have ‘VMXh’ in the EBX register, this means

that we are under VMware.

15

There are more commands supported by the backdoor I/O port; for example to obtain

data from the Windows clipboard or the speed in MHz of the microprocessor. The most

important commands are displayed in Figure 3.3. A detailed documentation can be

found on the VM Back website [14].

VMware
Backdoor

Get Virtual
Hardware

Version

Get BIOS ID

Get VMware
Version

Get
Processor

Speed

Get Memory
Size

Get Device
Info

…

Figure 3.3. VMware I/O Backdoor's Main Functionalities

MOV EAX, 564D5868h; ‘VMXh’ magic number

MOV ECX,0Ah ; get VMware version command-specific-parameter

MOV DX, 5658h ; ‘VX’ backdoor-command-number

MOV DX, 5658h; VMware I/O Port

IN EAX, DX; “returns” version number in EAX

Figure 3.4. Assembly Code to Detect VMware Machine via VMware I/O Port

16

3.5 File & Process Check

The VMware environment creates many artifacts on the system, especially when

VMware Tools is installed. There are many VMware specific processes such as

VMwareUser.exe, vmacthlp.exe, VMwareService.exe, VMwareTray.exe that constantly

run in the background. There also exist some VMware specific files and folders. Hence

querying for these objects could also serve as a method for VM detection.

Malware can use these artifacts, which are present in the file system and process listing,

to detect VMware. For example, Figure 3.5 shows the process listing for a standard

VMware image with VMware Tools installed. Notice that three VMware processes are

running: VMwareService.exe, VMwareTray.exe, and VMwareUser.exe. Any one of

these can be found by malware as it searches the process listing for the VMware string.

Figure 3.5. Process Listing on a VMware Image

17

WMwareService.exe runs the VMware Tools Service as a child of services.exe. It can

also be identified by searching the registry for services installed on a machine or by

listing services using the “tasklist” or “net start” command (Look at Figure 3.6).

Figure 3.6. Search VMware Processes in Process List

The VMware installation directory (default path C:\Program Files\VMware\VMware

Tools) may also contain artifacts. A quick search for “VMware” in a virtual machine’s

file system might find clues about existing of the VMware image.

4 Implementation of Dynamic Malware Analyzer

We have developed an application called “Dynamic Malware Analyzer” in order to

analyze malicious software by running on safe virtualized environment. .Net

framework was used to create DMA. It can monitor anomalies occurred on the system

through checking out all processes, connection table and service details on Windows

operating system. DMA has a user-friendly graphical user interface, can be used easily

and efficiently in dynamic analysis by malware researchers. Before running DMA you

have to configure some simple settings.

In this section, firstly we will present our methods used to bypass the countermeasures

taken by malware (known as anti-virtual machine aware malware or split personality

malware) to run itself on the virtual machine. Then, the actions taken to monitor

changes occur on the system will be explained. To evaluate the accuracy of the

developed application we tested it over the samples obtained from [15]. Finally, we

will cover the pros and cons of our dynamic malware analyzer tool.

4.1 Binary Instrumentation Tool: Pin

Pin is a free tool provided by Intel for the dynamic instrumentation of programs, i.e.

arbitrary code (written in C or C++) can be injected at arbitrary places in the executable.

It supports Linux binary executables for IA-32, Intel64 (64 bit x86), and Itanium (R)

processors; Windows executables for IA-32 and Intel64; and MacOS executables for

IA-32.

19

Pin does not instrument an executable statically by rewriting it, but rather adds the code

dynamically while the executable is running. This also makes it possible to attach Pin to

an already running process.

Pin come up with the source code for a large number of example instrumentation tools.

If you look at the source code of these examples you can easily understand that it is easy

to derive new tools using the examples as a template.

4.1.1 Intended use of Pin

As indicated in “Anti-Virtual Machine Techniques” section, some malicious software

has special controls as listed follows to check if it is running on the virtual machine and

if it detects virtual machine it modifies behavior, acts harmless or simply not run.

 Hardware fingerprinting

 Registry lookup

 Memory lookup

 VMware communication lookup

 File & Process lookup

In this study we have used pin tool provided by Intel to detect and execute anti-VM

aware malwares on the VMware. Figure 4.1 illustrates the step by step with pseudo-

code.

20

Algorithm used to detect and trick anti-VM aware malware as used in [12]

Input: Malware sample to be tested.
Output: If anti-VM aware malware detected return true

else return false

Maintain a list of API calls and low level instruction that help in VM detection.
Run the sample under test.

Hook into sample.

while the sample executes do

Intercept the API calls and low level instructions being executed by the
sample

If match is found with the monitored set of API calls or low level

instructions then

Log the activity
Mark malware as anti-VM aware malware

Provide false values to the testing sample

else

Do nothing
end if

end while

Figure 4.1. Our Approach for Detecting anti-VM Aware Malware

Maintained list of Windows API calls, split into two categories; hardware and registry

APIs, listed as follows to detect anti-VM aware malware.

1. Hardware Querying API list

a. SetupDiEnumDeviceInfo()

b. SetupDiGetDeviceInstanceId()

c. SetupDiGetDeviceRegistryProperty()

d. WMI APIs

2. Registry Querying API list

a. RegEnumKey()

b. RegEnumValue()

c. RegOpenKey()

d. RegQueryInfoKeyValue()

21

e. RegQueryMultipleValues()

f. RegQueryValue()

Let us consider the example of a sample that makes the following API calls with the

given arguments:

 RegOpenKeyEx(

HKEY_LOCAL_MACHINE,

TEXT ("HARDWARE\\DEVICEMAP\\Scsi\\Scsi Port 0\\Scsi Bus

0\\Target Id 0\\Logical Unit Id 0"), 0,

KEY_QUERY_VALUE,

&hKey);

 RegQueryValueEx(

HKey,

TEXT ("Identifier"),

NULL, NULL,

(LPBYTE) PerfData,

&cbData);

In the above cases, the key value returned in a VMware machine will contain the string

“VMware”. Thus, we monitor the values returned by the OS in response to the API

calls made by the sample. If it contains the string “VMware”, the control passes to our

replacement routine where we change the value to a more appropriate value such as

“Microsoft” or to a value that would have been returned on a host Windows OS.

22

Similarly when VM specific instructions such as SIDT are in the curse of being

executed by the sample, the control passes to our replacement routine where we set the

value of the destination operand to a value that would be obtained on the host Windows

OS.

4.2 Monitor System

In dynamic analysis methods, monitoring the usage of the system resources is an

important topic that must be taken into account by an analyst. Process handle details and

connection table are two major concepts in the system that is used to detect and analyze

malware. Therefore DMA has four main monitoring capabilities listed as follows in

order to monitor system details;

1. Monitoring Processes

2. Monitoring Connections

3. Monitoring Services

4. Monitoring Register (comparison based monitoring)

4.2.1 Monitor Processes

Processes are the essential building blocks of any Microsoft Windows system. Knowing

what processes are active on the system at any given time can help you understand how

system resources are being used, and it can assist you in diagnosing problems and

identifying malware.

All windows versions were shipped with Task Manager to provide users insight into

process activity for viewing the processes (application and services) that are running on

the system. To avoid confusing users, Task Manager provides limited information

about the processes.

23

Task Manager is the application that users usually used it in order to find out why their

system is slow and to kill degenerate processes. It often doesn’t give deep enough

knowledge about what is causing a process to misbehave, nor does it provide key data

that can help a technical user to identify a process as malware.

Figure 4.2. Process Monitoring Feature of DMA

DMA tool likes standard Task Manager on windows and its purpose is to evaluate the

newly created and the state-changing processes. In addition to this feature the location

of the running application on the file system can be easily obtained from the “Image

Location” title of the Process tab. Even though users with limited privileges can see all

running processes, they can’t see all information about the processes such as location of

the executable and handles of the process.

If the user clicks on an active process, the advanced features of the process like threads,

registry key handles, file handles, and etc. appears on the bottom side of the application.

As you guess these advanced features don’t show to the limited privileged user. The

24

user also has the ability to kill the process that he/she wants to end within his/her

privilege level.

4.2.2 Monitor Connections

As malware often try to communicate with a command-and-control server to manage

the system remotely we take into account the network connections. The following basic

attributes of network activity;

1. Destination IP address

2. TCP and UDP port (TCP/IP transport layer protocols)

3. Domain Names

4. Traffic Content

are used extensively by security analysts to ensure defense. DMA is capable of keeping

an eye on networking events. On other words, DMA can display and log the list of all

currently opened TCP/IP ports on the system. For each connection on the list,

information about that open connection is also displayed, including the process name.

In addition, just as described in “Process Monitor” section if the user clicks on an active

connection, the handlers of this connection appear on the bottom side of the application.

On the other hand, DMA allows the users to close the suspicious connection by killing

the related process.

25

Figure 4.3. Network Monitoring Feature of DMA

4.2.3 Monitor Services

Windows services are critical processes that provide server functionality, such as Active

Directory, e-mail, DNS, automatic updates, etc. One example is Microsoft Exchange

Server, which has several services, such as Information Store and SMTP; the failure of

even one of these services results in suspended e-mail delivery or even lost messages

until the services are started again.

After going through all the hard work of exploiting a system, malware often create

services to maintain access to system. This way, if the connection breaks, you can still

gain access to the system. Thus, DMA is capable of monitoring changes occurred in

Windows services.

26

Figure 4.4 illustrates that an attacker installed Meterpreter as a service on the exploited

system in order to access the victim box later and can proceed with further recognition,

enumeration and exploitation for the specific system and/or the network.

Figure 4.4. Service Monitoring Feature of DMA

4.2.4 Monitor Registry

Malware often uses the registry for persistence or configuration data. The malware adds

entries into the registry that will allow it to run automatically when computer reboots.

The registry is so large that there are many ways for malware to use it for persistence. It

seems like more and more programs are attempting to install spyware, advertisements,

or other garbage without your knowledge.

To detect registry changes we inspired open source Regshot [16] that the program will

create snapshot of the actual states of registry. This means that at any time you can open

the snap file and view the contents of the registry just as they were when you've scanned

27

the registry. The program can compare two different snapshot files so you'll see exactly

what changed in the registry between the two scans.

Figure 4.5 displays a subset of the results generated by DMA during malware analysis.

Registry snapshots were taken before and after running the “Lab07_01.exe” malware

obtained from [5].

As you can see a new service is installed on the system, you can check it by looking at

services and registry tables on the compromised system. Sample malware added

“HKLM\SYSTEM\ControlSet001\services\Malservice\Start” key and set the start key as

2 (means autostart) to start malware automatically when system reboots.

Figure 4.5. An Example of Registry Changes Made by Malware to Gain Persistence

28

4.3 Basic Configuration

To work properly with DMA there are a few settings to be set. These requirements are

discussed in this chapter. First of all, we have to set the exact location of the pin on the

file system. Then we select the possible application that may create network connection

and finally we restrict the destination point with the aid of public malware domain lists

published at regular intervals by [17] and [18].

4.3.1 Restrict Connectable Process

The application which is not determined as a connectable application by user and

creates network connection is reported by DMA while informing the users.

These mentioned processes can be decided by the following two ways:

1. When the user wants all the applications except active application not to make

network connection he/she can snapshot application meaning that the user

determines the connectable applications.

2. User may save the applications which can make connection, into a file called

“connectable.txt”

If an application that is not in determined list establishes network connection, the DMA

informs the users and log the activities as seen Figure 4.6. In this example, a malicious

executable called “custom.exe” which is not in the connectable application list is trying

to establish connection in order to control the victim host machine remotely.

29

Figure 4.6. A Malicious File Establishes Connection without User’s Intent

4.3.2 Restrict Destination Domain

DMA has also the ability to filter network connection by checking the destination

domain or IP. If the DMA detects that system establishes connection to the malicious

domain, DMA logs the malicious connection and informs users via popups. In the study

we used the malicious domains collected by [17] and [18] to restrict the destination

points. These domain lists are live list and updated frequently. To derive IP details

from domain information we used the following Ruby script:

30

require 'resolv'

file=File.open("malwareips.txt","w")
IO.foreach("malware_domainlist.txt") do | line|

begin

array=Resolv.getaddresses(line.strip)

if(array.length>0)
array.each {|element| puts element; file.puts element}

end

rescue Exception

puts ""
end

end

Figure 4.7 DNS Resolver Script for Malware Domains

Derived IP list must be saved a file which is called “Domainlist.txt” that locates in the

same directory of the DMA. After all these procedures, if an application tries to

connect to a specified malicious destination, as shown in Figure 4.8 DMA produces a

warning massage and the user is notified. In this example, chrome.exe, attempting to

connect a malicious target which exists in the “Domainlist.txt” file, is detected and the

user is notified by DMA.

Figure 4.8. A Malicious Process Tries to Connect Malicious Domain

31

4.4 Comparison of Dynamic Analysis Techniques

In this chapter, firstly we will talk about the existing dynamic malware analysis

methods. Then we will mention the existing methods and DMA tool and finally we will

cite the future works and pros & cons of DMA.

4.4.1 Overviewing Existing Dynamic Analysis Techniques

Currently dynamic malware analysis is a very popular research topic. Several methods

exist for automatically analyzing malicious software behaviors. These can be gathered

into two groups [19]:

1. Analysis the difference between two snapshots of the system, one taken before

the malware execution, the other after.

2. Monitor the actions performed by malware during its execution.

API hooking is mostly used technique in order to trace the behavior of the malware and

though this technique it can be possible to get a control flow of the executable. Most

dynamic analysis framework such as CWSandbox [20], BitBlaze [21] and TTANalyze

[22] use this technique. The concept of hooking is simple, each time an application

accesses an API function it gets sent to different location, where the modified code is

located.

API hooking has to be done in a careful way in order to be transparent and undetectable

for the malware. It is never good if a malware detects that it is running in a simulated

environment as then it is modifying its behavior. This has been stated in previous

chapters.

A way to bypass the API hooking trap would be call the kernel functions directly and

avoid the usage of the API, anyhow this is uncommon as for this the programmer has to

know exactly what version of operating system and on what service pack patch level.

32

As the goal of most malware is to infect a huge user base and not only targeted persons,

directly kernel function calling is not easy to realize.

Another popular method used in dynamic analysis is DLL (Dynamic Link Library)

injection. This can be realized through API hooking with inline code overwriting.

Therefore the applications have to be patched once it has been loaded into the memory.

The address space of the malware has to contain our hooked function in order to be able

to call the hook from inside the malware’s address space. This technique is realized by

a specialize thread located into the malware’s memory allocation. CWSandbox [20]

framework uses this technique to make the malicious code load their DLL in their

address space.

A further technique that is widely used is Virtual Machine Introspection (VMI). This

technique allows a monitoring of a virtual machine without risk. This method allows us

to have both advantages, a good resistance against attacks on the one hand, and full

control of what is happening in the host on the other hand. Therefore the VMI uses

access to the hardware-level state, for example the state of the physical memory pages

and registers and also events like memory accesses and interrupts. The knowledge of

these events and states allows us to map the events to OS-level semantics. For example

livewire [23] implement this technique to detect intrusion.

To remind, there has to be said that malware can implement some functionalities to

detect if it is running on a virtual machine. If this is the case the malware can adapt its

behavior. One famous project implementing this detection functionality is the Red Pill

project of Joanna Rutkowska. [11]

33

4.4.2 Pros & Cons of Our Dynamic Analysis Techniques

First of all, unlike other dynamic malware analysis methods our developed application

can overcome anti-VM techniques described in 3. Chapter, thus in this perspective it is

significantly different from other methods. Although there exists studies to detect anti-

VM aware malware [24] [25] [26] [27], we couldn’t find the work that examines anti-

VM aware malware behavior by running it. Therefore our method offers an advantage

of dynamic analysis of anti-VM aware malwares.

Since the application has user-friendly interface and works as a system tray in the

background, the application don’t interfere the user. If there is an anomaly DMA logs

the event with a sufficient detail and informs the user about the situation. DMA can be

run on any system that is installed .Net framework 3.0 and it doesn’t require any extra

installation and configuration except the requirements stated in Chapter 4.3.

DMA, can be used as an anti-malware software, can reduce dependency on the anti-

virus software and make to feel more safe the users since as stated before anti-virus

solution is based on signature and can be bypassed easily.

DMA is currently still under development stage so it can’t handle all the tasks

automatically. For example suppose that you want to analyze a set of malicious

software. If the sample in the set is detected as malware and make same changes to

system then you have to come back the original image via snapshot technology in the

virtual machine. This steps cause too much workload. Therefore, it is clearly apparent

that DMA have to automate malware analysis in order to carry out the dynamic analysis

effectively

34

On the other hand while detecting the malware samples, there may be scoring

mechanism to describe the harmfulness degree of the file. The realization of the scoring

mechanism will provide fast, more reliable, less struggle and user-independent analysis.

5 Implementation of n-gram Based Malware Classifier

In this section firstly we will give the definition of n-gram and usage fields in computer

science. After then the existing n-gram approaches is explained we will propose our n-

gram based malware classification methodology. Finally we will elaborate and compute

the accuracy of the proposed methodology.

5.1 Definition of n-gram

N-gram is a fixed size sliding window of byte array, where n is the size of the window.

For example the “558D6C24948B45…400085C0” sequence is segmented (represented)

into 4-gram as “558D6C24”, “8D6C2494”, “6C24948B” and “24948B45” as seen in the

Figure 5.1.

Figure 5.1. N-gram Sequences

36

An n-gram of size 1 is referred to as a “unigram”; size 2 is a "bigram" (a.k.a “digram”);

size 3 is a “trigram”. Larger sizes are sometimes referred to by the value of n, e.g.,

“four-gram”, “five-gram”, and so on.

N-gram is used in different fields such as natural language processing, authorship

detection, information gathering and also malware detection. They have been used in

the following application;

 Find likely candidates of misspelled words

 Improve compression in compression algorithm

 Improve accuracy of the speech recognition

 Improve performance of the information retrieval process

 …

5.2 Existing n-gram Approaches to Analyze Malware

The representation of malware by using n-gram profiles has been presented in the open

literature; see for example [28], [29] and [30]. In these studies some promising results

towards malware detection are presented. However malware domain has been evolving

due to survivability requirements.

Malware has to evade anti-virus scanners to perform its functions. Obfuscation

techniques have been developed in order to avoid detection by antivirus scanner. And

these techniques disturb n-gram features of binary form of the malware used by the

previous work. Similar methodologies have been used in source authorship,

information retrieval and natural language processing [31], [32].

37

The first known use of machine learning in malware detection is presented by the work

of Tesauro et al. in [33]. This detection algorithm was successfully implemented in

IBM’s antivirus scanner. They used 3-grams as a feature set and neural networks as a

classification model. When the 3-grams parameter is selected, the number of all n-gram

features becomes 2563, which leads to some spacing complexities. Features are

eliminated in three steps: first 3-grams in seen viral boot sectors are sampled, then the

features found in legitimate boot sectors are eliminated, and finally features are

eliminated such that each viral boot sectors contained at least four features. Size of

feature vectors in n-grams based detection models becomes very large so feature

elimination is very important in these models. The presented work has been limited by

the boot sector viruses’ detection because boot sectors are only 512 bytes and

performance of technique is degraded significantly for larger size files.

As a historical track, IBM T.J. Watson lab extended boot virus sector study to win32

viruses in 2000 [34]. At this stage, 3 and 4 grams were selected and encrypted data

portions within both clean files and viral parts were excluded due to the fact that

encryption may lead to random byte sequences. At the first instance, n-grams existed in

constant viral parts were selected as features and then, the ones existed in clean files

more than a given threshold value were removed from the feature list. In this study,

along the use of neural networks boosting was also performed. Results of this study

showed that the developed method performance was not sufficient. Schultz et al. has

used machine learning methods in [35]. Function calls, strings and byte sequence were

used as the feature sets. Several machine learning methods such as RIPPER, Naive

Bayes and Multi Naive Bayes were applied, the highest accuracy of 97.6% with Multi

Naive Bayes was achieved.

Abou-Assaleh et al. [29] contributed to the ongoing research while using common n-

gram profiles. k nearest neighbor algorithm with k=1 instead of the other learners was

used. Feature set was constituted by using the n-grams and the occurrence frequency,

where the occurrence frequency is denoted by L. Tests have been done with different n

38

(ranging from 1 to 10) and L (ranging from 20 to 5000) values. Data set used in these

experiments was kept fairly conservative of 25 malware and 40 benign files. With this

set, test results shown 98% of success. Using the data in [29], the accuracy slightly

dropped to the 94% level.

Kolter et al. [28] used 4-grams as features and selected top 500 n-grams through

information gain measure. They used instance based learners, TFIDF, naive bayes,

support vector machines, and decision trees and also boosted last three learners.

Boosted decision tree outperformed all others and gave promising results such as ROC

curve of 0.996.

While the battle between malware authors and anti-virus producers are continuing, our

motivation is to find the statistical method to classify the malware instance by using n-

gram features (profiles) of disassembled malware. In our methodology, we use n-gram

feature of the malware to classify the malware instance with respect to their family.

5.3 Our n-gram Based Malware Classifier

As stated in the introduction, current malware samples cannot be analyzed easily based

on their statistical features’ as in the previous decade because of the increasing use of

the obfuscation techniques by the malware authors.

The proposed algorithm consists of preprocessing, training and testing phase. Malware

samples are collected through TR-CERT [36] activities in The National Research

Institute of Electronics and Cryptology. We classified our dataset by using Microsoft

Security Essential (MSE) antivirus tool [37]. In other words, naming of the malware

instance is performed by the MSE tool. Malware naming is not a well standardized area

where all vendors, players can name and classify malware according to their intentions,

39

and common sense in naming cannot be achieved among the stakeholders [38]. After

that preprocessing step, PEid as a useful tool to inspect PE files, is used to dissemble

malware instances [39]. We extract a malware instance’s n-gram profile through

opcode sequences obtained from PEid. We are using opcode sequences instead of byte

sequences of the malware.

In our study, machine codes to extract malwares’ n-gram profile instead of byte

sequences are considered and the n-gram feature space is considerably reduced. In this

manner calculations are performed faster and efficiently. Each malware sample is used

to determine its subfamily vector which is named as the centroid of the subfamily.

Family of the malware is a descriptor of the malware used to classify malware samples

according to their features especially in terms of the tasks performed and the purpose of

the creation. Subfamily is the specialized version of the family that describes malware

samples definitely. For instance if a malware labeled as Win32-Ramnit.F by an anti-

virus scanner, this means the malware belongs Win32-Ramnit family and Win32-

Ramnit.F subfamily.

40

Label malware intances
with Microsoft Security Essential

Diassemble all instances

Extract n-gram profiles

Generate centroid for each subfamily

Calculate similarity of the
instance for each subfamily

through centroid vector

Most relevant
subfamily in terms

of similarity
function

Instance to
classify

Extract n-gram profiles

Training Phase

Preprocessing Phase

Testing Phase

Figure 5.2. Architecture of the Malware Classification System

41

Centroid of the subfamily comprises the most frequent n-gram of the subfamily

instances. In other words, n-grams (words or terms), which occur with higher document

frequency in the subfamily instances, are used to construct the centroid vector. So the

subfamily is represented by its centroid vector. For instance, centroid of the subfamily

is presented by
⃗⃗ ⃗ as follows:

⃗⃗ ⃗ (

) (5.1)

where df is the document frequency.

To classify an instance, similarity function is calculated by counting the number of

matching n-gram (term) for each centroid of the subfamily.

 (⃗⃗) {
 ⃗⃗

 (5.2)

 ⃗⃗⃗⃗ ⃗ ⃗⃗⃗ ∑ ⃗⃗⃗

 (5.3)

 ⃗⃗ ⋃ (⃗⃗ ⃗⃗ ⃗⃗)
 (5.4)

where m denotes malware whose family is unknown and it will be determined via

presented method. ⃗⃗ is the n-gram feature vector extracted from unknown malware

instance denoted by m. Subindice is the subfamily indexing for s=1, 2…15. The

42

function, denoted by , returns 1 if malware n-gram profile (⃗⃗ consists i-th n-

gram of the centroid of taken subfamily(
⃗⃗ ⃗ denoted by otherwise return 0.

Equation 5.3 gives similarity measure between the unknown instance and the subfamily

centroid. Similarity measure is the sum of the common n-grams. In Equation 5.4, after

all similarity measures are calculated, the unknown instance is classified as the closest

centroid’s subfamily.

Process flow is illustrated in Figure 5.2. When an instance has two or more equal

similarity value for two different subfamilies, an error occurs. However this error will

be named as the small error because these two or more equal similarity values for

subfamily may belong to the same family. As we know, the subfamilies sustain their

common family feature. Other types of error are named as big error.

5.4 Obtained Results

In order to perform our experiments, we collect significantly large malware database as

stated in the section 5.3. To obtain more accurate results we count in the subfamilies

that contain maximum number of samples in our dataset. In this manner, experiments

are carried out 1056 samples belonging to ten families, five of them have two

subfamilies, and therefore there exists 15 subfamilies in our dataset. Table 5.1 indicates

how many samples were taken from which subfamily in our dataset. This data set

consists only a 2% of the original database. The amount of the sample is sufficient to

demonstrate whether n-gram centroid of the subfamily may be used to classify malware

instance or may not.

43

Table 5.1 Number of the Instances for Each Subfamily

Subfamily Name Instance Number Subfamily Name Instance Number

Win32-Vobfus.Y 13 Win32-Sality.AT 64

Win32-Alureon.H 19 Win32-Small.AHY 69

Win32-Ramnit.F 19 Win32-Renos.NS 95

Win32-Virut.BG 19 Win32-Sality.AM 100

Win32-Alureon.CT 22 Win32-Renos.LT 137

Win32-Agent.ACF 23 Win32-Vobfus.gen!D 183

Win32-Viking.CR 30 Win32-Ramnit.B 200

Win32-Vobfus.AH 42

To evaluate our methodology, five-fold cross-validation is used: the selected malwares’

subfamilies are randomly partitioned into five disjoint sets of approximately equal size,

named as “folds”. Training and testing phases are performed five times. At each

iteration step, one fold is selected as a testing set, and other four folds are combined to

form a training set. Therefore, each sample is used five times for training and once for

testing. And the estimated error is computed as the total error generated from the five

iterations, divided by the total number of the initial tuples.

There are two main parameters in the experimental setup: the first parameter is the size

of the n-grams and the second parameter is the number of the list size which is

constituted by ranking the n-grams according to their df values in the subfamilies. The

size of the n-grams, denoted by n, allows us to decide how long in bytes the n-gram will

be. In the experiments, tests are run with n=3, n=4, n=5 and n=6. The second

parameter, denoted by L, is chosen to express a subfamily in a simple way. Tests are

run with L=40, L=50 and L=60.

44

Table 5.2 shows the obtained training error over the parameters n and L as well as Table

5.3 shows the resulting testing error. As can be seen from the Table 5.2 and Table 5.3,

to increase the size of the n-gram does not produce accurate results every time. Because

if the parameter n increases, n-grams cannot capture the subfamily features, in contrary

the selected n-grams can only represent a feature specific of the sample. However, the

opposite case, namely if the n is chosen very small, n-grams can mostly become the

common feature of the all subfamilies as well as all samples.

We achieved the highest success rate when n=4 as confirmed by the results in [28] also.

Elaborating the parameter choice effects, if the parameter L is increased, the error rate

decreases. Since the more common n-gram makes it easy to classify instance

appropriately. As maintained in the previous section, the n-gram profiles are captured

from the disassembled malware, therefore the space of the n-gram decreases

dramatically. For all that, L could not be taken more than 60, due to having very small

sized n-gram space (i.e., for Win32-Agent.ACF n-gram feature space is 74).

As a result of the experiment, the most appropriate parameter pair is obtained when n=4

and L=60. The obtained training and testing errors rate for n and L pairs from our

experiment are listed in the following Table 5.2 and Table 5.3, respectively.

Table 5.2. Training Error

N-gram

Length

Top L N-gram in the Subfamily Malwares

L=40 L=50 L=60

Total Error

Without

Subfamily

Error

Total Error

Without

subfamily

Error

Total Error

Without

subfamily

Error

n=3 0.231 0.101 0.150 0.058 0.090 0.024

n=4 0.143 0.056 0.106 0.021 0.053 0.014

n=5 0.124 0.041 0.109 0.024 0.058 0.015

n=6 0.123 0.038 0.115 0.024 0.108 0.019

n=7 0.151 0.031 0.115 0.031 0.098 0.019

n=8 0.125 0.041 0.124 0.037 0.111 0.028

45

Table 5.3 Testing Error

N-gram

Length

Top L N-gram in the Subfamily Malwares

L=40 L=50 L=60

Total Error

Without

Subfamily

Error

Total Error

Without

subfamily

Error

Total Error

Without

subfamily

Error

n=3 0.262 0.109 0.184 0.066 0.131 0.038

n=4 0.169 0.069 0.141 0.037 0.082 0.023

n=5 0.150 0.056 0.128 0.038 0.082 0.026

n=6 0.143 0.043 0.140 0.027 0.134 0.023

n=7 0.170 0.039 0.140 0.036 0.125 0.025

n=8 0.139 0.042 0.148 0.040 0.138 0.034

6 Fusion

In this section, we will explain the combination of the DMA tool and n-gram based

malware classification methods to make cascade malware analyzer tool which is

capable of detection and classification of malware. Thus, thanks to the fusion of the

two mentioned methods, one file can be easily analyzed.

Figure 6.1 summarizes the performed work and shows the relationship between

detection and classification module. We can shortly explain the fusion procedure as

follows;

 Execute the executable file which is wanted to dissect with DMA’s execute

option. Which means the file is executed by pin tool in order to bypass anti-

VMware aware techniques.

 If the executable file tries to call the suspicious API which is monitored by our

pin tool, the file is marked as anti-VMware aware malware. Besides, the pin

tool returns the results of the called API such a native machine, not as a

VMware. Thus anti-VMware aware malware continues to run and reveals its

behavior.

47

Analyze Behavior with DMA

Malware Dataset

Sample 1
Sample 2
Sample 3

….
…..
….

Sample n

Dynamic Malware
Analyzer

Execute File

Malware

Mark as
Malware

Reset
Environment

N-gram Classification
Module (Section 5)

Monitor
Processes

Monitor
Connections

Monitor
Services

Monitor
Registry

Anti-Wmaware
Malware

Mark as Anti-
WMaware
Malware

Execute
Normally

Malware Family

No Action

TRUE
FALSE

TRUE FALSE

Figure 6.1. Fusion of DMA and n-gram Based Classification Module

48

 In the meantime, the monitor module of DMA tool track the processes,

connections, services and registry changes and if the following situation occurs

DMA will alert that the file is malware;

o The process except that determined process set in 4.3.1 section tries to

make connection.

o A process tries to establish a connection to malicious domain which is

determined in 4.3.2 section.

o A process tries to create a service on the system.

o A process tries to add key into registry to gain persistence on the system.

 If there occurs any anomaly in the monitored features of the system the file is

named as malware. On the other hand if there is not any unexpected situation the

file is executed normally.

 After the determining the malicious file we carry out the classification task with

our proposed n-gram based malware classification method. Briefly in this

method we classify the malicious file by comparing it with the previously

trained malware set. As stated before to classify sample it is not executed since

the method uses the static n-gram feature of the file. The details are stated in the

5.3 section.

6.1 Evaluation Methodology & Obtained Results

To evaluate the work we have selected only the executable files in the Pahadus public

malware set [15]. Test is carried out with the 64 bits Windows 7 operating system and

VMware workstation. These malware set is scanned with MSE anti-virus solutions to

detect and classify samples. Since the dataset is public, means there exists signature for

samples in MSE, all samples detected easily.

49

Since we have malware detection and classification module in our study we need to

evaluate each module separately. So we determined the accuracy of the DMA with the

captured malware samples in the testing set. On the other hand, the accuracy of the n-

gram based classification module is measured with the ratio of the properly classified

sample with respect to MSE to previously detected malware samples.

Before the results, let’s give you the details of the dataset. In the dataset there are 72

samples but we didn’t execute all the samples. As you can see in Figure 6.2 only 49

(69% of the dataset) samples are executed normally in our test environment.

Figure 6.2. Details of Executed Malwares

As seen in Figure 6.3, DMA has detected the 86% (42 samples over 49) of the malware

set as a malware. Figure 6.4 shows that which module of the DMA detects the present

of the malicious activity. We can obviously say that majority of the malware set is

detected by registry and process monitoring features of the DMA. By the way, there are

5 samples that try to create service to gain persistence on the system and 7 samples that

try to establish network connection.

not
compatible
with 64-bit

3%

probably
exploit

7%

not executed
21%

executed
normally

69%

Malware Dataset

50

Figure 6.3. Malware Detection Ratio

In the test dataset DMA didn’t detect 7 samples. To understand our limitations we

wanted to analysis these samples with publicly available dynamic analysis tool like

Anubis [40]. While we were performing dynamic analysis with Anubis web service, we

realized that undetected malware samples are generally performs file operations such as

delete itself, modifies and destruct windows native files, copies itself in the Windows

directory to stay undetected by users, etc. By the way the 3 samples were also not

detected by Anibus and one of the samples wasn’t analyzed because Anibus didn’t

consider the file as a Windows executable.

Detected
86%

Undetected
14%

Detection Ratio

51

Figure 6.4. Number of Samples Detected by DMA’s Modules

As stated before after determining step we classify malware samples with n-gram based

classification method. We have taken L=60 and n=4 which is the best pairs stated in

section 5.4. Our n-gram classifier was trained with the same data set in section 5.4.

The previously detected 49 malware samples classified %92 accurately with respect to

MSE anti-virus solution’s report.

Process Registry Services Connection

Number of Samples 23 25 5 7

0

5

10

15

20

25

30

Samples Detected by DMA Module

7 Conclusion

The main task of this thesis was to identify malwares and then classify them. It is not as

simple task as it sounds because of the advanced obfuscation techniques generated by

malware authors in order to avoid detection of the anti-malware solutions. In the study

we focused on anti-virtual machine evasion techniques to provide secure and

reproducible environment to the malware analyst.

We have argued that existing anti-VMware detection methods exists but there is a lack

of research to analyze this samples’ behavior. Consequently, we have developed our

dynamic malware analyzer tool which is called DMA. It can execute anti-Virtual aware

malware samples in VMware machine.

Pin [41] is the main trick to bypass anti-virtual machines techniques that is used in our

Dynamic Malware Analyzer (DMA). So the first step of the malware detection relies

on pin tool. To this end we developed our pin tool based on the study carried out by

Vishnani et al [12].

The DMA is capable of monitoring system resources such as connections, processes and

which are highly used to dynamic analysis methods. It also informs the analyst when

Windows Registry is changed.

53

DMA’s detection accuracy is tested over the Pahadus public malware set [15] and the

obtained results are pretty encouraging. We have detected malware samples with 86%

accuracy. After the detection of malware, the classification carries out with n-gram

features of the binary form of the malware. For the classification task we used malware

dataset given by BILGEM which is collected with its honeypots. Experimental results

show that the classification accuracy for the detected samples when n and L are chosen

4 and 60, is 92% which seems to be very promising.

DMA is currently still under development stage so it can’t handle all the tasks

automatically. We will add this functionality in the future version of the DMA. On the

other hand while detecting the malware samples, there may be scoring mechanism to

describe the harmfulness degree of the file. The realization of the scoring mechanism

will provide fast, more reliable, less struggle and user-independent analysis.

Besides that, we realized that undetected malware samples by using DMA are generally

performs file operations so we decided to add file monitoring feature to the DMA as fast

as possible to make it more accurate and functional.

During the course of evaluating DMA with real malware samples, it became apparent

that dynamic analysis alone might not be the perfect way to analyze unknown

executables.

Finally, to improve the classification accuracy of n-gram based technique, experiments

by using large dataset while using variable length n-gram feature vector of the malware

is underway.

References

[1] "Microsoft Security Intelligence Report Volume 12", [Online], Available:

“http://www.microsoft.com/security/sir/”, [Accessed 02.05.2012], (2011).

[2] "Playstation Network Hacked", [Online], Available:

“http://www.shacknews.com/article/68215/sony-confirms-playstation-network-

hacked”, [Accessed 02.05.2012].

[3] "TIB DDoS Attack by Anonymous", [Online], Available:

“http://www.hurriyet.com.tr/teknoloji/17990950.asp”, [Accessed 02.05.2012].

[4] "Stuxnet's Target is Iran" [Online],. Available:

“http://en.wikipedia.org/wiki/Stuxnet”, [Accessed 02.05.2012]..

[5] Sikorski, M., Honig, A., “Practical Malware Analysis”, No Starch Press, (2012).

[6] "ProFTPD Backdoor", [Online], Available: “http://www.osvdb.org/69562” ,

[Accessed 05.02.2012].

[7] Bacher, P., Holz, T., Kötter, M., Wicherski, G.,"Know your enemy: Tracking

botnets", [Online], Available: “http://www.honeynet.org/papers/bots”, [Accessed

02.05.2012].

[8] "Windows WMI Classes", [Online], Available: “http://msdn.microsoft.com/en-

us/library/windows/desktop/aa394554(v=vs.85).aspx”, [Accessed 02.05.2012].

http://www.shacknews.com/article/68215/sony-confirms-playstation-network-hacked
http://www.shacknews.com/article/68215/sony-confirms-playstation-network-hacked
http://www.hurriyet.com.tr/teknoloji/17990950.asp
http://en.wikipedia.org/wiki/Stuxnet
http://www.honeynet.org/papers/bots
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394554(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394554(v=vs.85).aspx

55

[9] "ScoooyNGThe VMware detection tool", [Online], Available:

“http://www.trapkit.de/research/vmm/scoopyng/index.html”, [Accessed

19.05.2012]

[10] "On the Cutting Edge:Thwarting Virtual Machine Detection", [Online], Available:

“http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf”,

[Accessed 19.05.2012].

[11] Quist, Q., Smith, V., "Detecting the Presence of Virtual Machines Using the Local

Data Table", [Online], Available: “http://tuts4you.com/request.php?2141”,

[Accessed 19.05.2012].

[12] Vishnani, K., Pais, R., A., Mohandas, R., "Detecting & Defeating Split Personality

Malware" in SECURWARE, The Fifth International Conference on Emerging

Security Information, Systems and Technologies, Nice, France, (2011).

[13] "Joanna Rutkowska's Blog", [Online], Available:

“http://theinvisiblethings.blogspot.com/”, [Accessed 02.05.2012].

[14] "VMware Backdoor", [Online], Available:

“https://sites.google.com/site/chitchatvmback/backdoor”, [Accessed 02.05.2012].

[15] "Pahadus Malware Set”, [Online], Available: “https://sim.cert.ee/hw/pahadus.zip”,

[Accessed 02.05.2012].

[16] "Regshot web page", [Online]. Available: “http://sourceforge.net/projects/regshot/”

, [Accessed 19.05.2012]

[17] "Malware Domain List", [Online], Available:

“http://www.malwaredomainlist.com/update.php”, [Accessed 02.05.2012].

[18] "Malware Prevention through DNS Redirection", [Online], Available:

“http://www.malware-domains.com/”. [Accessed 02.05.2012].

http://www.trapkit.de/research/vmm/scoopyng/index.html
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://tuts4you.com/request.php?2141
https://sites.google.com/site/chitchatvmback/backdoor
https://sim.cert.ee/hw/pahadus.zip
http://sourceforge.net/projects/regshot/
http://www.malwaredomainlist.com/update.php

56

[19] M. Egele, T. Scholte, E. Kirda and C. Kruegel, "A Survey on Automated Dynamic

Malware Analysis Techniques and Tools", ACM Computing Surveys, vol. 44, no. 2,

(2012).

[20] Willems, C., Holz, T., Freiling, F., "Toward Automated Dynamic Malware

Analysis Using CWSandbox", IEEE Security and Privacy archive, volume 5, Issue

2, pages 32-39, (2007).

[21] Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, G., M., Liang, Z.,

Newsome, J., Poosankam, P., Saxena, P., "BitBlaze: A New Approach to Computer

Security via Binary Analysis", ICISS '08 Proceedings of the 4th International

Conference on Information Systems Security, pages 1-25, (2008).

[22] Bayer, U., Kruegel, C., Kirda, E., "TTAnalyze: A Tool for Analyzing Malware",

15th European Institute for Computer Antivirus Research (EICAR 2006) Annual

Conference, Hamburg, Germany, (2006).

[23] Garfinkel, T., Rosenblum, M., "A Virtual Machine Introspection Based

Architecture for Intrusion Detection", In Proc. Network and Distributed Systems

Security Symposium, pages 191-206, (2003).

[24] Lau, B., Svajcer, V., "Measuring virtual machine detection in malware using DSD

tracer," in Proceedings of Virus Bullettin, (2008).

[25] Zhu, D., Y,.Chin, E., "Detection of VM-Aware Malware", [Accessed 19.05.2012],

[Online], Available:

“http://radlab.cs.berkeley.edu/w/upload/3/3d/Detecting_VM_Aware_Malware.pdf”

[26] Balzarotti, D., Cova, M., Karlberger, C., Kruegel, C., Kirda, E.,Vigna, G.,

“Efficient Detection of Split Personalities in Malware, 17th Annual Network”, in

17th Annual Network and Distributed System Security Symposium, San Diego,

USA, (2010).

57

[27] Omella, A., A., "Methods for Virtaul Machine Detection", [Online], Available:

“http://charette.no-ip.com:81/programming/2009-12-

30_Virtualization/www.s21sec.com_vmware-eng.pdf”, [Accessed 02.05.2012],

(2006).

[28] Kolter, J., Z., Maloof, M., A., "Learning to Detect Malicious Executable in the

Wild”, The Proceedings of the Tenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining," New York, NY, USA, (2004).

[29] Abou-Assaleh, T., Cercone, N., Keslji, V., Sweidan, R., "n-gram-based Detection

of New Malicious Code," in The Proceedings of the 28th Annual International

Computer Software and Applications Conference, Washington, DC, USA, (2004).

[30] Santos, I., Penya, Y., K., Devesa, J., Bringas, P., G., "n-Grams-Based File

Signatures For Malware Detection," in The Proceedings of the 11th International

Conference on Enterprise Information Systems, Volume AIDSS, (2009).

[31] Burrows, S., Tahaghoghi, S., M., M., "Source code authorship attribution using n-

grams," in In Proceedings of the Twelfth Australasian Document Computing

Symposium, RMIT University, Melbourne, Australia, (2007).

[32] Frantzeskou, G., Stamatatos, E., Gritzalis, S., Katsikas, S., "Effective identification

of source code authors using byte-level information," in In Proceedings of the

Twenty-Eighth International Conference on Software Engineering, Shanghai,

China, (2006).

[33] Tesauro, G., J., Kephart, O., J., Sorkin, B., G., "Neural networks for computer virus

recognition," IEEE EXPERT Magazine, pp. 5-6, (1996).

[34] Arnold, W., Tesauro, G., "Automatically Generated Win32 Heuristic Virus

Detection," in Virus Bulletin Conference, (2000).

58

[35] Schultz, M., G., Eskin, E., Zadok, E., Stolfo, S., J., "Data Mining Methods for

Detection of New Malicious Executables," in Proceedings of the 2001 IEEE

Symposium on Security and Privacy, (2001).

[36] "Turkey Computer Emergency Response Team", [Online], Available:

“http://www.bilgiguvenligi.gov.tr/certen/index.php”, [Accessed 19.05.2012].

[37] "Microsoft Security Essential", [Online], Available:

“http://www.microsoft.com/security_essentials”, [Accessed 15.05.2012].

[38] Bailey, M., Oberheide, J., Andersen, J., Mao, Z., M., Jahanian, F., Nazario, J.,

"Automated Classification and Analysis of Internet Malware," in Proceedings of

the 10th international conference on Recent advances in intrusion detection,

(2007).

[39] "PEiD tool", [Online], Available: “http://www.peid.info/”, [Accessed 15.05.2012]

[40] "Anubis: Analyzing Unknown Binaries", [Online], Available:

“http://anubis.iseclab.org/”, [Accessed 02.05.2012].

[41] "Pintool", [Online], Available: “http://www.pintool.org/”, [Accessed 19.05.2012].

[42] Hart, M., J., “Windows System Programming”, 4th Edition, Addison-Wesley,

(2010)

http://www.bilgiguvenligi.gov.tr/certen/index.php
http://www.peid.info/
http://anubis.iseclab.org/
http://www.pintool.org/

Biographical Sketch

The author of this thesis was born in 1986 in Balıkesir, Turkey. He has studied in Sırrı

Yırcalı Anatolian High School between 2000 and 2004, and started his undergraduate

education in the Computer Engineering Department of the Engineering and Technology

Faculty of Galatasaray University in 2005-2006 terms. Consequent to the graduation

from the undergraduate degree in 2009, he has enrolled to the Computer Engineering

Master’s Degree in the same university’s Institute of Sciences. Since 2009 he has been

working at BILGEM as a researcher in Information Security Department.

Article written under the supervision of the Doc. Dr. Tankut Acarman, with the name of

“Proposal of n-gram Based Algorithm for Malware Classification” which was presented

at SECURWARE 2011 in Nice, France.

