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Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

in

INDUSTRIAL ENGINEERING

in the

INSTITUTE OF SCIENCE AND EGINEERING

of

GALATASARAY UNIVERSITY

January 2012



COMPONENT SUBSTITUTION IN MASS CUSTOMIZATION

ENVIRONMENT
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Abstract

An optimal inventory acquisition-allocation problem for the assemble-to-order manufac-

turing systems is investigated in this study. When the products are assembled based on

the customer orders, it is well-known that the number of end product configurations can

be very large in practice. This makes the purchase of the right amount of components

at the right time to initiate the assembly a very cumbersome task. This observation is

in fact the motivation of this thesis. Moreover, as the component purchasing lead-times

are generally much longer than the assembly lead-times, a two stages decision process

can be conceived. At the first stage, component purchase quantities are to be decided on

with respect to the exactly unknown (or stochastic) total end product demands and user

preferences (or market proportions for the component options). At the second stage, all

the characteristics of the customer demand are known with certainty, and thus, component

inventories should be appropriately allocated to satisfy this demand. This decision pro-

cess is formulated as a two-stage stochastic programming model with fixed recourse by

taking into account the concepts of mass customization, component substitution, product

modularity and shortage. The proposed model is interesting as it uniquely covers diverse

practical aspects of the problem.

According to different viewpoints and assumptions made, several variants of the base

model are developed. May be the most relevant one aims to prevent the excessive money

loss associated with the erroneously held component inventories. To model the behavior

of the risk-averse decision-maker, the conditional value-at-risk of the recourse actions is

considered when taking the first stage component purchasing decisions. The outcomes

of this approach are compared with the decisions of the risk-neutral decision-maker by

formulating and solving the associated expected value model.

The introduced two-stage stochastic programming models are solved with the adapted L-

Shaped method. The optimum solutions of these models are found by this method after



adding numerous feasibility and/or optimality cuts to the master (first stage decision)

problems. Given that these cuts are generated by solving the related (second stage deci-

sion) subproblems many times, an efficient solution technique for those subproblems must

be existent to solve the overall problem in a reasonable amount of time. It is shown that

the optimal inventory allocation model can be converted to a minimum cost proportional

flow model with disconnected networks, and hopefully, a fast executing exact solution

algorithm can be devised after a careful study of the theoretical aspects of this later model.

In particular, it is aimed to benefit from the underlying network flow structure and modular

decomposition as much as possible with this primal simplex algorithm.

Various computational experiments are later carried out to provide insights into these in-

ventory planning problems. First, several experiments are designed to study the effects of

product shortage and component substitution costs based on a simple product consisting

of two modules and two components per module. Different demand scenario sets are

considered and the solutions are evaluated according to some predetermined performance

metrics such as the average supply ratio, the expected value of perfect information, and

the value of the stochastic solution. Secondly, the effects of increasing the number

modules and the number of components within each module are investigated to reveal

the impact of the end product structure on the mentioned performance metrics. Based

on the experimental results, the product shortage costs, the component substitution costs,

the uncertainty of total demand and market proportions for the component options, the

number of components and modules in the end product structure are all identified as the

key factors affecting the performance metrics. Furthermore, these key factors interact

with each other in general, so that different combinations may lead to different outcomes

on the performance metrics under study.

The average supply ratio reveals how a firm reacts to the demand uncertainty by means

of stock levels. In general, high shortage costs lead to a situation where out-of-stock is

less desirable, and then more inventory is held to satisfy the customers. This effect is

more significant when the uncertainty on the total demand quantity is high. When the

shortage costs are low, the stock levels may decrease while substitution costs increase,

since the out-of-stock situation would be more acceptable in this case. This effect is

xiii



more significant when the uncertainty of market proportions for the component options is

high. On the other hand, when the shortage costs are high, the stock levels may increase

while substitution costs increase because the use of original components would be more

favorable in this case.

The expected value of perfect information corresponds to the price of the option to know

the complete and accurate information about the future. Within this context, it enables

a decision-maker to assess how much he/she would spend for an initiative to reduce the

demand uncertainty. Based on the findings, the shortage and substitution costs signifi-

cantly affect the expected value of perfect information and their effects is more visible

when the uncertainty of total demand and market proportions for the component options

are high. Late differentiation strategy for component options can be a solution to deal

with the uncertainty of market proportions. More generally, a need for accurate demand

forecast is apparent and a detailed market survey can help to improve this situation.

Similarly, a firm has to be ready to pay more when dealing with the demand uncertainty

for the end products having complex structures. In an assemble-to-order manufacturing

setting, an effort to reduce component lead times can result to a decrease in the number

of components or modules that an inventory planner has to deal with.

Finally, it is observed that the risk of being out-of-stock is underestimated by a risk neutral

decision-maker. In that case, it should be wiser to invest in the customer retention or

loyalty programs. The risk of a high loss increases when the substitution costs increase,

and the increase is sharper as the uncertainty of market proportions for the component

options is high. This increase can be attributed to diminution of the risk pooling effect of

substitution.
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Résumé

Un problème d’acquisition et de répartition optimal des stocks pour un système de mon-

tage sur commande est étudié dans cette recherche. Lorsque les produits sont montés

selon les commandes des clients, il est bien connu que le nombre de configurations

de produits finals peut être très élevé dans la pratique. Cela rend l’achat de la bonne

quantité de composantes au bon moment pour initier l’assemblage une tâche très dif-

ficile. Cette observation est en fait la motivation de cette thèse. Par ailleurs, comme

les délais pour l’achat des composants sont généralement beaucoup plus longs que les

délais d’assemblage, un processus de décision en deux étapes peut être conçu. À la

première étape, les quantités d’achat de composants doivent être décidées en considérant

l’incertitude à propos de la demande totale (demande stochastique) des produits finals et

des préférences des utilisateurs (ou les proportions de sélection des composantes). À la

seconde étape, toutes les caractéristiques de la demande de la clientèle sont connues avec

certitude, et donc, les stocks des composantes doivent être bien répartis pour satisfaire

cette demande. Ce processus de décision est formulé comme un modèle de programma-

tion stochastique à deux étapes avec recours fixe en prenant en compte les concepts de

personnalisation de masse, substitution de composants, modularité et pénurie du produit

final. Le modèle proposé est intéressant car il inclut uniquement divers aspects pratiques

du problème.

Selon les différents points de vue et les suppositions basées, plusieurs variantes du modèle

de base sont développées. Peut être la plus pertinente a pour but de prévenir la perte

excessive de capitale associée aux stocks des composantes détenus par erreur. Pour

modéliser l’attitude préventive du décideur à l’égard du risque, la valeur conditionnelle

à risque des actions de recours est considérée lors de la prise des décisions d’achat des

composantes de la première étape. Les résultats de cette approche sont comparés avec les

décisions du décideur indifférant à l’égard du risque en formulant et résolvant le modèle

de valeur attendue associé.



Les modèles de programmation stochastique en deux étapes introduits sont résolus avec

une adaptation de la méthode L-Shaped. Les solutions optimales de ces modèles sont trou-

vées par cette méthode après l’ajout des nombreuses coupes de faisabilité et/ou d’optimalité

aux problèmes maîtres (décision première étape). Étant donné que ces coupes sont for-

mées à plusieurs reprises par la résolution des sous-problèmes liés (décision de deuxième

étape), une technique de résolution efficace pour les sous-problèmes doit être existante

pour résoudre le problème global dans une durée raisonnable. Il est montré que le modèle

de répartition optimal des stocks peut être transformé en un modèle de flux proportion-

nelle à coût minimum avec des réseaux déconnectés. Et heureusement, un algorithme de

résolution exacte et rapide est conçu après une étude approfondie des aspects théoriques

de ce dernier modèle. En particulier, on vise à bénéficier de la structure du réseau de

flux impliquée et de la décomposition modulaire autant que possible avec cet algorithme

primal du simplexe.

Diverses analyses numériques sont effectuées pour fournir des indications sur ces prob-

lèmes de planification des stocks. Tout d’abord, plusieurs expériences sont conçues pour

étudier les effets des coûts de pénurie de produits et des coûts de substitution des com-

posantes pour un produit simple qui se compose de deux modules et deux composantes par

module. Différents scénarios de demande sont considérés et les solutions sont évaluées

en fonction des métriques de performances prédéterminées comme la valeur moyenne du

taux d’approvisionnement, la valeur attendue de l’information parfaite, et la valeur de la

solution stochastique. Deuxièmement, les effets de l’augmentation du nombre de modules

et du nombre de composantes au sein de chaque module sont étudiés pour révéler l’impact

de la structure du produit final sur les métriques de performance mentionnées. Sur la base

des résultats expérimentaux, les coûts de pénurie de produits, les coûts de substitution

des composantes, l’incertitude de la demande totale et l’incertitude des préférences de la

clientèle, le nombre de composants et de modules dans la structure du produit final sont

tous identifiés comme des facteurs clés qui influent sur les métriques de performance.

En outre, ces facteurs clés interagissent les uns avec les autres en général, afin que les

différentes combinaisons peuvent conduire à des résultats différents sur les métriques de

performance étudiées.
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La valeur moyenne du taux d’approvisionnement révèle comment une firme réagit à

l’incertitude de la demande en ajustant les niveaux de stock. En général, les coûts de

pénuries élevées conduisent à une situation où la rupture de stock est moins souhaitable,

et puis plus d’inventaire est tenue pour satisfaire les clients. Cet effet est plus significatif

lorsque l’incertitude sur la quantité de la demande totale est élevée. Lorsque les coûts

de pénurie sont faibles, les niveaux de stock peuvent diminuer alors que les coûts de

substitution augmentent, puisque la situation de rupture de stock serait plus acceptable

dans ce cas. Cet effet est plus important lorsque l’incertitude des préférences de la

clientèle est élevé. D’autre part, lorsque les coûts de pénurie sont élevés, les niveaux

de stock peuvent augmenter alors que les coûts de substitution augmentent parce que

l’utilisation de composantes originales serait plus favorable dans ce cas.

La valeur attendue de l’information parfaite permet à un décideur d’évaluer combien

il/elle dépenserait pour une initiative visant à réduire l’incertitude de la demande. Basé

sur les résultats, les coûts de pénurie et de substitution affectent de manière significative

la valeur attendue de l’information parfaite, et leurs effets sont plus visibles lorsque

l’incertitude de la demande totale et des préférences de la clientèle sont élevés. La

stratégie de différenciation retardée peut être une solution pour faire face à l’incertitude

des préférences de la clientèle. Plus généralement, un besoin de prévision de la demande

précise est apparent et une étude de marché détaillée peut aider à améliorer cette situation.

De même, une entreprise doit être prête à payer plus lorsqu’il s’agit de l’incertitude de

la demande pour les produits finis ayant des structures complexes. Dans un système

de montage sur commande, un effort pour réduire les délais d’approvisionnement des

composantes peut entraîner une diminution des nombres de composants ou de modules

que doit traiter un responsable de la programmation d’approvisionnement.

Enfin, il est observé que le risque de rupture de stock est sous-estimé par un décideur

indifférant à l’égard du risque. Dans ce cas, il devrait être plus prudent d’investir aux pro-

grammes de fidélisation de la clientèle. Le risque d’une perte élevée augmente lorsque les

coûts de substitution augmentent, et cette augmentation est plus nette lors que l’incertitude

des préférences de la clientèle est élevé. Cette augmentation peut être attribuée à la

diminution de l’effet de mise en commun des risques par la substitution.
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Özet

Bu çalışmada siparişe göre montaj yapılan üretim sistemleri için bir eniyi envanter tedariği

ve tahsisi problemi incelenmiştir. Pratikte iyi bilinmektedir ki ürünlerin müşterilerin

siparişlerine uygun montajı yapıldığı zaman üretilebilecek nihai ürün çeşidi oldukça fa-

zladır. Tabii bu da montajı başlatabilmek için gerekli doğru sayıda bileşenin doğru za-

manda satın alınma işlemini önemli ölçüde zorlaştırmaktadır. Bu gözlem aslında bu tezin

çıkış noktasını oluşturmaktadır. Buna ilaveten, bileşen tedarik sürelerinin montaj süreler-

ine kıyasla daha uzun olması iki aşamalı bir karar sürecine neden olur. Birinci aşamada

kesin olarak bilinmeyen (veya stokastik) toplam nihai ürün talebi ve müşteri tercihleri

(veya bileşen tercih oranları) dikkate alınarak tedarik edilecek bileşen miktarına karar

verilmelidir. İkinci aşamada ise tüm müşteri talebinin unsurlarının kesin olarak bilindiği

düşünülerek bu talebi karşılamak üzere eldeki bileşen envanterinin uygun biçimde tahsisi

istenmektedir. Bu karar süreci iki aşamalı doğrusal stokastik programlama modeli ile

ifade edilmiştir, ve bu modele kitlesel özel üretim, bileşen ikamesi, ürün modülerliği ve

noksanlığı kavramlarına ilişkin unsurlar dahil edilmiştir. Probleme ilişkin uygulamadan

gelen çok sayıda detayı kapsamasından dolayı önerilen modelin karar vericiler için yol

gösterici olacağı düşünülmektedir.

Farklı bakış açıları ve varsayımlar göz önüne alınarak temel modelin çeşitleri geliştir-

ilmiştir. Bunlar arasından belki de en dikkat çekici olanı yanlış miktarda tutulan bileşen

envanteri nedeniyle oluşan aşırı sermaye kaybını engellemeyi amaçlayan modeldir. İlk

aşamadaki bileşen tedariği kararları alınırken, riskten kaçınan karar vericinin davranışını

modelleyebilmek için ikinci aşama maliyetlerinin koşullu riske maruz değerinin enaza in-

dirilmesi düşünülmüştür. Bu yaklaşımın sonuçları, riske duyarsız karar vericinin davranışını

ifade eden bir beklenen değer modeli oluşturularak ve çözülerek karşılaştırılmıştır.

Önerilen iki aşamalı stokastik programlama modelleri yeniden düzenlenmiş L-Shaped

yöntemi ile çözülmüştür. Bu modellerin eniyi çözümleri ana (ilk aşama kararları) prob-



lemlere çok sayıda olurluluk ve/veya eniyilik kesmeleri eklenerek bulunmaktadır. Bu

kesmelerin de ilişkin alt problemlerin (ikinci aşama kararları) gene çok defa çözülmesiyle

elde edildiği düşünülürse, tüm problemin makul bir süre içinde çözülebilmesi için bu alt

problemleri etkin biçimde çözecek bir teknik var olmalıdır. Eniyi envanter tahsisi mod-

elinin ayrık ağlı en düşük maliyetli orantılı akış modeline çevrilebileceği gösterilmiştir.

Bu sayede de bu ikinci modelin teorik unsurlarının analizi doğrultusunda göreceli olarak

hızlı çalışan bir çözüm algoritması geliştirilebilmiştir. Bu temel simpleks algoritması var

olan ağ akış yapısından ve modüler parçalamadan olabildiğince yararlanmaktadır.

Bu envanter planlama problemleri hakkında daha ayrıntılı bilgiler sunabilmek için deney-

sel hesaplamalar yapılmıştır. Öncelikle iki modül ve modül başına iki bileşenden oluşan

basit bir ürün yapısı düşünülerek, ürün noksanlığı ve bileşen ikamesi maliyetlerinin etki-

lerini araştırmak üzere deneyler tasarlanmıştır. Farklı talep senaryoları dikkate alınmış ve

sonuçlar ortalama tedarik oranı, tam bilginin beklenen değeri ve stokastik çözümün değeri

gibi performans ölçütlerine dayanarak değerlendirilmiştir. Bunu müteakiben, nihai ürün

yapısının bu belirtilen performans ölçütlerine etkisini belirlemek üzere modül sayısının ve

her modüldeki bileşen sayısının arttırılmasının etkisi incelenmiştir. Deneysel sonuçlara

göre ürün noksanlığı maliyeti, bileşen ikamesi maliyeti, toplam talebin ve müşteri ter-

cihlerinin belirsizliği, nihai ürünün montajını yapmada gerekli bileşen ve modül sayıları

etkenlerinin hepsi anılan performans ölçütlerini etkileyen ana unsurlardır. Ayrıca bu ana

etkenler birbirleri ile etkileşim halindedir ve farklı karmalar performans ölçütlerini farklı

biçimde etkilemektedir.

Ortalama tedarik oranı bir firmanın talep belirsizliğine karşı stok sevilerini düzenleyerek

nasıl tepki verdiğinin bir ölçütüdür. Genel olarak yüksek noksanlık maliyetleri stoksuz

kalmayı tahammül edilemez kılmaktadır, ve müşteri talebini karşılamak üzere daha çok

envanter tutmayı teşvik etmektedir. Bu etki toplam talep miktarındaki belirsizlik arttıkça

daha belirgin hale gelmektedir. Noksanlık maliyetleri düşük olduğunda, ikame maliyetleri

yüksek ve müşteri tercihlerinin belirsizliği fazla olsa bile stok seviyeleri azalmaktadır

çünkü bu durumda stoksuz kalmak daha kabul edilebilir olmaktadır. Noksanlık maliyet-

leri yüksek iken ikame maliyetlerini arttığında stok seviyelerini de arttırma ihtiyacı doğ-

maktadır çünkü bu durumda orijinal bileşen kullanımı öne çıkmaktadır.

xix



Tam bilginin beklenen değeri, geleceğe dair tam ve doğru bilgi edinmek için ne kadar

istekli olmamız gerektiğinin bir ölçütüdür. Bu bağlamda, karar verici talepteki belirsizliği

azaltmak üzere bir girişimde bulunursa buna ne kadar çaba harcaması gerektiğini değer-

lendirmede yardımcıdır. Elde edilen bulgulara göre noksanlık ve ikame maliyetleri bu

ölçütü önemli ölçüde etkilemektedir ve bu etki toplam talebin ve müşteri tercihlerinin

belirsizliği fazla olduğunda daha da artmaktadır. Müşteri tercihlerindeki belirsizlikle

başa çıkmak üzere geciktirilmiş farklılaştırma stratejisi bir çözüm olabilir. Daha genel

biçimde talep tahmininin doğruluk derecesini arttırma ihtiyacı belirgindir ve ayrıntılı bir

pazar araştırması bunu sağlamada yardımcı olabilir. Benzer şekilde bir şirketin, karmaşık

yapıya sahip nihai ürünlerin talebindeki belirsizlikle başa çıkabilmesi için daha fazla

yatırım yapmaya hazır olması gereklidir. Siparişe uygun olarak montaj yapılan bir üretim

sistemi için, bileşen tedarik zamanlarının kısaltılması envanter planlamasında göz önüne

alınması gereken bileşen ve modül sayılarının azaltılmasında yardımcı olacaktır.

Son olarak stoksuz kalma riskinin riske duyarsız karar verici tarafından hafife alındığı

tespit edilmiştir. Bu durumda müşteri sadakati veya tutundurma programlarına yatırım

yapılması akılcı olacaktır. İkame maliyetleri arttıkça yüksek sermaye kaybıyla karşılaşma

riski artmaktadır ve müşteri tercihlerindeki belirsizlik arttıkça bu risk daha da büyümek-

tedir. Riskteki bu artış ikamenin sağladığı risk paylaşımının azalmasına bağlanabilir.

xx
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1 Introduction

Today, the quality requirements of customers is more difficult to satisfy than it is in the

past. As a result, customer needs should be well understood, and innovative products

and services targeting those needs should be developed. Indeed, it is very difficult to

conceptualize a single type of product or service that fits all needs of all the customers.

Even if it was possible to achieve it, it will be very expensive from customer perspective

since it has to contain the needs of others too. Thus, products and services should be

customized with an eye on the associated costs. At this point, the concept of mass

customization aims to provide the flexibility of customization while price, quality, and

speed dimensions of the competition are preserved.

The mass customization is accepted as an important dimension of business competition in

the new age of economy. This fact is observable from both the increasing number of aca-

demic papers and the various field applications in manufacturing and service industries.

According to Kumar et al.[1], over one thousand publications about mass customization

topic are cited in several journals and magazines. Indeed, the mass customization seems

to remain on the focus of this endeavour thanks to the growing expectations of customers

on the price, quality, speed and customization issues.

In manufacturing industries, the analysis of customer's value perception is central to any

design of product variety by customization. This analysis results often into a product

structure where this variety is offered to customers by a modular design. In such a

situation, inventory management is a hard task because a large number of stock items

resulting from modular combination of options and having stochastic demand has to be

planned. Hence, firms have to revise their production strategies considering the dimen-

sions of competition.
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From economies of scale viewpoint, make-to-stock production strategy is efficient in

terms of production costs per unit and it offers great availability for the stocked products.

However, its drawback is that it incurs financial losses because of the large amount of

capital invested in the production process to ensure this product availability. On the

other hand, make-to-order production strategy promises cost savings by reducing the

amount of capital investment in production process because it is initiated when customer

demand is received. Nevertheless, this strategy has also a drawback, it mostly decreases

product availability by increasing customer order lead times. At this point, assemble-

to-order production strategy promises efficiencies in both capital investment and product

availability issues, in particular when the raw material lead times are greater than the time

required for the assembly. In this strategy, production is still initiated when the customer

demand is received, however, a large amount of raw material needs to be purchased before

starting assembly process. This makes the production lead time much shorter than it is

for the make-to-order strategy. Because of the advantages gained, a modular product

architecture is an enabler of this strategy.

On the other hand, substitution is an another interesting concept that may lead to higher

expected profits in demand scenarios with high variance and negative correlation [2]. It

allows a need for a component requirement to be fulfilled by use of another component

when the former is out of stock. Hence, it may affect optimum design of product variety

and optimum component stock quantities. Therefore, it is possible to say from managerial

perspective that assemble-to-order strategy should be developed with substitution.

In the assemble-to-order strategy, the decision variables may be classified into two stages

because the component lead times are in general much greater than the assembly lead

times. The first stage decision variables consist of component purchase quantities which

have to be calculated with respect to stochastic product demand. At the second stage,

where demand realization occurs, the allocation of components to products has to be

determined. This decision process results into a two stage stochastic programming model

with fixed recourse. This large-scale linear programming problem is interesting from both

computational perspective and stochastic performance measures involved.
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Assemble-to-order models are particularly important when dealing with the inventory

planning problem of modular products in mass customization. Currently, mass customiza-

tion and modularization strategies are adopted by several industries including automotive,

apparel, footwear, and consumer electronics but not limited to. Thus, the developed

models can be used as analytic tools to determine the appropriate levels of component

inventories in those industries.

The thesis is organized as follows. An extensive literature survey is given in Chapter 2

and the findings of this survey motivated us to propose several assemble-to-order models

including modularity, shortage, and substitution concepts under stochastic total demand

and stochastic market proportions for the component options to fill an important gap in the

literature. These models are practically relevant as they cover all of those concepts whose

importance is stressed. The topics of conditional value at risk (CVaR) and two stage

stochastic linear programming are briefly introduced in Chapter 3. Next, the planning

of assemble-to-order with substitution under mass customization is studied in Chapter

4. Several models with different assumptions including general, subcontracting and spot

market cases are investigated. The models with risk neutral and risk-averse objectives

are represented. In Chapter 5, the mathematical properties of the assemble-to-order with

substitution problem is analyzed theoretically. The networks with gains and losses, and

the Hitchcock transportation problem are discussed. In particular, a special algorithm

for the modular networks with proportional flows is proposed. Based on this analysis,

the relationship between several models is also given in Chapter 5 and the related solution

methods are summarized. In Chapter 6, first the performance of the special primal simplex

algorithm is discussed. Later, the sensitivity analysis is carried out to understand the

effects of shortage and substitution costs on the stochastic performance metrics. The

effects of increasing the number of components and modules are also discussed based on

the same stochastic performance metrics. Finally, Chapter 7 contains some concluding

remarks and perspectives.



2 Literature Survey

2.1 Mass Customization

From a broader view, mass customization means to provide customized products or ser-

vices through flexible processes in high volumes and at reasonably low costs [3]. Strate-

gies similar to the mass customization have been applied in the past. Alizon et al. [4] com-

pare Ford’s approach to current mass customization approach, and they argue that a kind

of mass customization was also implemented by Ford through specialized manufacturers

which tailored the cars with respect to the customer requirements. According to Davis

[5], mass customization is a new idea in marketing that could lead to significant changes

in business style. The evolution of business strategies from mass production to mass

customization is explained well by Pine [6]. Kumar [7] states that mass customisation is a

research field that has achieved maturity. Nonetheless, mass customization has a growing

number of application areas and it is still being examined from multiple perspectives:

Chen and Hao [8] underline the necessity of applying the concepts of mass customization

into the design of service delivery system to cope with the efficiency and customization

dilemma. From manufacturing perspective, Dean et al. [9] develop a new manufacturing

resource planning method for mass customization by analyzing the data of customer

demands and manufacturing resource requirements. From organizational perspective,

Huang et al. [10] show that organic structures support the mass customization strategy.

However, they argue that this fact is significant for customizers only at the design or

fabrication stages, not at the assembly or delivery stages.

There are several levels and strategies related to mass customization. Da Silveira et al.

[3] list eight generic levels of mass customization:

• Design,
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• Fabrication,

• Assembly,

• Additional custom work,

• Additional services,

• Package and distribution,

• Usage,

• Standardization.

Pine [11] cites five necessary directions in a mass customization implementation:

• Service customization around standard products,

• Mass production of products that can be later modified,

• Point of delivery customization,

• Quick response,

• Component modularization.

For a manufacturing firm with design, fabrication, assembly and distribution stages in its

value chain, Lampel and Mintzberg [12] classify mass customization strategies into five

categories:

• Pure standardization where all the design, fabrication, assembly and distribution

stages are standardized,

• Segmented standardization where the customization starts from the distribution

stage,

• Customized standardization where the customization starts from the assembly stage,
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• Tailored customization where the customization starts from the fabrication stage,

• Pure customization where all stages are customized.

Gilmore and Pine [13] identify four distinct approaches to mass customization:

• Collaborative where there is a dialog process between designers and customers,

• Adaptive where standard products are customized to individual needs during use,

• Cosmetic where standard products are differentiated by packaging,

• Transparent where the customization of products is indiscernible from viewpoint

of customers.

Amaro et al. [14] develop a taxonomy including 11 types of non make-to-stock companies

based on the degree of customization, company responsibility and activities performed

after order acceptance. In particular, they propose two new labels: “versatile manu-

facturing company” following customization by individual order and “repeat business

customizer” following customization by contract. Duray et al. [15] differentiate between

the design, fabrication, assembly, and use stages in the value chain of mass customizers

and the authors classify them into four categories by points of customer involvement and

modularity type:

• Fabricators where both the points of customer involvement and modularity are in

the design and fabrication stages,

• Involvers where the point of modularity is in the assembly and use stages,

• Modularizers where the point of customer involvement is in the assembly and use

stages,

• Assemblers where both the points of customer involvement and modularity are in

the assembly and use stages.
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Furthermore, the authors argue that the use of modularity in the assembly and use stages

can lead to higher performance for the values of return on investment, profit margin, and

market share.

The design of product variety is accepted as a strategic decision leading to success in the

mass customization. The analysis of product quality in relation to mass customization,

that is the value perception of customer by this variation is central while deciding on the

product variety. A method to capture and describe information for product configuration is

proposed by Feng et al. [16]. It is based on the general requirement concept which covers

the dimensions of time, space, and character. In their method, the time dimension deals

with the whole product life cycle including marketing, design, production, supply, and

service stages. The space dimension is concerned with the global supply chain including

customers, manufacturers, suppliers, distributors. Finally, in the character dimension, the

domains of product, cooperation, technology, and management are considered.

Merle et al. [17] define the five perceived benefits of mass customization from a consumer

viewpoint:

• Utilitarian value to show the gap between consumer needs and product features,

• Uniqueness to show to what degree the consumers feel that they are individually

targeted,

• Self-expressiveness to show to what degree the consumer personality is expressed,

• Hedonic value to show the consumer pleasure,

• Creative achievement to show to what degree consumers feel that they are creative.

Trade-offs exist between product customization and manufacturing costs, and delivery

lead times. However these trade-offs can be reduced at the assembly level by the use of

modularization [18].
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2.2 Modularity

Kumar [19] sees the modularity as the essence of mass customization. Standardized mod-

ules can be manufactured with mass production techniques that allow to reduce costs [15].

Similarly, Piller [20] gives some examples of mass customization and in particular, gives

a successful case of company having modular product range and employing assemble-to-

order production system. Modularity is a well investigated topic in the literature and the

current trend indicates that it will remain popular in the future [21]. Ulrich and Tung [22]

classify the modularity into six categories:

• Component sharing modularity: several products use a common component to

satisfy some functional requirement,

• Component swapping modularity: different functionalities are provided by the use

of interchangeable components,

• Cut-to-fit modularity: products required at a wide range of sizes are obtained from

a common product having a larger size,

• Mix modularity: various mixes of components can lead to different functionalities,

• Bus modularity: the use of several number of components is allowed in the bus

architecture,

• Sectional modularity: a different requirement can be addressed by rearranging a set

of components.

Hsuan [23] points out the component, module, sub-system and system levels of modu-

larization. The author evaluates the relationship between several modularization levels

and interface constraints including the factors of interface compatibility, component cus-

tomization, value inputs, and supplier-buyer interdependence. The author argues that the

component level of modularization are associated with low interface constraints. Ernst

and Kamrad [24] define rigid, postponed, modularized and flexible supply chain structures

as follows:
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• Rigid with low postponement and low modularization,

• Postponed with high postponement and low modularization,

• Modularized with low postponement and high modularization,

• Flexible with high postponement and high modularization.

Furthermore, the authors argue that there is a relationship between undesired vertically

integrated supply chain structure and low modularization. Brun and Zorzini [25] analyze

the relationship between product features and supply chain structures and they argue

that flexible supply chain structures are associated with complex and highly customized

products, postponed supply chain structures with simple but highly customized products,

and modularized supply chain structures with complex but lowly customized products.

Duray [26] answers the question of how the point of customer involvement and modularity

influence the decision process in a production system. The author argues that modularity

influences the supplier integration, stock levels, and inventory planning. While, the point

of customer involvement influences only the inventory planning decisions. Later, Howard

and Squire [27] find that modularity helps to increase the collaboration between a buyer

and its supplier with relationship specific assets and information sharing.

In the modular product design, there is a dedicated module for each function of the product

and each module has several variants (or options) such that a customer can choose a

configuration according to his/her preferences for each function [1]. The complexity of

manufacturing processes can be reduced by use of the modular product design concept

[1]. As an another important result, the mass customization strategy is supported by the

modular product design concept [28].

The product variety design is positively influenced by the modular design. Following

this idea, Jose and Tollenaere [29] claim that modularity and standardization are enablers

of the platform strategy, where the use of a standard module between different products

corresponds to a platform. The authors search for the platform concept in the literature

while focusing on the modular and platform methods for product family design. They

conclude that an efficient product family design allows easy modifications to differentiate
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between products and uses maximum number of common components while preserving

the distinctiveness between products. Later, Jiao et al. [30] provides a review on the

research activities in product family design and platform-based product development.

The authors underline the importance of the holistic view. Similarly, Antonio et al.

[31] conduct a literature survey on the impacts of modular product design on several

competitive dimensions including price, quality, customer service, flexibility, and deliv-

ery. According to their empirical study, modular product design can not enhance each

competitive dimensions simultaneously, and in particular, it can not deal with the price

and quality dimensions.

In the literature, there are several papers that deal with the design of modular products

under optimization viewpoint. Fujita [32] simultaneously design multiple products by

determining the contents of modules and their combinations under fixed modular prod-

uct architecture. For this purpose, the author distinguishes between optimal attribute

assignment and optimal module combination aspects of design of product variety. The

author also gives the following examples: design of television receiver circuits for opti-

mal module combination and aircraft design for optimal attribute assignment. In some

situations, it is feasible to produce only a small number of products from a large set of

product configurations. Then, it is common to have one product with higher options

to substitute for the demand of non produced one with lower options. For this purpose,

Briant and Naddef [33] define the diversity management problem that consists of choosing

an optimal subset of configurations that will be produced to meet all the demand. The

authors model the problem as a large-scale integer linear problem and use Lagrangian

relaxation to reduce its size. In an another work, the trade-off between labor costs and

transportation costs is investigated by da Cunha et al. [34] when determining the optimum

portfolio of modules to be supplied from a distant manufacturing site. In their model,

a module consists of a subset of basic components, and the final product is assembled

from a subset of modules when a customer order is received. Furthermore, the authors

assume that the probability of demand for each of the final products is known. They

solve an integer programming model which takes into account the mean final assembly

time constraint to determine the optimum portfolio of modules with heuristic algorithms.
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Li et al. [35] consider the product platform customization problem. In this problem, a

customer requirement is matched by configuring an optimal product variant based on the

given product platform. The authors distinguish three product platform customization

approaches: scalable, configurable, and adaptive. In the scalable approach, the config-

uration of product variant is done by stretching or shrinking the common parameters

of the product platform. In the configurable approach, swapping standard modules is

preferred without changing their parameters. In the adaptive approach, both the scalable

and configurable approaches are valid. Finally, the authors propose a heuristic method to

solve the adaptive product platform customization problem.

The modularity and commonality concepts are investigated together in many studies.

Fixson [36] reviews the modularity and commonality based on the dimensions of subject,

effect, and research method. The titles of product, process, organization, and innova-

tion take part in the subject dimension. The dimension of effect consists of product

performance/quality, product variety, costs, and time. Finally theory building, concepts

and frameworks, process modeling, mathematical modeling, simulation, experiments,

empirical studies, case studies, and reviews are in the dimension of research method. In

particular, the author notices that the research method dimension is based on mathematical

models for the study of commonality while it relies on the frameworks and small n-case

studies for the study of modularity. Hence, the lack of operationalization of modularity is

apparent [36].

2.3 Component Commonality and Substitution

The inventory management is a critical issue for mass customization. The component

commonality and substitution play an important role in this context. In particular, substi-

tution is on the focus of this research.

The component commonality is a widely adopted concept and its risk pooling effect is

well known. Moreover within commonality, there is an opportunity to sell more of the

product with higher margin when the component stock level is not enough to meet all
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the demand even for perfectly correlated product demands. This fact is designated as

“revenue-maximization option” effect by Van Mieghem [37]. There are many studies

concerning the effects of commonality in the literature. However, these effects are not

known completely in multistage systems with multiple products and multiple common

items [38].

Hillier [39] studies the commonality within a simple assembly model with service level

constraints. In this model, two final products are considered, each of which uses two

components. The author finds that commonality can be useful in the single-period models,

but also argues that it may not be useful in the multiple-period models. Ma et al. [40]

consider a multi-period, multi-product, and multi-stage assembly model with random end

product demands. The authors conclude that the savings from using common components

continuously from the first stage to a late stage in an assembly system depend on the

component cost structure, replenishment lead times, and the assembly times. Chod et

al. [41] study the commonality and product pricing issues in their assembly model. The

authors argue that the optimal prices of two products are positively correlated when the

commonality between is high.

From an optimization perspective, Jönsson et al. [42] incorporates the commonality

concept to an assemble-to-order inventory problem under budget constraint and solves

it with the scenario aggregation approach. In a modular end-product structure, Paul and

Vakharia [43] determine the optimal stock quantities of component options under a given

service level. In their study, two distinct sources of uncertainty are defined: stochastic

total demand and unknown market proportions for the component options. However,

component substitution is not included in their model. Nonas [44] proposes a gradient

based search method to determine the optimum stock quantities in an inventory model

with random demand drawn from a distribution with joint density function. In this model,

three products can share any number of common components.

Substitution within the inventory management context has received much attention from

many scholars. The component substitution can offer significant cost savings particularly

when the demands of components highly variate and are negatively correlated [2]. In the
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production process, it allows the demand of a component to be fulfilled by use of another

component when the former is out of stock. Hence, it may affect the optimum design of

product variety and the optimum stock quantities. Particularly, two types of substitution

are encountered in the literature: Two ways substitution and one way/downward substi-

tution. In the two ways substitution, one component can substitute for another, and vice

versa. However, in the one way substitution, only components with higher degree value

can substitute for ones with lower degree value.

The one way substitution problem is investigated by many authors. In particular, special

solution methods are developed exploiting the one way substitution property. Chen [45]

determines the substitution policy in an inventory model with one way substitution un-

der optimization viewpoint. Hsu and Bassok [46] consider a multiproduct single-period

inventory model where there is one raw material input from which end products are

obtained according to some given random yields. Moreover, the demand for end products

is also random and one way substitution is possible between end products. Then, the

authors develop a greedy algorithm exploiting the one way substitution property for the

subproblems resulting from the decomposition of their main inventory problem. Bassok et

al. [47] also consider a single period inventory model with multiple products and one way

substitution. In their model, production or purchase orders are placed before the demand

realization, but the allocation of inventory is done when the demand is known. First, the

authors propose an optimal greedy inventory allocation policy, then they argue that it is

more beneficial to consider substitution at the ordering stage instead of not considering it

at this stage. They observe that this effect is more significant when the demand variability

is high, the substitution costs are low, the profit margins are low, the salvage values are

high, and the products have about same prices and costs. Hale [48] considers an inventory

model with two simple end products having normally distributed demands. Each end

product is assembled from two of four distinct components. For this end product structure,

there is one-way substitution relationship between two specific components. Then, the

author solves this model by numerical integration. As a result of this study, substitution

is showen to substantially reduce costs. Axsater [49] develops an approximate technique

to deal with the order policy evaluation in an inventory model with multiple products,
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Poisson demand and one way substitution. Rao et al. [50] develop heuristic algorithms to

solve a two-stage stochastic integer program dealing with a single-period inventory prob-

lem in which multiple products, setup costs, one way substitution, and random demands

are considered. The authors underline the cost advantages of considering substitution.

Hsu et al. [51] propose two dynamic lot size models with multiple products by taking

into account setup costs, production costs, and inventory holding costs and one of them

includes unit conversion costs for one way substitution. To solve both models, the authors

develop dynamic programming based algorithms which work in polynomial time under

fixed number of products assumption. They also propose a heuristic algorithm. Li et

al. [52] deal with an uncapacitated production planning problem with multiple products

and one way substitution. In their model, the demand of a product type can be met

by manufacturing new products or remanufacturing used products. The authors propose

both dynamic programming and approximate approaches to solve their problem by taking

into account manufacturing, remanufacturing, setup, inventory holding, and substitution

costs.

The one way substitution problem is also interesting from managerial perspective. A two-

echelon distribution system with multiple products having normally distributed demand

is studied by Weng [53]. The product with highest degree is used as the joint buffer

stock in this system. The author argues that it is possible to benefit more from this joint

buffer stock particularly when the service levels are high. Inderfurth [54] considers a

single-period inventory model with new and used products having stochastic demands

and returns respectively. The author assumes that new products have a higher degree, and

there is a one way substitution relationship between new and used products. Furthermore,

the author takes into account different manufacturing and remanufacturing lead times, and

this leads to different points in time for the execution of manufacturing and remanufac-

turing decisions, and different optimal policies. Tibben-Lembke and Bassok [55] develop

a two-stage stochastic programming model to deal with an inventory problem in which

both the generic product and the regular products are used to meet the demand. There is

one way substitution relationship between the generic product and the regular products.

The generic product has a higher degree and it is more expensive. The substitution can
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take place when the demand is known. Based on their model, the authors argue that it

is possible to increase the profits by the use of a generic product. Bayindir et al. [56]

consider an inventory model with a common capacity constraint and stochastic demand

for the products. In their model, the brand new and retreated tires are manufactured and

remanufactured to meet the demand, respectively. The brand new tires have higher degree

than the retreated tires, and one way substitution is allowed. However, this substitution

can be accepted by customers according to some given probability when a stock-out situ-

ation occurs. Based on the results of their computational study, the authors conclude that

the common capacity constraint has influence on the optimal inventory levels according

to the different capacity requirements and production costs of the tire types. Karakul and

Chan [57] develop a single-period inventory model with a new and an existing products.

The one way substitution is possible in a shortage situation and the new product has a

higher degree than the existing product. Moreover, the authors assume that the demand

models of products are linear functions of the new product price and have a noise term

following a general discrete demand distribution. The authors seek to maximize the profit

obtained from the inventory model by determining the price of the new product and the

inventory levels of both products. Finally, the authors conclude that substitution can lead

to both a higher profit and a higher optimal price of the new product.

The two ways substitution problem is cited extensively in the literature. Although there

are no solution algorithms as fast as for the one way substitution problem, several op-

timization approaches are developed to deal with the two ways substitution problem.

Balakrishnan and Geunes [58] develop a component requirements planning model for

a two-stage manufacturing system with multiple products and component substitution.

The authors call their model as the “requirements planning with substitutions” problem

and they develop a dynamic programming based solution method to solve it by taking into

account setup, production, conversion, and holding costs. However, they do not consider

the projection of product shortages on the consumption of components required for the

assembly. Later, Geunes [59] reformulates the requirements planning with substitutions

problem as an uncapacitated facility location problem to solve it effectively. Nagarajan

and Rajagopalan [60] study an inventory model with substitutable products by considering
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the revenue of selling products, purchasing costs, inventory holding costs, and shortage

costs. The authors assume that only a fixed proportion of the customers can accept the

substitution in a stock-out situation. Then, they propose heuristic approaches to find

the optimal inventory levels. The authors argue that their heuristic approach is effective

particularly at low levels of substitution, low levels of aggregate demand variation, and

high service levels.

It is possible to derive several managerial implications from the two ways substitution

problem. Mishra [61] studies an assemble-to-order model with multiple products, stochas-

tic product demand, and stochastic component yield to analyze both component common-

ality and component substitution. The author argues that the approach of substituting the

expected values for random variables in the model is not an effective approach. Moreover,

the author finds that it is possible to benefit more from commonality when the demand

variates highly and correlates negatively. However, the modularity concept is not consid-

ered. Smith and Agrawal [62] consider an inventory model with multiple products and

negative binomial demand distribution to study the effects of substitution. In their model,

the substitution occurs according to some given probabilities for each product when a

stock out occurs. The authors conclude that the optimal assortment size can be reduced

by considering substitution in case of products with different profit margins. Mahajan and

Van Ryzin [63] develop an inventory model with multiple products and substitution based

on customer choices. The authors assume that customers seek for utility maximization.

Then, they propose a stochastic gradient algorithm to solve their model. Finally, the

authors conclude that substitution has an effect of increasing the optimum inventory

levels of popular products and decreasing the optimum inventory levels of unpopular

products. Iravani et al. [64] formulate an assemble-to-order problem with substitution

as a continuous-time Markov chain model where customers can accept substitutions for

missing products according to some given probabilities. The authors argue that customer

preferences can have influence on the inventory levels. Agrawal and Smith [65] develop

a 0-1 mixed integer linear programming model to find the optimal assortment in an

inventory model with multiple products, substitution, and complementary products. The

authors consider the holding costs, stockout costs, and fixed costs of including a product



17

in the assortment. The authors underline the effect on profits of considering substitution

when determining the optimal assortment. Furthermore, the authors argue that the lack of

a small subset of products that can be used to meet most of the demand may decrease prof-

its. Denton and Gupta [66] develop a two-stage stochastic integer programming model

to determine the optimum inventory levels of semi-finished products which are produced

to stock in order to reduce order lead times when customer orders are received. The

authors propose a heuristic method to solve their model and conclude that more accurate

demand information can lead to higher profits. Thomas and Warsing [67] consider a

service parts inventory model in which service parts are stocked at both the assembly and

component levels. The authors formulate a singe-period stochastic linear programming

model to solve their model by taking into account the assembly, disassembly, holding, and

shortage costs. The substitution is enabled by allowing the assembly/disassembly option

for the service parts. The authors argue this option can lead to significant cost savings.

Ganesh et al. [68] argue that substitution can reduce the value of information sharing

within a supply chain and they explain this fact by the risk-pooling effect of substitution.

Yang and Schrage [69] study the risk pooling effect of substitution, and in particular they

reveal the conditions under which the inventory levels are increased. The authors link

this unexpected effect to the use of right skewed demand distributions and to the case of

partial substitution where only some of the customers can accept the substitution.

2.4 Literature Survey of Inventory Planning Models

There are many studies concerning inventory planning models. However, Wazed et al.[70]

notice the lack of research related to any holistic model to study the uncertainty issues

in multi-period, multiple products, and multi-stage environments for manufacturing re-

sources planning. Nonetheless, inventory planning models that are the most relevant to

this study are summarized in Table 2.1. They are evaluated according to which concepts

investigated: commonality, substitution, modularity, mass customization, risk neutral

objective, risk-averse objective, and service level constraints. The first four concepts

are already discussed. On the other hand, the last tree concepts classify the inventory
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planning models by their objectives from a viewpoint of risk. In a risk neutral case,

all the prospective scenarios are taken into account by decision makers. However, the

worst case scenarios are heavily considered in a risk-averse approach. In the inventory

planning models seeking to satisfy some given service levels, the service rate constraints

are generally used to ensure that the demand is satisfied. The works in Table 2.1 are listed

in a chronological order to expose the current research trends.

It can be deduced from Table 2.1 that substitution and risk neutral decision making are

the most addressed concepts. In contrast, only recently there has emerged a trend toward

the risk-averse models. Moreover, mass customization is not well investigated in these

models despite its popularity. Another result that can be derived from Table 2.1 is that the

commonality, substitution, modularity, and mass customization concepts are integrated

only in a few inventory planning models.

This study focuses on developing and studying models that are capable to deal with

inventory planning decisions in a mass customization environment. Based on the findings

of our literature survey, these models integrate all the concepts of modularity, assemble-

to-order strategy, product shortage, and component substitution. Meanwhile, stochastic

demand can be studied by considering two sources of uncertainty: stochastic total demand

and stochastic market proportions for the component options. On the other hand, there is a

lack of studies that take into account the risk-averse approach and the mass customization

together. This study also addresses this issue.

In this research, several mathematical models on inventory planning in mass customiza-

tion having special network structure are investigated. The generalized network structure

is taken into account and it is also shown that the extra decomposability provided by the

modular product structure has a great impact to improve solution times for large instances.

Chapter 3 introduces two stage stochastic linear programming problems and a risk-averse

approach before discussing those models.



19

Table 2.1: Literature survey for the most relevant inventory planning models
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Rajaram and Tang [2] X X X

Van Mieghem [37] X X X

Hillier [39] X X X

Ma et al. [40] X X X X

Chod et al. [41] X X X X

Jönsson et al. [42] X X X

Paul and Vakharia[43] X X X

Nonas [44] X X X

Hsu and Bassok [46] X X

Bassok et al. [47] X X

Axsater [49] X X

Rao et al. [50] X X

Hsu et al. [51] X X

Li et al. [52] X X

Weng [53] X X

Inderfurth[54] X X

Tibben-Lembke and Bassok [55] X X

Bayindir et al. [56] X X

Karakul and Chan [57] X X

Balakrishnan and Geunes [58] X X X X

Nagarajan and Rajagopalan [60] X X

Smith and Agrawal [62] X X

Mahajan and Van Ryzin [63] X X

Denton and Gupta [66] X X

Thomas and Warsing [67] X X X

Yang and Schrage [69] X X X

Xu and Chen [71] X

Borgonovo and Peccati [72] X

Zhang et al. [73] X



3 Selected Stochastic Programming Approach

Uncertainty is an important aspect in many optimization models and stochastic program-

ming is the branch of mathematical programming to deal with uncertainty. Unlike the

deterministic optimization problems which assume that all model parameters are known

precisely, stochastic programming allows to deal with the uncertainty of some model

parameters. Consequently, the application scope of stochastic programming is larger than

the deterministic programming.

Each probabilistic outcome or scenario is considered explicitly in stochastic programming

approach. An alternative way would be formulating a single scenario which considers the

expected data. But, this approach has drawbacks. First, the optimum solution derived

from the expected data is not guaranteed to be feasible for all prospective scenarios.

Furthermore, this solution may not be optimum although it may be feasible. For this,

it is vital to check both feasibility and optimality of a decision with respect to all different

scenarios in stochastic programming.

Within the context of stochastic programming, there are many models proposed in the

literature with deterministic constraints and an objective where all the probabilistic out-

comes are considered in the form of expectation. An alternative approach is to formulate

problems with a deterministic objective and probabilistic constraints. These probabilis-

tic or chance constraints are assumed to hold with some probability or reliability level

[74]. Indeed, it is possible to formulate a mathematical equivalence between these two

approaches for some problems [75]. In this study, we consider only stochastic program-

ming models with a probabilistic objective and deterministic constraints. Indeed, we are

not limited only to expectation-type objectives, it is also possible to consider quantile

objectives [76].
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Stochastic programming models are classified according to their characteristics. They

can be linear or nonlinear, use stochastic data having discrete or continuous probability

density functions, or contain single or multiple stages.

In each stage, new decisions are taken given the past decisions, and resolved uncertainty,

and by taking into account future scenarios. As an example, consider the two-stage case.

The first-stage decision in a two-stage stochastic program is taken by considering the

probabilistic future scenarios. Then a recourse action is made at the second stage when the

uncertainty is resolved by taking into account the first stage decision. Hence, the optimal

decision consists of the first-stage decision and the collection of recourse decisions at the

second stage.

Finally, it is possible to characterize stochastic programming models from a risk perspec-

tive. Krokhmal et al. [77] define the risk as “a quantitative expression of a system of

attitudes, or preferences with respect to a set of random outcomes”. Thus, a high value of

a risk measure has to be associated with a high danger of being exposed to high cost values

in a cost minimization problem [78]. In stochastic programming, the expected or quantile

value of the recourse actions may be included in the objective when taking the first-

stage decision. They represent risk-neutral and risk-averse objectives, respectively. In

particular, the expectation-type and CVaR-type objectives are used in inventory problems

[71, 72, 73, 79], as the risk-neutral and risk-averse cases, respectively.

3.1 Two-Stage Stochastic Linear Programming Problems with Fixed Recourse

The general formulation of a two-stage stochastic linear programming problem with fixed

recourse (see [74]; [80]) is given in (3.1)-(3.6):

min z = cTx + Eq̃,T̃,d̃[Q(x, q̃, T̃, d̃)] (3.1)

s.t. Ax = b (3.2)

x ≥ 0 (3.3)
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and

Q(x, q̃, T̃, d̃) = min q̃Ty (3.4)

s.t. T̃x + Wy = d̃ (3.5)

y ≥ 0 (3.6)

At the first stage of this model, the objective is to minimize the current costs plus the

expected value of future recourse actions. x ∈ RC is the vector of the first stage decision

variables, and c is the vector of costs. Then, the uncertainty is resolved, and some recourse

actions are taken at the second stage. y ∈ RC′ is the vector of the second stage decision

variables or recourse actions, and q̃ is the vector of costs. W and T̃ are defined in

the recourse problem (3.4)-(3.6), and they correspond to the “fixed recourse matrix” and

“technology matrix”, respectively [74]. Here, the meaning of the fixed recourse is that the

marginal effects of recourse actions are deterministic. Note that q̃ and T̃ are stochastic

whereas W is deterministic. If q̃ and T̃ are known, the formulation (3.7)-(3.12) including

recourse problems that differ only in the right-hand side value d̃ is obtained.

min z = cTx + Ed̃[Q(x, d̃)] (3.7)

s.t. Ax = b (3.8)

x ≥ 0 (3.9)

and

Q(x, d̃) = min qTy (3.10)

s.t. Tx + Wy = d̃ (3.11)

y ≥ 0 (3.12)

There exist several solution methods to solve two-stage stochastic linear programming

problems. Their mathematical properties has been investigated by many researchers and

are well known. One of the key properties of the problem (3.7)-(3.12) lies in that the

recourse problems (3.10)-(3.12) can be solved separately for each scenario if the first stage

decision vector x is known. Another important property that leads to the development of

computationally efficient solution methods is that Q(x, d̃) is polyhedral and convex with
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respect to x. Hence, x can be thought of as complicating variables in linear programming

problem (3.7)-(3.12).

The linear programming models with complicating variables or complicating constraints

can benefit from the well-known decomposition techniques such as Benders decomposi-

tion [81] or Dantzig-Wolfe decomposition [82], respectively. Both techniques solve the

original problem iteratively by introducing a master problem and one or more subprob-

lems. Benders decomposition approximates the original problem by adding cuts to the

master problem whereas Dantzig-Wolfe decomposition relies on column generations for

the master problem. Since a linear programming model with complicating variables can

be easily converted to one with complicating constraints by using the duality concept,

Benders decomposition and Dantzig-Wolfe decomposition can be used alternatively to

solve the original model with complicating variables and its dual with complicating con-

straints, respectively. Indeed, it is possible to derive the Benders decomposition procedure

from the Dantzig-Wolfe decomposition procedure by applying the latter to the dual of the

original model considered by Benders decomposition [83]. Lagrangian decomposition is

an alternative technique to deal with complicating constraints. The original problem is

relaxed by removing the complicating constraints. The difference between Lagrangian

and Dantzig-Wolfe decomposition techniques lies in the master problem: Dantzig-Wolfe

decomposition technique seeks optimization over the convex combinations of relaxed

problem solutions whereas Lagrangian decomposition technique updates the Lagrange

multipliers used to penalize violations of the complicating constraints [84]. Indeed, it is

possible to derive the master problem of Dantzig-Wolfe decomposition from the dual of

the master problem of Lagrangian decomposition [85]. The motivation behind the use of

these techniques lies in that they allow to solve the main problem in a distributed context

or they lead to a simplified subproblem structure following the decomposition of the main

problem.

The L-shaped method is a widely used decomposition technique to solve two-stage stochas-

tic linear programming problems. It is originally proposed by Van Slyke and Wets [86].

Similar to Benders decomposition, an approximation of (3.7)-(3.12) is solved in L-shaped

method based on cut generations in the master problem which is extended at each iteration
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by adding feasibility and optimality cuts. L-shaped method can be seen as a specialized

version of the Benders decomposition [87]. Indeed, L-shaped method extends Benders

decomposition by considering explicitly the feasibility of the recourse problems [74]. As

it is case for the Benders and Dantzig-Wolfe decomposition techniques, it is also possible

to derive a column generation-based alternative method from L-Shaped method by use

of the duality. However, if the number of decision variables is greater than the number

of constraints in the first stage, L-shaped method is advantageous in computational terms

[74]. The basis factorization methods can also be considered when solving two-stage

stochastic linear programming problems. However, they do not offer advantage over L-

Shaped method [74]. Alternatively, the Level decomposition method [88] can be used to

solve two-stage stochastic linear programming problems. This method relies on an ap-

proximative version of the constrained level method [89]. In particular, it offers improved

stability. Indeed, it is also possible to improve the performance of the L-shaped method.

In particular, the master problem size of the L-Shaped method can be controlled by adding

a quadratic regularizing term objective and so determining the active constraints within

the master problem [87]. This is called the regularized decomposition method and is

finitely convergent [90]. The augmented Lagrangian decomposition is another method

which is effective particularly for dealing with convex multistage stochastic programs

[87]. Among alternative methods, the simplicity of the L-shaped method is noteworthy.

Therefore, we consider the L-shaped method when dealing with two-stage stochastic

linear programming problems. An algorithm for the L-shaped method is provided by

Birge and Louveaux [74] and it consists of the following steps:

I. ρ = 0, τ = 0, µ = 0.

II. µ = µ+ 1. Solve the master linear programming problem (3.13)-(3.17)
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min z = cTx + θ (3.13)

s.t. Ax = b, (3.14)

gix > αi, i = 1, ..., ρ, (3.15)

hix + θ > βi, i = 1, ..., τ, (3.16)

x > 0, θ ∈ R. (3.17)

Let us denote the values of variables at the optimal solution as xµ and θµ. Note that if

there was no constraint (3.16) defined in the master problem (3.13)-(3.17), then θµ would

not be considered in the computation of xµ and then θµ = −∞.

III. Let us denote the possible realizations of d̃ as dk where k = 1, ..., K. Solve the

linear programming problem (3.18)-(3.20) for k = 1, ..., K

min Ω̄ = uTv+ + uTv− (3.18)

s.t. W yk + I v+ − I v− = dk −Txµ : eµ, (dual variable) (3.19)

yk > 0, v+ > 0, v− > 0, (3.20)

where uT = (1, ..., 1), I is identity matrix, and v+ and v− are auxillary variables. If for

some k, we have Ω̄ > 0, then (3.21) and (3.22) are defined to form a feasibility cut:

gρ+1 = (eµ)TT (3.21)

and

αρ+1 = (eµ)Tdk. (3.22)

Let ρ = ρ+1 and add the new feasibility cut gρx > αρ to the constraint set (3.15). Return

to Step II. If Ω̄ = 0 for all k, then proceed to Step IV.

IV. Solve the linear programming problem (3.23)-(3.25) for k = 1, ..., K
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min Ω = qTyk (3.23)

s.t. W yk = dk −Txµ : oµk , (dual variable) (3.24)

yk > 0. (3.25)

Let us define

hτ+1 =
K∑
k=1

pk(o
µ
k)TT (3.26)

and

βτ+1 =
K∑
k=1

pk(o
µ
k)Tdk. (3.27)

Here pk is the probability of the kth realization. If θµ > Ωµ = βτ+1 − hτ+1x
µ, then xµ is

an optimal solution. Else, τ = τ+1, add the optimality cut hτx+θ > βτ to the constraint

set (3.16), and return to Step II.

3.2 Conditional Value at Risk

Pritsker [91] defines Value at Risk (VaR) as “the largest loss in portfolio value that would

be expected to occur due to changes in market prices over a given period of time in all

but a small percentage of circumstances”. To illustrate this, 95%-VaR is the largest loss

in all but 5% of circumstances. Pritsker [91] also gives an alternative description of VaR

in which it is “the amount of capital the firm would require to absorb its portfolio losses

in all but a small percentage of circumstances”. VaR can be efficiently calculated based

on the normally distributed data but this is not the case when non-normal and discrete

distributions are used because of the lack of sub-additivity and non-convexity [92]. To

overcome these difficulties, CVaR is defined as an another risk measure based on the risk

measure of VaR. CVaR corresponds to the conditional expected loss under the condition

that it exceeds VaR [92]. CVaR can be viewed as the mean excess loss, the mean shortfall,

or the tail VaR for continuous distributions, whereas it is the weighted average of VaR and

the losses strictly exceeding VaR for discrete distributions [92].
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The definition and calculation of CVaR ([92]; [93]; [94]) are briefly introduced in the

next. Let f(x, d̃) ∈ R stands for the cost experienced as a function of a decision vector

x ∈ RC , and a random vector d̃ ∈ RN . p(d̃) is the probability density function of d̃. The

probability of f(x, d̃) being smaller than ζ is denoted by F (x, ζ) and it can be calculated

as given in (3.28).

F (x, ζ) =

∫
f(x,d̃)6ζ

p(d̃)d d̃. (3.28)

The V aR and CV aR values for the cost incurred with decision x and probability level

α ∈ (0, 1) are denoted by V aRα(x) and CV aRα(x) and are given as

V aRα(x) = min{ζ ∈ R : F (x, ζ) > α}, (3.29)

CV aRα(x) = (1− α)−1
∫
f(x,d̃)>V aRα(x)

f(x, d̃)p(d̃)dd̃, (3.30)

respectively. It is possible to reformulate CV aRα(x) as given in (3.31)-(3.32).

CV aRα(x) = min
ζ∈R

Lα(x, ζ) (3.31)

where

Lα(x, ζ) = ζ + (1− α)−1
∫
d̃∈RN

max(f(x, d̃)− ζ, 0)p(d̃)d d̃. (3.32)

Furthermore, Lα(x, ζ) and CV aRα(x) are convex if f(x, d̃) is convex. Thus, minimizing

CV aRα is equivalent to minimizing Lα(x, ζ), or

min
x∈RC

CV aRα(x) ≡ min
(x,ζ)∈RC×R

Lα(x, ζ). (3.33)

The function Lα(x, ζ) can be approximated by the function L̃α(x, ζ) when the number of

scenarios is finite:

L̃α(x, ζ) = ζ + (1− α)−1
K∑
k=1

zk max(f(x,dk)− ζ, 0) (3.34)

where zk are probabilities of scenarios dk, k ∈ K. Note that if the cost function f(x, d̃)

is linear in x, then the function L̃α(x, ζ) is convex and piecewise linear. Therefore, the
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problem given in (3.35) is an approximation of (3.33).

min
(x,ζ)∈RC×R

L̃α(x, ζ) (3.35)

Furthermore, it is possible to linearize the function L̃α(x, ζ) if the auxiliary variables ηk,

k = 1, ..., K and a set of linear constraints are introduced. This is shown in (3.36)-(3.38)

which is equivalent to (3.35).

min
(x,ζ)∈RC×R

ζ + (1− α)−1
K∑
k=1

zkηk (3.36)

s.t. ηk > f(x,dk)− ζ k = 1, ..., K, (3.37)

ηk > 0 k = 1, ..., K. (3.38)



4 Assemble-to-Order with Substitution in Mass Customization Environment

4.1 Motivation

Nowadays, modular assembly is an important mass customization strategy adopted in

principle by many competing companies. Generally, the component stocks are held

instead of the end product stocks so that they are assembled to form an end product

and to meet the customer demand in this strategy. Furthermore, it is often the case to

obtain end products with different functionalities by adopting the component swapping

modularity. Illustrative example given in Figure 4.1 shows the case where six end product

configurations can be formed from three options available in the first module and two

options available in the second module. Note that the total number of end product con-

figurations may become large quickly if the options are various. Thus, a wide range of

customer requirements can be addressed with mass customization. On the other hand,

mass production of standardized components helps to reduce operating costs.

In modular assembly, two stage decision making is common since the lead time required

to acquire components are longer than the time required for their assembly. At the first

stage, one has to decide how many components to purchase or manufacture without

knowing the customer demand realization. At the second stage, the problem of how to

allocate available components to end product assemblies to meet the customer demand is

faced.
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Figure 4.1: Mass customization via modular assembly

Now, another interesting frame similar to previously discussed one will be investigated.

In Figure 4.1, the components in a given module are differentiated according to their

features. Under current global economic conditions, companies may work with many

suppliers dispersed around the world as a necessity of the global competition. This fact

gives another criterion to classify the components. Thus, the geographical location where

the components are manufactured is also a major cost driver. In Figure 4.2, we aim to

illustrate this case. The component in the first module can be supplied by two suppliers

associated with different geographical locations (Loc 1 and 2), and the component in the

second module can be supplied by three suppliers associated with different geographical

locations (Loc 3, 4 and 5). Consequently, six possible distribution warehouse locations

can be determined with respect to suppliers proximity as shown in Figure 4.2. It is also

possible to create structures where both features and origins of components are taken into

account.
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Figure 4.2: Geographical warehouse clusters

4.2 Problem Formulation with Expected Cost Objective

For the modular assembly problem investigated in this study, it is assumed that each end

product configuration is assembled from a fixed number of modules, and each module is

made of a predetermined amount of substitutable components. Although it is possible to

relax this assumption within the setting that will be presented in the next, we will keep

it for notational simplicity. Accordingly, each customer demand involves a collection of

components, one for each module.

In the traditional assemble-to-order strategy, when a customer order is received, the

assembly process is triggered and all components required for the assembly are retrieved

from the store. If any component is out-of-stock then it is impossible to immediately

start the assembly, so the customer order is not satisfied or delayed. In the assemble-

to-order strategy with component substitution, however, there is the option to substitute

a component with another when it is out-of-stock. This action incurs some direct and

indirect costs. From the customer perspective, the substitution may lead to a dissatis-

faction which may also affect potential customers. From the manufacturer perspective,

this substitution may require further processing of the components or an upgrade, so this

cost is related to the component converting costs. Therefore, the decision variables can
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be grouped into two. The first stage variables correspond to the purchase or manufacture

quantities of components and the second stage variables are related to allocation of these

components to the customer orders when they are realized. At the first stage purchasing or

manufacturing costs incur, while at the second stage the component allocation and holding

costs, and also the product shortage costs are relevant. We assume that the allocation costs

include the cost of substitution.

Based on this brief introduction, a mathematical model aiming to reduce the total cost of

the mass customization is given. The model parameters are as follows:

M : total number of modules,

C: total number of components,

N : total number of products,

K: total number of scenarios,

coi : purchasing cost of component i of module o,

poij : allocation cost of component i of module o to product j,

d̃j: stochastic demand of product j,

d̃ = (d1,d2, ...,dK): stochastic demand vector of products,

hoi : holding cost of component i of module o,

sj: shortage cost of product j,

aoij : needed amount of component i of module o to the assembly of product j. The first

stage variables are:

xoi : purchased quantity of component i of module o,

and the second stage variables are:

yoij : allocated quantity of component i of module o to the assembly of product j,

eoi : unused quantity of component i of module o,

uj: shortage quantity for product j.

Finally we define the following sets:
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Ro
j : The set of substitutable components for module o that can be selected to manufacture

product j,

Uoi : The set of products that can be assembled from component i of module o.

min
∑
o,i

coix
o
i + Ed̃[Q1(x, d̃)] (4.1)

s.t. xoi ≥ 0 ∀o, ∀i (4.2)

and

Q1(x, d̃) = min
∑
o,i

hoi e
o
i +

∑
j

sjuj +
∑
o,i

∑
j∈Uoi

poijy
o
ij (4.3)

s.t.
∑
j∈Uoi

yoij + eoi = xoi ∀o,∀i (4.4)

∑
i∈Roj

yoij
aoij

+ uj = d̃j ∀o,∀j (4.5)

yoij , uj, e
o
i > 0 ∀o,∀i, ∀j (4.6)

The objective function of the first stage in (4.1) minimizes the sum of component pur-

chasing costs and the expected cost of the second stage of a given demand scenario.

Constraints in (4.2) assure the non-negativity of the purchased quantities. The objective

function in (4.3) of the second stage is defined for a given demand realization d̃ and we

aim to minimize the sum of component holding and allocation costs, and product shortage

costs. Constraints in (4.4) make sure that only in-stock components are used. Constraints

in (4.5) are for the allocation of components according to the customer demand. Finally,

constraints in (4.6) are for the non-negativity of the second stage’s decision variables.

4.3 Demand Structure

4.3.1 Demand Scenarios

As previously mentioned, it is assumed that a product is assembled from a certain number

of modules and there exist several substitutable components that can be selected for each

module. However a specific product is made up from a unique component selection.
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Then, it is possible to represent the end products by the leaf nodes of a multilevel tree

where each level corresponds to a module. In this tree structure, a conditional choice

probability is determined for each branch. The demand of a specific product j can be

determined by multiplying preference rates along its own path on the tree. Note that

the demand structure taking into account the aggregate product demand variance and the

stochastic market proportions for the module options is also adopted by others [43].

To illustrate, let us consider a product family with two modules and two components in

each module. The aggregated demand of the product family is equal to 1000. Then, it

is possible to determine specific end product configuration demands as shown in Figure

4.3.

Figure 4.3: Demand decomposition tree

Given the total demand of the product family and the preference rates on each branch

of the demand decomposition tree, it's possible to describe a demand scenario for all

products. Note that a single demand scenario describes a deterministic model. If the

preference rates can take different values, then it is possible to generate several demand

decomposition trees having different leaves. Accordingly, each tree derived from pos-

sible values of these preference rates corresponds to a new demand scenario. So, the

model consisting of the all possible demand scenarios is stochastic. The total number

of scenarios can be calculated by multiplying the numbers of possible preference rate

combinations over all modules. For example, if the total number of modules is M and
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there exist 2 possible component options per module, then the total number of scenarios

can be at most 2M .

The total demand for the product family may fluctuate, so its different realizations will

correspond also to new scenarios. Continuing from the previous example, if there are

D possible total demand realizations, then the total number of scenarios can be at most

D × 2M .

4.3.2 Methods for the Scenario Generation

In the stochastic programming framework, the values of some parameters vary by taking

into account the uncertainty about the future. If this uncertainty spans a single period

then we may assume that these parameters follow some probability distributions. In the

multiple period case, these parameters can be described by stochastic processes. In this

thesis, we deal only with the former case but the multi-period case can be also elaborated

in a future study.

The stochastic parameters may be derived from a data set of the past observations and

they may also include some previsions. If their statistical properties are already known,

for example, they can follow some continuous probability distributions. In this case,

one approach is to approximate the continuous probability distributions by their discrete

counterparts in order to be able to use efficient solution methods developed for stochastic

programming. If the stochastic parameters are assumed to follow discrete probability

distributions, it is possible to create scenarios with respect to the all possible values of

these parameters.

In a typical scenario generation procedure, it is possible to observe the steps of model

assumption, historical data collection, parameter estimation, discretization of the distri-

butions and sampling [95]. Indeed, today’s information systems tools are really advanced

and the investments for these systems are increasing. Di Domenica et al. [96] explain how

to integrate such systems with the decision support systems based on stochastic program-
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ming. The main scenario generation methods include sampling, simulation, statistical

approaches and hybrid methods [97]. However, the quality of the generated scenarios

does not depend on how well the distributions are approximated, but stability and absence

of bias are the most important requirements [98]. Thus, in-sample stability, out-of-sample

stability and absence of bias requirements are defined, but in-sample stability is used in

practice because it does not involve the calculations with the true distribution [98].

4.4 General Case

4.4.1 Generalized Network Formulation with Equality Constraints

Let us consider the linear programming model in (4.3)-(4.6). If each variable uj is

replaced by the variable uoj , then (4.5) can be replaced by (4.9) and (4.10), and thus,

the model in (4.3)-(4.6) can be transformed to the model in (4.7)-(4.11).

Q2(x, d̃) = min
∑
o,i

hoi e
o
i +

∑
j

sjuj +
∑
o,i

∑
j∈Uoi

poijy
o
ij (4.7)

s.t.
∑
j∈Uoi

yoij + eoi = xoi ∀o, ∀i (4.8)

∑
i∈Roj

yoij
aoij

+ uoj = d̃j ∀o, ∀j (4.9)

uj = u1j = ... = uMj ∀j (4.10)

yoij , uj, u
o
j , e

o
i > 0 ∀o, ∀i, ∀j (4.11)

The linear programming model in (4.7)-(4.11) can be represented by a generalized net-

work flow model with equality constraints. For the sake of simplicity, consider a model

with two modules having two components per module and let us to set the aoij values to

one. Then, Figures 4.4, 4.5, 4.6, and 4.7 illustrate the resulting network flow structure. It

is not difficult to observe that this network has the potential to be further decomposed by

modules. The only obstacle against this is the equality constraints in (4.10).
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Figure 4.4: Subgraph associated with the allocation of the first component
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Figure 4.5: Subgraph associated with the allocation of the second component
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Figure 4.6: Subgraph associated with the allocation of the dummy component
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Figure 4.7: Graph associated with two modules and two components with equal flow arcs

emphasized

In Figures 4.4, 4.5, 4.6, and 4.7, toi 's and dto's are for the component supply nodes and

the dummy component supply nodes, respectively. Similarly, roij 's and dro's denote the

product demand nodes and the dummy product demand nodes, respectively. The auxiliary

variables ūo in Figure 4.6 are used to connect the dummy component supply nodes and

the dummy product demand nodes to conserve the flow balance constraint. In Figure 4.7,

the equal flow constraints are illustrated by dashed lines with different styles, each of

which corresponds to some equal flow requirement. Finally, we will note here that only

first module of the network is illustrated in Figures 4.4, 4.5, and 4.6. This is because the

interpretation of the second module is similar. However, there is a small exception in the
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use of the costs sj: their values are set to sj in one module, but they have to be equal to

zero in other modules.

4.4.2 Pure Network Formulation with Proportionality Constraints

Consider the generalized network model with equality constraints in (4.7)-(4.11) and in

particular, the constraints (4.9) and (4.10). If aoij 's are all equal for i ∈ Ro
j , then the

constraints (4.9) and (4.10) can be changed as the constraints (4.12) and (4.13) with

aoiju
o
j = u

′o
j and aoij d̃j = d̃

′o
j . Hence, a pure network formulation with the proportionality

constraints (4.13) is obtained:

∑
i∈Roj

yoij + u
′o
j = d̃

′o
j ∀o, ∀j, (4.12)

u
′1
j

a1ij
= ... =

u
′M
j

aMij
∀j. (4.13)

4.5 Subcontracting Case

4.5.1 Generalized Network Formulation with Equality Constraints

Now, consider the case described in section 4.1 where the components are classified

according to the places they are manufactured. In this case, the components are required

by distribution warehouses. Note that the product and the distribution warehouse terms

are interchangeable from mathematical notation perspective. The product term is kept for

the simplicity required when comparing the cases. The single objective can be associated

with a vendor managed inventory strategy. Furthermore, we assume that the demand

satisfaction proportions are equal for each distribution warehouse. This situation may

arise with subcontracting terms in a vendor managed inventory system. It is reasonable

to tolerate small stock deficiencies in distribution warehouses by applying some customer

policies, however a large amount of out-of-stocks will lead to great business losses with-

out a doubt. Hence, any unbalanced supply plan for the distribution warehouses should
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be avoided. Note that this common demand satisfaction proportion is also a performance

measure for the suppliers. Let 0 6 u 6 1 be this common demand satisfaction proportion

valid for each distribution warehouse. Thus, the model consisting of the (4.1)-(4.6) and

the constraints (4.14) is obtained.

u1

d̃1
= ... =

uN

d̃N
= u. (4.14)

Accordingly, the model in (4.7)-(4.11) can be modified as in (4.15)-(4.19).

Q3(x, d̃) = min
∑
i,o

hoi e
o
i +

∑
j

sj d̃ju+
∑
i,o

∑
j∈Uoi

poijy
o
ij (4.15)

s.t.
∑
j∈Uoi

yoij + eoi = xoi ∀o,∀i (4.16)

∑
i∈Roj

yoij
aoij

+ d̃ju = d̃j ∀o,∀j (4.17)

0 6 u 6 1 (4.18)

yoij , u, e
o
i > 0 ∀o,∀i, ∀j (4.19)

If some additional conditions are met, it is possible to further simplify the model given in

(4.15)-(4.19). Let us define first the following sets:

Uoir: The set of products that can substitute component r with component i for module o.

J o
r : The set of products that need component r for module o.

Ior : The set of substitutable components for component r for module o.

Note that ∪r Uoir = Uoi and Uoir′ ∩ Uoir = ∅ ∀r, r′, it is a partition. Moreover, it is assumed

that poij 's and aoij 's are equals for j ∈ Uoir . Indeed, the equality of poij 's for j ∈ Uoir can be

realistic in most cases. This is because the transportation costs are affected mainly by the

proximity of distribution warehouses to suppliers. The transportation costs of components

manufactured in nearby suppliers are negligible compared to the transportation costs of

components manufactured in distant suppliers. Thus, we can say that a distant supplier

substitutes for a nearby supplier when the latter is not capable to meet the demand. Hence,

the above assumption will be valid if transportation costs are based on a substitution
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hierarchy between suppliers. Finally, it is possible to obtain the model in (4.20)-(4.24) by

aggregating over all j ∈ J o
r .

Q4(x, d̃) = min
∑
i,o

hoi e
o
i +

∑
j

sj d̃ju+
∑
o,r

∑
i∈Ior

poir
∑
j∈Uoir

yoij (4.20)

s.t.
∑
r

∑
j∈Uoir

yoij + eoi = xoi ∀o,∀i (4.21)

∑
j∈J or

∑
i∈Roj

yoij
aoij

+
∑
j∈J or

d̃ju =
∑
j∈J or

d̃j ∀o,∀r (4.22)

0 6 u 6 1 (4.23)

yoij , u, e
o
i > 0 ∀o,∀i, ∀j (4.24)

It is possible to reformulate the constraint (4.22) as the constraint (4.25):

∑
i∈Ior

1

aoir

∑
j∈Uoir

yoij +
∑
j∈J or

d̃ju =
∑
j∈J or

d̃j ∀o,∀r. (4.25)

To obtain a generalized network structure with equality constraints, let us transform the

constraint (4.25) to the constraints (4.26) and (4.27).

∑
i∈Ior

1

aoir

∑
j∈Uoir

yoij +
∑
j∈J or

d̃ju
o
r =

∑
j∈J or

d̃j ∀o,∀r (4.26)

uor = uo
′

r′ ∀o, o′, r, r′ (4.27)

Let y′oir be equal to
∑

j∈Uoir
yoij . Finally, (4.28)-(4.32) are obtained.

Q5(x, d̃) = min
∑
i,o

hoi e
o
i +

∑
j

sj d̃ju
1
1 +

∑
o,r

∑
i∈Ior

poiry
′o
ir (4.28)

s.t.
∑
r

y
′o
ir + eoi = xoi ∀o,∀i (4.29)

∑
i∈Ior

1

aoir
y
′o
ir +

∑
j∈J or

d̃ju
o
r =

∑
j∈J or

d̃j ∀o,∀r (4.30)

uor = uo
′

r′ ∀o, o′, r, r′ (4.31)

y
′o
ir , u

o
r, e

o
i > 0 ∀o,∀i, ∀r (4.32)
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This is a generalized network formulation with the equality constraints (4.31).

4.5.2 Pure Network Formulation with Proportionality Constraints

If aoir 's are equals for i ∈ Ior , then we can let aoir
∑

j∈J or
d̃ju

o
r = u

′o
r and aoir

∑
j∈J or

d̃j =

d̃
′o
r . The constraints (4.30) and (4.31) becomes (4.33) and (4.34), respectively as below:

∑
i∈Ror

y
′o
ir + u

′o
r = d̃

′o
r ∀o, ∀r (4.33)

u
′o
r

d̃′or
=
u
′o′

r′

d̃
′o′
r′

∀o, o′, r, r′ (4.34)

The constraints (4.34) are the proportionality side constraints.

4.6 Spot Market Case

4.6.1 Generalized Network Formulation

We now define the following variables and parameters and assume that all end product

demands are satisfied but the missing components are supplied with relatively high costs

at the second stage. The interpretation of the model parameters and variables is modified

as follows:

uoj : quantity outsourced of component requirement in module o for product j,

soj : outsourcing cost of component requirement in module o for product j.

Consequently the generalized network model is formulated as in (4.35)-(4.38).
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Q6(x, d̃) = min
∑
i,o

hoi e
o
i +

∑
j

soju
o
j +

∑
i,o

∑
j∈Uoi

poijy
o
ij (4.35)

s.t.
∑
j∈Uoi

yoij + eoi = xoi ∀o, ∀i (4.36)

∑
i∈Roj

yoij
aoij

+ uoj = d̃j ∀o, ∀j (4.37)

yoij , u
o
j , e

o
i > 0 ∀o, ∀i, ∀j (4.38)

4.6.2 Pure Network Formulation

Consider the generalized network formulation in (4.35)-(4.38) and in particular, the con-

straint in (4.37). If aoij 's are equals for i ∈ Ro
j then let aoiju

o
j = u

′o
j and aoij d̃j = d̃

′o
j . The

constraints in (4.37) can be then transformed to the constraints in (4.39).

∑
i∈Roj

yoij + u
′o
j = d̃

′o
j ∀o, ∀j (4.39)

If constraints (4.37) is replaced with the constraints (4.39) in the model Q6, the pure

network formulation will be obtained.

4.7 Problem Formulation with CVaR Objective

A two-stage stochastic linear programming problem with fixed recourse where the only

random parameters are on the right-hand sides is a polyhedral risk functional and this

holds for the CVaR case [78, 99]. Recall that this problem can be reformulated as

an expectation-based two-stage stochastic linear programming problem [78, 99, 100].

Together with the arguments provided in section 3.2, an extended two-stage stochastic

linear programming problem given in (4.40)-(4.47) is obtained:

min
∑
i,o

coix
o
i + ζ + (1− α)−1Ed̃[Q̂(x, ζ, d̃)] (4.40)

s.t. x ∈ X , ζ ∈ R (4.41)
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where

Ed̃[Q̂(x, ζ, d̃)] =
K∑
k=1

zk Q̂(x, ζ,dk) (4.42)

and for a given demand realization (we drop index k for simplicity)

Q̂(x, ζ, d̃) = min η (4.43)

s.t.
∑
i,o

hoi e
o
i +

∑
j

sjuj +
∑
i,o

∑
j∈Uoi

poijy
o
ij − η 6 ζ (4.44)

∑
j∈Uoi

yoij + eoi = xoi ∀o,∀i (4.45)

∑
i∈Roj

yoij
aoij

+ uj = d̃j ∀o, ∀j (4.46)

yoij , uj, e
o
i , η > 0 ∀o, ∀i, ∀j (4.47)

Objective function (4.40) of the problem minimizes the sum of component purchasing

cost at the first stage and the CVaR value associated with the α risk parameter. The

objective function (4.43) occurring at the second stage consists of the auxiliary variable

η . Constraint (4.44) is added into formulation for the linearization. Constraints (4.45)

control the availability of the components needed to assemble end products. Constraints

(4.46) ensure that the component allocation for each module matches the satisfied end

product demand. Constraints (4.47) declare that the second stage variables are all real

and nonnegative.



5 Theoretical Analysis of Inventory Allocation Subproblems and Development of

Efficient Solution Methods

5.1 Disconnected Subnetworks with Proportional Flow Requirements

Let us consider the stochastic programming problem in (4.1)-(4.6) and focus on the sub-

problem in (4.3)-(4.6). This is an inventory allocation problem as long as the purchased

quantities of components are known. It is possible to reformulate this problem as a

MCNF problem with the requirement that the flows on some arcs to be proportional.

This is because the components have to be assembled in proportional amounts to obtain

a modular end product. Moreover, the network resulting from this reformulation consists

of several disconnected subnetworks because of the modular product structure. In other

words, they will still have some relationship through the proportional flow requirements

on some arcs. Hence, section 5.1 is devoted to study this type of networks.

For a typical network of this kind, let G (N ,A) be a directed network. Here, N =

{1, · · · , n} denotes the set of nodes and A = {(i, j) : i, j ∈ N} is the set of directed

arcs. Here, nodes are used to represent both supplies and demands for components used

in the assembly of different products. There are two types of nodes: i ∈ N is a supply

node with bi > 0, and it is called a demand node with bi < 0. Moreover, it is assumed

that
∑

i∈Nk bi = 0 for all k ∈ K.

There are several subnetworks in G according to the modular structure. For this, let

Gk (Nk,Ak) be a subnetwork of G whereNk = {1, · · · , nk} is the set of nodes andAk =

{(i, j) : i, j ∈ Nk} is the set of arcs corresponding to subnetwork k ∈ K = {1, · · · ,m}.

Indeed, these subnetworks are a partition of G : Gk∩Gk′ = ∅ for each k 6= k′ and k, k′ ∈ K,

and ∪k∈KGk = G . We will note here that each subnetwork subindex k is associated to

some module in the modular product structure.
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For an arc (i, j) ∈ A, uij and cij are the flow upper bound and unit flow cost, respectively.

Since some arc flows are needed to be proportional between them, let A′sk be the subset

of arcs in Ak and A′s = ∪kA′sk be the set of all arcs in A that should have proportional

flow for requirement s respectively where s ∈ S = {1, · · · , t}. Then, let pij be the

proportionality coefficient related to arc (i, j) ∈ A′s, s ∈ S . Note that each proportional

flow requirement subindex s is associated to a specific product variant.

Problem P1 where the amount of flows fij on each arc (i, j) ∈ A has to be deter-

mined is called minimum cost proportional flow problem with disconnected subnetworks

(MCPFD). Correspondingly, it is wanted to determine how to allocate components be-

tween products in the subproblem (4.3)-(4.6). Problem P1 can be used equivalently to

solve the subproblem in (4.3)-(4.6). In particular, a specific case is illustrated in Figures

4.4, 4.5, 4.6, and 4.7 to show how to switch between these two problems.

P1: min
∑

(i,j)∈A

cijfij (5.1)

s.t.
∑

j:(i,j)∈Ak

fij −
∑

j:(j,i)∈Ak

fji = bi i ∈ Nk, k ∈ K, (5.2)

fij/pij are all equal (i, j) ∈ A′s, s ∈ S, (5.3)

0 6 fij 6 uij (i, j) ∈ Ak, k ∈ K. (5.4)

Constraints (5.2) are defined to satisfy the flow conservation, constraints (5.3) are the

proportional flow constraints associated to specific product variants s ∈ S, and constraints

(5.4) are lower and upper bounds for the arc flows. Note that problem P1 is different

from the well-known MCNF problem in that it contains the constraints (5.3). There

exist efficient algorithms to deal with MCNF such as network simplex algorithm [101].

However, the addition of proportionality constraints complicates the problem and the

available solution procedures developed for MCNF can not be applied directly. When

the number of nodes is at least an order of magnitude larger than the number of side

constraints, it becomes possible to exploit the special network structure [102].

Although problem P1 does not take into account the generalized network models with lin-
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ear gains and/or losses, they can be easily modeled with a slight modification of MCPFD.

Figure 5.1 illustrates how different cases can be transformed appropriately. In that figure,

the amount indicated over a node corresponds to its supply or demand, µij is the gain/loss

factor associated with arc (i, j), and node d is a dummy node.

(a) Example with loss factor (0 < µ < 1) (b) Example with gain factor (µ > 1)

Figure 5.1: Modeling generalized networks with linear gain/loss

However, it would be still useful to transform a generalized network model to a pure

network model, if it is possible. Indeed, it is always possible to transform a generalized

network flow model with no gain or loss into a pure network flow model [101].

5.1.1 Minimum Cost Network Flow Problem Variants

There are several variants of the MCNF problem with side constraints which have been

studied to develop efficient algorithms in computational terms. Based on the relaxation

and decomposition techniques, Ali et al. [103] solved the equal flow problem in which

selected pairs of arcs are required to have identical flow. The authors used Lagrangian

relaxation in their algorithm. Ahuja et al. [104] introduced the simple equal flow problem

in which only a single set of arcs is required to have identical flow. The authors devel-

oped several algorithms to deal with their problem including the special purpose network

simplex algorithm, the parametric simplex algorithm, the combinatorial parametric al-

gorithm, the binary search algorithm, and the capacity scaling algorithm. Calvete [105]
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introduced the general equal flow problem which extends the simple equal flow problem

by allowing multiple sets of arcs to have identical flow. The author proposed a primal

simplex algorithm based on the network simplex method. Note that by setting the number

of modules and all proportionality coefficients equal to one, it is not difficult to observe

that the general equal flow problem is a special case of MCPFD.

Later, Mo et al. [106] considered an integrated manufacturing supply chain where multi-

ple products are manufactured across multiple manufacturing plants by distilling a unique

raw material. Similar to [104, 105], the authors presented a modified network simplex

method which exploits the special structure of basis. MCPFD problem is also capable to

deal with this problem.

In another converging research, Fang and Qi [107] introduced manufacturing network

flow (MNF) models. In MNF model, the synthesis of different materials to a single

product and the distilling of one material to many different products can be realized.

The authors modified the network simplex method according to MNF model and solved

a simplified version of their model.

Later, MNF model has attired much attention from several authors. Mo et al. [108]

expanded MNF model by incorporating certain features of the ordinary multi-commodity

network flow models. Lu et al. [109] studied a MNF model in which the mass balance

constraint requiring the total flow in and out of a node to be equal is relaxed. Venkate-

shan et al. [110] developed a network-simplex-based algorithm based on efficient data

structures to solve a MCNF problem formulated on such generalized networks.

At a glance, arcs selected with any purpose in form of a subset can be proportional in

MCPFD while only arcs attached to the same node could be proportional in MNF models.

Nevertheless, it is possible to transform each one to another [111]. Moreover, MCPFD

explicitly takes into account the disconnected network structure.
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5.1.2 Reformulation from Complicating Constraints to Complicating Variables

Let cs =
∑

(i,j)∈A′s
pijcij and us = min(i,j)∈A′s uij/pij for all s ∈ S. Let aij denotes the

column associated to arc (i, j) in the node-arc incidence matrix of network G and alij be

the l-th component of vector aij . Let also as =
∑

(i,j)∈A′s
pijaij for all s ∈ S and als be

the l-th component of vector as. As aiij = 1, ajij = −1, alij = 0 for each l 6= i, j ∈ Nk and

(i, j) ∈ A′sk and all the subnetworks are disconnected, it is observed for each subnetwork

k that

∑
l∈Nk

als =
∑

(i,j)∈A′sk

∑
l∈Nk

alij = 0 s ∈ S. (5.5)

Let G̃ (N , Ã) be the network with Ã = A \ ∪s∈SA′s and G̃k(Nk, Ãk) be the network with

Ãk = Ak \∪ts=1A′sk for all k ∈ K. Then, problem P1 can be transformed into the problem

P2 as follows:

P2: min
∑

(i,j)∈Ã

cijfij +
t∑

s=1

csfs (5.6)

s.t.
∑

j:(i,j)∈Ã

fij −
∑

j:(j,i)∈Ã

fji +
t∑

s=1

aisfs = bi i ∈ Nk, k ∈ K (5.7)

0 6 fij 6 uij (i, j) ∈ Ãk, k ∈ K (5.8)

0 6 fs 6 us s ∈ S (5.9)

After this reformulation, only problem P2 is considered for further analysis.

5.1.3 Structure of the Basis

It must be noted that if |S| = t > n = |N |, then there will be many basic feasible solu-

tions of P2 in (5.6)-(5.9) involving only variables {f1, · · · , ft}, and the simplex algorithm

will pivot between these basic feasible solutions. In turn, this will reduce the efficiency of

the proposed algorithm since there will be no possibility to take the advantage of network

structure. Therefore, it assumed that t < n holds.
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Lemma 5.1. The rank of the matrix A corresponding to constraints (5.7) is equal to

n−m.

Proof. The matrix A has n rows and one column for each arc in Ã and one column for

each variable fs, A = [Ã a1 a2 ... at] where Ã is the node-arc incidence matrix of G̃ .

First, the maximum rank of A is n − m because adding all the rows up yields the zero

vector for each disjoint subnetwork k corresponding to node set Nk. Furthermore, it is

assumed without loss of generality that each network G̃k contains at least one spanning

tree since otherwise we can add artificial arcs with sufficiently large costs. This implies

that the rank of Ã is
∑

k(nk − 1) = n−m and thus rank(A) = n−m.

With Lemma 5.1, it is showed that basic feasible solutions of the linear problem P2 consist

of n−m basic variables whose corresponding vectors in A are linearly independent and

the rest of the variables are fixed at their lower or upper bound. Following this fact, if

none of the variables {f1, · · · , ft} are in the basis, then this basis can be represented by

an m-spanning forest in G̃ in order to get n−m linearly independent vectors. Otherwise,

if r of these variables {f1, · · · , fr} are basic, then we should select n − r −m variables

{fij, (i, j) ∈ Ã} whose associated vectors in the node-arc incidence matrix Ã are lin-

early independent and also independent of variables {f1, ..., fr}. This latter case can be

obtained by removing r arcs from an m-spanning forest in G̃ , which will decompose it

into r + m node-disjoint trees T1(N T
1 ,AT1 ), ...,Tr+m(N T

r+m,ATr+m). This collection of

trees will again span G̃ and thus the resulting forest is a (r + m)-spanning forest in G̃

which is denoted as F . Now the structure of the related bases will be analyzed.

Let B̃ denotes the submatrix of Ã associated with the (r + m)-spanning forest F and

a1, · · · , ar be vectors associated with variables f1, · · · , fr. Given that the rank of B̃ is

equal to n − r −m, the rank of B = [B̃ a1 a2 · · · ar] is equal to n −m if the vectors

in B̃ with vectors a1, · · · , ar are linearly independent. Accordingly, it is provided in the

following a suitable condition that guarantees B is a basis of the problem P2. But before

going into the details, it is needed to introduce some additional notation. Lets assume

that T1, · · · ,Tz1 ⊂ G̃1, Tz1+1, · · · ,Tz2 ⊂ G̃2 and in general Tz(k−1)+1, · · · ,Tzk ⊂ G̃k



53

for all k ∈ K. Therefore the number of spanning trees in each subnetwork G̃k is equal to

zk − z(k−1) with z0 = 0 and zm = r + m. In a similar fashion, let N T
1 = {1, · · · , nT1 },

N T
2 = {nT1 + 1, · · · , nT2 }, and in general N T

z = {nT(z−1) + 1, · · · , nTz } for all z ∈ Z =

{1, · · · , z1, z1 + 1, · · · , z2, · · · , z(m−1) + 1, · · · , zm} without loss of generality. Finally,

let D′ be the matrix formed by the elements dz,s =
∑

l∈NTz
als for all z ∈ Z ′ = Z \

{z1, z2, · · · , zm} and s ∈ S ′ = {1, · · · , r}. Note that |Z| = r + m and |Z ′| = r by

definition.

Theorem 5.2. rank (B) = n−m if and only if rank (D′) = r.

Proof. After column arrangements, the matrix B can be reexpressed as

B =



T1 · · · 0 · · · 0 · · · 0 ∆1

· · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · Tz1 · · · 0 · · · 0 ∆z1

· · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · 0 · · · Tz(m−1)+1 · · · 0 ∆z(m−1)+1

· · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · 0 · · · 0 · · · Tzm ∆zm


(5.10)

where 0 are matrices of conformal dimensions with all entries equal to zero, Tz is the

node-arc incidence matrix of Tz and

∆z =


a
n(z−1)+1

1 a
n(z−1)+1

2 · · · a
n(z−1)+1
r

a
n(z−1)+2

1 a
n(z−1)+2

2 · · · a
n(z−1)+2
r

· · · · · · · · · · · ·

anz1 anz2 · · · anzr

 (5.11)

for all z ∈ Z . Here, rank(T1) = nT1 − 1, rank(T2) = nT2 − nT1 − 1, and in general

rank(Tz) = nTz − nT(z−1) − 1 for all z ∈ Z . As every non-singular square submatrix of

the node-arc incidence matrix of a directed network is triangular, the matrix B can be

rewritten as
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B′ =



T′1 · · · 0 · · · 0 · · · 0 ∆′1

· · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · T′z1 · · · 0 · · · 0 ∆′z1

· · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · 0 · · · T′z(m−1)+1 · · · 0 ∆′z(m−1)+1

· · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · 0 · · · 0 · · · T′zm ∆z′m


(5.12)

where

T′z =


0 0 · · · 0

±1 0 · · · 0

· · · · · · · · · · · ·

0 0 · · · ±1

 (5.13)

and

∆′z =


dz,1 dz,2 · · · dz,r

a
n(z−1)+2

1 a
n(z−1)+2

2 · · · a
n(z−1)+2
r

· · · · · · · · · · · ·

anz1 anz2 · · · anzr

 (5.14)

for all z ∈ Z . Hence, rank(B) =
∑m

k=1

∑zk
z=z(k−1)+1 rank(Tz) + rank(D) = n− r−m+

rank(D) where D is formed by the elements dz,s =
∑

l∈NTz
als for all z ∈ Z and s ∈ S ′.

As we have 0 =
∑

l∈Nk a
l
s =

∑
l∈NTz(k−1)+1

als + ...+
∑

l∈NTzk
als for all k ∈ K, s ∈ S from

(5.5), rank(B) = n−m holds if and only if rank(D′) = r.

Therefore, a basic solution to MCPFD consists of an (r + m)-spanning forest F in G̃

where r = 0, ..., t as well as variables {f1, ..., fr} verifying that rank(D′) = r. Note

that for each (r + m)-spanning forest, there are
(
t
r

)
combinations of selecting r variables

among {f1, ..., ft}.

Definition 5.3. An (r+m)-spanning forest F in G̃ is a good (r+m)-forest with respect

to the variables {fs}s∈S′ with S ′ ⊆ S and |S ′| = r, if rank(D′) = r where D′ is formed
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by the elements dz,s =
∑

l∈NTz
als for all z ∈ Z ′ and s ∈ S ′ andN T

z is the node set of tree

Tz in forest F .

Theorem 5.4. A basic solution of MCPFD is constituted of an (r+m)-spanning forest F

in G̃ where r = 0, ..., t and a set of r variables {fs}s∈S′ , S ′ ⊆ S , |S ′| = r verifying that

F is a good (r+m)-forest with respect to {fs}s∈S′ .

Proof. It is clear from the preceding developments.

5.1.4 A Special Primal Simplex Algorithm

In this section, we give in details the main steps required for the special primal simplex

algorithm (SPSA) developed to solve problem P2.

1. Finding the initial basic feasible solution: If none is conveniently available, the all

artificial start method [112, 101, 104] can be used to get a basic feasible solution with

artificial variables in the network G̃ . The initial basic feasible solution is constituted by

the good m-forest defined by this feasible solution. All other variables are non-basic

variables and are equal to their lower bounds or upper bounds.

2. Computing the values of the basic variables: From now on we assume that the basis

is given by a good (r + m)-forest such that Tz ⊂ F for all z ∈ Z and the variables

{f1, · · · , fr}. Let B be the set of arcs (i, j) ∈ Ã such that fij is a basic variable, and B′

be the set of s ∈ S such that fs is a basic variable. Accordingly, we categorize non-basic

variables such that L = {(i, j) ∈ Ã \ B : fij = 0}, L′ = {s ∈ S \ B′ : fs = 0},

U = {(i, j) ∈ Ã \ B : fij = uij} and U ′ = {s ∈ S \ B′ : fs = us}. Finally, we let

V1
z = {(i, j) ∈ U : i ∈ N T

z , j /∈ N T
z } and V2

z = {(i, j) ∈ U : i /∈ N T
z , j ∈ N T

z } for all

z ∈ Z ′. Then, the following Theorem guarantees that the values of variables {f1, · · · , fr}

are solvable.

Theorem 5.5. The values of basic variables {f1, · · · , fr} are the solution of the following

linear system:
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D′f = b′ (5.15)

where D′ is previously defined, f = (f1, · · · , fr)t and b′ = (b′1, · · · , b′r)
t with

b′z =
∑
l∈NTz

bl −

 ∑
(i,j)∈V1

z

uij −
∑

(i,j)∈V2
z

uij

−∑
l∈NTz

∑
s∈U ′

alsus z ∈ Z ′ (5.16)

Proof. After fixing the values of non-basic variables, each constraints in (5.7) can be

reformulated as

∑
j:(i,j)∈B

fij −
∑

j:(j,i)∈B

fji +
∑
s∈B′

alsfs = b̂l l ∈ N (5.17)

where b̂l = bl−
∑

j:(i,j)∈U uij +
∑

j:(j,i)∈U uij−
∑

s∈U ′ a
l
sus. Since uij vanishes if i ∈ N T

z ,

j ∈ N T
z and (i, j) ∈ U ,

∑
l∈NTz

b̂l =
∑
l∈NTz

bl −
∑

i∈NTz , j /∈NTz ,
(i,j)∈U

uij +
∑

i/∈NTz , j∈NTz ,
(i,j)∈U

uij −
∑
l∈NTz

∑
s∈U ′

alsus (5.18)

=
∑
l∈NTz

bl −
∑

(i,j)∈V1
z

uij +
∑

(i,j)∈V2
z

uij −
∑
l∈NTz

∑
s∈U ′

alsus = b′z (5.19)

for all z ∈ Z ′. Similar to the proof of Theorem 5.2, the linear system (5.15) can be solved

to obtain the value of variables {f1, · · · , fr}. Hence, the proof is complete.

The values of basic variables {f1, ..., fr} affect the requirement of each supply and de-

mand node. Then, the flow values of the remaining arcs in each tree Tz z ∈ Z can be

determined by applying the general procedure of the network simplex algorithm.

3. Computing node potentials for a given basis: Given a basic feasible solution, it must

be verified if it is optimal by calculating node potentials π = (πi : i ∈ N ) and taking into

account the fact that the reduced cost of each basic variable is zero. In other words, node

potentials should be determined such that cπij = 0 for all (i, j) ∈ B and cπs = 0 for all s ∈

B′ where cπij = cij − πi + πj for all (i, j) ∈ Ã and cπs = cs −
∑

i∈N a
i
sπi for all s ∈ S .

The first condition can be satisfied by computing appropriate node potentials as in the
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network simplex algorithm. If these node potentials also satisfy the second condition then

it is done. Otherwise, new node potentials π̃ can be calculated such that

π̃i =

πi + σz for all i ∈ N T
z and z ∈ Z ′

πi for all i ∈ N T
z and z ∈ {z1, z2, · · · , zm}

(5.20)

where σ = (σz : z ∈ Z ′)t are obtained by solving the linear system (D′)t σ = cπ given

cπ = (cπz : z ∈ Z ′)t and D′ previously defined.

Lemma 5.6. The node potentials π̃ given in (5.20) satisfies cπ̃ij = 0 for all (i, j) ∈ B and

cπ̃s for all s ∈ B′.

Proof. It can be verified that node potentials π̃ satisfy cπ̃ij = 0 for each (i, j) ∈ B. Then,

for all s ∈ B′, it holds that cπ̃s = cs −
∑

l∈N a
l
sπ̃i = cπs −

∑
z∈Z′

∑
l∈NTz

alsσz = cπs −∑
z∈Z′ dz,sσz = cπs − cπs = 0 by taking into account the linear system given.

4. Testing optimality and selecting the entering variable: Since problem P2 in (5.6)-(5.9)

is a linear programming problem, the optimality conditions can be written as

cπij > 0 (i, j) ∈ L, cπij 6 0 (i, j) ∈ U , (5.21)

and

cπs > 0 s ∈ L′, cπs 6 0 s ∈ U ′. (5.22)

If the given basis satisfies the optimality conditions (5.21) and (5.22), it is optimal and

the algorithm terminates. Otherwise, the algorithm selects a non-basic variable fij with

(i, j) ∈ L∪U violating the condition in (5.21) or a non-basic variable fs with s ∈ L′∪U ′

violating the condition in (5.22) as entering variable according to any usual rules [101].

5. Selecting the leaving variable: Suppose that an entering non-basic variable which

is equal to its lower bound is selected. Increasing the value of this variable by θ units

will necessitate to alter the values of some basic variables to maintain the feasibility. If
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the value of the entering variable hits its upper bound while the values of the modified

basic variables stay between their respective bounds, then the entering variable still re-

mains non-basic. Otherwise, the non-basic variable enters the basis and one of the basic

variables will leave at its lower or upper bound. Similar arguments can be made if the

entering non-basic variable is initially at its upper bound. Depending on the non-basic

variable that enter the basis, three different cases to identify the leaving basic variable

will be considered.

Case 1. The entering variable is fij with i ∈ N T
z and j ∈ N T

z . In this case, the variable

fij only affects tree Tz. The arc corresponding to this variable is added to Tz which

creates a unique cycle. The amount of flow θ is increased and sent through this cycle until

the variable corresponding to one of the arcs of the cycle reaches its upper or lower bound.

If this variable is fij , then it remains non-basic. Otherwise, it enters the basis and one of

the basic variables at its lower or upper bound will leave. In either cases, the value of all

basic variables corresponding to the remain arcs of the cycle are adjusted with respect to

this additional amount of flow.

Case 2. The entering variable is fij with i ∈ N T
z , j ∈ N T

z′ and z 6= z′. Suppose

that an additional amount of flow θ is sent through arc (i, j). Then, the demand of tree

Tz decreases in θ units and the demand of Tz′ increases in θ units. Therefore, new

values of variables f1, · · · , fr are obtained by solving a modification of system (5.15)

such that D′f = b̄′ where b̄′ = (b′1, · · · , b′z − θ, · · · , b′z′ + θ, · · · , b′r)
t. Once these values

are determined, the value of θ is increased until fij or one of the basic variables reaches

one of its bounds. Then, the arguments presented in Case 1 remains also valid here.

Case 3. The entering variable is fs, where r < s 6 t. When the value of vari-

able fs is increased by θ > 0, the demand of each tree Tz for which
∑

l∈NTz
als > 0

should decrease in θ
∑

l∈NTz
als, the demand of each tree Tz for which

∑
l∈NTz

als < 0

should increase in θ
(
−
∑

l∈NTz
als

)
. Therefore, the new values of variables f1, ..., fr

are determined by solving a modification of system (5.15) such that D′f = b̄′ where

b̄′ =
(
b′1 − θ

∑
l∈NT1

als, · · · , b′r − θ
∑

l∈NTr
als

)t
. Then, the arguments presented in Case

1 remains also valid here.
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Now, we can discuss the roles of variable r and parameter m in more details. Note

that the steps in Case 1 of the algorithm are identical to ones in the network simplex

algorithm. Indeed, if most of the variables fs remain non-basic, then the execution time of

the algorithm speeds up. Because, Case 1 is more likely to occur, and there are not many

non-basic arcs connecting distinct trees. When the variable r increases, the basis of the

problem becomes more partitioned. Though this offers an improvement in the execution

time of the algorithm by dealing with trees smaller in size, the benefit from using the

embedded network simplex steps in the algorithm is reduced, because the steps required in

Case 2 of the algorithm will be used more frequently. Thus, when the variable r increases,

the execution time of the algorithm is longer. In contrast, the high values of the parameter

m lead to have a decomposable structure since no arc connecting distinct trees exists in

a disconnected network structure. The above situation is of particular interest for the

network design. So, one should take into account the possible number of basic variables

fs in the optimal solution. Recently, Wang and Lin [113] have proposed an algorithm

with a basis partition technique which uniquely decomposes the basic feasible graph into

p + 1 trees for solving the minimum distribution cost problem. In their algorithm, p

is the total number of D-nodes. Since a D-node can be modeled using a proportional

flow subset in MCPFD, their parameter p is the maximum value that can be taken by

the variable r in our algorithm (i.e. r ≤ p). Moreover, their technique requires solving

a system of p linear equations, whereas our algorithm requires solving a system of r

linear equations. Thus, our algorithm offers a more efficient basis partition technique.

Nevertheless, Lu et al. [114] presented an extended cycle method to calculate the reduced

costs for non-basic variables when solving the minimum distribution cost problem. Note

that in our algorithm, the reduced costs for non-basic variables are calculated based on

the node potentials at the cost of solving r linear equations. It is clear that the reduced

cost calculation based on the node potentials will be more efficient than one based on the

cycle method.
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5.2 Bipartite Structure

First, note that the subproblem (4.3)-(4.6) can be restated as a MCNF problem in which

a collection of the separated networks is binded by some side constraints associated with

the proportional flow requirement. Now, we focus on the number of sources and sinks in

this MCNF problem. In the assembly networks with mass customization, it is common to

have a great variety of end products (sinks) from a few number of components (sources).

Then, the bipartite network in Figure 4.7 becomes unbalanced with respect to the number

of sources and sinks. Now, we further assume that the proportional flow requirement is

relaxed. Then, the resulting problem is summarized in (5.23)-(5.26). Here, NS and ND
denote the source and sink node sets, respectively. Let si > 0 and dj > 0 denote the

supply quantity at source node i and demand quantity at sink node j, respectively. The

characteristics of this problem are well investigated. In particular, constraint (5.24) can

be considered as the complicating constraint, since the number of sources are assumed to

be far less than the number of sinks. There exist several solution procedures including

strongly polynomial algorithms to deal with this problem. A literature survey is presented

in Table 5.1 where s is the number of sources and d is the number of sinks. Note that

the respective complexity of the algorithms given in Table 5.1 is borrowed from Brenner

[115].

Unb: min
∑

(i,j)∈A

cijfij (5.23)

s.t.
∑

j:(i,j)∈A

fij = si i ∈ NS, (5.24)

∑
i:(i,j)∈A

fij = dj j ∈ ND, (5.25)

0 6 fij (i, j) ∈ A. (5.26)
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Table 5.1: Literature survey for the unbalanced transportation problem

Authors Title Complexity s << d

Brenner [115]

A faster polynomial algorithm for the

unbalanced Hitchcock transportation

problem

O(ds2(log d+ s log s))

Williams [116]
A treatment of transportation problems by

decomposition
−

Zemel [117]

An O(n) algorithm for the linear multiple

choice knapsack problem and related

problems

O(ds22s)

Orlin [118]
A faster strongly polynomial minimum cost

flow algorithm
O(d2log d(s+ log d))

Matsui [119]

A linear time algorithm for the Hitchcock

transportation problem with fixed number of

supply points

O((s!)2d)

Kleinschmidt and

Schannath [120]

A strongly polynomial algorithm for the

transportation problem
O(d2slog d)

Tokuyama and

Nakano [121]

Efficient algorithms for the Hitchcock

transportation problem
O(ds2log2d)

Since even a few number of components per module can quickly lead to a great variety of

end products, an algorithm polynomial in s and linear in d will be interesting. Between

strongly polynomial time algorithms, it is remarkable that Brenner's [115] algorithm

works in O(ds2(log d + s log s)) time and fits best this purpose. Meanwhile, Williams

[116] solves the transportation problem with Dantzig Wolfe decomposition and argues

that the proposed algorithm works faster in unbalanced cases. Here, we support this

argument and the CPU time performance of this algorithm is analyzed in details. With

constraints (5.24) accepted as complicating constraints, the relaxed problem consists of

(5.23),(5.25) and (5.26). This relaxed problem has a decomposable structure based on the

sink nodes. A multi-thread code is implemented to benefit from this structure. In Table

5.2, we compare the results with those obtained with the network simplex implementation

through a set of randomly generated problems. In Table 5.2, the total number of iterations

performed by the Dantzig Wolfe decomposition algorithm is also given.
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In practice, the Dantzig Wolfe decomposition approach has a linear performance in d

and is still polynomial in s for the unbalanced transportation problem. In fact, the re-

laxed problem obtained by deleting constraints (5.24) from the problem (5.23)-(5.26) is a

collection of isolated linear programming problems, each of which has a single equality

constraint and has a trivial solution. Thus, this relaxed problem can be solved in O(ds)

time. The Dantzig Wolfe decomposition algorithm solves this relaxed problem instead

of the problem (5.23)-(5.26) at the cost of extra computational iterations. We denote the

number of iterations performed by the Dantzig Wolfe decomposition algorithm as Iter

in Table 5.2. Furthermore, it is observable from the CPU time results given in Table

5.2 that Iter depends mainly on s, but not on d. Thus, it is possible to benefit from

a special algebraic structure and in practice, an algorithm polynomial in s and linear

in d is obtained. However, when applying this approach to the subproblem (4.3)-(4.6)

which includes several unbalanced transportation networks, one needs to deal with the

complicating variables corresponding to the side constraints. A nested approach consist-

ing of the Benders and the Dantzig Wolfe decompositions seems to be reasonable only

when the number of complicating variables is limited. For example, this solution method

may be chosen when unsatisfaction of the customer demand is allowed only for a few

number of end products. Otherwise, SPSA should be used to solve the subproblem (4.3)-

(4.6). The previously introduced model reformulations and their solution approaches are

summarized in Table 5.3.
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Table 5.2: Performance analysis of Dantzig Wolfe decomposition method

Network Simplex Algorithm

d

s 10,000 50,000 100,000

CPU Time (sec.)

2 0.2 1.9 6.5

4 0.2 2.9 16.7

5 0.3 3.4 19.1

7 0.3 3.9 20.4

10 0.3 5.0

Dantzig Wolfe Decomposition Algorithm

d

s 10,000 50,000 100,000 500,000 1,000,000 10,000,000

CPU Time (sec.)

2 0.0 0.1 0.3 0.1 0.3 2.0

4 0.3 0.2 0.3 1.0 1.0

5 0.4 0.4 0.6 1.0 3.0

7 0.4 0.8 1.0 2.1 4.9

10 0.7 1.1 1.3 6.4

Number of Iterations

2 11.3 11.4 11.7 10.9 11.6 11.7

4 42.4 42.3 42.6 41.5 42.4

5 61.7 64.9 61.2 64.2 62.0

7 110.9 113.3 118.2 114.8 115.4

10 209.8 212.1 211.4 213.3
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Table 5.3: Model variants and solution procedures

Model Variant
Gains/

Losses
Assumption Assumption

Solution

Procedure
General Case Gen.

Netw. with Equality

Const.

Yes - -

L-Shaped /

SPSA

(Gains-Losses)
General Case Pure

Netw. with Prop.

Const.

No - -
L-Shaped /

SPSA

Subcontracting Case

Gen. Netw. with

Equality Const.

Yes

Common

Demand

Satisfaction

Proportion

poij 's and aoij 's

are equals for

j ∈ Uoir

L-Shaped /

L-Shaped /

SPSA

(Gains-Losses)

Subcontracting Case

Pure Netw. with Prop.

Const.

No

Common

Demand

Satisfaction

Proportion

poij 's and aoij 's

are equals for

j ∈ Uoir

L-Shaped /

L-Shaped /

Network

Simplex
Spot Market Case

Gen. Netw.
Yes Outsourcing -

L-Shaped /

Dantzig Wolfe
Spot Market Case

Pure Netw.
No Outsourcing -

L-Shaped /

Dantzig Wolfe



6 Computational Results

6.1 Summary of the Solution Method

Before going into the details of the computational results, we would like to briefly ex-

pose the solution method of the two stage stochastic linear programming problem given

in (4.1)-(4.6). If no upper bounds are defined for the end product shortage quantities,

the subproblems (4.3)-(4.6) are always feasible. These subproblems corresponding to

different demand scenarios are solved with SPSA each time to add an optimality cut to

master problem of L-Shaped method until the optimum component purchase quantities

are determined. A flow diagram illustrating the integration of the L-Shaped algorithm

with SPSA is provided in Figure 6.1 and the main steps of SPSA are given in Figure 6.2.

Figure 6.1: Integration of L-Shaped algorithm with SPSA

Figure 6.2: Special primal simplex algorithm
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6.2 The Model Parameters

The mathematical programming models used in the experiments are based on the models

given in (4.1)-(4.6) and (4.40)-(4.47). Accordingly, the purchasing and holding costs

for components are fixed to 12 and 0.12, respectively, and the shortage and substitution

costs vary between 19-25, and 2-4, respectively. We assumed that the the shortage costs

increase linearly with the increase in the number of modules. As for example, if the

number of modules is equal to two, then the shortage costs are assumed to vary between

38-50. The number of components in an end product also increases linearly with the

number of modules. Hence, it is possible to analyze the effect of increasing the number

of modules on several performance metrics. Moreover, it is assumed that the stochastic

parameters have discrete probability distributions (see in-sample stability requirement

discussed in section 4.3.2). Finally, the risk parameter α associated with the CVaR

problem given in (4.40)-(4.47) is assumed to be equal to 0.95.

6.3 CPU Time Performance of the SPSA

In this section, the time performance of the SPSA relative to a primal simplex linear

programming solver (LPS) is considered. For this purpose, GNU Linear Programming

Kit (GLPK) [122] is used in the computational experiments. The number of basic compli-

cating variables is an important factor when exploiting the underlying network structure.

When there are many basic complicating variables, the time performance of the SPSA will

be worse. This fact is discussed in section 5.1.4. For the stochastic programming model

given in (4.1)-(4.6), complicating variables corresponding to the end product shortage

quantities are denoted by uj . Thus, for each module, additional constraints could be added

to the first stage (4.1)-(4.2) of the model to avoid such complicating variables entering the

basis at the iterations of the L-Shaped method. An example of such a constraint is below:

∑
i

xoi ≥ SSo ∀o (6.1)



67

where SSo is the safety stock target set for module o. In our experiments, only the

total demand scenarios (d1 = 100, d2 = 200) are considered with high shortage costs

(sj = 25 ∀j) and low substitution costs (poij = 2 ∀o, i, j), and we varied the numbers of

components and modules. We also fixed the purchasing costs (coi = 12 ∀o, i) and holding

costs (hoi = 0.12 ∀o, i) of components.

The experiment results are shown in Tables 6.1, 6.2, and 6.3 by taking into account low,

moderate, and high levels of safety stocks, respectively. From the results, the effect of

the number of basic complicating variables when exploiting the network structure can be

observed. It is clear that the SPSA outperforms the primal simplex LPS in execution times

when the number of modules increases as shown in Figure 6.3. This is because SPSA

is designed to benefit from modular decomposition. However, there is less evidence to

draw the same inference when the number of substitutable components in each module

increases. Note that the experiment results are derived from a single thread code imple-

mentation. At this point, it is worth to say that the SPSA can also benefit from parallel

computing. In fact, the modular product structure can lead to a further decomposition

of the subproblems emerging from the stochastic decomposition. Thus, a multi-thread

code implementation of the SPSA promises further shortened execution times via today’s

advanced multi-core CPUs and achievements in distributed computing.
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Table 6.1: SPSA/LPS CPU time ratios for the low safety stock (SSo = 100 ∀o) case

Components

Modules 2 3 4 5 6

1 0.460 0.615 0.625 0.548 0.725

2 0.525 0.437 0.335 0.242 0.269

3 0.378

4 0.272

5 0.274

6 0.243

7 0.242

Table 6.2: SPSA/LPS CPU time ratios for the moderate safety stock (SSo = 150 ∀o) case

Components

Modules 2 3 4 5 6

1 0.635 0.636 0.512 0.699 0.794

2 0.548 0.393 0.294 0.258 0.256

3 0.338

4 0.233

5 0.233

6 0.190

7 0.190
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Table 6.3: SPSA/LPS CPU time ratios for the high safety stock (SSo = 200 ∀o) case

Components

Modules 2 3 4 5 6

1 0.761 0.573 0.507 0.439 0.480

2 0.257 0.293 0.274 0.227 0.176

3 0.249

4 0.168

5 0.124

6 0.093

7 0.090

Figure 6.3: SPSA/LPS CPU time ratios when increasing the number of modules



70

6.4 The Analysis of the Stochastic Model

6.4.1 The Performance Metrics

In this section, the performance metrics used in the analysis of our stochastic model are

introduced. The average supply ratio (ASR), the expected value of perfect information

(EVPI), the value of stochastic solution (VSS), and the CVaR are used in this analysis. In

particular, EVPI and VSS are widely used measures [123, 124] in stochastic programming

and they are discussed in details by Birge and Louveaux [74].

In our case, the ASR value denotes the average purchased component quantity per module

over the expected total demand quantity of the end products. A low ASR value means that

the customer demand is more likely to be met with less component inventory. Indeed, this

case may lead to a reduction in inventory costs and decrease in the occurrence of out-

of-stock situations. On the other hand, a high ASR value implies that more component

inventory is used to meet the customer demand, so an increase in the inventory costs is

inevitable.

EVPI represents the price of the option to know the complete and accurate information

about the future. Since the two-stage structure of the model given in (4.1)-(4.6) is due to

lag of time between the advance purchase of the components and the realization of the

end products demand, EVPI can also be considered as the option price to shorten this lag

in order to reduce the uncertainty at the time of purchase. A low EVPI value indicates a

smaller additional profit when complete information is acquired [125]. To calculate EVPI,

the wait-and-see and the here-and-now models corresponding to the recourse problem

given in (4.1)-(4.6) are to be solved first. The wait-and-see solution (WS) is defined as

WS = Ed̃[min
x∈RC

z(x, d̃)], (6.2)

while the here-and-now solution (RP) is defined as

RP = min
x∈RC

Ed̃[z(x, d̃)]. (6.3)
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Then, it is possible to give the normalized EVPI as:

EVPI =
|WS − RP |

RP
. (6.4)

VSS can be viewed as the option price to use the expected information instead of the

stochastic information. A low VSS value indicates that the approximation of the stochas-

tic program by the expected value program is a good one [125]. In order to calculate VSS,

one needs first to solve the expected value problem (EV) where all random variables are

replaced by their expected values:

EV = min
x∈RC

z(x, d̄), (6.5)

where d̄ denotes the expectation of d̃. Let x̄ denotes the optimal solution of the expected

value problem. Then, the expected value of using the optimal solution of the expected

value problem (EEV) can be defined as follows:

EEV = Ed̃[z(x̄, d̃)]. (6.6)

The normalized VSS is defined as follows:

VSS =
EEV − RP

RP
. (6.7)

The last performance metric considered in this study is the CVaR/RP value. CVaR is the

problem with an objective of type risk-averse decision maker whereas RP is the problem

with an objective of type risk-neutral decision maker. An increase in the CVaR/RP ratio

is related to an increase of high loss risk. CVaR/RP is defined as follows:

CVaR/RP =
CVaR

RP
(6.8)

6.4.2 The Effect of the Variation in Shortage and Substitution Costs

Our objective is to analyze the effects of the variation in shortage and substitution costs.

Different demand scenario sets are included in our experiment plan to better observe the
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behaviour of the models given in (4.1)-(4.6) and (4.40)-(4.47) under different demand

conditions. The variability in both total demand quantity and component preferences

are taken into account in the experiments. The respective settings for different scenarios

are listed in Appendix A. The experiments are conducted for a model consisting of two

modules, and two components per module, and the obtained results are also given in

Appendix A.

When the shortage costs increase, ASR value which is the average purchased component

quantity per module over the expected total demand quantity of end products, also in-

creases. This can be explained with the fact that high shortage costs make out-of-stock

less desirable, and then more inventory is held to satisfy the customers. This effect is

more significant when the interval of uncertainty for the total demand quantity is large.

When the substitution costs increase, ASR value decreases because high substitution costs

discourage the planner to meet the customer demand in high demand scenarios when

shortage is still a considerable option. This effect is observed with uncertainty of the

component preference. On the other hand, note that high substitution costs would lead to

an increase in ASR value to meet the customer demand with original components when

the shortage is less desirable.

EVPI value depends on both the shortage and substitution costs. When the shortage

costs increase, EVPI value increases. It can be observed that this increase becomes more

important when the total demand uncertainty is high. A similar effect is observed with the

substitution costs. EVPI value increases when the substitution costs increase. This time, it

becomes more significant with the high uncertainty of the component preference. Here, it

is worth to say that when shortage and substitution costs become higher, it becomes more

difficult to fill the gap between the realized demand and the inventory on hand under

uncertainty. Thus, when the shortage and substitution costs are high, an accurate forecast

of the demand becomes crucial and the firm may decide to invest on information systems

to reduce the uncertainty. In that case, EVPI can be used to evaluate how much it would

pay for this.
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VSS value decreases when the shortage costs increases. This effect is more significant

when the total demand uncertainty is high.

CVaR/RP ratio depends on both the shortage and substitution costs. When the shortage

costs increase, this ratio decreases. The uncertainty of the total demand affects signifi-

cantly the decrease. Furthermore, it is observed that ASR value increases in this case. So,

the gap between CVaR and RP decreases when the out-of-stock situations become rare.

Conversely, this gap will increase in cases where it is more likely to see out-of-stocks.

To summarize, we can argue that the risk of out-of-stock position is underestimated by a

risk-neutral decision maker when compared to a risk-averse decision maker.

CVaR/RP ratio increases when the substitution costs increase. The degree of uncertainty

on the component preference rates affects this increase. In fact the increase can be

attributed to the risk pooling effect of the substitution.

6.4.3 The Effects of Increasing the Number of Components and Modules

The number of components and modules are closely related to the end product structure.

Although the decision for the end product structure is rather strategic, its impact to the

operational area must not be underestimated. Hence, the question of how the structure

can affect ASR, EVPI, VSS, and CVaR/RP values is worth to answer. Since the shortage

and substitution costs influence these performance metrics, the experiment plan consists

of low/high shortage and low/high substitution costs scenarios. Scenario sets including

the variability of both total demand quantity and component preference rates are also

added to the experiment plan. For the total demand variability, it is assumed to have

low/high (d1 = 100, d2 = 200) total demand quantity scenarios. However, the scenario

generation for the different component preference rates is not straightforward. In order to

compare the results between the end product structures associated with different number

of components, the scenarios need to be generated so that only one component is fully

preferred in a prospective scenario. Hence, it would be possible to compare the results of

these scenarios because the scenario generation method will be coherent to the variations
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in the number of components. Table B.1-B.47 show the experiment results based on

this scenario generation method. When the number of components in each module is

fixed to two and the effects of increasing the number of modules are analyzed, another

scenario generation method is implemented where one of two components is preferred

with a probability equal to 0.45 or 0.55. The results associated with this case are shown

in Table C.1-C.12.

The effects of increasing the number of components and modules are summarized in

Tables 6.4 and 6.5, respectively. In these tables, “F” stands for “Fixed” and “V” stands

for “Variable”. Moreover, a “+” sign indicates an increase whereas a “-” sign indicates

a decrease in the performance of the respective measure. First, it is observed that the

increase in the number of components has not the same effect as the increase in the

number of modules. This is because when new components are added into the end product

structure, they can be substituted with already existing components in their own modules.

However, when a new module is added into the end product structure, new components

can not be substituted with already existing components. Secondly, different demand

scenarios have different effects under the same shortage and substitution costs. Thus,

the total demand variability and the component preference variability are among the key

factors for these performance metrics when increasing the number of components and

modules. In particular, almost no effect is observed under the demand scenario with

variable total demand quantity and fixed component preference rates.

ASR decreases for scenario with variable total demand quantity, variable component

preference rates, and high shortage costs when the number of components increases. This

is because more uncertainty on component preference rates is introduced by adding more

components.

When the number of modules is increased, ASR value depends on the variability of

substitution costs for the scenario with variable total demand quantity, variable component

preference rates, and high shortage costs. In particular, ASR increases with low substitu-

tion costs whereas it decreases with high substitution costs. Thus, low substitution costs

may encourage the planner to meet the customer demand in high demand scenarios when
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increasing the number of modules.

When the number of components increases, VSS value tends to increase in general for the

scenario with variable total demand quantity and variable component preference rates.

However, VSS value decreases with high shortage costs when the number of modules

increases.

Table 6.4: The effects of increasing the number of components
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From the experiment results, it is observable that EVPI value tend to increase when both

the number of components and modules increases. Therefore, one has to be ready to pay

more for the accurate information when the end product has a complex structure and the

demand is uncertain.

CVaR/RP ratio tends to increase for the demand scenario with variable total demand quan-

tity and variable component preference rates when the number of components increases.

However, it decreases with high shortage costs when the number of modules increases.

Table 6.5: The effects of increasing the number of modules
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7 Conclusion and Further Suggestions

Today, the mass customization is a popular strategy aiming to fill the gap between the

mass production efficiency and the customization opportunity. The modularity can be

seen as a success factor in a mass customization environment in that it combines the

standardization and the flexibility. Moreover, the modularity fits well to the purpose of

the assemble-to-order strategy. In this framework, the substitution can be implemented

to reduce the costs. This fact is observed and discussed in many studies. An inventory

planning model taking into account these popular strategies is studied in this thesis. In

particular, the general, subcontracting and spot market cases of the model are considered.

In this model, a lot of end products can be defined, where they are differentiated by

the modular component options. Based on the different problem formulations and the

assumptions, several solution methods are proposed. In particular, a special algorithm for

the modular networks with proportional flows is suggested to deal with the subproblems.

This is a primal simplex algorithm which seeks to benefit from the network structure and

modular decomposition as much as possible. Its bases are partitioned into the network

components and several complicating variables. These complicating variables present the

proportional flows.

In the model, some action is taken in the presence of uncertainty at the first stage, then a

recourse action is made at the second stage when the uncertainty is resolved. The model

is studied from a viewpoint of the risk. The risk-neutral and the risk-averse approaches

are studied. The expected and quantile value of the recourse actions are considered when

taking the first-stage decisions, respectively. In a risk-neutral case, the decision maker

does not differentiate among the prospective scenarios. Then, the model is formulated as

a stochastic programming problem. In a risk-averse case, the previous assumption can

not be accepted because the decision maker dislikes the risk. The worst case scenarios are

heavily considered in a risk-averse approach. So, the CVaR is selected as a risk-averse
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measure.

Later, the computational experiments are conducted to analyze the stochastic model.

First, the experiments are conducted for a model consisting of two modules, and two

components per module to study the effects of shortage and substitution costs based on

ASR, EVPI, VSS and CVaR/RP performance metrics. The different demand scenario

sets are also included into the experiment plan to understand better the behaviour of

the investigated model under different conditions. Second, the effects of increasing the

number of components and modules on these performance metrics are investigated to

reveal the impact of the end product structure on these performance metrics.

Based on the experiment results, the shortage costs, the substitution costs, the demand

uncertainty based on both total demand quantity and component preference rates, the

number of components and the number of modules in the end product structure are all

key factors for these performance metrics. Furthermore, the roles of these key factors are

not isolated from each other in general, so that different combinations of them may lead

to different effects on the performance metrics under study.

In particular, the ASR value explains how a firm reacts to the demand uncertainty by

means of stock levels. In general, high shortage costs lead to a situation where out-of-

stock is less desirable, and then more stock is hold to satisfy the customers. This effect

is more significant when the uncertainty on the total demand quantity is high. When

the shortage costs are low, the stock levels may decrease while substitution costs are

increasing because the out-of-stock situation would be more acceptable in this case. This

effect is more significant when the uncertainty on the component preference rates is high.

On the other hand, when the shortage costs are high, the stock levels may increase while

substitution costs are increasing because the use of original components would be more

favorable in this case.

The EVPI represents the price of the option to know the complete and accurate informa-

tion about the future. Thus, it has to be taken into account by a firm to assess how much it

would spend for an initiative to reduce the demand uncertainty. Based on our findings, the
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shortage and substitution costs significantly affect EVPI. These effects are more visible

when the uncertainty of total demand and the uncertainty of market proportions for the

component options are high. The choice to implement a late differentiation strategy for

component options has to be considered to deal with the uncertainty of market propor-

tions for the component options. More generally, a need for a better demand forecast is

apparent. A detailed market study can help to improve this situation. On the other hand,

a firm has to be ready to pay more when dealing with the demand uncertainty for the

end products having complex structures. In an assemble-to-order framework, an effort to

reduce the component lead times can result to a decrease in the number of components or

modules that an inventory planner has to deal with.

The VSS is the option price to substitute the expected information for the stochastic

information. It is observed that the VSS decreases when shortage costs increases. This

effect is more significant with high uncertainty of the total demand quantity.

Finally, the risk of out-of-stock is underestimated by a risk-neutral decision maker com-

pared to a risk-averse decision maker. So, the gap between CVaR and RP decreases when

there is not a severe out-of-stock situation. Conversely, this gap increases in cases where

it is more likely to see out-of-stocks. Therefore, a risk neutral decision maker should

have a plan which addresses the customer loyality. On the other hand, the CVaR/RP

value increases when the substitution costs increase. This becomes more significant as

the uncertainty of the component preference rates is high. This increase is due to the risk

pooling effect of substitution.

There are other areas to which this research can be extended. In this thesis, we assumed

stochastic end product demand, but not the price elasticity of demand where it is possible

to reformulate the demand for an end product as a function of its price. An effort to study

the effects of price elasticity in a model including substitution, modularity, and several

risk approaches could answer some important questions. On the other hand, single-

level bills of materials that include only immediate sub-assemblies or components are

considered in this thesis. Consequently, it can be extended to include multi-level bills

of materials in order to analyze the effects of the point of substitution in the assembly
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hierarchy. Another aspect to clarify can be to find the long time effect of substitution.

This can be accomplished by implementing multistage stochastic programs to deal with

multi-period problems. However, given the fact that the number of scenarios increases

exponentially with the number of stages, there is a need to pay more attention when

dealing with the demand uncertainty. On the other hand, we studied single manufacturer

case. It is possible to extend this research by adding more manufacturers to the model

to analyze several supply chain problems. In particular, incorporating procurement lead

times would be an interesting research path to follow along with component substitution

in a modular product framework. Furthermore, capacity constraints can be added to the

model and their effects can be analyzed. Finally, we want to point out the usefulness of

SPSA since it can be used to find the solutions of similar network flow problems.
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Appendix A

Figure A.1: ASR for scenario [50-250][0.4-0.6]

Figure A.2: ASR for scenario [50-250][0.5-0.5]
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Figure A.3: ASR for scenario [50-250][0.25-0.75]

Figure A.4: ASR for scenario [100-200][0.4-0.6]
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Figure A.5: ASR for scenario [100-200][0.5-0.5]

Figure A.6: ASR for scenario [100-200][0.25-0.75]
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Figure A.7: ASR for scenario [150-150][0.4-0.6]

Figure A.8: ASR for scenario [150-150][0.25-0.75]
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Figure A.9: CVaR/RP for scenario [50-250][0.4-0.6]

Figure A.10: CVaR/RP for scenario [50-250][0.5-0.5]
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Figure A.11: CVaR/RP for scenario [50-250][0.25-0.75]

Figure A.12: CVaR/RP for scenario [100-200][0.4-0.6]
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Figure A.13: CVaR/RP for scenario [100-200][0.5-0.5]

Figure A.14: CVaR/RP for scenario [100-200][0.25-0.75]
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Figure A.15: CVaR/RP for scenario [150-150][0.4-0.6]

Figure A.16: CVaR/RP for scenario [150-150][0.25-0.75]
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Figure A.17: EVPI for scenario [50-250][0.4-0.6]

Figure A.18: EVPI for scenario [50-250][0.5-0.5]
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Figure A.19: EVPI for scenario [50-250][0.25-0.75]

Figure A.20: EVPI for scenario [100-200][0.4-0.6]
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Figure A.21: EVPI for scenario [100-200][0.5-0.5]

Figure A.22: EVPI for scenario [100-200][0.25-0.75]
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Figure A.23: EVPI for scenario [150-150][0.4-0.6]

Figure A.24: EVPI for scenario [150-150][0.25-0.75]
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Figure A.25: VSS for scenario [50-250][0.4-0.6]

Figure A.26: VSS for scenario [50-250][0.5-0.5]
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Figure A.27: VSS for scenario [50-250][0.25-0.75]

Figure A.28: VSS for scenario [100-200][0.4-0.6]
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Figure A.29: VSS for scenario [100-200][0.5-0.5]

Figure A.30: VSS for scenario [100-200][0.25-0.75]
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Figure A.31: VSS for scenario [150-150][0.4-0.6]

Figure A.32: VSS for scenario [150-150][0.25-0.75]



Appendix B

Full Component Preference Scenario Experiments

Table B.1: ASR values for low shortage and low substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 1.0000 1.0000 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.2: VSS values for low shortage and low substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0000 0.0000

Table B.3: EVPI values for low shortage and low substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 0.0769 0.1000 0.1111 0.1176 0.1220

2 0.0769 0.1000 0.1111 0.1176 0.1220
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Table B.4: CVaR/RP values for low shortage and low substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 1.0000 1.0000 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.5: ASR values for low shortage and low substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 0.6667 0.6667 0.6667 0.6667 0.6667

2 0.6667 0.6667 0.6667 0.6667 0.6667

Table B.6: VSS values for low shortage and low substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 0.0595 0.0595 0.0595 0.0595 0.0595

2 0.0595 0.0595 0.0595 0.0595 0.0595

Table B.7: EVPI values for low shortage and low substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 0.1628 0.1628 0.1628 0.1628 0.1628

2 0.1628 0.1628 0.1628 0.1628 0.1628
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Table B.8: CVaR/RP values for low shortage and low substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 1.1183 1.1183 1.1183 1.1183 1.1183

2 1.1183 1.1183 1.1183 1.1183 1.1183

Table B.9: ASR values for low shortage and low substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 0.6667 0.6667 0.6667 0.6667 0.6667

2 0.6667 0.6667 0.6667 0.6667 0.6667

Table B.10: VSS values for low shortage and low substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 0.0569 0.0634 0.0665 0.0684 0.0696

2 0.0569 0.0634 0.0665 0.0684 0.0696

Table B.11: EVPI values for low shortage and low substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 0.2000 0.2117 0.2174 0.2208 0.2230

2 0.2000 0.2117 0.2174 0.2208 0.2230
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Table B.12: CVaR/RP values for low shortage and low substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 1.1556 1.1679 1.1739 1.1775 1.1799

2 1.1556 1.1679 1.1739 1.1775 1.1799

Table B.13: ASR values for low shortage and high substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 1.0000 1.0000 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.14: VSS values for low shortage and high substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0000 0.0000

Table B.15: EVPI values for low shortage and high substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 0.1429 0.1818 0.2000 0.2105 0.2174

2 0.1429 0.1818 0.2000 0.2105 0.2174
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Table B.16: CVaR/RP values for low shortage and high substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 1.0000 1.0000 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.17: ASR values for low shortage and high substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 0.6667 0.6667 0.6667 0.6667 0.6667

2 0.6667 0.6667 0.6667 0.6667 0.6667

Table B.18: VSS values for low shortage and high substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 0.0595 0.0595 0.0595 0.0595 0.0595

2 0.0595 0.0595 0.0595 0.0595 0.0595

Table B.19: EVPI values for low shortage and high substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 0.1628 0.1628 0.1628 0.1628 0.1628

2 0.1628 0.1628 0.1628 0.1628 0.1628
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Table B.20: CVaR/RP values for low shortage and high substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 1.1183 1.1183 1.1183 1.1183 1.1183

2 1.1183 1.1183 1.1183 1.1183 1.1183

Table B.21: ASR values for low shortage and high substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 0.6667 0.6667 0.6667 0.6667 0.6667

2 0.6667 0.6667 0.6667 0.6667 0.6667

Table B.22: VSS values for low shortage and high substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 0.0545 0.0668 0.0727 0.0761 0.0784

2 0.0545 0.0668 0.0727 0.0761 0.0784

Table B.23: EVPI values for low shortage and high substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 0.2340 0.2552 0.2653 0.2713 0.2752

2 0.2340 0.2552 0.2653 0.2713 0.2752
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Table B.24: CVaR/RP values for low shortage and high substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 1.1915 1.2138 1.2245 1.2308 1.2349

2 1.1915 1.2138 1.2245 1.2308 1.2349

Table B.25: ASR values for high shortage and low substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 1.0000 1.0000 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.26: VSS values for high shortage and low substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0000 0.0000

Table B.27: EVPI values for high shortage and low substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 0.0769 0.1000 0.1111 0.1176 0.1220

2 0.0769 0.1000 0.1111 0.1176 0.1220
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Table B.28: CVaR/RP values for high shortage and low substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 1.0000 1.0000 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.29: ASR values for high shortage and low substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 1.3333 1.3333 1.3333 1.3333 1.3333

2 1.3333 1.3333 1.3333 1.3333 1.3333

Table B.30: VSS values for high shortage and low substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 0.0091 0.0091 0.0091 0.0091 0.0091

2 0.0091 0.0091 0.0091 0.0091 0.0091

Table B.31: EVPI values for high shortage and low substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 0.2519 0.2519 0.2519 0.2519 0.2519

2 0.2519 0.2519 0.2519 0.2519 0.2519
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Table B.32: CVaR/RP values for high shortage and low substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 1.0001 1.0001 1.0001 1.0001 1.0001

2 1.0001 1.0001 1.0001 1.0001 1.0001

Table B.33: ASR values for high shortage and low substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 1.3333 1.3333 0.6667 0.6667 0.6667

2 1.3333 1.3333 0.6667 0.6667 0.6667

Table B.34: VSS values for high shortage and low substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 0.0088 0.0021 0.0012 0.0031 0.0043

2 0.0088 0.0021 0.0012 0.0031 0.0043

Table B.35: EVPI values for high shortage and low substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 0.2817 0.3003 0.3077 0.3103 0.3121

2 0.2817 0.3003 0.3077 0.3103 0.3121
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Table B.36: CVaR/RP values for high shortage and low substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 1.0375 1.0365 1.0385 1.0421 1.0446

2 1.0375 1.0365 1.0385 1.0421 1.0446

Table B.37: ASR values for high shortage and high substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 1.0000 1.0000 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.38: VSS values for high shortage and high substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0000 0.0000

Table B.39: EVPI values for high shortage and high substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 0.1429 0.1818 0.2000 0.2105 0.2174

2 0.1429 0.1818 0.2000 0.2105 0.2174
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Table B.40: CVaR/RP values for high shortage and high substitution costs (F,V)

Components

Modules 2 3 4 5 6

1 1.0000 1.0000 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.41: ASR values for high shortage and high substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 1.3333 1.3333 1.3333 1.3333 1.3333

2 1.3333 1.3333 1.3333 1.3333 1.3333

Table B.42: VSS values for high shortage and high substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 0.0091 0.0091 0.0091 0.0091 0.0091

2 0.0091 0.0091 0.0091 0.0091 0.0091

Table B.43: EVPI values for high shortage and high substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 0.2519 0.2519 0.2519 0.2519 0.2519

2 0.2519 0.2519 0.2519 0.2519 0.2519
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Table B.44: CVaR/RP values for high shortage and high substitution costs (V,F)

Components

Modules 2 3 4 5 6

1 1.0001 1.0001 1.0001 1.0001 1.0001

2 1.0001 1.0001 1.0001 1.0001 1.0001

Table B.45: ASR values for high shortage and high substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 1.3333 0.6667 0.6667 0.6667 0.6667

2 1.3333 0.6667 0.6667 0.6667 0.6667

Table B.46: VSS values for high shortage and high substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 0.0084 0.0042 0.0102 0.0137 0.0160

2 0.0084 0.0042 0.0102 0.0137 0.0160

Table B.47: EVPI values for high shortage and high substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 0.3093 0.3374 0.3455 0.3502 0.3533

2 0.3093 0.3374 0.3455 0.3502 0.3533
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Table B.48: CVaR/RP values for high shortage and high substitution costs (V,V)

Components

Modules 2 3 4 5 6

1 1.0744 1.0798 1.0909 1.0975 1.1018

2 1.0744 1.0798 1.0909 1.0975 1.1018



Appendix C

0.45-0.55 Component Preference Probabilities Scenario Experiments

Table C.1: Results for low shortage and low substitution costs (F,V)

Modules ASR VSS EVPI CVaR/RP

1 1.0000 0.0000 0.0083 1.0000

2 1.0000 0.0000 0.0083 1.0000

3 1.0000 0.0000 0.0083 1.0000

4 1.0000 0.0000 0.0083 1.0000

5 1.0000 0.0000 0.0083 1.0000

Table C.2: Results for low shortage and low substitution costs (V,F)

Modules ASR VSS EVPI CVaR/RP

1 0.6667 0.0595 0.1628 1.1183

2 0.6667 0.0595 0.1628 1.1183

3 0.6667 0.0595 0.1628 1.1183

4 0.6667 0.0595 0.1628 1.1183

5 0.6667 0.0595 0.1628 1.1183
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Table C.3: Results for low shortage and low substitution costs (V,V)

Modules ASR VSS EVPI CVaR/RP

1 0.6667 0.0571 0.1647 1.1230

2 0.6667 0.0571 0.1647 1.1230

3 0.6667 0.0571 0.1647 1.1230

4 0.6667 0.0571 0.1647 1.1230

5 0.6667 0.0571 0.1647 1.1230

Table C.4: Results for low shortage and high substitution costs (F,V)

Modules ASR VSS EVPI CVaR/RP

1 1.0000 0.0000 0.0164 1.0000

2 1.0000 0.0000 0.0164 1.0000

3 1.0000 0.0000 0.0164 1.0000

4 1.0000 0.0000 0.0164 1.0000

5 1.0000 0.0000 0.0164 1.0000

Table C.5: Results for low shortage and high substitution costs (V,F)

Modules ASR VSS EVPI CVaR/RP

1 0.6667 0.0595 0.1628 1.1183

2 0.6667 0.0595 0.1628 1.1183

3 0.6667 0.0595 0.1628 1.1183

4 0.6667 0.0595 0.1628 1.1183

5 0.6667 0.0595 0.1628 1.1183
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Table C.6: Results for low shortage and high substitution costs (V,V)

Modules ASR VSS EVPI CVaR/RP

1 0.6667 0.0546 0.1667 1.1296

2 0.6667 0.0546 0.1667 1.1296

3 0.6667 0.0546 0.1667 1.1296

4 0.6667 0.0546 0.1667 1.1296

5 0.6667 0.0546 0.1667 1.1296

Table C.7: Results for high shortage and low substitution costs (F,V)

Modules ASR VSS EVPI CVaR/RP

1 1.0000 0.0000 0.0083 1.0000

2 1.0000 0.0000 0.0083 1.0000

3 1.0000 0.0000 0.0083 1.0000

4 1.0000 0.0000 0.0083 1.0000

5 1.0000 0.0000 0.0083 1.0000

Table C.8: Results for high shortage and low substitution costs (V,F)

Modules ASR VSS EVPI CVaR/RP

1 1.3333 0.0091 0.2519 1.0001

2 1.3333 0.0091 0.2519 1.0001

3 1.3333 0.0091 0.2519 1.0001

4 1.3333 0.0091 0.2519 1.0001

5 1.3333 0.0091 0.2519 1.0001
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Table C.9: Results for high shortage and low substitution costs (V,V)

Modules ASR VSS EVPI CVaR/RP

1 1.2000 0.0055 0.2546 1.0022

2 1.2000 0.0055 0.2546 1.0022

3 1.2000 0.0055 0.2546 1.0022

4 1.2113 0.0054 0.2546 1.0021

5 1.2662 0.0052 0.2548 1.0019

Table C.10: Results for high shortage and high substitution costs (F,V)

Modules ASR VSS EVPI CVaR/RP

1 1.0000 0.0000 0.0164 1.0000

2 1.0000 0.0000 0.0164 1.0000

3 1.0000 0.0000 0.0164 1.0000

4 1.0000 0.0000 0.0164 1.0000

5 1.0000 0.0000 0.0164 1.0000

Table C.11: Results for high shortage and high substitution costs (V,F)

Modules ASR VSS EVPI CVaR/RP

1 1.3333 0.0091 0.2519 1.0001

2 1.3333 0.0091 0.2519 1.0001

3 1.3333 0.0091 0.2519 1.0001

4 1.3333 0.0091 0.2519 1.0001

5 1.3333 0.0091 0.2519 1.0001
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Table C.12: Results for high shortage and high substitution costs (V,V)

Modules ASR VSS EVPI CVaR/RP

1 1.2000 0.0055 0.2546 1.0104

2 1.2000 0.0055 0.2546 1.0104

3 1.2000 0.0055 0.2546 1.0104

4 1.1887 0.0052 0.2548 1.0101

5 1.1558 0.0043 0.2555 1.0092
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