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Abstract 

 

 

 

Our thesis is based on image feature extraction, description of objects using extracted 

features, real time detection and comparison of State of art technics. Using global and 

local image features, two separate proceedings carried out. First proceeding is based on 

use of local image features and second one is based on global image features.  Local 

image feature extraction technics such as SIFT and SURF are comparatively inspected 

and using SIFT a new object description and video object tracking project is carried out. 

For description, we introduced Generic Points notion extracted with use of different 

perspective planar transformations. These points are robust against object geometrical 

deformations than the State of art SIFT. Based on Generic Points, a feature tracking 

algorithm is designed running over video images.  Generic features are integrated with 

RAMOSAC tracker. To provide real-time efficiency, CUDA GPU implementation of 

SIFT is used. Global image feature extraction technics such as Hmax and Haar Like 

Simple Features are inspected. The implementation of early Hmax is inspected and a 

referential feature extraction algorithm is described. Well known Haar Like Simple 

Features technic is adopted and used for describing object models. This technic is used 

with Adaboost classifier for preliminary object detection over on road vehicle video 

records. Using image analyze technics, a suit of detection algorithm is designed to 

validate preliminary detections. Using color channels for texture analyze, object 

symmetric features searched. Using edge level images, horizontal lines are detected 

inside detected region of interests. Symmetric feature search and prominent horizontal 

line frequency detection are used for validation. Temporal detection story is used for 

tracking and validation as well. A new proceeding is carried out which enables active 

safety for on road vehicle navigation. 

 

 



 

 

 

 

 

Resumé  

 

 

 

Notre thèse est basée sur l'extraction de particularités d'image, la description et 

détection d'objet en temps réel et la comparaison des techniques de l’état de l'art. Nous 

avons  développé deux différents projets d'études. Le premier est basé sur les techniques 

SIFT et SURF, ceux deux sont analysées d'une manière comparative et ils sont utilisés 

pour l'extraction des particularités locales d'image. Une nouvelle technique pour la 

description et le suivi d'objet est proposée. La notion des Points Génériques, basée sur 

les transformations perspectives planaires, est introduit. Ces points sont plus robustes 

contre les déformations géométriques d'image. En utilisant les points génériques, un 

algorithme de suivi de particularités est développé et utilisé avec les vidéos de trafic. 

Les points génériques sont utilises avec l’algorithme RANSAC pour le suivi. Pour 

garantir le temps réel, l’implémentassions avec CUDA GPU de SIFT est utilisé. D'autre 

part, les algorithmes Hmax et Haar Like Simle Features sont analysés. Ceux deux 

servent pour l'extraction des particularités globales. La technique Haar Like Features est 

adoptée et d'en proposée une nouvelle projet de détection et le suivi d'objets. La 

description d'objet est fait avec cette technique, et avec le classificateur Adaboost la 

détection préliminaire d'objets a étés réalisées sur les vidéos de trafic. Une suite 

d'algorithme de détection est développée en utilisant les techniques d'analyse d'image 

pour valider les détections préliminaires. Les canaux de couleurs sont utilisés pour 

l'analyse de texture d'image, une symétrie est recherchée sur la région d'intérêt. En 

utilisant l'images aux niveaux des contours, la fréquence des lignes horizontaux est 

détectée. Ces critères sont utilisées pour la validation. L'histoire de détection temporale 

est utilisée pour le suivi et la validation d’objet. Un nouveau travaille est mis en place 

qui puisse permettre la sécurité active pour la navigation des véhicules routiers. 

 

 



 

 

 

 

 

Özet  

 

 

 

Bu çalışma imge karakteristik temelli nesne tasviri, gerçek zamanlı nesne saptama, 

hareketli nesne takip etme konularını ele almaktadır. Global ve lokal imge 

karakteristiklerini ayrı ayrı konu edinen, iki ayrı çalışma ortaya konmuştur.  İlk çalışma 

lokal karakteristik kullanımı temellidir. Bu kapsamda literatür çalışmaları olarak bilinen 

SIFT ve SURF teknikleri mukayeseli olarak incelendi. SIFT kullanılarak, bir nesne 

betimleme yöntemi geliştirildi. Bu betimleme video nesne takibi için kullanıldı. 

Betimleme aşaması için, Çesitli perspektif düzlemsel dönüşümler kullanılarak elde 

ettiğimiz ve Generic Points adını verdiğimiz karakteristik kümesi kullanıldı. Nesne 

geometri bozulmalarına karşı daha az kırılgan olan bu karakteristik kümesi ile, tasvir 

edilen nesneleri, hareket halinde iken takip eden bir algoritma geliştirdik. Bu algoritma 

RAMOSAC takip algoritmasi ile entegre edildi. Gerçek zamanlılığı sağlamak için SIFT 

CUDA GPU uygulaması kullanıldı. İkinci çalışmamız, global imge karakteristik 

çıkarım tekniklerini ele almakta. Hmax ve Haar Like Simple Features algoritmaları ele 

alındı. Hmax açık kaynak uygulama kodu, aşama aşama incelendi. İmge Global 

karakteristik çıkarım algoritması dokümante edildi. Haar Like Features tekniği 

benimsendi ve gerçek zamanlı bir saptama ve takip projesi geliştirildi. Araç 

tamponlarını içeren bir imge kümesi bu teknik ile betimlendi. Haar Like  Simple 

Features karakteristik çıkarımı ile Adaboost sınıflandırıcı algoritması kullanılarak öncül 

nesne saptaması yapıldı. Öncül saptama sonuçları, imge işleme teknikleri kullanılarak 

validasyona tabi tutuldu. Renk kanalları kullanılarak imge doku analizi yapıldı ve 

simetrik karakteristik araması yapıldı. İmge kenar analizi yapılarak, yatay ve dominant 

çizgiler algilamasi yapıldı. Simetrik karakteristikler ve yatay dominant çizgi frekans 

indikatörlerini kullanarak öncül saptamanın validasyonu yapıldı. Zamansal saptama 

özgeçmişi tutuldu, nesne saptama validasyonu ve nesne takibi için kullanıldı. Yol 

üzerinde araç seyri için aktif güvenlik sağlayabilecek bir proje önerildi. 
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1 Introduction 

 

 

 

This document presents state of art technics used in computer vision domain, discusses 

and compares them. Beside low level image processing technics, sophisticated technics 

are presented such as Canny Edge Detection algorithm, Scale Invariant Feature 

Transform, Speeded up Robust Features Extraction, Biological Visual Cortex Inspired 

Features-HMAX Model, Haar Like Simple Features.  

 

Canny Edge Detection algorithm is a low level image processing technic incorporates 

other low level image processing notions.  

 

Scale Invariant Feature Transform and Speeded up Robust Features Extraction are used 

for local image analyses. These two approaches extract distinctive local image features. 

These are local feature extraction technics. 

 

HMAX and Haar Like Simple features are global image features; qualifies thickness 

and orientation of contours, junctions, intensity changes, geometry of shapes and 

objects etc. We inspected in detail the HMAX model implementation of Jim Mutch and 

extracted a referential algorithm of this implementation which clarifies in detail how 

biologically inspired features are extracted. Haar Like Simple features is much more 

efficient in simple and useful feature extraction than HMAX model, as it uses box filters 

inspired from Haar Wavelet Transform with integral images.  

 

Based on these global and local feature extraction technics, we carried out proceedings 

that will be presented in this document. Our proceedings are separately based on these 

two different approaches. 
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First approach is the use of local features for image object description and tracking. A 

system is developed which provides a more robust description than the state of art 

technic SIFT and adapted it to be useful for tracking of an already detected object. 

Object detection is not incorporated within this study. Our tests are done over two data 

sets. Description and matching stages are firstly tested over a face image set containing 

different peoples; frontal and rotated pictures captured from different perspectives, 

including difficult scene conditions such as noise, shadow etc...  

 

Our system is then tested with a car image data set, afterwards used for video object 

tracking. On road traffic videos are used to track vehicle rears, under real scene 

conditions. Both data set results are discussed, useful metrics are reported. 

 

Second approach is the use of global features for image object description, detection 

and tracking. A video object detection and object tracking algorithm is developed and 

discussed. The algorithm runs in real time. Haar Like Simple Features are used for a 

preliminary detection, region of interests are extracted. Afterwards validation 

algorithms are developed based on low level image analyses which makes robust and 

safe our detection process. Finally, tracking is handled with a clever algorithm that we 

developed, which is based on temporal information of detection history. Different real 

world videos are tested. Video records captured from Istanbul TEM highway are tested. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

2 State Of Art 

 

 

 

Sate of Art approaches and important image analyze techniques are subjected in this 

section. 

 

2.1 Noise Removal with Gaussian Blurring 

 

Gaussian blur is also known as Gaussian smoothing. It is obtained by convolving an 

image with a Gaussian function. It is a well-known technic in image/video processing 

and also it's used in other signal processing disciplines. It's typically useful for reducing 

noise in signals like image. Reducing noise corresponds to reducing details in image. 

The visual effect of smoothing an image with Gaussian blur is similar to view the 

considered image via a translucent screen. This effect is different from the well-known 

Bokeh effect. Bokeh effect is produced with the shadow of an object under usual 

illumination or with an out of focus lens. 

  

Gaussian blurring is generally used as a pre-processing step in computer vision domain 

to represent image global features at different scales. For example scale space 

representation in SIFT (Scale Invariant Feature Transform) technic. 

 

Gaussian blur is obtained in general by convolving image using a kernel of Gaussian 

values. Blurring operation can be done in one single pass by convolution with a two 

dimensional Gaussian kernel.  

 

However dividing this process into two passes is possible thanks to separable property 

of Gaussian blur operation and this second approach requires fewer operations in total. 
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Two one dimensional kernels are used per horizontal and vertical directions. Resulting 

effect is similar to the one obtained with a two dimensional kernel, however it's more 

efficient in computation time. 

 

 

At discrete points, filter defined by a Gaussian kernel is subjected to sampling to obtain 

a discrete representation. The mentioned discretization points are in general corresponds 

to each pixel’s midpoint. Normally this decreases computation time however with small 

filter kernels, Gaussian function point sampling with fewer samples leads to error. To 

prevent this and maintain accuracy with a slight computation time, the Gaussian 

function integration over each pixel's area is used. 

 

Noise in image is in general an aspect of electronic noise; it's a variation of color and 

brightness in image. it's not present in real image scene. Image noise is undesirable 

spurious or extraneous information in image, a faulty information added at capture time 

by image capturing product. In image processing noise removals is important and in 

most cases it’s removed with Gaussian function. As an example, Gaussian smoothing is 

in general used for edge detection as a preliminary step. Edge detection algorithms 

assume image as a perfect 2d signal without having any signal information. Yet in 

reality images have lots of noise. Edge detection algorithms are in general sensitive to 

noise. E.g. Laplacien filter.   

  

Gaussian blurring before detection of image edges reduces noise and improves the edge 

detection algorithm performance. This is commonly referred to LoG filtering, 

Lapcacian of Gassian filtering 

 

Fallowing captures show the effect of Gaussian blurring on edge detection. More 

smoothing leads to detection of fewer edges. See Figure 2.1, Figure 2.2, Figure 2.3, 

Figure 2.4 and Figure 2.5: 
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Figure 2.1 - Smoothing effect on edge detection (A) 

 

 

 

Figure 2.2- Smoothing effect on edge detection (B) 
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Figure 2.3 - Smoothing effect on edge detection (C) 

 

 

 

Figure 2.4 - Smoothing effect on edge detection (D) 

 



7 

 

 

 

 

Figure 2.5 - Smoothing effect on edge detection (E) 

 

 

Before edge detection, noise removal and scale space representation of treated image is 

achieved with Gaussian blurring. 

 

2.2 Canny Edge Detection 

 

There are lots of edge detection methods with different detection algorithms. The Canny 

operator is designed to be an optimal detector; its detection process considers other 

approaches as well. It treats image at gray scale level and transforms the treated image 

to an image showing the positions of intensity discontinuities.  

 

The Canny algorithm operates in multiple steps. Firstly, using Gaussian blurring, the 

image is smoothed. Secondly a filter consisting of a simple 2D first derivative operator 

is applied over smooth image. This derivative filtering is the high first spatial derivative. 

It refines and concretizes image regions. In the gradient magnitude image of treated 

image, edges become highlighted in the form of rising ridges. The Canny algorithm then 

depicts pixels corresponding to the top of these rising ridges. Pixels which are not on 
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the ridge top are marked with zero value. This achieved with a process known as non-

maximum suppression. This operations lead to the extraction of thin lines in the output 

image. Edge extraction process is achieved with a well-known method, namely 

hysteresis. Hysteresis is controlled with two thresholds, lower and upper thresholds: T1 

and T2 with T1 greater than T2. Extraction process starts on a pixel point which is on a 

ridge and with a value higher than T1. Process than continuous in both directions out 

from the pixel point up to that the ridge falls below T2. Hysteresis ensures that edges 

are not broken into multiple fragments due to image noise. 

 

Canny operator can be tuned with tree parameters: Smoothing level Gaussian kernel 

width and upper and lower thresholds used by hysteresis. Increasing Gaussian kernel 

width reduces sensitivity of Canny against noise, leads to loose of finer details in the 

image. Edge localization errors will also be increased when Gaussian width is 

increased. On the other hand, the optimal way for hysteresis parameters is to set the 

higher threshold to a high value and the lower threshold to a low value. Setting the 

lower threshold to a high value leads to noisy edges to be broken. Setting the upper 

threshold to a low value increases spurious and undesirable edge fragments. 

 

 

Figure 2.6 – Canny Edge Detection Algorithm 

 

Edges are important global features and are fundamental features in computer vision. 

Edges consist of strong intensity contrasts, change in intensity from one pixel to the one 

adjacent. And edge detection significantly removes useless data, while keeping useful 

structural global image properties. 
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The Canny edge detector is adopted as the optimal way by lots of significant studies.  

While Canny edge detector was developed, many of the existing edge detectors were 

considered. A part from these existing edge detection algorithms, a list of criteria is 

fallowed and achieved in Canny edge detector. 

As a criterion, achieving low error rate is the most important one for Canny. Extraction 

of real edges and discarding non edges from the image with a feasible error rate is the 

most important criterion for Canny.  

The second important criterion is the localization of edge points. The distance between 

edge pixels in the detector output image should be consistent with corresponding ones 

in input image. 

The third criterion is having only one response per single edge. The first two criterions 

are not perfect for achieving this problem, so a special algorithm is developed and 

integrated with detector to ensure this criterion.  

Satisfying these criterions, the Canny detector first applies Gaussian smoothing to 

remove image noise. 

Secondly applying a spatial derivative filter, finds significant ridges in gradient image. 

Then the Canny algorithm then tracks these ridges and removes pixels that are not at the 

maximum of ridges. This is known as non-maximum suppression.  

After then, gradient image is subjected to hysteresis operation. Hysteresis tracks along 

the remaining pixels located on ridges and have not yet been removed. Lower and 

Upper thresholds are used with Hysteresis operation. If the magnitude of the considered 

pixel is below the first threshold (higher threshold), then it's discarded; otherwise if it's 

greater, then it's marked as an edge making pixel. If the magnitude of the considered 

pixel is between the higher and lower thresholds then it's discarded unless there is a path 

from considered pixel to a pixel with a gradient value above the high threshold. The 

fallowing example with steps better clarifies the Canny algorithm ant its effects.  
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2.2.1 Step 1: Noise Removal 

 

Canny edge detection algorithm imposes some consecutive steps. The first step is 

Gaussian blurring. Before edge detection and localization, image noise is removed with 

Gaussian filter. The Gaussian function can be modeled and filtering can be computed 

using a simple mask. This simple mask is usually much smaller than the image size. The 

simple mask slides over the image, computes contributions of pixels which are 

corresponding to the simple mask area at a time. If the width of Gaussian mask is large, 

then detectors sensitivity to noise lowers. Edge localization errors slightly increase, 

while Gaussian width is increasing. 

 

A Gaussian mask may be determined as shown below: 

 

 

Figure 2.7 - Discrete approximation to Gaussian function with σ=1.4 
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2.2.2 Step 2: Gradient Image Representation 

 

After noise removal with Gaussian smoothing, the next step is taking the gradient of the 

image to find edge strengths. The 2D spatial gradient measurement on the image is 

achieved with the Sobel operator. Then, the edge strength (absolute gradient magnitude) 

at each pixel is approximately found. Sobel operator consists of two 3x3 convolution 

masks. First one measures the gradient response in y-direction and the other one 

measures gradient response in x-direction.  

 

These convolution masks can be defined as fallowing: 

 

 

Figure 2.8 -  Sobel operators 

 

The magnitude (edge strength) of the gradient is then approximated using the formula: 

 

|G| = |Gx| + |Gy|  
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2.2.3 Step 3: Edge Direction Detection 

Using the gradient values in the x and y directions, the edge direction can be computed 

easily. Below formula is used for finding edge direction: 

 

 

theta = invtan (Gy / Gx)   

 

 

2.2.4 Step 4: Edge Orientation Detection, Classification of Edge Directions 

 

Once en edge direction is known, then we relate it to a direction which can be plotted on 

an image.  

To illustrate this, we can consider a 5x5 image aligned as follows: 

 

.     .     .     .     . 

.     .     .     .     . 

.     .     p     .    . 

.     .     .     .     . 

.     .     .     .     . 

 

Then, this making relation idea can be seen by looking at pixel "p", there are  only eight 

possible directions around the pixel "p": 0 and 180 degrees (in the horizontal direction), 

45 and 225 degrees (along the positive and negative diagonal), 90 and 270 degrees (in 

the vertical directions), 135 and 315 degrees (along the negative diagonal). Opposite 

direction pairs makes a single direction. So there are 4 directions 0, 45, 90 and 135 

degrees. The edge orientation will be related to one of these four orientations depending 
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on which direction it is close to.  We can imagine this as a semicircle divided into 5 

regions, like it's seen in Figure below. 

 

 

 

 

 

 

 

 

 

Thus, considering Figure 2.9, edge orientation of an edge with a direction corresponding 

to yellow area (0-22.5 degrees and 157.5-180 degrees) is assumed as 0 degrees. Edge 

orientation of an edge with a direction corresponding to green area (22.5 67.5 degrees) 

is assumed as 45 degrees orientation. Edge orientation of an edge with a direction 

corresponding to blue area (67.5-112.5 degrees) is assumed as 90 degrees orientation.  

Edge orientation of an edge with a direction corresponding to red area (112.5-157.5 

degrees) is assumed as 135 degrees orientation. 

 

 

2.2.5 Step 5: Non-maximum Suppression 

 

Edge orientation extraction step is followed by non-maximum suppression (NMS) step.  

NMS suppress any pixel value that is not considered to be an edge that is not located on 

any ridge. NMS is used to trace a thin line along the edge in the edge direction. 

 

 

 

 

 

Figure 2.9 – Edge orientation ranges 
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2.2.6 Step 6: Hysteresis 

 

Hysteresis is the final step, used as a means of discarding streaking. Streaking notion is 

the split up of an edge segment due to operator output fluctuating below and above the 

used threshold. Hysteresis uses two thresholds; upper and lower thresholds (T1 and T2 

respectively).  

 

Any pixel with gradient value higher than T1 is assumed as an edge making pixel. Then 

any pixel connected to this edge pixel with a gradient value higher than T2 and lower 

than T1 selected as edge making pixel as well. Others are discarded. Hysteresis merges 

contours to be meaningful edges and discards meaningless contours as well. 

 

2.3 SIFT: Scale Invariant Feature Transform  

 

SIFT is a method to detect and extract good local particularities, key points which are 

invariant to image affine transformations, changes in rotation and image scale. These 

local particularities are robust to the changes in illumination, noise and view point of 30 

degrees. These are the points which are distinctive and safe to be re-identified in 

different scenes. SIFT points are used in many computer vision domains. Especially, it 

is useful for motion tracking, 3D reconstruction, image auto stitching, object 

recognition, object identification etc… 

 

SIFT is presented for the first time in 1999 by David Lowe, since then this method is a 

good reference. 

 

This method can be described in 4 steps:  

 

 Local Extrama Detection 

 Local Extremum Localisation 

 Orientation Affectation 
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 Key Point Descriptor  

 

2.3.1 Local Extrama Detection 

 

In this step, candidate interest points (candidate key points) are extracted. In order to do 

that, initially, image is filtered with Gaussian Filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A spatial scale is obtained, Figure 2.10: A, and then with the well-known function of 

Difference of Gaussian, DoG, the difference images are obtained, Figure 2.10: B. Then, 

candidate interest points are extracted by maxima-minima detection over the scale 

space: Each point is compared to its 26 neighborhood points and checked if it is the 

maximum or the minimum. If the point is a maxima-minima, it is kept as a candidate 

interest point.  

 

 

 

 

Figure 2.10 – Gaussian Scale Space 
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2.3.2 Local Extremum Localization 

 

Local Extrema Detection produces a lot of points and some of them are not stable.  

 

 

 

Figure 2.11 - Gaussian sampling 

 

In reality, the function, DoG, finds us a sampling of spatial scale. This function is 

continuous and its derivate also. As it is illustrated in Figure 2.11, p1 and p2 are found 

as the local maxima-minimas, but if DoG is considered in real space rather than discrete 

space, the true extremas can be localized as p3 and p4. Lowe is used the studies of 

Brown to do this.  

 

In the neighborhood of a candidate point, for example p1, the Taylor series of DoG 

function is defined. It is a second order polynomial: 

 

 

 
2

2

1

2

T T
TD D

D x D x x x
x x

 
  

 
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 is an Hessian matrix, giving    x  

 

( , , )x x y   

 

By minimizing this polynomial (deriving and then finding the annulation point), we can 

find the estimated location x̂  of x : 

 

 

 

 

 

 

By using this polynomial and this estimated point, x̂ , we can decide whether a point is 

proper. If ˆ 0.5x  , this extremum is near to another extremum and it is not proper, not 

safe to be selected as a distinctive point in matching time. In this case this point (p1) is 

eliminated and the interpolation continues with another candidate point. The value of 

the polynomial on a proper candidate point is useful to eliminate the points which are 

sensitive to noise. 0.03 is the contrast threshold used by Lowe to eliminate noise 

sensitive candidate points: if  ˆD x  <0.03 then this point is eliminated also. 

 

A problem of DoG function is that it produces many candidate points on rectilinear low 

level image lines. As it is illustrated in Figure 2.12, a point is difficult to match with 

rectilinear points. 
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2
ˆ

D D
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x x
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Figure 2.12 - Matching problem 

 

To handle this problem, the method known as Principal Curvature Analyze is used. 

According to this analyze, the eigen values of the Hessien Matrix of the  ˆD x

polynomial are used to establish a relation between two principal curvatures. If the ratio 

between two principle curvatures is bigger than 10, the candidate point is not proper, so 

it is eliminated. 

 

By applying this criterion, the best points among multitudinous points extracted by DoG 

are selected and these are the interest points from now on. 

 

2.3.3 Orientation Affectation 

 

Based on low level local image properties, we can assign an orientation to the interest 

point and represent its descriptor relative to this orientation. 

 

In order to do that, the gradient magnitudes in the neighborhood of the interest point are 

calculated and then with the Arctan function, the angle values which give the 

orientations are obtained. A Gaussian circular weighting is also applied. Then, the most 

significant orientation is considered as the orientation of the descriptor. Some other 

significant orientations are also kept with the principal one also.  
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By assigning a relative orientation, descriptors which are invariant to the image 

rotations will be obtained.     

 

2.3.4 Key Point Descriptor 

 

In the Figure 2.13, key point descriptor calculation is illustrated. Interest points are 

characterized by their surrounding low level image information. So far, every interest 

point is represented by 4 factors, (x-y coordinates, scale factor and orientation info). In 

the concerned scale image, over a 16x16 window centered at the interest point, the 

gradient values in 8 directions are being calculated by applying a Gaussian circular 

weighting to make the gradients near the key point more contributive.   

 

 

 

Figure 2.13 - SiFT Descriptor 

 

 

In 4x4 sub windows, the total contributions in 8 directions of the weighted gradient 

values are represented. This produces a keypoint descriptor of 4x4x8 = 128 elements 

which is used as a vector of 128 elements in matching operations. 
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2.4 SURF: Speeded Up Robust Features 

 

 

SURF is a recent method published in 2006 by Bay et al. This is a SiFT-like method 

which is much faster than SiFT and gives approximately the same results with SiFT.  

 

SURF can be presented in two steps: 

 

Detection: Interest points are selected on distinctive locations like corner, blob, T-

Junction.  

Its descriptor is stable and SURF can detect the same interest points under different 

visual conditions.  

 

Description: The neighborhood of each interest point is represented by a characteristic 

vector. The obtained descriptor is distinctive and robust against noise, detection errors, 

geometric and photometric deformations. 

 

SiFT is one of the best methods but its applications are not fast enough.: the description 

of a 1000x700 pix. image causes the extraction of 4000 points approximately. This task 

takes 6 seconds. As SiFT generates elevated dimensional descriptors (128), matching 

level takes more time. SiFT is an ideal method except that it is not suitable for some 

applications necessitating rapidity. About this fact, Lowe claims in Lowe04 that it is 

necessary to develop new methods like SiFT, appropriated to the nature of the desired 

application types. SiFT, in fact, shows us the most possible invariant, robust and 

distinctive description. Using SiFT, it is possible to develop varied applications after the 

adaptation to the desired application. SURF is a method derived from SiFT and some 

popular SiFT-like methods. SURF is fast enough at matching time, which is a problem 

for SiFT at application level, and original enough as a new method. 
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The SURF detector is based on a Hessien matrix with an approximation by using some 

box filters. The integral images are used to diminish the calculation complexity. In the 

neighborhood of the extremum point, the Haar Wawelet distributions are described. 

 

2.4.1 Integral Images 

 

The integral image defined at the point (x, y) is the sum of values of all pixels which are 

above and left of the point (x, y). It is easy to calculate the integral images effectively 

and their use provides some facilities. For example, the sum of pixel values over a sub 

region of image can be achieved in 4 simple linear operations rather than accumulation 

of all values. 

 

2.4.2 Hessien Detector of SURF 

 

The detector of SURF is based on a Hessien matrix. Given the point X=(x,y) of the 

image I. The matrix H(X, σ) at the point X and at the scale σ is defined as fallow : 

 

( , ) ( , )
( , )

( , ) ( , )

xx xy

xy yy

L x L x
H x

L x L x

 


 

 
  
   

 

( , )xxL x   is the convolution of image with  
2

2
( )g

x





, the second order Gaussian 

derivation. ( , )xyL x  , ( , )yyL x   are similar also. And SURF introduces approximations 

of these operators.  

 

The use of Gaussian function is optimal for spatial scaling analysis. In reality, by using 

Gaussian function, the images are needed to be discretized. In sampling step, as it is 

illustrated in Figure 2.11, the risk of aliasing is encountered. Gaussian filter of SiFT is 

used as an approximation of “Scale Normalized Laplacien of Gaussian function”. 
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Rather than using an approximated Gaussian filter, in SURF06, this phenomena is 

modeled by using box filters which are the approximations of second order derivatives 

of Gaussian function. In this way, spatial scaling and discretization of image with 

Gaussian filter are not necessary.   

 

Thanks to the facilities of integral images, this approximation is independent from the 

size of used images.  

 

 

 

Figure 2.14 - Gaussian function and box filters 

 

 

The Figure 2.14 represents these approximations. Figure 2.14(A) illustrates the 

convolution of the image with second order derivative of the Gaussian function 

( , )yyL x  . Figure 2.14(B) is the one of  ( , )xyL x  . The obtained results in Figure 

2.14(A) and Figure 2.14(B)  are approximately modeled by box filters shown in Figure 

2.14(C) and Figure 2.14(D) : Gray regions have 0 value, white regions have 1 and black 
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regions have -1 or -2 values. When 1.2  , the relation between Gaussian derivatives 

and these 9x9 box filter approximations, xxD ,
xyD  and

yyD  are defined as fallowing: 

 

 

| (1.2) | | (9) |
0.9 ,      |X|  is the Frobenius Norm

| (1.2) | | (9) |

xy F xy F

F

xx F xx F

L D

L D
  

 

 

And the determinant of Hessian matrix is being calculated approximately as fallowing:  

 

 

2det( ) (0.9 )approx xx xy xyH D D D   

 

 

As in Lowe04, Spatial scaling is generated as a pyramid containing different level of 

filtered images. Different scales of the same octave are obtained via convolution of 

preceding image and octaves are obtained by sampling of image. In SURF06, the use of 

box filters with integral images contributes to avoid doing all of these scaling and 

sampling operations. It is possible to apply a lot of box filters directly with different 

sizes. Moreover, all of the box filters can be applied in parallel at the same time. 

Whereas in SiFT, it is a must to wait the generation of each spatial scale to be able to 

calculate the next one, so SiFT Gaussian extraction is a serial treatment. In SURF06, 

spatial scaling is done by increasing the sizes of box filters, rather than changing the 

size of images as in SiFT.  

 

SURF06 uses box filters with sizes 9x9, 15x15, 21x21 and 27x27. Different size of 

filters are the approximations of second order Gaussian derivatives with different   

values: for the filter of size 27x27 new scaling factor determined as (27/9)  = 3

=3x1.2 = 3.6. As the Frobenius norm remains constant for box filters with different 

sizes, the property of the invariance to scale the changes in SiFT is provided in SURF.   
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To detect and localize the interest points among spatial scales, non extremum 

elimination over 26 neighbor points (9 elements in the upper scale, 9 in the lower scale 

and 8 surrounding the keypoint in the same scale) is being used as in SiFT. For the 

localization of extremums, the determinant of the approximated Hessien matrix is 

interpolated at the candidate extremum point as in the SiFT. 

 

2.4.3 SURF Orientation Affectation  

 

To provide rotation invariance, a reproducible orientation is assigned to the extremum 

point: First, over an extremum point centered circular region of 6s radius, Figure 2.15, 

wavelet responses in x and y directions are calculated. In order to do this, box filters of 

size 4s are used. As integral images are used, this task is done easily: the differences 

between the sum of the elements in the black region and the sum of the elements in 

white region of the box, S2-S1 (Figure 2.15 Haar wavelet response in y direction ). The 

regions S1 and S2 are represented with 6 points (A, B, C, D, E, F). Their differences can 

be calculated in 6 simple operations, since integral images are used.  

 

S2-S1 = (A + C –B –D) - (D + F – C - E) = A + F + 2(C-D) –B –E. 

 

After calculating the wavelet responses over the circular region of 6s, the results are 

weighted with a gaussian function to make the ones near the extremum point more 

effective. This increases the stability of the descriptor. The weighted responses in x and 

y directions are represented as vectors which are oriented in x and y axes, dx and dy. 

Over the region of 6s, a slice of 60 degree is selected, Fig 2.2.2, and this slice is turned 

360 degree slowly, e.g. 10 degree per 10 degree. Meanwhile, the vectors remaining 

inside the slice are summed as x yd d  , and the resulting vectors orientation is kept 

for that position of the slice.  The biggest vectors orientation is admitted as the 

orientation of the extremum point.     
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Figure 2.15 - SURF Orientation 

 

 

2.4.4 SURF Descriptor 

 

Firstly, a square region of 20s, centered at interest point, is determined and rotated to 

the orientation of the interest point Figure 2.16. This square region is divided into 16 

sub square regions of 5s x 5s.   
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Figure 2.16 - SURF Descriptor Extraction 

 

 

For each sub region, Haar Wavelet responses (intensity changes) are calculated with 

box filters of size 2s. The sum of responses in x directions forms the resulting 

vector dx  and in y direction dy . The absolute sum of the responses forming | |dx  

and | |dy  vectors. For all of 16 regions these vectors are obtained and over all vectors 

a Gaussian weighting is applied to make the descriptor robust against geometrical 

deformations and localization errors. 
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By putting together the weighted vectors of each sub regions, a new vector of 4 

elements are obtained: ( , , | |, | |)V dx dy dx dy    . As there are 16 sub 

regions, we have a resulting vector of 16x4 = 64 elements and after normalizing it, 

SURF descriptor is obtained.  

 

2.5 Conclusion of SIFT and SURF 

 

Haar responses in SURF have an aim to generate image information which is invariant 

to illumination changes. But it is not as successful as in SIFT. SURF is invariant against 

noise, image rotation changes, however it is weak against view point changes, SURF is 

not as good as SIFT but it provides 3 times faster description of images.     

 

2.6 Object Category Recognition HMAX Model 

 

The biologically inspired HMAX model was firstly proposed by Riesenhuber and 

Poggio, and lately revised by Serre et al., who introduced a learning step based on the 

extraction of lots of random patches. T. Sere et al. compared this model with their own 

SiFT based model and proved that SiFT is less adaptable to object category recognition. 

In the context of HMAX, we extracted a detailed referential algorithm of this method by 

analyzing the recent implementation of Jim Mutch. The algorithm is explained in detail 

with explicitly designed schemas. 

   

2.6.1 About HMAX Implementation 

 

 In the schemas below that we generated, it is easy to understand how HMAX C2 

features are extracted to the use of a classifier like NN or SVM. C2 features are 

generally used for object class recognition. In this context SiFT features have less 

success than HMAX C2 features.   
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In PART 1 of the algorithm from training images, a random image is selected. From this 

random image, RANDOM PATCH EXRACTION process extracts the PATCH_i. This 

extraction task is repeated for randomly selected 250 images from training images.  

 

In PART 2 of the algorithm, for only one image, RANDOM PATCH EXTRACTION 

process extracts the structure PATCH_i which includes 4 patches of different sizes. For 

each size, there exist 4 patches of different orientations.  RANDOM PATCH 

EXTRACTION process is applied 250 times to extract 250 PATCH_i structures.  

 

In PART 3 of the algorithm, we have 4 classes of images. Training images, Background 

Training images, Test images and Background Test images. First, each class is handled 

individually: for all images of the same class, C2 SIMILUTUDE RESPONSE 

EXTRACTION process is applied. The results of all 4 classes are gathered in the same 

vector which is called C2 Features.  Then these C2 features are used with a classifier.  
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       PART 1 

 

 

 Figure 2.17 - First part of HMAX model 
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PART 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   Figure 2.18 - C1 extraction 
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Figure 2.19 - C1 patch extraction 
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PART 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 - C2 response extraction 
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Figure 2.21 - C2 similitude response extraction 



 

 

 

 

 

 

3 Our Researches  

 

 

 

We have two proceedings based on use of image local features and image global 

features.  

 

3.1 Local Features Approach 

 

SIFT is very successful for image scene description tasks, however its performance is 

not very good when object description is in question. Our purpose was to understand 

SIFT and try to adapt it to the object description. We proposed a method using local 

features approach. The method is developed using face data set, tracking adaptation part 

is done with car dataset and tested on video records.  

 

3.1.1 Generic Points with Face Dataset 

 

Generic points are first evaluated with face dataset and then assessment is done with car 

dataset. 

 

3.1.1.1 Selection of proper SIFT implementation 

 

To our examinations, Vadaldi’s SIFT implementation is the most resembling 

implementation to the original SIFT implementation of Lowe. The results below are 
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obtained by using Vedaldi SIFT implementation with the distance ratio 0.6, optimal 

value suggested by Lowe. 

 

We obtain at about 200 key points, for the images below, see Figure 3.1, which are 

256x256 at gray level. We used human face as object for pre-examinations. Images, 

including mainly the frontal and 45 degrees turned views of the same face, are 

compared.

When first image is compared to the second one as in Figure 3.1(A) we obtain 6 couples 

of SIFT point matched, whereas the result is only 3 points when second image is 

compared to the first image in Figure 3.1(B) That is because of the use of distance ratio 

to eliminate suspicious matchings’ by comparing the most resembling point and the 

second most resembling point.   

 

Using the results of both cases, union of the sets of matched points has 7 points. We can 

observe that we are able to obtain new matches, by gathering the results of comparison 

of the first image key points to seconds and second image key points to the ones of first 

image. Another more safe-matching point may help us in critical matching situations. 

As Lowe claims it, to be able to decide on whether 2 objects are the same, we have to 

find minimum 3 couple of points correctly matching between both of the objects. So it 

will be possible to extract some useful information about 3D scene of the image.   
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Figure 3.1 - Frontal view and 45 Degrees rotated view comparisons 

 

 

3.1.1.2 Generic Points  

 

When face is rotated 45 degrees the shape of the object also changes, the orientation of 

contours, the length and thickness of lines are modified. Especially during low level 

analyses, spatial intensity changes occur when object is rotated, and regarding this case, 

SIFT is less invariant, as SIFT descriptors are calculated over a neighborhood centered 

at a special point by the weighted contributions of gradients. Even the position of a key 

point is unchanged; but the 128 values of descriptor vector are changed, so this causes 

the generation of new descriptors that we are unable to match. At this point, we can 

think about modeling the transformation that the key point vectors are passing during 

the object rotations. As we are in 2D, it is difficult to model such a change. 

 

On the other hand, to achieve performance and safe matching among the images in the 

database, it would be fine and judicious to select the SIFT points which are the most 

robust to such object rotations.  An image, in our case, is compared to another with 200 

key points in 0.03 second. Before initiating a match, if we can select a minimum set, 

which is including only the necessary points instead of a matching operation over 
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200x200 points, we will be able to diminish this task to a matching operation over more 

or less 50x50 points. 

 

For the purpose of modeling partial flexibility to low level image particularity changes 

occurring during object rotation transformations, in 2D we tried to apply a perspective 

planar transformation and then by matching the transformed image points to its original 

untransformed image, we expected to obtain the key points which are robust to object 

shape deformations.  

 

The idea is based on an inner step of C1 global image particularity extraction, which is 

still a better model to describe objects for object category detection tasks: In C1, 

oriented filters are used to extract the responses of contours in 4 directions and 2 

different sizes of filters are used, 11x11 and 13x13, with a MAX operation the 

significant contour responses are then extracted. Afterwards, the dilatation operation is 

applied to the extracted contour images. Dilated contour images become roughly 

described contour images. In fact this produces a general representation of the global 

image particularities, such as contours, junctions etc. By using this representative 

model, we are able to compare other objects’ global features for the purpose of 

detecting the class of the object. By using the same approach, we can try to represent a 

SIFT descriptor with some logical deformations.       

 

For our situation, since our materials are SIFT key points, we can represent a SIFT point 

with some logical deformations; and among extracted whole set of SIFT points, we can 

select the ones which will be the most flexible and safest ones against partial object 

form changes. Moreover, we can try to generate new SIFT points, by a partial 

modification of original ones, which will be more suitable to match rotated objects 

points. 

 

We applied some planar perspective transformations to the considered image, the 

transformation ratio is chosen in order to keep visual context of the image; the face in 

the transformed image should be visually identifiable. We can then match the 
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transformed image to the same untransformed image and obtain pertinent points whose 

quantity is, on average, 40-50 for an image of 200-250 descriptors. These points can be 

used to describe this image with a selected subset of original descriptors or with the 

whole set of the original descriptors. These points should be the most flexible ones, and 

should be adapted to our SIFT object description.  

 

To figure out this:  

For this illustration, 2 images are used, frontal and 45 degrees rotated views of the same 

person. Left image, including 45 degrees rotated object, is submitted to a planar 

perspective transformation. The transformation is from an image plane of mxm 

(256x256) to mx0.6m image plane:  

 

 

 

 

Figure 3.2 - Planar Perspective Transformations 

 

 

 

In Fig 3.2.1(A), right image is transformed from [(0,0), (m,0), (m,m), (0,m)] into 

[(0.2*m, 0) ,(0.8*m, 0), (m, m), (0,m) ] and compared to the frontal view which is at 
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right, one more different match is obtained when we compare the result with the ones in 

Figure 3.2(A) and Figure 3.2(B).  

 

In Figure 3.2 (B), same image is transformed into [(0,0), (m,0.2m), (m,0.8m), (0,m)]. 

We obtain a new match which is different from the 2 points in Figure 3.2 (A) which are 

on the lips; this one is detected at the right-end of lips.  

 

 

 

Figure 3.3 - Planar Perspective Transformations 

         

        

 

 

In Figure 3.3(A), same image is transformed into [(0,0.2m), (m,0), (m,m), (0,0.8m)]. 

We obtain no matches.  

 

In Figure 3.3(B), same image is transformed into [(0, 0), (m,0), (0.8m,m), (0.2m,m)]. 

One new match is obtained which is between the hairs of forehead.   

 

In addition to 7 different matchings (union of points in Figure 3.4 (A) and Figure 3.4 

(B)), we have 3 new points obtained using transformed images.  

 

We observe that transformed images’ key points can help us in the same way. Let us 

that we know a restricted set of  original keypoints which will include the 7 points( in 
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Figure 3.4) and some distorted keypoints resembling to this restricted set. Then, it 

seems we can obtain a useful description of the object. 

 

We can apply the same perspective transformations to the left image (right image is 

frontal view, left image is 45 degrees rotated view) and compare the transformed 

images with its untransformed version: For each comparison, Figure 3.4 (A), (B), (C) 

and (D) we obtain a set of key points of 50 points approximately while untransformed 

image has 200-250 key points.  

 

Union of the mentioned point sets will be used as principal points. And the union of 

these matching points belonging to the transformed images, union of all of the points 

shown in Figure 3.4 at left side images, will be called Generic Points from now on. And 

these Generic Points will be used to describe their matching points situated on the 

untransformed image, in Figure 3.4 union of all of the points at right side images. 
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Figure 3.4 - Transformed image matching to the query image 

 

 

3.1.1.3 About Lowe’s Matching 

 

To find the resemblance between 2 vectors (descriptors), we can find Euclidian 

distances as it is done in HMAX models C2 features similitude response calculation. 

Rather than doing so, Lowe is proposing to compute the angle ratios of 2 vectors 
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approximately. If the computed angle ratio is a small value, then the resemblance that 

we find is very close to the resemblance found via Euclidian distance calculation. It is 

cheap to calculate the dot products of 2 vectors; arccosines of the dot products of two 

unit vectors is the angles’ ratio we are looking for.      

 

 

 

Figure 3.5 - SIFT Matching                                         

 

In the image above each descriptor of the first image is compared to the second images’ 

all m descriptors. The found m resemblances are sorted and 2 highest resemblances are 

taken into consideration. If one of the 2 highest resemblances is not smaller than 0.6 

times the other one, both of them are rejected even if the resemblances are very strong. 

Because, as it is seen in the Picture for di, we have dp and dh as matches, so we are 

unable to decide on. That’s why they are eliminated. 
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Analyzing this method, we can say that descriptors of the second image are competing 

within each other on being the safest match. So we can say that, if we decrease the 

quantity of the second image descriptors, we will have a more unsafe matching; a 

description with less number of keypoints looks dangerous. But as the elements of the 

first image are compared to the second image’s whole set of points one by one, we can 

try to select the best keypoints of the first image, which are most robust to the object 3D 

rotations. We think of these points as more favorable to the description of an object. 

 

3.1.1.4 Our Matching 

 

In the image below, the first image, which is going to be matched to a SiFT descriptor 

image data base, is pretreated and a subset of its descriptors is selected to be compared 

with the descriptors of the second images descriptors. Firstly, this subset of the first 

image is compared to the second image with Lowe’s matching method, and then, found 

matches are noted. Secondly, generic descriptors of this subset are compared to the 

second image. This generic key points are used as representatives of the subset 

elements. Our matching is simply Lowe’s matching method, but with a distance ratio 

0.77. 
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Figure 3.6 - Generic Points Aided Sift Matching                    
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Surprisingly, for these generic keys, such an elevated distance ratio is not causing much 

false matches. The reason is that, during first matching operation, some keys of the 

subset are matched. If a principal object into the first image appears in the second 

image, then: 

 

 SIFT matching will find some matches for the subset elements of the first image, 

say M to this matched ones set,  

 

 SIFT matching won’t be able to decide certainly on some points, say U to this 

set, because of strong alternative candidate matches,  

 

 SIFT matching will be able to decide on some wrong points, say E to this set, 

because of elevated dissemblance.      

 

 Then, generic points will help us to match unmatched ones, too. The set U will 

find their matches easily. Even if the ratio is elevated, we will be able to find the 

correct matches among the elements of U easily with some minority quantity of 

false matching.   

 

If no principal object appeared in the second image, then we would obtain some false 

matchings’ because of the elevated ratio of generic points. But for this case, the decision 

whether we are facing the correct object will be easy. Because in the presence of the 

correct object we have correct matches more than normal case, and surprisingly, we are 

obtaining too fewer mismatches for generic ones; and in the presence of different 

objects we will have less points with wrong, abnormal relative positionings. Then we 

would eliminate all of the matches. 

 

These generic points are functioning as voting elements and as a powerful descriptor of 

the real descriptors that they represent.  
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3.1.1.5 Generic Points Aided Matching Result   

 

Since the public version of Lowe’s SIFT implementation does not exist, we have no 

chance to modify his implementation while needed. With the intention of using a public 

implementation of SIFT, we have compared the existing SIFT implementations to find 

out the best one, like JiFT(Jann’s Invariant Feature Transform), Robert HESS 

implementation, Vedaldi etc. In order to use the distance ratio 0.6 with Lowe’s 

matching method, the best one seems Vedaldi’s implementation. 

 

As a first result of our implementation, we obtained the comparison in Figure 3.7. The 

frontal view of an object is compared with its 45 degrees rotated view. The original 

implementation of Lowe finds 3 matches, one is on the upper lip, the other one on the 

extremity of hair and the third one belongs to the scene, not useful for describing the 

object.    

 

Vedaldi’s implementation with Lowe’s matching method gives us a better result. 5 

points, all belonging to the object, are correct matches. The matching distance ratio used 

is 0.6, the optimal value of Lowe. If we increase this value, false matchings’ occurs. If 

this value is decreased, fewer matching points are obtained. 

 

According to this first result, our implementation seems to be giving us new matching 

points. For generic descriptors:  

 

When we use distance ratio as 0.6, we obtain 6 matches (upper left image): one more 

matching on the lips.  

 

With distance ratio 0.7 we obtain 8 matching points: 2 new matches on the extremities 

of hairs and the one on the lips.  
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Figure 3.7 - A comparison of our model 
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With distance ratio 0.75 we obtain 9 points, all of them are matching correctly (image 

lower left): A new matching point appears on the ears.  

 

With distance ratio 0.8 we obtain 13 matching points of which 11 are correct and two 

are false matchings’:  One overhead, one on eyebrow, 4 points on the lips, one on the 

ear, 3 on the extremity of hairs, one correct matching on the shoulder and one on the 

nose which is mismatched to a place between nose and upper lip, and one false 

matching on the shoulder.  

 

According to our researches, 0.77 is seemed to be a good distance ratio for matching of 

generic points. With this ratio it seems we will have minimum 2 times more matching 

points.  

 

However one can ask why we do not have false matchings’ with the use of an increased 

distance ratio, while the original SIFT fails with such higher ratios.  

 

3.1.1.6 A Dangerous Problem False Match Elimination 

 

We observed that if two images include the same object then we obtain fewer false 

matching and a lot of correct matches which are more than the SiFT matching of Lowe. 

However, if the compared images mainly include different objects, then we have the 

risk of having in general randomly distributed mismatches as in Figure 3.8. 
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     Figure 3.8 - Different objects are being mismatched because of the elevated        

     distance ratio 0.77 of Generic Points Matching. 

 

 

 

To solve this problem, we tried to develop an algorithm which will eliminate randomly 

distributed matches. As Lowe claims, some existing works done earlier to accomplish 

resolving this problem were not satisfying. However, in our case some additional 

generic points are used.  

 

The effects of these generic points can be used as a voting medium: thanks to these 

points, more correct matches are found than normal case while we compare two same 

objects; and while we compare two different objects, in general abnormally distributed 

false matchings’ are obtained. Therefore, with a strong probability, we will be able to 

decide whether it is the object we are looking for. 

 

The case of obtaining perfectly distributed false matchings, as can be seen on the left 

side of Figure 3.9, is observed rarely, however this case is found 2 times while 

comparing an image to 206 images. 
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Figure 3.9 - Perfectly distributed Generic Point false matching. 

  

 

3.1.1.7 A Triangular Relative Positioning Model 

 

Generic points provide lots of false matchings, when the objects are not the same. 

However, the distributions of these points are highly varied. The relative positions of 

the points on an object (relativity of each one to others) are remained partially same in 

another image of the same object. As SiFT points have a limited object rotation 

invariance of 30-45 degrees, a relative similarity of point distributions between 2 

images should be obtained.  

 

In Figure 3.10, in image 2, the triangle ABC is not similar to the triangle A’B’C’: B is 

in the midst of A and C, because the longest edge of this triangle is |AC|. However, the 

situation is not kept on the triangle constituted by the pairs of ABC in new image. As 

the longest edge of A’B’C’ is |A’B’|, C’ is in the midst of A’ and B’. We can say that 

there is an anomaly. In some cases, we can see that the midst points are not kept, but 

matching pairs are correct. However, generally this similarity is kept.  
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Another remark is that we are unable to track the similarities of the points belonging to 

the independent parts of an object. For example, the arm of a human can be translated in 

different images and even if the viewed side of a hand is kept same in its new location, 

its relative position to the face of the human will change. In this case, our triangular 

relative positioning thought will become worthless. 

 

In another case, the head of a person and its shoulders positions will be changed, in this 

case, the points matched on shoulders and the points matched on the heads will not 

constitute similar triangles. Relative positions of head and shoulders of a person can be 

varied by rotation and movement transformations at most, on average, 50-60 degrees. 

The SiFT points are used in our approach; these points are invariant to rotations at most 

45 degree. So it would be possible for us to adapt our triangulation method to handle the 

relative position changes between partially-moving and partially-rotating parts of an 

object like the case of a head and the shoulders.  

 

This adaptation can be realized with some control parameters, but the position change 

of a hand seems difficult to overcome. Our conception is, a hand is an object itself, it is 

attached to the head indirectly and the arm of a person is also the same; shoulders of a 

person, or main body of a person is directly attached to the head and partially moving or 

rotating.  

 

So, we can adopt these related parts as an integrated object. This conception is assumed 

valid for all object classes.  Eventually, he elimination by this similarity model will 

provide us more points on the principal parts of objects. The matches belonging to the 

moving or translating parts of the main object, even if they are correct matches, will be 

eliminated in our approach. We try to obtain object-center concentrated points with this 

model.  

 

 



52 

 

 

 

 

Figure 3.10 - Randomly distributed false matchings which is general case. 

 

 

Randomly distributed matching anomalies are observed, more than once in each of 4 

images above Figure 3.10. We used these anomalies as a medium of decision.  

 

In 3rth image for example, left image has 6 points and a triple combination of these 

points generates us 20 different triangles, by the same way the 20 triangles of the right 

side image are extracted and the midst points of these triangles are compared. If the 

error ratio is bigger than an optimum value, 0.5 for our case, then we are confirmed that 

this is not our object according to our model.  
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3.1.1.8 Triangular Similarity 

 

According to the test of midst point comparison, both images are voted according to 

their regularity of point distribution. If the result of voting is positive, then we apply 

another criterion to estimate false matching ones, similarity of both of the triangles. In 

the third image in Figure 3.10, the triangle ABC compared to the triangle A’B’C’. Say 

the ratio of |AB|/|A’B’| is rAB and by the same way rBC and rAC. According to this 

example the ratio rBC is abnormally big or small. According to this, C or B is probably 

a false matching. We consider rAC and rAB to decide on. If rAC>p*rAB then we say 

that C is abnormal, in other case rAB<p*AC we decide this time that B is abnormal. 

The p factor is a flexibility parameter.  

 

Of course this is a cruel elimination, we will have probably some correct matches which 

are eliminated also, but the remnant ones should be more perfect matches.  

 

3.1.1.9 Triangular Parallelism 

 

Another technique that we tried is the parallelism of matching pairs: It is supposed that 

the sizes of both images being compared are known, thus by using the size information 

of images and the points positions inside the images we can try to define a parallelism 

criterion. In the same figure, Figure 3.10, in image 2, |AA’| and |BB’| are almost parallel 

lines but the inclination of |CC’| is roughly different. Of course our objects can be 

rotated in 2D, but even in the 2D rotation cases this criterion is helping to eliminate 

anomalies.  

 

We noticed that Triangular Similarity is a better eliminating method, and it eliminates 

matchings belonging to the scene elements also, it is keeping the matches belonging to 

the principal objects, because the density of matched points corresponds on the principal 

object. We can say that this eliminating method has a tendency of being object centered.  
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3.1.1.10  Generic Points Aided Elimination Results  

 

For our tests we used an image collection of 256x256 gray level .pgm images. This 

collection includes 206 pictures of 13 people: Each person has 12-20 images in the 

collection. This collection includes difficult images having strong shadows, rotation up 

to 90 degrees, different principal objects, use of cluttered scenes, and smiling, laughing 

faces with closed eyes…  All of these are serious difficulties for SiFT matching.  

 

For the first person, we captured the matching results in Figure 3.11. Left side column 

includes our result and right side column includes Vedaldi SiFT points with Lowe 

Matching Method. During our examinations we observed that the SiFT points of 

Vedaldi are more successful than Lowe’s SiFT points. So we adopted it for this test.     

 

The red frame contains our correct identifications. These points are correctly matched 

and there are more than 3 points being part of the object. For image 1 both methods are 

successful, but in 2, 3, 4 our method is succeeding perfectly.   

For the images 2, 3 and 4 Vedaldi Matching is failing.  

 

And the interesting remark is that our matching points are generally located over the 

head of the person, which is the significant part of a human for identification, or which 

might be the main part of another object for identification. On the body or on the scene 

there are very few points.  
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Figure 3.11 - Generic Points Aided matching versus classical SiFT matching. 
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In the blue frame in Figure 3.11, we have also correct matches. But we have fewer than 

3 points corresponding onto the object; other points are the parts of the scene. So as a 

scene recognition result we have 3 more correct identifications. On the other hand 

Vedaldi’s implementation is succeeding for only the fifth image.   

 

 

Figure 3.12 - Generic Points Aided matching versus classical SiFT matching. 
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3.1.1.11 Some Test Results for Object Detection 

 

In the tables below upper lines is the image indices and lower lines are the match 

quantities that are found. Blue ones are the correctly identified images. Red ones are the 

erroneously identified images over 206 images. 

 

3.1.1.11.1 First Frame 

 

For image 1 Vedaldi is finding 4 correct detections and 18 false detections. Our Generic 

points are giving 9 true detections and 9 false detections. So, greater true detection and 

fewer errors.    

 

 

 

Figure 3.13- Vedaldi vs Generic Points 1 

 

3.1.1.11.2 Second Frame 

 

For 15th image, Vedadi gives 3 correct detections and 21 false matches. Our approach 

gives 4 correct detections and 13 false detections. To decrease false matching quantity, 
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a hard elimination method is applied. Among eliminated matches there may exist some 

correct ones too, so our results are giving fewer false detections. 

 

 

 

Figure 3.14 – Vedaldi vs Generic Points 2 

 

3.1.1.11.3  Third Frame 

 

For the person in the 64th image, Vedaldi has 6 detections and 23 false detections. Our 

approach is giving 6 correct detections and 12 false detections.  We obtained visibly less 

error ratio in this frame.  

 



59 

 

 

 

 

Figure 3.15 - Vedaldi vs Generic Points 3 

 

3.1.1.11.4  Forth Frame 

 

For the person in the 92th image, Vedaldi gives 2 true detections and 11 false detections 

and our result gives 4 true detections and 8 false detections.  

 

 

Figure 3.16 – Vedaldi vs Generic Points 4 
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3.1.1.12 Assessments and Perspectives for Generic Points with Face Dataset 

 

We might have chosen not to use matching points of transformed images as the 

representatives of the original ones, with a distance ratio 0.77. Instead of this, we would 

realize SiFT matching normally and then rematch all of the unmatched ones with an 

elevated distance ratio 0.77. So we would obtain some more correct matches and some 

false matches (that were to be eliminated).  

 

But the second comparison costs expensive for us, say we have 500 SiFT points for 

both images and after first matching with 0.6 distance ratio we have 490 unmatched 

points, for the second matching with 0.77 distance ratio we will have to realize 490*500 

matching operations in addition to first matching of 500*500.  

 

In our case we use 100-200 generic points to do this task and as these are the points 

robust to object form deformations surely we obtain more matches for 3D partially 

rotated images with a rotation limit of 45 degrees.   

 

In this model firstly, the query image is transformed in 4 directions and the query image 

is compared to these transformed images. Obtained SiFT matching points are used as 

generic points. Somehow it seems that without transforming query image, we might 

obtain nearly almost of the same generic points by transforming the query images SiFT 

points with the same transformation matrix. By comparing the original SiFT points with 

the transformed ones we obtain most probably the same generic points. 

 

A SiFT point can be represented with its transformed matches for the use of object 

description, so for future studies it might be judicious to try modeling the changes 

happening on SiFT points while the object is returning in 3D degree by degree. There 

should be a way of approximating 2D image global features, like contour, junction etc. 

to the rotated object images global features.  
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Our hypothesis is the fact that while transforming 2D images with planar perspective 

transformation, we are keeping the visual context of images. After transformation also 

the images are visually identifiable and it is surprising for us that with transformed 

images we find new matches that the original image couldn’t catch and these new 

matching points can have pairs on the original image.  

 

Set of Generic points is functioning as a medium of bridge between a point of query 

image and a point of the compared database image.  

 

3.1.2 Generic Points with Car Dataset 

 

In this section, Generic Points Aided Robust Description is subjected to assessment with 

car data set. 

 

3.1.2.1 Image Local Feature Based Video Object Description and Tracking 

 

In this section we tested our proceeding on a car image set and used it for video object 

tracking. Similar to face data set test, towards extraction of image features, each image 

is preprocessed by applying different perspective planar transformations, and a set of 

points, which are robust with respect to geometrical deformations, is obtained.  These 

transformations are chosen in a manner to preserve the perceptional identities of the 

principal objects existing in the transformed images. The main contribution of this study 

consists of comparing the trained images with the transformed images and gathering a 

set of the most stable points which are representing the principal objects of the trained 

images. These stable points derived by the set of the trained images, are then used as a 

robust description and tracking of the objects in motion. In order to improve reliability 

of the presented method, an algorithm is proposed to correct the mismatches which 

occur at point matching stage. This correction algorithm is same as used for face data 

set test. The results of the studied method are compared with classical SIFT matching.  
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Better results illustrate the effectiveness and the robustness of the SIFT based object 

description that we proposed. 

 

3.1.2.2 Methodology 

 

The set of multi-view car profiles (Ozuysal, 2009), is used to perform SIFT algorithm.  

When the view of an image object is changed, the orientation of contours, the length and 

thickness of lines is modified. Especially during low level analysis, spatial intensity 

changes occur when the object is rotated, and regarding this case, SIFT is less invariant, 

as SIFT descriptors are calculated over a neighborhood centered at a special point by the 

weighted contributions of gradients. With such  transformations, even the position of a 

key point is remained unchanged but the 128 values of descriptor vector are changed, the 

generated descriptors are unmatched. To avoid the possible unmatched descriptors’ 

generation, transformations are modeled in which the key point vectors are existing 

during the object rotations. But in a  2D modeled scene, it is difficult to model such a 

change. 

 

On the other hand, to achieve performance and robustness of matching, it would be fine 

and judicious to select the SIFT points which are the most robust to such object rotations 

for the purpose of modeling a partial flexibility to low level image particularity changes 

occurring during the object view change transformations.  Using a scene in a plane, 

applying a suit of perspective planar transformations and then by matching the 

transformed images points to its original untransformed image, the key points can be 

obtained which are robust to object shape deformations.  

 

The idea is based on an inner step of C1 global image particularity extraction method 

(HMAX), which is still a better model to describe objects for object category 

recognition tasks: In C1, oriented Gabor filters are used to extract the responses of 

contours in 4 directions and 2 different sizes of filters, 11x11 and 13x13, are used with a 

MAX operation; the significant contour responses are then extracted. Afterwards, the 
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dilatation operation is applied to the extracted contour images. Dilated contour images 

become roughly described contour images. In fact this produces a general representation 

of the global image particularities, such as contours,  junctions etc.  

 

By using this representative model, we are able to compare other objects’ global 

features for the purpose of detecting the class of the object.  By using a similar 

approach, we can represent a SIFT point with some logical deformations; and among 

extracted whole set of SIFT points, we can select the ones which will be the most 

flexible and safest ones against partial object form changes. Moreover, we can generate 

new SIFT points, by a partial modification of original ones, which will be more suitable 

to match rotated objects points.  

 

We applied some planar perspective transformations to the considered image, the 

transformation ratio is chosen in order to keep visual context of the image; e.g. a human 

face in a transformed image should remain visually identifiable or a car rear should 

remain recognizable. According to our trial and errors, the perspective planar 

transformation ratios (0.90, 0.90) and (1.00, 0.80), fit best to our scheme. The 

transformed images are matched to the same untransformed image and obtain pertinent 

points whose quantity is, on average, 40-50 for an image of 200-250 descriptors.  

 

These points can be used to describe considered car image object with a selected subset 

of original descriptors and with their corresponding new matches. These points should be 

the most flexible ones, and should be adapted to our SIFT object description. 

 



64 

 

 

 

 

Figure 3.17 - Images A, B, C, D, E, F are perspective planar transformations in different 

directions of image G.  Transformation ratios are [0.9, 0.9] and  [1.0, 0.8]. 

 

 

 

Perspective transformations given in Figure 3.17(A), (B), (C), (D), (E), (F) of the same 

car image (given in Figure 3.17(G)) are compared.  For each comparison, (in Figure 17,  

A-G, B-G, C-G, D-G, E-G, F-G), a set of key points of  approximately 50 points is 

obtained per transformation while untransformed image has approximately 200-250  

key points.  

 

Union of the matching point sets over different transformations is used as principal 

points set. These are the “Generic Points” used for car image set: the union of these 

matching points belonging to the transformed images. Generic Points will be used to 

describe their matching points (principal points) situated on the untransformed image 

(G).  
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These transformations are over 6 directions as seen in Figure 3.17(A), (B), (C), (D), (E) 

and (F).  In total, 6 transformed images exist. In a real traffic video, over consecutive 

frames, global image features (contours, junctions etc.) are less distorted in vertical axis; 

however, sudden view changes in the horizontal-axis frequently may happen (for 

example in the overtaking event); as a result, horizontal distortions arise on global and 

local image features to which SIFT has less tolerance. Therefore, horizontal 

transformations (towards horizontal axis) are preferred. 

 

3.1.2.3 Car Data Set Matching Methodology 

 

The matching methodology used for face data set is applied. And similar results are 

obtained. Generic points aided description is compared to Veldaldi matching. Better 

results are obtained. Then false match correction algorithm is applied and comparison is 

performed. Below results are obtained. 

 

3.1.2.4 Car Data Set Generic Points Aided Matching Versus Lowe’s Matching 

 

Without applying correction algorithm, we obtained the compared results given in 

Figure 3.18. The view of the car’s rear is compared with its 45 degrees rotated view 

image.  The original implementation of Lowe generates 9 matches (Figure 3.18 (A)), 

most of them are located on the plate of the car since it’s more textured.  Vedaldi’s 

implementation with Lowe’s matching method generates a better result, (Figure 3.18 

(B)), 10 correctly matching points are obtained.  

 

The matching distance ratio used is 0.6 which is the optimal value of Lowe’s algorithm. 

If the ratio is increased, false matches occur. If the ratio is decreased, fewer matching 

points are obtained. 
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Figure 3.18 - Lowe SIFT [A] and Vedaldi SIFT [B] matching versus Generic Points 

aided matching [C-D-E-F]. 
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According to this first result, the presented implementation is detecting new matching 

points, for generic descriptors:  when the distance ratio as 0.6 is used, (Figure 3.18(C)), 

15 matches are obtained. The distance ratio of 0.7, as the algorithm parameter, leads to 

19 matching points, (Figure 3.18 (D)). With distance ratio of 0.75, 24 points are 

generated, (Figure 3.18 (E)), all of them are matching correctly. With distance ratio of 

0.8, 30 matching points with 27 correct and 3 are false matches are obtained (see Figure 

3.18 (F)). 

 

The distance ratio of 0.75 is tuned for matching of generic points. Using this ratio, more 

than double matching points are obtained versus the other distance ratio values.   

 

3.1.2.5 Car Data Set False Match Elimination 

 

If two images include the same object, then fewer false matching and more correct 

matches than the SIFT matching of Lowe is obtained. However, if the compared images 

mainly include different objects, then the risk of having in general randomly distributed 

mismatches increases. To solve this problem, algorithm is enhanced to eliminate 

randomly distributed matches. In our case study, a subset of robust SIFT points are 

selected and their corresponding generic points are used for matching. The effects of 

these generic points can be used as a voting medium: thanks to these points, more 

correct matches are found than normal case while we compare two same objects; and 

while we compare two different objects, in general abnormally distributed false matches 

are obtained.  Therefore, with a high probability, we will be able to decide whether it is 

the object we are looking for or eliminate false matches if much more fewer than correct 

matches which are coherently distributed relative to each other. 

 

The relative positions of the points on the object (relativity of each one to others) are 

remained partially same in another image of the same object. As SIFT points have a 

limited object rotation invariance of 30-45 degrees, a relative similarity of point 

distributions between 2 matched images should be maintained and useful for false 
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match elimination. Outliers are cleaned based on this idea and decision is made upon 

relative distributions of matching pairs.  

 

For the tests, the multi-view image set, given in (Ozuysal, 2009), containing 20 

sequences of car images subject to rotation of 360 degrees, is used. This data set 

includes images subject to shadows, rotation, different principal objects in the 

background, and to the cluttered scenes. Car surfaces are less textured and poor in 

including local distinctive information. All of these effects arise serious challenges for 

SIFT matching. For the first car rear view frame, the matching results in Figure 3.19 are 

obtained.  Left side column includes the developed algorithm’s results and right side 

column presents Vedaldi SIFT points with Lowe Matching Method. The blue frame in 

Figure 3.19 contains the generated correct identifications. These points are correctly 

matched and there are more than 3 points being part of the object. If fewer than 3 points 

remain after discarding outliers, then the match is rejected. 
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Figure 3.19 - Generic points matching (blue column) versus Vedaldi matching (red 

column) 
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For image pairs [A] and [B] in Figure 3.19, both of the methods are successful: In [A], 

Generic Points are constituted by 7 correct matching, whereas Vedaldi’s algorithm 

generates 3 correct matchings. In [B], Generic Points has 9 correct matchings versus 

Vedaldi with 3 correct matches. For remaining image pairs, [C], [D], [E] and [F], 

Generic Points succeeds perfectly whereas Vedaldi SIFT matching algorithm is failed.  

 

Results for 20 cars over 600 images are reflected in the overlaying plots Figure 3.20 and 

Figure 3.21. For each car presentation, 30 rear captures are selected from multi view 

data set. Each rear capture of the same car has a different viewpoint varies 

approximately by 3 degrees beginning from -45 degrees up to 45 degrees. 

 

 

 

Figure 3.20 - Correct matching comparison 
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  Figure 3.21 - False matching comparison 

 

 

Correct matches are compared in Figure 3.20. The presented matching algorithm 

performs better than Vedaldi SIFT implementation with Lowe’s matching in terms of 

correct matches. False detections are compared in Figure 3.21. Generic points aided 

matching is lesser error-prone. 

 

3.1.2.6 Tracking with Generic Points 

 

Generic points are more reliable in matching over difficult image pairs. It is deployed 

for car tracking video. To achieve real-time efficiency, the GPU CUDA implementation 

of Andrea Vedaldi’s SIFT is used. Generic points are obtained with the same 
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implementation as well. For feature tracking, a statistical tracking method called 

RAMOSAC which is based on the well-known RANSAC algorithm is used. Our 

Generic Points aided description is combined with RAMOSAC which is a feature 

tracker working with SIFT/SURF features. This method is evaluated in an attempt to 

lower the detection error rate and to achieve more robustness to car rear view changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8. Tracking with Generic Points. 

 

 

 

 

 

Tracking with Vedaldi SIFT description and tracking with Generic Points Aided SIFT 

description are compared. The proposed method assures more robust tracking. SIFT 

Figure 3.22 – Tracking with generic points 
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itself is sensitive for object view changes and heavy shadow cases are not handled 

successfully. Generic points aided description is better subject to such view changes and 

heavy shadow conditions. Under cluttered scenes it may assure more reliable tracking 

thanks to generic points being more powerful at matching phase.  A capture from 

tracking is given in Figure 3.22. A set of features in the region of interest per car rear 

object is tracked over successive frames. Matching points are green dots and unmatched 

points are with red color dots. The detection rate of the proposed method illustrates its 

robustness and real-time performance. 

 

3.1.2.7 Local Features Approach Assessments 

 

For Generic Points extraction, the presented hypothesis assures the visual context of 

images even though images are subject to planar perspective transformations. After 

transformation, the images are visually identifiable and new matches are generated. But 

the original image descriptors cannot detect these new matches generated by the 

presented study and these new matching points can have pairs on the original image.  

Generic points are functioning as a medium of bridge between a point of query image 

and a point of the compared image. A false matching elimination algorithm is used to 

increase the robustness. The presented scheme is compared with Vedaldi SIFT 

implementation and Lowe's matching method and enhanced robustness versus cluttered 

image scenes is obtained. Feature tracking is realized in video images. Generic features 

are integrated with RAMOSAC tracker.  To provide real-time efficiency, CUDA GPU 

implementation of Vedaldi SIFT is used.  

 

3.2 Global Features Approach 

 

Global feature extraction schemas HMAX and Haar-Like Simple features are analyzed 

and Haar-Like Simple Features approach is adopted and used for developing our second 

proceeding. 
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3.2.1 Real Time Object Detection Using Image Global Features and Detection 

Based Object Tracking 

 

Data sets consisting of on-road video records are used and the developed proceeding is 

subjected to assessment. 

 

3.2.1.1 Vehicle Detection Using Haar Features 

 

To detect candidate vehicles, we used boosted cascade of simple Haar like rectangular 

features, as was introduced by Viola and Jones in the context of face detection. Various 

studies have been used this approach for vehicle detection. Haar-like rectangular 

features are well suited to object shape detection. These features are sensitive to image 

global features like edges, bars, vertical and horizontal details, and symmetric 

structures. Examples of Haar-like rectangular features used in vehicle detection are seen 

in Figure 3.23 (a). The original algorithm used by Viola and Jones allows for rapid 

object detection that can be suitable for a real time system, use of integral images 

provides fast and efficient feature extraction. Extracted resulting values are effective 

weak learners, which are then classified by Adaboost. 

 

 

Figure 3.23 - (a) Example of Haar-like features. (b) Cascade of boosted classifiers.

 



75 

 

 

 

 

Adaboost performs classification based on a weighted majority vote of weak learners. It 

is a discriminative learning algorithm. A cascade of classifier stages is constructed with 

Adaboost learning. With very little effort, preliminary stages in the cascade eliminate 

most of the false negative regions. Scores that are computed from feature extraction 

makes the decision for rejection at each stage. Candidate vehicles are eliminated stage 

by stage within the cascade, and remaining candidates after final stage, considered as 

positive detections, see Figure 3.23 (b). 

 

One of the most relevant contributions of Viola and Jones is the introduction of integral 

image use. Integral images are defined like lookup tables in the form of a matrix same 

size of the original image.  

 

Each element of the matrix contains the sum of all pixels located on the up-left region 

of the original image. This provides effective processing; using only 4 lookups, sum of 

rectangular areas, and so difference between two rectangular areas in the image at any 

position and scale is known. 

Haar-like features are extracted with box filters which tend to have behavior like Haar 

wavelets of degree 1.  

A Haar-like feature feature is extracted by summing up the pixel intensities over two 

adjacent rectangles and then subtracting the two sums. Basically, it is the difference 

between pixel intensity sums over two rectangles, side to side regions total pixel 

intensity changes raises a global feature usefull for a weak learner like adaboost.  

This difference is then used to categorize subsections of an image. For example, let us 

say we have an image database with human faces. It is a common observation that 

among all faces the region of the eyes is darker than the region of the cheeks. Therefore 

a common haar feature for face detection is a set of two adjacent rectangles that lie 

above the eye and the cheek region. The position of these rectangles is defined relative 
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to a detection window that acts like a bounding box to the target object (the face in this 

case). 

In the detection phase of the Viola–Jones object detection framework, a window of the 

target size is moved over the input image, and for each subsection of the image the 

Haar-like feature is calculated. This difference is then compared to a learned threshold 

that separates non-objects from objects. Because such a Haar-like feature is only a weak 

learner or classifier (its detection quality is slightly better than random guessing) a large 

number of Haar-like features are necessary to describe an object with sufficient 

accuracy. In the Viola–Jones object detection framework, the Haar-like features are 

therefore organized in something called a classifier cascade to form a strong learner or 

classifier. 

 

3.2.1.2 Vehicle Detection Verification 

 

Step 1:  

İf candidate vehicle bounding box has not an x symmetry axis, then detection is 

rejected. 

 

Step 2: 

Vehicles tend to have lots of horizontal lines. At least 4 horizontal lines, each one 

longer than 10 pixels should rely inside the box.   

 

Step 3:  

Detection history may be a healthy indicator for tracking and as well for detection. 

Candidate vehicle bounding box center must have 28 close matches among last 30 

frames in which detection occurred. Distance between the center of candidate vehicle 

bounding box and the center of detection from the recorded history must be twice 

smaller than the radius of bounding box. This prevents arising of false positives. 

 

If either step 2 or Step 3 is not verified, then detection is rejected. 
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3.2.1.2.1 X-Symmetry  

 

Colored image data relying inside bounding box of detected candidate vehicle is 

analyzed and symmetry is searched around vertical axis, based on image data. To do 

this a sliding window is used, which is of half size of the bounding box.  

 

In Figure 3.24, bounding box of size (2w, 2h) is convolved with the sliding window W. 

W slides pixel per pixel, each time image data corresponding W is scanned from bottom 

to up and the sum of colored pixels is noted as ∑1.  

 

Similarly, each time the data corresponding to the left side window L is scanned from 

bottom to up and pixel values are summed, then noted as ∑2. At each slide operation 

difference of ∑2 and ∑1 is noted as Δi. At the end of all iterations x-axis value 

corresponding to Δi with minimum value over all iterations, is considered as candidate 

symmetry axis. If the value hold by corresponding Δi is not sufficiently small then 

symmetry detection is rejected. Windows L and W have variable width, varying 

between [0, w], w is half width of bounding box. 

 

Colored data is considered to detect symmetry axis. We used 3 channels colored and 

subsampled smooth images to achieve this. Only 1 channel value is considered at each 

iteration. Considering 3 channels together and 1 channel together provided similar 

results.  

 

Alternatively, to detect symmetry axis we used edge images, which are 1 channel 

images, containing only white or black colored contours of the original image. Edge 

images are obtained with Canny edge detection algorithm. Before applying Canny 

algorithm, colored images are blurred and subsampled, to reduce noise and increase 

performance.  
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Figure 3.24 - Symmetry search 
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Similar sliding window approach is applied and at each iteration the ratio between white 

pixels count to whole pixel count corresponding to sliding window is calculated. 

Similarly left side window L is scanned and same ratio is extracted. The two ratios 

belong to L and W are compared at each iteration and the ratio pair providing minimal 

delta is considered to detect symmetry axis. If the two ratios are not sufficiently close to 

each other, then symmetry detection is rejected. 

 

The two approaches are compared and we adopted the first approach which is 

considering image data comparison over 1 color channel.  

 

3.2.1.2.2 Horizontal Edges 

 

Analyzing low level vehicle image global features, one can consider that shape of a 

vehicle produces horizontal edges significantly more than on-road background textures 

produce and these horizontal edges are significantly long and condensed parallel to each 

other inside the vehicle bounding box.   

 

Quantification of prominent horizontal edges is a good indicator when validating a 

candidate vehicle given with a bounding box. To achieve this we used edge images. 

İmages are first blurred and then subsampled by 2, irrelevant noise data is eliminated.  

 

Afterwards, Canny edge detection algorithm is used to extract edge images consisting of 

only white and black colored data, containing only relevant edges marked with white 

color over black background, see Figure 3.26. 
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Figure 3.25 - Edge image horizontal line search 

 

 

Edge Image (candidate vehicle bounding box) is scanned beginning from bottom to top 

and horizontal edges are searched with a suitable algorithm. Scan is started from the 

point A (see Figure 3.25) and iteratively goes along with bounding box symmetry axis 

S, up to the point B (see Figure 3.25). Scan step is 1 px and at each iteration, say for a 

given central point (x, y) located on symmetry axis S, continuous line search is done 

with horizontal scans towards left and right directions. Left side horizontal scan starts 

from the point (x, y), ends up at the point (x-w, y) and respectively right side horizontal 

scan starts from (x, y), ends up at (x+w, y).  

 

Scan step used for horizontal scans is 1 px. At each iteration of horizontal scan, value of 

the pixel (x, y) on which scan step corresponds, is checked. If value of the pixel (x,y) is 

white and (x,y-1) and (x,y+1) is black then next iteration is continued with (x+1,y), 

otherwise values of vertical neighborhood pixels (x,y+1) and (x,y-1) are checked; if 

(x,y+1) is white then next step is continued with (x, y+1); respectively if (x, y-1) is 

white then next step is continued with (x, y-1), if x is not incremented more than 1 

iteration than scan is ended up. This provides tolerance for detection of horizontal edges 
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which are not compactly parallel to y axis but considerable as globally horizontal 

relative to bounding box base.   

 

We use another tolerance providing factor, which is a maximum gap parameter set to 2 

pixels in our detection system. According to the walking algorithm mentioned above, if 

(x, y) is black then we check (x,y-1) and (x,y+1). If those upper and lower neighbors are 

also black then we give a chance and re-iterate algorithm with (x +1, y). If still no white 

pixel is detected, one more chance is given. So gaps on edges are tolerated up to 2 

pixels. Gaps over edges may arise like it’s seen in Figure 3.26, marked with B. 

 

 

 

 

 

 

 

 

 

 

Figure 3.26 - Discontinuity on lines 

 

The points A and C seen in Figure 3.26 above, are the horizontal scan end points, these 

are detected line en up points.  

 

At the end of 1 horizontal scan, using line end up points, we check the obliquity of line. 

If the angle between line and horizontal axis y is more than 10 degrees then detected 

horizontal edge is rejected. 

 

Another constraint that we set for a horizontal line is the strength of line; if detected 

horizontal lines length is less than 10 pixels then it is rejected. We consider only 

prominent lines for safety of validation. 
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3.2.1.2.3 Detection History 

 

Temporal information is useful for tracking issues. It’s incorporated in a variety of 

studies. We use temporal information not only for tracking but for detection stage also. 

It’s used as validation constraint besides horizontal line frequency analyzes and x-

symmetry search. 

 

At each frame processing, history is updated, only the vehicles detected within last 30 

frames are conserved, and others are discarded from history.  

 

When detection is achieved, detected car is searched within the history, if it is already 

detected within last 30 frames, then its position is updated and it’s marked as active.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27 - Detection and tracking 
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Figure 3.28 - Detection and tracking 

 

 

The states of vehicles recorded in history are updated per frame process, if a vehicle is 

not re-detected within last 15 frames, then it’s marked as invalid in history. But it’s not 

discarded from the history, unless it’s redetected within last 30 frames.  

 

While drawing detected vehicles on the screen per frame process, we do not draw only 

the vehicles detected and validated at current frame, all of the vehicles from the history 

with active states are drown per frame. Unless a detected vehicle is lost over 15 

successive frames, we do not discard it.   

 

A suite of capture from our real time implementation is seen in Figure 3.27 and Figure 

3.28. 
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3.3 Experimental Results  

 

Local and global features based proceedings are subjected to assessment in this section. 

They are compared with State of art techniques results, reflected weak and strong 

aspects per approach. 

 

3.3.1 Assessment of Local Features Approach 

 

To assess local feature based description methods, multi-view car rear dataset is used, 

(Ozuysal, 2009).  This data set includes images subject to shadows, rotation, different 

principal objects in the background and cluttered scenes.  

 

Car surfaces are less textured and poor in including local distinctive information. SURF, 

SIFT and SURF GPRD performances are given in Figure 3.29 and Figure 3.30 : 

Tewenty sequences of cars used, captured as they rotate by 3 degrees, beginning from -

45 to +45 degrees. 30 snapshots per car are used with 45 degrees of view changes.  

 

Frontal car rear is compared with remaining captures of the same car. At least 3 correct 

matches are set for a car to match. If fewer than 3 correct matches then matching is 

rejected. 
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Figure 3.29 - Tracking with Local features, correct matchings’ per car rear 

 

 

Figure 3.30 - Tracking with Local features, false matchings’ per car rear. 
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3.3.2 Assessment of Global Features Approach 

 

Metric definitions below are used for assessment of recognition and tracking with 

global features, results are reported in Table 1 and Table 2. 

 

TPR (True Positive Rate) is a measure of recall and localization; it is defined by: 

TPR = detected vehicles / total number of vehicles 

 

FDR (False Detection Rate) is a measure of precision and localization; it is defined by: 

FDR = false positives / (detected vehicles + false positives) 

 

FP/Frame (False Positives per Frame) is the measure of robustness, localization and 

scalability; it is defined by: 

FP/Frame = false positives / total number of frames  

 

TP/Frame (True Positives per Frame) is the measure of robustness; it is defined by: 

TP/Frame = true positives / total number of frames 

 

 

 

 Figure 3.31 - Istanbul TEM Highway video dataset metrics. 
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 Figure 3.32 - LISA-Q Front FOV video dataset metrics 1 

 

 

Thanks to validation steps that we applied, our recognition and tracking system 

produces a less error prone result close to given by ALVeRT (Sivaraman & Trivedi , 

2010).  We have similar or better results with ALVeRT in Lisa-Q Front FOV 2 and 

Lisa-Q Front FOV 3. However in Lisa-Q Front FOV 1(Rush hour), our system is 

outdated by ALVeRT. On the other hand as a passively trained model, our systems 

metrics are better than the result of passively trained state of art model, given in 

(Sivaraman & Trivedi, 2010).  Combination of our validation steps with an active 

learning method can arguably produce better performance than ALVeRT. To report the 

contribution of validation steps we use, the metrics below are measured over bounding 

boxes extracted with preliminary detections, see Table 3. 

 

 

 

Figure 3.33 - LISA-Q Front FOV video dataset metrics 2 
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Some captures from assessment of global feature based detection and tracking approach 

are seen in Figure 3.34 and Figure 3.35: 

 

 

Figure 3.34 - A capture from our recognition and tracking schema on LISA-Q Front  

FOV 1 – Rush hour 

 

 

 

 

 

 

 

 

 

 

Figure 3.35 - A capture from our recognition and tracking schema on Istanbul TEM 

Highway 

 

 



 

 

 

 

 

 

4 Conclusion 

 

 

 

State of art image feature extraction methodologies and their implementations are 

analyzed. Local feature extraction methodologies SIFT and SURF are discussed and 

compared. Haar responses in SURF extract local features invariant to illumination 

changes. It is invariant against image noise, rotation changes as well. However SIFT is 

more robust than SURF against view point changes. So SURF is less adapted on road 

vehicle tracking task. However, SURF is 3 times faster than SIFT. Early systems 

adopted SURF as it achieves real time efficiency. SIFT performs very slow, not suitable 

for real time issues. However, lately SIFT is implemented on Graphical Processing 

Unit, which dramatically increased performance of SIFT. Use of SIFT in real time tasks 

became popular. On the other hand, SIFT is not much successful in object detection 

issues while it is the ideal way for image scene description tasks. SIFT extracts good 

local features which are re identifiable. But these points are not successful in describing 

whole object itself.  

 

Instead local feature extraction methodologies, global feature extraction methodologies 

are more adapted in object description context. In this field, Haar Like Simple Features 

and Early Hmax Model are analyzed. The HMAX implementation of JIM Mutch is 

inspected; feature extraction steps are clarified and reported in this document. Haar Like 

Simple Features are adopted for global feature extraction and used for describing object 

models. Car rear data set is submitted to training, obtained indexation is used as a 

preliminary object detection step in our implementation with Adaboost classifier. This 

preliminary detection provides region of interests in which global features resembling to 

features of training object model. 
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But this is not a strong indicator. This preliminary detection itself does not achieve a 

feasible system, but covers most of the cases with lots of false positives.  A validation 

algorithm is necessary which will provide robustness and keep as well the real time 

efficiency.  

 

We inspected low level image characteristics of the targeted category of object, vehicle 

rears in our case. Vehicles have symmetric features on rears in general. Color channels 

are used to symmetry search; a texture based symmetry axis is searched. In addition to 

symmetry search, we inspected contour images extracted from detected Region of 

Interests. Vehicle textures generate dominant horizontal lines; horizontal dominant lines 

are searched. Depending on symmetric features and horizontal line frequency, 

validation of preliminary detection is realized. A tracking algorithm is implemented 

which uses temporal detection history in which previous vehicle detections are 

classified each time active and passive. Detection process made more robust and 

continuous from frame to frame. As a voting medium, the temporal detection history is 

used for preliminary detection validation as well. We proposed a new proceeding which 

enables active safety for on road vehicle navigation. 
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