

FULLY AUTOMATIC ANNOTATION OF WEB SERVICE DESCRIPTIONS

(WEB SERVİS KOLEKSİYONLARININ TAM OTOMATİK

ANLAMLANDIRILMASI)

by

Cihan AKSOY, B.S.

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

in the

INSTITUTE OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

May 2013

FULLY AUTOMATIC ANNOTATION OF WEB SERVICE DESCRIPTIONS

(WEB SERVİS KOLEKSİYONLARININ TAM OTOMATİK

ANLAMLANDIRILMASI)

by

Cihan AKSOY, B.S.

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

Date of Submission : May 24, 2013

Date of Defense Examination : June 18, 2013

Supervisors : Dr. Vincent LABATUT

 Asst. Prof. Dr. Murat AKIN

Committee Members : Prof. Bernard LEVRAT

 Assoc. Prof. Dr. Y. Esra ALBAYRAK

 Assoc. Prof. Dr. Temel ÖNCAN

ii

ACKNOWLEDGEMENTS

First of all, I would like to present my sincere gratitude to Asst. Prof. Dr. Vincent

Labatut, whose expertise, understanding, and patience, added considerably to my

graduate experience. I appreciate his vast knowledge and skill in many areas, and his

invaluable assistance in writing reports (i.e. tool documentations, publications and this

thesis).

I would also like to thank my family for the support they provided me through my entire

life and in particular, I must acknowledge my wife and my son, without whose love,

encouragement and patience, I would not have finished this thesis.

In conclusion, I would like to thank all my teachers who guided me to improve myself

with their great contributions.

TABLE OF CONTENTS

Acknowledgements .. ii

Table of Contents ... iii

List of Figures .. v

List of Tables ... vi

Abstract .. vii

Résumé ... viii

Özet .. x

1 Introduction .. 1

2 State of the Art ... 4

2.1 Web Services .. 4

2.1.1 Terms of Reference .. 5

2.1.2 Reference Architecture ... 6

2.1.3 Web Service Standards ... 8

2.1.3.1 SOAP .. 8

2.1.3.2 WSDL ... 9

2.1.3.3 UDDI .. 12

2.2 Semantic Layer ... 13

2.2.1 Terms of Reference .. 14

2.2.2 Semantic Web Services (SWS) .. 14

2.2.3 Ontology ... 15

2.2.4 Extended Architecture .. 15

2.2.5 OWL-S ... 16

2.2.5.1 Service Profile .. 18

iv

2.2.5.2 Service Model .. 19

2.2.5.3 Service Grounding .. 20

2.3 Benchmarking Semantic Web Services Tools ... 20

2.3.1 Semantic Collections .. 21

2.3.2 Syntactic Collections .. 23

2.3.3 Annotation Tools .. 25

3 Proposed Method .. 30

3.1 General Architecture .. 30

3.2 Preprocessor ... 33

3.3 Selector ... 36

3.3.1 Data-Driven Analysis ... 37

3.3.2 Procedure Design ... 41

3.4 Associator ... 43

3.5 Type Explorer ... 45

4 Results .. 48

4.1 Data .. 49

4.2 Quantitative Results ... 50

4.3 Qualitative Results ... 53

5 Conclusion .. 61

References .. 64

Biographical Sketch ... 69

LIST OF FIGURES

Figure 2.1 Business travel application interacts with WS (Ryman, 2003). 5

Figure 2.2 WS Model (Kreger, 2001). ... 6

Figure 2.3 Main steps between the requester and the provider of WS (Kreger, 2001). ... 7

Figure 2.4 Example of SOAP request (Ryman, 2003). .. 9

Figure 2.5 Example of SOAP response (Ryman, 2003)... 9

Figure 2.6 Excerpt of simple WSDL file (non-relevant parts have been removed). 11

Figure 2.7 Business Registry Servers (OASIS, 2004). .. 12

Figure 2.8 Layers of semantic Web (Hyvönen, 2002). .. 13

Figure 2.9 WS Stack (Kellert & Toumani, 2004). ... 16

Figure 2.10 OWL-S Module Organization (Paolucci et al., 2003). 17

Figure 2.11 OWL-S Profile Ontologies (Paolucci et al., 2003). 18

Figure 3.1 General Architecture of MATAWS. The Core Components are detailed in

Figure 3.2. .. 31

Figure 3.2 Core Components, corresponding to the central part of Figure 3.1. 32

Figure 3.3 Algorithm of the Preprocessor, and application to an example: the parameter

name PlayersInfoAsString3. The final result is a list of two words: player and

information. .. 34

Figure 3.4 Example of semantic relationships between words. The source of an edge is

a hypernym, the target is the hyponym. ... 38

Figure 3.5 Algorithm of the Selector, with examples. ... 41

Figure 3.6 Excerpt from a real-world WSDL file, representing a parameter with

complex-content XSD type. ... 47

Figure 4.1 Representation of evaluation method used for MATAWS. The Type

Explorer is not represented for readability matters. It is possible to get two scores: the

first one is obtained by comparing the initial parameter with its representative word,

and the second one by comparing this word with the associated concept. 54

LIST OF TABLES

Table 2.1 Collections of semantic WS descriptions: main features. 22

Table 2.2 Collections of WS descriptions: main features. ... 24

Table 2.3 WS Semantic annotation tools and their properties. 28

Table 3.1 Split templates and examples. .. 35

Table 3.2 Examples of semantic relationships for the word bus. 38

Table 3.3 Examples of concept associations. ... 44

Table 4.1 Comparison of the features of evaluation collections 50

Table 4.2 Proportions of annotated parameters on Full Dataset 50

Table 4.3 Proportions of annotated parameters on the Control collection 51

Table 4.4 Proportions of annotated words on Full Dataset. ... 52

Table 4.5 Proportions of annotated words on the Control collection 52

Table 4.6 Average parameter annotation scores on Full Dataset. 55

Table 4.7 Average parameter annotation scores on control collection. 55

Table 4.8 Average word annotation scores on Full Dataset. .. 56

Table 4.9 Average word annotation scores on control collection. 56

Table 4.10 Qualitative results for the top 15 most frequent parameters on Full Dataset:

frequency (number of occurrences of the parameter), corresponding representative

word (the word itself and its associated score), ontological concept (concept and score)

and overall score. .. 57

Table 4.11 Qualitative results for the top 15 most frequent parameters on Control

collection: frequency (number of occurrences of the parameter), corresponding

representative word (the word itself and its associated score), ontological concept

(concept and score) and overall score. ... 59

ABSTRACT

The definition and use of a semantic layer in Web Services (WS) descriptions is a

prerequisite to the automation of several important operations such as WS composition

and mining. For this reason, in the past years, many approaches have been proposed to

either represent such high level information, or take advantage of it. In order to be

properly tested and compared, these tools must be applied to an appropriate benchmark,

taking the form of a collection of semantic WS descriptions. However, all of the

existing publicly available collections are limited in terms of size or realism, leading to

unreliable results. Large real-world syntactic (WSDL) collections exist, so an

appropriate benchmark could be obtained through their semantic annotation. Due to the

number of operations to process, performing this task manually would be costly in terms

of time and efforts, though. A better solution would therefore be to use an automatic

tool. With this motivation, in this work we propose a new fully automatic semantic

annotation tool, called MATAWS, designed to process WS descriptions. The resulting

tool takes advantage of the latent semantics present not only in the parameter names, but

also in the data type names and structures. Concept-to-word association is performed

by using Sigma, a mapping of WordNet to the SUMO ontology. The design of

MATAWS is data-driven, based on the properties of ASSAM Full Dataset, the largest

collection of real-world syntactic WS descriptions we could find. After having

described in details our annotation method, we apply it to this collection and assess its

efficiency. We also apply and evaluate MATAWS on another WS collection prepared

by ourselves, in order to prove our tool performs well on new, independent data.

Keywords: Web Service, Semantic Web, Semantic Annotation, Ontology, WSDL,

OWL-S, SUMO, WordNet.

RÉSUMÉ

La définition et utilisation d'une couche sémantique dans les descriptions des services

Web (SW) est une condition préalable à l'automatisation de plusieurs opérations

importantes telles que la composition et l'exploitation minière de SW. Pour cette raison,

dans les dernières années, nombreuses approches ont été proposées pour soit

représenter telle information de haut niveau, ou profiter de celui-ci. Afin d'être

correctement testé et comparé, ces outils doivent être appliquées à un point de référence

approprié, prenant la forme d'une collection des descriptions de SW sémantique.

Cependant, toutes les collections existantes accessibles au public sont limitées en termes

de taille ou de réalisme, ce qui conduit à des résultats peu fiables. Grandes collections

syntaxiques (WSDL) du monde réel existent, donc un point de référence approprié peut

être obtenu par leur annotation sémantique. En raison du nombre d'opérations à traiter,

d'effectuer cette tâche manuellement serait coûteux en termes de temps et d'efforts,

cependant. Une meilleure solution serait donc d'utiliser un outil automatique. Avec

cette motivation, dans ce travail, nous proposons un nouvel outil entièrement

automatique d'annotation sémantique, appelés MATAWS, conçu pour traiter les

descriptions SW. L'outil fini profite de la sémantique latente présente non seulement

dans les noms de paramètres, mais aussi dans les noms de type de données et des

structures. Association de concept-à-mot est effectuée en utilisant Sigma, une façon de

passage de WordNet à l'ontologie SUMO. La conception de MATAWS est guidée par

les données, basée sur les propriétés de ASSAM Full Dataset, la plus grande collection

des descriptions SW syntaxiques du monde réel que nous pourrions trouver. Après

avoir décrit en détail notre méthode d'annotation, nous l'appliquons à cette collection et

d'évaluer son efficacité. De plus, nous appliquons et évaluons MATAWS sur une autre

collection de SW préparé par nous-mêmes, afin de prouver que notre outil marche bien

sur nouvelles données indépendantes.

ix

Mots clés : Service Web, Web sémantique, Annotation sémantique, Ontologies, WSDL,

OWL-S, SUMO, WordNet.

ÖZET

Web Servis (WS) birleşimi ve madenciliği gibi alanlarda bir takım önemli işlevlerin

otomatize edilebilmesi için WS tanımlarına eklenmek üzere anlamsal bir katmanın

oluşturulması gereklidir. Bu nedenle, son yıllarda böylesine bir katmanı tanımlayan ya

da bu tarz bir katmanı kullanan bir çok çalışma gerçekleştirilmiştir. Bu çalışmaların

düzgün bir şekilde test edilebilmeleri için, ilgili çalışmalar, anlamsal WS tanımlarından

oluşan, koleksiyon formundaki uygun bir kalite testine tabi tutulmalıdırlar. Ancak

erişilebilir haldeki bu türden tüm koleksiyonlar, büyüklük ve gerçeklik bağlamında

kısıtlıdırlar. Bu da güvenilebilir sonuçlar elde etmeyi engelleyici bir faktördür. Öte

yandan, büyük ve halihazırda kullanılmakta olan, ancak anlamsal katman içermeyen

koleksiyonlar (WSDL) da mevcuttur. Uygun bir kalite testi ortamı oluşturulması bu

koleksiyonların anlamlandırılması ile de mümkün olabilir. Ancak koleksiyonların

büyük olmasından ötürü yapılması gereken anlamlandırma işini elle gerçekleştirmek

hem zaman hem de çaba yönünden çok maliyetli olmaktadır. Bu çalışmada, buradan

yola çıkarak geliştirdiğimiz büyük WS koleksiyonlarının tam otomatik

anlamlandırılmasını sağlayan MATAWS isimli aracımızı tanıtıyoruz. Aracımız WS

tanımlarında potansiyel anlamlandırılabilecek olan parametre isimlerinden, veri tipi

isimlerinden ve yapılardan faydalanmaktadır. Anlamlandırma, kelimelere hiyerarşik bir

yapıdan kavram ilişkilendirme şeklinde olup, bu iş WordNet'ten SUMO ontolojisine

eşlenmiş Sigma tarafından gerçekleştirilmektedir. MATAWS'ın tasarım süreci ASSAM

Full Dataset isimli bir WS koleksiyonunun özellikleri baz alınarak ilerletilmiştir. Bu

koleksiyon, araştırmalarımıza göre halihazırda kullanılan WS tanımlarından oluşan en

büyük WS koleksiyonudur. Anlamlandırma yöntemimizi detaylı bir şekilde

tanımladıktan sonra, yöntemi bu koleksiyona uyguladık ve verimliliğini değerlendirdik.

Ayrıca MATAWS'ı halihazırda kullanılan WS tanımlarından oluşan ve kendimizin

oluşturduğu bir başka koleksiyona daha uygulayıp sonuçları değerlendirdik, böylece

aracımızın geliştirilirken baz aldığı koleksiyon haricinde, yeni ve bağımsız

koleksiyonlar karşısındaki davranışını ve verimliliğini inceledik.

xi

Anahtar Sözcükler: Web Servis, Semantik Web, Anlamlandırma, Ontoloji, WSDL,

OWL-S, SUMO, WordNet.

1

1 INTRODUCTION

The semantic Web encompasses technologies which can make possible the generation

of the kind of intelligent documents imagined ten years ago (Berners-Lee et al., 2001).

It proposes to associate semantic metadata taking the form of concepts with Web

resources. The goal is to give a formal representation of the meaning of these resources,

in order to allow their automatic processing. The process of defining such associations

is known as semantic annotation (or annotation for short), and generally relies on

libraries of concepts collectively described and structured under the form of ontologies.

The result is Web documents with machine interpretable mark-up that provide the

source material for software agents to operate. The annotation of Web resources is

obviously fundamental to the building of the semantic Web.

Besides static Web content such as textual or multimedia documents, semantic

annotation also concerns dynamic content, and more particularly Web Services (WS).

WS are non-static in nature; they allow carrying out some task with effects on the Web

or the real-world, such as the purchase of a product. The semantic Web should enable

users and agents to discover, use, compose, and monitor them automatically. As Web

resources, classic WS descriptions such as WSDL files can be semantically enhanced

using the annotation principle we previously described, i.e. by the association of various

ontological concepts.

Efforts for WS annotation include WS semantic languages as well as tools to annotate

legacy WSDL files. Several concurrent formats and technologies exist, leading to a

profusion of research works. What interests us in this work, is the fact the ideas and

tools resulting from these works must be tested. For this matter, one needs a large

collection of semantic WS descriptions, in order to achieve statistical significance.

Such collections exist, but are limited in terms of size, realism, and representativity.

2

Alternatively, the desired benchmark collection could be obtained by annotating a set of

WSDL files. The annotation of WSDL files is much different from other Web

resources, due to the specific structure of the document. One of the difficulties is the

lack of context, since the available information is made up of isolated words, and not

full sentences. A few publicly available tools exist for this purpose, as described in

(Aksoy et al., 2011a). But those tools also have their own limitations, the main one

being they are only partially automated and require human intervention, which is a

problem when annotating a large collection of WS descriptions.

In this work we present MATAWS (Multimodal Automatic Tool for the Annotation of

WS), a semantic WS annotator, whose purpose is to solve these limitations. MATAWS

was designed with the objective of batch annotating a large collection of syntactic

descriptions and generating a benchmark usable to test semantic-related approaches. It

focuses on data semantics (i.e. the annotation of input and output parameters) contained

in WSDL files, and currently outputs OWL-S files.

This work is not a single-handed project; it is based on former works conducted in our

research group. Firstly, Nadin Kökciyan (Kökciyan, 2009) developed a tool able to

extract networks from Web service descriptions in 2009. Next year, Yvan Rivierre

(Rivierre, 2010) improved this extractor with new features while Koray Mançuhan and

me, we started to develop the first version of MATAWS as our BSc thesis (Aksoy &

Mancuhan, 2010). In our tool, we benefited from the tool developed by Nadin and

Yvan in order to represent the WS collections as Java objects and to work on them. Our

goal was the same: to annotate the objects that represents WS collections by developing

methods that reduce annotation cost. In my master thesis, I extended this work by

improving and extending MATAWS in various ways, as described in this document.

The second section of this thesis is a state of the art of WS. The third section describes

the tool we have developed. The fourth section presents and compares the results

obtained after having applied our tool on two different collections. It includes

quantitative and qualitative analysis of the results. Finally, in the conclusion we

summarize our work, discussing its limitations and possible improvements that would

3

address them. Also we mention organizational challenges we encountered during the

project and how we have resolved them.

2 STATE OF THE ART

This section aims at giving the reader the prerequisites needed to understand the

description of our tool. First, we introduce the notions of WS and semantic

descriptions, with their related standards. We highlight the need of an appropriate

collection of semantic description to test modern tools. We therefore make a review of

the existing publicly available semantic WS collections. It turns out none of them

satisfies our criteria. So, we propose to constitute a semantic collection by annotating

an appropriate syntactic one. For this purpose, we review the existing publicly available

syntactic WS, and the existing annotation tools. We highlight the limitations of the

latter, which conducted us to design our own annotation tool, described in the next

section.

2.1 Web Services

A Web service (WS) is a software component able to perform a set of well-defined

tasks, and it can be remotely invoked through a stack of standard technologies (Cabral

et al., 2004).

It can be implemented in any language, deployed on any platform, because it is wrapped

in a layer derived from XML standard, which makes its invocation platform-

independent. It can be dynamically discovered and invoked by other WS. For example,

when we want to make a trip, it is enough to interact with one WS; it will fix all we

need, such as hotel reservation, purchasing airline tickets, rental car, etc. (see Figure

2.1).

5

Figure 2.1 Business travel application interacts with WS (Ryman, 2003).

This technology, initiated by Microsoft and IBM, then partially standardized under the

auspices of the W3C, is now accepted by all players in the IT industry without

exception (Budinoski et al., 2010).

2.1.1 Terms of Reference

The concept of WS is currently organized around three technologies (Christensen et al.,

2001; Clement et al., 2005; Gudgin et al., 2007):

 SOAP (Simple Object Access Protocol) is a platform independent exchange

protocol inter-applications based on XML. SOAP call is a stream in ASCII XML

tags and transported with HTTP protocol.

 WSDL (Web Service Definition Language) describes WS in the XML format

specifying the methods that can be invoked, their signature and the access point

(URL, port, etc.).

 UDDI (Universal Description, Discovery and Integration) standardizes distributed

directory solution for WS, allowing both the publication and exploration. UDDI

behaves itself as a WS whose methods are called via SOAP.

6

These standards will be detailed in the section 2.1.3.

2.1.2 Reference Architecture

The WS model is based on three main units as seen in Figure 2.2:

 Service provider: It creates the WS and possibly publishes its interface and access

information. The service provider must determine the WS will be exposed, the

tradeoffs between security and easy availability and price of exposed WS.

 Service requester: It demands the published WS by the provider. There is

information about how it will invoke the WS and the parameters for service registry.

 Services registry: It takes WS descriptions which are published by providers and

allows them to search and find these descriptions.

Figure 2.2 WS Model (Kreger, 2001).

There are six steps for invoking a WS of provider by a WS requester (see Figure 2.3):

7

1. The WS requester searches and finds WS that it wants in the service registry.

2. The requester prepares a SOAP message based on XML.

3. The requester sends the message to the SOAP request listener found in the web

server or application server.

4. The SOAP server analyzes the request and invokes the necessary object with

parameters.

5. The result of invoked method is returned to the SOAP server. The server converts

the result as a SOAP message and returns it to the requester.

6. The requester sends the result to the program by extracting the necessary

information from SOAP message.

Figure 2.3 Main steps between the requester and the provider of WS (Kreger, 2001).

8

2.1.3 Web Service Standards

In this section, we describe the three main standards of WS: SOAP, WSDL and UDDI.

Our explanations do not mean to be exhaustive: we focus only on the points relevant

with our needs.

2.1.3.1 SOAP

SOAP is a communication specification between WS by exchanging XML messages

over the Web. SOAP is simple and easy to implement in web servers or application

servers. It is independent of programming languages and operating systems used for the

implementation of the WS. SOAP designers have indeed succeeded to preserve the

most important generality in the XML representation.

SOAP is defined as a lightweight protocol for exchanging data in a peer to peer

network, that is to say decentralized. Based on XML, SOAP provides a simple

mechanism for representing different aspects of a message between applications. Since

it does not impose any specific programming model, SOAP can be used in all styles of

communication: synchronous or asynchronous, point to point or multipoint, intranet or

Internet.

The SOAP specification is divided into four parts (Chauvet, 2002):

 SOAP envelope, that defines the context of a message, its destination, its content

and options.

 SOAP encoding rules, defining the representation of application data in the body of

a SOAP message (particularly the structure).

 An RPC protocol, defining the sequence of requests and responses.

 The definition of the use of HTTP as a transport layer of SOAP messages.

9

Coding rules make extensively use XML Schema to describe the constitutive data

structure of the SOAP messages. On the Figure 2.4 and Figure 2.5 the request and

response of the SOAP message are seen.

Figure 2.4 Example of SOAP request (Ryman, 2003).

Figure 2.5 Example of SOAP response (Ryman, 2003).

2.1.3.2 WSDL

The de facto standard is WSDL (WS Description Language), an XML-based language

specified in 2001 (Christensen et al., 2001) by the World Wide Web Consortium

(W3C). It allows defining the public interface of WS, and more particularly: the

communication protocol to be used, the format of the messages to be exchanged, the

methods the client can invoke, and the location of the service. A second version was

10

approved in 2007 to become a W3C recommendation. However it is much less used, so

even if it contains significant changes, we chose to focus on version 1.1.

In this work, we are more particularly interested in the higher-level elements of WSDL,

i.e. those related to the programmatic use of the service. From this perspective, WSDL

files are very similar to RPC or RMI interfaces. They describe a list of operations,

corresponding to the functions/methods the client can remotely invoke. The inputs and

outputs ossf an operation are described under the form of two so-called messages: one

for the inputs, the other for the outputs. A message is a group of parts, which

correspond roughly to parameters, in terms of programming. Each one is characterized

by a name and a data type. Figure 2.6 gives an example of simple WSDL file. It

contains a single operation myOperation (highlighted in yellow) whose input and

output messages are myInMsg and myOutMsg, respectively. The former (in red) contains

two parts myInParam1 and myInParam2, whereas the latter (in blue) has only one,

named myOutParam.

Of course, all these elements are described in a neutral, implementation-independent

way. For this matter, the data types are defined using the XML Schema Definition

language (XSD), a 2001 W3C recommendation initially designed to let users define

their own XML grammars (Fallside & Walmsley, 2004). WSDL actually uses only the

part of XSD related to the definition of data types (Biron & Malhotra, 2004). Note

WSDL theoretically allows using other type definition languages than XSD, but as far

as we know only this one has been used in production WS, up to now.

XSD types are generally separated in two groups: simple- and complex-content types.

The former correspond to XML elements containing directly a value, and nothing else:

no attribute, no other element. From the programming point of view, they can be

implemented using the predefined simple types present in most languages: integer, float,

string, etc., or derived types such as enumerations. The latter point out at elements

containing at least one attribute and/or one element. Their implementation requires

defining custom classes, for object-oriented languages, or types such as union,

structures, arrays, etc. for non-object languages.

11

Figure 2.6 Excerpt of simple WSDL file (non-relevant parts have been removed).

XSD is powerful in the sense it allows defining many different sorts of types, especially

for complex contents. However, between the constraints imposed by WSDL and the

choices made by WS designers, only two kinds of data types turn out to be used in

practice: simple-content types, and sequence complex-content types. For this reason, in

the rest of this article we focus on these sorts of types. Sequence types lead to elements

containing other elements of specific types and in a predefined order. They can be

implemented as classes or structures, the internal elements corresponding to fields. The

<?xml version="1.0"?>

<definitions name="MyService" ... >

<types>

 <complexType name="MySubType">

 <sequence>

 <element name="myField21" type="xsd:string"/>

 <element name="myField22" type="xsd:string"/>

 </sequence>

 </complexType>

 <complexType name="MyType">

 <sequence>

 <element name="myField1" type="xsd:integer"/>

 <element name="myField2" type="MySubType"/>

 </sequence>

 </complexType>

</types>

<message name="myInMsg">

 <part name="myInParam1" element="xsd:integer"/>

 <part name="myInParam2" element="xsd:string"/>

</message>

<message name="myOutMsg">

 <part name="myOutParam" element="MyType"/>

</message>

<portType name="SomePortType">

 <operation name="myOperation">

 <input message="myInMsg"/>

 <output message="myOutMsg"/>

 </operation>

</portType>

...

12

classes/structures can even be recursive, since each contained element can itself have a

sequence type. In Figure 2.6, the input parameters myInParam1 and myInParam2 both

have a predefined simple type: integer and string, respectively. The output

parameter myOutParam has a custom type MyType, highlighted in orange. It is a

sequence of two elements: an integer, and another element of type MySubType (in

green) which contains itself two string values. In the rest of the article, when we

mention complex-content types, we implicitly refer to those based on sequences.

2.1.3.3 UDDI

One must know the providers of WS and provided WS to be able to use a WS. UDDI

allows providers to publish their WS by describing them, and it provides requesters to

scan and find published WS. UDDI Business Registries are servers that hold

information of companies and their WS. These servers store information in the database

that come from service providers, and allows the others accessing this information.

There are two business registers currently, one of them is uddi.microsoft.com and the

other is uddi.ibm.com. These servers share obtained information with other servers to

increase the access speed as seen on Figure 2.7. UDDI servers realize recordings,

modifications and scannings using WS (with SOAP messages) (OASIS, 2004).

Figure 2.7 Business Registry Servers (OASIS, 2004).

13

2.2 Semantic Layer

The amount of information available on the internet today is huge and it is growing

exponentially, the number of internet users is doubling every year. We believe that the

size of the Web covered by the search engines is estimated at least 20 billion pages. But

the specificity of such information sources makes them difficult to use. The main

reason is that the documents are fragmented, dispersed, heterogeneous and often

unstructured. However, thanks to the efforts of the semantic Web community (W3C), a

second generation is established with a vision initiated in 1998 by Sir Tim Berners-Lee

(Berners-Lee, 1998) aiming to structure available information on the Web. In this way,

it is possible to load the contents of the meanings and allow machines to carry out

automated tasks.

The semantic Web is a semantic layer added over several existing technologies as seen

on Figure 2.8. The semantic Web has all the features of the existing Web. Processed

semantic information is not expressed in natural language anymore, but formalized to be

automatically processed.

Figure 2.8 Layers of semantic Web (Hyvönen, 2002).

A central aspect of the infrastructure is its ability to identify and locate various

resources. It is based on the notion of URI (Uniform Resource Identifier) which allows

14

assigning a unique identifier to a set of resources on the Web but also in other areas

(documents, mobile phones, people, etc.). It is also at the base of the W3C languages.

Another feature of these languages is to be systematically expressible and exchangeable

in an XML syntax. This allows taking the advantage of all the technologies developed

around XML: XML Schemas, XML resource exploitation tools (Java libraries, etc.),

databases that manage XML files, although specific query languages are necessary for

languages built on XML as RDF.

2.2.1 Terms of Reference

The main technologies in the semantic WS area (Brickley & Guha, 2004; Klyne &

Carroll, 2004; McGuinness & Harmelen, 2004) are:

 RDF (Resource Description Framework): This is a conceptual model that can

describe any data in triple format.

 RDF-S (RDF Schema): This is the language that is used to create vocabularies to

describe things.

 OWL (Web Ontology Language): This is an XML dialect based on RDF. It enables

defining structured Web ontologies, in other words, it allows you to define

terminologies to describe concrete domains. Terminology is made up of concepts

and properties. A domain consists of instance concepts.

2.2.2 Semantic Web Services (SWS)

SWS is at the convergence of the semantic Web and WS. Even if the notion of WS

allows more benefiting from internet technology, it cannot be automated. This means

WS cannot be properly discovered and composed due to lack of certain knowledge.

The goal of the SWS concept is to create a semantic Web of WS whose properties,

capabilities, interfaces and effects are described unambiguously and exploitable by

machines. Therefore, semantics expressed will allow automating the following features,

which are necessary for effective business collaboration:

15

 WS description and publication process,

 WS discovery,

 WS selection,

 WS composition,

 WS administration.

2.2.3 Ontology

In computer and information sciences, an ontology is a structured set of terms and

concepts representing the meaning of an information field, whether as a metadata

namespace, or as the elements of a certain domain. The ontology is a data model

representing a set of concepts but also the relationships between these concepts. It is

used to make inference on the objects of a domain (Gruber, 1993).

We distinguish different levels of ontologies according to the modeled domain and the

tasks for which they are designed:

 The domain ontologies are specific to a domain and have a good precision.

 The general ontologies are not specific to a domain. Their precision is average.

 The superior ontologies (upper level ontologies) represent general concepts like

space, time or matter. They are universal.

There are many ontologies created according to the needs like ontologies related to

biomedical, tourism, finance, etc
1
.

2.2.4 Extended Architecture

The extended architecture is the reference architecture embellished with a layer of

semantics. Figure 2.9 shows an example of such an architecture. The stack consists of

several layers, each layer based on a particular standard. Above the transport layer,

there are three layers forming the basic infrastructure described previously. Security

1
 http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library

http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library

16

layer is responsible for the security of all layers. Transactions layer handles

transactional interoperability of WS. Administration layer is responsible for the

administration of WS. QoS (Quality of Service) layer is responsible for contracts

between a service provider and a service consumer (Kellert & Toumani, 2004).

Figure 2.9 WS Stack (Kellert & Toumani, 2004).

Several languages were defined to represent semantic descriptions, the most prominent

being OWL-S (Martin et al., 2004), WSMO (De Bruijn et al., 2005), WSDL-S

(Akkiraju et al., 2005) and SAWSDL (Farrell & Lausen, 2007). As our goal in this

study is to provide the community a collection of WS descriptions usable as a

benchmark, we decided to use OWL-S as the output language of MATAWS, since it is

the most widespread in the literature, and it is supported by the W3C. That’s why we

only present OWL-S in the following section.

2.2.5 OWL-S

The OWL-S format meets all the criteria for semantically enriching WSDL descriptions,

with the help of OWL ontologies and the semantic Web. The OWL-S approach has its

origins in the fields of artificial intelligence where it was used to describe the

capabilities of agents in complex and heterogeneous systems. OWL-S intelligently

17

combines the expressiveness of the algorithms descriptions, DL (Descriptions Logic),

with the pragmatism that we find in the current standards (SOAP, WSDL), to describe

the WS in a semantic way, but also to aggregate them by respecting formalized data

types (Cabral et al., 2004).

OWL-S consists of three high-level ontologies (see Figure 2.10): Service Profile,

Service Model and Service Grounding. The first semantically describes the

functionalities of a WS with additional options to help interpretation. The second

provides a specific and detailed description of the sequence of actions that the provider

will follow when interacting with a consumer. It aims to give some autonomy to WS

consumers who can easily deduce interaction protocol to be used and the concrete

consequences of each exchange message. The third is a detailed semantic description

about mapping of abstract information of exchanges to real standard messages that the

provider and the consumer exchange (Paolucci et al., 2003). These modules are more

detailed in the following subsections.

Figure 2.10 OWL-S Module Organization (Paolucci et al., 2003).

18

2.2.5.1 Service Profile

An OWL-S Profile aims to describe the functionalities of a WS. OWL-S allows

describing these functionalities as performing a transformation process. This

transformation takes place at two levels: at the data level, a set of inputs are transformed

into a set of outputs; at the more concrete level, a set of conditions are averred while

others are invalidated. If we take an example to understand this point, we can consider

a travel booking WS: at the data level, it waits a departure and arrival as input, at the

concrete level it reserves the flight, generates a ticket, and debits the consumer's credit

card.

Figure 2.11 OWL-S Profile Ontologies (Paolucci et al., 2003).

19

Figure 2.11 illustrates the ontology of OWL-S Profiles. This figure is logically divided

into three parts:

 The lower part is defining the Actor. It represents the type of vendor-specific

information.

 In the center, the functional attributes description is found. From the estimate

Quality Rating of the WS, to the Geographic Radius that specifies whether spatial

constraints applying to WS or not. As an example, such a constraint would prevent

a need for Chinese food from London is served in a restaurant in Shanghai.

 The upper part of the figure shows the functional description of the WS. This means

the capacity of WS in terms of inputs, outputs, preconditions and effects. An input

required by a WS to produce an output. Pre-conditions are the conditions that must

be averred in the real world for the proper execution of the WS. The

implementation of the WS results in actions in the real world; these are described as

effects of the agent.

Considering the example of the WS flight reservation, the inputs are departure and

arrival of the desired flight. The output is the confirmation that the order has been

received and successfully processed. A precondition would be a valid credit card. As

effect, the credit card is debited and the flight is assigned.

2.2.5.2 Service Model

The Service Model performs two tasks; the first is to specify the interaction protocol

allowing the consumer to know which information is expected and which information

will be sent back by the provider at a specific time of the transaction. As the second, it

allows the consumer to know what the provider does with this information in a way

provider makes public the specific treatments.

The Service Model is used to express any kind of flow control structure, including

loops, sequences, conditions, non-determinant choices and competition. The processes

are defined as transformations between an initial state and a final state. The final state

20

is defined by the process inputs and a set of pre-conditions for a process without error.

Process result is defined as a set of outputs and a set of effects in the real world. OWL-

S distinguishes between two types of inputs and outputs: the first type is internal inputs

and outputs, i.e. a process output feeds a process input of a next chain execution. The

latter type is called external inputs and outputs: they define data provided by the

consumer, which will be transferred to a provider.

During the interaction with the provider, the consumer analyzes the Service Model to

infer which process is being done by the provider. The consumer is particularly

interested with the inputs that provider needs and outputs resulting from the execution

of this treatment. Indeed, most of the time the consumer will be responsible for

providing inputs and interpret the outputs. Following the Service Model, and

interpreting the information collected by the provider, the consumer can know at what

time it should send the next information. Implicitly, the Service Model of the provider

also specifies the interaction protocol between the provider and the consumer.

2.2.5.3 Service Grounding

The Service Grounding transforms the abstract description of the information

exchanged between the provider and the consumer to the messages that can be

exchanged asynchronously, or via a remote procedure call. Specifically, Service

Grounding is defined as a 1-1 mapping between atomic processes and WSDL

specifications of messages. It takes the WSDL definition and links of abstract

messages, whereas the information that is used for composing messages is extracted

through the execution of the Service Model. The integration of WSDL in OWL-S

descriptions facilitates interaction between WS without OWL-S and WS with OWL-S

to describe their functionalities.

2.3 Benchmarking Semantic Web Services Tools

As we mentioned in the introduction, the semantic WS area is highly dynamic, and

many searchers produce tools related to semantic WS. Those should be tested on an

appropriate semantic WS collection so that they can be properly evaluated. Then, it is

21

necessary first to identify an appropriate semantic WS collection, i.e. one representative

enough. For this purpose, we define two criteria: first the description files need to

represent real-world services in order to contain realistic data, and second the collection

must be large so that it is general enough.

In this section, we first review the existing semantic collections. This leads us to the

conclusion there is no satisfying semantic WS collection. We then consider an

alternative, which consists in generating one by annotating an existing syntactic WS

collection. For this purpose, we first review the existing syntactic collections and

annotation tools. We highlight the limitations of the latter, which lead us to develop our

own tool.

2.3.1 Semantic Collections

The main publicly available collections of semantic WS are those provided by the

ASSAM WSDL Annotator project, SemWebCentral and OPOSSum. Their major

features are gathered in Table 2.1.

The ASSAM WSDL Annotator project (Automated Semantic Service Annotation with

Machine learning) (Hess, 2004) includes two collections of WS descriptions named Full

Dataset and Dataset2. Full Dataset is a collection of categorized WSDL files, which

contains 816 WSDL files describing real-world WS. Dataset2 is a collection of OWL-S

files, obtained by annotating a subset of the WSDL files using the ASSAM Annotator

(cf. section 2.3.3). 164 descriptions were fully labeled, assigning ontology references to

the WS itself, its operations and their inputs and outputs.

22

Table 2.1 Collections of semantic WS descriptions: main features.

Name Dataset2 OWLS-TC4 SAWSDL-TC SWS-TC

Source ASSAM project SemWeb Central SemWeb Central SemWeb

Central

Type Real-world

descriptions

Real-world

descriptions,

partially resampled

Real-world

descriptions,

partially resampled

N/A

Language OWL-S OWL-S SAWSDL OWL-S

Annotated

Type

Data, Functional Data Data Data

Size 164 1083 894 241

Particular

features

Processed using

Assam annotator

Single interface, one

operation per service

Single interface, one

operation per service

N/A

SemWebCentral
2
 is a community whose purpose is to gather efforts from people

working in the semantic Web area. Three semantic collections are available: OWLS-TC

(OWL-S Test Collection), SAWSDL-TC (SAWSDL Test Collection) and SWS-TC

(Semantic WS Test Collection). OWLS-TC4 is the fourth version of this test collection.

It provides 1083 semantic descriptions written in OWL-S from seven different domains.

Part of the descriptions were retrieved from public IBM UDDI registries, and semi-

automatically transformed from WSDL to OWL-S. SAWSDL-TC originates in the

OWLS-TC collection. It was subsequently resampled to increase its size, and converted

to SAWSDL. The collection provides 894 semantic WS descriptions. The descriptions

are distributed over the same seven thematic domains than OWLS-TC. SWS-TC is a

collection of 241 OWL-S descriptions. There is not much information about this

collection.

OPOSSum (Online POrtal for Semantic Services) (Küster et al., 2008) is a joint

community initiative for developing a large collection of real-world WS with semantic

descriptions. Its aim is to create a suitable test bed for semantically enabled WS

technologies. OPOSSum gathered the three semantic collections of SemWebCentral,

plus the Jena Geography Dataset collection, explicitly collected within OPOSSum.

2
 http://wwwprojects.semwebcentral.org/

http://wwwprojects.semwebcentral.org/

23

The collection contains 201 real-world WS descriptions retrieved from public. All the

described WS belong to the domains of geography and geocoding. Unfortunately, for

now, no semantic descriptions are available for the services of the Jena Geography

Dataset, which is why this collection is absent from Table 2.1.

These collections have been widely used in semantic WS-related works (Ma et al.,

2008; Skoutas et al., 2008). As shown in Table 2.1, they all focus on the annotation of

the data elements, which corresponds to our objective. However, one can notice some

limitations. SWS-TC description is insufficient, it is not even clear if the WS

descriptions are real-world. Dataset2 contains only real-world WS descriptions but it is

very small, which can raise questions about its representativity. On the contrary,

OWLS-TC4 and SAWSDL-TC contain a substantial number of descriptions.

Nevertheless, these have been partially resampled in an undocumented way, which

raises important questions concerning their realism.

2.3.2 Syntactic Collections

From the previous section, we can conclude there is no appropriate public collection of

semantic WS descriptions since they don’t respect one or both representativeness

criteria. One way of obtaining such a dataset consists in annotating a collection of

syntactic descriptions. But for this purpose, it is necessary first to identify an

appropriate syntactic collection. In this section, we review and compare those publicly

available.

There are not a lot of WSDL collections publicly available, so it is possible to review

them all here. The SemWebCentral website centralizes various resources related to the

semantic Web. It offers several collections of semantic WS descriptions using various

semantic formats. Amongst them, the OWLS-TC4 (OWL-S Service Retrieval Test

Collection v.4) collection provides both WSDL and OWL-S descriptions for

services. However, only a part of the descriptions concerns real-world WS, and those

are not identified in the collection. Moreover, the way the rest of the WSDL files were

obtained is not documented.

24

The OPPOSum (Online Portal for Semantic Services) website gathers various

collections related to both semantic and syntactic WS descriptions (Küster et al., 2008)

(including some of SemWebCentral). For our purposes, the most noticeable one is the

Jena Geography Dataset, which contains real-world descriptions from the domain

of geography and geocoding. The size of this collection is therefore far away from

representativity.

Several IEEE conferences included some challenges based on the processing of

syntactic and/or semantic WS descriptions. This is the case of the 2005 IEEE

International Conference on e-Business Engineering (ICEBE)
3
, and also of the joint

IEEE Conference on Commerce and Enterprise Computing (CEC) and IEEE EE

Conference on Enterprise Computing, E-Commerce and E-Services (EEE) between

2005 and 2010
4
. During these competitions, the evaluation was performed using some

benchmarks specially defined for the occasion, available on the websites of these

conferences. These collections are very large. However, they were all created

artificially, which makes them inappropriate to the representativity matters.

Table 2.2 Collections of WS descriptions: main features.

Name OWLS-TC4 Jena

Geography

Dataset

Discovery &

Composition

Challenge

Testsets Full Dataset

Source SemWeb

Central

OPPOSum ICEBE CEC & EEE ASSAM

Project

Type Real-world

descriptions,

partially

resampled

Real-world

descriptions

Fully-sampled Fully-sampled Real-world

descriptions

Size 1083 201 23409 &

26904

From 351 to

5170

816

3
 http://www.comp.hkbu.edu.hk/~ctr/wschallenge/

4
 http://cec2008.cs.georgetown.edu/wsc08/

http://www.comp.hkbu.edu.hk/~ctr/wschallenge/
http://cec2008.cs.georgetown.edu/wsc08/

25

The ASSAM project (Automated Semantic Service Annotation with Machine learning)

(Hess et al., 2004) includes a collection of WSDL files named Full Dataset. It gathers

 real-world WS descriptions, containing a operations in total. As seen on the

Table 2.2, it is the largest collection made up of real-world descriptions available up to

now, which supports well the representativity concerns.

2.3.3 Annotation Tools

Since we could identify an appropriate syntactic collection, it is now necessary to

annotate it, in order to get the benchmark, i.e. the semantic collection. In general,

annotating consists in tagging the considered resource with labels whose semantic is

precisely known. Although these tags can take various forms such as terms from a

controlled vocabulary, ontological concepts are the preferred approach for WS. The

relational information encoded in the ontology allows building a hierarchical structure

of concepts, which in turns can be used to perform automatic inference.

The annotation process, which consists in tagging the considered resource with the

appropriate concepts, is completely dependent on both the nature of the resource and the

automation goals. In other words, one will not annotate a text the same way one

annotates a picture. And for a given kind of resource, the relevance of its various

components might vary depending on the process one wants to automate. As shown in

section 2.1.3.2, WS descriptions are much different from other Web resources in terms

of content. Moreover, their use also significantly differs: their semantic description

aims at automating WS discovery, invocation, composition and monitoring (Martin et

al., 2004). Amongst the many elements constituting a WS description, these specific

properties led to the identification of four thematic groups (Sheth, 2003): those

concerning the inputs and outputs of the WS (data semantics), the process performed by

the WS (function semantics), the constraints applied to the WS, such as the quality of

service (non-function semantics) and the execution flow inside the WS (execution

semantics).

Although semantic descriptions allow annotating all parts of the description, the focus

in the literature is on the data semantics, and more specifically the exchanged

26

parameters. This is certainly due to the fact this information is particularly important to

automate WS discovery and composition, two popular research fields. As mentioned

before, our goal in this study is to provide the community a collection of WS

descriptions usable as a benchmark, so we decided to focus on the data semantics, too.

There are three ways of performing the annotation process (Benyahia et al., 2009):

 manual: the document is analyzed by a specialist in the field

 automatic: the task is realized completely by a machine;

 semi-automatic: a part is done automatically and the specialist supervises the

process.

The WS collection we chose is large enough, so it is critical for us to select a fully

automatic tool. The rest of this section is a review and a comparison of the available

annotation tools.

Several softwares allow to convert WSDL files to OWL-S files, but without performing

any semantic annotation: they only apply a syntactic transformation and present the

information contained in the original WSDL file under a form compatible with the

OWL-S recommendation. WSDL2OWLS is an open source Java application created at

the Carnegie Mellon University (Srinivasan, 2004). OWL-S Editor is a plug-in for

Protégé (itself an ontology development environment) created at SRI (Elenius &

Denker, 2006). Another software performing the same task is also called OWL-S

Editor, but was developed at Malta University (Scicluna et al., 2004).

Radiant is an open source tool created at the Georgia University (Gomadam et al.,

2005). It takes the form of an Eclipse plug-in and can output both SAWSDL and

WSDL-S files. It provides a GUI which presents the elements constituting the WS

description and allows to select the concepts one wants to associate to parameters or

operations, by browsing in the selected ontologies. This interface makes the annotation

process easier, but the annotation is nevertheless fully manual.

27

WSMO Studio is another Eclipse plug-in initially designed to edit semantic WS based

on the WSMO model. An extension allows annotating WS parameters and operations,

and outputting the result under the form of SAWSDL files (Dimitrov et al., 2007).

However, the tool does not provide any assistance to the user and the process is fully

manual. In fully manual annotation tool category, there is also a Web based application

described in (Budinoski et al., 2010).

ASSAM is an open source Java program developed at the University College Dublin

(Hess, 2004), able to output OWL-S files. It provides assistance during the annotation

process. First, the user starts manually annotating parameters and/or operations using

an existing ontology. Meanwhile, ASSAM identifies the most appropriate concepts

using machine learning methods. After enough information has been provided, the

software is able to propose a few selected and supposedly relevant concepts when the

user annotates a new WS.

MWSAF is another open source Java tool created at the Georgia University (Patil et al.,

2004). It outputs WSDL-S files, and like ASSAM it has a machine learning capability

allowing it to assist the user during the annotation process. It is able to annotate not

only parameters and operations, but also non-functional elements.

SAWS (Semantic Annotation of Web Services) (Salomie et al., 2008) relies on a

syntactic comparison of parameter and ontological concept names, in order to rank the

concepts depending on their relevance. The tool presented in (Bouchiha, 2012) adopts a

similar approach, except is uses a semantic distance based on WordNet (Miller et al.,

2005). Thanks to this assistance, these tools are qualified of semi-automatic. However,

the core of the process remains manual, since the user still has to select the concept.

Due to our constraint regarding the size of the collection, such an assisted approach

does not seem appropriate.

28

Table 2.3 WS Semantic annotation tools and their properties.

Name Output Format Automation Last Update

Radiant SAWSDL, WSDL-S Manual 05/2007

WSMO Studio SAWSDL Manual 09/2007

Web-based app. SAWSDL Manual 06/2010

ASSAM OWL-S Assisted 05/2005

MWSAF WSDL-S Assisted 07/2004

SAWS SAWSDL Assisted 06/2010

WSDL2OWLS OWL, RDF Assisted 06/2005

OWL-S Editor OWL-S Assisted N/A

OWL-S Editor OWL-S Assisted 08/2004

Ontology alignment N/A Fully automated 08/2011

More recently, fully automated approaches have been developed. The work in (Canturk

& Senkul, 2011) is based on ontology alignment. First, WS are thematically grouped

together, and associated to a domain ontology, i.e. a predefined ontology describing the

main concepts of the identified theme (e.g. heath, education, etc.). Second, for each

description file, the service ontology is built by processing the parameter names. Then,

concepts are associated to parameters by aligning (i.e. matching) the domain and service

ontologies. Although promising, the implementation of this tool is not publicly

available, and the authors do not specify which domain ontologies could be used.

From this review, we can conclude the existing annotation tools present various

limitations relatively to our goals. First, from a practical perspective, some of these

tools are old and not supported anymore, which can cause installation and/or use

problems. For instance, Radiant and ASSAM are not compatible anymore with the

current versions of some of the Eclipse plug-ins, libraries or API they rely on;

meanwhile MWSAF installs and runs fine, but generates files without any of the

annotations defined by the user. More importantly, these tools require important human

intervention: Radiant and WSMO Studio and the other Web based application are fully

manual, whereas ASSAM and MWSAF only assist the user, after a compulsory learning

phase. Even if SAWS does not need a learning phase, its capability is not far from

ASSAM and MWSAF, in the sense it only assists the user, as WSDL2OWLS, and both

OWL-S Editors. The only fully automated tool, which is based on ontology alignment,

is not publicly available. Therefore, it is not possible to use it to annotate the syntactic

29

collection we selected. This justifies the development of our own tool, which we

present in the next section.

3 PROPOSED METHOD

In previous sections, we showed that there is no appropriate semantic WS collection to

test the tools created in the semantic WS area. We explained that it is possible to

generate a semantic WS collection from a WS collection by annotating it. As a

consequence, we selected the Full Dataset WS collection (Hess et al., 2004) as the most

representative option. Due to the absence of an appropriate annotation tool, we decided

to develop our own software.

Not only we used Full Dataset as raw data to perform the annotation process, but also

we benefited from it by identifying patterns consistent with our automatic semantic

annotation objective. An iterative process consisting in introducing/removing various

processing steps in/from our tool allowed us to determine the best workflow. In this

section, we describe our tool in details. We do not give the various modifications tested

during its development, but rather focus only on the final version instead. We first

introduce its general structure, then its components, detailing their design and

functioning.

3.1 General Architecture

MATAWS takes a collection of WSDL files as its input, and outputs the corresponding

annotated descriptions under the form of OWL-S files. It was developed in Java, and

uses various open source libraries, which are mentioned later. As shown in Figure 3.1,

it is made up of three main parts. The first and last parts, Input Component and Output

Component, are dedicated to the processing of the original WSDL files and the

generation of the OWL-S files, respectively. The middle part is constituted of several

Core Components (detailed in Figure 3.2) which implement the semantic annotation

itself.

31

Figure 3.1 General Architecture of MATAWS. The Core Components are detailed in

Figure 3.2.

The Input Component is responsible for extracting the relevant information from the

considered collection of WSDL files. Our annotation process focuses on parameters,

which is why we need to retrieve their names, for all the operations defined in the

collection. Moreover, in certain cases, we also need to know the name of their data

types, and possibly their structure if the type has a complex content. This work is

delegated to a parser previously developed by our research team (Cherifi et al., 2011),

which produces a set of Java objects representing the extracted information. These

objects are fetched to the Core Components, which will associate concepts to the

parameters, therefore completing the objects. The Output Component is in charge for

taking advantage of these completed objects in order to generate a collection of OWL-S

files. It relies on an external library called Java OWL-S API (Sirin & Parsia, 2004),

which provides a programmatic read/write access to OWL-S files. Our tool can easily

be extended to output other semantic WS description formats such as SAWSDL (Farrell

& Lausen, 2007), WSDL-S (Akkiraju et al., 2005), provided comparable APIs exist for

them.

The organization of the Core Components is represented in Figure 3.2. There are four

of them, each one in charge of a specific part of the annotation process. Each parameter

is processed separately, through a recursive process. First, the Preprocessor receives

the Java object representing the parameter, from the Input Component. Its role is to

Input

Component

Output

Component

WSDL Collection OWL-S Collection

Parameters Concepts

Syntactic

Descriptions

Semantic

Descriptions

Core

Components

32

split some name into several words, which are then normalized and filtered. What we

call a name here is a text string whose meaning is not always directly accessible, e.g. a

concatenation of altered words. The Preprocessor is initially applied to the name of the

received parameter. It produces a list of words, which is fetched to the next component:

the Selector. This component is designed to output a single word able to represent the

whole list. We call the resulting word the representative word for the considered name.

Note it can be one of the words from the list sent by the Preprocessor, but it can also be

a different, supposedly more meaningful one.

Figure 3.2 Core Components, corresponding to the central part of Figure 3.1.

The next step, performed by the Associator, consists in selecting an ontological concept

able to formally represent the meaning of the representative word. If the Associator is

successful and returns a concept for the representative word, this concept is linked to the

considered parameter in the corresponding Java object. It can then be used later by the

Output Component when generating the OWL-S file.

But, for various reasons explained later, it is also possible that the Associator cannot

return a concept. In this case, the Type Explorer steps in and retrieves some properties

related to the parameter data type. First, the analysis conducted on the parameter name

can also be applied to the type name. Indeed, in WS it is common to define custom

types, and their name can be sufficiently informative. Second, if the type name is not

sufficient to select a concept, then one can consider its structure. For a complex-content

type containing fields (i.e. the equivalent of a struct type in C programming), the same

process can be applied again to each field. Those are sent to the Preprocessor, which

Core Components

Preprocessor Associator

Type Explorer

Selector Representative word

Type name / Fields

Word(s) Concept Parameter

Data type

33

can handle them like parameters since they have a name and a type. This results in a

recursive process, whose end depends on the selection of a concept by the Associator

(success) or the exhaustion of the data type (failure).

The Input and Output Components are not concerned with the business logic of our tool,

so they do not require any further description. As a consequence, the following

subsections are dedicated to the Core Components only.

3.2 Preprocessor

The Selector and Associator can only process well-formed, clean words. However, the

names defined in WSDL files do not usually comply with this requirement, for three

main reasons. Firstly, it is difficult to describe the meaning of a parameter, operation or

type using a single word. As a result, names are most of the time made up of several

concatenated words, separated by alternating lower and upper cases, or by using special

characters such as underscores, hyphens, etc. Secondly, sometimes the resulting

composite names are too long to be practical, so WS designers use abbreviations in

order to reduce their length. Finally, various forms of noise are also present, taking the

form of meaningless digits, special characters and spelling errors.

Due to the number of possibilities, it is not possible to determine all forms of names one

can find in a WS description. Instead of such an exhaustive approach, we adopted a

data-driven method. We manually analyzed the collection of WSDL files selected in

section 2.3.2, in order to identify properties and patterns regarding the parameter, type

and field names. It became clear most of these names are built using classic

programming conventions, such as those applied for the C or Java language. It is

therefore possible to define and apply a limited appropriate set of transformations to

extract usable words from a name. Our name preprocessing consists of three steps:

division splits the name in relevant substrings, normalization turns them into clean

words, and filtering remove some irrelevant words. As an example, Figure 3.3 shows

the preprocessing of the real-world parameter PlayersInfoAsString3, which will be

commented in the rest of this section.

34

Figure 3.3 Algorithm of the Preprocessor, and application to an example: the parameter

name PlayersInfoAsString3. The final result is a list of two words: player and

information.

The division step is mainly responsible for breaking a name into several parts. For this

matter, we used several templates presented in Table 3.1. Those were defined after the

manual analysis mentioned earlier. They rely mainly on the presence of specific

characters or typographic features in the considered names. Additionally, some

cleaning is also performed during this step by removing non-letter characters and

diacritical marks (accents, cedilla, umlaut, etc.). In the example from Figure 3.3, it

takes advantage of the alternation of upper and lower cases to split the name

PlayersInfoAsString3 in parts: Players, Info, As and String. The numeric end

of the name is removed. However, MATAWS is allowing to split words even in the

absence of any typographical information. For instance, we can now break the name

username down to the two words user and name. This feature relies on a Java library

called jWordSplitter (Naber, 2007), which takes advantage of a dictionary to identify

words in strings.

Preprocessor

Players, Info, As, String

player, information, as, string Output words:

player, information

Division

Normalization

Filtering

Input name:

PlayersInfoAsString3

35

Table 3.1 Split templates and examples.

Template Name Result

Upper and lower case alternation PlayersInfo Players, Info

Case alternation with two first case upper AParameter A, Parameter

Underscore separation article_id article, id

Hyphen separation date-format date, format

The normalization step corresponds to three tasks, which are all required so that the

Associator can efficiently work. The first consists in setting all letters to lowercase. As

an example, consider Figure 3.3: all strings lose their initial capital during the

normalization. The second task is to replace abbreviations, such as usr, with their full

length equivalents, such as user. Here, a difficulty arises, because some strings can

correspond to both a word and an abbreviation at the same time, and/or abbreviate

different words. For example, no might be used to indicate the negation of the word

following it in a concatenated name, such as in no_limit (i.e. absence of any limit).

But it might also be the abbreviation of the word number as in OrderNo (i.e. number of

the order). The choice of the appropriate meaning is extremely dependent on the

considered WS, and could require a human intervention. For this reason, we give the

user the possibility to define his own list of abbreviations and corresponding words, as

an external text file. We provide a general list of common abbreviations, which can be

adapted to various domains of interest. In Figure 3.3, the abbreviation info is replaced

by the full word information. The third and last task consists in replacing a word by its

canonical form (i.e. lemma), an operation called stemming. For this matter, we take

advantage of the JAWS library (Java API for WordNet Searching) (Spell, 2008), which

gives a programmatic access to the well-known WordNet lexical database for the

English language (Miller et al., 2005). WordNet stores the inflectional forms of every

word, so JAWS makes it possible to retrieve the canonical form associated to a given

inflection. For instance, plural nouns or conjugated verbs are replaced by their singular

and infinitive versions, respectively. In Figure 3.3, the string players (plural) is

replaced by the word player (singular).

36

The role of the filtering step is to eliminate stop-words, i.e. words whose meaning is not

relevant to our context. For instance, the word parameter is largely found in parameter

names, but it does not bring any significant information, because we already know if the

considered name refers to a parameter. For this reason, it can be regarded as noise and

ignored. In Figure 3.3, the words as and string are considered as stop-words. The result

of the preprocessing of parameter PlayersInfoAsString3 is therefore a list of two

words: player and information. Like for abbreviations, stop-words are extremely

context-dependent. For this reason, in MATAWS their specification has been

externalized, too. It takes the form of an external text file, initially containing generic

stop-words common to most WS. Of course, the user can modify it, in order to adapt it

to his own situation.

3.3 Selector

As we explained in the previous section, it is possible to have several words for a

parameter name when we realize preprocessing on it. This means that there are several

candidate words to annotate for the parameter. However, only one concept can be

associated to a parameter in a description file. In order to tackle this problem, we

decided to make an inference at this stage, by considering directly the words coming

from the Preprocessor. The Selector is in charge of this task, which results in the

identification of a single word, called representative word. The Associator is then

applied to retrieve the corresponding concept, which will be used when generating the

semantic description file.

Like for the Preprocessor, we conducted a manual analysis on Full Dataset, the

collection of real-world WS descriptions selected in section 2.3.2. This allowed us to

identify various cases, which we believe are general enough to be relevant for most WS

descriptions. In the rest of this subsection, we first present our analysis and its

conclusions, and then describe the algorithm we derived from them.

37

3.3.1 Data-Driven Analysis

The first goal of our manual analysis was to identify semantic relationships between the

various words obtained for a parameter. We preprocessed Full Dataset and found

occurrences of synonymy, hypernymy/hyponymy and holonymy/meronymy. We did

not look at all for other relationships such as antonymy, because in our opinion, they

would not be useful in our context. Two words are synonyms if they share a common

meaning; this relationship is the only symmetric amongst those mentioned. One word is

a hypernym of another if its meaning is more general. Hyponymy is the inverse

relationship: one word is a hyponym of another one if its meaning is more specific.

Hyper and hyponymy rely on a general-to-specific definition of inclusion, whereas

holonymy and meronymy are whole-to-part based. One word is a holonym of another

word if the thing it represents contains the thing represented by the second word. The

inverse relationship is meronymy: one word is a meronym for another one if the thing it

represents is contained in the thing represented by the second word. Table 3.2 shows

some general examples of such relationships for the word bus.

We noticed only a very few cases of synonymial relationships when analyzing Full

Dataset, and those appeared to be accidental. Indeed, it seems very unlikely to find

several times the same meaning in the description of a single parameter, because it

would reflect a redundancy either in the parameter name or data structure. On the

contrary, it is possible for the considered words to have several meaning, among which

two happen to be similar, leading to a false positive when looking for synonyms. For

instance, consider a name such as coachBus (meaning: the bus of the -sport- coach).

An automatic search would find coach and bus to be synonyms, whereas in this

situation they are not. In order to avoid incorrectly handling this case, which appears to

be the most likely in this context, we decided the Selector would not look for

synonymial relationships.

38

Table 3.2 Examples of semantic relationships for the word bus.

Relationship Meaning Examples

Synonymy Both words have the same meaning autobus, coach, omnibus

Hypernymy First word is more general than the second one vehicle, transport

Hyponymy First word is more specific than the second one minibus, schoolbus

Holonymy First thing contains the second one fleet

Meronymy First thing contained in the second one roof, window, wheel

The hyper/hyponymy relationship seems much more relevant. When such a direct

relationship is detected between two words, we decided to retain the most specific one,

because it has a more relevant meaning regarding the context. For example, the name

InterestPercentage contains interest and percentage. As shown in Figure 3.4 the

former can be considered as the hyponym of the latter, so we can keep it as it is more

specialized.

Figure 3.4 Example of semantic relationships between words. The source of an edge is

a hypernym, the target is the hyponym.

However, the relationship is not necessarily direct. Let us consider the parameter name

InterestRate, for instance. As shown in Figure 3.4, on the one hand interest is a

hyponym of percentage, which in turn is a hyponym of proportion. On the other hand,

proportion is also a hypernym of rate. Even if interest and rate are not directly linked

by one of the relationships from Table 3.2, they nevertheless share some sense since

they have a common hypernym. In this case, one has the choice between three different

words: the two original ones, and the common hypernym. It seems more appropriate to

interest

percentage

proportion

rate

39

retain the latter, since his meaning is supposed to summarize both original words. It is

important noticing there is a loss of meaning due to generalization, when replacing a

word by a hypernym. In order to limit it, we decided after some experimentation to

limit our search for a common hypernym to a distance of only two levels of the

semantic tree.

Although looking for common hyponyms is also possible, this approach does not seem

to be relevant. First, it is probable that, if two words have one common hyponym, then

there are some others, which does not help us since we want to reduce the number of

words associated to the parameter. Second, when two words have a common hyponym,

it is likely there also exists a direct relationship between them, a case we already tested

for. For instance, two synonyms obviously have common hyponyms.

We found two kinds of holo/meronymial relationships in Full Dataset: the direct ones

concern lists of words derived from the same name, whereas indirect ones come from

several field names, as found in complex-content types. In the first case, let us consider

for example a name such as CarWheel: car is a direct holonym for wheel. Most of the

time, we found other similarly formed parameter names in the same operation, such as

CarSeat and CarEngine. We chose to keep the meronym, which is more specialized

and therefore conveys the most precise meaning; moreover it is the most discriminant

part of the name.

In the second case, we have a list of names coming from various fields related to the

same parameter. This situation is explained in details in section 3.5, but to summarize:

when no concept can be associated to a parameter name or type name, and if the type

has a complex content, then its fields are taken into account. Each one is considered as

a subparameter and is likely to represent an aspect of the main parameter. Provided a

representative word can be selected for each field, they are often indirectly linked via a

common holonym. Indeed, this kind of type is relevant to represent the various parts of

some object of interest. For example, suppose the considered type contains some fields

whose representative words are handlebar, mudguard and pedal. One of these words

holonyms is bicycle, which is likely to be the representative word of the parameter.

40

But for most of the names, there is no obvious semantic relationship between the words

extracted during the preprocessing. It is therefore necessary to propose another way of

identifying a representative word. In the simplest case, the combination of the extracted

words actually forms a compound word, or a well-known expression, for which we can

find a single word synonym. For example, consider the parameter name LastName,

which leads to the two words last and name: then surname constitutes a one word

synonym for this compound. The expression postalcode (two words postal and code)

can be summarized by the single word postcode.

In the case where the extracted words cannot be summarized, our analysis showed one

of the extracted words is generally a noun whose meaning is central, and which is

complemented by the other extracted words. It seems difficult to automatically retrieve

the overall meaning of the expression. But it is worth noticing the central noun alone

conveys the most important part of this meaning. Therefore, it constitutes a good

representative word, even if part of the meaning is lost in the operation. In the English

language, this central word is generally located at the end of the expression, which

makes it easy to identify automatically. For instance, in the parameter names

BillingCountry, AuthorizationNumber, ApplicationName, AdvertTypeID and

AdminEmail, the central (and therefore representative) words are country, number,

name, id and email, respectively. Note this case is very similar to the direct

holo/meronymial relationships described earlier (cf. example CarWheel), except here

we do not need to identify a direct semantic relationship. If there is no noun at all

amongst the extracted words, then there is usually at least one verb. We consider it as

the central word, since the rest are adjectives or adverbs, by definition. We

consequently select it as the representative word. If several verbs are present, it is

difficult to identify the most important, relatively to the considered context. The most

objective approach is then to the keep the verb the most frequently used in the English

language.

41

3.3.2 Procedure Design

Based on our previous observations, we derived an algorithm aiming at obtaining the

representative word for some list of words extracted during the preprocessing. It takes

the form of a series of independent steps, represented in Figure 3.5. For each one of

them, the goal is to reduce the number of words in the list, while minimizing the overall

information loss. This can be realized either by suppressing some words considered

irrelevant or neglectable, or by replacing several words by a new one, which supposedly

summarizes them. In the latter case, it is necessary to start the whole process all over

again, since the new word might trigger different conditions. This explains why the

diagram presented in Figure 3.5 contains loops. As soon as only one word remains in

the list, it is considered as the representative word and the process is over.

Figure 3.5 Algorithm of the Selector, with examples.

yes

1.Single word?

2.Fusion?

3.Hypernymy?

4.Common

Hypernym?

5.Holonymy?

6.Common

Holonym?

7.Noun?

8.Verb?

no

no

no

no

no

no

no

Keep only the most frequent word
no

Perform the replacement

Remove the hypernym yes

Remove the hyponyms

Insert the hypernym

yes

Remove the meronym yes

Remove the meronyms

Insert the holonym

yes

Keep only the last noun yes

Keep only the most frequent verb yes

yes

Return

representative

word

42

Our process relies largely on WordNet (Miller et al., 2005), accessed through the JAWS

API (Spell, 2008), already mentioned for the stemming operation in the preprocessor.

First, WordNet contains the necessary semantic relationships described in Table 3.2.

But we also use it to determine the grammatical nature of a word (verb, noun, etc.).

Indeed, WordNet is able to provide all the grammatical roles associated to the various

meanings of a given word. For instance, the word clean has meaning for which it is

considered as a noun, meanings for which it is a verb, for which it as an

adjective, and for which it is an adverb. For our purpose, we use an approximation by

retaining the most frequent role of the word, based on the assumption it is the most

likely to occur in our situation, too. Finally, the last advantage of WordNet is its

compatibility with Sigma (Pease, 2008), the tool at the core of the Associator (described

in section 3.4). As mentioned before, Sigma maps WordNet to SUMO (Niles & Pease,

2001), which means all the words obtained through JAWS can be associated to an

ontological concept.

The different steps of the algorithm are ordered depending on how much of the original

information they allow retaining: we check first the most favorable situations, and finish

with the cases corresponding to the most approximate operations. Suppose we receive

the following list of words as an input of the Selector: customer, mailing, address,

kitchen, lavatory, washroom, postal, code (this example is purely artificial, it was

defined for illustration purposes only). The 1
st
 step is the stop condition, met when

there is less than one word in the list. In the 2
nd

 step, we use WordNet to check if

certain words can be identified as a single expression. If it is the case, the concerned

words are replaced by the expression in the list, and the process starts again. In our

example, postal and code can be replaced by postcode, so the updated list is customer,

mailing, address, kitchen, lavatory, washroom, postcode.

The 3
rd

 step is concerned with direct hyper/hyponymial relationships. In our example,

mailing and address correspond to this kind of relationship because mailing is a

hypernym of address. As explained before, only the most specific word (the hyponym)

is kept, so here we remove mailing and get the list customer, address, kitchen, lavatory,

washroom, postcode. In the 4
th

 step, we look for indirect hypernymial relationships.

43

The word bathroom is a common hypernym for lavatory and washroom, so they are

both replaced by bathroom, which summarizes them. The list thus becomes: customer,

address, kitchen, bathroom, postcode.

The 5
th

 step is dedicated to the detection of direct holo/meronymial relationships. In our

list, address and postcode have this relationship, since postcode is a part of address, i.e.

postcode is a meronym of address. In this case, we keep the meronym, i.e. postcode.

The remaining words are therefore customer, kitchen, bathroom, postcode. The 6
th

 step

corresponds to the processing of words coming from different fields, i.e. we look for

common holonyms. The words kitchen and bathroom correspond to parts of home,

which is therefore a common holonym. In the list, we replace both words by home,

obtaining: customer, home, postcode.

If the remaining words are not connected by any direct or indirect semantic

relationships, we reach the last steps, which rely on grammatical information. The 7
th

one tries to detect nouns. In our case, we have three of them: customer, home and

postcode: as explained earlier, we make the assumption the last ones are complements

of the one placed just before, as in “the postcode of the customer’s home”. We

therefore keep postcode. We only have a single word remaining in the list, so the

process is complete and postcode is our representative word. We therefore do not reach

the 8
th

step, which focuses on verbs.

If after all the previous steps, there are still several words in the list, then we choose the

most frequent one (in the English language) amongst them.

3.4 Associator

Thanks to the process performed by the Selector, the Associator receives only a single

word for each parameter. Its role is then to identify the most appropriate ontological

concept to represent in a formal way the meaning of this word. For this purpose, we

employ Sigma, which is a Java API implementing various ways of creating, testing,

modifying and inferring on ontologies (Pease, 2008). It is bundled with SUMO

44

(Suggested Upper Merged Ontology) (Niles & Pease, 2001), the largest formal public

ontology available up to now. It was first built using the SUO-KIF language (IEEE,

2003), but it is now also available in OWL (McGuinness & Harmelen, 2004), a

language compatible with OWL-S (Martin et al., 2004), the current output format of

MATAWS.

Table 3.3 Examples of concept associations.

Word SUMO Concept associated by Sigma

buffalo HoofedMammal

school EducationalProcess

talk Communication

Sigma is mainly designed for working on ontologies but it also implements a mapping

between WordNet and SUMO, which is particularly interesting for us. Indeed, the

words coming from the Selector have been outputted by JAWS, and are therefore

contained in WordNet: this means Sigma should be able to find an ontological concept

for each the word the Associator receives. Table 3.3 gives a few examples of the

concept associations returned by Sigma. It is important to note the mapping does not

necessarily associate a concept of the same semantic level: it is often more general than

the original word, like for example buffalo and HoofedMammal in Table 3.3. Compared

to an automatic approach such as ontology alignment (Canturk & Senkul, 2011) (cf.

section 2.3.3), such a mapping has the advantage of having been defined and verified

manually. It encodes the knowledge of experts, and is therefore more reliable than an

algorithmic approach when it comes to identifying the ontological concept

corresponding to a word.

Various methods give a programmatic access to the mapping, taking English words as

input and returning SUMO concepts as output. In particular, for a given word, Sigma is

able to return a list of concepts whose meaning can be expressed through the considered

word. The reason of this multiplicity comes from the fact a word can have several

45

distinct meanings. However, the way this list is ordered is arbitrary: it depends on the

indexation order of the concepts in Sigma’s database, and not on any relevance

criterion. In order to tackle with this point, we take advantage of the word usage

frequency information available in WordNet. It allows us to identify the most frequent

meaning of the word, and then select the concept corresponding to this specific

meaning, amongst those returned by Sigma. Therefore the concept returned by the

Associator is more likely to correspond to the actual meaning of the word.

3.5 Type Explorer

Most of the time, the process implemented by the components described in the previous

sections is sufficient to associate a concept to a parameter. However, there are some

specific situations for which they do not succeed. First the Preprocessor might fail to

break the name down to relevant words. This can be due, for instance, to an atypical

way of forming the name, or even to errors in their definition, e.g. mypaRametr. This is

likely to prevent the Associator from identifying a concept. Second, if the parameter

name is a stop word, or contains only noise and stop words, e.g. AParameter_11, then

the Preprocessor will completely filter it. The Selector will therefore receive an empty

list, and will not be able to identify a representative word to fetch the Associator. Third,

for some reason which was not identified yet, the Associator very rarely fails to return a

concept for certain words, even if they are correct English words.

Under one or several of these circumstances, the Associator is not able to return a

concept for the considered parameter. Yet, the identification of such a concept is of

course necessary to annotate the WS description. In order to overcome this problem, we

take advantage of the latent semantics possibly conveyed by the data type of the

parameter. It takes two different forms: first the name of the type, and second its

complex content. This means our method cannot be applied to primitive types

(integer, string, etc.). In this case, MATAWS is definitely unable to identify a

relevant concept for the considered parameter. This is signaled by associating a special

symbol NoMatch representing the absence of concept in the generated OWL-S file. If

the type is custom, it is likely to bear an explicit name, i.e related to the information

46

contained represented by the parameter. This name can be treated using the exact same

process already applied to the parameter name.

But since the process is the same, it can fail for the same reasons described earlier. In

this case, the content of the type can be analyzed, provided the type has a sequence

complex content. As mentioned in section 2.1.3.2, such a type allows one element to

contain a series of other elements. The parameter type is therefore very much like a

structured type in C-like programming languages, i.e. it is made up of several fields.

Note that for now we focus on sequence complex content because it is the most

widespread, however the same approach can be extended to the other kinds of XSD

complex content as well.

The fields have themselves a name and a data type, so our process can be applied on

each of them separately. In the best case, if the field names are sufficient, this results in

a list of representative words: one for each field. Those can then be combined by the

Selector to get a single representative word for the whole parameter. If one (or more)

name turns out to be insufficient, its type name can be used like we did before for the

parameter. And if the type name is still not enough, then its (possibly) complex content

can be ultimately exploited. This result in a recursive process: as long as the element

data type has a complex content, the process can be applied one step deeper, until the

considered type has a simple content.

47

Figure 3.6 Excerpt from a real-world WSDL file, representing a parameter with

complex-content XSD type.

Figure 3.6 displays a part of a real-world WSDL file, in order to illustrate the notion of

complex-content type. A parameter named cstmr has a type called cstmrAdr. This

type has a complex content consisting of a sequence of two strings: name and address.

The intended parameter and type names are customer and customerAddress,

respectively. However, their meaning cannot be directly retrieved automatically,

because the actual names are not explicit enough. Since a first pass is not enough to

determine the associated concept, Mataws will consider the type content. The names of

the elements in the sequence would lead to the words number, street, and city, which the

Selector would have to combine, in order to obtain a single representative word for the

parameter, e.g. address.

<message name="GetCstmr">

 <part name="cstmr" type="cstmrAdr" />
</message>

...

<complexType name="cstmrAdr">

 <sequence>

 <element name="nbr" type="xsd:integer" />

 <element name="street" type="xsd:string" />

 <element name="city" type="xsd:string" />

 </sequence>

</complexType>
...

...

4 RESULTS

We tested MATAWS by applying it to the collection of real-world WS descriptions

selected in section 2.3.2. But this collection was not used only for evaluation, also for

driving the development of MATAWS. In order to show whether MATAWS is

collection dependent or not, we additionally decided to apply it to another collection.

So we prepared a new WS collection, we called Control collection, by collecting real-

world WS descriptions publicly and individually available on the WWW. Then we

applied MATAWS to the control collection, too.

The result of the automatic semantic annotation of WS descriptions can be evaluated in

two different ways. We can obviously adopt a quantitative perspective, and consider

the proportion of parameters for which MATAWS was able to provide an ontological

concept. But this type of evaluation is relatively limited, because even if one concept

was associated to a parameter, this concept can be completely irrelevant. In the case of

a real-world application, suppose the human user performs a second pass after

MATAWS, in order to manually annotate the parameters for which MATAWS failed to

identify a concept. Then, providing an incorrect concept is worse than providing none

at all, because the user will not detect and correct these errors. It is therefore necessary

to complete the quantitative evaluation with a qualitative one. This operation can be

performed only manually, since it consists in trustworthily annotating a consequent

number of parameters and comparing the resulting concepts with those automatically

selected by MATAWS.

In this section, we first present the two WS collections used during evaluation of

MATAWS by giving their main characteristic features. Then we pass to the evaluation

phase; first we will show our quantitative results of the first and second collections

49

separately, then we proceed similarly with the qualitative results, before finally

discussing them.

4.1 Data

As we mentioned in the previous section, we have two collections to evaluate

MATAWS. The first collection, Full Dataset from the ASSAM project (Hess et al.,

2004), was used during the development of MATAWS, and we previously mentioned it

in our review of WS descriptions collections (section 2.3.2). It contains

operations distributed over real-world WS descriptions. Moreover, it has

parameter instances in total, corresponding to unique parameters. We consider

two instances correspond to the same parameter if they both have the same name and

data type (so, independently from the operation they belong to). The ways how we

benefited from this collection during the development of MATAWS are detailed in

sections 3.2 and 3.3. We apply the final version of MATAWS to this collection in order

to see whether the tool we developed is efficient.

Before looking at the result evaluation of the Full Dataset, we know that it may not be

sufficient to indicate MATAWS as successful even if it shows a good performance on

this collection. Because we developed it under the light of this collection and there may

be a collection dependence. For this reason, we prepared a control collection, consisting

of real-world WS descriptions found on the Internet. We gathered to them using the

Google search engine. This collection has services and totally operations are

found on them. In addition, the control collection contains parameter instances in

total, of which are unique parameters. We apply MATAWS also to this collection

in order to show that MATAWS is general enough and can work for every collections.

In Table 4.1, we summarize the features of these two collections. We pass to the

evaluation of our results in the following sections.

50

Table 4.1 Comparison of the features of evaluation collections

Collection Name Number of

Service

Number of

Operations

Number of Parameters

Total Unique

Full Dataset 816 7877 9869 2465

Control collection 100 1473 5476 1695

4.2 Quantitative Results

Since MATAWS outputs either a single concept or no concept at all for each parameter,

we consider a parameter as annotated if MATAWS is able to return a concept.

To perform the evaluation, we considered the rates of annotated parameters relatively to

both views (instances and unique parameters). The unique parameters rate represents

how well the software performs when considering the heterogeneity of parameters. The

parameter instances rate is more descriptive of the performance regardless how

parameters are distributed in the collection.

Table 4.2 displays both annotation rates for the Full Dataset collection. The difference

of points observed between parameter instances and unique parameters rates is

due to the fact the parameters the tool could not annotate are amongst the most frequent

in the collection.

Table 4.2 Proportions of annotated parameters on Full Dataset

Data Total Annotated Annotation rate

All Parameter Instances

Unique Parameters Only

During the development process of MATAWS, it evolved to handle all possible kinds

of parameter names using the Preprocessor. It was enriched with new features in every

versions such that in the final version, apart from single names or names that have a

51

separator between their words, MATAWS can handle parameter names without

separator such as emailaddress or filedata, or names taking a non-canonical form,

such as allocated (conjugated verb) or weeks (plural noun) as we mentioned in section

3.2. However, a non-neglectable proportion of parameters still remains non-annotated.

These correspond mainly to names containing only stop-words, such as Body and

Return, and associated with simple-content data types. Put differently, the parameters

whose names and types do not convey sufficient information remain impossible to

annotate. We call them meaningless parameters. With that in mind, we consider the

performance of MATAWS on Full Dataset to be satisfying enough.

Table 4.3 shows the annotation rates for the Control collection, in a way similar to

Table 4.2 for Full Dataset. On unique parameters, MATAWS annotated almost the

same proportion (points) of the collection, whereas on parameter instances it is

even higher (points). Therefore, MATAWS displays good generalizing

features, at least on these results, and seems fairly collection-independent. The

difference of points observed between parameter instances and unique parameters

rates remembers us of the same behavior observed for Full Dataset. Again, the

parameters the tool could not annotate are amongst the most frequent in this collection.

However, we can say that this kind of parameters are less frequent in the Control

collection, so the effect on the performances is much lower.

Table 4.3 Proportions of annotated parameters on the Control collection

Data Total Annotated Annotation rate

All Parameter Instances

Unique Parameters Only

Studying the amount of annotated parameters allows us to evaluate the final output of

MATAWS. But it is also possible to consider the representative words outputted by the

Selector, which can be considered as partial results produced during the annotation

process. This gives us an insight of the internal behavior of our tool. Since only one

52

representative word is outputted for each parameter, the numbers of word instances in

Table 4.4 and Table 4.5 are the same than the numbers of parameter instances in Table

4.2 and Table 4.3.

Table 4.4 Proportions of annotated words on Full Dataset.

Selected Total Annotated

All Word Instances

Unique Words Only

Table 4.4 displays the proportions of annotated words from the Full Dataset collection,

including the case where no word at all could be fetched to the Associator. The tool

behaves like for the parameters, since its rate undergoes an increase of the same order

than before (). Further analysis reveals out of these cases are

completely filtered by the Preprocessor and Selector (i.e. the Associator receives an

empty string). They correspond to meaningless parameters, such as return, parameter

or x. Without them, the proportion of annotated word instances would be

(instead of). Getting rid of such parameters is actually a good thing, because

even if the Associator is generally able to identify a concept for them, it is most of the

time completely irrelevant: this results in a lowered annotation quality, as discussed in

the next subsection. For the unique words, we obtain a high score of , which

means almost all the words reaching the Associator are annotable.

Table 4.5 Proportions of annotated words on the Control collection

Selected Total Annotated

All Word Instances

Unique Words Only

53

As seen on the Table 4.5, the results obtained for the Control collection present the

same behavior than for the parameters. There is an increase in the unique words rate

(), like on the Full Dataset. While the annotation rates are almost the same

() in unique words for both collections, more word instances (points) are

annotated in the Control collection. The difference is similar to what was observed with

the parameter instances results.

4.3 Qualitative Results

The qualitative evaluation basically consists in grading the quality of the concepts

outputted by MATAWS, in terms of relevance with the original parameters. This

operation must be conducted manually, since it is the only means we have to assess

relevance.

The first method that comes to mind is to directly compare the final output of

MATAWS (i.e. a concept) with the input parameter. However, considering the

representative words, stays appealing because they allows a separated evaluation of the

two semantic-related components of MATAWS: the Selector and the Associator. This

is doubly interesting, because the former was developed totally by us and reflects more

our efforts, whereas the latter is based upon an external tool.

In consequence, we finally applied the following two-stepped procedure. For each

parameter, we first considered the representative word outputted by the Selector, and

manually assigned a score expressing its relevance relatively to the parameter. We then

similarly assigned a score to the concept outputted by the Associator, expressing its

relevance to this representative word. For this matter, we took advantage of all

available data: not only the parameter and data type names, but also contextual

information such as the WS textual description or operation name. The first score

allows us to evaluate how good the Preprocessor and Selector perform, whereas the

second one stands for the performance of the Associator.

54

In order to consider a parameter has been successfully processed, we consequently need

both scores to be high. Indeed, if the first is low, it means the representative word is not

relevant, and thus even if the final concept is a good match for this word, it will fail to

appropriately represent the original parameter. If the first score is high, but the second

is low, then it means the tool failed to associate a relevant concept to an appropriate

representative word, leading again to a incorrect result. The whole tool can

consequently be evaluated by considering the minimum of both scores.

Figure 4.1 Representation of evaluation method used for MATAWS. The Type

Explorer is not represented for readability matters. It is possible to get two scores: the

first one is obtained by comparing the initial parameter with its representative word, and

the second one by comparing this word with the associated concept.

To be more precise and account for ambiguous cases, we chose to adopt a multivalued

score ranging from (not relevant at all) to (completely relevant). The score

measures two different aspects of the annotation: correctness and precision. With the

former, we aim at quantifying how much the associated meaning (representative word

or concept) is semantically related to the considered object (parameter or representative

word). The latter accounts for the fact the associated meaning sometimes subsumes the

actual one. This is often the case for the concepts outputted by the Associator, due to

the nature of mapping implemented by Sigma (see section 3.4). Figure 4.1 summarizes

the evaluation procedures of MATAWS in a comprehensive way.

Let us first consider the performance at the level of the parameters for the Full Dataset

collection, displayed in Table 4.6. As mentioned before, there are three different scores

for the second version of MATAWS: relevance of the representative word relatively to

the original parameter (noted P vs. W), relevance of the ontological concept relatively to

Preprocessor Associator Selector

Representative

word

Words Concept Parameter

Score #1 Score #2

55

the representative word (W vs. C) and relevance of the ontological concept relatively to

original parameter (P vs. C). The latter is the minimum of the two former, and

corresponds to the overall performance. All values displayed in Table 4.6 are average

scores. Like before, we processed separately the results for parameter instances and for

unique parameters. Unlike with the quantitative evaluation, and for all scores, the

results are better for parameter instances than for unique parameters: , and

 , respectively. This indicates the tool is good on the most frequent annotated

parameters (in terms of the quality of annotation, this time).

Table 4.6 Average parameter annotation scores on Full Dataset.

Data Annotated P vs. W W vs. C P vs. C

Annotated Parameter Instances

Annotated Unique Parameters Only

The following remarks hold for both parameter instances and unique parameters. The

best score is obtained for P vs. W, which means the representative words outputted by

the Selector are semantically very close to the meaning of the corresponding

parameters. The score decreases when considering W vs. C, which reflects the fact the

Associator is not able to find a relevant concept for a part of the representative words.

The overall score P vs. C is lower, meaning some of the representative words

successfully annotated by the Associator were actually not relevant to the original

parameter. The standard deviation for this last score is close to , so the somewhat

neutral (in the sense it is close to) average score hides the fact parameters are

associated to either very relevant or very irrelevant concepts.

Table 4.7 Average parameter annotation scores on control collection.

Data Annotated P vs. W W vs. C P vs. C

Annotated Parameter Instances

Annotated Unique Parameters Only

56

Let us now consider the results obtained on the Control collection. As seen on Table

4.7, our tool presents a similar behavior: for all scores, the results are better for

parameter instances than for unique parameters: , and , respectively.

Moreover, these differences have the same order of magnitude than what was observed

for Full Dataset. Compared to the scores obtained on the Full Dataset collection, we get

also very similar scores: the differences between the two collections are , ,

 for parameter instances and , , for unique parameters. This

confirms the observation we made in the quantitative evaluation section, regarding the

fact MATAWS does not seem to be collection-dependent.

Table 4.8 Average word annotation scores on Full Dataset.

Data Annotated W vs. C

Annotated Word Instances

Unique Annotated Words Only

We now focus on the assessment of representative words for the Full Dataset collection,

shown in Table 4.8. Like for the parameters, the average score increases when

comparing words instances to unique words (). Thus, similarly to what was

observed for parameters, the tool is better with frequently annotated words.

Table 4.9 Average word annotation scores on control collection.

Data Annotated W vs. C

Annotated Word Instances

Unique Annotated Words Only

For the Control collection, and like on the parameters, our tool gives results which are

relatively similar to those obtained on the Full Dataset (see Table 4.9). The score of

57

word instances is better than the score of unique words (). Therefore, the same

remark than before holds: the tool performs a better annotation of the frequent words.

Table 4.10 Qualitative results for the top 15 most frequent parameters on Full Dataset:

frequency (number of occurrences of the parameter), corresponding representative word

(the word itself and its associated score), ontological concept (concept and score) and

overall score.

Parameter Freq.
Representative Word Ontological Concept

P vs. C
Word P vs. W Name W vs. C

ApplicID 228 identity 5 TraitAttribute 3 3

Password 223 password 5 LinguisticExpression 4 4

UserID 148 identity 5 TraitAttribute 3 3

password 114 password 5 LinguisticExpression 4 4

username 85 user 3 experiencer 4 3

AdminUserID 75 identity 5 TraitAttribute 3 3

Result 68 integer 4 Integer 5 4

LicenseKey 58 key 5 Key 5 5

strGuidNotification 58 notification 5 RegulatoryProcess 3 3

UserName 58 user 3 experiencer 4 3

IsReleased 52 release 3 Demonstrating 0 0

accession 46 accession 5 Increasing 0 0

EmailAddress 44 address 3 uniqueIdentifier 4 3

MaxRecords 40 record 3 Text 1 1

date 39 date 5 Day 4 4

In order to give a more meaningful example of the results outputted by MATAWS,

Table 4.10 presents the obtained for the most frequent parameters in Full Dataset.

The results obtained for the parameters ending in –ID (ApplicId, UserID,

AdminUserID) demonstrate the interest of the Selector, leading to the representative

word identity. The parameter Result illustrates the notion of meaningless parameter

introduced in section 4.2. It is associated to the word integer and to the concept

Integer. Its name is considered as a stop word in our context, and it has a simple data

type. As explained before, the best MATAWS can do in this situation is to take

advantage of the type name.

58

The differences observed between the representative word and concept scores justify the

necessity to distinguish the Selector and the Associator in terms of performance. The

former extract a relevant representative word for most of the listed parameters: identity

for ApplicID, notification for strGuidNotification, key for LicenceKey, etc. It is

not as clear for the latter: TraitAttribut for identity, experiencer for user and Key

for key seem fairly relevant, but LinguisticExpression and RegulatoryProcess for

password and notification, respectively, seem too general to be close enough to the

actual meanings. This is due to the fact the mapping implemented by Sigma sometimes

associates an ontological concept which is not directly equivalent to the considered

word, semantically, but rather subsumes it, as explained in section 3.4. Some concepts

are completely irrelevant, e.g. Increasing for accession and Demonstrating for

release. These problems could be solved by replacing Sigma by a similar but more

precise tool. However, such software, which would implement an equivalent mapping

from the English language to an ontology, does not exist to the best of our knowledge.

It seems more realistic to keep Sigma as the base of our Associator, and refine its results

through some additional processing based on complementary NLP tools.

59

Table 4.11 Qualitative results for the top 15 most frequent parameters on Control

collection: frequency (number of occurrences of the parameter), corresponding

representative word (the word itself and its associated score), ontological concept

(concept and score) and overall score.

Parameter Freq.
Representative Word Ontological Concept

P vs. C
Word P vs. W Name W vs. C

password 516 password 5 LinguisticExpression 4 4

username 464 user 3 experiencer 4 3

id 217 identity 5 TraitAttribute 4 4

description 65 description 5 Stating 1 1

in 62 in 5 Inch 0 0

out 62 out 5 ContestAttribute 0 0

name 61 name 5 ContentBearingObject 3 3

plan 56 plan 5 Plan 5 5

session 35 session 5 FormalMeeting 4 4

type 34 type 5 subclass 5 5

snumber 28 s 0 SecondDuration 3 0

login 26 gin 0 DistilledAlcoholicBeverage 5 0

application_key 26 key 5 Key 5 5

Result 25 response 3 causes 0 0

Status 25 status 5 SubjectiveAssessmentAttribute 3 3

We present the most frequent parameters of the Control collection in Table 4.11, in

order to compare the outputs of both collections from this point of view. We observe

that the Preprocessor steps in twice with its split feature for the case where no separator

are found between words of the parameter name (for parameters snumber and login).

Splitting snumber into s and number is appropriate whereas dividing login into lo and

gin indicates a problem. This problem happens rarely when the parameter name has

more than one option to split. That is why we kept this feature of the Preprocessor.

Apart from them, the representative word extraction results are very good and similar to

what was obtained on Full Dataset. Like in the previous table, the results for word-to-

concept association are not stable: Plan for plan and subclass for type show good

examples of concept association, whereas ContestAttribute for out and causes for

response refer to more general meanings regarding the (supposed) intended meanings of

the words. This reminds a previous remark again: evaluating the Selector and the

60

Associator should be done separately. As a consequence, the results of concept

association to parameters are very similar for both collections. Therefore, the most

frequent parameters aspect seems to indicate, again, that our tool performance is

independant from the data.

5 CONCLUSION

In this thesis, we presented our tool MATAWS, which can semantically annotate

syntactic WS descriptions in a fully automatic manner. The process is based on the

mapping of the WordNet (Miller et al., 2005) lexicon to the SUMO ontology (Niles &

Pease, 2001) implemented in Sigma (Pease, 2008), on the Selector, whose role is to

identify the most relevant word, relatively to a given parameter, amongst the list

outputted by the Preprocessor, and on a multimodal approach consisting in taking

advantage not only of the parameter names, but also of their data type names and

structures.

We applied MATAWS to ASSAM Full Dataset (Hess et al., 2004), the largest available

collection of WSDL files, and evaluated the resulting collection of OWL-S files. The

proportion of annotated parameters exceeds of the collection. It does not cover all

parameters, however further analysis of the results shows the non-annotated parameters

would be hard to process even to humans, due to the lack of context (e.g. parameters

simply called parameter). Thus, we can say that MATAWS is successful from the

quantitative perspective. When considering the quality of the annotation, i.e. the

relevance of the concepts associated to the parameters, our tool has an average grade

exceeding . Comparing to the Associator, the Selector component has more

contribution on this average score: the analysis of partial results extracted during the

process shows the semantic process it implements has a direct effect on the relevance of

the outputted concepts. Therefore, we can accept that MATAWS is successful also

from a qualitative point of view.

Since MATAWS was developed under the light of Full Dataset, we prepared a new

control collection from real-world WS descriptions found on the Web, and we applied

MATAWS to this collection too, in order to prove that its results are not collection-

62

dependent. The results obtained show an obvious parallelism with those from Full

Dataset. This seems to indicate the performances of MATAWS are relatively stable,

independently from the collection.

The first contribution of our work is the MATAWS tool. This was the object of an

article accepted and presented at the Networked Digital Technologies (NDT 2011)

conference (Aksoy et al., 2011b). The second contribution is the result of the

annotation process: a collection of semantic WS descriptions, which can be used as a

benchmark to test some of the many methods developed specifically to take advantage

of this semantic aspect. Both the tool and the collection were the object of an article

submitted to Elsevier’s Journal of Web Semantics, which is currently being reviewed

(Aksoy & Labatut, 2013). Moreover, note the tool is open source, relies on freely

available libraries, and is freely available itself
5
. The files in the produced semantic

collection follows the OWL-S format (Martin et al., 2004), a W3C-supported

technology, and the collection is itself publicly available. It is bundled with a table

containing the detail of the manual annotation work we performed when evaluating our

tool.

As we mentioned earlier, it seems difficult to increase the performance of MATAWS

relatively to the proportion of annotated parameters. However, there is room for

improvement regarding the quality of the annotation. Our experimental evaluation

showed the main problem comes from the Associator, which does not always pick the

most relevant concept when a word can be associated to several ones. We see two

possible, non-mutually exclusive solutions to this problem: first, take advantage of some

additional information to improve the concept selection; and second, use a different

method to retrieve the concept. MATAWS does not use certain parts of the WSDL

files, such as the names of messages or operations, and the optional natural language

descriptions (see section 2.1.3.2). Those could be exploited directly, like we did for

parameter names and types. Another possibility is to adopt the approach seen in

(Canturk & Senkul, 2011), and use them to identify the domain ontology of the WS.

This would allow the Associator to work on a subset of concepts, and therefore decrease

5 http://code.google.com/p/mataws/

http://code.google.com/p/mataws/

63

the risk of selecting an irrelevant one. Regarding the second solution, potential

alternatives to Sigma exist, although their use is generally less direct, such as DBPedia
6

or Wikipedia-based dictionaries like the one described in (Spitkovsky & Chang, 2012).

Comparing and combining the results outputted by several such tools constitutes a

promising perspective.

6
 http://wiki.dbpedia.org

http://wiki.dbpedia.org/

REFERENCES

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M. T., Sheth, A., Verma, K.

(2005). Web Service Semantics - WSDL-S. URL:

http://www.w3.org/Submission/WSDL-S/. [accessed December, 2012].

Aksoy, C., Mancuhan, K. (2010). Annotation Automatique de Descriptions de Services

Web. BSc, Galatasaray University, Istanbul, TR.

Aksoy, C., Labatut, V., Cherifi, C., Santucci, J.-F. (2011a). MATAWS: A Multimodal

Approach for Automatic WS Semantic Annotation. Communications in

Computer and Information Science, 136 (6), p.319-333.

Aksoy, C., Labatut, V., Cherifi, C., Santucci, J.-F. (2011b). MATAWS: A Multimodal

Approach for Automatic WS Semantic Annotation. In: 3rd International

Conference on Networked Digital Technologies, Jul 11-13, Macau.

Aksoy, C., Alparslan, E., Bozdağ, S., Çulhacı, İ. (2011c). OSDBQ: Ontology

Supported RDBMS Querying. In: Metadata and Semantic Research (MTSR

2011), October 12-14, Izmir.

Aksoy, C., Labatut, V. (2013). A Fully Automatic Approach to the Semantic

Annotation of Web Service Descriptions. Journal of Web Semantics, Submitted.

Benyahia, K., Lehireche, A., Latreche, A. (2009). Annotation Sémantique de Pages

Web. In: CIIA, May 3-4, Saida.

Berners-Lee, T. (1998). Weaving the Web. San Francisco: Harper Eds.

Berners-Lee, T., Hendler, J., Lassila, O. (2001). The Semantic Web. Scientific

American, p.34-43.

Biron, P. V., Malhotra, A. (2004). XML Schema Part 2: Datatypes Second Edition.

URL: http://www.w3.org/TR/xmlschema-2/. [accessed November, 2012].

Bouchiha, D. (2012). Semantic Annotation of Web Services. In: 4th International

Conference on Web and Information Technologies, April 18-21, Porto.

65

Brickley, D., Guha, R. V. (2004). Official site of W3C for RDF-S. URL:

http://www.w3.org/TR/rdf-schema/. [accessed December, 2012].

Budinoski, K., Jovanovik, M., Stojanov, R., Trajanov, D. (2010). An Application For

Semantic Annotation Of Web Services. In: 7th International Conference for

Informatics and Information Technology, February 3-6, Skopje.

Cabral, L., Domingue, J., Motta, E., Payne, T., Hakimpour, F. (2004). Approaches to

Semantic Web Services: An Overview and Comparisons. LNCS, 3053, p.225-

239.

Canturk, D., Senkul, P. (2011). Semantic Annotation of Web Services with Lexicon-

Based Alignment. In: IEEE World Congress on Services, Jul 4-9, Washington.

Chauvet, J.-M. (2002). Services Web avec SOAP, WSDL, UDDI, ebXML. Paris:

Eyrolles.

Cherifi, C., Rivierre, Y., Santucci, J.-F. (2011). WS-NEXT, A Web Services Network

Extractor Toolkit. In: 5th International Conference on Information Technology,

May 11-13, Amman.

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S. (2001). Web Services

Description Language (WSDL) 1.1. URL: http://www.w3.org/TR/wsdl.

[accessed December, 2012].

Clement, L., Hately, A., Riegen, C., Rogers, T. (2005). Official site of OASIS for

UDDI. URL: http://www.oasis-open.org/specs/index.php#uddi. [accessed

December, 2012].

De Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Stollberg, M.

(2005). Web Service Modeling Ontology (WSMO). URL:

http://www.w3.org/Submission/WSMO/. [accessed December, 2011].

Dimitrov, M., Simov, A., Momtchev, V., Konstantinov, M. (2007). WSMO Studio - A

Semantic Web Services Modelling Environment for WSMO (System

Description). LNCS, 4519, p.749-758.

Elenius, D., Denker, G. (2006). OWL-S Editor. URL:

http://owlseditor.semwebcentral.org/index.shtml. [accessed December, 2011].

Fallside, D. C., Walmsley, P. (2004). XML Schema Part 0: Primer Second Edition.

URL: from http://www.w3.org/TR/xmlschema-0/. [accessed November, 2012].

66

Farrell, J., Lausen, H. (2007). Semantic Annotations for WSDL and XML Schema.

URL: http://www.w3.org/TR/sawsdl/. [accessed December, 2012].

Gomadam, K., Verma, K., Brewer, D., Sheth, A., Miller, J. (2005). Radiant: A Tool for

Semantic Annotation of Web Services. In: International Semantic Web

Conference, November 6-10, Galway.

Gruber, T. (1993). A Translation Approach to Portable Ontology Specifications.

Knowledge Acquisition, 5(2), p.199-220.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H. F., Karmarkar, A.,

Lafon, Y. (2007). Official site of W3C for SOAP. URL:

http://www.w3.org/TR/soap. [accessed December, 2012].

Hess, A. (2004). ASSAM (Automated Semantic Service Annotation with Machine

Learning) WSDL Annotator. URL: http://www.andreas-

hess.info/projects/annotator/index.html. [accessed December, 2011].

Hess, A., Johnston, E., Kushmerick, N. (2004). ASSAM: A Tool for Semi-

Automatically Annotating Semantic Web Services. In: International Semantic

Web Conference, November 7-11, Hiroshima.

Hyvönen, E. (2002). Vision, Technologies, Research and Applications. In: Semantic

Web Kick-Off in Finland, November 2, Helsinki.

IEEE. (2003). SUO-KIF (Standard Upper Ontology Knowledge Interchange Format).

URL: http://suo.ieee.org/SUO/KIF/suo-kif.html. [accessed October, 2012].

Kellert, P., Toumani, F. (2004). Les Web Services Sémantiques. Interaction

Intelligence Information, 3 (1), p.77-102.

Klyne, G., Carroll, J. J. (2004). Official site of W3C for RDF. URL:

http://www.w3.org/TR/rdf-concepts/. [accessed December, 2012].

Kökciyan, N. (2009). Classification de Services Web Par des Méthodes de Clustering.

BSc, Galatasaray University, Istanbul, TR.

Kreger, H. (2001). Web Services Conceptual Architecture. URL:

http://www.cs.uoi.gr/~zarras/mdw-ws/WebServicesConceptualArchitectu2.pdf.

[accessed November, 2012].

Küster, U., König-Ries, B., Krug, A. (2008). OPOSSum - An Online Portal to Collect

and Share SWS Descriptions. In: 2th IEEE International Conference on

Semantic Computing, August 4-7, California.

67

Ma, J., Zhang, Y., He, J. (2008). Web Services Discovery Based on Latent Semantic

Approach. In: International Conference on Web Services, September 23-26,

Beijing.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Sycara,

K. (2004). OWL-S: Semantic Markup for Web Services. URL:

http://www.w3.org/Submission/OWL-S/. [accessed December, 2010].

McGuinness, D. L., Harmelen, F. V. (2004). Official site of W3C for OWL. URL:

http://www.w3.org/TR/owl-features/. [accessed December, 2012].

Miller, A. G., Fellbaum, C., Tengi, R., Langone, H., Ernst, A., Jose, L. (2005).

Wordnet. URL: http://wordnet.princeton.edu/. [accessed December, 2011].

Naber, D. (2007). jWordSplitter. URL: http://jwordsplitter.sourceforge.net/. [accessed

November, 2012].

Niles, I., Pease, A. (2001). Towards a Standard Upper Ontology. In: International

Conference on Formal Ontology in Information Systems, October 17-19,

Ogunquit.

OASIS. (2004). Introduction to UDDI: Important Features and Functional Concepts.

URL: http://uddi.org/pubs/uddi-tech-wp.pdf. [accessed November, 2012].

Paolucci, M., Sycara, K., Kawamura, T. (2003). Delivering Semantic Web Services. In:

Twelves World Wide Web Conference (WWW2003), Budapest, Hungary.

Patil, A., Oundhakar, S., Sheth, A., Verma, K. (2004). METEOR-S Web service

Annotation Framework. In: International Conference on the World Wide Web,

May 17-22, New York.

Pease, A. (2008). Sigma Knowledge Engineering Environment. URL:

http://sigmakee.sourceforge.net/. [accessed September, 2012].

Rivierre, Y. (2010). Discovery and Composition in Web Services Networks. BSc,

Université Joseph Fourier, Grenoble, FR

Ryman, A. (2003). Understanding Web Services. URL:

http://www.ibm.com/developerworks/websphere/library/techarticles/0307_ryma

n/ryman.html. [accessed December, 2012].

Salomie, I., Chifu, V. R., Giurgiu, I., Cuibus, M. (2008). SAWS: A Tool for Semantic

Annotation of Web Services. In: IEEE International Conference on Automation,

Quality and Testing, Robotics, May 22-25, Cluj-Napoca.

68

Scicluna, J., Abela, C., Montebello, M. (2004). Visual Modelling of OWL-S Services.

In: IADIS International Conference WWW/Internet, March 24-26, Madrid.

Sheth, A. P. (2003). Semantic Web Process Lifecycle: Role of Semantics in

Annotation, Discovery, Composition and Orchestration. In: Workshop on E-

Services and the Semantic Web, May 20, Budapest.

Sirin, E., Parsia, B. (2004). The OWL-S Java API. In: International Semantic Web

Conference, November 7-11, Hiroshima.

Skoutas, D., Sacharidis, D., Kantere, V., Sellis, T. K. (2008). Efficient Semantic Web

Service Discovery in Centralized and P2P Environments. In: International

Semantic Web Conference, September 23-26, Beijing.

Spell, B. (2008). Java API for WordNet Searching. URL:

http://lyle.smu.edu/~tspell/jaws/index.html. [accessed October, 2012].

Spitkovsky, V. I., Chang, A. X. (2012). A Cross-Lingual Dictionary for English

Wikipedia Concepts. In: 8th International Conference on Language Resources

and Evaluation, May 21-27, Istanbul.

Srinivasan, N. (2004). WSDL2OWL-S. URL:

http://www.semwebcentral.org/projects/wsdl2owl-s/. [accessed December,

2011].

BIOGRAPHICAL SKETCH

Cihan Aksoy was born in 1987 in İstanbul, Turkey. He finished Vehbi Koç Vakfı High

School in 2005 and received his Bachelor’s degree of Computer Engineering in 2010

from the Galatasaray University in Istanbul, Turkey. He is currently pursuing a

Master's degree in Computer Engineering at the same university, while working at

TUBİTAK SGE as a researcher.

His first publication is a conference paper written under the supervision of the Asst.

Prof. Dr. Vincent Labatut. Its title is “MATAWS: A Multimodal Approach for

Automatic WS Semantic Annotation” (Aksoy et al., 2011b), and it was presented at the

Networked Digital Technologies (NDT 2011) international conference. He wrote

another publication related with “Ontology Supported Audit” project realized for the

Turkish Court of Accounts at TÜBİTAK SGE. Its title is “OSDBQ: Ontology

Supported RDBMS Querying” (Aksoy et al., 2011c) and it was presented at the

Metadata and Semantics Research (MTSR 2011) conference. Finally, he has written an

extended and improved version of his first paper, entitled “A Fully Automatic Approach

to the Semantic Annotation of Web Service Descriptions” (Aksoy & Labatut, 2013),

which was submitted to Elsevier’s Journal of Web Semantics and is currently under

review.

