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Abstract 

 

 

Bioinformatics is an area of science that helps developing and improving methods to 

store, retrieve, organize and analyze biological data.  Thus, bioinformatics has gained 

important role for molecular biology.  One of the methods to analyze this big data is to 

use classification of protein sequences to predict unseen proteins types.  In addition to 

this, finding motifs, which are a part of protein sequence that contains biological 

function of the sequence, is important to understand protein structure and protein-

protein relationships. 

 

In this work, class-specific motifs with high specificity are found and supervised 

classification models are trained to classify new sequences to find types of cohesin 

protein using various machine learning algorithms like J48 Decision Tree, Support 

Vector Machines and Naïve Bayes and with different combinations of Reduced Amino 

acid Alphabets/Groupings. Results were compared by classification accuracies.  Using 

5-gram sized Sdm13 alphabet with 10 features and Naïve Bayes algorithm, highest 

accuracy of 99.09 % is achieved. 

 

 

 

 



Résumé 

 

 

La bioinformatique est un domaine de la science qui permet à développer et à améliorer 

les méthodes pour stocker, extraire, organiser et analyser des données biologiques. 

Ainsi, la bioinformatique a gagné un rôle important pour la biologie moléculaire. Une 

des méthodes pour analyser ces données massives consiste à utiliser la classification des 

séquences de protéine pour prédire les types de protéines inaperçus. En plus, trouver des 

motifs qui font partie de la séquence de protéine contenant la fonction biologique de la 

séquence, est important pour comprendre la structure des protéines et des relations 

protéine-protéine. 

 

Dans ce travail, les motifs classe-spécifiques avec une spécificité élevée sont trouvées et 

les modèles de classification supervisée sont utilisés pour classifier les nouvelles 

séquences pour trouver les types de protéines cohésine, utilisant les algorithmes 

diverses d'apprentissage machine comme l'arbre de décision J48, les machines à 

vecteurs de support et Naïve Bayes et avec différentes combinaisons 

d'alphabets/groupements réduit d'acides. Les résultats sont comparés en utilisant la 

précision de la classification. La plus grande précision de 99,09% est atteinte en 

utilisant un alphabet Sdm13 de taille 5 grammes avec 10 caractéristiques et l'algorithme 

Naïve Bayes. 

 



Özet 

 

 

Biyoenformatik, biyolojik bilginin saklanması, elde edilmesi, organize edilmesi ve 

analiz edilmesini sağlayan ve iyileştiren bilim dalıdır.  Bu sebeple biyoenformatik, 

moleküler biyoloji için önemli bir hale gelmiştir.  Protein dizilimlerinin analizinde 

kullanılabilecek bir yöntem bunların sınıflandırılması ve yeni bulunan proteinlerin 

sınıfının belirlenmesini sağlamaktır.  Bununla beraber proteinlerin görevlerini temsil 

eden küçük parçaları olan motiflerin bulunması, protein yapısını ve protein-protein 

ikişkilerini göstermesi açısından önemlidir. 

 

Bu çalışmada, Cohesin protein ailesinin sınıfa özel yüksek özgüllük içeren motifleri 

çeşitli indirgenmiş aminoasit alfabeleri/gruplamaları ve farklı n-gram uzunlukları ile 

bulunup J48, Support Vector Machine ve Naïve Bayes ile sınıflandırılmıştır.  Sonuçta 5-

gram uzunluklu Sdm13 alfabesi ile seçilen 10 özellik ile Naïve Bayes algoritması 

kullanılarak % 99.09 başarı ile sınıflandırma sağlanmıştır. 
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1. Introduction 

 

 

Bioinformatics is an area of science that helps developing and improving methods to 

store, retrieve, organize and analyze biological data.  Bioinformatics has gained 

important role for molecular biology.  Image and signal processing techniques of 

bioinformatics on large amount of raw data allow extraction of useful results.  To 

achieve this, tools for efficient access to various information and algorithms together 

with statistics to assess relationships among members of large datasets is used.  Creating 

software tools by using these elements has the most important role for generating useful 

biological knowledge. 

 

The primary goal of bioinformatics is to increase the understanding of biological 

processes.  Developing and applying computationally intensive techniques such as 

pattern recognition, data mining, machine learning algorithms, and visualization are 

used achieve this goal.  Major research efforts in the field include sequence alignment, 

gene finding, genome assembly, drug design, drug discovery, protein structure 

alignment, protein structure prediction, prediction of gene expression and protein–

protein interactions, genome-wide association studies, and the modeling of evolution. 

Classification of proteins has significant use cases for bioinformatics like drug target 

identification, drug design, protein family characterization and protein annotation 

(Albayrak & Sezerman, 2012).  Moreover, classification of proteins might aid us 

understanding protein-protein interactions and to which proteins one can bind.  As a 

result of these, various methods including similarity search and machine learning have 

been used to classify the proteins.
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The similarity search in which a sequence is searched against a database, is a technique 

commonly used to assign function to a protein thus predicting it’s family.  However this 

type of classification fails in the absence of significant similarity between query and 

target protein sequences.  (Reinhardt & Hubbard, 1998) 

 

According to previous works, another approach, machine learning algorithms that firstly 

require features extracted from raw sequence data were used for classification problems 

including protein interaction prediction, cluster analysis of gene expression data, 

annotation of protein sequences by integration of different sources of information, 

automated function prediction (Albayrak & Sezerman, 2012).  Although large protein 

families have been examined and classification was established on them, novel proteins 

that have specialized duties indirectly on human lack the interest of bioinformaticians.  

Cohesin and Dockerin protein families can be given as example to those ones. 

 

In the beginning of 1980s, The cellulosome was publicized as discrete multienzyme 

complex, which is used for binding and degradation of the cellulose most common and 

abundant organic polymer in nature .  The cellulosome is an exciting and unique 

example of a molecular level interaction like Lego-like construction of biologically 

active. 

 

Nature uses specific protein-protein interactions to control the most cellular and 

physiological processes.  One of those protein-protein interactions is between cohesin-

dockerin with a high-affinity (Kd 10-9-10-12 M), where dockerin module plugs into the 

cohesin module (Pagès et al., 1997).  As both cohesin and dockerin protein domains 

found in scaffolding protein, this interaction is important for cellulosome construction.  

Both cohesin and dockerin have various types, and each type is specific to other, e.g one 

cohesin will not interact with all dockerins as well as being species specific.  So 

classification of these protein domains will help us determine which ones will bind 

together 



 

    
 

3 

 

The outcome of cohesin-dockerin recognition can be used to design nanomaterials and 

nanodevices. Besides  it’s nanotechnological uses, this interaction can artificially be 

used for biofuels as renewable cellulose resource instead of petroleum. (Ed Bayer’s 

Group, 2012) 

 

A motif is a part of DNA or protein sequence that contains biological function of the 

sequence in which it is found.  Identifying, characterizing and searching with sequence 

motifs helped computational methods to be created (Grant et al., 2011).  Previously, 

Cobanoglu, et al. (2011) proposed a method using class-specific motifs and grouping 

schemes to classify GPCR class A proteins and achieved an accuracy of 98.1 %. 

Srinivasan et al. (2013) have used similarity scores with substitution matrix to extract n-

gram motifs from sequences to discriminate protein families. However substitution 

matrix has additional time complexity that can be eliminated by using pre-substituted 

reduced amino acid alphabets. 

 

In this work, class-specific motifs of cohesin family with high specificity are found and 

trained to classify new sequences to find types of cohesin using various machine 

learning algorithms like Decision Tree, Support Vector Machines and Naïve Bayes with 

different combinations of Reduced Amino acid. Results were compared according to 

balanced accuracies.   

 

1.1 Thesis Organization 

 

Chapter 2, “Biological Background” gives background information about basic biology 

introducing the reader to amino acid, protein and then topics for protein sequences 

including motifs and n-grams are introduced. 
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Chapter 3, “Computational Background” introduces Machine-learning, classification, 

decision trees and Naïve Bayes.  Besides this, information about feature selection 

algorithms that are used in the work are given. 

 

Chapter 4, “Experiments” includes the actual work in this thesis that includes how n-

gram classification together with reduced amino acid alphabets is used for classification.  

Finally results of the work are given. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

    
 

2. Biological Background 

 

 

This section lets the reader to get understanding of basic biology and genetic domain 

that the thesis is worked on in the order of Amino acid, Protein sequence and motifs, 

Reduced amino acid alphabets and n-grams.  Finally information about the protein 

families of Cohesin and Dockerin will be given. 

 

2.1 Amino acid 

 

Amino acids are compound of organic elements carbon, hydrogen, oxygen and nitrogen 

(Figure 2.1).  Containing nitrogen is what it differs from other biological compounds 

like glucose and fatty acids. 

 

 

Figure 2.1 Amino acid structure 
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Most of the amino acids form polypeptides or peptides as polymer chains to form 

proteins.  21 of them are proteinogenic that means they are encoded by the genetic code.   

 

Some of the amino acids cannot be produced by body, so they need to be taken from 

outside by foods.  In humans lysine, leucine, isoleucine, methionine, phenylalanine, 

threonine, tryptophan, valine, histidine (children) and arginine (children). 

 

A single carbon atom resides in between amino and carboxyl groups and it is called 

alpha carbon atom.  Variable group (R) that the molecules of the 20 standard amino 

acids differ from one another is also attached to the carbon atom In the simplest of the 

acids, glycine, the R consists of a single hydrogen atom.  Other amino acids have more 

complex R groups (side chains) that contain carbon as well as hydrogen and may 

include oxygen, nitrogen, or sulphur, as well.   

 

Amino acids are linked together in proteins by a peptide bond, made by the reaction of 

the carboxyl group of one amino acid with the amino group of the next.  After peptide 

bond is formed, a molecule of water (H2O) is released.  This is a dehydration synthesis 

reaction, and usually occurs between amino acids. 

 

The resulting C-N bond is called a peptide bond, and the resulting molecule is called an 

amide.  Polypeptides and proteins are chains of amino acids held together by peptide 

bonds. 

 

In order to interpret protein structures and protein-protein interactions, certain properties 

of amino acids should be known.  Those properties include hydrophilicity or 

hydrophobicity, size, and functional groups.  Hydrophobic means 'being afraid of water' 

and hydrophilic means 'fond of water'.  As the names suggest, hydrophobic amino acids 
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prefer to be in a non-aqueous environment like inside of lipid bilayer (Figure 2.2).  

Hydrophilic residues love water, and therefore like to sit at the outside of water-soluble 

proteins. 

Table 2.1 Standard amino acids and their properties 

 
Amino Acid 3-letter 1-letter Side-chain 

polarity 

Side-chain 

charge (pH 7.4) 

Alanine Ala A Nonpolar Neutral 

Arginine Arg R Basic Polar Positive 

Asparaginc Asn N Polar Neutral 

Aspartic Asp D Acidic Negative 

Cysteine Cys C Nonpolar Neutral 

Glutamic acid Glu E Acidic polar Negative 

Glutamine Gln Q Polar neutral 

Glycine Gly G nonpolar neutral 

Histidine His H Basic polar P( 10 %) N 

(90%) 

Isoleucine Ile I Nonpolar neutral 

Leucine Leu L Nonpolar Neutral 

Lysine Lys K Basic polar positive 

Methionine Met M Nonpolar neutral 

Phenylalanine Phe F nonpolar neutral 

Proline Pro P Nonpolar neutral 
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Serine Ser S Polar neutral 

Threonine Thr T Polar Neutral 

Trytophan Trp W Nonpolar Neutral 

Tyrosine Tyr Y Polar neutral 

Valine Val V Nonpolar neutral 

 

 

 

Figure 2.2 Lipid bilayer 

 

 

Amino acids are shown in 1-letter or 3-letter alphabets codes. Table 2.1 shows the table 

of standart amino acids and their properties. 
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2.2 Protein 

 

Proteins are biological molecules that are composed of one or more sequences of amino 

acids.  Some of their functions in organisms are catalyzing metabolic reactions, 

replicating DNA, responding to stimuli, and transporting molecules from one location 

to another.  Proteins are differentiated by their sequence of amino acids that are 

determined by the nucleotide sequence of their genes.  That sequence is the key element 

that shows how the protein is folded into specific three-dimensional structure that 

determines its activity. 

 

A polypeptide is a single linear polymer chain of amino acids bonded together by 

peptide bonds between the carboxyl and amino groups of adjacent amino acid residues.  

The sequence of amino acids in a protein is defined by the sequence of a gene, which is 

encoded in the genetic code. 

 

Proteins are essential parts of organisms as other biological macromolecules such as 

polysaccharides and nucleic acids, and they participate in almost every process within 

cells.  Most of the proteins are enzymes, which catalyze biochemical reactions and are 

vital to metabolism.  Proteins also have structural or mechanical functions, such as actin 

and myosin in muscle and the proteins in the cytoskeleton, which form a system of 

scaffolding that maintains cell shape.  Proteins are required by animals for their diets, 

since animals cannot synthesize all the amino acids they need and must obtain essential 

amino acids from food.  Through the process of digestion, animals break down ingested 

protein into free amino acids that are then used in metabolism. 

 

Proteins are combined of amino acids using information encoded in genes.  Each 

protein has its own unique amino acid sequence that is specified by the nucleotide 

sequence of the gene encoding this protein.  Codons that are three-nucleotide sets form 
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the genetic code.  A codon generates an amino acid, for example AUG (adenine-uracil-

guanine) is the code for methionine.  Total number of codons that is formed by 

combination of nucleoids are 64.  That means there is redundancy in the genetic code, 

some of the amio acids are formed by more than one codon.  Genes encoded in DNA 

are first transcribed into pre-messenger RNA (mRNA) by proteins such as RNA 

polymerase.  Most organisms then process the pre-mRNA using various forms of Post-

transcriptional modification to form the mature mRNA.  After that mRNA is used as a 

template for protein synthesis by the ribosome.   

 

The Structure of a protein, can provide important information about how the protein 

performs its function.  The most used methods for structure determination are  X-ray 

crystallography and NMR spectroscopy.  They can give details about atomic resolution.  

Solved structures are usually inserted in the Protein Data Banks (PDB).  However, 

protein structures have lower number than gene structures. 

 

2.3 Protein Sequence and Motifs 

 

Protein sequence is the order of amino acids connected by peptite bonds.  The sequence 

starts from the free amino group of N-terminal end to carboxyl group of the C-terminal 

of the protein.   

 

Protein sequences that has been found by protein sequencing, is stored in the sequence 

databases.  Those databases includes from only one organism or from all organisms.  

Amino acids in the protein is showed by 1-letter or 3-letter abbreviations. 

Both individual researchers and large companies help the database grow by sending 

their found sequences.  This yields two problems, (i) low quality of sequences (ii) 

redundancy of them.  So the databases might need to be controlled by humans and the 

sequences need to be verified by biological papers.   
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One of the high quality sequence databases is UniProt (Bailey, et al., 2009).  It has both 

manually approved sequences by controllers and the ones that every researcher could 

add without approval, and includes many different database sources. 

 

A motif is a part of DNA or protein sequence pattern that occurs repeatedly in a group 

of related protein or DNA sequences and contains biological function of the sequence in 

which it is found.  Identifying, characterizing and searching with sequence motifs aided 

different computational methods to be created (Grant et al., 2011).  Motif searching can 

be seen as basic string manipulation or more advanced like MEME , AlignAce, 

Amadeus, CisModule, FIRE, Gibbs Motif Sampler, PhyloGibbs, SeSiMCMC, 

ChIPMunk and Weeder.  SCOPE, MotifVoter, and MProfiler are motif finder tools that 

use several algorithms together. 

 

MEME uses statistics and position-dependent letter-probability matrices which describe 

the probability of each possible letter at each position in the pattern.  However it has 

high time complexity. 

 

An example to motif can be given as: 

Asn, followed by anything but Pro, followed by either Ser or Thr, followed by 

anything but Pro 

which can also be written as 

 

 

 

 
 
 
 

N {P} [ST] {P} 
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2.4 Reduced Amino acid Alphabets 

 

When N-grams are used for feature extraction from a sequence, number of features 

increase from 20 to 20^n.  So feature selection via both general methods and 

bioinformatics specific RAAAs are used in this work. 

Proteins have highly correlated sequence space and produces small number of folds, 

domains and structures [19].  To overcome this, the 20 standard amino acids can be 

grouped or classified using a wide variety of distinct criteria. 

 

Reducing the number of amino acid alphabet, makes computation more effective.  In 

addition to this it minimizes noise on sequence representation [20]. 

 

Basic principle for grouping is to use a number of physico-chemical properties such as 

hydrophobicity, charge, mass etc.  Priority of these properties results in different 

grouping schemes.   

 

Some of the examples of groupings used in this work: 

• Random initialization: (Davies Random) SG DVIA RQN KP WHY LE MF  

• Seeded initialization: (Davies Seeded 1) SGE DP RWN KQ HLVIMFY  AT 

• Seeded initialization with our modification: (Davies Seeded 2) 

SGE DP RWN KQH LVIMFY  AT 

• Sezerman’s grouping: IVLM RKH DE QN ST  YF  

• Ab15: IV ML EQ FWY  

• Lzmj11: IL FM KR NST HQPWY 
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• Lzbl10: FWY IMV HNST EKQR 

 

 

2.5 N-Grams 

 

An n-gram is a contiguous sequence of n items from a given sequence of text, speech 

or when applied in bioinformatics, amino acid sequence of proteins.   

 

General usage of n-grams on prior works can be listed as follows; 

• Design kernels to extract features for machine learning algorithms like  Support 
Vector Machines 

• Spell-checkers to inform user about misspelled word 

• Improve compression algorithms 

• Pattern recognition systems like Speech recognition and Optical Character 
Recognition applications 

• Text classification using machine learning 

• Genetic Sequence Analysis like BLAST 

• Identify the language a text is in or the  

• Identify species a small sequence of DNA was taken from 

 

In protein sequences, n-grams are sequences of n amino acids in a sliding window over 

the length of the protein sequence.  In a biological context, n-grams where n is equal to 

1,2 and 3 correspond to amino acid, dipeptide and tri-peptide compositions, respectively.  

Given the sequence “ERCUMENT”, there is one count of each of 3-grams ERC, RCU, 

CUM, MEN, ENT. 
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A short sequence that is an n-gram of amino-acids can be considered as word in 

bioinformatics, and with this knowledge statistical techniques can be applied on it to 

analyze many interesting properties of the sequences.  Using n-grams, statistical 

analyses and information theoretic measures can be performed to understand the 

frequency distribution of n-grams in the protein sequences.  Another uses of n-gram 

models can be considered as identifying sequence similarity, n-gram profiling, and in 

determining the conservation profile to identify protein homologs.  (Albayrak & 

Sezerman, 2012) 

The number of different n-gram features that can be discovered in a number of 

documents increases with n.  Moreover, the number of occurrences of most n-grams 

will decrease with increasing n.  Thus, although the number of features grows at least 

linearly with n, the number of features with a certain minimum frequency will grow 

much slower. 

   

Another important aspect on n-grams is that, a subset of n-grams does not improve 

reliability, nor best frequency n-grams are better for classification.  So pre-filtering of 

features according to just frequency of them may not yield better performance in terms 

of accuracy. 

 

 

2.6 Cellulosome, Cohesin and Dockerin 

 

The cellulosome is a discrete multienzyme complex, which is used for binding and 

degradation of the cellulose most common and abundant organic polymer in nature 

(Peer et al., 2009; Bayer et al., 1998).  The cellulosome is an exciting and unique 

example of a molecular level interaction like Lego-like construction of biologically 

active.  Figure 2.3 shows structure of a simple cellulosome system. 
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Figure 2.3 Simple Cellulosome System taken from Weizmann.com 

 

 
Table 2.2 Known anaerobic bacterias that produce cellulosome 

 
Acetivibrio cellulolyticus 

Bacteroides cellulosolvens 

Clostridium acetobutylicum 

Clostridium cellulolyticum 

Clostridium cellulovorans 

Clostridium clariflavum 

Clostridium josui 

Clostridium papyrosolvens 

Clostridium thermocellum 

Ruminococcus albus (Only Dockerins) 
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Ruminococcus flavefaciens 

 

 

Nature uses specific protein-protein interactions to control the most cellular and 

physiological processes.  One of those protein-protein interactions is between cohesin-

dockerin with a high-affinity (Kd 10-9-10-12 M), where dockerin module plugs into the 

cohesin module (Pagès, et al., 1997).  As both cohesin and dockerin protein domains 

found in scaffolding protein, this interaction is important for cellulosome construction.  

Both cohesin and dockerin have various types, and each type is specific to other, e.g one 

cohesin will not interact with all dockerins as well as being species specific.  So 

classification of these protein domains will help us determine which ones will bind 

together.  All currently known bacterias that include cohesin and dockerin proteins are 

listed in Table 2.2. However the modules does not bind to only anaerobic bacterias, 

they have also be seen in other archaeal species, started by discovery of A.fulgidus 

(Peer et al., 2009).  In Figure 2.4 cohesin and dockerin modules are shown.   

 

Previously Cohesin and Dockerins were clustered by Peer el all (Peer et al., 2009) and 

Figure 2.5 shows Phylogenetic distribution of representative cohesins  and dockerins  in 

all found species in that work, and the tree was obtained using the CLUSTALW 

program, and some of the modules was not classified. 
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Figure 2.4 Cohesin and Dockerin Modules 

 

 

The outcome of cohesin-dockerin recognition can be used to design nanomaterials, 

nanodevices as contructs called nanosomes.   Besides  it’s nanotechnological uses, this 

interaction can artificially be used for biofuels as renewable cellulose resource instead 

of petroleum.  (Ed Bayer’s Group, 2012) 

 

As not all cohesion and dockerins interact with each other, researchers classified them 

into three categories known as Type-1, Type-2 and Type-3 modules.   Thus, a Type-1 

dockerin and cohesin will interact. 

 

Cohesin modules include 140 amino-acid residues and they don’t have tryptophan, 

tyrosine, and cysteine residues (amino acids).  Cohesins have variability in cellulosome-

producing bacteria, and even within a single bacterium. (Peer et al., 2009)  
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Figure 2.5 Phylogenetic distribution of representative cohesins (a) and dockerins 
(b) in the three domains of life taken from (Peer et al, 2009) 

 

 

Dockerin modules consist of 60–70 amino-acid residues and are classified into types 

according to the cohesin with which they interact.  (Peer et al., 2009) 

 

 

 

 

 

 



 

    
 

3. Computational Background 

 

 

 

This chapter describes key elements that should be known prior defining our work for 

supervised classification of proteins. 

 

 

3.1  Machine Learning 

 

The Department of Engineering at Cambridge University defines machine learning as 

follows 

 

Machine learning is a multidisciplinary field of research focusing on the mathematical 

foundations and practical applications of systems that learn, reason and act.  Machine 

learning underpins many modern technologies, such as speech recognition, robotics, 

Internet search, bioinformatics, and more generally the analysis and modeling of large 

complex data.  Machine learning makes extensive use of computational and statistical 

methods, and takes inspiration from biological learning systems.  1 

 

It is important to add here that one of the tasks of machine learning is to find patterns in 

and make inferences based on unstructured data. 

                                                
1 http://cbl.eng.cam.ac.uk/Public/MLG/ 
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One of the traditional areas of application for machine learning is classification, which 

is used in this work to find types of protein sequences. Based on our collection of 

sequences, the aim is to classify each cohesin and dockerin sequences into one of 3 

possible types (1, 2 ,3) with regard to their tendency of interaction.  Two of the methods 

used in Machine Learning for classification are: supervised methods and unsupervised 

methods.  In supervised methods, the class label of each data sample is taken into 

account while building a classifier by looking at the features and their values of each 

class.  In unsupervised methods, class labels are unknown and find out the real classes 

of data samples. Clustering is an example, that is, grouping together data samples which 

show similar patterns.  Given that all the sequences we use in our work have already 

been clustered via CLUSTALW by he study of Peer el all (Peer et al., 2009) shown in 

Figure 2.5.  Thus we will make use only of supervised methods to classify cohesin 

protein sequences. 

 

Machine learning has different algorithms from several different families that solve 

problems in specific ways.  The three families of classifiers that is used in this thesis 

are: Decision Trees, Bayesian classifier and Support Vector Machines.  Detailed 

information about these will be given in next sections.  Given the large number of 

features annotated in each sequence and the large number of sequences themselves, 

machine learning (using WEKA API programmed in Java) suits for the needs.  Those 

classifiers have been chosen to be able to compare with previous classification tasks 

done in bioinformatics, as they are used widely. 

 

Firstly Decision Tree schemes will be introduced and then how decision trees is built 

and optimized will be given.   
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3.2  Decision Trees 

 

In this section, definition of decision trees and how they can be used in order to assign 

types to each one of the sequences in our data set based on the value of each feature will 

be mentioned.  In addition to this, how decision trees are built and how they can be 

optimized will be detailed. 

 

 

3.2.1 Definition 

 

Decision Trees (DTs) are a specific machine-learning scheme, which is usually known 

as a “divide and conquer” approach.  To solve a complicated problem, it is divided into 

various sub-problems/tasks and and a solution is found to each of these sub-problems.  

In the end, a solution to our original problem is found (thus “conquering”).  In a 

classification problem, one is interested in assigning a class to a given input, based on 

the characteristics (attributes/features and their corresponding values) of that input.   

 

Example classes that needs to be assigned to instances is shown below:  

a) Yes or No (If we want to know whether it’s ok to play tennis on weather problem)  

b) Type1, Type2, Type3 (When we are trying to know which type the protein is from) 

c) Spam/Non-Spam (is the email spam or not).   

In all the cases above there are a group of features and corresponding values that needs 

to be found in order to decide which class a given belongs to, in opposition to all the 

other classes it does not belong to.  Decision Trees has different implementations with 

specific methods but all of them include “divide and conquer” approach. 
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3.2.2 The Basics 

 

Decision Trees are basically a way to do classification by putting the data into different 

branches.  Each node inherits all the attribute values of their ancestors.  Except leaves, 

at each node in a decision tree, a rule is asked and according to the answer, data samples 

are assigned to one branch or another of the tree.  This way, we start with our all 

collection of samples at the top node of the tree and from then, on at each node in the 

tree only a subset of the samples will be assigned to a specific branch.  This flow 

continues until no more rules are remained and a final classification is made.   

 

 

3.2.3 Divide and Conquer 

 

A node in a DT is a rule in the tree at which a decision has to be made.  The root node 

contains all the samples in our collection, which needs to be classified so this is the least 

informative node in the tree.  From the root node, one attribute/variable is chosen to 

analyze in the samples in order to decide how to separate those samples from that point 

on.  By creating branches using attribute/features as rules, whole tree is grown. 
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Figure 3.1 Simple identification of protein sequences based on residue percentage 

 

 

In the example above, after finding how often the residue “e” appears in each sequence, 

we can then make an initial decision how to find a rule. Leaf nodes of DTs do not 

branch unlike internal nodes. 

  

 

3.2.4 Building Decision Trees 

 

In building a decision tree, examining patterns in a collection of samples helps 

classifying unseen data.  All these samples are put in “the root node”, since it is from 

this node that we will start growing our tree.  This is done by analyzing all possible 

attributes in our training set for one of them that helps the most in reducing uncertainty 

(“entropy”) as to which class a training sample belongs. This helps separating samples, 

which are likely to belong together from those that are likely to be different. 

A very common problem of Weather is chosen here to demonstrate decision trees.  

Because it has its small number of attributes and it’s easy to understand how DTs work.  
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In this section and sections to follow, all tables and figures related to the weather 

problem have been taken either from the book Data Mining: Practical Machine 

Learning Tools and Techniques (Ian & Eibe, 2011) and realized on WEKA.  The table 

below contains the data with respect to the weather problem (Figure 3.2): 

 

 

 

Figure 3.2 Weather data taken from Weka 

 

 

Here there are five variables and 14 instances (training samples) from which we have to 

build our DT.  There are 4 variables/attributes (outlook, temperature, humidity and 

windy), which are used to help predict another variable, called the class variable, which 

tells if game will be played or not.  Temperature and humidity are numeric (contiguous) 

attributes, whereas outlook, windy and play are nominal attributes.  Numeric attributes 

have as values either integers or real numbers, whereas nominal (categorical) attributes 

have a small set of possible values.  For each node, we have to decide if it’s a leaf node 
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or needs to be splited and if it should be splited, which node should be used.  Below is 

the (Figure 3.3) a fully-grown tree for the weather problem: 

 

 

Figure 3.3 A possible DT for the weather data (visualization in WEKA) 

 

 

3.2.5 Information Gain 

 

Information Gain (IG) is dependent on the information (or entropy).  The information in 

a system can be said to be higher when uncertainty is high in the system that means it is 

more difficult it is to predict an outcome generated by the system.  In a simple case, if 

there are 3 colored balls and each one is of a different color, chance of guessing the 

color of a randomly selected ball is about 33%.  However, if there are 10 differently 

colored balls, chance will be 10%.  Second scenario contains more information than the 

first.  Information is usually calculated through a mathematical measure called entropy. 

The higher the entropy, the higher the information and therefore the higher the 

uncertainity. Entropy is represented by a capital (H).  The formula for calculating 

entropy given in bits because of the log being 2 is the following: 
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! ! = !− ! !! log! !!!
!!!                                               (3.1) 

 

 

Here P is a probability distribution, in which the probabilities of each possible and 

discrete value Pi can take must add up to 1.  Calculating the entropy at the root node of 

our weather problem: 

 

Entropy at root = - 5/14 * log2 5/14 – 9/14 *log29/14 = 0.940 bits 

 

Information Gain for each attribute considered splitting can be calculated.  The main 

procedure is calculating how much reduction in entropy each attribute is able to provide 

for the data and pick the one that provides the most reduction.  IG for each possible 

attribute with relation to a specific node in the following manner is calculated, with the 

index i iterating over the child nodes of the current node: 

 

 

!" !""#$%&"'! =
!!"#$%&' !"##$%&'($ − ! ! !ℎ!"#$%#& ! ∗ !"#$%&'! !ℎ!"#$%& !

!
!!! !                (3.2) 

 

Splitting on the attribute “outlook”, for example, at our root node, gives us the outcome 

shown in Figure 3.4: 
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Figure 3.4 First split on weather data (taken from Hall et al. (2009)) 

 

 

 

The IG for attribute “outlook” in the weather problem is therefore:  

IG (outlook) = info [5,9] – info [2,3], [4,0], [3,2] = IG (outlook) = 0.940 – [5/14 * 

0.971 + 4/14 * 0 + 5/14 * 0.971] = 0.940 – 0.693 = 0.247 bits 

For the IG of other 3 attributes as well, we get:  

IG (temperature) = 0.029 bits IG (windy) = 0.048 bits IG (humidity) = 0.152 bits  

 

Since maximum increase in Information Gain is important, attribute outlook at the root 

node is selected.  This is done recursively for nodes created subsequently, and no 

descendent nodes of a node should be split on a nominal attribute already used before. 

DTs usually stop growing either when there are no attributes remained to split on.  In 

section 3.2.6 two ways of pruning decision trees, tree raising and tree replacement that 

is used to make DTs smaller thus decreasing overfit for training data will be explored. 
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3.2.6 Optimization of Decision Trees 

 

Generally Decision Trees is to first fully grow the tree so that each leaf only contains 

samples belonging to one class and this might perform good classification performance 

on training set, however it might show poor performance on test set. This known to be a 

overfitting problem, thus classifier being too specific to training set. Making decision 

trees impure to some degree, they do better when applied to new data.  Modifying the 

fully grown tree so that it becomes more suitable for classifying new data is called post-

pruning and usually consists of one (or both) of the following operations: subtree 

replacement and subtree raising. 

 

 

3.2.6.1 Subtree replacement 

 

Subtree replacement involves eliminating internal nodes of part of a tree (subtree) and 

replacing them by a leaf node found at the bottom of the subtree being eliminated.  

Figure 3.5 below, which represents labor negotiations in Canada, clarifies the idea.  The 

label “good” indicates that both labor and management agreed on a specific contract.  

The label ”bad” indicates that no agreement was reached.  The whole subtree starting at 

the node working hours per week in Figure 3.5a has been replaced by the its leaf node 

bad in Figure 3.5b. 

 

 

 



 

    
 

29 

 

Figure 3.5 Subtree replacement.  Taken from the book ‘Data Mining: Practical 
Machine Learning Tools and Techniques’ (modified) 

 

 

3.2.6.2 Subtree raising 

 

In subtree raising, a subtree that was lower before in a tree is moved up to occupy a 

higher position, substituted for what was previously found in that position (Figure 3.6). 

 

 

Figure 3.6 Subtree raising.  Taken from the book ‘Data Mining: Practical Machine 
Learning Tools and Techniques’ 
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In Figure 3.6 , node C has been raised and substituted for node B.   

 

In this chapter there were various ways to build and optimize decision trees.  The choice 

of method is usually driven by the accuracy of classification and a balance must be 

reached between having a decision tree built based on and optimized for the training 

data (which therefore classifies those training samples very well) and a tree that is able 

to perform well on unseen (new) test data.  In the next section (section 3.3.7, DT 

classifier in our experiments called J48 is explained briefly, that has built-in ways of 

deciding on the optimal final decision tree. 

 

 

3.2.7 DT scheme used in our experiments: J48 

 

The C4.5 algorithm was developed by Ross Quinlan (Quinlan, C4.5: Programs for 

Machine Learning, 1993) and builds upon Quinlan’s previous ID3 algorithm (Quinlan, 

1986) C4.5 is probably the most widely used DT algorithm in machine learning and a 

benchmark algorithm against whose performance any other algorithm should desirably 

be compared.  It is a top-down, depth-first algorithm and uses a divide-and-conquer 

strategy.  For numerical attributes, C4.5 makes use of binary splits (see Figure 3.7 

below) and for nominal attributes it might use other n-ary splits (binary, tertiary, etc.).  

The default is to perform post-pruning and in the pre-pruning training process, nodes 

are split until they are pure, meaning they contain only samples belonging to a single 

class.  Information Gain (IG) is used to decide which attribute is used for splitting a 

certain node and in the post-pruning process estimation of error is calculated by 

supposing that every sample that reaches a leaf will be classified as belonging to the 

majority class in that leaf.  We can see below in Figure 3.7 The C4.5 algorithm applied 

to the weather data (visualization taken from WEKA) what a typical C4.5 Decision Tree 

looks like, applied to the weather data set that comes with WEKA. 
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Figure 3.7 The C4.5 algorithm applied to the weather data (visualization taken 
from WEKA) 

 
 
 
 
3.3 NAÏVE BAYES 

 

Naïve Bayesian classifiers that are based on Bayes’ Theorem are probabilistic 

algorithms for classification and which make the strong (naïve) assumption that the 

variables in the data are independent from one another.  It means that, it assumes that all 

features in the datasets are independent of another one, however the class variable C is 

dependent on each of the features. “Naïve Bayes is widely used in machine learning due 

to its efficiency and its ability to combine evidence from a large number of features” 

(Schütze, 1999). However, as in the protein classification experiments, many of the 

variables are not independent from one another and treating them as if they were might 

lead to a decrease in the classification accuracy of classifiers such as Naïve Bayes. 
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A Naïve Bayesian model must first approximate the parameters that will be used by the 

model in order for it to arrive at a classification.  These parameters are class probability 

and the feature probability distributions, both of which are calculated based on the 

training set.  A class’s prior can be calculated by dividing the number of samples in the 

training set that belong to that class by the total number of samples in the training data. 

The feature probability distributions can be calculated by first separating the data set 

into the different classes and then calculating, for each attribute in each class, the mean 

and variance of that attribute in that class.   If µ2 is the mean of the values of X 

regarding class c, and σ2c to be the variance of the values of X regarding class c, then 

the probability of a certain value of X given a class, P (x=v | c) can be found by 

inserting it in the equation of a normal distribution containing as parameters the mean 

and covariance of the values of X for a specific class: 

 

 

! ! = ! ! = ! !
!!!!!!

!!!!
!!!!!!
!!!!!                                        (3.4) 

 

 

In order to make a decision as to which class a certain data sample belongs to, the 

model calculates the conditional probability of each possible class given the observed 

values of each of the features present in the data.  The Naïve Bayesian probabilistic 

model is described below: 

Probability (C | F1, F2, F3, …, Fn ) = P (C) * P (F1|C ) * P (F2 |C ) * … * P 

(Fn |C ) / P (F1… Fn)                                  

(3.5) 

 

 

The denominator of the formula does not depend on the class and since the feature 

values are given, only nominator is enough to be calculated.  Therefore, the probability 

of a sample belonging to a certain class is given by this updated formula: 



 

    
 

33 

 

!(!) ! !! ! !)
!

!!!
 

(3.6) 

 

 

Each  possible values of the target class (C) in the data is calculated and the class whose 

probability is the highest is chosen: 

 

!"#$$%&'! !!,… . , !! = !!"#$!%! !! ! = ! !!(!! = !!!!(! = !)!
!!!           (3.7) 

 

Decision Trees and Naïve Bayesian Classifiers was mentioned in this chapter.  In 

addition, each Decision Scheme scheme has its own specificities.  Depending on the 

data, one classifier might  perform better over another and show much better accuracies, 

to find out which is better they should be run. They both try to decide on an optimal 

classifier configuration based on the features and their values, to increase the accuracy 

of classification. In addition to these, Support Vector Machines, which shows worse 

than DT and NBC is used but it is not detailed in this work.  

 

 

3.4 Feature Selection 

 

Supervised classification in bioinformatics is challenging partly because of the high 

dimensionality of the input variables.  Many learning algorithms are known to lose 

accuracy when unnecessary features are given as input.  Moreover, accuracy of some 

classification algorithms’ like Naïve-Bayes may decrease quickly if correlated features 

are added (Kohavi & John, 1997).  Those redundant features duplicate much or all of 
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information contained in one or more other attributes.  To tackle with the problems 

feature selection is used to remove irrelevant, redundant or noisy data by selecting a 

subset of the original feature set (Liu & Yu, 2005). 

 

Feature selection is required if the dimension of input variables are higher than number 

of samples.  Dimension reduction or feature selection has various advantages such as (i) 

providing more human understandable information and allow the data to be more easily 

visualized by focusing on a smaller number of features; (ii) generating more accurate 

estimates by excluding noises and reducing overfitting and (iii) provide faster and more 

efficient models that use less time and memory (Ma & Huang, 2008; Guyon & Elisseeff, 

2003; Saeys et al., 2007) 

 

Feature selection methods can be classified into three categories: filter, wrapper and 

embedded.  First two are the most known ones, and embedded is used frequently user 

has no knowledge it is being used as it’s built in some classifiers.  Filter approach 

separates feature selection from classifier construction.  Although their simplicity and 

efficiency, they are not effective excluding redundant and correlated features (Koller & 

Sahami, 1996).  Wrapper approach evaluates classification performance of selected 

features and keeps searching until certain accuracy criterion is satisfied.  Wrappers can 

be computationally expensive and have a risk of overfitting to the model.  Embedded 

approach embeds feature selection within classifier construction, tree classifications 

with pruning is an example of this type. 

Feature selection algorithms with filter and embedded models may return either a subset 

of selected features or the weights (measuring feature relevance) of all features.  

According to the type of the output, they can be divided into feature weighting and 

subset selection algorithms.  Algorithms with wrapper model usually return feature 

subset. Figure 3.8 shows how the process of feature selecting works.  Firstly with subset 

generation, a selected search algorithm produces candidate feature subsets.  Each subset 

is then evaluated and compared to others according to a given evaluation criterion.  



 

    
 

35 

After comparison of all subsets repeatedly until stopping criterion, best one is selected.  

Finally selected subset is validated using the pre-selected classifier. 

 

 

Figure 3.8 Different components in the standart feature selection 

 

Filter methods rank each feature according to some metrics such as Information Gain, 

Chi-Squared, and Pearson Correlation Coefficient to rank highest features and 

remaining low ranking features are removed.   

 

As filter methods explains how useful of a feature is by using a metric, wrapper 

methods gives that information via integrating with a learning method.  So the features 

are optimal for that learning method. 
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Feature selection should not be confused with other methods such as feature extraction, 

feature construction, feature weighting and feature creation.  Feature extraction is a 

method that higher dimensional space is projected into lower dimensional one by using 

linear algebra, transformations or combinations.  An example to feature extraction can 

be given as PCA (Principal Component Analysis) that creates new features with linear 

combinations of original features to maximize variation in the data. (Blum & Langley, 

1997)  

 

 

3.4.1 Filter Methods 

 

Filter name comes from how they work, that is filtering out irrelevant features before 

induction occurs.  From the characteristics of training set, some features are selected 

and others are excluded.  As learning algorithm is not used to evaluate candidate sets, 

they can be combined with any learning algorithm after the filtering is complete.  As a 

benefit, filter methods are a computationally efficient form of data pre- processing, 

unlike wrapper methods (Blum & Langley, 1997). 

 

Figure 3.9 shows generalized form of a filter algorithm. Given  a dataset D, begin with a 

given subset S0 (an empty set, a full set, or any randomly selected subset) and search 

through the feature space using a defined search strategy (may be forward or backward 

selection).  Each generated subset S is evaluated by an independent measure M and 

compared with the previous best.  If a better one is found, it’s flagged as best.  Until a 

stopping criterion defined the search continues.  The last current best subset S(best) is 

selected as best subset for final feature subset (Liu & Yu, 2005). 
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Figure 3.9 Generalized Filter Algorithm taken from (Liu & Yu, 2005) 

 

 

There are various filtering metrics, one is correlation with the target function and then 

select the k features with the highest values.  Other commonly used metrics are 

Information Gain, Odds Ratio, Log Probability Ratio, FOCUS, RELIEF, Potential 

Difference, Pearson Correlation Coefficient. 

 

Some problems with filtering methods may arise, for example if the number of selected 

features are too high, then irrevelant features may be selected.  If the number is too low, 

then relevant features might not be selected.  Both of the situations will effect accuracy, 

especially in Naïve Bayes.  Additionaly, as filtering methods don’t work in conjunction 

with learning algorithms, they may miss some useful features. 
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3.4.2 Wrapper Methods 

 

As they work closely with the learning algorithm, not as pre-processor or post-processor, 

they are called with name Wrapper.  Their advantage is having better accuracy 

compared to filter and embedded methods.  Classifier, which will use the feature subset 

should provide a better estimate of accuracy than a separate. 

 

 

 

Figure 3.10 Generalized wrapper algorithm (Liu & Yu, 2005) 

 

Figure 3.10 shows pseudo-code for the wrapper method.  For each generated subset S, 

the algorithm is evaluated by applying the learning algorithm to the data with subset S 

and evaluating the accuracy.  Therefore, different learning algorithms may produce 

different feature selection results.  Varying the search strategies via the function 

generate(D) and learning algorithms (A) can result in different wrapper algorithms.  
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Learning algorithm is used for feature selection, so the feature set depends on that 

algorithm, and is supposed to give better performance for accuracy.  However compared 

to filter methods, they are more computationally expensive. (Liu & Yu, 2005) 

 

 

 

 

 



 

    
 

4. Experiments 

 

 

4.1 Data Set 

 

As previously introduced, not all cohesin and dockerins interact with each other so 

researchers classified them into three categories known as Type-I, Type-II and Type-III 

modules. Thus, only a Type-I dockerin and cohesin will interact.  Cohesin modules 

include 140 amino-acid residues and they do not have tryptophan, tyrosine, and cysteine 

residues.  The dataset is provided by Weizmann Institute of Science and it is separated 

into Training and Test sets as seen Table 4.1 and redundant sequences are removed. 

The dataset contains 128 instances, and the distribution of them are seen in Table 4.1. 

 
 

Table 4.1 Distribution of Cohesin sub-families in our Dataset 

 
  # of sequences 

Training Set 
Type I 42 
Type II 26 
Type III 5 

Test Set 
Type I 34 
Type II 17 
Type III 4 
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Dataset contains very unbalanced classes for instances, because type 3 sub-family of 

cohesin is too low.  As a result we’ll also include balanced accuracy to evaluate the 

results. 

 

4.2 Amino Acid Grouping Schemes 

 

When n-grams are used for feature extraction from a sequence, number of features 

increase from 20 to 20^n with a sequence of length n.  To overcome this, the standard 

amino acid alphabet consisting of 20 amino acids can be grouped using substitution 

matrices, bio-chemical properties or inter-group energetic interactions.  Reducing the 

number of amino acid alphabet makes computation more effective. and minimizes noise 

on sequence representation (Davies et al., 2008).  In this study, grouping schemes are 

the key element of increasing probability to find protein motifs by detecting similar n-

grams in addition to identical ones. 

The grouping schemes used for motif extraction and classification phase in this work 

and where they are taken from are shown in Table 4.2 alphabetically. 

 

Table 4.2 Reduced amino acids used in this work 

 
Alphabet Size Reference 
Ab 10-19 (Andersen & 

Brunak, 2004) 
Davies 7, 9 (Cobanoglu et al., 

2011) 
Dssp 10-14 (Solis & 

Rackovsky, 2000) 
Gbmr 10-14 (Solis & Rackovsky, 

2000; Hall, Frank, 
& Holmes, 2009) 

Hsdm 10,12,
14-17 

(Prlic et al., 2000) 
(Li et al., 2003) 

Lwi 10-19 (Prlic et al., 2000) 
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4.3 Class Specific Motif Scoring Function 

 

A motif is expected to be class-specific if it is seen in one family but never seen or seen 

in few numbers on other families.  A scoring based function should be used to find 

those motifs and eliminate useless ones from the list of all motifs.  This would give a 

motif, which is found in many sequences in a family a high score.  Motifs that occur in 

few sequences in one family or occur multiple families would be given low score that 

helps them be removed from high correlated list of motifs.   

As discussed above, scoring function uses n-grams to find discriminative motifs from 

given protein sequences.  To give lower score to the n-grams that are found in multiple 

families, we were inspired from a wide known method in text mining The Term 

Frequency Inverse Document Frequency (TFIDF) (Salton, 1991).  This metric is 

combined with discriminatory ratio (DR) of n-gram in a family against other families. 

Occurrence frequency of a motif in only one sequence of a target family is not same as 

occurrence frequency in a high ratio of sequences. Thus in order to compare 

discriminatory ratio (DR), we need to find Motif Occurrence Rates of motifs. 

 
 
 
 
 
 
 
 
 

Lzbl 10-16 (Liu et al., 2002) 
Lzmj 10-16 (Liu et al., 2002) 
Ml 10-15 (Murphy et al., 

2000) 
Sdm 10-14 (Prlic et al., 2000) 
Sezerman 11 (Cobanoglu et al., 

2011) 
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Definition 1. Motif Occurrence Rate in Family 

 

MORF(i, f ) =
{s ∈ f : i ∈ s}

f                     (4.1) 
 
 
 
where, 

• {s ∈ f : i ∈ s} : number of sequences of family f where the motif i appears. 

• f  is the total number of sequences in family f   
 
 

 
 
 

Definition 2.  Discriminatory Ratio (DR) 

 

DR(i, f ) =log( MORF(i, f )
{MORF(i,m) :m ∈ F,m ≠ f }

)
                    (4.2) 

where, 

• MORF (i, f) is Motif Occurrence Rate of i in family f, 

• m is a family in set F that is not f, 

• MORF(i,m)  is arithmetic mean of motif i’s occurrence rate in all m (family 

except f). Minimum rate of 0.1 added to the mean to prevent division by zero. 

 
Discriminatory Ratio gives a high score if an n-gram is highly occurred in family f, and 

found less in others. However, regardless of occurrence rate, if more than one family 

includes the motif, then that motif will not be specific to a family.  So inspired from 

Inverse Document Frequency, Inverse Family Frequency is calculated. 
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Definition 3.  Inverse Family Frequency (IFF) 

 

IFF(i) = log(
F

{ f ∈ F :MORF(i, f )> 0}
)
               (4.3) 

where 
• F is the set of all families, 

• MORF is the Motif Occurrence Rate in Family function defined above. 

 
The denominator gives number of families that contains motif i in at least one sequence. 

This is clearly similar to IDF, however IDF is for documents (or sequences in our case), 

and by using Motif Occurrence Rate it can now be used for determining inverse family 

frequency.  

By using Inverse Family Frequency (4.3) and Discriminatory Ratio (4.2), Motif 

Specificity Score (4.4) of a motif for a family can be calculated. 

 

 

Definition 4.  Motif Specificity Score (MSS) 

 
MSS(i, f ) = IFF(i)×DR(i, f )                         (4.4) 

where, 

• IFF (i, f) denotes the Inverse Family Frequency (4.3) of motif i in family f, 

• DR (i, f) denotes Discriminatory Ratio (4.2) of motif i in family f. 
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Table 4.3 Some N-Gram Motifs found using Sezerman grouping scheme 

 
Motif MSS 

(4) 
Type I  
Rate 
(1) 

Type II 
Rate (1) 

Type III 
Rate (1) 

DIS 0.54 65 % 20 % 0 % 
YID 2.36 71 % 0 % 0 % 
gYQ 0.88 5% 86 % 0 % 
RYaY 2.77 0 % 0 % 100 % 

 

   

                                                   

Motif Specificity Score of a motif for a particular family is positively correlated with 

the occurrence rate of a motif in that family but inversely correlated with the occurrence 

rate in families, which that motif is present in other families. 

MSS is calculated for every motif and family, however by comparing the higher 

occurrence rate beforehand, only higher values are used for numerator in DR.  As result, 

instead of running time O(n), O(logn) is achieved. 

 
 
 
 

4.4 Motif Discovery Results 
 
 

To verify our Motif Specificity Function, we tested the algorithm with training dataset 

that consist of sub-families of Cohesin: Type I, Type II and Type III.  

We calculated both the occurrence rates and Motif Specificity scores of every n-gram 

motif with different size of n in cohesin families using training dataset.  

Some results obtained using Sezerman amino acid reduction scheme is seen on Table 

4.3.  Analysis has shown that as more families include a motif, MSS drastically 

decreases by the effect of IFF. This can be clearly seen from “YID” and “DIS” motifs. 
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In addition, occurrence numbers of common motif is also important.  As the gap of 

motif occurrence rates between families decreases, MSS also decrease by the effect of 

Discriminatory Ratio as seen between “gYQ” and “DIS” motifs.  

Our method is similar to what Srinivasan et al. (2013) have proposed.  However there 

are key differences between that work and ours. Firstly they used total number of motifs 

found in a family to use in discriminate ratio instead of our occurrence rate.  For 

unbalanced datasets like our cohesin family, this gave high score to the families, which 

include high number of sequences. Besides this, they used substitution matrix to extract 

n-gram motifs of sequences, and that has increased of running time complexity.  By 

using pre-substituted amino acid grouping schemes, we have omitted that additional 

time. 

 

In the figures below, the effect of MSS and grouping schemes to class specific motifs 

are shown.  If the MSS threshold is increased, number of class specific motifs decrease. 

Up until 4-grams, grouping scheme (Sezerman as chosen) has negative effect on 

number of class specific motif, that is because combinations of distinct n-grams are very 

few when n is small.  When grouping alphabets are used, this number also decreases by 

combining similar ones. 
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Figure 4.1 Specific motif number when MSS threshold is 1.5 

 
 

 
Figure 4.2  Specific motif number when MSS threshold is 1.8 
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Figure 4.3 Specific motif number when MSS threshold is 2.0 

 

 

4.5 Classification 

 

By sorting the results using Motif Specificity Score for each family, class-specific 

motifs are obtained and in classification phase, this is used to help classification 

methods positively alike feature selection.  Top highly correlated features with classes 

are filtered, thus motifs that contain useless information are discarded. However 

removal of redundant features is not implemented as this work is only about 

classification using class-specific motifs. 

Classification was carried out using widely distributed Weka (v3.7.9) (Hall et al., 2009) 

bindings for Java language. Support Vector Machines (LibSVM (Chang & Lin, 2001)) 

and J48 Decision Tree algorithms in standard package of Weka are used. For SVM, grid 

search to find optimal parameters on training data set is also implemented.  The 

classifier was trained using five-fold cross generate a model.  In five-fold cross 

validation, the training set is randomly partitioned into five roughly equal-sized parts. 
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Of the 5 parts, 4 parts are used as training data and the remaining single part is retained 

as the validation data for testing the model.  The cross-validation process is then 

repeated 5 times, with each of the 5 parts used exactly once as the validation data. 

Although the performance of the classifier is evaluated using cross-validation, Weka 

outputs a model built from the full training set and that model is used to test on the 

normalized test set. 

Feature values of both training and test set are normalized motif counts in each 

sequence (i.e motif count in sequence divided by total number of motifs in that 

sequence) that are calculated using 55 amino acid grouping schemes described above. 

Top n 2- to 4-gram motifs for each family that have MSS higher than zero, as n starts 

from 5 and increased by 5 until reached to 100 are selected. 

Because using every combination of the above elements required high computational 

resources, the tests were run on Amazon Web Services, Elastic Clouds 

(http://aws.amazon.com/). The framework was written in JAVA, with Weka libraries 

imported.  Another language used is Javascript which extracts all features as motifs 

from raw data of FASTA format to be classified. 

Because of very imbalanced class distribution, balanced accuracy was used that is 

defined below. 

 

Balanced accuracy!: 

!!"#$%&!!"!!"##$!%&'!!"#$$%&%'(!!"!!"#$$!!!
!"!#$!!"#$%&!!"!!"#$%"&'#!!"!!"#$$!

!
!!!

!"#$%&!!"!!"#$$%$  

(4.5) 
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4.6 Classification Results 

 

We have computed the reduced amino acid composition with 6 different n-gram sizes for 

cohesin proteins and used a feature selection procedure introduced in previous section to 

reduce the number of features that can be used to represent a protein sequence in feature 

space prior to generating a model using SVM,  J48 and Naïve Bayes classifiers to predict 

the sub-family of a protein. 

 

Table 4.4 shows classification results sorted by balanced accuracy of Test Dataset. In 

order to analyze, during constructing tables, if more than one result with the same 

accuracies obtained, priority was given to the ones that has least features (effecting 

running time), lower n-gram size and lengthier grouping size (more information in motif). 

 

Table 4.4 Classification Results sorted by Balanced Test Accuracy 

 
N-gram  Grouping Features Method B.Acc. 

Test % 
2 Dssp14 10 J48 95.55 

Dssp12 5 Naïve Bayes 95.07 

Gbmr12 15 J48 94.65 

3 Dssp13 10 Naïve Bayes 97.29 

Lzmj16 50 Naïve Bayes 96.39 

Lzmj16 15 J48 95.97 

4 Lwi11 60 Naïve Bayes 99.09 

Sezerman 25 Naïve Bayes 98.19 

Sdm12 25 Naïve Bayes 98.19 

5 Sdm13 10 Naïve Bayes 99.09 

Sdm14 15 Naïve Bayes 99.09 

Dssp10 25 Naïve Bayes 99.09 
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6 Hsdm12 15 Naïve Bayes 98.19 

Hsdm12 20 Naïve Bayes 95.97 

Hsdm12 10 Naïve Bayes 95.49 

7 Hsdm12 20 Naïve Bayes 97.29 

Hsdm12 15 Naïve Bayes 96.39 

Hsdm12 10 Naïve Bayes 95.49 
 

 
As seen in the results, N-gram size of 5, Sdm13 alphabet with 10 features for each class 

has given the best accuracy of 99.09%.  If more features are used, this accuracy can also 

be accomplished by Sdm14, Dssp10, Lwi11. 

 

When classification all features but feature number are same, increasing or decreasing 

the feature numbers from optimum, effects the accuracy negativelly. For example in 6-

gram sized motifs in Table 4.4, increasing feature number to 20 from 15 decreases 

balanced test accuracy from 98.19 % to 95.97 %. Additionaly, decreasing feature 

number from 15 to 15, decreases balanced test accuracy from 98.19 % to 95.46 %.  

 

Generally, Naïve Bayes performed as the best supervised classification method 

regardless of other criterias, whereas Support Vector Machines could not get into the 

list in Table 4.4 but experiments show that SVM has best accuracy of 93.75% being the 

least optimal classifier for our work. 

 



 

    
 

5. Conclusion 

 

 

The main task of this work was classification of cohesin protein sequences and finding 

class discriminative motifs of each type.  Because all the proteins are similar, to find 

best classification model, different combinations of n-grams sizes, amino acid 

groupings/alphabets, feature numbers and classification algorithms were used. 

 

N-grams help improve local ordering of amino acids by combining them.  Similarly, 

amino acid groupings help reduce complexity of the sequences by grouping them and 

associating to one amino acid according to their properties.  Both of them are used to 

find motifs that have high specificity for the protein sub-families. 

 

As the result of classification tasks using class specific motifs selected by different n-

gram sizes, amino acid groupings success rate of 99.09 % is achieved. It is possible to 

find class-specific motifs with the method described in this work using Reduced Amino 

Acid Alphabets with n-grams that discriminate Cohesin family proteins and those motifs 

can be used for supervised classification to accurately classify Cohesin proteins. 
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