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ABSTRACT 

 

 

 

Complex networks are a powerful modeling tool, allowing the study of countless real-

world systems.  They have been used in very different domains such as computer science, 

biology, sociology, management, etc.  Authors try to characterize them using various 

measures such as degree distribution, transitivity or average distance.  Their goal is to 

detect certain properties such as the small-world or scale free properties.  Previous works 

have shown some of these properties are present in many different systems, while others 

are characteristic of certain types of systems.  However, each one of these studies 

generally focuses on a very small number of measures and networks.  In this work, we 

aim at using a more systematic approach.  We first constitute a corpus of 152 publicly 

available networks, spanning over 7 different domains.  We then process 14 different 

topological measures to characterize them in the most possible complete way.  We apply 

standard data mining tools to study correlation between the properties  and identify which 

ones are discriminant or non-discriminant.   An ANOVA completed by Tukey’s test 

reveals two groups of domains can be distinguished in terms of average degree, 

modularity, transitivity and density.  We apply cluster analysis tools to confirm these 

results, and find two more precisely defined clusters, in which the 7 domains are clearly 

separated (3 in a cluster, 4 in the other).  An additional ANOVA confirms the previously 

mentioned measures are discriminant indeed, and additionally identifies diameter, 

average distance, closeness centrality, local transitivity and edgebetweenness centrality. 

 

Keywords: Complex networks, clustering, ANOVA, Tukey’s test, biomolecular 

networks, social networks, citation networks, computer networks, ecological networks, 

transportation networks. 
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RESUME 

 

 

 

Les réseaux complexes sont un puissant outil de modélisation, permettant l'étude des 

innombrables systèmes du monde réel.  Ils ont été utilisés dans des domaines très 

différents comme l'informatique, la biologie, la sociologie, la gestion, etc.  Les auteurs 

tentent généralement de les caractériser en utilisant diverses mesures telles que la 

distribution de degré, la transitivité ou la distance moyenne.  Leur but est de détecter 

certaines propriétés telles que les propriétés petit-monde ou sans-échelle.  Des travaux 

antérieurs ont montré que certaines de ces propriétés sont présentes dans de nombreux 

systèmes différents, tandis que d'autres sont, au contraire, caractéristiques de certains 

types de systèmes.  Cependant, chacune de ces études se concentre généralement sur un 

très petit nombre de mesures et de réseaux.  Dans ce travail, nous utilisons une approche 

plus systématique.  Nous constituons d'abord un corpus de 152 réseaux accessibles au 

public, s'étendant sur sept domaines différents.  Nous traitons ensuite 14 mesures 

topologiques différentes, permettant de les caractériser de manière relativement 

complète, au regard des connaissances actuelles.  Nous appliquons des outils d'extraction 

de données standard pour étudier la corrélation entre les propriétés et déterminer celles 

qui sont discriminant ou non discriminante.  Une analyse de la variance complétée par le 

test de Tukey révèle deux groupes de domaines peuvent être distingués en termes de 

degré moyen, la modularité, la transitivité et la densité.  Nous appliquons des outils 

d'analyse de cluster pour confirmer ces résultats, et nous trouvons deux plus précisément 

défini clusters, dans lequel les 7 domaines sont clairement séparées (3 dans un cluster, 4 

dans l'autre).  Une analyse de variance supplémentaire confirme les mesures mentionnées 

précédemment sont en effet discriminantes, et identifie en outre le diamètre, la distance 

moyenne, la centralité de proximité, transitivité locale et la centralité edgebetweenness. 
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ÖZET 

 

 

Sayısız gerçek sistemi, etkileşim halindeki düğümler ve aralarındaki ilişkileri kullanarak 

incelleyen karmaşık ağlar güçlü bir modelleme aracıdır.  Bilgisayar bilimlerinden 

biyolojiye, sosyolojiden yönetim bilimlerine kadar pek  çok farklı alanda 

kullanılmaktadır.  Karmaşık ağ analizinde, uygulandığı sistemin ilk bakışta 

belirlenemeyecek özellikleri ortaya çıkarılmaya çalışılır.  Bu kapsamda derece dağılımı, 

geçişlilik veya ortalama uzaklık gibi çeşitli ölçekler kullanarak ağ yapıları karakterize 

edilmeye çalışılmaktadır.   Küçük Dünya etkisi ya da Ölçeksiz ağ gibi bazı karakteristik 

karmaşık ağ özellikleri bu şekilde tespit edilir.  Önceki çalışmalar farklı alanlardaki 

karmaşık ağların benzer karakteristik özellikler taşıdığını göstermiştir.  Ancak bunlar, 

genel olarak az sayıda ağ üzerinde ve az sayıda ölçekğe odaklanarak gerçekleştirimiştir.   

Bu çalışmada önceki çalışmalardan farklı olarak daha sistematik bir yaklaşım 

kullanılması hedeflenmiştir.  Bu doğrultuda Bimoleküler, Sosyal, Ekolojik, Bilgisayar, 

Ulaşım, Alıntı ve İletişim olmak üzere 7 farklı alandan toplamda 152 tane yayınlanmış 

ağ toplanarak bir ağ havuz oluşturulmuştur.  Havuzu oluşturan ağların, mümkün olan en 

detaylı  şekilde karakterize edilebilmesi için 14 farklı topolojik ölçek kullanılmıştır.  

Ardından, standart veri madenciliği algoritmaları kullanılarak ölçümler arasındaki 

korelasyon belirlenmiştir.  Tukey testi ile tamamlanan Varyans Analizi sonucunda 

havuzda bulunan ağ alanları iki gruba ayrılmıştır.  Bu şekilde bir guruplaşmaya sebep 

olan ölçekler ortalama uzaklık, geçişlilik, modülerlik ve ıolarak belirlenmiştir.  Bu 

sonucu doğrulamak için uygulanan kümeleme algoritmaları sonucunda da, önceki testi 

doğrular şekilde, 7 farklı alanın bir kümede 4(Biomoleküler, Ulaşım, Alıntı, Bilgisayar) 

ve diğerinde 3 (Sosyal, İletişim and Ekoloji) alan olacak şekilde 2 kümede gruplandığı 

gözlenmiştir.  Kümeler ile yapılan ek bir Varyans Analizi de önceki analizin belirttiği 

ölçekleri doğrularken, bunu yanı sıra ağ çapı, ortalama mesafe, yakınlık merkezi konumu, 

yerel geçişlilik ve bağlantı merkeziliği ölçeklerini işaret etmiştir. 
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1 INTRODUCTION 

 

 

 

A complex system is a specific type of real-world system, i.e.  a set of interacting 

elements relatively isolated from their environment, and possessing some emerging 

properties (Costa, Osvaldo et al. 2011).  Such a property is not present at the level of a 

single element, but appears when considering the system as a whole.  Its study 

consequently requires focusing on the interactions between the system elements.  For this 

purpose, graphs are a very appropriate modeling tool, in which elements and their 

relations are represented by nodes and links, respectively.  And indeed, they have been 

used as such in a number of domains such as computer science, physics, biology, 

sociology, etc.(Newman 2003).  The graph representation of a complex system is called 

a complex network.  Such a graph has non-trivial topological properties, due to the 

specific features of the complex system it represents.  Concretely, this means complex 

networks differ from both regular and random graphs. 

 

Graphs can be characterized by many different measures, each one reflecting some 

particular traits of the studied structure.  One can cite the degree, the transitivity, the 

distance between nodes, the density, etc.  Some of these measures have been used to 

detect certain properties, seemingly very widespread in complex systems.  For instance, 

it is now well known that many complex networks are scale-free, meaning their degree 

is power-law distributed (Newman 2003).  Many of them also possess the small-world 

property, i.e.  the average distance between their nodes increases only logarithmically 

with the number of nodes (Orman 2010).  Complex networks are also known to have a 

transitivity several order of magnitude larger than that of random graphs of the same size 

(Newman 2003).  It is also very common for complex networks to display a hierarchical 

or a community structure (Newman 2003). 

In the past, authors have focused on one or a few properties and studied them on networks 

representing a range of systems, with the purpose of showing their omnipresence.  For 
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example, in (Watts and Strogatz 1998), Watts & Strogatz considered the transitivity and 

average distance in social, electrical and Biomolecular networks, and found out they all 

behave similarly.  On the contrary, other studies tried to show some properties are 

characteristic only of a certain class of networks.  For example, in (Lancichinetti and 

Fortunato 2009), Lancichinetti et al.  observed different topological traits in community 

structures, depending on whether the considered data correspond to a biological, social, 

information, communication or computer network.  These works highlight the 

importance of discovering regularities and discrepancies in complex networks 

topological properties.  Indeed, these properties correspond to functional features.  For 

example, a scale-free network is known to be sensitive to targeted attacks or failures, but 

resilient to random ones (Costa, Osvaldo et al. 2011).  Topologically similar networks 

are therefore likely to represent systems with functional similarities, whereas network 

classes with specific topologic properties probably have unique functional features.  

However, existing works focused on a small number of networks and/or of properties.  

The network number limitation might be due to the difficulty of accessing data at this 

time.  And for the focus on a few properties, this might be because those works were 

conducted to verify an a priori hypothesis.  For example, one goal of Watts & Strogatz 

was to check if the small-world property was present also in non-social networks (Watts 

and Strogatz 1998).   

 

In this work, we propose to adopt a systematic approach in the study and comparison of 

the topological properties of complex networks.  First, it is now possible to retrieve many 

publicly available network datasets through the Web, which allows considering a number 

of different systems.  Second, data mining techniques are able to consider a large number 

of properties simultaneously, and to automatically identify the relevant ones.  By 

considering many of them at the same time, we can find how they relate, which is not 

possible when focusing only on a few of them.  We first constituted a dataset of networks 

spanning several domains, which constitutes our first contribution.  We processed the 

most widespread topological measures for these networks, and used them as feature 

vectors to characterize them.  We then applied standard data mining tools to study them 
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depending on these features.  Our second contribution is the analysis and interpretation 

of this outcome.   

 

This study is organized as follows.  In the second section, the notion of complex network 

and selected topological measures are presented.  Section 0 describes the process we used 

to constitute our corpus, including data collection and their conversion to a unified 

format.  In section 0, we examine the corpus, focusing on the considered domains, i.e.  

the type of real-world systems represented by the collected networks.  We discuss them 

in terms of complex network representation and properties.  In section 0, we describe our 

analysis methods, mainly preprocessing, clustering and post-processing tools.  Section 0 

is dedicated to the description and interpretation of our results.  We conclude with a 

discussion of our work, its limitations and how these can be solved. 
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2 COMPLEX NETWORKS 

 

 

 

In this section, we present some concept related to complex networks, which we use in 

the rest of the document.  We first introduce some definitions regarding complex 

networks themselves, and then describe their main topological properties.   

 

 Definitions 

Graph theory is a branch of discrete mathematics.  However, graphs have been used to 

model all sort of real world systems, giving birth to the complex networks domain.  In 

this section, we first give basic definitions of concepts related to graph theory, then define 

and illustrate the notion of complex networks. 

 

 Graph, Nodes and Links 

A plain graph 𝐺 = (𝑉, 𝐸) is constituted of a set of nodes 𝑉 and a set of links 𝐸.  When 

modeling systems, nodes generally represent the system elements, and links the 

relationships between them.  The links are attached to the nodes, allowing to connect 

them.  The number of nodes is 𝑛 = |𝑉| and that of links is 𝑚 = |𝐸|.  The neighborhood 

of a node 𝑢, noted 𝑁(𝑢) corresponds to the set of nodes directly connected to it.  It is 

formally defined as: 

                                     𝑁(𝑢) =  {𝑣 ∈ 𝑉 ∶  𝑒𝑢𝑣 ∈ 𝐸 ∨ 𝑒𝑣𝑢 ∈ 𝐸}                (2.1) 

 

Various properties can be added to the graph mathematical object (Newman 2003; 

Ghoshal 2009), as seen in Figure 2-1.  Note these are not mutually exclusive, and can co-

exist in the same graph. 
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Directions.  Links are originally undirected, i.e.  there is no difference between the two 

connected nodes (Figure 2-1-a, -b).  However, it is possible to introduce such a 

distinction, and to consider one node is the source and the other is the target, resulting in 

a so-called directed link (Figure 2-1-c, -d, -f).  Those can be used to represent asymmetric 

relationships, whether undirected links represent a symmetric relationship, or the absence 

of information regarding this aspect of the relationship. 

 

Weights.  Numerical weights can be associated to the links (Figure 2-1-b, -d).  This 

allows representing relationships of different strength or intensity.  Unweighted links 

represent the absence of such information, or the fact all relationships are similar (Figure 

2-1-a, -c, -e, -f, -g, -h).   

 

Multiple links.  In plain graphs, there can be only 0 or 1 link between two given nodes.  

However, it is possible to relax this constraint and allow multiple links between two 

nodes, resulting in a so-called multiplex graph (Figure 2-1-f).  This is convenient to model 

a system in which several independent types of relationships exist simultaneously. 

 

Multipartite graphs.  When the set of node can be partitioned in way such that links 

exist only between nodes of two different parts, then the graph is said to have a 

multipartite structure.  In particular, if there are 2 or 3 parts, the graph is bipartite (Figure 

2-1-g) or tripartite, respectively.  By opposition, classic graphs are unipartite, i.e.  there 

is only one part, with internal links (Figure 2-1-a, -b, -c, -d, -e, -f, -h).  Multipartite graph 

are useful to model systems in which different kinds of nodes exist in the same network. 

 

Dynamic graphs.  It is possible to introduce a temporal dimension, by considering not a 

single graph, but rather a series of graphs corresponding to the different steps in the 

evolution of the dynamic graph.  In terms of modeling, each one is a snapshot of the 

considered system.  By opposition, classic graphs are called static. 

 

Hypergraphs.  Those are a generalization of the concept of graph, in which one link can 

connect more than two nodes (Figure 2-1-h) Such a link is therefore called a hyperlink.  

This kind of graph is useful to represent systems containing n-ary relationships between 

elements, by opposition to the classic binary relationships. 
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Figure 2-1 (a) Undirected network of 6 nodes; (b) Undirected weighted network of 6 

nodes.  (a) Directed network of 6 nodes; (b) Directed weighted network of 6 nodes.  (d) 

Directed, weighted network of 6 nodes with different attributes.  (f) Multiplex network.  

(g) Bipartite network of two types of nodes with link between different types.  (h) 

Hypergraph. 

 

 

 Adjacency matrix 

 

The structure of a graph can be represented by a so-called adjacency matrix.  It indicates 

which vertices are adjacent to which nodes.  A graph of 𝑛 nodes is represented by a 

binary 𝑛 × 𝑛 matrix 𝐴, whose elements 𝑎𝑖𝑗 represent the link between nodes 𝑖 and 𝑗: 0 if 

they are disconnected, and 1 if they are connected.  Consequently, the diagonal is filled 

with zeros, provided the graph does not contain any loops (self-links).  Figure 2-2 gives 

an example of such matrix. 

(f) (e) (d) 

(g) 

(a) (c) (b) 

(h) 



7 

 

    

 

For undirected networks, the matrix is symmetric, whereas it is asymmetric for directed 

ones.  For weighted networks, the binary values are replaced by integers representing 

weights. 

 

0 0 1
0 0 0
0 1 0

   
0 0 0
1 0 0
1 0 0

     

0 0 1
0 0 0
0 0 0

   
  0 1 0
0 0 0
0 0 0

 

 

Figure 2-2 Adjacency matrix representing Figure 2-1 

 

 

 Notion of Complex Network 

A system is a set of interacting elements, which are relatively isolated from their 

environment.  A complex system is a system with emerging properties.  An emerging 

property is something that one cannot observe at the level of the elements, but which is 

present at the level of the whole system (or possibly some of its subparts).  In other terms: 

the system as a whole is more than the sum of its parts. 

A certain number of properties, although not strictly needed, are generally observed in 

complex systems (Estrada, Fox et al. 2010): 

 Heterogeneity.  Interactions between objects are not distributed uniformly.  In 

particular, not all objects interact together. 

 Locality.  Interactions are local; i.e.  the system is generally not centralized. 

 Feedback.  Interactions constitute feedback loops, allowing a node to 

indirectly affect its own state at a later time, through a chain of interactions. 

 

These properties, in turn, cause other properties to appear: 

 

 Segmentation.  Because of the heterogeneity and locality, groups of 

components appear, which interact more relatively to the rest of the system. 
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 Hierarchy.  Each group can be in interaction with other groups, constituting 

groups of groups, and so on.  This lead to several hierarchical levels in the 

system. 

 Fractal structure.  The objects can be complex systems themselves, and so 

on with their own components (e.g.: people in a social network). 

 Nonlinear behavior.  The presence of numerous feedback loops affects the 

dynamics of the system, and can lead to oscillations or other instable states. 

 

Graphs representing complex systems are generally referred to as complex networks.  

They differ with classic graphs in the sense those are deterministic and regular (clique, 

lattices, etc.), and with random graphs in the sense their topology does not depend only 

on a random process.  This relates to the properties displayed by complex systems 

concerning them including both chaotic and probabilistic mechanisms.  The property of 

heterogeneity observed in the complex systems translates into what is called a non-trivial 

topology in the complex networks, i.e.  neither regular nor completely random.  Those 

properties are described in the following subsections. 

 

 Topological Properties 

 

In this section, the topological properties used in this study are briefly described.  We 

focus on the most popular ones in the complex network literature.  Here, we distinguish 

local and global measures, i.e.  those concerned with individual nodes or links, and those 

describing the network as a whole.   

 

  Local Properties 

 

Degree.  This nodal measure corresponds to the number of links attached to a node 𝑢, or 

in other words, to the size of its neighborhood |𝑁(𝑢)|.  In real-world networks, it often 

follows a power law, leading to the so-called scale-free property.  The degree 𝑘(𝑢) of a 

node 𝑢 can also be formally defined using the adjacency matrix: 
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𝑘(𝑢) = ∑ 𝑎𝑢𝑣

𝑣∈𝑉

        (2.2) 

 

Distance.  The geodesic distance 𝑑(𝑢, 𝑣) between two nodes 𝑢 and 𝑣 corresponds to the 

length of the shortest path between them.  The distance distribution has been especially 

studied in the context of computer networks such as the Internet.   

 

Eccentricity.  This nodal measure 𝑒(𝑢) corresponds to the largest distance between a 

node 𝑢 and any other node 𝑣 ∈ 𝑉 ∖ 𝑢 (Freeman 1978).   

 

𝑒(𝑢) = 𝑚𝑎𝑥𝑣∈𝑉𝑑(𝑢, 𝑣)        (2.3) 

 

Betweenness centrality.  This nodal measure 𝑐𝐵(𝑢) is the number of shortest paths going 

through a node 𝑢.  In (2.4), 𝜎𝑣𝑤 denotes the total number of shortest paths between nodes 

𝑣  and 𝑤, and 𝜎𝑣𝑤(𝑢) is the number of shortest paths between 𝑣 and 𝑤 going through 𝑢 

(Freeman 1978). 

𝑐𝐵(𝑢) = ∑
𝜎𝑣𝑤(𝑢)

𝜎𝑣𝑤
𝑣<𝑤≠𝑢

 (2.4) 

 

Closeness centrality.  This nodal measure 𝑐𝐶(𝑢) is the inverse of the sum of distances 

between the node of interest 𝑢 and all the other nodes 𝑣 ∈ 𝑉 ∖ 𝑢.  It quantifies how close 

a node is from the rest of the network, in average.    

 

𝑐𝐶(𝑢) =
1

∑ 𝑑(𝑢, 𝑣)𝑣<𝑢
     (2.5) 

 

Local transitivity.  This nodal measure 𝐶(𝑢) corresponds to a ratio: the number of 

triangles including the node of interest 𝑢, to the number of possible triangles centered on 

this node.  It can be interpreted as the probability for a link to exist between to randomly 

picked neighbors of the node of interest (Watts and Strogatz 1998).   
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𝐶(𝑢) =  
|𝑒𝑣𝑤 ∈ 𝐸: 𝑣, 𝑤 ∈ 𝑁(𝑢)|

𝑘𝑖(𝑘𝑖 − 1) 2⁄
    (2.6) 

(Newman 2003) 

Edgebetweenness.   This measure 𝐶𝐸(𝑒) represents the number of shortest paths 

containing the link 𝑒.  Links with high edge-betweenness centrality corresponds to 

bridge-like connectors between two parts of a network (Girvan and Newman 2001).  In 

the following formula, 𝜎𝑢𝑣(𝑒) is the number of shortest paths between 𝑢 and 𝑣 containing 

the link 𝑒: 

 

𝐶𝐸(𝑒) =  ∑
𝜎𝑢𝑣(𝑒)

𝜎𝑢𝑣
𝑢<𝑣

    (2.2) 

 

 Global Properties 

 

Density.  This global measure noted 𝛿(𝐺) corresponds to the ratio of existing to possible 

links in the network 𝐺.  It ranges from 0 (no link at all) to 1 (all nodes are connected) 

(Orman 2010).  Real-world networks are generally considered to be very sparse, with 

density close to 0.1.   

 

𝛿(𝐺) =  
𝑚

𝑛(𝑛 − 1) 2⁄
 (2.3) 

 

Diameter & radius.  The diameter 𝐷(𝐺) is the maximal distance between two nodes in 

𝐺.  It also corresponds to the maximum eccentricity over the network, i.e.:  

 

𝐷(𝐺) = max
𝑢∈𝐺

𝑒(𝑢)  (2.4) 

On the contrary, the radius 𝑅(𝐺) is the minimum eccentricity of the network (Dehmer 

2011), i.e.: 

 

𝑅(𝐺) = min
𝑢∈𝐺

𝑒(𝑢)  (2.5) 
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Transitivity.  This measure, which is also called clustering coefficient, corresponds to 

the proportion of triangles in the network (Newman 2003).  As such, it ranges from 0 (no 

triangles) to 1 (all possible triangles exist).  It can be interpreted, when picking randomly 

a node, as the probability for two of its neighbors to be connected.  According to the 

literature, the transitivity ranges from 0.1 to 0.8 in real-world network (Newman 2003).  

In (2.6)  𝛾(𝐺) is the number of subgraphs with 3 links and 3 nodes (i.e.  triangles) and 

𝜏(𝐺) is the number of subgraphs with at least 2 links and 3 nodes (i.e.  triangles and 

incomplete triangles). 

 

𝑇(𝐺) =  
𝛾(𝐺)

𝜏(𝐺)
 (2.6) 

 

Modularity.  This measure assesses the quality of a community structure.  It corresponds 

to the proportion of links located inside the communities, minus an estimation of the 

same quantity obtained for a null model.  Consequently, its upper bound is 1 while 0 

means the community structure is equivalent to a random one.  Values observed in real-

world networks possessing a community structure range from 0.3 to 0.7 .  In the 

formulation of modularity, 𝛿(𝑢, 𝑣) is equal to 1 if nodes 𝑢 abd 𝑣 belong to the same 

community, and 0 otherwise (Newman 2006).   

 

𝑄 (𝐺) =  
1

2𝑚
 ∑ [𝐴𝑢𝑣 −  

𝑘(𝑢)𝑘(𝑣)

2𝑚
] 𝛿(𝑢, 𝑣)

𝑢,𝑣∈𝑉

 (2.7) 

 

Averages.  Besides the mentioned properties, which are global by construction, we also 

consider as global properties the averages of the previously listed local properties: 

average distance, average local transitivity, etc. 

 

.



12 

 

 

 

 

3 CONSTITUTION OF THE CORPUS 

 

 

 

This section describes the method used to constitute the corpus of complex networks 

which constitutes the basis of this work.  Many different types of complex networks are 

publicly available, especially on the web, under very different forms and formats.  

Moreover, they represent very different systems, sometimes in different ways.  Because 

of this high heterogeneity, the constitution of the corpus must follow a predetermined 

procedure in order to keep its quality high.  Moreover, describing precisely this procedure 

will allow other persons to continue this work if necessary, therefore causing the corpus 

to grow while remaining consistent.  Here, we first describe which form the corpus takes, 

and introduce various definitions used in the rest of this document.  Then, we explain the 

procedure used to collect and format the suitable data.  Finally, we review the different 

formats met to describe complex networks. 

 

 Properties of the Corpus  

 

Our corpus is basically a database of networks.  Its general description takes the form of 

a table (in an MS Excel file), and the networks themselves are stored in a normalized file 

structure.  In this subsection, we first define the vocabulary we use when referring to the 

corpus.  We then detail the information contained in the general description of the corpus, 

and then how the files used to store the network data are organized. 

 

 Corpus Related Concepts 

 

In the context of this project, a few words have a very precise meaning.  We define them 

here, in order to ease the understanding of the reader. 

 

Source.  A source is any means allowing retrieving a file representing a network.  Most 

of the time, it is a web page.  But the source can also be internal, when the data come 
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from some previous experiment of our research team, in which case we have a direct 

access to them.  When the data are not publicly available through the web, but are 

nevertheless referred in some article, we might be able to get them from the article author, 

which constitutes a third type of source. 

 

Dataset.  The dataset corresponds to all the data originally retrieved from a source, for 

a given network.  Each dataset has a specific and unique id in our corpus.  It can be 

considered as the raw representation of the network.  The dataset includes a data part and 

a meta-data part.  The data is the information directly representing the network: network 

file, or other forms such as tables.  The meta-data is all the information related to the 

network, but which is not the network itself: name, id, source, textual description, related 

bibliographic references, etc. 

 

Network File.  We call network file the normalized file representing a network and 

extracted from the data part of the dataset.  Sometimes such a file is directly available 

from the dataset.  Sometimes, the dataset contains some files representing the network 

under various other formats, in which case it must be converted to our normalized format.  

Finally, sometimes the data is not relational and the network must be extracted through 

a specific process.  By extension, the id defined for the dataset also applies to the network 

extracted from this dataset. 

 

Package.  The package is a folder which contains both the dataset and the network file.  

In other words, it contains not only the original files retrieved from the source, but also 

the normalized network file.  It also contains the R script used to extract the network file 

from the dataset (if such a script was necessary) and two files representing the topological 

properties of the network: one for global properties (transitivity, average shortest path, 

etc.) and one for local properties (degree distribution, node centrality, etc.).  If the dataset 

is the object of an article, then the package also contains a PDF of this article.  If its 

source is a web page, both the URL of the web page and a local record of it are placed in 

the package, in order to keep track in case of disappearance of the page.  By extension, 

the id defined for the dataset also applies to the package containing this dataset. 
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Corpus.  It refers to our whole database, i.e.  the set of all packages.  Each one is uniquely 

identified by the id of the dataset it contains. 

 

 General Description 

 

We use a large table to summarize the datasets constituting the Corpus.  Each dataset is 

characterized by its id, as mentioned before.  A certain number of fields are associated 

to this key, in order to get a meaningful representation of each dataset.  This table is 

meant to allow users to select datasets according to various criteria, and then apply an 

automatic processing on them.  Certain of these fields describe the dataset in general; 

others are specific to the network extracted from the dataset.  Table 3-1 gives a short 

description of all these fields. 

 

Table 3-1 Fields of the table summarizing the corpus 

Field Description Type 

id 

Unique 

identifier of 

the dataset 

Integer 

name 
Name of the 

dataset 
Text 

n 
Number of nodes 

in the network 
Integer 

m 
Number of links 

in the network 
Integer 

directed 

Whether the 

network 

contains 

directed links 

(Y), undirected 

links (N) or 

both kinds of 

links (B). 

Ternary 

weighted 

Whether the 

network 

contains 

weighted links 

(Y), unweighted 

links (N) or 

both kinds of 

links (B). 

Ternary 

attribute 

Whether nodal 

attributes are 

defined (Y), no 

attribute at all 

(N) or both (B). 

Ternary 

loop 

Whether the 

network 

contains links 

Binary 
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between one node 

and itself. 

nodes Nature of nodes Text 

links Nature of links Text 

url 
Web page of the 

dataset 
URL 

comments 

Short 

description of 

the dataset 

Text 

main 
Original format 

of the dataset 
Text 

date 

Date the dataset 

was inserted 

into the corpus 

Text 

added by 

Person who 

inserted the 

dataset into the 

corpus 

Text 

biblio 

Bibliographic 

references 

associated to 

the dataset 

Text 

 

 

One of a representative example from Corpus is Oregon route-views datasets.  Oregon 

route-views are published datasets in a web page related to a research.  From id298 to 

id318 each dataset represents a network and each network differs from the others in terms 

of number of nodes and links.  They are non-directional and non-weighted articles as 

well as there are not multiple links between nodes and neither loops in the network.  Each 

dataset has inserted into the Corpus with the URL and the representation format which it 

is published.   

 

Table 3-2 Example view of corpus 

Id 0298 0324 

name Oregon route-views high-quality biological processes 
maps PPIs 

N 10729 537 

M 22999 554 

Dir N N 

Weigh N N 

Attr  N 

Loop  Y 

Nodes  Protein 

Links   
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url http://topology.eecs.umich.edu/
data.html 
 

http://interactome.dfci.harvard.e
du/C_elegans/index.php?page=d
ownload 

comments ASs according to the Oregon 
route-views 
 

Protein-protein interactome 
network 

Main Edge list 
 

Edge list 

added 30.10.2011 
 

07.06.2012 

Added by Burcu Kantarcı BurcuKantarcı 

references (Chen, Chang et al. 2002)  

 

 

 Structure of the Packages 

 

As mentioned before, a package is a folder containing all the files related to a given 

network, including its dataset.  Its name and structure are normalized, in order to allow 

subsequent automated processing.   

 

The name is made up of the dataset unique id, followed by a dot and a string summarizing 

the network source.  For instance in Table 3-2, for the dataset described in the first 

column, the corresponding package name would be 298.Oregon.  The content 

comprises two files: 

 _original.zip: an archive containing the dataset and other related files; 

 network.graphml: the network file itself. 

The content of the archive is also normalized: 

 convert.R: if a conversion script had to be applied in order to get the final 

network file, it is always named like this. 

 description.html: if a web page describing the dataset is available, it 

is recorded locally using this exact name. 

 article.pdf: if an article describing the dataset or its analysis is 

available, then it is recorded as a PDF file.  If there are several articles, 

those are numbered chronologically. 

 ...: all dataset-files, whose names and number vary depending on the 

dataset.  Note those files must contain the original version of the network, 

http://topology.eecs.umich.edu/data.html
http://topology.eecs.umich.edu/data.html
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in case the network file was obtained after from preprocessing or 

conversion.  This allows going back to the original form in case of problem. 

If there is only one source for the dataset, then all the above files are located directly 

in the root of the archive.  If there are several sources, then each one is placed in an 

individual folder, which is itself located in the root of the archive. 

 

 

 Procedure 

 

NO 
Test of unicity 

Internet 

Insertion of new network 

 

YES 

Source identification 

source 

Description retrieval 

Dataset conversion 

Package construction 

Package Update 
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Figure 3-1 Flowchart of the corpus constitution 

The procedure used to populate the corpus includes five steps, as described in Figure 3-1.  

The meta-data are retrieved, allowing determining if the dataset is already a part of the 

corpus.  If it is not the case, then the data itself are retrieved and converted. 

 

Source identification.  The first step consists in identifying the source of the dataset.  

Depending on the type of source, the retrieval of the information will be slightly different.  

Indeed, the analysis of a full article will be more time consuming, whereas web pages 

are generally more synthetic. 

 

Description retrieval.  Thanks to the source, one can retrieve most of the meta-data, 

especially the meaning of the nodes and links, and more generally which kind of system 

the dataset represents.  It is important to retrieve the meta-data first, because it is 

necessary to perform the test of unicity (cf.  below).   

 

Test of unicity.  Each dataset present in the corpus must be unique.  This step consists 

in using the description retrieved at the previous step and those already present in the 

corpus, in order to compare the new record and the older ones.  The most important fields 

for that matter are the name of the dataset, the network sizes (numbers of nodes and links) 

and the type of system it represents.  The bibliographic reference(s) associated to the 

dataset are also very relevant, because they allow characterizing the dataset in a unique 

way.   

 

If the dataset is not already present in the corpus, then it is assigned a new id.  It is 

possible to retrieve different networks extracted from the same raw data, but using 

different methods.  In this case, both datasets are considered as different, but this 

relationship is indicated in the comments field.  Some datasets correspond to the same 

system observed at different time steps.  Then again, we consider these are different 

networks, but record their relationship.   

 

Dataset conversion.  As mentioned before; networks are represented in different file 

formats.  The next step consists in transforming the original format into the normalized 
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format used in the corpus (when necessary).  Sometimes, the dataset does not even 

contain a network file, in which case the network must be extracted from some raw data 

first.  The various scripts used for these processes are included in the package for possible 

subsequent use. 

 

Package construction.  Once the network is available under the normalized format, it is 

possible to create the corresponding package.  It contains all the files described in the 

previous section.  Finally, the dataset and its description are introduced in the table 

summarizing the corpus.   

 

 Existing Network Formats 

There are many file formats for the representation of complex networks.  Each one has 

its own advantages and drawbacks.  In this project, we favor several criteria, in order of 

decreasing importance: 

 

 Openness: the format must not be linked to a specific proprietary tool; 

 Expressiveness: the format must allow the representation of a wide variety of 

networks.  The variety depends on the properties which a network possibly can 

carry.  These properties are explained in the part 2.2. 

 Popularity: There are many research made in complex network and it is important 

to use a format mostly used in this field. 

 Verbosity: The format must clearly represent the network 

In the rest of this section, we describe the main network file formats met while 

constituting the corpus and discuss them our criteria. 

 

 Edge List 

 

This format focuses on links: each line in the file corresponds to a link of the network.  

The link is represented by citing both nodes, separated by some special character.  The 

different kinds of separators met while constituting the corpus are presented in Table 3-3.  

One node can be represented by its number in the network (integer value) or by its name 
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(text).  An example of the edge list format of a directed weighted network of 6 nodes is 

displayed in Figure 3-1 , which represents the network in Figure 2-1-b.  As a neutral 

separator is used, the edge list can also be considered as an undirected network like in 

Figure 2-1-b.  Then this information depends on the interpretation of the network.  To 

summarize the only network which cannot be represented by edge list is the Figure 2-1 

in which the nodes have some properties, between the example networks. 

n0 n2 2 

n1 n2 3 

n2 n3 4 

n3 n4 1 

Figure 3-2 Edge list example 

 

 

The content of an edge list file can be interpreted as directed or undirected links, but there 

is no way to encode this in the file itself, unless different separators are used, such as >, 

< and – are used.  So it is necessary to know in advance if the considered network is 

directed or not.  In the former case, each link is directed from the first node on the line 

towards the second one.  Weights can also be encoded by adding a third (numerical) 

value.  Alternatively, integer weights can be encoded by simply repeating the same link 

as many times as its weight. 

 

The edge list format is simple and easy to format, so it is very widely spread.  However, 

it suffers from some limitations.  The first one is that the format allows mentioning only 

connected nodes: the isolates are absent of the list of links, since they are connected to 

none of them.  The second one is its inability to let the user specifies link or node-related 

attributes.  Finally, if it is possible to represent directions, it is not always explicitly 

indicated in the file itself. 

 

Table 3-3 Types of separators met for the edge list format 

Name Character 

Semi Column ; 

Space  

Greater than > 

Smaller than < 

Hyphen - 
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 Adjacency List 

 

In the adjacency list format, each line corresponds to one node of the graph and its direct 

neighborhood.  The adjacency consists of all the nodes directly connected to the node of 

interest.  Like for the edge list format, the nodes are represented by their index or name, 

separated by special characters (usually spaces).  The central node is distinguished by its 

location (it is the first on the line) and sometimes it is additionally separated from the 

others nodes by a different character (e.g.  a column ':').    

The example below shows an example of the adjacency format corresponding to Figure 

2-1-a.  The network is simple, so the first nodes have only one node in their 

neighborhood.  Only the last one has two nodes in its neighborhood.   

n0: n2 

n1: n2 

n2: n3 

n3: n2 n4  

Figure 3-3 Neighborhood list example 

 

 

The example below shows an example of the adjacency format corresponding to Figure 

2-1-a.  The network is simple, so the first nodes have only one node in their 

neighborhood.  Only the last one has two nodes in its neighborhood.   

 

 Graphml 

 

Graphml is an XML dialect designed to represent a large variety of networks (Brandes, 

Eiglsperger et al.).  Besides the XML header, a Graphml file contains a root element 

graphml.  It contains itself various references to the appropriate XML schema and 

namespaces, and two other types of elements use to define the network-related content.  

The first type allows defining node or link attributes, whereas the second type is 

dedicated to nodes and links themselves.   
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First, a sequence of key elements can be used to define several attributes.  Of course, 

this is optional since not all networks possess attributes.  In each key element, one has 

to specify an identifier, a name, a data type and a domain, using specific XML attributes.  

The identifier, declared through the id attribute, is used to refer to this attribute later in 

the file.  The name, defined using the attribute attr.name, must be unique in the whole 

document.  The data type is specified through the attribute attr.type and can take 

standard values: boolean, int, float, long, double and string.  Finally, 

the domain is referenced by the for attribute.  It represents the part of the network 

concerned by the attribute: graph, node, edge or all.  The default value of the 

attribute can optionally be defined thanks to an additional default element. 

 

A Graphml file can contain several networks, each one being represented by a graph 

element.  Those are placed just after the key elements.  Each one contains a series of 

node and edge elements, allowing describing the network topology.  The network links 

can be directed or undirected.  A default mode must be declared in the graph element, 

thanks to its edgedefault attribute.  It takes two possible values: directed and 

undirected.  The direction of each link can be specified individually, though.  Like 

the key elements, graph elements can be identified by an id attribute, in case it is 

necessary to reference the network in a document containing several of them.   

 

As mentioned before, the graph element contains node and edge elements.  Those do 

not have to be placed in any specific order, but depending on the software accessing the 

file, it is generally recommended to define nodes first, and then links.  Each node 

element represents a node.  It has an id attribute which will be used later, when defining 

its incident links. 

 

Each link is represented by an edge element.  Like the other XML elements, it can be 

identified by an id attribute.  It has to contain two compulsory attributes: source and 

target, which reference the identifiers of the two nodes corresponding to the outgoing 

and incoming nodes, respectively.  If the network is not directed, then those attributes 

simply represent the two nodes indifferently connected by the link.  The optional 
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directed attribute can take the values true or false.  If the direction is not defined, 

then the default direction defined in the graph element is used.   

The values of node and link attributes are defined though the data element, which is 

located inside the corresponding node or edge element.   The data contains a key 

attribute, referring to an attribute declaration from the beginning of the document.  The 

content of the data element must be consistent with this declaration. 

 

The Figure 3-4 represents the Graphml source corresponding to the network from Figure 

2-1-e.  As it has combines all the properties of other networks, the rest of the networks 

in Figure 2-1-a-b, Figure 2-1-a-b can be also represented by Graphml.  In this example a 

directed and weighted network of 6 nodes is defined.  In the example, nodes have a string 

attribute called color, which is associated to the key d0, and whose value is white by 

default.  The links have a double attribute called weight, associated to the key d1 and 

whose default value is 0.0.   

 

The first node of this example has the color green, specified by the help of key d0 in its 

data element.  All links are directed except the one between the second and third nodes.  

Indeed, in the declaration of the graph the default link type is set to directed, but for this 

specific link we assigned the value false to the directed attribute in the corresponding 

edge element.  The links between nodes 0 and 2 and between nodes 3 and 4 are weighted 

and by the help of key d1 in their respective data elements.   

 

<?xml version="1.0" encoding="UTF-8"?> 

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"   

 mlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

 xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns 

 http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"> 

 <key id='d0' for='node' attr.name='colour' attr.type='string'/> 

  <default> white </default> 

 </key> 

 <key id='d1' for='edge' attr.name='weight' attr.type='double'/> 

  <default> 0.0 </default> 

 </key> 

 <graph id='G' edgedefault='directed'> 

  <node id='n0'/> 

   <data key='d0'>green</data> 

  </node> 

  <node id='n1'/> 

  <node id='n2'/> 

  <node id='n3'/> 

http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd
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  <node id='n4'/> 

  <node id='n5'/> 

  <edge source='n0' target='n2'/> 

   <data key='d1'>1.0</data> 

  </edge> 

  <edge id =” e2” directed =”true” source='n1' target='n2'/> 

  <edge directed=“false” source='n2' target='n3'/> 

  <edge source='n3' target='n4'/> 

   <data key='d1'>4.0</data> 

  </edge> 

 </graph> 

</graphml>  

Figure 3-4 Graphml file representing the Figure 2-1-e 

 

 

Additionally, other kinds of graph properties can be represented with Graphml, which 

supports hyperlinks, nested graphs and node ports declarations.  As there is no such type 

of networks in the corpus, this kind of properties are not relevant for us.   

Because XML syntax is very verbose, the size of a Graphml file can be much larger than 

for most other formats.  However, the same syntax can be expanded by new attributes, 

and offers a very expressive format.  Moreover, this language is independent from any 

tool.  These arguments are the main reasons why Graphml is used during this project. 

 

 Gexf 

 

GEXF (Graph Exchange XML Format) is an XML-based language used for describing 

networks (Heymann 2009).  It lets the user specify nodes and links, as well as user-

defined attributes such as node weights or link directions.  It was defined to be used as 

an interchange format between graphing applications (Heymann 2009).  Generally it 

shows the same properties as Graphml for XML elements although there are still some 

differences in their grammars. 

Besides the classic XML header, the first GEXF element is meta, which allow indicating 

some metadata concerning the network, such as the date of last modification of the 

document. 

 

Each network in a GEXF file is then represented by a graph element.  Its attribute 

defaultedge allows setting the default link direction: either directed, 
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indirected or mutual.  This element contains attributes, nodes and or 

edges elements, which contain the corresponding parts of the network. 

 

Node and link attributes are defined separately using two distinct attributes 

elements.  The attribute class of attributes allows indicating which type of 

component is concerned: node or edge.  Each attribute is defined using an 

attribute in attributes.  It is characterized by a unique identifier (amongst 

attributes) defined though the attribute id.  The attribute title is used to specify the 

name of the attribute, and type its data type, which must be XSD-compliant.  A default 

value can be specified by including a default element in attribute. 

 

As mentioned before, each node is declared in the nodes element of graph.  A node 

element defines a node, using an attribute id to specify a unique identifier (amongst 

nodes).  The node description is given through the label attribute.  Attributes values 

are defined by including an element attvalues in node.  This element contains as 

many attvalue elements as there are attributes.  Each attvalue elements has a for 

attribute, whose value correspond to the concerned attribute id, and a value attribute, 

whose value is the attribute value. 

 

Each link is represented by an edge element defined in the edges element of graph.  

Like for nodes, each link must have a unique identifier (amongst links), defined through 

the attribute id.  The attributes source and target define the two nodes connected 

to the link, using the nodes identifiers.  Self-links ( a node connected to itself) are 

allowed.  The attribute type, similar to defaultedge in graph, allows defining the 

link direction.  An optional weight attribute allows defining a real-valued weight for 

the link.  Attributes values are defined exactly like for nodes, using attvalues and 

attvalue elements. 

 

The example below is the Gexf representation of Figure 2-1-e which summarizes the 

GEFX properties.  In the example a directed and weighted network of 6 nodes is defined.  

The nodes can take color attributes while the links can have weights.  Additionally a life 



26 

 

    

 

time is given to the network with the dynamic attribute therefore the life time of the graph 

is specified.   

<?xml version="1.0" encoding="UTF-8"?> 

<gexf xmlns="http://www.gexf.net/1.2draft" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://www.gexf.net/1.2draft 

http://www.gexf.net/1.2draft/gexf.xsd" version="1.2"> 

 
<meta lastmodifieddate="2012-10-29"> 
 

<graph mode="dynamic" defaultedgetype="undirected" 

timeformat="date"> 

    <attributes class="node" mode="dynamic"> 

        <attribute id="0" title="color" type="string"/> 

             <default>white</default> 

        </attribute> 

  </attributes> 

    <attributes class="edge" mode="dynamic"> 

         <attribute id="1" title="indegree" type="float"/> 

             <default>0.0</default> 

    </attributes> 

    <nodes> 

        <node id="0" label="Gephi" start="2009-03-01"> 

            <attvalues> 

                <attvalue for="0" value="green"/> 

            </attvalues> 

        </node> 

        <node id="1" label="Gephi"> 

        <node id="2" label="Gephi" start="2009-03-01"> 

        <node id="3" label="Gephi" start="2009-03-01"> 

        <node id="4" label="Gephi" start="2009-03-01"> 

        <node id="5" label="Gephi" start="2009-03-01"> 

     </nodes> 

     <edges> 

       <edge id="0" source="0" target="1" start="2009-03-01"/> 

            <attvalues> 

                <attvalue for="1" value="0.1"/> 

            </attvalues> 

       </edge> 

       <edge id="1" source="0" target="2" start="2009-03-01" 

end="2009-03-10"/> 

       <edge id="2" source="1" target="0" start="2009-03-01"/> 

       <edge id="3" source="2" target="1" end="2009-03-10"/> 

       <edge id="4" source="0" target="3" start="2009-03-01"/> 

           <attvalues> 

                <attvalue for="1" value="0.4"/> 

            </attvalues> 

       </edge> 

      </edges> 

</graph> 

Figure 3-5 Gefx representation of Figure 2-1-e 

 

 

Gexf also allows representing dynamic networks, community structures and hierarchical 

structures.  However, this kind of information is not provided with the networks we are 

studying in this work.  Community structures will be estimated for each network, but will 
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be stored separately form the network file itself, in order to be easily evaluated and 

analyzed.  For these reasons, we will not describe further these two Gexf features.   

 

 Pajek 

 

Pajek is a free software program used for analyzing networks.  The file format pajek 

contains nodes definitions as vertices, directed link definitions as arcs and undirected 

link definitions as edges.   

 

Representation of the graph has three regions.  The regions *Vertices represent a list 

of nodes with their attributes as name color, lent etc.  After the declaration of *Vertices 

the number of nodes are given.  As the definition of nodes ends the *Arcs definition 

starts which expresses the directed link list.  Additionally to the links there can be link 

related attributes mentioned at the same time.  Finally the list of undirected links are 

given under the *Edges part, with the link related attributes as well. 

 

Figure 3-6 represents the graph at Figure 2-1.  The nodes are listed at the beginning of 

the document under the *Vertices title with their attributes.  As there are 6 nodes at 

the graph it is indicated after the tag.  The node 0 has an attribute as Green and it is added 

to its declaration part.  The *Arcs part represents the directed links at the graph and the 

first link has an attribute as “1” so that it is indicated at the end of the link representation.  

The *Edges are the list of undirected links.  Obviously it is possible to represent both 

directed/undirected and weighted/non-weighted graph by using Pajek file format.  Both 

Figure 2-1-a and  Figure 2-1-c could be represented by using this format. 

 

*Vertices 6  

1 "0" Green 

1 "1"  

2 "2"  

3 "3"  

4 "4" 

5 "5"  

*Arcs  

1 2 "1"   

2 3  

3 4 

*Edges  

2 3 
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Figure 3-6 Pajek file format example of Figure 2-1-a 

 

It is not possible to represent dynamic or hierarchical networks by using Pajek but as 

there is not such kind of networks in this project corpus it is not an important point for 

the choice of the format. 

 

 Matrix Market 

 

Matrix market is a file format which saves the data in binary format.   

 

 Corpus Format and Conversion 

As explained in section 3.3, we defined four criteria the file format of the network should 

provide.  Firstly, the format must not be linked to a specific tool (openness).  Secondly it 

should ensure that a large variety of networks can be represented (expressiveness).  Third, 

the format should be widely used in this field, so that many tools can take advantage of 

our corpus (popularity).  Fourthly, the way networks are represented must be compact, 

so that the corpus does not take too much storage space (verbosity). 

 

Edge list is one of the most popular network file formats and it is not related to a specific 

tool.  Beside the fact that it is not also a verbose file format, it is not possible to represent 

some kind of networks by using edge list.  This means that edge list provides the 

openness, popularity and verbosity criteria but expressiveness is still missing. 

 

Adjacency list is the other file format which is independent from any specific tool.  This 

format is also very far from verbosity.  However It is not enough expressive and it is not 

a quite popular format.  As results it provides just two of the criteria which are openness 

and verbosity but it rests expressiveness and popularity. 

 

GEFX is a XML file format and it is possible to represent a huge variety of networks by 

using GEFX.  GEFX is mostly linked to Grephi, a Java program, and is not used other 
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tools.  It provides the criteria expressiveness and popularity but it is not popular and as it 

is an XML file it is verbose.   

 

Pajek is a file format depending on free software called Pajek.  It is quite popular and 

expressive but it is not independent from software.  Moreover, several types of file 

coexist depending on the type of data to be represented, which makes it difficult to use. 

 

Matlab matrix is a file format supportad by Matlab and Matrix Market.  Therefore it is 

not independent from software.  It is not expressive enough and not easy to treat from 

other softwares.  As a result it is not open, nor expressive and it is also not readable 

without any conversion. 

 

Graphml is open, as it is an XML language.  Beside the verbosity, it is expressive which 

allows the representation of much type of networks.  Another important point is that 

Graphml is a popular format used in many graph analysis packages and tools.  As a result, 

we chose Graphml as the main file format in this project.    

 

In each package, the network file is compliant with the Graphml format.  Because of this 

choice, any other format must be converted to Graphml, in order to produce a normalized 

package.  This is not a trivial task, because there are many different formats to represent 

networks.  In the rest of the section while the reason incapability of other formats are 

discussed the conversion techniques will be explained. 

 

In many of the conversion techniques, we use the R language and its package iGraph.  R 

is a free open source platform and a language for statistical studies, whereas iGraph is a 

free open source package for R and Python, programmed in C, and allowing handling 

graphs.  iGraph can load and record graphs using various formats, and is also able to 

perform various processes and transformations on them.  In particular, it is able to 

generated files respecting the Graphml format. 

Table 3 Comparison between formats.    

 Edge list Adjacency list Graphml Gexf Pajek Matlab 

Matrix 
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Openness Yes Yes Yes No No No 

Expressiveness No No Yes Yes Yes No 

Verbosity Yes Yes No No No No 

Popularity Yes No Yes No Yes No 

 

 

 From Edge list 

 

We use the iGraph library to load data at the edge list format.  We get a network object 

which we then record at the Graphml format using the read.graph function.   

However, not all variants of the edge list format are supported.  For the non-supported 

variants, we manually load the content of the file using R basic functions, which are more 

flexible.  The resulting table or matrix can then be turned into a graph object thanks to 

the method graph.edgelist of iGraph, and finally be recorded as a Grahpml file. 

 

 From Adjacency list 

 

It is possible to load its content in order to build an adjacency list by using iGraph.  Then, 

the iGraph method graph.adjlist can be used to obtain a graph object.  This object 

can then directly be recorded as Graphml.  However the latest version of iGraph allows 

to directly loading adjacency lists, which is even faster. 

 

 Gexf 

 

Gexf refers man additional advantages like these files can be read and written using a 

Java library called gexf4j.   
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 Pajek 

 

By using iGraph, it is possible to load and convert the main Pajek format into Graphml 

file format.  By using the read.graph function of iGraph, giving pajek as the format 

parameter, the graph is loaded.  By using the write.graph, function the graph is saved 

using the Graphml format. 

 

 Matrix Market 

 

iGraph is not able to process this format.  We first use Scilab and MatrixMarket package 

on Matlab, the file in matrix market format can be read.  Scilab provides a conversion 

function to convert sparse matrix into adjacency matrix.  By using sp2adj function a 

sparse matrix is converted into adjacency matrix and by using MatrixMarket write 

function, the adjacency matrix is written into a file. 

After taking the adjacency matrix it is possible to convert it into Graphml by using R, 

igraph functions.   
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4 DESCRIPTION OF THE CORPUS 

 

 

 

Any discrete system can be represented virtually by complex networks owing to their 

natural suitability.  By the way the field of complex networks fits to deal with the 

nonlinear phenomena and by using graph theory, large and complex structures can be 

analyzed by statistical and mathematical methods so that the results represents a property 

of a whole system. 

 

During the researches of this project many different networks from different domains are 

processed.  In each domain of study networks carry some common points and each 

scientific area has their characteristic features which affect the nature of the corpus and 

the results of the classification processes which run on corpus. 

 

 Biological Networks 

 

Biological Networks are studied in four groups: Biological, Medicine, Ecology, and 

Neuroscience.  As there are Biomolecular and Ecological Networks in the corpus 

processed in this project in this section this two network domains are examined. 

 

 Biomolecular or Interactome Networks 

 

An interactome network represents all or some of the molecular interaction taking place 

inside a biological cell.  In the literature, they are often represented under the form of 

complex networks.  One can distinguish three distinct scales.  First, the genetic 

regulatory network, which represents how proteins are generated as the expression of 

genes.  Second, at a higher level, the protein-protein interaction network, which models 

how the generated proteins interact with each other.  Third, the metabolic reaction 

network and the signal transduction network, which represent how these interactions are 
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chained to allow generating and destroying molecules for the former, and inter-cell 

communication for the latter.   

 

Living organism are dynamic systems, so in these networks, the nodes and links evolve 

with time.  For instance, in a protein-protein interaction network, several proteins can 

interact to form a new one, which did not exist before and might not exist later because 

of the absence of certain factors needed for its production.  However, in many studies, 

the network is considered at a given time step, because the available databases remain 

incomplete. 

 

 Protein-Protein Interaction Networks 

 

A protein is a molecule whose role is essential in the functioning of biological cells.  It 

can be located inside or outside the cell.  It is defined as a connection of one or several 

amino acid chains.  The sequence of amino acids constituting the chain directly depends 

on the DNA of the considered organism: this sequence is encoded in a specific gene, 

under the form of a sequence of nucleotides.  Nucleotides are the molecules combined to 

build larger molecules such as DNA and RNA (adenine, guanine, thymine, cytosine, 

etc.).   

 

What makes proteins important is their ability to bind with other molecules.  This ability 

depends on the spatial configuration of the protein, which makes specific binding sites 

appear.  These are sorts of pockets with a specific shape, into which parts of other 

molecules can fit, therefore constituting a physical (by opposition to chemical) 

connection.  The specific shapes of the binding sites and bound molecules allow targeting 

specific molecules.  Proteins can bind with other proteins or smaller molecules.  In the 

former case, they form molecular machines called protein complexes, which is a way of 

achieving a particular biological function.  The main biological functions are:  

 

 Catalytic: the complex is an enzyme which accelerates some chemical reaction. 
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 Signaling: the complex is either an extracellular molecule acting as a message 

sent to another cell, or a receptor, i.e.  a membrane protein able to react to a signal 

and induce a chemical reaction inside the cell. 

 Transporting: the complex is able to transport a smaller molecule (called ligand). 

 Structural: give rigidity to the cell. 

A protein can belong to several complexes, and the function implemented by the complex 

depends strongly of its context: location in the cell (space), stage of the cell lifecycle 

(time), chemical state of the cell, etc.  This makes it difficult to determine exactly if two 

proteins interact or not, and the available data are generally stochastic (i.e.  under some 

conditions, both molecule interact with a certain confidence).  Many different 

experiments and statistical operations are required to identify the protein-protein 

interaction network for a certain organism.   

 

In a protein-protein interaction network, nodes represent proteins and links represent 

possible bindings between them.  As the binding is reversible, the links are not directed.  

Moreover, bindings cannot be distinguished in terms of importance, so links are generally 

unweighted.  In some studies, the confidence one has on the binding is introduced under 

the form of links, though (Costa, Osvaldo et al. 2011). 

 

Protein-protein interaction networks have the small-word property, with a small average 

shortest distance and large average transitivity (Costa, Osvaldo et al. 2011).  They mostly 

have a hierarchical structure and a heavy-tailed degree distribution.  The main structure 

is designed like a hierarchical composition of densely connected large groups, connected 

via generally hub proteins as seen in the Figure 4-1.  The hub proteins are believed to be 

the oldest proteins in the network that the disconnection of this heavily connected node 

cause the breaking up of network in disconnected groups. 
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Figure 4-1 Picture representing a typical protein network (Gursoy, Keskin et al. 2008) 

 

The extraction and study of protein-protein interaction networks is a part of a field called 

proteomics.  The goal is to model complete networks, in order to understand how living 

organism functions, the protein interactions being the basis of this functioning.  One of 

the most important topic in this field is the identification of protein complexes and their 

roles.  This relies heavily on the task of community detection: complexes correspond to 

densely interconnected subgraphs in the protein-protein interaction network. 

 

In the corpus, the networks whose id is between 318 and 322 are several representative 

examples of protein-protein networks used in this project. 

 

 Metabolic Networks 

 

Metabolism is the set of chemical reactions which allows living cells to function by 

breaking down (catabolism) and building up (anabolism) biomolecules.  A metabolic 

pathway is the specific sequence of chemical reactions occurring inside a cell and 

allowing to transform a certain initial molecule, called substrate, into something different 

called product.  The term metabolite refers to both substrates and products.  The 
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mentioned chemical reactions are caused by enzymes, i.e.  protein complexes acting as 

catalysts.  This highlights the relation with protein-protein interaction networks. 

 

A metabolic network gathers one or several metabolic pathways.  A number of forms can 

be found in the literature.  In the most informative case, metabolites, enzymes and 

reactions are represented as three different types of nodes in a 3-mode tripartite network 

(Costa, Osvaldo et al. 2011).  The links are directed and weighted.  They stand for mass 

flows from reactants to reactions, and for catalytic reactions from enzymes to reactions.  

Some authors prefer to use 2-mode bipartite networks (Zhao, Yu et al. 2006), in which 

the two types of nodes represent metabolite and enzymes, respectively.  The links 

connect the substrates to the enzymes able of processing them, and enzymes to the 

products they generate.  Alternatively, some authors prefer to represent reactions instead 

of enzymes (Costa, Osvaldo et al. 2011). 

This 2-mode network can be projected on either one of both dimensions, leading to two 

other kinds of networks.  In the first, the nodes correspond to metabolites and the links 

to enzymes (or reactions) as represented in the Figure 4-2 (Zhao, Yu et al. 2006; Fortelny 

2010) .  The directed links connect one substrate to the corresponding product, through 

the appropriate enzyme (or reaction).   

 

 

Figure 4-2 Representation of metabolic network of a reaction where the nodes are the 

metabolites and enzymes are the links (Takemoto 2012) 
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 In the second type of projection, the nodes are enzymes (or reactions) and the links are 

metabolites (Zhao, Yu et al. 2006; Fortelny 2010).  Two reactions are connected if they 

share a metabolite: it is the product of the source node and the substrate of the target node 

(Costa, Osvaldo et al. 2011). 

 

 

Figure 4-3 Power law representation of metabolic networks (Takemoto 2012) 

 

 

Research indicates that whatever the considered form, metabolic networks show power 

law degree distribution (Costa, Osvaldo et al. 2011; Takemoto 2012).  The diameter 

increases logarithmically when new nodes are added, approaching a constant value.  This 

addition corresponds to an increase in the complexity of the considered metabolism.  

There can be hub nodes, whose removal ends with the separation of the network in 

several components.  Moreover, research shows that the clustering coefficient of 

metabolic networks evolves independently from the network size, following a low of the 

form 𝑐(𝑘)~𝑘−1.  Finally, these networks are known to have a hierarchical and modular 

organization structure  

 

Network id 324 is an example from corpus which represents a metabolic network. 
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 Signal Transduction Networks 

 

As metabolic networks focus on catalytic protein complexes, signal transduction 

networks are concerned only on the signaling function of these molecules.  The goal here 

is to study how information flows through cells.   

 

A cell receives information through a specific protein called receptor.   It can be located 

either on the cell surface (transmembrane receptor) or inside the cell (intracellular 

receptor).  This protein is activated when a compatible molecule appears and can bind 

with it: hormone, neurotransmitter, etc.  The result of this activation is either a direct 

effect on the cell behavior, or an indirect effect mediated by intermediary protein 

interactions.  The sequence of reactions allowing the communication between one cell 

and another is called a signaling pathway.  A signal transduction network is a set of 

possibly overlapping signaling pathways. 

 

Figure 4-4 SIMPathway Signal Transduction Network 

 

 Gene-Regulatory Networks 
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The production of a protein is a complex process.  As mentioned before, the sequence of 

amino acids composing a given protein is encoded in a specific gene.  The transcription 

of a gene consists in generating an mRNA molecule, which can be considered as a mobile 

copy of the information contained in the gene.  This messenger RNA is then passed to the 

ribosome, located in another part of the cell.  The ribosome is a molecular machine, in 

charge of performing the translation process, i.e.  interpreting the mRNA in order to 

generate the corresponding protein.   

 

The transcription step necessitates various proteins or protein complexes able to bind 

with the DNA, called transcription factors.  They allow selecting which genes should be 

or should not be transcripted at a given moment.  In other words, they perform a 

regulation of gene transcription, by acting as repressor or activator during this this 

process.  Therefore, it is possible that a newly generated protein will activate the 

transcription of a gene, leading to the production of a new protein, itself able to trigger 

another gene, and so one.  The result is a so called regulatory cascade.  Moreover, the 

regulation process can include several cells thanks to communication mechanisms of 

larger scale, such as signal transduction. 

 

In a gene-regulatory network, also called transcriptional regulatory network, nodes and 

links represent genes and transcription factors, respectively (Schlitt and Brazma 2007; 

Costa, Osvaldo et al. 2011).  The links are directed from a gene encoding some protein, 

to a gene for which this same protein acts as a transcription factor (i.e.  it triggers its 

expression).   

 

As not all genes are active at a given time, the structure of transcriptional regulatory 

networks changes with time or environmental conditions.  The structure can undergo 

three different changes: (i) duplication of the transcription factor, which results in both 

copies regulating the same gene, (ii) duplication of the target gene with its regulatory 

region, where the target gene  will be regulated by the same transcription factor, and (iii) 

duplication of both the factor and the target.  This results in the presence of motifs, and 

specific connectivity distribution in the network.   
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Figure 4-5 Representation of several genetic reaction while constructing B gene (Schlitt 

and Brazma 2007) 

 

 

The distribution of connectivity of transcriptional regulatory networks shows two main 

properties: (i) the incoming degree distribution decreases exponentially, and (ii) the 

outgoing degree distribution follows a power law.  The exponential character of the 

incoming degree indicates that most TGs are regulated by a similar number of factors 

while the scale-free distribution of the outgoing degree points to a few TFs participating 

in regulation of a large number of TGs.   

Networks whose id’s are between 329 and 331 are the representatives of genetic 

networks.   

 

 Ecological Networks 

 

Ecology is a branch of science which studies the relation between living organisms their 

environment.  Ecological networks consist of populations, natural areas, food web, 

population growth, energy consumption and biotic diversity.  The most popular subject 

of ecologist is Food webs in recent years and there are large studies made on food webs 

(Odum and Barrett 1953; Costa, Osvaldo et al. 2011). 
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Therefore in terms of food webs, in ecological networks species represents the nodes and 

interaction between nodes is the links.  There can be different type of interactions which 

mainly contains competition, parasitism and mutualism.  The linkage between nodes is 

construed if a species I eat the other species J in a food chain.  Therefore ecological 

networks are directed in general (Albert and Barabasi 2002).   

 

Food webs can be studied in terms of modeling and type of linkage.  Firstly food webs 

can be divided in three levels which are static models, dynamic models and species 

assembly and evolutionary models.  Secondly as it is said before there can be a relation 

mutualism, competition relation, parasitism or predator-prey relation.  It is known that 

mutualism relation networks are more nested and more connected than the other type of 

ecological networks (Costa, Osvaldo et al. 2011). 

  

 

Figure 4-6 A random network of mutualistic networks with 1000 nodes and 1000 

links(Zhang, Hui et al. 2011) 

 

 

Although the food webs differ from each other in terms of number of nodes and average 

degree it is known that they have small size and small world property.  It is also observed 

that they respect a power law of a small degree (Costa, Osvaldo et al. 2011).  Moreover 

it is widely observed that the average degree is mostly three of fever.  The existence of 
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key species in environment points the existence of hub nodes in food webs (Albert and 

Barabasi 2002).   

 

 Social Networks 

 

Social networks refer to social relations which contains a grand number of complex 

network variations.  There are many sub-network domains related to social networks like 

Personal Relations, Sport, and Movie Actors etc.  ın this project the type of network 

which is used is Personal Relations which is presented in this section. 

 

 Personal Relations 

 

Personal relations are almost the oldest network type in terms of sociology.  People may 

contact to others in different ways which divide personal relation networks in several 

classes as acquaintances, trust, sexual, email, professional etc.  The corpus used in this 

project contains acquaintances, trust and sexual relation networks which are studied in 

this section. 

 

 

Figure 4-7 A high school’s empirical friendship network(Gonzalez, Lind et al. 2006) 



43 

 

    

 

 

 Acquaintances 

 

Acquaintances networks are based on the Milgram’s famous social experiment, “six-

degree of separation” concept.  According to the experiment which depends on the 

separation by six intermediate individuals on average of two random chosen people. 

Acquaintances networks then consist of nodes as people and their relationships in-

between as links.  The research shots that the degree distribution respects a high power 

law coefficient and this kind of networks has a high level of clustering.   

 

When the structure is observed by node removing, the removal of most connected node 

has local effects within the communities inversely the removal of weekly connected 

nodes causes’ loss of communication between communities.   

 

The clustering coefficient increases over the time and the size of cluster decreases while 

the relation become stronger between people.   

 

Another behavior of acquaintances network depends on the nodal attributes which points 

a homophile in terms of these attributes like gender, age or nationality etc.(Costa, 

Osvaldo et al. 2011) 

 

 Trust 

 

Trust networks can be seen as a sub-network of acquaintances network in which there 

exist stronger connections between persons.  This kind of network can be generated by 

using Pretty Good Privacy algorithm which let one person certify another by sharing his 

public encryption key. 

 

Each person represents the nodes and links are the connection between.  There exist two 

types of degree in this type of networks.  In-degree is the number of person which shares 

key with the person and the out-degree is the number of person which this person shares 
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his public key with.  The analysis shows that there exists a power law degree distribution 

in both directions.   

 

The clustering coefficient is generally independent of the component size as there exists 

strong connections(Costa, Osvaldo et al. 2011).   

 

 Sexual Relations 

 

Sexual relation networks are also sub-networks of acquaintances networks which consist 

of woman-men relations.   

 

In sexual relation networks woman and men are represented by nodes and the relations 

in-between are the links.  The average degree of man is larger than woman.  On the other 

hand the degree distribution of both type of nodes respect a power law with a quite similar 

value.   

 

Nodes may have attributes as personal properties and skills and analysis shows that the 

degree distribution is under influence of node properties.  This also leads a clustered 

structure in the network(Costa, Osvaldo et al. 2011). 

 

 Citation Networks 

 

Citation is a reference to a published or unpublished source made from a source.  

Scientific papers, research made in many different area points other previous papers, 

researches or resources and this generates a growing network. 

 

The published papers are represented by nodes and the reference running from a paper 

to another is called as a directed link.  There exist two types of degree in citation networks 

which are in-degree and out-degrees.  In-degree represents the reference from other 

papers which points the importance of paper as it refers to the number of appearance the 

paper in other papers.   Despite the fact that in-degree is value which can increase by the 

time, out-degree represents the reference made in the paper therefore once the paper is 
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published the value is fixed(Costa, Osvaldo et al. 2011) .   While the in-degree respects 

a power law with a high coefficient, the out-degree distribution has an exponential 

tail(Albert and Barabasi 2002).   

 

The analysis over universal citation databases indicates that this fact causes un increment 

on average number of citation while the average number of citation of published decrease 

over time (Redner 1998; Vazquez 2001). 

 

 

Figure 4-8 Citation network of 236 node and 2221 link in Braun’s oeuvre (Leydesdorff 

2007) 

 

 

 Communication Networks 

 

The usage of internet and mobile phones causes a huge amount of data consisting on 

social systems.  The following two sections are the most popular communication areas. 
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 E-mail Networks 

 

Electronic mail is one of the most popular way of communication and it provides a large 

data of social relationships (Costa, Osvaldo et al. 2011).  There are two type of 

construction in email networks.  In the first approach, the nodes represent email addresses 

and there is a directed link between two nodes only if an email was sent from the source 

address to the target address.  In the second approach, the nodes are the email addresses 

as well, but a directed link appears if the target address is contained in the address book 

of the user of the source address.  In some cases, the link directions are ignored, leading 

to undirected networks. 

 

Figure 4-9 Mail network example of University of Kiel 

 

 

Some studies showed that email networks are composed of communities.  The degree 

distribution and betweenness changes in this kind of networks, the hub nodes are 

changing dramatically which insist of reinterpretation of the hubs in dynamic networks. 
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 Telephone Networks 

 

Telephone call networks are constructed from telephone calls made during a period of 

time.  The result is a directed network whose nodes are the telephone numbers and 

directed links correspond to calls from one number to another (Albert and Barabasi 

2002).  In some cases the duration of the call or the number of calls between two nodes 

can be used to define link weights.. 

The researches shows that the incoming and outgoing degree distributions of the 

telephone networks follow a power law (Albert and Barabasi 2002).  Another point is 

that probability of two nodes to be connected is inversely proportional to the square of 

their geographical distance (Costa, Osvaldo et al. 2011) that is also observed that there 

exist a degree correlation in this kind of networks.  .  The structure of the network 

contains communities in which the removal of the strong node can cause a local effect 

within the communities.   When the weak connection is removed, the communities can 

be divided in smaller ones The degree distribution and betweenness change dramatically 

in this kind of networks, but the mobility behavior of the mobile call graphs are not 

random but it shows some regularities (Costa, Osvaldo et al. 2011). 

 

 Computer Networks 

 

 Internet 

 

Internet is the originally a military networking system founded by ARPANET.  To keep 

the system secure and rebuts the explicit approach of study is a graph to represent 

internet.  The internet is a network of physically linked computers and other 

communication devices.  It has been studied at two hierarchical levels.  At the router 

level, the nodes represent routers and the link represent the physical connections between 

them.  As the mapping of internet changes constantly and is not administrated centrally, 

an interdomain level can also be alternatively considered.  In this case the nodes represent 

autonomous systems (AS), i.e.  sub-networks which are administrated separately, and the 

links are the physical connections between them (Albert and Barabasi 2002; Costa, 

Osvaldo et al. 2011).  There are many approaches to model the internet in order to 



48 

 

    

 

understand its growth, assure its security and improve its performance (Albert and 

Barabasi 2002).   

 

Figure 4-10 Internet as a Complex Network 

 

 

At both levels, the studies show that the degree distribution follows a power law.  Both 

networks also have the small world property, with high clustering coefficient and small 

average distance.   

 

 World Wide Web 

 

World Wide Web (WWW) or just Web is a large software network based on the Internet.  

WWW is system based on interlinked hypertext documents.  It relies on the Hypertext 

Transfer Protocol for communication.  Via a web browser running on the client side, 

people can access the web pages hosted on Web servers distributed over the internet.  

Each web page contains text, images, videos etc.  And may contain hyperlinks to other 

pages available on WWW, which give WWW a networked structure (Costa, Osvaldo et 

al. 2011). 
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When modeled as a complex network, the nodes of the network correspond to web pages, 

whereas the directed links are the hyperlinks connecting them..   The WWW is a huge 

network of over billions of nodes and has an uncontrolled growth (Albert and Barabasi 

2002).  Since individuals and organizations publish their own interconnected pages, 

nodes and links are constantly created, modified or destroyed, which makes the system 

very dynamic. 

The map of WWW is usually generated by a computer program called crawler.  It 

browses through pages, storing hyperlinks, source and target pages.  As some pages are 

dynamic, require authorization or servers are unreachable, the resulting map cannot 

contain all the pages.  Sometimes the WWW is not navigated at the page level, but rather 

at the site level.  In this case, a node correspond to a site, and a directed link to the set of 

hyperlinks between the collections of pages forming two sites (Costa, Osvaldo et al. 

2011). 

 

 Transportation Networks 

 

 

Figure 4-11 Network of web data 
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The resulting map of crawler consists of a network which represents the WWW, as in 

Figure 4-11.  As the network of the web is directed, there are two degree distributions: 

incoming and outgoing.  The studies shows that both outgoing and incoming degrees 

have a power law distribution (Albert and Barabasi 2002).  Even though some researches 

prove that a path between randomly chosen pairs of nodes exists in 24 % of times, which 

supports the absence of a small-world effect,  despite  the huge size of the network, the 

WWW displays the small world property in many studies (Costa, Osvaldo et al. 2011).   

Furthermore, because of the directed nature of the network, to be able to calculate the 

clustering coefficient the networks are made undirected by making each link 

bidirectional.  Therefore the efficiency of the studies depends on the web data which 

must be as complete as possible, including page interconnectivity and Meta data of the 

pages.   

 

 

 Summary 

 

Table 4-1 represents the distribution of networks over domains.  In this section a 

summary of topological property generalities which are explained at the previous 

sections are represented as table to facilitate comparison.  The free rows are the properties 

which are not specific for the domain. 

 

Table 4-1 Number of network in each domain 

 Number of Networks 

Social 25 

Citation 20 

Communication 28 

Ecology 20 

Biomolecular 32 

Computer 21 

Transportation 5 
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Table 4-2 General property comparison between different network fields 

 Degree distribution Transitivity Modularity hierarchical Hub 

nodes 

  

Biomolecular  Power law - modular no yes   

Ecology Power law - modular no yes   

Personal Power law Transitive modular no yes   

Computer Power law - - no yes   

Transport Power law - - no no   

Citation Power law - - no no   
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5 METHODS 

 

 

 

 General Method 

 

The clustering algorithms cannot be applied directly to the networks forming the corpus: 

some preprocessing must be applied first.  Figure 5-1 describes the general method we 

used for this purpose.  The first step is to calculate the properties of interest for all the 

networks in the corpus.  The second step is to normalize them, because certain clustering 

algorithms are sensitive to difference in orders of magnitude in the parameter values.  

Third, from these normalized properties, it is possible to process distances between each 

pair of networks.  We get a partial distance for each property.  Fourth, we aggregate 

these distances to obtain the total distance between each pair of networks.   
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Figure 5-1 Preprocessing of corpus 

 

 

Fifth, using these total distances, we build the distance matrix of the corpus.  Almost all 

the clustering algorithms can take a dissimilarity or distance matrix as input data.  In such 

a square matrix 𝐷, each cell 𝑑𝑖𝑗 represents the distance between networks number 𝑖 and 

𝑗.  Figure 5-2 gives an example of distance matrix.  Sixth, we apply the clustering 

algorithms to this distance matrix to get clusters of networks. 

 

            [,1]        [,2]       [,3]       [,4]       [,5]         

  [1,] 0.05237702 0.13776124 0.08411008 0.08223725 0.08247006  

  [2,] 0.06580911 0.20216412 0.11024494 0.11022834 0.07242202  

  [3,] 0.22337402 0.22751947 0.15651494 0.15747670 0.19137089  

  [4,] 0.09595271 0.22120486 0.06989735 0.09004819 0.10649451  

  [5,] 0.14825731 0.21560811 0.08168898 0.08545655 0.10431461  

Figure 5-2 Distance matrix view of a 5 network dataset 

Calculate properties 

Normalize properties 

 

Partial distance of 

global properties 

Total distance 

Calculate distance 

matrix 

Partial distance of 

local  properties 
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 Representation of the Networks Properties 

 

The first part of our processing is the extraction and normalization of networks 

properties.  As described in section 2.2, those can be characterized through both global 

and local measures.  With the former, we obtain a single value which summarizes the 

property for the whole network.  With the latter, we get a value for each node or link in 

the network, resulting in a series of values charactering the property.  These two kinds of 

measures need to be handled differently. 

 

For each network in our corpus, we generated two files by calculating the network 

topological properties.  The first one contains the global measures as a single vector; each 

raw representing a specific measure and it is saved under the name globals.txt.  The 

other file contains the local properties as a vector of vectors.  Each internal vector also 

corresponds to a distinct local measure and the whole is saved as locals.txt.  Each 

value in an internal vector represents the value measured for an object (node, link, etc.).   

 

 Normalization of the Measures 

 

Not all measures are defined on the same range.  This can be a problem when performing 

cluster analysis, because certain algorithms are sensitive to large differences in attribute 

values, and might give more importance to those with the largest magnitude (de Souto, 

Araujo et al. 2008).  To avoid this, we apply the same Min-Max normalization to all 

measures.  Let 𝑋 = (𝑥1, … , 𝑥𝑘) be a vector of values we want to normalize, where 𝑘 is 

here the number of values.  Then, the Min-Max normalization consists in processing 𝑋′ =

(𝑥1′, … , 𝑥𝑘′) such as: 

 

𝑥𝑖′ =
𝑥𝑖 − min

𝑗∈[1;𝑘]
𝑥𝑗

max
𝑗∈[1;𝑘]

𝑥𝑗 − min
𝑗∈[1;𝑘]

𝑥𝑗
 

(5.1) 

 

 

After such normalization, all the values are defined in [0; 1]. 
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However, local and global measures are treated differently.  For the global ones, each 

network is described by a single value: we consequently normalize a series of values over 

the corpus.  This way, networks can be compared consistently, knowing the minimal and 

maximal values a network can reach in the dataset are 0 and 1, respectively.  For instance, 

for the diameter, suppose we have a maximum of 12729 and a minimum of 1, for all 

networks.  If the diameter of a network is 24, then the normalized value is calculated by 

dividing  (24 − 1) by (12729 − 1) which gives  0.001 as a result. 

 

For the local measures, we have a series of values for each network, instead of a single 

one.  Each value corresponds to a node, a link or a pair of nodes.  these series are 

normalized separately, so that 0 and 1 now correspond to the minimal and maximal value 

one can find for a given network (and not for the whole dataset, like before).  Indeed, the 

goal here is to compare distributions, so relative differences are more important than 

absolute ones.  After this normalization, the distribution is processed under the form of 

histograms, containing 20 bins with a step of 0.05. 

 

For instance a network whose degree distribution is (10, 2, 14, 14, 10, 10, 6, 8, 2, 8,

4, 8) becomes (0.66, 0.10, 1.00, 1.00, 1.00, 1.00, 0.74, 1.00, 0.24, 1.00, 0.49, 1.00) 

after normalization.  The corresponding histogram has the following values: 

(0, 0.08, 0.00, 0, 0.083, 0, 0, 0, 0, 0.08, 0, 0, 0, 0, 0.08, 0, 0, 0, 0, 0.58) 

 

 Distance Processing 

 

Once the measures have been normalized, it is possible to process the distances.  First, 

we individually process a partial distance, for each selected topological measure.  Then 

all of them are combined to get the overall distance between two networks.  Again, we 

treat global and local measures differently.   

 

For each global measure, two networks are compared by simply considering the 

Manhattan distance 𝑑𝑀, i.e.  the absolute value of the difference between the measures.  

If we note 𝑥 and 𝑦 the quantities to be compared, we have: 
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𝑑𝑀(𝑥, 𝑦) = |𝑥 − 𝑦| (5.2) 

 

Thus, distances on global measures range from 0 to 1, thanks to the previously performed 

normalization.  For instance, the distance between two networks whose diameters are 

0.001  and 0.003 is 0.002. 

 

The result is necessarily a value ranging from 0 to 1 for the local measures, we process 

the Earth Mover  (EM) distance (Rubner, Tomasi et al. 1998) between both histograms.  

Both histograms are normalized and contain the same number 𝑘 of bins, which ease the 

computation of the measure.  Let us consider two series of bins 𝑋 = (𝑥1, … , 𝑥𝑘) and 𝑌 =

(𝑦1, … , 𝑦𝑘).  The EM distance is based on a partial distance 𝑑𝐸𝑀
′  processed recursively 

over each bin, using the following formula: 

𝑑𝐸𝑀
′ (𝑥𝑖, 𝑦𝑖) = {

0 if 𝑖 = 0
|𝑥𝑖 + 𝑑𝐸𝑀

′ (𝑥𝑖−1, 𝑦𝑖−1) − 𝑦𝑖|if i > 0
 (5.3) 

Then, the Earth Mover’s distance is defined as the sum of the partial distances over all 

bins: 

 

𝑑𝐸𝑀(𝑋, 𝑌) = ∑ 𝑑𝐸𝑀
′ (𝑥𝑖, 𝑦𝑖)

1≤𝑖≤𝑘

 (5.4) 

 

Because the EM distance is applied to normalized histograms, it also ranges from 0 to 1.   

The distance between two distributions is calculated by passing two normalized 

histograms to the function emd which is implemented in R under the package emdist. 

 

The overall distance is processed for each pair of networks, in order to build the distance 

matrix required by the clustering algorithms.  Let us note 𝑛 the number of global 

properties, and 𝑚 the number of local properties.  Each normalized global property is 

noted 𝑀𝑖 (1 ≤ 𝑖 ≤ 𝑛) and each normalized local property is noted 𝑁𝑗 (1 ≤ 𝑗 ≤ 𝑚).  

Equation (2.6) shows how we combine all property distances to obtain the overall 

distance 𝑑𝑂(𝐺, 𝐻) between two networks 𝐺 and 𝐻. 
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𝑑𝑂(𝐺, 𝐻) =
1

𝑛
∑ 𝑑𝑀(𝑀𝑖(𝐺), 𝑀𝑖(𝐻)) +

1≤𝑖≤𝑛

1

𝑚
∑ 𝑑𝐸𝑀 (𝑁𝑗(𝐺), 𝑁𝑗(𝐻))

1≤𝑗≤𝑚

 (5.5) 

 

The fact the distances for global and local properties are all taking values in [0; 1] allows 

us to average them without any scale problem.  The resulting average is also ranging 

from 0 to 1. 

 

 Cluster Analysis Methods 

 

There exist many methods to perform cluster analysis.  In this section, we present a 

selection of 4 representative tools we used to analyze our dataset.   

 

 Definition of Cluster Analysis 

 

Cluster analysis consists in empirically forming groups of objects, called clusters, with 

high intra-cluster similarity and low inter-cluster similarity.  One can distinguish various 

general approaches: partitional, hierarchical and density-based algorithms. 

 

Partitional approaches.  They first split the dataset in several mutually exclusive 

clusters, and then maximize/minimize the intra/inter-cluster similarity by moving objects 

from one cluster to another (Reynolds, Richards et al. 1992). 

 

Hierarchical approaches.  They build a hierarchy of clusters, called dendrogram.  Two 

different methods exist for this matter: bottom-up and top-down.  In the former, each 

object is initially considered as a cluster, and those are iteratively merged until only one 

cluster containing all objects remains.  In the latter, on the contrary, all the objects are in 

the same unique cluster, which is then repeatedly divided until obtaining only singleton 

clusters.  The choice of the final clusters is made by selecting a level, called cut, in the 

dendrogram, according to some criteria of interest (Kaufman and Rousseeuw 1990). 

 

Density-based approaches.  They iteratively build clusters by aggregating close objects 

around initial objects called seeds. 
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In this project, we decided to apply several algorithms, each one representative of one of 

these approaches, in order to be able to check the reliability of our results.  In the next 

subsections, we present briefly the select tools: Agnes (hierarchical bottom-up) 

(Kaufman and Rousseeuw 1990), Diana (hierarchical top-down) (Kaufman and 

Rousseeuw 1990), Pam (partitional) (Reynolds, Richards et al. 1992) and DBscan 

(density-based) (Ester, Kriegel et al. 1996). 

 

 Agnes 

 

Agnes (Agglomerative Nesting) corresponds to a bottom-up hierarchical approach 

(Kaufman and Rousseeuw 1990).  It is implemented in the R package named cluster, 

under the form of the function agnes.  Here is its header: 

agnes(x, diss = inherits(x, "dist"), metric = "euclidean", 

stand = FALSE, method = "average", par.method, 

keep.diss = n < 100, keep.data = !diss) 

 

The parameters are as follows: 

 x can be a distance matrix or the raw data matrix. 

 diss is a Boolean flag which must be set to TRUE if x is a dissimilarity matrix. 

 metric must be specified when x is a data matrix, in order to indicate how the 

dissimilarity matrix should be processed. 

 stand is a Boolean flag which must be set to TRUE if one wants to normalize 

the raw data before processing the distance matrix, in the case where x is not 

already a distance matrix.   

 method defines the method used to process inter-cluster distance when selecting 

the clusters to be merged: 

o "average": (average linkage) average of inter-object distances 

o "single": (single linkage) minimal inter-object distance 

o "complete": (complete linkage) maximal inter-object distance 

o "ward": Ward's method 

o "weighted": (weighted average linkage) and its generalization  
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o "flexible": generalization of the previous one.  It uses the 

thepar.method parameter. 

 keep.diss, keep.data: Boolean flags indicating if the distance and input 

matrices should be kept in the returned values, respectively. 

In this project, the Agnes function is used by passing distance matrix as parameter x.  As 

we use distance matrix diss parameter takes the value FALSE and metric is not used.  

The stand parameter is also used as FALSE as the matrix is already normalized. 

 

 Diana 

 

Diana (Divisive Analysis) is a top-down hierarchical method (Kaufman and Rousseeuw 

1990).  It is also implemented in the R package cluster, under the form of the function 

named Diana.  Here is its header: 

diana(x, diss = inherits(x, "dist"), metric = "euclidean", 

stand = FALSE, method = "average", par.method, 

keep.diss = n < 100, keep.data = !diss) 

 

Its parameters are similar to those of the function in 5.2.2 Agnes.   

 

 Pam 

 

Pam (Partitioning Around Medoids) (Reynolds, Richards et al. 1992) is a partitional 

approach which can be considered as a generalization of the 𝑘-means method to the case 

where it is not possible to perform average operation on the data.  Since the centers of 

the clusters cannot be processed exactly, they are approximated by using centroids, i.e.  

the instance which is the closest to the actual center.  It is implemented in the R package 

cluster, under the form of the pam function. 

pam(x,k, diss = inherits(x, "dist"), metric = "euclidean", 

    medoids = NULL, stand = FALSE, cluster.only = FALSE, 

    do.swap = TRUE, 

    keep.diss = !diss && !cluster.only && n < 100) 

 

 

In terms of the parameters,  
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 x: is a raw or distance matrix.   

 k: is the number of cluster. 

 diss: is the logical flag representing the x type.  TRUE in case of distance 

matrix and FALSE otherwise. 

  metric: is character representing the metric to be used for calculating the 

distance matrix .   

 medoids: NULL (default) or length-k vector of integer indices (in 1:n) 

specifying initial medoids instead of using the ‘build’ algorithm. 

 Stand: logical; if true, the measurements in x are standardized, false 

otherwise. 

 cluster.only: logical; if true, only the clustering will be computed 

and returned 

 keep.diss: logicals indicating if the dissimilarities and/or input 

data x should be kept 

 

In this project a normalized distance matrix is used as data.  As we use distance matrix 

diss parameter takes the value FALSE and metric is not used.  The stand parameter 

is also used as FALSE as the matrix is already normalized. 

 

 DBscan 

 

DBscan uses the density-based approach (Ester, Kriegel et al. 1996).  The R package 

fpc implements it, under the form of the DBscan function.  Here is its header: 

dbscan(data, eps, MinPts = 5, scale = FALSE, method = 

c("hybrid", "raw", 

    "dist"), seeds = TRUE, showplot = FALSE, countmode = 

NULL) 

 

 data: can be a data matrix or dissimilarity matrix.   

 eps: is the reachability distance and MinPts is minimum number of reachable 

point.   
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 scale: is used to scale the data.   

 method: represents the treatment method of matrix.  The value "dist" 

treats data as distance matrix, "raw" treats data as raw data and avoids 

calculating a distance matrix, "hybrid" expects also raw data, but 

calculates partial distance matrices.   

 seeds: is a flag which is FALSE to not include the isseed-vector in 

the dbscan-object.   

 showplot: takes values 0 for not to plot and 1 for plot per treatment 

and 2 for plot per sub iterations. 

 countmode: is used to specify the vectors of points at which the 

progress will be reported.  X and object are objects of dbscan.  

Predict.max is batch size for predictions.   

 

In this project a distance matrix is used as data.  eps and scale are evaluated 

to find out the best fitting clustering structure. 

 

 Clusters Comparison and Evaluation 

 

Two problems are the direct consequence of cluster analysis.  First, each tool can produce 

different clusters, depending on the parameter values used.  The question is then to know 

how to select the best clusters.  Second, since we have several tools, how can we compare 

their best clusters, in order to assess their agreement? Several approaches exist to solve 

both problems.  In this section, we focus only on the most widespread ones.  We first 

present the Silhouette measure, used to assess the quality of a partition (cluster set) and 

then the Adjusted Rand Index, which can be used to compare two the clusters of two 

distinct partitions, and therefore quantify the agreement between the two methods having 

produced the clusters. 

 

 Silhouette 
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As mentioned before, the Silhouette measure was designed to assess the quality of a 

partition, i.e.  of a set of clusters.  It relies on a distance matrix comparing each pair of 

instances in the considered dataset.  The first step consists in calculating the average 

distance between an instance of interest 𝑖 and the rest of the instances located in the same 

cluster: this value is noted 𝑎(𝑖).  We then do the same thing between the instance and the 

instances located in another cluster 𝐶, and we note the result 𝑏(𝑖, 𝐶).  We note 𝑏(𝑖) the 

closest cluster, i.e.  the one for which the distance to 𝑖 is the smallest: 𝑏(𝑖) = min
𝐶

𝑏(𝑖, 𝐶).   

 

Intuitively, in a good clustering, 𝑎(𝑖) should be low (strong cohesion inside the cluster) 

and 𝑏(𝑖) should be high (strong separation between the clusters).  The Silhouette value 

of an instance 𝑠(𝑖) is then defined as (Aranganayagi and Thangavel 2007): 

 

𝑠(𝑖) =  
𝑏(𝑖) − 𝑎(𝑖)

max (𝑎(𝑖), 𝑏(𝑖))
 (5.6) 

 

The range of 𝑠(𝑖) is [−1; 1 ], and greater value means that 𝑖 clearly belongs to its current 

cluster.  By averaging 𝑠(𝑖) over all clustered instances, we get an overall performance 

measure also defined on [−1; 1 ]. 

 

 Adjusted Rand Index 

 

The Rand Index (Rand 1971) is a classical measure used to compare partitions, and 

therefore mutually exclusive clusters like ours.  Let us define the following quantities: 

 𝑎: number of pairs of instances put in the same cluster in both partitions. 

 𝑏: the number of pairs of instances put in different clusters in both partitions. 

 𝑐: number of pairs of instances put in the same cluster in the first partition, but in 

different clusters in the second one. 

 𝑑: number of pairs of instances put in different clusters in the first partition, but 

in the same cluster in the second one. 

Then, the Rand Index is defined as: 
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𝑅𝐼 =  
𝑎 + 𝑏

𝑎 + 𝑏 + 𝑐 + 𝑑
 (5.7) 

 

The Adjusted rand index is a corrected for chance version of the classic Rand index 

(Hubert and Arabie 1985).  The general formula for chance correcting some index 𝐼 is 

the following: 

 

𝐼𝐶 =  
𝐼 − 𝐸(𝐼)

𝐼𝑚𝑎𝑥 − 𝐸(𝐼)
 (5.8) 

 

Where 𝐼 is the non-corrected index, 𝐼𝑚𝑎𝑥 is its upper bound, 𝐸(𝐼) is its expected value 

on the considered data, and  𝐼𝐶 is the corrected index.  For the Rand index, let us note 𝑛𝑖𝑗 

the number of instances belonging to cluster 𝑖 in the first partition, and to cluster 𝑗 in the 

second one.  We can then note 𝑛𝑖 the number of instances belonging to cluster 𝑖 in the 

first partition, whatever their cluster in the second partition is, and 𝑛𝑗  the symmetric 

quantity: number of instances in cluster 𝑗, independently from their cluster in the first 

partition.  The Adjusted Rand Index is then defined as: 

 

𝐴𝑅𝐼 =  
∑ (𝑛𝑖𝑗

2
) − [∑ (𝑛𝑖

2
)𝑖 ∑ (𝑛𝑗

2
)𝑗 ]/(𝑛

2
)𝑖,𝑗

(
1
2) [∑ (𝑛𝑖

2
) +𝑖 ∑ (𝑛𝑗

2
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 (5.9) 
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6 RESULTS AND DISCUSSION  

 

 

 

The dataset used in this project consists of a collection of 152 networks publicly 

available on the Internet.  As mentioned at the beginning, one of our goals was to study 

how the type of systems represented by the network can affect its topology.  For this 

reason, the dataset is split into 7 different domains, as described in section 0:  

 Social interactions: acquaintances, sexual and trust networks; 

 Scientific citations: bibliographic references; 

 Communication networks: email and phone networks; 

 Ecological systems: taxa and their predator-prey relationships; 

 Biomolecular interactions: protein, metabolic and genetic interaction networks; 

 Computer networks: various representations of the Internet and the Web; 

 Transportation systems: airport interconnections and road systems. 

 

In this section, we present the analysis of these data, using the methods described in 

section 5.1.  We first discuss the topological properties of the networks.  Then, we 

compare them in terms of correlation.  We also identify the properties allowing to 

discriminate the domains.  Finally, we look for clusters in our dataset, and comment the 

identified groups. 
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 Topological Properties  

 

Let us describe our datasets in terms of the topological properties presented in section 

2.2.   

Size.  For all domains, the size of the smallest networks is of the same order of magnitude: 

a few tens of nodes.  However, this is not the case for the largest ones.  The largest 

Ecological and Transportation networks contain a few hundred nodes.  For Social, 

Communication and Biomolecular networks, it is several thousand nodes.  And Citation 

and Computer Science networks reach several tens of thousands of nodes.  This 

highlights the fact real-world network sizes are very heterogeneous, spanning 3 orders 

of magnitude.  This is confirmed by the generally very large standard deviations. 

 

Density.  Similarly to what can be observed in the literature, most of our networks are 

very sparse, as seen in the average density and standard deviation of all domains.  For 

some of them, the density is even as low as 10−4.  However, the average density of Social 

and Transportation networks is clearly higher (roughly the double of the others).  

Moreover, some networks are remarkably dense in the Social, Communication and 

Biomolecular domains, as highlighted by their upper bounds.   

 

 



66 

 

 

 

Table 6-1 Overview of the main topological properties of networks in terms of domains 

 Size Density Diameter Radius 

Social [11,1882] 

Mean:143.88 

S: 448.52 

[0.0004, 0.38] 

Mean: 0,32 

SD: 0,26 

[10, 10406] 

Mean: 619.17 

SD: 25.01 

[1,16] 

Mean: 7 

SD:6.84 

Citation [35,27779] 

Mean:3424.53 

SD: 7547.97 

[0.0004,0.26] 

Mean: 0.07 

SD: 0.09 

[3,37] 

Mean: 13.93 

SD: 0.26 

[0,49] 

Mean: 8.29 

SD: 13.67 

Communication [11,1882] 

Mean:143.88 

S: 448.52 

[0.0004, 0.26] 

Mean: 0,07 

SD: 0,09 

[3, 24] 

Mean: 11,58 

SD: 7.43 

[1,22] 

Mean: 15.30 

SD: 15.50 

Ecological [24,128] 

Mean: 65.38 

SD: 35.00 

[0.08, 0.23] 

Mean: 0.15 

SD: 0.03 

[8, 12729] 

Mean: 1417 

SD: 369.3 

[2, 11] 

Mean: 3 

SD: 2.16 

Biomolecular [23,3839] 

Mean 1099.44 

SD:889.27 

[0.001, 0.34] 

Mean: 0.03 

SD: 0.08 

[3, 30] 

Mean: 12.74 

SD: 4.98 

[1, 63] 

Mean: 10.21 

SD: 25.29 

Computer Science [18,10680] 

Mean: 158.28 

SD:2973.78 

[0.0002, 0.05] 

Mean: 0.04 

SD: 0.11 

[4, 46] 

Mean: 14.5 

SD: 10.95 

[1,352] 

Mean: 38.13 

SD: 86.11 

Transportation [75,332] 

Mean:174.40 

SD: 107.60 

[0.03, 0.24] 

Mean: 0.22 

SD: 0.26 

[1, 19] 

Mean: 6.94 

SD: 6.27 

[0, 16] 

Mean: 4.28 

SD: 5.67 

 

  Transit. Modularity Avg.  distance Avg.  degree 

Social  [0, 0004,0.86] 

Mean: 0.40 

SD:0.25 

[0, 0.89] 

Mean: 0.26 

SD: 0.28 

[1.16, 11.65] 

Mean: 2.71 

SD: 2.40 

[1.84,33.34] 

Mean: 8.22 

SD: 7.88 

Citation  [0.03, 0.69] 

Mean: 0.23 

SD: 0.17 

[0.14, 0.93] 

Mean: 0.41 

SD: 0.20 

[1.76,8.46] 

Mean: 3.88 

SD: 1.55 

[3.24,516.80] 

Mean: 39.81 

SD: 104.77 

Communication  [0.03, 0.59] 

Mean: 0.27 

SD:0.16 

[0.14, 0.76] 

Mean: 0.42 

SD: 0.19 

[1.75, 5.34] 

Mean: 3.19 

SD: 1.13 

[3.42,156.80] 

Mean: 63 

SD: 16.18 

Ecological  [0.28, 0.49] 

Mean: 0.38 

SD: 0.07 

[-0.003, 0.51] 

Mean: 0.06 

SD: 0.15 

[1.6, 3.36] 

Mean: 1.81 

SD: 0.39 

[5.12, 33.90] 

Mean: 18.15 

SD: 10.11 

Biomolecular  [0.02,0.54] 

Mean: 0.07 

SD: 0.14 

[0.04, 0.80] 

Mean: 0.52 

SD: 0.14 

[1.80, 7.65] 

Mean: 4.66 

SD: 1.16 

[2.41, 14.48] 

Mean: 5.37 

SD: 2.15 

Computer Science  [0,001, 0.50] 

Mean: 0.13 

SD: 0.14 

[0, 0.88] 

Mean: 0.43 

SD: 0.26 

[1.49, 18.98] 

Mean: 4.31 

SD: 3.48 

[2.54, 39.1] 

Mean: 6.95 

SD: 8.67 

Transportation  [0,003, 0.84] 

Mean: 0.32 

SD: 0.26 

[0, 0.44] 

Mean: 0.15 

SD: 0.16 

[1.21, 3.48] 

Mean: 2.37 

SD: 0.70 

[4, 194.64] 

Mean: 37.90 

SD: 69.61 
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Degree.  According to the Kormogorov-Simirnov test, all the studied networks have a 

power law distributed degree, a prominent feature in complex networks literature.  For 

most domains, degree bounds have the same order of magnitude: a few units for the lower 

bound, several tens for the upper bound.  The exceptions are Transportation, 

Communication and Citation networks, whose upper bounds reach several hundreds.  For 

the Citation domain, this can be explained by the fact the networks are larger (in terms 

of nodes), compared to other domains, while they are as dense.  For the Transportation 

and Communication domains, the networks are small but very dense, which can explain 

these high upper bounds. 

 

Transitivity.  The literature highlights the fact real-world networks generally have a high 

transitivity.  It does not seem to be the case so much when looking at the average values 

obtained on our dataset, which range from 0.07 to 0.40.  A look at the bounds shows us 

the smallest values are almost zero, and the highest ones are not so large (around 0.5 −

0.6), with the exception of Social and Transportation networks (0.86 and 0.84, 

respectively).  The relatively large standard deviations highlight the heterogeneity of the 

networks in terms of transitivity.  When However, when comparing with values expected 

for ER networks with the same size and density, it turns out the networks of our dataset 

are more transitive, while following very closely the evolution observed in ER networks, 

as seen in Figure 6-1.   

 

Distance.  The order of magnitude of the average distance and both distance bounds are 

roughly the same for all domains: the lower bounds are close to 1, the upper bounds are 

close to 10, and the average distances lie in between.  All networks consequently have a 

very small average distance, when compared to their size in terms of nodes.  Larger 

networks have a longer distance, but the increase is marginal.  The observed average 

distances are higher than those expected for ER random networks of same size and 

density, as illustrated by Figure 6-1.  This means the observed values alone are not 

sufficient to decide if the networks are small-world.   

 

Eccentricity.  Distance distribution of networks mostly follows a similar curve.  It is 

observed that there is concentration in the low and high eccentricity which follows a 
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sharp decraease from the low values to the average and a smooth increase towards high 

values.  Except Ecological networks which have a more smooth eccentricity distribution.  

The order of magnitude of the diameter is the same for most domains, independently 

from the network size: it ranges from a few hops to a few tens.  However, this is not true 

for the Social and Ecological networks, since the upper bound is tens of thousands of 

hops for them.   This means that, even if the average distance is of the same order of 

magnitude than in other domains, it is possible for nodes to be much far from the network 

center in Social and Ecological networks.  Interestingly, the same observation does not 

hold for the radius, which is roughly similar for most domains.  Computer networks stand 

out, with a radius of hundreds of hops, instead of tens for the other domains.   

 

Centrality.  It is observed that betweenness centrality follows a normal distribution in 

all domains whereas closeness centrality has an opposite behavior which supports the 

number of nearest and farthest nodes are not neglectable.  In terms of edgebetweenness 

we have two picks in the curve of distribution one between the minimum and the 

mean, the second one is near the upper-bound.  This indicates there are mostly and 

equally used links in networks.   

 

Modularity.  The modularity of the dataset changes between −0.02 and 0.92 and it is 

seen that a large number of networks have positive modularity value.   The most modular 

networks belong to Citation networks.  Except Transportation and Ecological networks 

modularity of dataset seems very high.  Modularity in ER networks are accepted as0.  

When compared to ER networks it is seen that all domains have significantly modular 

networks. 

 



69 

 

 

 

 

Figure 6-1 Comparison between transitivity and average degree of networks and same 

size of Erdős–Rényi networks in terms of domains. 

 

 

 Correlation Study  

 

We now examine the correlations between the topological properties studied in the 

previous subsection.  As mentioned before, we distinguish two types of properties: global 

and local ones.  To ease the interpretation of our results, we split the correlation study in 

three parts: global vs.  global, local vs.  local and global vs.  local.   
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Global vs.  global.  Table 6-2 shows the correlation between global properties only.  

Most of the values are close to zero, indicating no linear relationships between the 

properties.  However, a few strong positive and negative correlations are also observed.  

The highest (0.76) one is measured between the density and transitivity which can be 

explained by the fact that when a network becomes denser the possibility to find triangles 

increases, too.  The average distance and radius are also highly correlated (0.59).  This 

is certainly due to the fact both measures are based on the notion of distance, and reflect 

how compact the network is.  .  Density and transitivity are both negatively correlated to 

average distance (−0.45 and −0.43, respectively).  When the network becomes denser, 

the average distance automatically decreases: because of the additional links, the shortest 

paths become even shorter.  When the average distance is large, the probability for direct 

connections decreases, impacting the number of triangles.  Modularity is positively 

correlated with average distance (0.60), and like this measure, it is negatively correlated 

with both density and transitivity (−0.71 and −0.51 respectively).  Indeed, the presence 

of a community structure requires links to be concentrated in communities.  Do, the 

network must be relatively sparse: if it is too dense, then the community structure cannot 

exist.  The presence of a community structure increases the average distance: the sparsity 

of direct connections between nodes from different communities makes shortest paths 

longer, in average. 

 

Local vs.  local.  Local properties take the form of distributions, so it is not possible to 

compare them directly using Pearson’s coefficient.  Instead, we considered two series 

constituted of the distances between these distributions, for each pair of networks in our 

dataset.  So, we insist on the fact we do not consider the direct correlation between two 

measures here, but rather the correlation of the distances based on these measures.  The 

idea is to quantify how much distributions are correlated.  The results are presented in 

Table 6-3.  Some measures are not correlated with any other: it is the case for edge-

betweenness.  On the contrary, we observe a relatively strong correlation between the 

remaining measures.  This is particularly true of degree and local transitivity (1.00), 

which indicates their distributions change similarly from one network to another.  This 

does not necessarily mean degree and transitivity are directly linearly dependent, but 

rather that when two networks have a similar degree distribution, they also have a similar 
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transitivity distribution, and vice-versa.  Betweenness centrality is also correlated with 

both transitivity and degree distribution (0.59 for both), which indicates that networks 

with similar degree and transitivity distribution show similar betweenness centrality 

distribution.  Eccentricity and betweenness centrality are also very strongly correlated 

(0.79), meaning that when the maximal distance of the nodes is distributed similarly 

between two networks, then the numbers of shortest paths going through nodes are also 

distributed similarly.  The fact all measures except edge-betweenness are relatively 

correlated indicates there is a certain redundancy in the information conveyed by these 

properties. 

 

Table 6-2 Correlation between global properties 

 Density Diameter Transitivity Modularity Average 

Distance 

Average 

Degree 

Radius 

Density - 0.02 0.76 -0.71 -0.45 0.16 -0.14 

Diameter - - 0.04 -0.12 -0.09 -0.01 -0.03 

Transitivity - - - -0.51 -0.43 0.12 -0.09 

Modularity - - - - 0.60 -0.13 0.16 

Average 

Distance 

- - - - - -0.16 0.59 

Average Degree - - - - - - 0.00 

Radius - - - - - - - 

 

 

Global vs.  local.  To study the correlation between global and local properties, we also 

used the distances.  Here again, it is important to be cautious with our interpretation: a 

strong correlation means that when two networks are similar in terms of some global 

measure, they are also similar regarding the distribution of the considered local measure.  

Table 6-4 shows the obtained results: most of the measures are not correlated.  However, 

we observe a relatively strong positive correlation for some of them.  The highest is 

observed for density and eccentricity (1.00).  This means that, when two networks have 

the same density, they tend to have the same eccentricity distribution.  At a lesser extent, 

the same remark can be made for the closeness and betweenness centrality. 
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Table 6-3 Correlation between local properties 

 Degree 

Distribution 

Betweenness 

centrality 

Closeness 

centrality 

Local 

Transitivity 

Eccentricity Edge-

betweenness 

Degree 

Distribution. 

- 0.55 0.24 1.00 0.34 0.10 

Betweenness 

Centrality 

- - 0.45 0.43 0.79 0.01 

Closeness 

Centrality 

- - - 0.33 0.40 -0.01 

Local Transitivity - - - - 0.23 0.01 

Eccentricity - - - - - -0.01 

Edge-

betweenness 

- - - - - - 

 

 

Table 6-4 Correlation between global and local properties 

 Density Diameter Transitivity Modularity Avg.  Dist Avg.  

Degree 

Radius 

Degree 

Distribution 

0.10 -0.09 0.25 0.13 0.01 0.00 0.00 

Betweenness 

Centrality 

0.43 -0.09 0.23 0.00 0.01 0.00 0.00 

Closeness 

Centrality 

0.44 0.01 0.18 0.04 -0.04 0.00 0.00 

Local Transitivity 0.31 -0.06 0.33 0.02 0.01 0.00 0.00 

Edge-betweenness 0.24 -0.25 0.04 -0.01 -0.01 0.00 0.00 

Eccentricity  1.00 -0.12 0.43   -0.01 0.07 0.00 0.00 

 

 

 Domains Comparison 

We applied an ANOVA followed by Tukey’s post-hoc test, in order to identify which 

properties allow discriminating domains.  The ANOVA reveals 4 properties are 

significantly different in at least one domain: average distance (𝑝 = 3 × 10−3), density 

(𝑝 = 6 × 10−6), modularity (𝑝 = 4 × 10−3) and transitivity (𝑝 = 7 × 10−6).  We 

performed Tukey’s post-hoc test to identify which domains have different average values 

for these properties.  Our results are displayed in Table 6-5. 

Significant difference in terms of density concerns only social networks, which differ 

from Biomolecular, Citation and Computer networks.  This means there is no relevant 

difference between the other domains in terms of how dense the networks are.  So if we 



73 

 

    

 

were to partition domains depending on density, density alone would not be sufficient: 

Social networks are not significantly different from Ecological, Transportation and 

Communication networks, but these are themselves not significantly different from 

Biomolecular, citation and computer networks.   

The other discriminant properties are more widespread than density.  In terms of 

transitivity, Biomolecular networks are different from all other domains except computer 

and communication networks.  Computer networks themselves are different from 

ecological and social networks.  Again, it is not possible to partition the domains here by 

putting Biomolecular and computer networks aside: communication networks are neither 

significantly different from Biomolecular or Computer networks, nor from the rest of the 

domains. 

In terms of modularity, Ecological networks are significantly different from all domains 

except Citation and Transportation networks.  However, like for the other properties, 

there is no clear separation based on this property only.  Similarly, Biomolecular and 

Computer networks significantly differ from half the domains in terms of average degree, 

but those domains only partially overlap, therefore preventing any clear separation. 

In conclusion, it seems possible intuitively to distinguish different groups of domains, 

when they differ by several properties at the same time.  This is noticeably the case for 

Biomolecular and Computer networks on one side, and Social networks on the other side.  

However, no objective ANOVA results really back this observation.  This is the reason 

why we also conducted a cluster analysis to complete our view of the dataset. 

 

 



 

 

 

 

Table 6-5 Tukey test result, significant properties for network domain pairs 

 Biomolecula
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Citation Computer Ecology Transportatio
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 Network Clusters 

 

As mentioned in section 0, we have applied 4 clustering algorithms (Agnes, Diana, 

DBscan and Pam) over the whole dataset; using the Silhouette measure to identify the 

best partitions, and the Adjusted Rand Index (ARI) to compare them.  All methods reach 

their maximal Silhouette value for 2 clusters, which is a strong agreement.  Diana has the 

highest Silhouette with 0.44, the second being Pam with 0.42, followed by DBscan with 

0.40 and Agnes with 0.39.  These values are not very high (the Silhouette upper bound 

being 1), but they still show there is a non-random separation between two groups of 

networks.   Table 3-1 shows the ARI values obtained when comparing the clusters 

estimated by the different clustering tools.  The clusters found by Diana and Agnes have 

largely similar structures, with an ARI of 0.75.  After them, Pam and Agnes shows the 

second highest similarity with a 0.45 ARI, and Diana and Pam reach the value 0.41.  On 

the contrary, the clusters found by DBscan are very different, since the ARI is almost 

zero when compared with all three other methods.  Because of the nature of this 
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algorithm, it certainly means it found non-convex clusters.  In the rest of this work, we 

focus on the clusters identified by Pam, because it is highly similar with hierarchical both 

algorithms, and is very close to Diana in terms of Silhouette.  Therefore, we are aiming 

at making a trade-off between the cluster quality and agreement between algorithms. 

 

Table 6-6 ARI results for 4 algorithms 

 Agnes Diana Dbscan Pam 

Agnes  0.750 0.003 0.450 

Diana -  0.001 0.410 

DBscan - -  0.010 

Pam - - -  

 

 

Table 6-7 represents the distribution of networks of different domains over the two 

clusters detected by Pam.  While Biomolecular, Citation and Computer networks are 

largely grouped in the first cluster, Ecological, Transport, Social and Communication 

networks are mostly grouped in the second cluster.  The first cluster is dominated by 

Biological networks, whereas Social and Communication clusters dominate the second 

one.   

 

Table 6-7 Participation of networks from different domains in clusters 

 Cluster 1 Cluster 2 

Social 4 21 

Citation 17 3 

Communication 7 25 

Biomolecular 28 4 

Ecology 0 20 

Computer 16 5 

Transportation 0 5 
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We have applied an ANOVA over the two clusters to find out the properties which have 

influence on the cluster division.  The ANOVA indicates 9 properties undergoing 

significant changes over the clusters: transitivity (𝑝 =  2 × 10−16), diameter (𝑝 =

0.01 ), modularity (𝑝 =  2 × 10−16), average distance (𝑝 =  1 × 10−8), density (𝑝 =

 3 × 10−9), and average degree (𝑝 =   1 × 10−3 ), closeness centrality (𝑝 =  4 ×

 10−3), local transitivity (𝑝 =  3 × 10−9) and edge betweenness (𝑝 =  3 × 10−9).  

This result shows that except radius, betweenness centrality and eccentricity all other 

global properties which we have used were significant while distinguishing clusters in 

our dataset.   Here we see that the transitivity, density, modularity and average distance 

are highly significant compared to diameter and average degree.  When we consider the 

results collected under the ANOVA of domains which are explained in 6.3, it is obvious 

that same properties were significant in distinguishing the domains; hence these four 

properties can be assumed as the leading properties for differentiation of the clusters.   
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7 CONCLUSION 

 

 

 

The goal of this work was to study the topological properties of complex networks using 

a systematic approach.  For this purpose, we first constituted a dataset of 152 networks 

representing real-world systems.  We distinguished 7 different domains: Biomolecular, 

Social, Ecology, Citation, Computer, Transport and Communication.  We then processed 

a selection of 14 topological measures for each of these networks, including both local 

and global measures.  We performed various analyses on these values.  First, we analyzed 

the topological properties individually.  We observed that Social, Communication, 

Ecology and Transportation networks shows the similar properties which differentiate 

them from Citation, Biomolecular and Computer domains.   Second, we made a 

correlation study, and identify strong correlations between certain properties, which seem 

to be related to the network domains.  Third, we study how the domains compare in terms 

of global properties.  An ANOVA followed by Tukey’s test revealed certain domains 

like Biomolecular-Ecology, Biomolecular-Social, Biomolecular-Transportation, 

Citation-Ecology, Computer-Ecology, Computer-Social have significantly different 

density, transitivity, modularity and average degree.  However, these differences are not 

consistent enough to allow classifying the domains on the basis of individual topological 

measures.  Therefore, to complete this study, we applied several cluster analysis tools 

(Agnes, Diana, Pam, DBscan).  All agree on the presence of two clusters, however the 

agreement is not as strong regarding the nature of these clusters: Adjusted Randi Index 

(ARI) values range from from 0.1 𝑡𝑜 0.75.  We selected the most separated clusters, 

according to the Silhouette measure (0.44, and studied how domains were distributed 

over them.  The separation is very clear, with 3 domains (Social, Communication and 

Ecology) belonging to one cluster and the 4 other domains (Biomolecular, Transport, 

Citation, Computer) to the other cluster.  Additional ANOVA and Tukey’s test revealed 

and it is seen that the two clusters are significantly different from each other in terms of 
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transitivity, modularity, average distance, average degree, diameter and density in which 

there exist also the same properties observed also in domain ANOVA. 

 

The main contribution of our work was to take advantage of data mining approaches to 

perform the first systematic study of complex network topological properties.  By 

comparison, previous works only focused on a limited number of networks, and on 1 or 

2 properties.  The second contribution was the constitution of a large network dataset. 

 

However, our work also suffers from certain limitations.  First, we could not include in 

our dataset all the freely available networks, because their normalization is a long 

process.  Moreover, a manual verification must be performed to ensure the same network 

is not present twice in the dataset.  But this limitation can be easily overcome with more 

time.  Second, we expected a priori to get a larger number of clusters, and a clearer 

separation between them.  We think one reason for that can be we did not use the 

information allowing to distinguish more clusters.  This limitation can be overcome by 

considering more topological properties.   
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