
i 
 

 

NEW MERGE BASED SORT ALGORITHM FOR NEARLY SORTED LISTS 

 

(SIRALIYA YAKIN DİZİLER İÇİN YENİ BİR BİRLEŞTİRME TABANLI 

SIRALAMA ALGORİTMASI) 

 

 

 

 

by 

 

Orhan Can ÖZALP, B.S. 

 

 

 

Thesis 

 

 

Submitted in Partial Fulfillment 

 

of the Requirements 

 

for the Degree of 

 

 

 

MASTER OF SCIENCE 

 

 

Date of Submission  : January 04, 2013 

 

Date of Defense Examination: January 28, 2013 

 

 

 

Supervisor  : Asst. Prof. Dr. Murat AKIN 

Committee Members : Asst. Prof. Dr. Gülfem ALPTEKİN 

        Asst. Prof. Dr. A. Çağrı TOLGA 

 
 



ii 
 

 
 
 

ACKNOWLEDGEMENTS 

I would like to thank my supervisor, Asst. Prof. Dr. Murat Akın, for his helpful advices 

and great patience during the process. 

 

I also would like to thank my dear mother and Esra, for supporting me in every step of 

my life and making everything look easier.  

 

January, 2013 

Orhan Can Özalp  



iii 
 

 

 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS .......................................................................................................... ii 

TABLE OF CONTENTS ............................................................................................................. iii 

LIST OF FIGURES ...................................................................................................................... v 

LIST OF TABLES ...................................................................................................................... vii 

ABSTRACT ............................................................................................................................... viii 

RÉSUMÉ ..................................................................................................................................... ix 

ÖZET ............................................................................................................................................ x 

1. INTRODUCTION ................................................................................................................ 1 

2. LITERATURE REVIEW...................................................................................................... 2 

2.1. Measures of Disorder .................................................................................................... 2 

2.1.1. Runs ...................................................................................................................... 2 

2.1.2. Rem ....................................................................................................................... 3 

2.1.3. Inv ......................................................................................................................... 3 

2.2. Merge Algorithms ......................................................................................................... 3 

2.2.1. Two-Way Merge Algorithm.................................................................................. 4 

2.2.2. Binary Merge Algorithm ....................................................................................... 5 

2.2.3. Prune Merge Algorithm ........................................................................................ 7 

2.3. Sorting Algorithms ........................................................................................................ 9 

2.3.1. Straight Insertion Sort ......................................................................................... 10 

2.3.2. Merge Sort ........................................................................................................... 12 

2.3.3. Quicksort ............................................................................................................. 14 

2.3.4. Cook-Kim Sort .................................................................................................... 16 

2.3.5. Splitsort ............................................................................................................... 18 

3. A NEW ADAPTIVE SORTING ALGORITHM ................................................................ 21 

3.1. The New Method for Sorting Nearly Sorted Lists ...................................................... 22 

3.2. Analysis of the New Method ....................................................................................... 27 



iv 
 

4. RESULTS ........................................................................................................................... 28 

4.1. Parameters ................................................................................................................... 28 

4.2. Test Results ................................................................................................................. 29 

4.2.1. Comparison of Algorithms .................................................................................. 29 

4.2.2. Comparison of Merge Methods........................................................................... 37 

4.2.3. Comparison of Space Complexities .................................................................... 40 

5. CONCLUSION ................................................................................................................... 43 

REFERENCES............................................................................................................................ 44 

BIOGRAPHICAL SKETCH ...................................................................................................... 46 

  



v 
 

 

 

 

LIST OF FIGURES 

Figure 2.1 : Steps of Two-Way Merge on two sample lists. ............................................ 5 

Figure 2.2 : Steps of Binary Merge on two sample lists. .................................................. 6 

Figure 2.3 : Steps of Prune Merge on two sample list ...................................................... 8 

Figure 2.4 : Pseudocode of Straight Insertion Sort ......................................................... 10 

Figure 2.5 : Steps of Straight Insertion Sort on a sample list ......................................... 11 

Figure 2.6 : Pseudocode of Merge Sort .......................................................................... 12 

Figure 2.7 : Steps of Merge Sort on a sample list ........................................................... 13 

Figure 2.8 : Basic pseudocode of Quicksort ................................................................... 14 

Figure 2.9 : In-place partition pseudocode method of Quicksort ................................... 14 

Figure 2.10 : Steps of Quicksort on a sample list ........................................................... 15 

Figure 2.11 : Pseudocode of CK Sort ............................................................................. 16 

Figure 2.12 : Steps of CK Sort on a sample list .............................................................. 17 

Figure 2.13 : Pseudocode of Splitsort ............................................................................. 18 

Figure 2.14 : Splisort - Extracting an ascending sequence from list into buffer ............. 19 

Figure 2.15 : Splitsort – Merging ordered sub-lists ........................................................ 20 

Figure 3.1 : Extracting sorted subsequence with Cook-Kim method ............................. 21 

Figure 3.2 : Frame logic in new method ......................................................................... 22 

Figure 3.3 : Extending buffer elements in new method .................................................. 23 

Figure 3.4 : Pseudocode of new method ......................................................................... 24 

Figure 3.5 : Steps of new method on a sample list with low Inv value. ......................... 25 

Figure 3.6 : Steps of new method on a sample list with low Runs value ....................... 26 

Figure 3.7 : Counts of operations in the new method on a n=5, Runs(L)=2 list ............. 27 

Figure 4.1 : Line graph for Runs(L) = 1 .......................................................................... 30 

Figure 4.2 : Line graph of adaptive algorithms for Runs(L) = 1 ..................................... 30 

Figure 4.3 : Line graph for Runs(L) = 2 .......................................................................... 31 



vi 
 

Figure 4.4 : Line graph of adaptive algorithms for Runs(L) = 2 ..................................... 31 

Figure 4.5 : Line graph for Runs(L) = 5 .......................................................................... 32 

Figure 4.6 : Line graph of adaptive algorithms for Runs(L) = 5 ..................................... 33 

Figure 4.7 : Line graph for Runs(L) = 10 ........................................................................ 34 

Figure 4.8 : Line graph of adaptive algorithms for Runs(L) = 10 ................................... 34 

Figure 4.9 : Line graph for Runs(L) = 20 ........................................................................ 35 

Figure 4.10 : Line graph of adaptive algorithms for Runs(L) = 20 ................................. 35 

Figure 4.11 : Line graph for Runs(L) = 200 .................................................................... 36 

Figure 4.12 : Line graph of adaptive algorithms for Runs(L) = 200 ............................... 37 

Figure 4.13 : Line graph for Table 4.7 ............................................................................ 38 

Figure 4.14 : Line graph for Table 4.8 ............................................................................ 39 

Figure 4.15 : Line graph for Table 4.9 ............................................................................ 39 

Figure 4.16 : Line graph for Table 4.10 .......................................................................... 40 

Figure 4.17 : Memory Usage (bytes) of Algorithms ...................................................... 41 

 

 

  



vii 
 

 

 

 

LIST OF TABLES 

Table 4.1 : Execution times (ms) for Runs(L) = 1 .......................................................... 29 

Table 4.2 : Execution times (ms) for Runs(L) = 2 .......................................................... 31 

Table 4.3 : Execution times (ms) for Runs(L) = 5 .......................................................... 32 

Table 4.4 : Execution times (ms) for Runs(L) = 10 ........................................................ 33 

Table 4.5 : Execution times (ms) for Runs(L) = 20 ........................................................ 35 

Table 4.6 : Execution times (ms) for Runs(L) = 200 ...................................................... 36 

Table 4.7 : Execution times (ms) of two implementations for Runs(L) = 2 ................... 37 

Table 4.8 : Execution times (ms) of two implementations for Runs(L) = 5 ................... 38 

Table 4.9 : Execution times (ms) of two implementations for Runs(L) = 10 ................. 39 

Table 4.10 : Execution times (ms) of two implementations for Runs(L) = 20 ............... 40 

Table 4.11 : Space Complexities of Algorithms ............................................................. 40 

Table 4.12 : Memory Usage (bytes) of Algorithms ........................................................ 41 

  



viii 
 

 
 
 

ABSTRACT 

Methods and algorithms, i.e. sorting algorithms, can be customized to increase system 

performance in large data systems.  In order to do this, various parameters like data flow 

or data characteristics must be known. 

 

Widely used sorting algorithms (e.g., HeapSort, MergeSort) do not consider the 

characteristics of data and introduce general solutions for almost all cases.  Better 

performance algorithms can be found when some parameters (e.g., Sortedness) taken 

into account. 

 

In this work, first the sorting algorithms which can provide a basis for the new method 

are reviewed.  Also, because the new method is merge based, former merge algorithms 

are reviewed.  Finally, based on the former methods, new sorting method is presented 

for nearly sorted lists. 

 

Key words: Merge Algorithm, Adaptive Sorting Algorithm, Nearly Sorted Lists. 

 

  



ix 
 

 
 
 

RÉSUMÉ 

Performance des algorithmes de tri, particulièrement dans les systèmes de grandes 

quantités de données, est très important comme la recherche est un prérequis pour 

réaliser des algorithmes de tri plus performantes. 

 

Les algorithmes de tri connues (ex: HeapSort, MergeSort) sont des algorithmes 

générales qui sont développés sans considérer les propriétés caractéristiques des 

données. Dans les cas ou les propriétés caractéristiques des données sont connues, on 

peut dévéloper des algorithmes plus performantes. 

 

Dans cette recherche, on a examiné les algorithmes dans la littérature qui ont la 

possibilité de former la base à notre algorithme. Puis, on a amélioré la performance d'un 

des algorithmes et fait des comparaisons du point de vue de la consommation du temps 

et de l'espace. 

 

Mots-clés: Algorithme de fusion, algorithme adaptive d'arrangement, listes des nombres 

presque arrangés. 

 

 

 

 

 

 

 

 



x 
 

 
 
 

ÖZET 

Sıralama algoritmalarının performansı, özellikle büyük boyutta verilerin işlendiği 

sistemlerde, arama gibi temel algoritmaların daha performanslı gerçekleştirilebilmesinin 

ön koşulu olduğu için büyük önem taşımaktadır. 

 

Sık kullanılan sıralama algoritmaları (Örn; HeapSort, MergeSort) eldeki verinin 

karakteristik özellikleri dikkate alınmadan oluşturulmuş genel sıralama algoritmalarıdır. 

Verinin karakteristik özelliklerinin (Örn: Sıralanmışlık) bilinebildiği durumlarda, bu 

durumlara özel daha performanslı çözümler üretilebilir. 

 

Bu çalışmada, bu zamana kadar bulunan sıralama algoritmalarından, bu çalışmaya temel 

oluşturacak yöntemleri içeren algoritmalar incelenmiştir.  Ayrıca çalışmanın temelini 

oluşturduğu için, şimdiye kadar kullanılmış birleştirme (merge) işlemlerine de 

değinilmiş, sonrasında da incelenen yöntemlerin sıralıya yakın diziler için uyarlanabilir 

hale gelmesi için iyileştirmeler yapılmaya çalışılmıştır. 

 

Anahtar Sözcükler: Birleştirme Algoritması, Uyarlanabilir Sıralama Algoritması, 

Sıralıya Yakın Diziler. 

 

  



1 
 

 
 

 

 

1. INTRODUCTION 

Sorting is the computational process of rearrangement of items into ascending or 

descending order [8].  It is one of the fundamental techniques in computer science, 

because a lot of other techniques and algorithms are based on sorting. 

 

A sorting algorithm is adaptive if it runs faster when the input list is nearly in order (or 

nearly sorted) [13].  Nearly sorted lists are defined by some disorder measures.  Many 

parameters define the sortedness of a list; e.g., Rem, Runs [10].  Those measures are 

used in further sections to define each sort algorithms characteristics. 

 

Merge algorithms and well-known sorting algorithms are defined in the first section. 

Since the number of sorting algorithms is high, only the relevant algorithms are taken 

into account in order to make a better comparison. 

 

The new algorithm is introduced in the second section.  The key points in the algorithm 

are defined step by step.  Run time complexity analysis of the algorithm is given in this 

section. 

 

In the third section, comparison results of various algorithms are shown in terms of 

Runs measure.  Also comparisons of two merge methods are given in this section. 

 

In this work, Runs measure was taken into account while creating sample arrays as an 

input for sorting algoritms.  For each size and Runs measure, several different lists are 

generated. 

 

 

 

 



2 
 

 
 

 

 

2. LITERATURE REVIEW 

2.1. Measures of Disorder 

Before analyzing performances of sorting algorithms on nearly sorted lists, the term 

“nearly sorted” must be clearly explained in terms of sortedness parameters (or 

measures of disorder).  The “sortedness” of a list is a concept that specifies how this list 

is close to its sorted form.  In this section, criteria that define “sortedness” will be 

explained. 

  

2.1.1. Runs 

A sorted list is an ascending list, which means it has only one ascending run.  Based on 

this definition, Runs can be defined as the number ascending runs in a list [12].  Step-

down [8] is a similar parameter with Runs which is defined as the number of boundaries 

between runs.  Step-down parameter of a list L can be expressed as 

 

stepDown(L) = │{ i | 1 ≤ i < n, Li+1 < Li }│   (2.1) 

 

Runs parameter of a list L can be expressed in terms of step-down 

 

Runs(L) = stepDown(L) + 1     (2.2) 

 

For example; 

L : { 1 3 8 6 10 5 9 11 } 

stepDown(L) : { 1 3 8 ↓ 6 10 ↓ 5 9 11 } = 2 

Runs(L) :  {1 3 8} {6 10} {5 9 11} = 3 

 

 



3 
 

 
 

2.1.2. Rem 

Rem parameter can be defined as the minimum number of removal operations from an 

unsorted list to obtain a sorted list [4].  An unsorted list can be defined as a form of 

sorted list which has some elements that break sortedness. 

 

Rem parameter can be expressed as  

 

Rem(L) = │L│ - LNS(L)     (2.3) 

 

In equation (2.3), L is the length of the list and LNS(L) is the length of the longest non-

decreasing subsequence in the list.  

 

2.1.3. Inv 

Inv parameter can be defined as the number of pairs in the wrong order in a list [10]. 

Therefore, Inv value is smallest when the list is sorted and largest when the list is 

reversely sorted. 

 

Inv parameter can be expressed as 

 

Inv(L) = │{ (i, j) | 1 ≤ i < j ≤ n and Li > Lj }│  (2.4) 

 

2.2. Merge Algorithms 

Merging is an operation means combining two or more sorted lists into one sorted list 

[1].  For example, merge result R of L1 and L2 will be 

 

L1 : { 1, 6, 7, 12, 89 } 

L2 : { 4, 17, 28, 46 } 

R : { 1, 4, 6, 7, 12, 17, 28, 46, 89 } 

 



4 
 

 
 

Regarding to previous researches, several algorithms are used to perform merge 

operation, e.g.; Two-Way Merge [8], Binary Merge [6], Polyphase Merge [8], Cascade 

Merge [8].  In this section,  

 Two-Way Merge 

 Binary Merge 

 Prune Merge 

algorithms will be reviewed
1
.   

 

2.2.1. Two-Way Merge Algorithm 

Two-Way Merge algorithm is the most basic method for merging.  It is a linear 

algorithm and it is based on comparing the smallest elements of two lists and adding the 

smallest element into the result list. 

 

Algorithm 2.1: This algorithm merges two sorted lists, List1 with size m and List2 with 

size n and stores the result into the list Result with size (m + n). 

Step 1. Initialize indexes i ← 1, j ← 1, k ← 1 

Step 2. If List2j < List1i, go to Step 5 

Step 3. Set Resultk ← List1i, i ← i + 1, k ← k + 1 

Step 4. If i > m, set Result(k, m + n) ← List2(j, n) and terminate, else go to Step 2 

Step 5. Set Resultk ← List2j, j ← j + 1, k ← k + 1 

Step 6. If j > n, set Result(k, m + n) ← List1(i, m) and terminate, else go to Step 2 

 

 

 

 

 

 

 

 

                                                           
1
 Cascade Merge and Polyphase Merge algorithms are used in external sorting 

algorithms thus will not be reviewed. 



5 
 

 
 

 

List 1 1 10 11    

List 2 2 5 9    

Result       

 

List 1  1 10 11    

List 2  2 5 9    

Result  1      

 

List 1  1 10 11    

List 2  2 5 9    

Result  1 2     

 

List 1  1 10 11    

List 2  2 5 9    

Result  1 2 5    

 

List 1  1 10 11    

List 2  2 5 9    

Result  1 2 5 9   

 

Result  1 2 5 9 10 11 

Figure 2.1 : Steps of Two-Way Merge on two sample lists. 

 

 

2.2.2. Binary Merge Algorithm 

Binary Merge (or Hwang-Lin Merge [6]) algorithm is a combination of Two-Way 

Merge algorithm and Binary Search algorithm [8].  This algorithm uses binary search to 

find values to compare instead of one-by-one steps like Two-Way Merge does.  

 

Pseudocode for this algorithm is given below: 



6 
 

 
 

Algorithm 2.2: This algorithm merges two sorted list, List1 with size m and List2 with 

size n and stores the result into the list Result with size (m + n). 

Step 1 : If m or n equals 0, finish 

Step 2 : Set t ← │log(n/m)│ 

Step 3 :  If m > n, go to Step 8 

Step 4 :  Set j ← n – 2
t
 + 1 

Step 5 :  If List1m < List2j, add List2(j, n) to Result, set n ← j - 1 and go to Step 1 

Step 6 :  Set i ← binary search of correct position for List1m in {List2j, List2n} 

Step 7 :  If n ≥ i, List2(i, n) to Result 

Step 8 :  Add List1m to Result, n ← i - 1, m ← m - 1, go to Step 1 

Step 9 :  Set j ← m - 2
t
 + 1 

Step 10 :  If List2n < List1j, add List1(j, m) to Result, set m ← j - 1 and go to Step 1 

Step 11 :  Set i ← binary search of correct position for List2n in {List1j, List1m} 

Step 12 : If m ≥ i, List1(i, m) to Result 

Step 13 :  Add List1(i, m) to Result, List2n to Result, m ← i - 1, n ← n - 1, go to Step 1 

 

 

List1 : 1 15         

List2 : 2 6 9 11 16 18 25 33   

Result :            

 

List1 :  1 15         

List2 :  2 6 9 11 16 18 25 33   

Result :        16 18 25 33 

 

List1 :  1 15         

List2 :  2 6 9 11 16 18 25 33   

Result :     9 11 15 16 18 25 33 

 

Result :  1 2 6 9 11 15 16 18 25 33 

Figure 2.2 : Steps of Binary Merge on two sample lists. 



7 
 

 
 

2.2.3. Prune Merge Algorithm 

This algorithm is a part of TimSort [11].  It can be called “Prune Merge” because it 

prunes the maximum and minimum elements and reduces list sizes before merging.  

 

“Prune Merge” is a combination of Two-Way Merge and Binary Search; it uses binary 

search to find extreme intervals, prunes them and finally makes a Two-Way Merge 

operation on final lists. 

 

Algorithm 2.3: This algorithm merges two sorted list, List1 with size m and List2 with 

size n and stores the result into the list Result with size (m + n). 

[Boundary Control]  

Step 1:  If s1 > f1, add List2(s2, f2) to Result(s, f) then terminate 

Step 2:  If s2 > f2, add List1(s1, f1) to Result(s, f) then terminate 

[/Boundary Control]  

[Prune Merge]  

Step 1:  Set s ← 1, f ← (m + n), s1 ← 1, s2 ← 1, f1 ← m, f2 ← n 

Step 2:  If List1s1 > List2s2, go to Step 5, if List1s1 < List2s2, go to Step 7 

Step 3:  Add List1s1 and List2s2 to Result, s1 ← s1 + 1, s2 ← s2 + 1, s ← s + 2 

Step 4:  Execute [Boundary Control], go to Step 2 

Step 5:  Set k ← binary search of correct position for List1s1 in List2(s2, n) 

Step 6:  Add List2(s2, k-1) to Result, s ← s + (k - s2), s2 ← k, go to Step 9 

Step 7:  Set k ← binary search of correct position for List2s2 in List1(s1, m) 

Step 8:  Add List1(s1, k-1) to Result, s ← s + (k - s1), s1 ← k 

Step 9:  Execute [Boundary Control] 

Step 10:  If List1f1 > List2f2, go to Step 13, if List1f1 < List2f2, go to Step 15 

Step 11:  Add List1f1 and List2f2 to Result, f1 ← f1 - 1, f2 ← f2 - 1, f ← f – 2 

Step 12:  Execute [Boundary Control], go to Step 10 

Step 13:  Set k ← binary search of correct position for List1f1 in List2(f2, n) 

Step 14:  Add List2(k, n) to Result, f ← f - (n - k + 1), f2 ← k - 1, go to Step 17 

Step 15:  Set k ← binary search of correct position for List2f2 in List1(f1, m) 

Step 16:  Add List1(k, m) to Result, f ← f - (m - k + 1), f1 ← k – 1 



8 
 

 
 

Step 17:  Execute [Boundary Control] 

Step 18:  Two-Way Merge List1(s1, f1) and List2(s2, f2) into Result(s, f) 

[/Prune Merge]  

 

 

List 1:  2 10 17 25 28 35 43 57 90          

List 2:  2 5 8 12 32 50 62 75 90          

Result:                    

 

List 1:  2 10 17 25 28 35 43 57 90          

List 2:  2 5 8 12 32 50 62 75 90          

Result:  2 2                 

 

List 1:  2 10 17 25 28 35 43 57 90          

List 2:  2 5 8 12 32 50 62 75 90          

Result:  2 2 5 8               

 

List 1:  2 10 17 25 28 35 43 57 90          

List 2:  2 5 8 12 32 50 62 75 90          

Result:  2 2 5 8             90 90 

 

List 1:  2 10 17 25 28 35 43 57 90          

List 2:  2 5 8 12 32 50 62 75 90          

Result:  2 2 5 8           62 75 90 90 

 

Result:  2 2 5 8 10 12 17 25 28 32 35 43 50 57 62 75 90 90 

Figure 2.3 : Steps of Prune Merge on two sample list 

 

 

 

 



9 
 

 
 

2.3. Sorting Algorithms 

Sorting algorithm is a process of rearranging a list of items into ascending or 

descending order [8].  Several sorting algorithms developed so far and they can be 

grouped in 2 main types of being comparison based sort algorithm or not.  Although 

there are some integer sorting algorithms e. g., Counting Sort [3], Radix Sort [3], sorting 

algorithms are mostly comparison based and can be implemented for generic uses. 

 

Comparison based sorting algorithms can be grouped in 5 types; 

 

 Insertion based sort 

 Exchange based sort 

 Selection based sort 

 Merge based sort 

 Hybrid sort 

 

Insertion based sort algorithms are basically keeps sorted elements in a place and inserts 

every element into the correct position sequentially.  Straight Insertion Sort and 

ShellSort are examples for this type.  

 

Exchange based sort algorithms are based on exchanging unsorted pairs of elements. 

Exchange (or swapping) operations continue until list is sorted.  QuickSort and 

BubbleSort are examples for exchange based sort algorithms. 

 

Selection based sort algorithms are based on removing the minimum element from the 

list and adding it to the result list until there is no element left in the list.  HeapSort and 

SelectionSort are selection based selection sort algorithms. 

 

Merge based sort algorithms are based on merging separate sorted sublists into one 

sorted lists.  These algorithms use different techniques to create sorted sublists. 

MergeSort, Polyphase Merge Sort and StrandSort [15] are examples to this type.  

 

 



10 
 

 
 

Hybrid sort algorithms are combinations of other types of sorting algorithms.  Cook-

Kim Sort [2] and TimSort [11] are examples of hybrid sort algorithms. 

 

2.3.1. Straight Insertion Sort 

Straight Insertion Sort is an insertion based sort algorithm.  Straight Insertion Sort has 

the same working principle with to sort a deck of cards in a card game [14].  In a card 

game, player starts with an empty and all the cards are face down.  Player takes all the 

cards one by one and for each card, he founds the correct place for the card and inserts it 

to this place. 

 

Straight insertion sort has the worst case time complexity of O(n
2
) and a best case 

complexity of O(n).  Its average complexity is O(n + i), where i is the number of 

inversions, therefore Straight Insertion Sort can be defined as Inv-optimal adaptive sort 

algorithm.  

 

 

procedure insertionsort 

begin 

 for i := 2 to n 

 begin 

  j := i 

  value := Listi 

  while j > 1 and Listj-1 > value 

  begin 

   Listj := Listj-1 

   j := j - 1 

  end 

   

  Listj := value 

 end 

end 

Figure 2.4 : Pseudocode of Straight Insertion Sort 

 

 

 



11 
 

 
 

 

12 97 57 26 3 65 34 51 

 

12 97 57 26 3 65 34 51 

 

12 97 57 26 3 65 34 51 

 

12 57 97 26 3 65 34 51 

 

12 26 57 97 3 65 34 51 

 

3 12 26 57 97 65 34 51 

 

3 12 26 57 65 97 34 51 

 

3 12 26 34 57 65 97 51 

 

3 12 26 34 51 57 65 97 

 

Figure 2.5 : Steps of Straight Insertion Sort on a sample list 

 



12 
 

 
 

2.3.2. Merge Sort 

Merge Sort is a merge based sort algorithm and uses Divide & Conquer principle [1].  It 

is a recursive process of partitioning elements into two groups and sorting both 

partitions recursively until the size of the recursive call is 1 (Recursive call with 1 

element will return the value itself).  After both of the partitions are sorted, they are 

merged and recursive call terminates (Formula 2.5).  

 

MergeSort(L(1, n)) = Merge(MergeSort(L(1, ⌊n/2⌋)), MergeSort(L(⌊n/2⌋ + 1, n)))  (2.5) 

 

Merge Sort has a constant time complexity O(nlog(n)) for worst, best and average case, 

therefore it is not adaptive.  Standard merge sort has an extra space complexity of O(n), 

because it allocates a list size of n to store the result.  An in-place merge sort [16] exists 

but since the classic approach has better performance [16], in-place merge sort will not 

be analyzed. 

 

 

procedure mergesort (start, end) 

begin 

 if end = start 

 begin 

  result := create list (1) 

  result1 := Liststart 

  return result 

 end 

 begin 

  mid := (start + end) / 2 

   

  left := mergesort (start, mid) 

  right := mergesort (mid + 1, end) 

   

  return merge(left, right) 

 end 

end 

Figure 2.6 : Pseudocode of Merge Sort 

 

 

 



13 
 

 
 

 

      12 97 57 26 3 65 34 51       

 

     12 97 57 26   3 65 34 51      

 

   12 97   57 26   3 65 34 51      

 

  12  97   57 26   3 65 34 51      

 

   12 97  57  26   3 65 34 51      

 

   12 97   26 57   3 65 34 51      

 

     12 26 57 97   3 65 34 51      

 

     12 26 57 97   3 65   34 51    

 

     12 26 57 97   3  65  34 51    

 

     12 26 57 97   3 65   34  51   

 

     12 26 57 97   3 65   34 51    

 

     12 26 57 97   3 34 51 65      

 

      3 12 26 34 51 57 65 97       

Figure 2.7 : Steps of Merge Sort on a sample list. 



14 
 

 
 

2.3.3. Quicksort 

Quicksort is an exchange based sorting algorithm.  It is based on a Divide & Conquer 

principle [14]; it works by partitioning the list into 2 and recursively sorting both 

sublists (Figure 2.8).  

 

 

function quicksort (start, end) 

begin 

 if end > start 

 begin 

  index := partition(start, end) 

  quicksort(start, index - 1) 

  quicksort(index + 1, end) 

 end 

end 

Figure 2.8 : Basic pseudocode of Quicksort  

 

“Partition” function is the key point of Quicksort.  This function selects a list value as a 

pivot value and creates two separate lists which contain smaller and greater values from 

the pivot value.  This work can be done with an in-place method (Figure 2.9). 

 

 

function partition (start, end) 

begin 

 pivot := determine pivot index() 

 value := Listpivot 

 i := start 

 j := end 

 while j > i 

 begin 

  while Listi <= value 

   i := i + 1 

  while Listj >= value 

   j := j - 1 

    

  swap(i, j) 

 end 

 return i 

end 

Figure 2.9 : In-place partition pseudocode method of Quicksort 



15 
 

 
 

 

 

 

12 97 57 26 3 65 34 51 

 

12 97 57 26 3 65 34 51 

 

12 3 57 26 97 65 34 51 

 

12 3 26 57 97 65 34 51 

 

3 12 26 57 97 65 34 51 

 

3 12 26 57 97 65 34 51 

 

3 12 26 57 51 65 34 97 

 

3 12 26 57 51 34 65 97 

 

3 12 26 34 51 57 65 97 

 

Figure 2.10 : Steps of Quicksort on a sample list 

 

 

Quicksort has an average case and best case time complexity of O(nlogn) and a worst 

case complexity O(n
2
).  Worst case for Quicksort occurs in a few permutations; e.g., 

when the list is sorted ascending or descending order.  

 

 



16 
 

 
 

2.3.4. Cook-Kim Sort 

Cook-Kim (CK) Sort is an adaptive hybrid sort algorithm [2].  It is a combination of 

Quickersort (Quicksort algorithm with an optimization on selecting the pivot index), 

Straight Insertion Sort and merging. 

 

CK Sort algorithm basically extracts the unordered pairs in the list, stores unordered 

pairs in another list and sorts the second list.  If there are more than 30 values in the 

second list, it uses Quickersort otherwise Straight Insertion Sort to sort the values [17]. 

In the final step, two ordered lists are merged. 

 

 

procedure cksort 

begin 

 List2 := create empty list() 

 start := 1 

 i := start + 1 

  

 while i <= n and start > 0 

 begin 

  while Listi < Liststart and start > 0 and i <= n 

  begin 

   add(List2, Listi, Liststart) 

   Listi := +∞ 

   Liststart := +∞ 

   i := i + 1 

   start := start - 1  

  end 

 end 

  

 n2 := size of List2 

  

 if n2 <= 30 

  insertionsort (List2) 

 else  

  quickersort (List2) 

   

 return merge List and List2 ignoring sentinel values 

end 

Figure 2.11 : Pseudocode of CK Sort 

 

 



17 
 

 
 

 

 

List : 12 97 57 26 3 65 34 51 

List2 :         

 

List : 12 97 57 26 3 65 34 51 

List2 :         

 

List : 12 26 3 65 34 51   

List2 : 97 57       

 

List : 12 26 3 65 34 51   

List2 : 97 57       

 

List : 12 65 34 51     

List2 : 97 57 26 3     

 

List : 12 65 34 51     

List2 : 97 57 26 3     

 

List : 12 51       

List2 : 97 57 26 3 65 34   

 

List : 12 51       

List2 : 3 26 34 57 65 97   

 

Result: 3 12 26 34 51 57 65 97 

Figure 2.12 : Steps of CK Sort on a sample list 



18 
 

 
 

Because only the unordered pairs are being removed from list and the indexes of the 

unordered pairs are not taken into account, CK Sort is Rem-optimal.  Because of the 

direct correlation between LNS (Longest Nondecreasing Subsequence) function and 

Rem parameter (Formula 2.3), performance of CK sort will decrease when the size of 

the remaining list decreases. 

 

CK Sort has a best case complexity O(n) and a worst case complexity O(nlogn) for lists 

with size>30 and O(n
2
) otherwise.  Average case complexity of CK Sort is O(n + rlogr) 

where r equals to Rem value. 

 

2.3.5. Splitsort 

Splitsort is a merge based adaptive sorting algorithm [9].  It basically rearranges 

original list, recursively sorts unsorted sublists and merges all the sublists.  It needs an 

extra O(n) memory space for this rearrangement (split) operation.  

 

 

procedure splitsort (start, end) 

begin 

 buffer := create empty list (end – start + 1) 

 splitindex := split(start, end) 

  

 if splitindex < end 

 begin 

  mid := (end + splitindex) / 2 

   

  splitsort(splitindex + 1, mid) 

  splitsort(mid + 1, end) 

   

  merge (buffer, start, splitindex, splitindex + 1, mid) 

  merge (buffer, start, mid, mid + 1, end) 

 

  copy (buffer, List, start, end) 

 end 

end 

Figure 2.13 : Pseudocode of Splitsort 

 

 

 



19 
 

 
 

12 97 57 26 3 65 34 51 

 

12 97 57 26 3 65 34 51 

 

12 97       

 

12 97 57 26 3 65 34 51 

 

12        

 

12 97 57 26 3 65 34 51 

 

12 26       

 

12 97 57 26 3 65 34 51 

 

12        

 

12 97 57 26 3 65 34 51 

 

12 65       

 

12 97 57 26 3 65 34 51 

 

12        

 

12 51       

Figure 2.14 : Splisort - Extracting an ascending sequence from list into buffer 

 



20 
 

 
 

 

12 97 57 26 3 65 34 51 

 

12 51 57 3 34 97 26 65 

 

 

 

 

 

12 51 3 34 57 26 65 97 

 

 

12 51 3 34 57 26 65 97 

 

3 12 34 51 57 26 65 97 

 

3 12 26 34 51 57 65 97 

Figure 2.15 : Splitsort – Merging ordered sub-lists 

 

Splitsort has a best case time complexity of O(n), when the list is already sorted.  In this 

case, there will be only (n – 1) comparison and the algorithm will terminate.  Worst case 

will occur when the list is reversely sorted.  In this case, there will be nlogn recursive 

calls and in each call and there will be O(n) comparisons in total in merge and split 

methods, so the worst case is O(nlogn). 

 

Splitsort removes all the unordered pairs from the list and recursively sorts these pairs, 

therefore it is a Rem-optimal adaptive sorting algorithm.  In the average case, number of 

elements in both smaller and greater elements list is Rem(L).  Rem(L)log(Rem(L)) 

comparisons need to be done in order to sort these lists and O(n) comparisons for merge 

operations, therefore the average case complexity is Rem(L)log(Rem(L)) + O(n). 

 

Asc. 
Sub-list 

Smaller 
Elements 

Greater 
Elements 

Recursive 
Sort 



21 
 

 
 

 

 

3. A NEW ADAPTIVE SORTING ALGORITHM 

Adaptive sorting algorithms take advantage of already sorted subsequences in the list.  

It is possible to calculate the longest non-decreasing (ascending) subsequence in O(n
2
) 

[5] but since the operation itself contains a sorting procedure and its complexity is 

higher than O(nlogn) boundary, it is not feasible to extract the longest subsequence. 

Therefore all adaptive algorithms use different methods to extract an ascending 

subsequence. 

 

Consider the list L = { 1, 2, 3, 6, 7, 5, 4, 8, 9 }.  It is a nearly sorted list with Rem(L) = 2. 

Longest ascending subsequence ({ 1, 2, 3, 6, 7, 8, 9 }) in this list can be calculated using 

the algorithm defined in (Fredman, 1975).  An extraction method is good as its result is 

similar to the longest ascending subsequence of the input list. 

 

As described in Section 2.3.4, Cook-Kim Sort uses a linear method to extract an 

ascending list. It removes unordered pairs from the original lists and stores in another 

list to sort.  

 

 

List: 1 2 3 6 7 5 4 8 9 

Result: 1 2 3 6 7     

 

List: 1 2 3 6 7 5 4 8 9 

Result: 1 2 3 6      

 

List: 1 2 3 6 7 5 4 8 9 

Result: 1 2 3 8 9     

Figure 3.1 : Extracting sorted subsequence with Cook-Kim method 



22 
 

 
 

Splitsort extracts an ascending subsequence using the same method with Cook-Kim 

Sort.  The difference between these algorithms is the sorting method of the remaining 

parts; Splitsort recursively sorts the remaining parts and Cook-Kim Sort uses a different 

algorithm to sort depending on the size of the list. 

 

 

3.1. The New Method for Sorting Nearly Sorted Lists 

The new method uses a linear algorithm for extracting ascending sequences.  Cook-Kim 

Sort and Splitsort use a different method; they move the unsorted value into another list 

and after the scanning of list finished, second list is sorted.  The main aspect of new 

method is to continue extending sorted subsequence even there is an unsorted element 

found.  

 

New method uses an O(n) buffer for storing current ascending list.  With each 

unordered element, the buffer is merged with the current ascending subseqence and 

stored into buffer.  After each merge operation, maximum element of the sequence reset 

to -∞, therefore new method is also Runs-optimal. 

 

Figure 3.4 shows a psedocode of the new method.  First it creates a new buffer with the 

size n.  After that it starts to iterate over the input list and hold the current sequence in a 

frame (Figure 3.2).  A frame is simply a start and a finish point in the list. 

 

 

4 7 12 23 30 27 21 57 77 

 

 

Figure 3.2 : Frame logic in new method 

 

 

 

 

Frame 

Start Finish 



23 
 

 
 

After an unsorted element is found, buffer is extended with the next value of the current 

element, until an unsorted element is found again. 

 

Buffer 4 7 12 23 27 30 57 77   

 

 

 

4 7 12 23 30 27 21 57 77 

 

 

 

Figure 3.3 : Extending buffer elements in new method 

 

Final step is the merge step; after extension of the buffer has finished, frame and buffer 

will be merged and the result will be stored in buffer. 

 

 

 

 

 

 

 

 

 

 

 

Current 
Element 

Extensions to buffer 



24 
 

 
 

procedure newmethod 

begin 

 buffer := create new list() 

 i := 1 

 arraystart := 1 

 arraymax := -∞ 

 buffercount := 0 

 buffermax := -∞ 

  

 while i < n 

 begin 

  if Listi >= arraymax 

  begin 

   arraymax := Listi 

   i := i + 1 

  end 

  else 

  begin 

   arrayfinish := i - 1 

   while i < n and Listi >= buffermax 

   begin 

    bufferbuffercount := Listi 

    buffermax := Listi 

     

    buffercount := buffercount + 1 

    i := i + 1 

   end 

    

   merge (List(arraystart, arrayfinish), buffer) into buffer 

    

   arraystart := i 

   buffercount := i 

   buffermax := bufferbuffercount 

   arraymax := -∞ 

  end 

 end 

 if buffercount < n 

  merge (List(arraystart, n), buffer) into buffer 

   

 return buffer 

end 

Figure 3.4 : Pseudocode of new method 

 

 

 

 



25 
 

 
 

 

 

List:  1 2 3 6 7 5 4 8 9 

Buffer:           

 

List:  1 2 3 6 7 5 4 8 9 

Buffer:  1         

 

List:  1 2 3 6 7 5 4 8 9 

Buffer:  1 2        

 

List:  1 2 3 6 7 5 4 8 9 

Buffer:  1 2 3       

 

List:  1 2 3 6 7 5 4 8 9 

Buffer:  1 2 3 6      

 

List:  1 2 3 6 7 5 4 8 9 

Buffer:  1 2 3 6 7     

 

List:  1 2 3 6 7 5 4 8 9 

Buffer:  1 2 3 5 6 7    

 

List:  1 2 3 6 7 5 4 8 9 

Buffer:  1 2 3 5 6 7 8 9  

 

 1 2 3 4 5 6 7 8 9 

Figure 3.5 : Steps of new method on a sample list with low Inv value. 



26 
 

 
 

 

List:  6 7 10 15 21 1 3 4 5 

Buffer:           

 

List:  6 7 10 15 21 1 3 4 5 

Buffer:  6         

 

List:  6 7 10 15 21 1 3 4 5 

Buffer:  6 7        

 

List:  6 7 10 15 21 1 3 4 5 

Buffer:  6 7 10       

 

List:  6 7 10 15 21 1 3 4 5 

Buffer:  6 7 10 15      

 

List:  6 7 10 15 21 1 3 4 5 

Buffer:  6 7 10 15 21     

 

List:  6 7 10 15 21 1 3 4 5 

Buffer:  6 7 10 15 21     

 

 1 3 4 5 6 7 10 15 21 

Figure 3.6 : Steps of new method on a sample list with low Runs value. 

 

 



27 
 

 
 

3.2. Analysis of the New Method 

The new method finds ascending sequences in the list and merges the sequences, 

therefore it will be analyzed in terms of Runs. 

 

If the list is already sorted, algorithm will terminate after O(n) comparisons and 0 

exchange operations, so the best case time complexity is O(n).  If the list is reversely 

sorted, there will be O(n) comparisons for sequential step, O(n) comparisons before 

merging and O(n
2
) memory exchanges in merge operations,  so the worst case 

complexity is O(n
2
). 

 

 

3 4 5 1 2 

 

 

 

 

1 2 3 4 5 

Figure 3.7 : Counts of operations in the new method on a n=5, Runs(L)=2 list 

 

 

For a Runs(L) = 2 list (Figure 3.7), there will be O(n) comparisons total for sequential 

step, O(n) + (Runs(L) – 1) comparisons for merge operations and O(n) operations for 

memory exchanges.  This formula can be generalized to 

 

O(n) + Runs(L) comparisons + O((Runs(L)- 1)n) exchanges  (3.1) 

 

In Formula 3.1 the limiting factor is number of exchanges occur in merge operations. 

With the use of Prune Merge instead of Two-Way Merge, number of comparisons will 

reduce (will be equal in worst case).  

 

 

 

3 comparisons 2 comparisons 

2 memory exc. 3 memory exc. 



28 
 

 
 

 

 

4. RESULTS 

4.1. Parameters 

Although several sorting algorithms have been developed in many years, only adaptive 

algorithms which are similar to the new method were tested.  Straight insertion sort is 

included because of its good performance on small lists and Mergesort is included 

because the new method uses a merge technique.  Apart from these Quicksort, Splitsort 

and Cook-Kim Sort included. 

 

All algorithms are tested with different Runs and size parameters.  Since we are 

focusing on nearly sorted lists, Runs parameter has a value between 1 and 20 and array 

sizes change from 500 to 100,000.  Tests input files are generated with a custom C 

program. 

 

All algorithms are implemented in C++ and compiled with GNU C.  All programs are 

compiled with –O3 parameter.  Memory usage values are obtained by “/proc/self/stat”, 

a standard Linux stream. 

 

All tests were executed on a 4GB RAM and 2.20 GHz Dual Core CPU and Ubuntu 

12.04 operation system. 

 

 

 

 

 



29 
 

 
 

4.2. Test Results 

 

4.2.1. Comparison of Algorithms 

Test results generated from the parameters described in Section 4.1 can be found below. 

For each case (Runs parameter) there is a mean runtime table for all algorithms and 

array sizes.  Also there is a graph for all algorithms and three adaptive (Cook-Kim Sort, 

Splitsort and New Method) algorithms separately. 

 

In Table 4.1, there are results for Runs(L) = 1, which means input is an already sorted 

array.  This is the best case for all adaptive algorithms but it causes Quicksort run in 

worst case time.  Straight insertion sort especially runs faster on smaller arrays and also 

terminates fastest between all algorithms. 

 

 

Table 4.1: Execution times (ms) for Runs(L) = 1. 

 500 5000 10000 100000 

Insertion 0,00001160 0,00006260 0,00012540 0,00126280 

QuickSort 0,00008660 0,00063220 0,00135860 0,01704140 

CK-Sort 0,00002780 0,00015160 0,00028480 0,00342880 

MergeSort 0,00018720 0,00134800 0,00275120 0,03159900 

SplitSort 0,00001600 0,00015180 0,00032240 0,00365200 

New Method 0,00000560 0,00005260 0,00010580 0,00136080 

 

 

 



30 
 

 
 

 

Figure 4.1 : Line graph for Runs(L) = 1. 

 

 

Figure 4.2 : Line graph of adaptive algorithms for Runs(L) = 1. 

 

In Table 4.2, results for Runs(L) = 2 can be seen.  Although there is a slight difference 

between this case and the previous case, differences of execution times can be seen 

clearly.  For longer lists, straight insertion sort will make much more memory exchange 

operations,  therefore its runtime will increase.   

 

 

0.00000000 

0.00500000 

0.01000000 

0.01500000 

0.02000000 

0.02500000 

0.03000000 

0.03500000 

500 5000 10000 100000 

Insertion 

QuickSort 

CK-Sort 

MergeSort 

SplitSort 

New Method 

0.00000000 

0.00500000 

0.01000000 

0.01500000 

0.02000000 

0.02500000 

0.03000000 

0.03500000 

500 5000 10000 100000 

Insertion 

QuickSort 

CK-Sort 

MergeSort 

SplitSort 

New Method 



31 
 

 
 

Table 4.2 : Execution times (ms) for Runs(L) = 2. 

 500 5000 10000 100000 

Insertion 0,00000840 0,00012120 0,00016480 0,00155100 

QuickSort 0,00004720 0,00063560 0,00135480 0,01704040 

CK-Sort 0,00001560 0,00015720 0,00030740 0,00359140 

MergeSort 0,00011520 0,00134520 0,00278320 0,03150920 

SplitSort 0,00001540 0,00015080 0,00030000 0,00449560 

New Method 0,00000960 0,00009500 0,00017240 0,00211520 

 

 

Figure 4.3 : Line graph for Runs(L) = 2. 

 

 

Figure 4.4 : Line graph of adaptive algorithms for Runs(L) = 2. 

0.00000000 

0.00500000 

0.01000000 

0.01500000 

0.02000000 

0.02500000 

0.03000000 

0.03500000 

500 5000 10000 100000 

Insertion 

QuickSort 

CK-Sort 

MergeSort 

SplitSort 

New Method 

0.00000000 

0.00050000 

0.00100000 

0.00150000 

0.00200000 

0.00250000 

0.00300000 

0.00350000 

0.00400000 

0.00450000 

0.00500000 

500 5000 10000 100000 

CK-Sort 

SplitSort 

New Method 



32 
 

 
 

In Table 4.3, results for Runs(L) = 5 can be seen.  Using these it can be said that the new 

method performs better than Cook-Kim Sort and Splitsort for larger data sizes.   

 

Table 4.3 : Execution times (ms) for Runs(L) = 5. 

 500 5000 10000 100000 

Insertion 0,00001320 0,00012580 0,00025320 0,00253000 

QuickSort 0,00004860 0,00064160 0,00137700 0,01718780 

CK-Sort 0,00001680 0,00014860 0,00030160 0,00361960 

MergeSort 0,00011780 0,00134200 0,00278720 0,03183960 

SplitSort 0,00001840 0,00015660 0,00031840 0,00385940 

New Method 0,00001240 0,00010760 0,00020900 0,00280160 

 

 

Figure 4.5 : Line graph for Runs(L) = 5. 

 

0.00000000 

0.00500000 

0.01000000 

0.01500000 

0.02000000 

0.02500000 

0.03000000 

0.03500000 

500 5000 10000 100000 

Insertion 

QuickSort 

CK-Sort 

MergeSort 

SplitSort 

New Method 



33 
 

 
 

 

Figure 4.6 : Line graph of adaptive algorithms for Runs(L) = 5. 

 

In Table 4.4, results for Runs(L) = 10 can be seen.  Comparing to previous cases, run 

times of adaptive sorting algorithms are changed ~0.001 milliseconds.  Mergesort 

nearly has the same runtime for all cases, because of its stable runtime.  

 

Table 4.4 : Execution times (ms) for Runs(L) = 10. 

 500 5000 10000 100000 

Insertion 0,00002100 0,00020480 0,00041140 0,00401900 

QuickSort 0,00005020 0,00063540 0,00137220 0,01712740 

CK-Sort 0,00001660 0,00014940 0,00029960 0,00361560 

MergeSort 0,00011740 0,00134680 0,00280220 0,03175980 

SplitSort 0,00001920 0,00015760 0,00034100 0,00386780 

New Method 0,00001500 0,00011400 0,00023300 0,00323340 

 

 

0.00000000 

0.00050000 

0.00100000 

0.00150000 

0.00200000 

0.00250000 

0.00300000 

0.00350000 

0.00400000 

0.00450000 

500 5000 10000 100000 

CK-Sort 

SplitSort 

New Method 



34 
 

 
 

 

Figure 4.7 : Line graph for Runs(L) = 10. 

 

 

Figure 4.8 : Line graph of adaptive algorithms for Runs(L) = 10. 

 

Table 4.5 contains runtimes for Runs(L)=20. Insertion Sort has a small run time value 

with small array sizes.  With the efficient use of Prune Merge, New Method handles 

large array sizes better than other algorithms. 

 

 

0.00000000 

0.00500000 

0.01000000 

0.01500000 

0.02000000 

0.02500000 

0.03000000 

0.03500000 

500 5000 10000 100000 

Insertion 

QuickSort 

CK-Sort 

MergeSort 

SplitSort 

New Method 

0.00000000 

0.00050000 

0.00100000 

0.00150000 

0.00200000 

0.00250000 

0.00300000 

0.00350000 

0.00400000 

0.00450000 

500 5000 10000 100000 

CK-Sort 

SplitSort 

New Method 



35 
 

 
 

Table 4.5 : Execution times (ms) for Runs(L) = 20. 

 500 5000 10000 100000 

Insertion 0,00003520 0,00035100 0,00071020 0,00711460 

QuickSort 0,00005060 0,00064380 0,00137720 0,01719840 

CK-Sort 0,00001940 0,00015200 0,00030240 0,00360180 

MergeSort 0,00011880 0,00135680 0,00280120 0,03193300 

SplitSort 0,00002040 0,00015880 0,00034120 0,00379260 

New Method 0,00002440 0,00012500 0,00027080 0,00346940 

 

 

Figure 4.9 : Line graph for Runs(L) = 20. 

 

 

Figure 4.10 : Line graph of adaptive algorithms for Runs(L) = 20. 

0.00000000 

0.00500000 

0.01000000 

0.01500000 

0.02000000 

0.02500000 

0.03000000 

0.03500000 

500 5000 10000 100000 

Insertion 

QuickSort 

CK-Sort 

MergeSort 

SplitSort 

New Method 

0.00000000 

0.00050000 

0.00100000 

0.00150000 

0.00200000 

0.00250000 

0.00300000 

0.00350000 

0.00400000 

500 5000 10000 100000 

SplitSort 

New Method 

CK-Sort 



36 
 

 
 

Table 4.6 contains execution times for Runs(L) = 200.  This is an extreme case for the 

new method because the list is much more unsorted when compared to Runs(L) = 20.  

The performance of the new method is slower than Insertion Sort in this case.  This case 

shows that it is better to use the new method for low-Runs lists. 

 

Table 4.6 : Execution times (ms) for Runs(L) = 200. 

 500 5000 10000 100000 

Insertion 0,00001000 0,00010260 0,00018940 0,00197420 

QuickSort 0,00004860 0,00063080 0,00136380 0,01703800 

CK-Sort 0,00001560 0,00015080 0,00030080 0,00355100 

MergeSort 0,00012440 0,00133560 0,00276140 0,03158700 

SplitSort 0,00001780 0,00015660 0,00031860 0,00381200 

New Method 0,00001080 0,00010660 0,00020420 0,00259960 

 

 

Figure 4.11 : Line graph for Runs(L) = 200. 

 

0.00000000 

0.00500000 

0.01000000 

0.01500000 

0.02000000 

0.02500000 

0.03000000 

0.03500000 

500 5000 10000 100000 

Insertion 

QuickSort 

CK-Sort 

MergeSort 

SplitSort 

New Method 



37 
 

 
 

 

Figure 4.12 : Line graph of adaptive algorithms for Runs(L) = 200. 

 

4.2.2. Comparison of Merge Methods 

In Section 4.2.1, results are generated using Prune Merge algorithm for the New 

Method.  In this section, the runtimes of New Method that uses Prune Merge and uses 

Two-Way Merge will be compared. 

 

In Table 4.6, run times of both implementation can be seen for Runs(L) = 2.  In this case 

both algorithms make 1 merge operation.  Prune Merge method is slightly faster even 

for 1 merge operation. 

 

Table 4.7 : Execution times (ms) of two implementations for Runs(L) = 2. 

 500 5000 10000 100000 

New Method 0,00000960 0,00009500 0,00017240 0,00211520 

Two-Way Merge 0,00002528 0,00016001 0,00031703 0,00394314 

 

 

0.00000000 

0.00050000 

0.00100000 

0.00150000 

0.00200000 

0.00250000 

0.00300000 

0.00350000 

0.00400000 

0.00450000 

500 5000 10000 100000 

CK-Sort 

SplitSort 

New Method 



38 
 

 
 

 

Figure 4.13 : Line graph for Table 4.7. 

 

Tabe 4.7, Table 4.8 and Table 4.9 show run times of three implementation for Runs(L) = 

5, 10 and 20.  In these cases, number of merge operations increases and the difference 

of performances can be seen more clearly. 

 

Figure 4.8 : Execution times (ms) of two implementations for Runs(L) = 5. 

 500 5000 10000 100000 

New Method 0,00001240 0,00010760 0,00020900 0,00280160 

Two-Way Merge 0,00005290 0,00035426 0,00063836 0,00636465 

 

 

 

0.00000000 

0.00050000 

0.00100000 

0.00150000 

0.00200000 

0.00250000 

0.00300000 

0.00350000 

0.00400000 

0.00450000 

500 5000 10000 100000 

New Method 

Two-Way Merge 



39 
 

 
 

 

Figure 4.14 : Line graph for Table 4.8. 

 

Table 4.9 : Execution times (ms) of two implementations for Runs(L) = 10. 

 500 5000 10000 100000 

New Method 0,00001500 0,00011400 0,00023300 0,00323340 

Two-Way Merge 0,00005533 0,00040548 0,00079062 0,01042674 

 

 

Figure 4.15 : Line graph for Table 4.9. 

 

 

 

0.00000000 

0.00100000 

0.00200000 

0.00300000 

0.00400000 

0.00500000 

0.00600000 

0.00700000 

500 5000 10000 100000 

New Method 

Two-Way Merge 

0.00000000 

0.00200000 

0.00400000 

0.00600000 

0.00800000 

0.01000000 

0.01200000 

500 5000 10000 100000 

New Method 

Two-Way Merge 



40 
 

 
 

Table 4.10 : Execution times (ms) of two implementations for Runs(L) = 20. 

 500 5000 10000 100000 

New Method 0,00002440 0,00012500 0,00027080 0,00346940 

Two-Way Merge 0,00010608 0,00071514 0,00184034 0,01544227 

 

 

Figure 4.16 : Line graph for Table 4.10. 

 

 

4.2.3. Comparison of Space Complexities 

Space complexities of reviewed sorting algorithms can be seen in Table 4.11. 

 

Table 4.11 : Space Complexities of Algorithms. 

Insertion O(1) 

QuickSort O(1) 

CK-Sort O(n) 

MergeSort O(n) 

SplitSort O(n) 

New Method O(n) 

 

Insertion Sort and Quicksort algorithms are in-place sorting algorithms therefore they 

do not use any extra memory space for the list.  CK-Sort uses an extra O(n) memoy 

space to store unsorted pairs.  Splitsort can be implemented as an in-place algorithm but 

in-place version will scan the list twice therefore it will be slower.  MergeSort uses O(n) 

0.00000000 

0.00200000 

0.00400000 

0.00600000 

0.00800000 

0.01000000 

0.01200000 

0.01400000 

0.01600000 

0.01800000 

500 5000 10000 100000 

New Method 

Two-Way Merge 



41 
 

 
 

space to store merged array.  The new method uses an O(n) memory space for buffering 

and an O(n) memory space for merge operations. 

 

Table 4.12 : Memory Usage (bytes) of Algorithms. 

 500 5000 10000 100000 

Insertion 2024 20034 40112 400236 

QuickSort 4128 8144 80208 800256 

CK-Sort 6552 65054 120054 1200056 

MergeSort 6634 63076 125624 1250768 

SplitSort 2192 20288 40312 400384 

New Method 6304 60416 120444 1200528 

 

 

Figure 4.17 : Memory Usage (bytes) of Algorithms. 

 

Table 4.12 shows average memory usage of reviewed algorithms.  All algorithms are 

tested with 1000 sample lists for each list size.  In Figure 4.17 it can be seen that 

memory usage of adaptive algorithms are nearly equal to each other because of the extra 

memory space used for storing sorted sub-lists. 

 

 

 

 

0 

200000 

400000 

600000 

800000 

1000000 

1200000 

1400000 

Insertion 
Sort 

Merge 
Sort 

CK Sort Split Sort QuickSort New 
Method 

500 

5000 

10000 

100000 



42 
 

 
 

The new method allocates memory related to the size of list therefore it is recommended 

to use the new method with smaller lists.  Also in previous results (Table 4.1 – Table 

4.6) it is clear that the new method performs better with low Runs values in proportion 

to the list size.  Based on experiments, the maximum recommended Runs value is 

~10%.  With the values greater than 10%, as seen in Table 4.6, the new method shows 

worse performance than the other algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

 
 

 

 

5. CONCLUSION 

Sorting is one of the fundamental techniques in computer science.  Several generic and 

adaptive sorting algorithms are designed to meet the requirements.   

 

Previous works proved that the theoretical lower bound of a comparison based sort 

algorithm is O(nlogn) [8] [3] and it is not possible to design such generic sort algorithm.  

When characteristics of the data are taken into account, it is possible to design an 

adaptive algorithm which performs better than O(nlogn) for specific cases. 

 

In this work, the term sortedness is analyzed in several parameters and a Runs-optimal 

adaptive algorithm for nearly sorted lists is designed.  As seen in results, the new 

algorihm performs better from similar adaptive algorithms such as Cook-Kim Sort and 

Splitsort for some sortedness parameters. 

 

However, the new algorithm is a pure merge based algorithm.  It is adaptive for Inv 

measure but it could be changed as a hybrid sorting algorithm like Cook-Kim Sort and 

can be made more adaptive for Rem measure and could take advantage of powerful 

generic sorting algorithms like Quicksort. 

 

Herein, the new algorithm is analyzed for only single computing system but it could be 

developed to work for distributed systems as a future research work. 

 

 

 

 

 

 

 



44 
 

 
 

 

 

REFERENCES 

[1] Black, P. E (2008).  Strand Sort.  Dictionary of Algorithms and Data Structures, 

U.S. National Institute of Standards and Technology. 

[2] Cook, C. R, Kim, D. J. (1980), Best Sorting Algorithm for Nearly Sorted Lists. 

Communications of the ACM, 23, 11, p.620 – 624. 

[3] Cormen, T. H., et al (2009).  Introduction to Algorithms, 3rd Edition.  The MIT 

Press. 

[4] Estivill-Castro, V., Wood, D. (1992).  A Survey of Adaptive Sorting Algorithms. 

ACM Computing Surveys, Vol.24 Issue 4, p.441 – 476. 

[5] Fredman, M. L. (1975). On Computing the Length of Longest Increasing 

Subsequences.  Discrete Mathematics 11, p.29 – 35. 

[6] Hwang, F. K., Lin, S. (1971).  Optimal Merging of 2 elements with n elements. 

Acta Informatica 1, p.145 – 158. 

[7] Katajainen, J., et al (1996).  Practical In-Place Merge Sort.  Nordic Journal of 

Computing Issue 3, p.27 – 40. 

[8] Knuth, D. E. (1998).  The Art of Computer Programming Vol. 3: Sorting and 

Searching 2nd Edition.  Reading: Addison – Wesley. 

[9] Levcopoulos, C., Petersson, O. (1990).  Splitsort – An Adaptive Sorting 

Algorithm.  MFCS ’90 Proceedings of the Mathematical Foundations of 

Computer Science, p.416 – 422. 

[10] Mannila, H. (1985).  Measures of Presortedness and Optimal Sorting 

Algorithms.  IEEE Transactions on Computer, Vol. C-34 No. 4, p.318 – 325. 

[11] Martelli, A. (2006).  Python in a Nutshell, O’Reilly. 

[12] Mehlhorn, K. (1984).  Data Structures and Algorithms, Vol. 1: Sorting and 

Searching.  Monographs in Theoretical Computer Science, An EATCS Series.  

Springer – Verlag. 

 



45 
 

 
 

[13] Özalp, O. C., Akın, M. (2012).  Optimization of Merge Based Sort Algorithms 

on Nearly Sorted Lists.  Proceedings of the 12th WSEAS International 

Conference on Advances in Mathematical and Computational Methods, p.136 – 

140. 

[14] Sedgewick, R. (1983). Algorithms. Addison-Wesley. 

[15] Seward, H. H. (1954).  Information Sorting in the Application of Electronic 

Digital Computers to Business Operations.  MIT Digital Computer Laboratory. 

[16] Skiena, S. S. (2008).  The Algorithm Design Manual, 2nd Edition.  Springer. 

[17] Wainwright, R. L. (1985).  A Class of Sorting Algorithms Based on Quicksort. 

Communications of the ACM, 28, 4, p.396 – 402.  



46 
 

 
 

 

 

BIOGRAPHICAL SKETCH 

Özalp was born in İzmir on June 27
th

 1985.  In 2003 he graduated from Selçuk Lisesi, 

İzmir.  He began his undergraduate studies at Ege University Computer Engineering 

Department same year.  In 2007, he received his BSc degree in Computer Engineering 

from Ege University.  He began to work as a Software Engineer at the Software 

Architecture team at IBTech, which is the IT subsidiary of Finansbank at the same year.  

In 2009, he enrolled in MSc studies in Galatasaray University Computer Engineering 

department.  In 2011, he began to work at Intertech, which is the IT subsidiary of 

Denizbank, as a Software Developer and later as a Software Development Team Leader.  

He is currently working as a Software Developer at Safkan Yazılım.  He is the co-

author of the paper entitled “Optimization of Merge Based Sort Algorithms in Nearly 

Sorted Lists” which was published in the Proceedings of the 14
th

 WSEAS International 

Conference on Advances in Mathematical and Computational Methods held at Sliema, 

Malta in September 7-9, 2012. 


