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Abstract

Limited satellite visibility, multipath and non-line-of-sight (NLOS) signals greatly reduce

GNSS positioning accuracy in urban environments. Results of various research have shown

that 3D representations of these environments can be helpful for determining NLOS sig-

nals and multipath, therefore they can be used to improve positioning accuracy which is

invaluable to ITS and VANET applications. State-of-the-art methods use computationally

expensive raytracing algorithms on 3D polygon-based maps to determine satellite visibility.

In this thesis, we introduce Texture Based Satellite Visibility Detection (TBSVD) method

which uses texture-based algorithms to calculate visibility information using height maps of

urban structures, contributing to the application of these methods in low-cost receivers and

on-board units.

Real road tests and measurement campaigns in the business district of the metropolitan city

shows that our method, which significantly reduces computational costs and storage require-

ments compared to raytracing, can be effectively used to improve GNSS positioning accu-

racy.



Résumé

La précision de positionnement par Système de Positionnement Par Satellite, GNSS (Global

Navigation Satellite System) dans les environs urbains réduit considérablement à cause de

visiblité limitée de satellite, multipath (multi-trajet) et sans ligne de vision signaux, NLOS

(non-line-of-sight). Les résultats des divers recherches ont démontré que les représentations

3D de ces environs peuvent être utilisées pour améliorer la précision de positionnement qui

porte assez d’importance pour les Systèmes de Transport Intellligent, ITS (Intelligent Trans-

portation Systems) et pour les Réseaux Ad-Hoc de Véhicules, VANET (Vehicular Ad-Hoc

Network). Les méthodes présentes se serve du technique le lancer de rayon sur les cartes 3D

polygone-basé pour déterminer la visibilité de satellite.

Pour contribuer l’utilisation de ces méthodes à faible coût et aux unités à bord on introduit la

méthode que l’on appelle La Texute-Basée Détection de Visibilité Satellite - Texture Based

Satellite Visibility Detection (TBSVD). Cette méthode traite les algorithmes basés image

pour calculer l’information de visibilité utilisant les cartes d’altitues des structures urbain.

Les tests réalisés dans le quartier des affaires aux vraies routes métropoliennes ont confirmés

l’éfficacité de la méthode proposée, TBSVD qui réduit les coûts computationels et spatiales

comparée au lancer de rayon et peut être utilisée effectivement pour bonifier la précision de

positionnement GNSS.



Özet

Kısıtlı uydu görünürlüğü ve uydu sinyallerinin çokyollu yayılması, GNSS (küresel uydu yön

bulma sistemleri) pozisyonlama hata oranlarını etkileyen en önemli faktörlerdendir. Pozisy-

onlama hatalarının azaltılması, özellikle akıllı ulaşım sistemleri (ITS) ve araçlar arası ağlar

için oldukça önemlidir. Çeşitli araştırmalarda, şehirlerin 3 boyutlu gösterimlerinin, görüş

alanında bulunmayan bu tip sinyallerin tespit edilmesinde, dolayısıyla pozisyonlama hata-

larının azaltılmasında yardımcı olabileceği belirtilmiştir. Ancak, araştırmalarda sözü edilen

3 boyutlu modelleme tabanlı algoritmalar, hesaplama karmaşıklı açısından oldukça verimsiz

olan ışın izleme yöntemini kullanmaktadır.

Bu tez kapsımda, yöntemlerin düşük maliyetli araç içi üniteler ve diğer yön bulma ciha-

zlarında kullanılabilmesine katkı sağlamak amacıyla, Doku Tabanlı Uydu Görünürlüğü Al-

gılama yöntemini sunuyoruz. Bu yöntem bilgisayar grafikleri alanında da kullanılan doku

ve görsel tabanlı algoritmaları şehirlere ait yükseklik haritalarına uygulayarak, verilen bir

pozisyon için uydu görünürlüklerini hesaplamaktadır.

Şehiriçinde gerçekleştirdiğimiz gerçek yol testleri ve deneylerle elde ettiğimiz ölçümler, bu

yeni yöntemin, eski ışın izleme yöntemlerine göre hesaplama karmaşıklığını azalttığını ve

GNSS pozisyonlama performansını iyileştirdiğini göstermektedir.



1 Introduction

Intelligent Transportation Systems and Intelligent Vehicle Technologies introduce safety-

critical and liability-critical applications to enhance mainly road traffic safety, road capacity

and road tolling by all means of connected vehicles. Position measurement with respect to

some absolute coordinate system is usually done using GNSS receiver, and possibly match-

ing with a digital road map data. Position information, its accuracy and its reliability be-

comes crucial towards fusion of sensor data and decision making.

Major causes of the local degradations of the GNSS signals in urban environments are mainly

due to reduced satellite visibility, multipath and non-line-of-sight signals. Multipath mitiga-

tion with special hardware is technologically feasible but expensive. For instance, a high

level setup with choke ring antenna costs 15.000 Euro to mitigate multipath effects whereas

the cost of Ublox development kit with a single frequency antenna receiver is approximately

300 Euro Bauer et al. (2012). Since urban GNSS receivers with lane-level accuracy is desired

for any IV and ITS applications, receiver cost becomes important for multipath mitigation

methods. Thus, many commercially available GNSS software use signal-based metrics such

as Signal-to-Noise ratio to adjust weights of the satellites in the mutual positioning algo-

rithm.

These degradations can also be mitigated in software by giving receivers information about

their surroundings. 3D map-based methods give equivalent or more accurate results, espe-

cially when combined with 3D map matching, position accuracy can be significantly im-

provedPeyraud et al. (2013). Using 3D data, it is possible to determine satellite visibility and

even calculate reflected signals for any given location. Theoretically, using an exact repre-

sentation of GNSS receiver’s local environment, multipath delays can also be simulated and

mitigatedBauer et al. (2012).

On the other hand, computational complexity and storage requirements for 3D map based

methods are considerable. Several performance aspects for leveraging 3D information on

low-cost receivers exist: accuracy and resolution of 3D data, its storage and distribution,

and computational complexity of the algorithm can be stated as the preliminary performance

issues. Processing 3D data in order to determine Line-Of-Sight condition of the satellite

with respect to the GNSS receiver requires storing buildings and other structures in the form

of polygonal models, and applying raytracing, which means using triangle-ray intersection
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algorithms to calculate signal occlusions. If a space-partitioning algorithm is not used, each

ray will have to be tested against all triangles around the local map. Use of a space parti-

tioning algorithm, such as binary space partitioning Torres (1990), reduces time complexity

but increases space complexity and makes generation, storage and dissemination of 3D maps

increasingly complex.

To overcome the performance issues of polygonal raytracing methods, researchers have

looked into image and texture based methods. In one study, shadow mapping for Non

Line-Of-Sight (NLOS) detection is used to exclude NLOS satellites from the multilatera-

tion solution, and better positioning accuracy has been achieved Bauer et al. (2013). It is

an improvement over polygonal raytracing methods, but it is still infeasible for mass market

devices, as the method requires frequent updates and transmission of shadow maps for each

individual satellite, which may not be an efficient and scalable solution for land vehicles in

urban area. Shadow matching is another distinct method which uses 3D maps Groves (2011).

This method tries to match the number of NLOS satellites calculated from the 3D map to

the number of NLOS satellites calculated at the receiver. Areas where number of NLOS

satellites match the receiver values constitute a set of positions where the real position might

probably be.

As a solution to these existing problems with both polygonal and image-based methods, we

propose a novel method called Texture Based Satellite Visibility Detection (TBSVD). It is

an application of a Computer Graphics algorithm, called relief mapping or steep parallax

mappingMcGuire & McGuire (2005); Risser et al. (2005), to the case of satellite visibility

detection.

This CG algorithm uses image-based ray marching to find the collision point of eye-vector

directly on 2D height maps, and it is an improved version of the previous methods on bump

mapping and normal mapping. TBSVD follows the same approach: 3D height data are

stored on 2D maps and image-based ray marching is applied to determine visibility status of

satellites. Storing urban 3D information on height maps is a well known method, but novelty

lies along this algorithm for calculating the raytracing directly on 2D data. Height maps are

2D gray scale images where height values for each position are stored at each pixel. Each

pixel of the image corresponds to a fixed size area on the real world. Firstly, the ray marching

method is applied on the image to determine satellite signal collision with the structures in the

vicinity. Then, satellites are classified into line-of-sight, obscured and multipath categories.

Using satellite geometry and collision information with respect to the pixel of the image in

the neighborhood of the GNSS receiver, it is possible to calculate various GNSS measure-

ment metrics such as dilution-of-precision (DOP), vertical dilution-of-precision (VDOP),

time dilution-of-precision (TDOP) and horizontal dilution-of-precision (HDOP). Also, with
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receiver-specific information, integrity metrics such as protection levels can be estimated. If

a GPU is used, all of these calculations can be performed on a real-time basis in parallel for

each pixel (each tile in the grid) providing not only the visibility or integrity information on

a single point but on a larger area whose size is determined by the texture size supported by

the GPU (usually more than 2048x2048 texels).

TBSVD is suitable for its implementation on a CPU with low processing capability, but it

is better suited for implementation on a Graphical Processing Unit . In recent years, GPU,

which has been already an invariable part of a personal computer, becomes as much common

as CPUs on mobile devices such as smart-phones and tablets. For instance Imagination,

producer of PowerVR low-cost low-power GPUs which are used in tablets and smart-phones,

sells GPU chips to deploy automotive applications e.g., 3D navigation and infotainment units

(see for instance (Imagination, 2014, http://www.imgtec.com/markets/automotive.asp)). We

believe that the demand for graphically advanced displays and interfaces in vehicle systems,

will make GPUs an integral part of vehicle OBUs and their computational power can be

harnessed for vehicular technologies.

Use of TBSVD for GNSS positioning brings some additional advantages for IVs and ITS

applications. Firstly, height map can be installed on or disseminated to the OBUs of vehicles

at the upper layer of local dynamic map on the navigation system. Secondly, height map can

be disseminated at varying resolutions. A low resolution height map will give less accurate

collision information, but processing and distribution will be faster. Thirdly, our approach

enables deployment and calculation of integrity on a real-time basis on the OBU. Addition-

ally, developers can use 3D volumetric data of nearby area for other aiding purposes, such

as displaying the driver a 3D view of the area or determining LOS path between vehicu-

lar nodes to route data packets in VANET. Finally, height maps can be easily generated, as

building shapes and their heights (or number of floors they have) are already stored in city

information databases.

In this study, we first present our methodology and algorithm in detail, discussing com-

plexity, requirements and related options. We also compare it to the existing methods and

algorithms. Then we validate our method with observation data gathered from real-world

experiments conducted in various urban locations in İstanbul, Turkey.



2 Methodology

In an urban area, tall structures, i.e., buildings, are the main obstructions for satellite signals

to reach to the receiver’s antenna. These 3D structures can be easily projected on 2D maps

with their 2D shape from top view and their depth information, which is far more important

than their fine details from the view point of this study (as seen in Figure 2.1).

Figure 2.1: Height map for Kadıköy, Istanbul. This is generated using vector shape and
height information. This image is inverted for visual clarification, thus color black (0.0)
represent highest points, while white (1.0) represents lowest point.

Texture-based ray marching methods are mainly used in computer graphics for real-time

calculation of various special effects such as relief mapping and ambient occlusion. In the

presented approach, ray marching algorithm is applied on the height map to check whether

the GNSS receiver is line-of-sight with respect to the satellite or not, and the need for polygo-

nal storage and processing of 3D representations of road-side structures is eliminated. To the

best of our knowledge, generating realistic representations and dissemination of structural

information to ITS stations have not been addressed in open literature.

2.1 Height Map Format

Height map is a gray scale image where each pixel corresponds to a small tile on the real

world. Each pixel has a value ranging from 0.0 to 1.0 where 0.0 is the ground level and

1.0 is the given maximum height. For the proposed implementation, the minimum surface

area represents the image resolution, and the number of floors or height steps represents the

image depth. Throughout this study, a resolution of 1 square meter area is used for each

pixel and 8-bits per pixel depth represents 256 levels of height, which is sufficiently rich

for digital meaning of current urban structures. Also, image compression algorithms may

store 2 bits per pixel (bpp) images, which gives depth information with good accuracy, for

instance interested readers may further investigate PVRTC Ogniewski et al. (2011). Data size

of height map stored as image while using compressed textures can be drastically reduced,
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for example a 42 square kilometers area can be stored in 10 megabytes. Textures are also

suitable for streaming over the data network, a 100 meters square tile with a high resolution

of 1 meters per pixel has the data size of 25 bytes.

2.2 Ray Marching on Height Maps

Figure 2.2: Illustration of ray marching algorithm to convert 3D model of the city into eleva-
tion map. Along the ray starting at the satellite and ending at the GNSS receiver, it is marched
subject to a fixed number of sampling texture look-ups to determine possible collision with
an existing 3D structure on the digital map.

For a given distant object in the sky level, represented by its azimuth and elevation angle, and

a given point on the map, sampling is performed by descending from the maximum height to

the ground level along a straight line at a constant sampling step. If a collision is detected at

any sampling point, the point is marked as NLOS with respect the the individual satellite, i.e.,

occluded. By repeating this checking procedure for each pixel, a binary bitmap representing

the occluded areas from the view point of the satellite is generated as illustrated in Fig. 2.2.

A similar approach can be used to determine signals reflected from the ground to calculated

reflected multipath. If a ray reaches the ground level, the ray marching is continued in the
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same direction. However, instead of lowering ray height, we increase it. Reflected ray can

be checked for collisions the same way we check for the incident ray.

Translation of map coordinates into texture coordinates and calculation of texture look-up

offsets based on satellite position constitutes two main stages of the algorithm. “Offsets”

denote the pair of xo f f setand yo f f set derived for a given individual satellite at a sampling

point. These offsets are used for texture look-ups from height maps. When sampling 2D

textures, texture coordinates are not necessarily mapped into individual pixels, hence the

word “Texel” is used for a sampled part of a textureHeckbert (1989).

The value of maximum height and pixel width in meters is the parameter of the generated

height map. Once again, maximum height represents the height at 1.0 value for a given pixel

or texel, and pixel width denotes the width of the square area on the ground. Based on these

values, the height value is mapped into texel size,

hpixel =
h×maxheight

pixelwidth
(2.1)

where h denotes the ray height for the given texel. Relative distance between the given

position of the GNSS receiver and the sampling point on the height map is calculated at a

given height on the ray based on the elevation, which is denoted byθ :

distancepixel =
hpixel

tanθ
(2.2)

Then, the sampled point texel offsets are calculated by using the azimuth angle φ : xo f f set =

distancepixel× sinφ and yo f f set = −distancepixel× cosφ , (the y offset is negated due to in-

version of y axis in digital images).

The flowchart of algorithm is given in Fig. 2.3, and it is described as follows:

1. Latitude and longitude coordinates of the GNSS receiver are measured, height map is

stored as a gray scale bitmap image, elevation and azimuth angle with respect to the

satellite’s position, whose signal line-of-sight condition will be checked, is taken as

input,

2. Latitude and longitude coordinates are converted to texture values ranging between 0.0

and 1.0. Following this conversion, work on pixel level is converted to work on texel

level.



7

Figure 2.3: Flowchart for TBSVD.
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3. A fixed number of sampling points are defined to check collision with the buildings in

the vicinity. At each sampling point, a texture offset is calculated with respect to the

GNSS receiver’s texture coordinates. These offsets are added to the ground object’s

texture coordinates to check collision along the ray. Number of sampling points should

be high enough so that the space between each step must be narrower than the width

of any building, otherwise possible collision in a large distance can not be detected. In

this study, number of sampling points with equivalent length are chosen to be 25 and

this choice has not caused any false detection in a real urban area.

4. Starting at the maximum height, which is 1.0, and incrementally decreasing the ray

height value about one sampling height resolution, corresponding texel offsets are cal-

culated as described in the previous step of this algorithm. Then, the height value of

the texel is compared with respect to the current height value. If the height value of

the texel is less than the image value, ray is being occluded by the underlying structure

and a collision is detected. The core of this algorithm is to transform sampled points

on the ray to the texels on the height map.

5. Algorithm is terminated after all samplings are evaluated without detection of a colli-

sion, then the satellite is marked visible for the given azimuth and elevation angle.

A sample GLSL fragment shader code is presented in Listing 1.

// inputs

uniform float az ,el;

sampler2D heigthmap;

varying vec2 position;

uniform float maxheight ,pixelwidth;

uniform float stepsize;

vec2 calcOffsets(float h){

float hpixel = (h*maxheight)/pixelwidth;

float distpixel = hpixel/tan(el);

return distpixel*vec2(sin(az),-cos(az));

}

bool isSatVisible (){

for( float h = maxheight ; h>0 ; h-= stepsize){

float hpixel = (h*maxheight)/pixelwidth;

vec2 off = calcOffsets(h);

float mapheight = texture2d(heightmap ,position+off);

if(mapheight > hpixel)

return false;
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}

return true;

}

Listing 1: GLSL code for calculating single satellite visibility on GPU

2.3 Forward DOP Calculation

The presented ray marching algorithm calculates the visibility and multipath condition of

individual satellite in the constellation from the point-of-view of a given point, hence this

method can be used to enhance GNSS position measurement accuracy on a real-time basis

and to approximate DOP values more realistically. DOP is a significant source of error in

position estimate calculation as it indicates how well the satellite geometry is at a given

moment. Without using a 3D map data or namely local obstructing effects, DOP values can

be calculated in advance for a given location at a given time, however it is not possible to

make sure that these DOP values will be accurate locally. A more realistic DOP calculation

has to take into account satellite visibility and multipath constraints. The proposed method

contributes to the calculation of a more realistic DOP value for any given location on map

and for any given time in a computationally efficient manner. These values may be used

to compute reliability of GNSS measurement in the areas on the map and time interval.

A time-varying DOP or visibility map can be generated and distributed on the network to

OBUs, which in turn can be used to help with local integrity calculation. For instance, in a

GNSS based road user charging application, if we can determine for a given road segment,

for a given time period, the positioning error will exceed the tolerance specified earlier, the

application can use fallback methods or completely seize operation to prevent erroneous

charging.

Satellites can be classified according to their visibility, this information can be used to cal-

culate a more realistic DOP value and estimate positioning error. Our novelty image based

method is suitable for calculation of GNSS error mitigation and estimation in parallel, very

fast and deployment on a GPU. Visibility of each satellite and path condition of its traveling

signal towards to the destination can be classified as illustrated in Fig. 2.4:

• Line-of-sight: Satellite is visible from the ground point,

• Multipath: Satellite is not visible from the ground point, but its signal can be reflected

by nearby structures,

• Occluded: Satellite nor its reflections are not visible from the ground point.
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Figure 2.4: Satellite reception classes.

Following the classifications, some performance metrics for GNSS receiver can be approxi-

mately calculated as well. For instance, after checking the visibility status, 4 visible satellites

are detected (i.e. azimuth φn elevation angle θn for each individual satellite is known, for

n = 1,2,3,4), DOP values can be derived for the given location and time. Based on the rela-

tive positioning information of the GNSS receiver with respect to the 4 satellites, the matrix

in 2.3 can be constituted Sturza (1983),

M =


cosθ1 sinφ1 cosθ1 cosφ1 sinθ1 1

cosθ2 sinφ2 cosθ2 cosφ2 sinθ2 1

cosθ3 sinφ3 cosθ3 cosφ3 sinθ3 1

cosθ4 sinφ4 cosθ4 cosφ4 sinθ4 1

 (2.3)

A symmetric matrix in 2.4 in terms of the matrix M is calculated to asses the estimation

errors for the corresponding GNSS measurement in terms of the well known variables such

as EDOP2,NDOP2,V DOP2,T DOP2.

(
M×MT)−1

=


EDOP2 . . .

. NDOP2 . .

. . V DOP2 .

. . . T DOP2

 (2.4)

For example, horizontal error estimate (HDOP) value, which can vary the precision of map

matching algorithms significantly, can be calculated as follows: HDOP=
√

EDOP2 +NDOP2.
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HDOP is useful in calculating estimated position error (EPE) which is the 95% limit for the

horizontal positioning error.

EPE = HDOP×
√

URE2 +UEE2×2 (2.5)

User Range Error (URE) and User Equipment Errors (UEE) are the estimates of other errors

in GNSS position tracking depending on various conditions from the receiver being used or

atmospheric conditions at given moment.

After calculating visible satellites, it is straight-forward to apply these methods to calculate

DOP values for a given map segment from the GPU. For example, a function of height map,

time and sky geometry as input generating an image representing estimated error levels on

each pixel is presented in Listing 2.

// inputs

uniform float time;

uniform float ure;

uniform float uee;

sampler2D heigthmap;

varying vec2 position;

uniform int numsatellites;

uniform float [30] az;

uniform float [30] el;

// variables

bool [30] satelliteVisibility;

uniform int [4] selectedSatellites;

mat4 M;

void calcSatelliteVisiblity (){...}

void selectSatellites (){...}

void main(){

calcSatelliteVisibility ();

selectSatellites ();

int[4] s = selectedSatellites;

M[0] = vec4(cos(el[s[0]])*sin(az[s[0]]),cos(el[s[1]])*sin(az[s←↩
[1]]) ,cos(el[s[2]])*sin(az[s[2]]) ,cos(el[s[3]])*sin(az[s[3]])←↩
);

M[1] = vec4(cos(el[s[0]])*cos(az[s[0]]),cos(el[s[1]])*cos(az[s←↩
[1]]) ,cos(el[s[2]])*cos(az[s[2]]) ,cos(el[s[3]])*cos(az[s[3]])←↩
);
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M[2] = vec4(sin(el[s[0]]) ,sin(el[s[1]]),sin(el[s[2]]) ,sin(el[s←↩
[3]]));

M[3] = vec4 (1.0);

mat4 dopMat = matrixCompMult(M,transpose(M));

dopMat = inverse(dopMat);

float edop2 = dopMat [0][0];

float ndop2 = dopMat [1][1];

float hdop = sqrt(edop2+ndop2);

float rangeError = hdop*sqrt(pow(uee ,2)+pow(ure ,2))*2;

gl_FragColor = vec4(rangeError);

}

Listing 2: GLSL code for parallel DOP calculation in GPU

2.4 Improving Positioning Accuracy

Previous work indicates two distinct method that use the 3D representations of urban areas

to improve GNSS accuracy:

• The first method is to eliminate NLOS signals by reducing their weights in the equation

of mutual positioning.

• The second method, which is called shadow matching Groves (2011), divides satel-

lites into two sets of NLOS and LOS satellites by using a threshold SNR value, then

these sets are matched to the locations on the 3D shadow maps, which is created by

the satellite view for a given moment. After calculating a set of solutions subject to

the given satellite visibility, closest solution with respect to the estimated position is

selected as the matched position output.

We have experimented with both of these methods using our height map algorithm instead

of polygonal raytracing.

For both of these methods, we first calculate a rough position estimate using Bancroft’s

Method (Bancroft (1985)). Using this position estimate, we define a region-of-interest (ROI).

For the weight-based method, for each pixel in this ROI, we calculate the weight as w = ∑ pi
n

where pi the value of each pixel and n number of pixels in ROI. We multiply this weight to
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the actual weight based on SNR value and feed it to the Weighted Least Square algorithm to

finalize the solution.

In this thesis, we compared SNR based weights to 3D height map based weights for weighted

least square positioning solutions. Parameters and final weight equations can be seen in Table

2.1.

Table 2.1: Satellite weights used in our tests
Method SNR TBSVD
Input SNR: Signal-to-noise ratio pi:value of pixel

Parameters SNRa,SNRA,SNR0,SNR1: Signal
power constants (Li & Wu (2009))

n: number of pixels in ROI

Weight 10
SNR1−SNR

SNRa ×(
SNRA

10SNR1−SNR0
−1

SNR0−SNR1
× (SNR−SNR1)+1

) ∑ pi
n

For the shadow matching method, we use the SNR value calculated by the receiver to com-

pare it to our visibility maps. Estimated position is than refined using the set of probable

points given by the algorithm.

2.5 Comparison to Other Methods

When compared to conventional raytracing over polygonal 3D data, our method has better

space and time complexity. A 3D vertex requires 3 dimension components of 32 bits each

and for each triangle 3 vertices have to be stored. In our tests, we found out that for the

same amount detail, a small tile 256 meters wide requires about 800 triangles. Our method

represents the same data with a 256x256 raster image with 2 bits per pixel storage. Also,

raytracing requires a ray-triangle intersection algorithm, such as Möller-Trumbore method

(Möller & Trumbore (1997)), which is computationally more expensive compared to texture

look-ups (see Table 2.2).

Table 2.2: Comparison of polygonal raytracing and our method for a small area
Method Polygon Raytracing TBSVD
Storage 800 triangles (28 KB) 256x256 pixels (16 kb)

Algorithm Triangle-Ray intersection Texel look-up
Worst case Tests each

triangle (800 tests)
Constant number of

look-ups (20 in our case)

Main advantage of texture-based methods such as our algorithm is that specialized hardware

(GPU) can do all instructions for each pixel in parallel and most linear algebra instructions

are exceedingly fast. As we discussed on previous sections, low-cost GPUs are becoming
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more and more common and affordable. On-board units and navigation devices will use

GPUs more and more in the future to provide better and more responsive user interfaces.

Texture-based algorithms are a by-product of graphical power used for these user interfaces.

Even if a GPU is not available, texture look-ups are faster to do in memory than raytracing

in traditional way.

Another benefit from the extra performance gained by using our algorithm is that the methods

used for improving GNSS positioning can be extended to create a more realistic simulation

of signal propagation in real-time for urban areas. In this study, we only check for NLOS

satellites, but more complex methods can be used. For example, rays can be bounced, re-

flected or refracted using the height map information on GPUs.



3 Results

We have used our method with a height map of 1 pixel per 1 square meter density and

8-bit per pixel depth values. We have generated our height maps using building outline

information and number of floors registered in digital map database for Kadıköy Area in

Istanbul, Turkey.

As it can be seen in Figure 3.1, height map at this configuration gives a good representation

of the volumetric data of urban structures.

Figure 3.1: Portion of the height (elevation) map data represented in 3D. Elevation maps can
be used to store urban city models more efficiently.

Running the algorithm for a single satellite creates a binary occlusion map as seen in Figure

3.2. These binary maps are then combined into a categorized occlusion or visibility map,

where for each pixel or in our case every square meter, number of visible satellites, number of

multipath-only satellites are known, as well as which satellites are visible and their visibility

classes.

Using our method we can calculate detailed satellite visibility heat maps for any given time.

Figure 3.3 shows the values generated by our method at different points of time. There are
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Figure 3.2: Binary occlusion map generated from a single satellite. White areas can see the
satellite, black areas can’t. Notice the artifacts around shadows caused by limited number of
steps used in our algorithm. Increasing the number of steps improves the results.
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Figure 3.3: Satellite visibility heat maps at 4 different times. Blue: High visibility (>4
satellites), red low visibility (<4 satellites). Our method can be used to process height maps
to generate satellite visibility information for any given time quickly by processing each tile
(texel) in parallel on a GPU. For instance, we found that the junction at point A, while it
has fairly good visibility throughout the day, at 0700 along with all neighboring streets and
junctions, has low visibility.
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huge differences in satellite visibility for some locations, hence our method can be used

to determine those areas and time segments where integrity of the service is compromised.

For instance, inspecting randomly selected junction (A), differences in satellite visibility at

different hours can be seen. In our 24 hour test, while point A maintained high visibility

(more than 4 satellites) compared to other locations for most of the day, at 7 it dropped to

low visibility. Number of satellites visible for point A are 5, 6, 3, 4 at 1, 4, 7 and 9 o’clock

respectively. While this information could be easily calculated in GNSS simulators before,

using our method it is possible to generate and disseminate the 3D volumetric information

using already existing technologies to receivers and calculate local visibility information

on-board with ease.

For instance, point A in the Figure 3.3, is a junction with high satellite visibility throughout

the day. However, heat maps generated using our method showed that at some hours of the

day, it loses visibility for most of the satellites. Using raytracing, these calculations could

only be done on high performance processors. With our method, a low cost OBU with

a mobile GPU can do this calculations real-time on large texture maps, up-to 4096x4096

pixels at one time.

In our main experiments, we have done urban road tests and measured errors of the com-

mercial receiver and our own software solution (with same observation data) which uses

signal-to-noise ratio weights for its least square solver. Than in our software solution we

have switched the weighting algorithm to one which uses our ray-marching method on height

maps to give lower weights to low visibility satellites.

We have done these real-world experiments using U-Blox Series 6 receiver and compared

results to the ground truth. We used the raw data gathered from the device using propriety

UBX protocol (U-blox (2011)). A generalized flow of our method can be seen in Figure 3.4.

First experiment was done in an urban track in Kadıköy İstanbul. As shown in Table 3.1,

refined weights have shown significant improvements over SNR based weighting method.

CDF graph (see Figure 3.6) shows the improved distribution of refined weights over both

SNR based method and receiver itself. However, it also shows that although very few there

are some solutions with very high errors compared to other methods. These errors are mainly

caused by mismatches between 3D data and real environment. As height maps are only a 2D

representation of very complex structures, visibility information extracted from them is not

exact.

A graphical comparison of tracks in Figure 3.5 shows that height map based weighting re-

fined the actual solutions in many areas, except in some places where resolution of the 3D

maps and limited number of steps used in shadow map calculation gave noisy results. Apart
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Figure 3.4: Flowchart for refining GNSS positioning with TBSVD
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from the U-Blox solution, all tests used epoch-by-epoch solutions and no filtering was used.

Shadow matching, while generating less accurate results in average, gave better solutions in

some areas. We conducted another experiment but this time on a longer circuit in İstinye,

İstanbul. This track is 4 kilometers long and has both open sky areas and urban canyon areas.

As seen in Table 3.3 , our refined weights gave significantly improved accuracy over SNR

based weights.

Another experiment in same area was conducted, but this time with a stationary receiver.

Our software solver could not match the smooth results generated by the U-Blox receiver in

stationary test, but as seen in Table 3.2 weights computed with our algorithm proved better

than SNR weights.

Table 3.1: Position Accuracy (m) for Kadıköy Experiment (mobile)
Configuration Median Max DRMS 95% CEP

U-Blox 5.31 13.04 6.19 12.38 5.94
SNR Weights 4.67 20.02 6.55 13.10 6.29

TBSVD Weighs 3.48 16.85 5.22 10.43 5.00
TBSVD Shadow Match 6.68 15.42 7.73 15.46 7.42

Table 3.2: Position Accuracy (m) for Kadıköy Experiment (stationary)
Configuration Median Max DRMS 95% CEP
SNR Weights 4.82 7.24 4.99 9.99 4.79

TBSVD Weights 4.49 8.02 4.92 9.84 4.72

Table 3.3: Position Accuracy (m) for İstinye Experiment
Configuration Median Max DRMS 95% CEP
SNR Weights 5.88 75.55 18.39 36.78 17.65

TBSVD Weights 2.38 71.0 21.48 42.96 20.62
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Figure 3.5: On top, tracks generated by both methods from our first Kadıköy experiment
overlaid over the digital map. Especially in some areas (e.g. A and B) , TBSVD significantly
improved the path towards the ground truth compared to SNR based weighting. Bottom,
comparison of horizontal position errors for each method over time.
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Figure 3.6: CDF for Kadıköy Experiment (mobile) shows how our height map based weights
improved positioning.



4 Conclusion

Several methods exist for using 3D data in urban areas to detect degraded signals and studies

indicate that these methods do improve GNSS positioning accuracy. However, their appli-

cation in real-world ITS station receivers or other low-cost receivers is problematic, because

they rely on polygonal raytracing algorithms which are computationally expensive and re-

quire high end processors. In this study, we present a novel approach called Texture Based

Satellite Visibility Detection for leveraging digital map data for GNSS positioning improve-

ment. It uses texture-based algorithms inspired by high performance Computer Graphics

techniques, which uses 2D height maps instead of 3D models and replaces raytracing with a

much more simple 2D ray-marching. Therefore, it is better in both time and space complex-

ity compared to polygonal raytracing methods.

TBSVD alone is used for satellite visibility detection. Combining it with other techniques

has many advantages. In this study, for instance, we have explored two different approaches

to use the information TBSVD generates for improving GNSS accuracy. First method, we

used was using TBSVD based weights compared to Signal-to-Noise based weights for the

Weighted Least Squares solution. Other method was shadow matching, a technique where

the position solution is refined matching the set of visible satellites from the receiver to

the set of visible satellites calculated on the TBSVD map. We have conducted real-world

experiments in Istanbul, Turkey. Both methods showed that TBSVD can be used to refine

GNSS solutions better than SNR-based weighting. Visual examination of refined tracks

shows that TBSVD weighting provides better results than SNR-based method, especially in

problematic areas where large parts of the sky is occluded by tall buildings.

Both previous work and our experiments show the potential of using 3D information for

improving GNSS positioning. 3D urban data gives the devices context-awareness unlike

before and we believe that with increased processing power of GNSS receivers and OBUs,

new ways to mitigate degraded signals can be found in this area. Currently, mobile GPUs are

getting even more common and affordable then before, which will further focus interest in

texture and shading based algorithms to be used in problems unrelated to computer graphics.

Also, low-cost graphical processing units are being more and more common in navigation

and entertainment systems used in vehicles. For such systems texture-based algorithms like

ours will work significantly faster, leaving processing power for more complex algorithms.

We believe that graphical methods and simulations can be further improved and leveraged

in GNSS navigation. GNSS signal propagation can be more accurately simulated and this

information can be used to mitigate NLOS signal errors. Also, height maps can be used
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to determine areas in urban environments where GNSS performance is limited beforehand,

thus adjusting importance of other methods in hybrid positioning solutions.
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