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ABSTRACT

In line with the consistent rise in health expenses in the last decades, operations re-

search based decision-making has gained an important place in the healthcare manage-

ment. Appointment scheduling is a widely addressed research area for the healthcare

management as its performance is very influential in enhancing on-site services offered

and reduces operational costs. In this thesis, we develop two different two-stage risk-

averse stochastic programming models to solve the appointment scheduling problem for

diagnostic/treatment clinics while considering different sources of uncertainty. The no-

show and waiting times of the patients and overtime working conditions of the doctors

are included in the formulation of both models. The first model is total cost reduction

oriented while the scope of the second model is raising revenue with the addition of

walk-in patients. We characterize the random parameters by finite sets of scenarios

and use conditional value-at-risk measure to control the possible large realizations of

random outcomes. We obtain the optimum appointment times by the variants of the

L-Shaped algorithm developed. We also conduct a computational study to illustrate

the effectiveness of the proposed modelling approaches.

Keywords : Appointment Scheduling Problem, Stochastic Programming, Healthcare

Management, Risk Aversion, Price Discrimination



RÉSUMÉ

Conformément à l’augmentation constante des dépenses de santé dans les dernières

décennies, les décisions basées sur la recherche opérationnelle ont gagné une place im-

portante dans la gestion des services de santé. La programmation des rendez-vous est

un sujet de recherche très répandu pour la gestion de la santé, comme la performance

des systèmes de rendez-vous est très influente pour l’amélioration des services offerts

sur place et pour réduire les couts opérationnels. Dans cette thèse, nous avons déve-

loppé deux différents modèles de programmation en deux étapes afin de résoudre le

problème du programme de rendez-vous pour les cliniques de diagnostic/traitement en

prenant compte les différentes sources d’incertitude et en limitant les risques. La non-

présence et la durée d’attente des malades et les heures supplémentaires des docteurs

sont inclues à la formulation des deux modèles. Le premier modèle vise la réduction du

coût total tandis que le deuxième modèle est en mesure d’augmenter les revenues en

considérant les malades qui arrivent à la dernière minute. Nous caractérisons les para-

mètres aléatoires par des ensembles dénombrables de scénarios et utilisons la mesure de

valeur-à-risque conditionnelle afin de contrôler la possibilité des grandes pertes selon

les résultats aléatoires. Nous avons obtenu les temps de rendez-vous optimaux en utili-

sant les variantes de l’algorithme L-Shaped développés. Nous avons aussi effectué une

étude computationnelle afin de démontrer l’efficacité des approches de modélisation

proposées.

Mots Clés : Problème de Rendez-vous, Programmation Stochastique, Gestion des

Soins de Santé, Aversion au Risque, Discrimination de Prix



ÖZET

Son yıllardaki sağlık harcamalarındaki sürekli artışla birlikte, yöneylem araştırması

temelli karar verme sağlık kurumları yönetiminde önemli bir yer kazanmaktadır. Ran-

devu çizelgeleme, performansını önerilen hizmetlerin yerinde arttırılmasında ve işletme

maliyetinin azaltımında fazlaca etkili olarak, sağlık kurumları yönetimi için çokça de-

ğinilen bir araştırma konusudur. Bu tezde farklı sebeplerden kaynaklanan belirsizlikleri

dikkate alan, görüntüleme/tanı klinikleri için oluşturulan randevu çizelgeleme proble-

mini çözebilmek adına iki farklı iki aşamalı riskten kaçınan rassal programlama mo-

delleri geliştirdik. Hastanın gelmemesi ve hastanın beklemesinin maliyeti ve doktorun

fazla mesai koşulları her iki modelin kurulumunda da dikkate alındı. İlk model geliri

dikkate almadan toplam maliyet minimizasyonu temelli iken, ikinci model gelmeyen

hastaları dikkate alarak karı arttırır. Sınırlı sayıdaki senaryo için rasgele parametreleri

nitelendirdik ve rastgele çıktıların gerçeklenmesindeki olası büyük senaryoları kontrol

edebilmek için koşullu risk değeri ölçütünü kullandık. L şekilli algoritmanın geliştirilmiş

varyantları kullanarak en iyi randevu zamanlarını elde ettik. Ayrıca önerilen modelleme

yöntemlerinin etkinliğini göstermek için bir sayısal çalışma yaptık.

Anahtar Kelimeler : Randevu Çizelgeleme Problemi, Rassal Programlama, Sağlık

Yönetimi, Riskten Kaçınma, Ücret Ayrıştırma
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1 INTRODUCTION

Appointment scheduling problem (ASP) is a well known problem for healthcare ma-

nagement. The management aims to fulfill patients demand with proper time arrange-

ments. For the arrangement, the managers want to minimize waiting times of patients

and idle time and overtime of doctors. There are differences between well-known ser-

vice system queues and ASP queues. First, the capacity of the queue is limited in ASP,

which means that only limited number of patients take an appointment in a session. Se-

condly, the session length is finite, which means that the length of queue is prearranged.

Within ASP context, healthcare managements face with several complications to find

the optimum solution. These problems are no show of patients, walk in patients, inter-

ruption of services, uncertainty of examination times, etc. Stochastic examination times

are studied in the literature (Mercer, 1960; Ho and Lau, 1992). Stochastic examination

times occur due to the several environmental factors depending on the industry and

the nature of service being processed. Examination times in outpatient procurement

center are usually extremely uncertain. This uncertainty is related to the diagnosis

type, patient’s age, information acquired from patients, etc. Hereby, basic assumptions

are not appropriate for this problem.

Another complicating factor is the uncertainty of the patient’s arrival time. This pro-

blem has two parts. The first one is no-show, the absence of the patient during the

scheduled time. This causes idle time for the doctor and deteriorate the optimal sche-

dule. The second one is walk-in patients. Walk-in patients cause the interruption of the

service and deterioration of the schedule.

Risk is an important issue for the decision makers. The general modelling approach

for ASP is risk neutral. But changing environment conditions (for example, no show

of patients, stochastic consultation times etc.) impose to use a risk averse modelling

approach. In risk averse modelling, choosing the proper risk measure is crucial. Here

we adopt conditional value-at risk as the risk measure and propose a model, which
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minimizes this risk measure.

This thesis is organized as follows. In Chapter 2, we provide a brief literature review

about ASP. We also classify modelling methodologies under four titles : queuing mo-

dels, simulation models, Markov decision process models, exact and heuristic models.

In Chapter 3, we formulate the proposed models and describe risk measures. In this

chapter, we propose three mathematical models : risk neutral ASP, risk averse ASP,

risk averse walk-in ASP. In Chapter 4, the well-known two stage stochastic program-

ming solution algorithm, namely L-Shaped algorithm, and its variant are introduced.

In this chapter, properties of ASP are also described. In Chapter 5, insights gained

from our models are presented. We also present a sensitivity analysis related the pro-

posed models. In Chapter 6, we summarize the fundamental findings of the thesis and

suggest future works.



2 LITERATURE REVIEW

In this chapter, we emphasize appointment scheduling literature from modelling issues

and operations research point. We classify the literature in two ways : arrival characte-

ristics of the patients and solution methodologies. "No show" and "walk in" concepts

are examined to understand patient’s arrival characteristics. Solution methodologies

are grouped into four : Queuing studies, Simulation Studies, Markov decision processes

studies and exact or/and heuristic studies.

For modern societies, healthcare expenditures have always an increasing trend. The

average public health expenditures of OECD countries is expected to increase from

5.5% of GDP to 8% of GDP from 2010 to 2060 (Maisonneuve and Martins, 2013).

This significant statistic clearly indicates that countries’ healthcare budgets must be

under control. Maisonneuve and Martins (2013) point out that outpatient expendi-

tures constitute the second largest expenditure item for the healthcare system. In this

context, different problems are investigated for increasing profits and keeping systems

sustainable, such as appointment scheduling problem, staff scheduling problem, heal-

thcare supply chain management, diagnosis improvement, decision support systems for

consultations, etc.

Staff scheduling has significant effects on a healthcare facility’s productivity. Naidu

et al. (2000) focus on different methodologies such as linear optimization, expert sys-

tems and heuristic methods for discovering an optimal staff schedule that meets the

requirement at the lowest cost. Cai and Li (2000) define a multi-criteria model with

three objectives important in order to schedule homogeneous skilled staff. In their mo-

del, they aim to maximize excess staff and minimize the variation of excess staff.

Appointment scheduling problem (ASP) aims to fulfill patients expectations and in-

crease profits (Gupta and Denton, 2008; Green and Savin, 2008). The aim of appoint-

ment scheduling problem is to assign the start time of each patients’ examination. ASP

objectives generally consist of improving the resource utilization and reducing waiting
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time of patients (Cayirli and Veral, 2003). In ASP, practitioners face with several

complicated situations, such as uncertain consultation times, no show of patients, non-

punctuality of patient, etc. For these types of problems, researchers generally construct

a model to increase the performance of clinics by including expected patient waiting

time, server idle time, and overtime (Erdogan and Denton, 2013).

There is only a few literature survey articles about ASP for the outpatient clinics.

Cayirli and Veral (2003) present a review on the classification of outpatient appoint-

ment scheduling methodologies in the context of outpatient services. A problem which

includes the complicating environmental factors such as the number of different services

and physicians, uncertainty in service durations, punctuality of patients, no-shows,

walk-ins etc is posed. They expose diverse performance criteria including total cost of

waiting time of patients and overtime and idle time of service providers, diverse time

based, congestion based, productivity based performance criteria in the previous ap-

pointment scheduling literature. An elaborated classification of methodologies which

are used in the literature is provided.

Gupta and Denton (2008) classify characteristics of ASP in primary care, speciality

clinics and surgery clinics. They contend that indirect patient waiting time, which is

the waiting time between the appointment requested by the patient and the scheduled

appointment date, might be considered in addition to patient waiting time on the day

of the service. They also emphasize a number of open research areas for ASP including

the effect of late cancellations and no-shows, patient preferences (such as doctor choice,

slot choice, etc.), and resource allocation depending on different patient types.

Different appointment rules are examined in the literature. Appointment rules are clas-

sified into seven different classes. First rule appoints see patients to a single block. It

means that patient appointments only include dates without specific appointment time.

Second rule appoints patients individual appointment times with fixed intervals to each

patients. In this rule, one patient is assigned to a slot. Main difference between second

and third rules is the first slot capacity, which means that in third rule, there is more

than one patients in first slot. Fourth rule explains that a predetermined number of

the patients (more than one patient) is assigned to one slot with fixed time length.
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Fifth rule is a combination of fourth rule with differentiated initial block. Sixth rule

differentiates block sizes during all sessions with fixed appointment intervals. Last rule

comprises individual appointments to each patient with varying appointment intervals

(Cayirli and Veral, 2003). In this thesis, second rule is applied.

Consultation times depend on stage of the healthcare facilities. According to Gupta

and Denton (2008), there are three types of consultation durations : constant, diagno-

sis dependent and random. Constant consultation durations generally occur in primary

care, while diagnosis dependent consultation durations are frequently observed in pri-

mary care and speciality clinics. Random consultation durations occur in surgeries

and hospital stays. Bailey (1952) reports that a little change in consultation durations

cause huge effects on the appointment system’s performance. Coefficient of variation

(Cv = σ
µ
), is a measure of variation of consultation time. Greater coefficient of va-

riance for consultation duration causes patients’ waiting times and doctor’s idle times

to increase (Bailey, 1952; Vissers and Wijngaard, 1979; Ho and Lau, 1992; Denton and

Gupta, 2003).

2.1 Arrival Characteristics of Patients

The arrival characteristics of patients affect appointment system’s performance, which

include no shows and walk-ins. No show is the absence of an appointed patient. No

show increases idle time of the doctors. A walk-in patient does not have a previously

scheduled appointment and/or is a urgent patient. Walk in patients deteriorate the

schedule and cause interruption of the ongoing examination.

2.1.1 No-show

Both doctors and system analysts want to mitigate effects of no-show (Cayirli and Ve-

ral, 2003; Jonas, 1971; Schroeder, 1973). According to Ho and Lau (1992), among no

show, service time variability and number of patients per session, no show has signifi-

cant effects on a healthcare facility’s performance. No show rates given in the literature

range from 3% to 30% (Cayirli and Veral, 2003; Rust et al., 1995; Deyo and Inui, 1980).

These rates reveal that source utilization is violated by no shows. Till 2003, nearly 30%

of the articles take into account no show (Cayirli and Veral, 2003).
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Fetter and Thompson (1966) conducted a research about impact of walk-ins response

to no shows. They also indicate that walk-in patients increase the waiting time of pa-

tients and decrease idle time of the doctor. Because of this, walk in concept mitigates

effect of the no show. Vissers and Wijngaard (1979) arranged the service times with

mean and variance to retrieve no shows and walk ins. They show that the effect of

no show and walk ins can be found by their influence on mean consultation time and

coefficient of variation.

Kaandorp and Koole (2007) conducted their research with homogeneous no show proba-

bilities. They assume that no show behaviour of the patients are independent from each

other. They find that if no show probability becomes larger, the mean waiting time of

the patients and the idle time of the doctor and tardiness of consultation become larger.

Green and Savin (2008) have explained the state-dependent no show rate with a func-

tion of queue length. Their model include rescheduling of no shows with a probability.

Zeng et al. (2010) extended no show probabilities with heterogeneous. They compare

the model with homogeneous probability and the model with heterogeneous probabi-

lity. Turkcan et al. (2011) have used patient type dependent no show probabilities.

They also indicate that the performance measures are sensitive to the no show predic-

tion error.

2.1.2 Walk ins

Walk-in is generally ignored in literature especially in analytical papers (Cayirli and

Veral, 2003). However, administrations of clinics take into account walk-ins in clinic

schedules (Cayirli and Veral, 2003). Walter (1973) discovers that if percentage of walk

in patients drops, efficiency of system increases (so there is reduction in doctor’s idle

time and patient’s waiting time). Vissers and Wijngaard (1979) explain the effect of

walk-ins on the mean and variance of consultation times. In Vissers and Wijngaard

(1979)’s paper, the effect of walk ins can be found in a similar way by interpreting the

fraction of walk-ins as the probability that patients need a revised consultation time
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that is equal to the sum of two consultation times of two different clinics.

In outpatient studies , emergency walk-in is a less addressed issue than overall walk in

studies. Preemptive emergency walk ins interrupt consultation of the last patient. This

interruption makes harder to model the system. Due to this, Fetter and Thompson

(1966) prefer to model "non" preemptive emergency walk-ins in their simulation model

(Cayirli and Veral, 2003). Fetter and Thompson (1966) assign probabilities to arrivals

in order to solve the walk-in problem. They consider that different specialities have

different walk in probabilities.

2.2 Solution Methods for ASP

Different solution techniques have been used to solve ASP. In literature, there are many

articles involving ASP that are queueing theory, discrete event simulation models or

exact or heuristic solution algorithms due to the difficulty of finding an analytical

solution for ASP including more than two customers (Erdogan and Denton, 2013).

2.2.1 Queuing Studies

Queueing articles commonly include restrictive assumptions, such as equal intervals for

appointments, independent consultation times, and infinite number of patients (Mer-

cer, 1960, 1973; Jansson, 1966). Mercer (1960, 1973) introduces a queuing system and

analyzes its performance of when patients arrive late or no-show situation occurs. In

his study, the nonequilibrium distribution of the queue length is analyzed and also the

results for the equilibrium distribution are discussed.

Jansson (1966) use simulation to observe optimal interarrival times of the patients. A

queuing system with time dependent Markovian arrival rate and discrete examination

duration distributions (M(t)/G/s queue) are developed with a finite number of patients

at any time assumption (Brahimi and Worthington, 1991). The results of the model

are used to indicate that there resemble to be remarkable scope for reducing patients’

waiting times without increasing doctors’ idle times.
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Wang (1993) uses phase-type distributions to observe the transient solution of a Mar-

kovian server with a general arrival distribution (S(n)/M/1 queue) for establishing

patients start times. Vanden Bosch and Dietz (2000) develop a queueing model with

deterministic arrivals and no-shows. They group patients to different groups depending

of their service durations. They develop an algorithm based on the special structure of

their model to find the optimal solution and the sequence of patients efficiently.

A queuing model is improved to reduce negative influence of no shows with overbooking

of appointment schedules (Zeng et al., 2010). Zeng et al. (2010) use patient waiting

time costs and doctor’s idle time costs as objective. They prove that if patients are

homogeneous (all patients have same no show probability), objective is multimodular.

However heterogeneous patients’ model is not multimodular. They use local search to

find local optimal solution to heterogeneous patients’ model. In this queuing model,

overbooking is advantageous for "open access" ASP which permits patients to request

appointment on the same day of consultation.

In ASP, queuing models has a few deficiencies. In most of them, it is assumed that

"system reaches steady state" and this may cause regular service interruptions. On the

other hand, exponential examination durations are common in the queuing literature

and as the coefficient of variance of exponential distribution always equals to one, this

causes lack of reflecting to variability of the ASP.

2.2.2 Simulation Studies

Discrete event simulation helps to avoid some of the restrictive assumptions adopted

for queueing systems. Vissers and Wijngaard (1979) model with the first simulation

model to minimize patient waiting time and specialist’s idle time. They use four de-

cision variables : mean consultation time, coefficient of variation of consultation time,

mean earliness and standard deviation of patient punctuality. Ho and Lau (1992) mo-

del the ASP with simulation model to interpret different scheduling rules for diverse

scheduling environments characteristics such as the probability of no-shows, number
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of patients to schedule, and the service distribution. They use an easily implementable

technique. For example, two or more patients are scheduled at the start of the session,

other patients are scheduled in intervals which equal to the mean of the consultation

time’s distribution. They also observe the effect of changing interval time between pa-

tients. They use Pareto optimal set of scheduling rules with respect to the expected

idle time and expected patient waiting time.

Lowery (1992)’s simulation model is focused on the patient flow in a hospital including

intensive care units beds, operation rooms beds and post-anaesthesia care units beds.

Jerbi and Kamoun (2011), develop a simulation optimization algorithm to solve a multi

objective ASP with no-show and patient walk-ins. Simulation studies generally include

complex queue structures. They infer that each management satisfaction function de-

creases linearly with an increase in the deviations. So computational studies based on

simulation need more time to analysing queues. Lu et al. (2011) develop a simulation

model of information flow in the scheduling process based on the analysis of the central

scheduling process. They also conduct a "what if" analysis to identify potential process

improvement strategies in the form of recommendations to the hospital management.

2.2.3 Markov Decision Process Studies

Markov decision process methodology is used in ASP with finite and infinite horizon

approaches. Green et al. (2006) model a diagnosis facility with a computed tomography

(CT) machine’s patient demand as a finite horizon Markov decision process. They aim

is to maximize total profit is the difference between the includes revenue of scanned

patients and the waiting and penalty costs. Penalty costs are due to not being able to

scan patients by the end of the work-day. The authors assume that outpatients have

the probability of no show.

Patrick et al. (2008) model a outpatient schedule system which assigns patients to

future slots. The authors aim to minimize total penalty cost being assumed by the

administration. The total penalty cost includes the waiting (patients had to wait lon-

ger than a maximum recommended waiting-time) and rejection costs of the patients.

They use an infinite horizon Markov decision process formulation and solve it with
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approximate dynamic programming approach.

Kolisch and Sickinger (2008) enlarge the model proposed by Green et al. (2006) in

two dimensions. First dimension is adding an identical CT machine to the system.

The other dimension is the number of outpatient appointments per time-slot that can

exceed the number of available scanners. The authors also investigate different arrival

probabilities and cost parameters. Their study proves that applying first in first out

queuing discipline is simple and has better performance.

Gocgun et al. (2011) develop a Markov decision process model for multi category

patients and CT machines. They categorize emergency patients as critical and non

critical, and use finite horizon Markov decision process methodology with expected net

revenue. Optimal solution is compared with five heuristics : first in first out heuristic,

R-1 heuristic (one patient from a randomly chosen type is scanned), R-2 heuristic

(one patient is randomly scanned from the patients that are waiting), OP-1 heuristic

(outpatients have the highest priority, and non-critical emergency patients have higher

priority than inpatients), OP-2 heuristic (outpatients have the highest priority, and

inpatients have higher priority than non-critical emergency patients.). The average net

revenue gap between the optimal policy and the five heuristic decision rules ranged

from 5% to 12% for various scenarios.

2.2.4 Exact and Heuristic Studies

There are some analytical models in the literature, such due to Bailey (1952) which

involve two patients system. In this study, appointments are given in regular intervals.

Bailey (1952) discuss the effect of variations in the appointment interval, the number

of patients attending the clinics, and the distribution of queue-size. The author observe

the performance of the system is very sensitive to small changes in appointment inter-

vals that small changes. Fries and Marathe (1981) model single server variable sized

multiple block system with dynamic programming approach, and explain advantages

and disadvantages of the system. Weiss (1990) gives a closed form solution to obtain

the optimal estimated inter arrival time between two patients. Examination times are

assumed stochastic in Weiss (1990)’s model. The total cost has two parts which are

doctor’s waiting and idle time costs. Vanden Bosch et al. (1999) derive upper and lo-
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wer bounds for the optimal cost appointment schedule. For the construction of these

bounds, they use submodularity property which is indeed multimodularity on subset

of the equations.

Denton and Gupta (2003) introduce a two stage stochastic linear programming (SLP)

model and utilize the problem framework for developing a methodology that gives

bounds on the optimal solution. In their study, interarrival times are dome shaped

which means shorter interarrival time at the beginning of the session and near the end

of session. Robinson and Chen (2003) model ASP as a stochastic program and solve it

with a fast heuristic for calculating robust interarrival times.

Kaandorp and Koole (2007), use local search heuristic to solve ASP with weighted ave-

rage of the expected waiting times of the patients, idle time of the doctor and tardiness

as the objective. Chern et al. (2008) study on health examination scheduling problem.

The authors model ASP as binary integer programming model using an analogy to

sequence dependent flow shop scheduling problem. Binary integer programming pro-

blems are hard to solve and consuming much time. Because of this, they use a heuristic

algorithm to solving the problem.

Muthuraman and Lawley (2008) introduce a new myopic scheduling algorithm to maxi-

mize the profit. While they improve a scheduling algorithm and reproduce optimal

stopping criteria, optimal schedule is not described. Turkcan et al. (2011), introduce

multi objective SLP model with two service criteria and solve the problem using Pareto

optimal set. They observe fairness/revenue tradeoff and use constraint based approach.

Erdogan and Denton (2013) develop multi stage stochastic model to analyze patient

flow of the surgery clinics. To solve problem efficiently, they adapt an algorithm which

is commonly used to solve multi stage stochastic programming models. The authors

also extend Denton and Gupta (2003)’s model with no show and extract that no show

structure deteriorates dome shape structure.

In this thesis we aim to show how to risk averse and rational healthcare managers decide
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their optimal choices under the risk. In particular, we attract how to risk aversion of

healthcare managers affect their optimal decision in ASP. Our enthusiasm in this line

of the research introduce when we observe a space on the impacts of risk aversion in the

ASP literature. That is, ASP literature principally assumes that healthcare managers

aim to minimize the expected value of costs, but they don’t take into account variations

of random outcomes.



3 MODEL FORMULATION

In this chapter, basic modelling and specialities are defined. First, stochastic program-

ming and coherent risk measure concept is discussed. After that model of ASP and

basic properties of model are studied. At the end of this chapter risk averse walk-in

ASP model introduced.

3.1 Stochastic Programming

Stochastic programming models allow decision makers to observe different realizations

and to model risk with different approaches. Stochastic Programming or Optimization

concept is first introduced by Dantzig (1955). Over decades, different approaches are

developed for solving stochastic programming models. There is a widely adapted to

solve stochastic problems which is replacing random variables with their mean values.

This expectation approach transform stochastic programming model to deterministic

problem which called expected value or mean value problem. However this deterministic

structure does not take into account variation so this model is not capable to reflect

all stochastic programming model’s features.

A major drawback of the stochastic programming modelling is that problem size ex-

pand when number of realizations of random variables increases. Because of this incline,

different solution approaches are developed. As for example, Benders’ Decomposition

and Dantzig-Wolfe Decomposition approaches are widely used. In these decomposition

methods, the model is divided to two parts : master problem and sub problems. Master

problem is the deterministic part of the model. Sub problem is realizations of stochastic

part of the problem. In Benders (2005)s’ decomposition, a new constraint is added to

master problem regards to solutions of sub problems to proceed algorithm. Dantzig and

Wolfe (1960) decomposition progresses with adding a new decision variable (column)

to the master problem in relation to the solutions of sub problems.

Two stage stochastic programming models has two decision stages. First stage decisions,
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x ∈ Rn, are determined with complete results of random variables, ξ ∈ Ξ, where Ξ

denotes all possible outcomes of the random variables. Second stage decisions, y ∈ Rm,

are the results of each scenario outcome. General formulation of two stage stochastic

programming is :

z = min cTx + Eω [Q (x, ω)]

s .t . Ax = b ( 3.1)

x ≥ 0

where

Q (x, ω) = min
{
q(ω)Ty(ω) |W(ω)y(ω) = h(ω)−T(ω)x,y(ω) ≥ 0

}
( 3.2)

denotes the recourse function (Birge and Louveaux, 2011). First stage parameters

(A,b) are deterministic. Second stage parameters (W,T,q,h) are stochastic which

means that the parameters are changing with respect to realizations. Eω denotes the

expectation of the outcomes of all realizations.

3.2 Measuring Risks

Risk has different definitions in different contexts. Our risk definition is uncertainty

in realizations’ outcomes. It means that the probability of each possible random rea-

lization is given before. There are different risk approaches to random outcomes of

realizations : risk averse, risk neutral, risk seeking. Risk averse approach is the most

conservative approach of all. Conservativeness of risk aversion is dependent to model-

ler. The main aim of risk averse in optimization is lowering the effects of undesirable

results of realizations without regarding that the problem is minimization or maxi-

mization problem. Risk neutral approach is based only expected value of realizations

in any case of risk of possible outcomes of realizations. ( 3.1)-( 3.2) is an example for

risk neutral stochastic programming model. Risk seeking approach is comparison of

the best possible outcomes of realizations from risky performance alternative and fixed
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outcomes of realizations performance alternative. After the comparison, best perfor-

mance alternative is chosen regardless the guaranteed outcomes. Risk averse and risk

neutral approaches are widely used compared to risk seeking. Healthcare management

must keep facilities persistent and economically stable, so risk seeking approach is not

preferable.

Risk measures are reflected differently in optimization models, such as expected utility

theory, stochastic dominance theory and mean-risk models :

– Expected Utility Theory : Decision makers has a non decreasing utility function, u(·),
such that random outcome X over Y is preferred if and only if E[u(X)] ≤ E[u(Y )]

and the expected value of the utility function is optimized instead of the expected

outcome.

– Stochastic Dominance Theory : This method is the generalization of expected utility

theory. The distribution of a random outcome X is chosen instead of a random out-

come of Y concerning a stochastic dominance relation if and only if expected utility

of X is preferable instead of expected utility of Y for all utility functions in definite

class, named the generator of the relation.

– Mean–Risk Analysis : This method measure the problem in a luminous form of two

criteria : the expected value of the outcome and a scalar measure of the variability of

the outcome. Decision makers ses a particularized functional r : χ→ R, where χ is a

definite space of quantitative function on a probability space (Ω, F, P) to represent

variability of the random outcomes (Choi, 2009).

Mean risk analysis has many advantages : the method permits to formulate the problem

as a parametric optimization problem and simplifies the trade-off analysis between the

expected value of the outcome and a scalar measure of variability of the outcome.

Because of this, it is applied in this thesis. With a little modification, the objective be-

comes min
x∈X

E(x, ω) +λρf (x, ω), where λ is the positive trade off coefficient representing

the exchange rate of mean cost for risk (Noyan, 2012).



16

3.2.1 Value at Risk

Value at risk (VaR) is a commonly used risk measure, which has the aim to determine

the maximum loss of the revenue for a given confidence level. VaR is developed for

aggregating various source of the risk into a unique quantitative measure. The mathe-

matical definition of VaR is given below (Noyan, 2012) :

Definition 3.1. Let the Fχ(·) represent the cumulative distribution function (cdf) of a

random variable χ. In financial studies, the VaR at the confidence level α (α quantile)

inf{η ∈ R : Fχ(η) ≥ α} ( 3.3)

is denoted by V aRα(χ), where α ∈ (0, 1].

3.2.2 Conditional Value at Risk

When VaR is used as a risk measure, the magnitude of the losses exceeding VaR is

not taken into account . Conditional value at risk (CVaR) is commonly used to be

an alternative to VaR. The common names of CVaR is tail VaR or excess loss. A

graphical representation of VaR and CVaR is given at 3.1. This graphic explains

difference between CVaR and VaR. Mathematical definition of CVaR at the confidence

level, α, is given below (Rockafellar and Uryasev, 1969) :

CV aRα =
1

1− α

∫ V aRα

−∞
xfX(x)dx ( 3.4)

or equivalently

CV aRα(χ) = E[x|x ≤ V aRα]. ( 3.5)

From above formulation, CVaR is the conditional expectation exceeding VaR for the

confidence level of α. For the minimization problems, V aRα is the α quantile of dis-

tribution of the sub problems’ objectives. Because of this, V aRα generates an upper

bound. The bound is exceeded only with a small probability (1 − α) (Noyan, 2012).

Open form of CV aRα is given in below definition.
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CVaR Deviation

Probability 1 − α
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CVaR VaR µMaximum Loss

Figure 3.1: CVaR vs. VaR

Definition 3.2. The CVaR of random variable χ at the confidence level α is equals to

CV aRα(χ) = inf
η∈R
{η +

1

1− αE[χ− η]+} ( 3.6)

where [z]+ = max{0, z}, z ∈ R. Infinimum of ( 3.6) is acquired at a α quantile of χ.

3.2.3 Coherent Risk Measure

If a risk measure satisfies the desirable properties of risk measure, this risk measure is

called as coherent. Artzner et al. (1999) propose and demonstrate that four properties

is enough to describe risk measure as coherent. These properties are described below

(Coherent risk measure ρ is functional and ρZ → R) :

– Convexity : ρ(tX + (1− t)Y ) ≤ tρ(X) + (1− t)ρ(Y ) ,

– Monotonicity : If X, Y ∈ Z , X � Y then ρ(X) ≥ ρ(Y ) ,

– Translational invariance : If t ∈ R, and X ∈ Z , then ρ(X + t) = ρ(X) + t,

– Positive homogeneity : If t ≥ 0 and X ∈ Z then ρ(tX) = tρ(X).

Although VaR is widely used risk measure, it is not a coherent risk measure because

of lack of convexity and subadditivity. VaR is coherent only when normal distribution

is used. Optimizing VaR is difficult when it is calculated from realizations (Rockafellar

and Uryasev, 1969). Moreover CVaR has better properties than VaR (Artzner et al.,

1999). Pflug (2000) proves that CVaR is coherent risk measure and it has positive ho-

mogeneity, translational invariance, monotonicity, convexity specialities. In addition,

CVaR is easily modelled with linear programming. Due to these reasons, we use CVaR
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as a risk measure.

3.3 Risk Averse Optimization

According to Noyan (2012), decision vector, x, is efficient in the mean-risk sense if and

only if for a predetermined level of expected outcome, the total cost function, f(x, ω),

has the lowest possible level of CVaR, and for a predetermined level of CVaR which

has the lowest possible level of expected outcome. The mean-risk efficient frontier by

calculating the efficient solutions for different risk coefficients can be constructed. By

revising the objective from above informations, new formulation of the model is given

below :

min
x∈X
{E[f (x, ω)] + λCV aRα[f (x, ω)]}. ( 3.7)

Proposition 3.1. In a finite probability space, where Ω = {ω1, ω2, ..., ωN} with corres-

ponding probabilities p1, p2, ..., pN , mean-risk problem in ( 3.7) can be reformulated as

the following problem (Noyan, 2012) :

min
x∈X

(1 + λ)cTx +
N∑
s=1

ps[qs]
Tys + λ

(
η +

1

1− α
N∑
s=1

psνs

)
( 3.8)

s.t. Wsys = hs − Tsx, s = 1, ..., N,

Ax = b, ( 3.9)

ys ≥ 0, s = 1, ..., N ( 3.10)

νs ≥ (qs)
Tys − η, s = 1, ..., N, ( 3.11)

νs ≥ 0 s = 1, ..., N, ( 3.12)

η ∈ R ( 3.13)

Proof From CVaR’s translational invariance speciality, Noyan (2012) prove that :
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CV aRα(f (x, ω)) = cTx + CV aRα(Q(x, ξ(ω)))

and

E[f (x, ω)] + λCV aRα(f (x, ω))

= cTx + E[Q(x, ξ(ω))] + λ(cTx + CV aRα(Q(x, ξ(ω)))

= (1 + λ)cTx + E[Q(x, ξ(ω))] + λQ(x, ξ(ω))) ( 3.14)

For finite number of realizations of random parameters ξ(ω), realizations of the recourse

function equal to Q(x, ξ1) = qT1 y1, ..., Q(x, ξN) = qTNyN . From the special structure of

the sub problem ( 4.4) and by the definition (3.2), the proposition proved. �

The model ( 3.8)-( 3.13) is reformulated in master-sub problem format as below :

Master Problem :

min (1 + λ)cTx + θ1 + λθ2 ( 3.15)

s.t. Ax = b, ( 3.16)

θ1 ≥
s∑
`=1

p`(u`t)T (h` − T `x) t = 1, ..., τ, ( 3.17)

θ2 ≥ ηt +
1

1− α
s∑
`=1

p`ν`t t = 1, ..., τ, ( 3.18)

(T `)Tσg`x− (h`)Tσg` ` = 1, ..., s, g` = 1, ..., G`, ( 3.19)

ν`t ≥ (u`t)T (h` − T `x)− ηt, ` = 1, ..., s, t = 1, ..., τ, ( 3.20)

ν`t ≥ 0, ηt ∈ R, ` = 1, ..., s, t = 1, ..., τ. ( 3.21)
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Subproblems are same as ( 4.4)

where, ηt represent the α quantile of recourse cost and ν`t = [(u`t)T (h` − T `x) −
ηt]+, t = 1, ..., τ,. In the risk averse model, equations ( 3.17) and ( 3.18) correspond to

optimality cuts of the model. ( 3.17) is used in risk neutral model. ( 3.18) is introduced

by Noyan (2012) for risk averse problems. ( 3.19) is feasibility cut of the model and it

is also used in the risk neutral model.

3.4 ASP Formulation

In the ASP the objective is to create the best possible schedule for patients and doctors.

The maximum number of patients that can be examined in a day is predetermined.

Examination times differ from one patient to another. Patients can be punctual or not,

or even not come to the clinic the whole appointment day (no-show). They can take

their appointments at an earlier time or they can just apply within a day they want

to be examined. A bad schedule make patients to wait, sometimes at very long times.

Moreover, it may also cause doctors to work overtime, even be idled during the day.

These events result in direct and indirect costs for the system. In this study, we assume

that there is a single doctor. Denton and Gupta (2003)’s model has computational

efficiency due to using two stage stochastic linear programming formulation. Erdogan

and Denton (2013) revise the model by considering some propositions. We make use of

both studies in our model formulation. We transform their base model formulated with

risk-neutral modelling approach to a risk-averse model. After that we reformulate the

model for analysing walk-in patients capacity. An instance of the problem is visualized

in Figure 3.2 and the used notation is summarized in Table 3.1.

3.4.1 Risk Neutral Formulation

We aim to optimize the appointment schedule by arranging the arrival times of n

patients. Doctor examination times are stochastic so examination time is assumed be

a random variable. Objective function minimizes waiting time cost of patients and

overtime cost of the doctors relating to session length. We assume that our patients
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Planned Schedule

Actual Schedule

Patient 1 Arrival Patient 2 Arrival Patient n Arrival End of Planned Day

{{Waiting Idling Overtime

{{ {
Duration of Patient 1 Duration of Patient 2

{

Duration of Patient n

Figure 3.2: Single Doctor Scheduling with Stochastic Examination Times

Table 3.1: Notation of the Risk Neutral ASP

Parameters
n Number of appointed patients
ξ Index for realizations
d Length of session which we schedule
co Coefficient of overtime cost
cw Coefficient of waiting time cost
cs Coefficient of idle time cost

A(ξ) Random indicating vector in presence of no show(0) or arrival(1)
Z(ξ) Vector of random examination duration for n patients
pi No show probability of patient i

Decision Variables
x Examination time allowance vector for the first n patients

w(ξ) Patient waiting times vector
s(ξ) Doctor idle times vector
o(ξ) Overtime with respect to session length

are homogeneous. It means that all patients have same no show probability. Lindley

(1952) recursion is used to schedule single server scheduling. Denton and Gupta (2003)

use this recursion for modelling single doctor ASP.

The scheduled examination time of patient i is calculated as summation of examina-

tion time allowances of patient 1 to i − 1. In this way, patient 1 is assigned to time

0, patient 2 assigned to time x1, patient 3 is assigned to time x1 + x2, and so forth.

Due to unrestricted examination time of last patient, the dimension of the vector x is

equals to n− 1. The vector of examination time allowance, x ∈ Rn−1, denotes the first

stage decision. Cost parameters, co, cw, cs ∈ R, are in unit time. Patient waiting times

vector, doctor idle times vector and overtime are second stage decisions with respect

to realizations (ξ ∈ Ξ).
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From Lindley (1952) recursion , patient waiting time, doctor idle time and overtime

equations can be written as below :

wi(ξ) = [wi−1(ξ) + Zi−1(ξ)− xi−1]+ i = 1, ..., n ( 3.22)

si(ξ) = [−wi−1(ξ)− Zi−1(ξ) + xi−1]
+ i = 1, ..., n ( 3.23)

o(ξ) = [wn(ξ) + Zn(ξ) +
n−1∑
i=1

xi − d]+ ( 3.24)

In Chapter 2, We commented on the general objective structure of the ASP. Common

point between Lindley recursion and the objective structure is that both of them include

patient waiting time, doctor idle time and overtime. Doctor idle times can be excluded

from the objective due to Denton and Gupta (2003)’s proposition. The proposition is :

Proposition 3.2. At the time zero, expected doctor idle time is equal to expected

overtime minus expected total examination time :

E[
n∑
i=1

si] = E[o]− E[
n∑
i=1

Zi]

Proof Proved by Denton and Gupta (2003) �

Reflecting no-shows to the model is a complicating issue. Erdogan and Denton (2013),

propose a data structure to reflect no-shows to the model. This structure multiplies

two random variables, the no show indicator random variable and the examination

time random variable(Ẑi(ξ) = Ai(ξ)Zi(ξ)), where

Ai(ξ) =

1, with 1− pi,

0, with pi.

From the proposition, the literature and the proposed structure is combined as :

min cw

n∑
i=1

E[wi] + coE[o]. ( 3.25)

The last form of the model is given (Erdogan and Denton, 2013) :
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min Eξ[
n∑
i=2

cwwi(ξ) + coo(ξ)]

s.t. w2(ξ) ≥ Ẑ1(ξ)− x1,∀ξ

− w2(ξ) + w3(ξ) ≥ Ẑ2(ξ)− x2,∀ξ

. . . . . . ...

− wn−1(ξ) + wn(ξ) ≥ Ẑn−1(ξ)− xn−1, ∀ξ ( 3.26)

− wn(ξ) + o(ξ) ≥ Ẑn(ξ) +
n−1∑
i=1

xi − d,∀ξ

x ≥ 0,w(ξ), o(ξ) ≥ 0,∀ξ.

Through the rest of the thesis, above model is referred as risk neutral no-show appoint-

ment scheduling model (RNASP).

3.4.2 Risk Averse Formulation

Aforesaid, we discussed on risk averse mathematical modelling structure and RNASP

model. Risk averse model is built on these informations. Risk averse model is given

below :
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min
s∑
ξ=1

p(ξ)
n∑
i=2

cwwi(ξ) + coo(ξ) + λ

(
η +

1

1− α
s∑
ξ=1

p(ξ)ν(ξ)

)

s.t. w2(ξ) ≥ Ẑ1(ξ)− x1,∀ξ

− w2(ξ) + w3(ξ) ≥ Ẑ2(ξ)− x2,∀ξ

. . . . . . ...

− wn−1(ξ) + wn(ξ) ≥ Ẑn−1(ξ)− xn−1,∀ξ ( 3.27)

− wn(ξ) + o(ξ) ≥ Ẑn(ξ) +
n−1∑
i=1

xi − d,∀ξ

ν(ξ) ≥ (q(ξ))Ty(ξ)− η, ∀ξ,

x ≥ 0,w(ξ), o(ξ), ν(ξ) ≥ 0,∀ξ.

In this model, risk aversion and no-show are modelled. Rest of the thesis, above model

is called as risk averse no-show appointment scheduling model (RAASP).

3.4.3 ASP in the Presence of Walk-in Patients

Walk-in is important for the management because capacity allocation is should be

made in relation to the management revenue targets. The patients are separated into

two groups : patients who take their appointments before the examination day form

type 1 patient group, whereas walk-in patients form type 2 patient group. The facility

total capacity equals to n patients. While the allocated capacity for the type 1 patients

is denoted as k1, type 2 patients’ allocated capacity is denoted as k2. Time allowance

vectors type 1 and type 2 patients are denoted as x1 and x2 respectively. Within a

revenue management framework, the unit revenues obtained from type 1 and type 2

patients are differentiated as r1 and r2 respectively. As the same-day appointments may

have severe consequence on the system, and the management we will later on compare

the cases r1 = r2 and r1 ≤ r2. Examination time vectors for the patient types are Ẑ1, Ẑ2
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respectively. Binary variables y1 are introduced to decide on how many type 1 patients

will be appointed given the predetermined maximum capacity of k1. Binary variables

y2 are introduced with a similar purpose for type 2 patients. We will always have

k1+k2=n. However, we may have 1T .y∗1 ≤ k1 or 1T .y∗2 ≤ k2 at optimality, in other

words maximum capacities k1 and/or k2 can be found more than enough. Therefore,

the model proposed below can be solved for different values of k1 (as k2 = n− k1) to

identify the best profit generating capacity to allocate for type 1 patients (and thus

also for type 2 patients). If we reformulate the problem, the model transforms to :

max
s∑
ξ=1

p(ξ)

r1 k1∑
i=1

y1i + r2

n−1∑
j=(k1+1)

y2i −
n∑
i=2

cwwi(ξ)− coo(ξ)



− λ
(
η +

1

1− α
s∑
ξ=1

p(ξ)ν(ξ)

)

s.t. wi+1(ξ)− wi ≥ Ẑ1i(ξ)− x1i,∀ξ, i = 1, ..., k1,

wj+1(ξ)− wj(ξ) ≥ Ẑ2j(ξ)− x2j,∀ξ, j = (k1 + 1), ..., (n− 1)

− wn(ξ) + o(ξ) ≥ Ẑ1n(ξ) + Ẑ2n(ξ) +
k1∑
i=1

x1i +
n−1∑

j=k1+1

x2j − d,∀ξ ( 3.28)

ν(ξ) ≥ (q(ξ))Ty(ξ)− η, ∀ξ,

My1i ≥ x1i, i = 1, ..., k1,

y1i ≤ x1i, i = 1, ..., k1,

My2j ≥ x2j, j = (k1 + 1), ..., (n− 1)

y2j ≤ x2j, j = (k1 + 1), ..., (n− 1)

x1i,x2j ≥ 0,w(ξ), o(ξ), ν(ξ) ≥ 0,y1i,y2j ∈ {0, 1}∀ξ

Hereafter, above model is referred as risk averse walk in ASP (RAWSP).



4 SOLUTION METHODOLOGY

In Chapter 3, two different mathematical models are introduced. In this chapter, struc-

tural properties and solution procedure of the RNASP and the RAASP models are

explained.

4.1 L-Shaped Method

Because of tendency of increase of number of realizations and realization structure,

decomposition technique is desirable technique for two stage stochastic programming

model. L-Shaped Method is usually used for solving two stage stochastic programming

models. L-Shaped method is introduced by Slyke and Wets (1969). This method is

basically a special variant of Benders Decomposition for solving two stage stochas-

tic programming models which is divided master-sub problem structure. By changing

recourse function in main problem (Q(.)) with θ and using dual solutions of each rea-

lization, we are capable to generate feasibility cuts ( 4.2) and optimality cuts ( 4.3)

for the master problem. L Shaped Algorithm is reformulated problem with Birge and

Louveaux (2011)s’ cuts :

Master Problem :

minz = cx + θ ( 4.1)

s .t .Ax = b

D`x ≥ d` ` = 1, .., r, ( 4.2)

E` + θ ≥ e` ` = 1, .., s, ( 4.3)

x ≥ 0, θ ∈ R
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Subproblems (k=1,..,K) :

minw = qTk y

s .t .Wy = hk − Tkx
ν ( 4.4)

y ≥ 0

A new recourse terminology is used to explain further speciality of the structure of the

problem :

– fixed recourse : if recourse matrix,W , is deterministic, i.e., does not changing with

realizations. Otherwise problem is called stochastic recourse.

– simple recourse : if recourse matrix, W , equals identity matrix with same dimen-

sions.

– complete recourse : if second stage problem is feasible for any given first stage

decision vector.

– integer recourse : if all of the second stage variables are integer.

– mixed integer recourse : if some of the second stage variables are integer.

– linear recourse : if all of the second stage variables are linear.

In complete recourse stochastic programming models, feasibility cuts are unnecessary.

L-Shaped Methods algorithm is given below (adapted from Birge and Louveaux (2011) :
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Algorithm 1: L-Shaped Algorithm
Step 0 Set r = s = ν = 0.

Step 1 Set ν = ν + 1. Solve the mathematical model ( 4.1)-( 4.3).

Let the xν , θnu be an optimal solution. If no constraint in ( 4.3) is

present, θν is equal to −∞ and it is not considered in the computation of xν .

Step 2

if x ∈ K2 then
Go to Step 1,

else add least one cut ( 4.2) and return Step 1.;

end

Step 3

for k ∈ K do
Solve the the mathematical model ( 4.4).

end

Let the φνk the optimum value of dual variables associated with the model k of

( 4.4).

Define :

Es+1 =
K∑
k=1

pkφ
ν
kTk

and

es+1 =
K∑
k=1

pkφ
ν
khk.

Let wν = es+1 − Es+1x
ν .

if θν ≤ wν then
s = s+ 1 add the constraint set ( 4.1) and return Step 1

else Stop, xν is an optimal solution ;

end
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4.2 Solution Methodology of RNASP

Assumptions of problem is explained in this section. First assumption is whole pa-

tients are punctual. Second one is there is no walk in patients including emergency

cases. Third assumption is there is no price discrimination in waiting time costs. Last

assumption is that all patients have same no show probability. Because of aforesaid pro-

blems in 4.1, RNASP problem can be written in master-sub problem format. Master

problem can be written :

min{Q(x)

s.t.x ≥ 0. ( 4.5)

where Q(x) = Eξ[Q(x, ξ)] is the recourse function denoting the expectation of whole

sub problems in whole scenarios.

The sub problem comprises separate realizations of scenarios Q(x, ξ). Sub problem

structure includes a minimization of objective which equals waiting time costs and

overtime cost, constraints for computing waiting times and overtime. A sub problem

of RNASP can be written as below :

Q(x, ξ) = min cw
n∑
i=2

Ai(ξ)wi(ξ) + coo(ξ)

s.t.w2(ξ) ≥ Ẑ1(ξ)− x1,∀ξ

− w2(ξ) + w3(ξ) ≥ Ẑ2(ξ)− x2,∀ξ

. . . . . . ... ( 4.6)

− wn−1(ξ) + wn(ξ) ≥ Ẑn−1(ξ)− xn−1, ∀ξ

− wn(ξ) + o(ξ) ≥ Ẑn(ξ) +
n−1∑
i=1

xi − d,∀ξ

x ≥ 0,w(ξ), o(ξ) ≥ 0,∀ξ
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From the definition of complete recourse, RNASP is a complete recourse type of two

stage stochastic programming problem. Because for all values of overtime and waiting

times, x vector is always feasible. So, we can use L-Shaped Algorithm’s a variant for

the complete recourse problems which is introduced by Erdogan (2010).

Algorithm 2: A variant of L-Shaped Algorithm
Step 0 ν = 1, k = 1

Step 1 Start with a arbitrary solution x

Step 2 while Current Bound - θ ≥ 0 do
ν ← ν + 1

Solve Master problem ( 4.5)

Solve Sub problem ( 4.6) for each realization

Add Optimality cut to master problem
end

There is a structural property of the model related with no show and double booking

which means that two or more patients arrives simultaneously. Erdogan (2010) pro-

posed this structure using similarity of well known newsboy problem in two patients

environment.

Proposition 4.1. The optimal schedule for 2 patients and d = 0, with no show proba-

bility p, can allow to double booking patients if
cw

cw + co
≤ p.

Proof This proposition is proved by Erdogan (2010). �

4.3 Solution Methodology of RAASP

Risk averse two stage stochastic programming model is solved via a specialized L-

Shaped method which includes calculation of α quantile of the sub problems for calcu-

lating CVaR values. This algorithm is proposed by Noyan (2012). Master-sub problem

structure is main structure of the algorithm. We explain the cuts and the structure in
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Chapter 3. If we rewrite RAASP in this format :

Master Problem :

minθ1 + λθ2

s.t.θ1 ≥
s∑
`=1

p`(u`t)T (h` − T `x) t = 1, ..., τ,

θ2 ≥ ηt +
1

1− α
s∑
`=1

p`ν`t t = 1, ..., τ, ( 4.7)

ν`t ≥ (u`t)T (h` − T `x)− ηt, ` = 1, ..., s, t = 1, ..., τ,

ν`t ≥ 0, ηt ∈ R, ` = 1, ..., s, t = 1, ..., τ.

Sub Problems :

min cw
n∑
i=2

Ai(ξ)wi(ξ) + coo(ξ)

s.t.w2(ξ) ≥ Ẑ1(ξ)− x1,∀ξ

− w2(ξ) + w3(ξ) ≥ Ẑ2(ξ)− x2, ∀ξ

. . . . . . ... ( 4.8)

− wn−1(ξ) + wn(ξ) ≥ Ẑn−1(ξ)− xn−1,∀ξ

− wn(ξ) + o(ξ) ≥ Ẑn(ξ) +
n−1∑
i=1

xi − d,∀ξ

x ≥ 0,w(ξ), o(ξ) ≥ 0, ∀ξ

For every solution of the sub problems, the master problem is always feasible. Because

of this, the model is complete recourse stochastic programming model. In complete
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recourse stochastic programming model, feasibility cut can be omitted from the model

and the algorithm. This algorithm is also proper to use for solving RAWSP model. The

structure of algorithm is given below :

Algorithm 3: Algorithm for RAASP
Step 0 τ = 0, s = 1, ..., N .

Step 1 Solve the master problem ( 4.7).

Let (x, θ1, θ2) be an optimal solution and θ = θ1 + λθ2. (When τ = 0

ignore θ1, θ2 and the optimality cuts.)

Step 2 Solve all the sub problems ( 4.8).

Let τ = τ + 1 and u`τ denote the dual vector corresponding to the optimal

solution of the sub problems.

Step 3 Observe that (u`τ )T (h`− T `x), ` = 1, ..., s, are the realizations of Q(x, ξ).

Find the α quantile of Q(x, ξ) denoted by ηα, and calculate

CV aRα(Q(x, ξ)) :

CV aRα(Q(x, ξ)) = ηα +
1

1− α

(
s∑
`=1

p`[Q(x, ξ`)− ηα]+

)
.

Step 4 Calculate the mean-risk function value of the recourse cost at the

current solution :

θ∗ =
s∑
`=1

p`u`τ )T (h` − T `x) + λCV aRα(Q(x, ξ)).

Step 5 if θ ≥ θ∗ then
Start x is the optimal solution vector of the master problem.

else Introduce the optimality cuts for u`τ and go to Step 1.;

end



5 COMPUTATIONAL STUDIES

5.1 Generation of the Problem Instances

For the purpose of testing the computational performance of the proposed algorithm,

we consider different problem instances of different sizes. Because of the existence of

two methodologies, we generate two groups of data sets. Standard deviation and mean

of the examination times are determined via the previous data which has been collected

for three months from a radiology clinic in a state hospital in Turkey. Selected process

is the computed tomography (CT) machine consultation. Because CT machine is com-

monly used as a visualization machine in radiology clinics and the initial investment

cost of CT machine is very high.

Data Set I

– The first data set has 30 problem instances and 10 patients.

– From the collected data, the consultation time distribution is normal with mean 7

minutes.

– Variation of data is changing week to week. So, we run the model with different

standard deviation levels.

– No show probability of appointed patients is 20%.

– The session length is assumed to be equal to the sum of the mean consultation

durations.

– Scenario probabilities are set to be equal.

– γ = co/cw rates are taken in different levels.

Data Set II

– The problem instances and the capacity of the system is same in Data Set I.

– Durations of the consultations are generated as in Data Set I.

– No show probability of appointed patients is also 20% and no show probability of

walk in patients is 5%.

– Length of the session is same as in Data Set I.

– Scenario probabilities are set to be equal.
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– γ = co/cw rates are taken in different levels.

Data set I is used while solving RNASP, RAASP and RAWASP. Data set II is only used

while solving RAWASP. All proposed models are coded with GAMS 23.5 mathemati-

cal programming language running on CPLEX 12.2 solver. The numerical experiments

are performed on a computer with 64 bit A 10 (4 physical cores and 4 virtual cores)

AMD 4600M CPU with 2.3 GHz processor and 8 GB of memory. In our numerical

experiments, we terminate the solver when 500000 iterations are completed.

5.2 Results for RNASP

We begin with a simple example that points out the optimal solutions’ patterns with

respect to changes in coefficient of variance, cv ; and to changes in relative cost of

waiting, cw, and overtime, co. The capacity of clinic 10 patients in 70 minutes. The

consultation durations are normally distributed with mean 7 minutes and standard

deviation 0.07. Table 5.1 underlines the optimal interarrival times of patients with

cv = 0.01 and different levels of the gamma.

Table 5.1: Optimal solution of RNASP (γ = co/cw, Zi ∼ N (7, 0.07), d = 70)

Interarrival Times γ = 10 γ = 1 γ = 0.1

x1 6.9530 7.0078 7.0940
x2 6.9870 7.0144 7.0760
x3 6.9860 7.0344 7.0820
x4 7.0000 7.0267 7.0900
x5 6.9900 7.0222 7.0920
x6 6.9800 7.0211 7.0910
x7 6.9990 7.0211 7.0800
x8 7.0000 7.0167 7.0900
x9 7.0130 7.0044 7.0870

The optimal interarrival times for three different levels of γ are listed in Table 5.1

and are graphically illustrated in Figure 5.1. If Figure 5.1 is analyzed, the dome

shape structure for interarrival times can be easily observed. Dome shape structure

implies more frequent appointments at the start and end of the daily session, and less
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Figure 5.1: Optimal solution of RNASP (γ = co/cw, Zi = N (7, 0.07), d = 70)

frequent appointments at the middle of the session. This shape appears at optimality

mainly to prevent overtime and compensate random events during the session. This

dome shaped structure has been discovered for the risk neutral problem in Denton and

Gupta (2003). When gamma increases from 0.1 to 10, the consultation allowance times

increase. When gamma equals to 0.1, the time allowances are become equal.

Coefficient of variation of consultation duration is another parameter in our model.

Figure 5.2 shows interarrival times of the patients with consultation times for different

level of coefficient of variation. When coefficient of variation increases (from Figure

5.2a to Figure 5.2d), dome shape structure is deformed significantly. When gamma

increases, dome shaped structure preserve its shape. In Figures 5.2a- 5.2d, maximum

interarrival times are approximately equal to 7.8, 8.5, 9, 10 minutes. In same way,

minimum interarrival times are approximately equal to 6.6, 6.5, 5.9, 5 minutes.

In Table 5.2 , interarrival times of patients are given to explain changes in respect to

coefficient of variation. To underline the changes, we fix gamma. When coefficient of

variation increases, range between maximum interarrival times and minimum interar-

rival times are also increasing. Deformation level of the dome shape structure increases

parallel with coefficient of variance shown in Table 5.2 detailed.
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Figure 5.2: Optimal solution of RNASP for different Cv levels
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Table 5.2: Optimal solution of RNASP (Zi ∼ N (7, 0.07), d = 70)

γ = 10

Interarrival Times Cv = 0.01 Cv = 0.08 Cv = 0.15 Cv = 0.23 Cv = 0.30

x1 6.9530 6.5430 6.4050 5.6040 4.9690
x2 6.9870 6.7980 6.8120 5.9800 6.9660
x3 6.9860 6.8590 6.4890 6.4550 6.0900
x4 7.0000 7.1820 6.6080 6.9340 6.7050
x5 6.9900 7.0470 7.0850 6.4860 6.4840
x6 6.9800 6.8250 6.8400 7.1800 7.3390
x7 6.9990 6.7700 6.8540 7.1750 7.0970
x8 7.0000 7.1880 7.5520 7.4730 6.9780
x9 7.0130 6.9710 7.0270 7.8200 8.3850

γ = 1

Interarrival Times Cv = 0.01 Cv = 0.08 Cv = 0.15 Cv = 0.23 Cv = 0.30

x1 7.0078 7.0180 6.9890 7.0780 6.9440
x2 7.0144 7.0780 7.5020 7.1600 7.5630
x3 7.0344 7.1620 7.3260 7.3730 7.3730
x4 7.0267 7.2860 7.1840 7.4750 7.7690
x5 7.0222 7.1530 7.3060 7.2130 7.4380
x6 7.0211 7.0490 7.1450 7.2130 7.7340
x7 7.0211 7.0120 7.2980 7.4200 7.7310
x8 7.0167 7.0320 7.5300 7.7540 7.3520
x9 7.0044 7.0410 7.0630 7.0900 7.4540

γ = 0.1

Interarrival Times Cv = 0.01 Cv = 0.08 Cv = 0.15 Cv = 0.23 Cv = 0.30

x1 7.0940 7.6410 8.2070 8.7770 9.6580
x2 7.0760 7.5850 8.2770 8.8180 9.0090
x3 7.0820 7.6710 8.2650 8.9750 9.6490
x4 7.0900 7.6500 8.0940 8.8360 9.6200
x5 7.0920 7.6670 8.3370 8.4120 9.4010
x6 7.0910 7.7160 8.0830 8.7570 9.4960
x7 7.0800 7.5040 8.2220 9.4100 9.4080
x8 7.0900 7.7370 8.3860 8.9720 9.5010
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5.3 Results for RAASP

Let us denote the optimum objective value of RAASP in 3.27 as E1 when λ = 0

and C1 when λ = 1. Moreover, let CVaRα value calculated based on the optimum

solution of RAASP with λ = 0 be C2, and the expectation value calculated based on

the optimum solution of RAASP with λ = 1 be E2. Then, the validity of the model

can be checked based on the ratios (or relative differences) RD1 = (E2 − E1)/E1

and RD2 = (C1 − C2)/C1. When RD1 is low and RD2 is high, the proposed CVaR

model is meaningful in the sense that it can avoid large losses. We investigate these

ratios in respect to coefficient of variation of consultation times and the cost ratios. In

Table 5.3, it is clear that risk averse modelling is significant for ASP because RD1 is

significantly lower than RD2 at all γ values of 0.1, 1, 10, 100, 1000 and Cv values 0.01,

0.07, 0.15, 0.23, 0.30.

Table 5.3: Comparison of Relative Differences

Relative Difference in Expected Value (%)
γ \ Cv 0.01 0.08 0.15 0.23 0.3
0.1 9.7369 12.6069 11.5238 10.4424 11.8826
1 9.8799 10.1123 8.7982 6.9997 8.7078
10 3.9985 8.1721 4.9844 4.8067 4.6839
100 1.8394 1.6687 0.8936 0.5911 0.8855
1000 0.3366 0.2477 0.1417 0.0317 0.0400

Relative Difference in CV aRα (%)
γ \ Cv 0.01 0.08 0.15 0.23 0.3
0.1 -31.7596 -41.1134 -38.7552 -35.5188 -40.9514
1 -47.3254 -45.2966 -44.7792 -44.1585 -40.1125
10 -52.9709 -58.9018 -52.5902 -49.8603 -46.6975
100 -62.1686 -65.7963 -58.1081 -65.9728 -66.3216
1000 -69.5435 -71.5195 -66.2891 -70.1914 -71.2349

Figure 5.3 illustrates RD1 and RD2 in respect to changes in Cv and gamma. When

gamma increases(illustrated in Figures 5.3a and 5.3b), increment of RD1 declines.

In sharp contrast to this, decrement of RD2 rises. Although, both facts improves our

solution. Figures 5.3c and 5.3d illustrate Cv effect on RD1 and RD2. When Cv in-
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creases, there is no significant effect on both relative differences.
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Figure 5.3: Changes in RD1 and RD2 for Cv and γ

Table 5.4 indicates optimal interarrival times in presence of γ and Cv. It is obvious

that when Cv increases, the difference between first and last interarrival times also

increases. When γ decreases from 10 to 0.1, the interarrival times become larger.

Figure 5.4 illustrates interarrival times in respect to γ and Cv. It can be observed

from this figure that when gamma increases, the interarrival times decreases. When Cv
increases, variance of the interarrival times increases. Dome shape structure deteriorates

when Cv increases.
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Figure 5.4: Optimal solution of RAASP for different Cv levels
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Table 5.4: Optimal solution of RAASP (Zi ∼ N (7, 0.07), d = 70)

γ = 10

Interarrival Times Cv = 0.01 Cv = 0.08 Cv = 0.15 Cv = 0.23 Cv = 0.30

x1 6.9280 6.4790 6.5290 5.6820 4.6800
x2 6.9890 6.8610 6.6870 6.1790 7.6610
x3 6.9920 6.8340 6.4390 6.3760 5.8350
x4 6.9990 7.1660 6.4610 6.9580 7.1690
x5 7.0000 6.9620 7.0710 6.4730 6.4420
x6 6.9820 6.9900 6.8870 6.9740 6.9010
x7 7.0090 6.8020 6.7810 7.3900 6.8730
x8 7.0200 7.1450 7.7470 7.3760 7.7750
x9 7.0030 7.0260 7.4570 8.1000 8.3330

γ = 1

Interarrival Times Cv = 0.01 Cv = 0.08 Cv = 0.15 Cv = 0.23 Cv = 0.30

x1 7.0220 7.1580 7.3800 7.5450 7.7750
x2 7.0180 7.2520 7.5930 7.3460 7.8150
x3 7.0390 7.2440 7.3650 7.5630 7.5340
x4 7.0470 7.2220 7.5520 7.8860 8.4490
x5 7.0450 7.2300 7.3700 7.2220 8.2610
x6 7.0430 7.2200 7.3250 7.3220 7.4660
x7 7.0340 7.0210 7.5110 7.9370 7.8670
x8 7.0320 7.2230 7.6530 8.0110 8.2160
x9 7.0360 7.1310 7.4860 7.6960 7.8960

γ = 0.1

Interarrival Times Cv = 0.01 Cv = 0.08 Cv = 0.15 Cv = 0.23 Cv = 0.30

x1 7.1110 7.8950 8.6770 9.3620 9.7930
x2 7.1020 7.6800 8.6110 9.2580 9.7380
x3 7.1090 7.6990 8.3770 9.6110 10.4020
x4 7.1230 7.8060 8.3330 9.4130 10.4900
x5 7.1220 7.8800 8.6130 9.2600 9.7910
x6 7.1270 7.9920 8.6150 8.9770 10.2320
x7 7.1010 7.6600 8.6970 9.6030 10.6260
x8 7.1230 7.8110 8.8610 9.7020 10.5070
x9 7.1070 7.9080 8.6710 9.8580 10.3700
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5.4 RAWASP Results

We begin with demonstration of RAWASP with price discrimination (WPD) and wi-

thout price discrimination solutions (PD). The change in the ratio, more precisely the

ratio (γ) of a patient’s waiting cost to the doctor overtime cost (c0/cw) is also investi-

gated. In the model without price discrimination, revenue acquired from all patients is

7. In the model with price discrimination, revenue of the appointed patients equal to

7 and revenue of the walkin patients is equal to 10. Ten data sets are generated with

each including 30 scenarios and the problem associated with each data set is solved

with risk averse and risk neutral approaches.

To validate our approach, we compare the results of the risk neutral (RNM) or ex-

pected cost model with the results of the risk averse (RAM) or CVaR based model.

Let us denote the expected total cost obtained by solving RNM and RAM optimally

as ERNM and ERAM respectively. Similarly, let the CVaR value obtained by solving

RNM and RAM optimally be CRNM and CRAM respectively. Then, we set RD1 =

(ERAM-ERNM)/ERNM and RD2 = (CRAM-CRNM)/CRNM. RD1 and RD2 values

in respect to with and without price discrimination are provided in Table 5.5 and 5.6

respectively.

Table 5.5: RD1 values with respect to model parameters

Model without Price Discrimination
γ/b1 1 2 3 4 5 6 7 8 9
0.1 -0.680 -0.686 -0.469 -0.394 -0.716 -0.527 -0.624 -0.637 -0.501
1 -8.562 -9.394 -8.339 -8.814 -8.345 -8.724 -8.222 -7.296 -6.905

Model with Price Discrimination
γ/b1 1 2 3 4 5 6 7 8 9
0.1 -0.518 -0.620 -0.610 -0.736 -0.825 -0.745 -0.863 -0.384 -0.501
1 -6.824 -7.698 -7.633 -7.467 -7.965 -8.086 -8.351 -7.774 -6.905

RD1 ranges between −0.394% and −9.394% while RD2 ranges between 5.314% and

32.431%. When absolute values are compared, it is clear that the solutions of the

proposed RAM is effective in avoiding large costs for ASP. It is obvious that when

co increases increment of number of allocated places for walkin patients improves our
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solution.

Table 5.6: RD2 values with respect to model parameters

Model without Price Discrimination
γ/b1 1 2 3 4 5 6 7 8 9
0.1 9.550 16.138 18.069 15.208 18.849 19.425 22.641 22.641 23.306
1 8.620 30.376 16.273 32.431 25.422 19.139 31.344 13.118 18.163

Model with Price Discrimination
γ/b1 1 2 3 4 5 6 7 8 9
0.1 10.137 13.825 15.713 14.745 17.305 19.573 25.746 24.806 23.306
1 5.314 17.180 18.087 13.091 15.776 19.446 23.835 12.434 18.163

Figure 5.5 illustrates how RD1 and RD2 values change when model parameter γ vary

in respect to WPD and PD. When gamma decreases, difference between WPD and

PD becomes meaningless. According to results of PD, best solutions of the all trials

include that 7 of 10 patients are appointed patients. According to results of WPD,

best solutions of the all trials include that 4 of 10 patients are appointed patients. It

is obvious that price discrimination becomes meaningful when gamma increases.
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Figure 5.5: Optimal solution of RAWASP



6 CONCLUSION

In this study, we solve ASP with stochastic examination times, walk-in and no show

patients. To take into account risks, we model the ASP with mean-risk approach. This

problem is commonly faced in healthcare facilities. In this thesis, we reformulate ASP

as a risk averse two stage stochastic programming model. The model objective is find

optimal appointment times while minimizing the total cost related to the waiting times

of patients and overtime of doctors. To model the risk averse behavior, CVaR risk mea-

sure is used. Different scenarios where the patient examination times and no-shows vary

randomly are taken into account. We then reformulate this model by including diffe-

rentiated revenues from ordinary patients and walk-in patients.

We assume queue discipline is FIFO, all patients are punctual and decision maker

wants to minimize a convex cost function. Our assumptions are widely addressed in

scheduling systems at service environment. However, the proposed model has also some

limitations. First, FIFO queue discipline is commonly used in service scheduling but

this assumption is not appropriate when priority levels of patients differ. Secondly, the

punctual arrival of every patient is not a very realistic assumption but is almost a must

to control the complexity of the model. Finally, the appointment times are decided in a

static instead of a dynamic fashion, and this may limit the application of the proposed

approach.
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