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Abstract 

 

 

 

The traditional objective to transit network frequency setting is the minimization of total 

in-vehicle and station waiting times.  The data used in this decision-making process are 

generally the mean forecasted travel times and travel demand.  When the bus line 

frequencies are set based on these data, passengers occasionally experience excessive 

travel times due to the changing travel network conditions and congestion.  In this 

study, we obtain optimum line frequencies by considering stochastic travel times and 

demand, and use the conditional-value-at-risk measure to control the possible large 

realizations of random outcomes.  We characterize the random network parameters by a 

finite set of scenarios and propose a risk-averse mathematical model.  In this bilevel 

model, the network authority‟s objective is to increase the system reliability whereas 

passengers‟ objective is to decrease their expected travel time.  To solve the model, we 

propose a method that integrates mathematical programming approaches with the 

genetic algorithm.  The validity of the modeling approach is shown with a numerical 

study. 
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Résumé 

 

 

 

L'objectif traditionnel pour le problème d'ajustement des fréquences 

de passage dans les réseaux de transport public est la minimisation du 

temps total passé en route et dans les stations.   Les données 

utilisées pour ce processus de décision sont généralement les valeurs 

probables des durées et des demandes de voyage.  Quand les fréquences 

des lignes sont ajustées selon ces données, les passagers prennent 

occasionnellement des temps excessifs pour voyager à cause des 

conditions dynamiques du réseau et des embouteillages.  Dans cette 

étude, nous identifions les fréquences optimales des lignes en 

considérant les durées et les demandes de voyage stochastiques, et 

nous utilisons la mesure valeur à risque conditionnelle afin de 

contrôler les réalisations à grande échelle des résultats aléatoires.  

Nous caractérisons les paramètres aléatoires du réseau avec un 

ensemble dénombrable de scenarios et nous proposons un modèle 

mathématique visant à éviter les risques.  Dans ce modèle à deux 

niveaux, l'objectif de l'administrateur du réseau est d'améliorer la 

fiabilité du réseau tandis que l'objectif des passagers est de réduire 

leurs temps de voyage prévus.  Pour résoudre ce problème, nous 

proposons une méthode qui intègre les approches de programmation 

mathématiques avec l'algorithme génétique.  La validité de notre 

approche de modélisation est démontrée avec une analyse numérique. 



 

x 

 

Özet 

 

 

 

Toplu taşıma sistemlerinde hat sefer sıklıkları belirlenirken geleneksel yaklaşım toplam 

araç içi yolculuk ve durakta bekleme sürelerinin en aza indirilmesidir.  Ancak 

uygulamada gerek yolculuk süreleri gerekse talepler için yaklaşık tahmini değerler 

kullanılmaktadır.  Bu verilere dayanılarak belirlenen hat sefer sıklıkları, özellikle trafik 

sıkışıklığının değişkenlik göstermesi ile yolcuların zaman zaman aşırı sürelerde 

yolculuk etmelerine neden olmaktadır.  Bu çalışmamızda, eniyi hat sefer sıklıkları 

belirsiz ağ koşullarından doğan stokastik yolculuk süreleri ve talepleri dikkate alınarak 

belirlenmiştir.  Risk ölçütü olarak koşullu riske maruz değer (CVaR) kullanılmıştır.  

Temel olarak CVaR, yolculuk süre ve taleplerine bağlı rassal çıktıların olası büyük 

değerler almasını kontrol etmek amacıyla kullanılmaktadır.  Rassal parametreler sonlu 

sayıda senaryolar ile temsil edilmiş ve riske duyarlı bir matematiksel model 

kurulmuştur.  İki seviyeli olan bu modelde, ulaşım yönetiminin amacı bütün sistemin 

güvenilirliğini arttırmak iken yolcuların amacı beklenen yolculuk sürelerini en aza 

indirmektir.  Çalışmada matematiksel programlama yaklaşımlarını genetik algoritma ile 

beraber kullanan bir çözüm yöntemi önerilmiştir.  Modelleme yaklaşımının geçerliliği 

yürütülen sayısal çalışma ile gösterilmiştir. 
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1 INTRODUCTION 

 

 

 

  

With the advances in the technology and industry, the migration from the rural areas 

brings rapid urbanization.  As urbanization is not well planned in less developed 

countries, many problems occur.  The transportation problem is one of the most 

important among them.   

 

Transportation problem is also growing day by day in Turkey, due to the rapid increase 

in urbanization and industrialization, and the increase in the cities' population for 

various reasons.  In the face of increasing mobility on the roads, it is difficult for people 

to go from one place to another.  According to the Confederation of Employers' Unions 

of Turkey (TİSK) report, the average rate of population growth between 2004-2020 for 

some countries will be as follows: "India (1.3), Turkey (1.2), Ireland (1.2), Mexico 

(1.1), Brazil (1.1), Australia (0.9), U.S. (0.9), Canada (0.8), China (0.6) ". Table 1 

shows population growth in major developing countries.    

 

 

Table 1.1: Population growth for major developing countries 

 

                    Population (million people) 

 
2003 2008 2012 

Turkey 70.8 71.5 75.6 

Brazil 179 191.9 204 

India 1076.3 1158  1205 

China 1292.3 1328 1343.2 

 

Gross Domestic Product per capita (GDP) is often considered as an indicator of a 

country's standard of living.  As the purchasing power increases, the national wealth 

also rises.  According to the Automotive Industry Association report, 12 percent rise for 

http://en.wikipedia.org/wiki/Standard_of_living
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the total automotive market in Turkey is monitored comparing the periods of January-

June 2012 and 2013.  With respect to the Turkish Statistical Institute (TUIK) data, the 

number of registered vehicles in traffic by the end of April 2013 has increased by 

84,921 vehicles compared to the previous month, and reached to 17,350,448. Increasing 

car ownership in the societies causes many important problems.  These problems can be 

partially solved by public transportation systems so they became one of the most 

important issues in the cities.   

 

With the growing population, especially in the developing countries, the increase in 

waiting times at stops and in-vehicle traveling times affect the lives of people in a 

negative way.  According to the report “Access to transport for the urban poor in Asia”  

(UN-HABITAT, 2009) the waiting time of passengers at bus stops is between 15 to 30 

minutes in Bangalore, India.  Network disruptions due to the factors such as bad 

weather, accidents, congestion and vehicle breakdowns additional increase the total 

traveling times of passengers.  People become more irritated and show less performance 

in work and educational activities.  In other words, unreliability of transit systems has 

direct and indirect social and economic impacts.   

 

An important goal in urban transportation is to improve the service quality of 

passengers.  One dimension of the service quality is service reliability.  For this reason, 

unexpected situations should be taken into account during the planning process.    

However, the opening, frequency setting and timetabling of transit lines is mostly based 

on the average or expected values of traveling times and demand.  This approach 

sometimes causes huge delays in the system for rare but probably occurring situations.  

In this study, we develop a risk-averse mathematical programming model to limit the 

large costs of the worst case scenarios.  The model focuses only on the frequency 

setting stage in transit planning.  In-vehicle travel times and travel demands are 

assumed to be stochastic, and their various probable realizations are included in the 

model as scenarios.  The hierarchy in the decision-making or the relationship between 

the network manager and the network users is reflected to the model with a bilevel 

structure.  To model the risk-averse behavior of the network manager, conditional 

value-at-risk measure is used to decide on the total costs of the scenarios.  To our 
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knowledge, this is a novel approach for the planning of transit systems by means of 

mathematical programming.  

 

The thesis is organized as follows.  In Chapter 2, we provide a review of previous works 

done and our motivation to develop the risk-averse transit network frequency setting 

model.  In Chapter 3, we first give the necessary background on risk measures, bilevel 

programming and transit route choice models, and then present the developed 

mathematical model.  The details of the proposed solution methodology for the transit 

frequency setting problem are introduced in Chapter 4.  Chapter 5 contains numerical 

results obtained on an illustrative example.  Finally, Chapter 6 includes concluding 

remarks and perspectives. 
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2 LITERATURE SURVEY 

 

 

 

Generally, with the beginning of designing a network to schedule the buses to lines is 

very important for planners.  On the other hand, to satisfy passengers willing to get on 

the bus is another critical topic.  To get along with, a very important transit planning 

process is needed.  Therefore, transit process has become a popular area for lots of 

researchers.  In the literature, there are a wide range of studies about transit line 

frequency setting problems.  The main aim of these studies is to find reasonable 

solutions for both planners and passengers.  To cover this problem, there are some 

processes to be done.  First of all, these processes begin with the design of the network 

which is related to find an appropriate network according to demand.  In addition, this 

demand includes passengers who are willing to go from the origin to the destination 

point.  The next important process is  frequency setting of the lines in the network to 

decide on available frequencies of the buses.  Another critical process is timetabling of 

lines in the network where the departure times of buses along the line is determined.    

 

 

2.1 Transit Planning Process 

 

 

Guihaire and Hao (2008) introduce a global review of transit network design and 

scheduling.  The study includes the goals of strategic and tactical transit planning.  They 

establish a terminology proposal in order to name sub-problems and thereby structure 

the review.   The public transit planning has five steps: process route design, frequency 

setting, timetabling, vehicle scheduling, and crew scheduling.  
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Figure 2.1: The structure of transit network problems (TNP) 

 

2.1.1. Transit Network Design 

 

For the transit network design problem several features exist and they can be considered 

both in the objective and the constraints.  Therefore, we only list them here as a unique 

set of features.  

 

Area coverage: The ratio of the estimated demand that can be served by public transit 

can be computed in several ways (Spasovic et al., 1993).  However, it is well known 

that this ratio can be affected by route length, density, bus stop and route spacing 

(Murray, 2003).  As for example, people living within 400–500 m from a bus stop are 

part of this ratio.  

 

Existing network: As sometimes it might be undesirable to disrupt service on already 

existing lines, it can be mandatory to consider the existing network.  
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Demand satisfaction: When bus stops are too distant from users' origin or destination or 

when the trip takes too long, the demand can be considered unsatisfied.  This is of 

course a crucial issue.  Demand satisfaction also requires to go through a transit trip 

assignment process.  As for example, the user will switch to another means of 

transportation if the trip requires more than two transfers.  

 

Route and trip directness:  To design a bus network enabling users to travel as directly 

as possible from their origin to their destination and to walk the shortest distance to 

reach the first and final bus stop is an important issue.  Hence, limits can be imposed on 

the distance that one user can cover in the transit network.  Directness can depend on 

the route‟s deviation from a linear or shortest path.  To compute trip directness for each 

user, it is necessary to go through a passenger trip assignment process having objective 

such as shortest path or smallest number of transfers  (Desaulniers and Hickman, 2007).  

 

Number of lines or total route length: A general objective of the operator is to minimize 

the total route length in the perspective of reducing the number of vehicle and crew 

resources needed to sustain the global transit system.  The number of lines can 

alternately be considered.  Moreover, routes should neither be too short nor too long for 

profitability reasons.  In a general manner, if a trip requires more than two transfers, it is 

assumed that the user will switch to another means of transportation.  

 

 

2.1.2. Transit Network Frequency Setting 

 

The demand may vary according to the day of the week, time of the day, time of the 

year.  To operate an efficient network and provide a satisfying service, demand 

variation should be taken into consideration.  Collecting this data is a very complex task 

and the transit agency has a great responsibility.  The origin-destination (OD) matrices 

are used in the frequency setting step.  The following issues should be considered while 

formulating the transit network frequency setting problem.  

Demand satisfaction: To avoid overcrowding and excessively large headways and also, 

to reduce waiting and transfer times, lines frequencies should match the demand.  
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Number of line runs:  The problem to find optimal number of runs for each line has a 

multiobjective nature.  While users want to use wide range area of the network, the 

operators desire to minimize the number of resources.  Also, line frequencies depend on 

the available fleet size and the capacities of the buses.  Bus running times are associated 

to each route of the network for the frequency setting problems.  

 

 

2.1.3. Transit Network Timetabling 

 

Timetable includes departure times from all the stops served by each line run in the 

network.  The expected arrival time at the final stop and the expected departure times 

from each bus stop on the route defines each line run‟s timetable.  To compute the 

timetables, running times are necessary.  The time coverage of the line is defined in the 

transit network frequency setting step by determining the lines frequencies.  The 

minimization of passengers waiting times is obtained by the level of each transfer for a 

better service quality.  Each transfer should be deduced from the OD matrices. Some of 

the features included in the transit network timetabling problem are listed below. 

 

 Demand satisfaction: To enhance the passengers‟ mobility, passengers travel time 

should be minimized.  

 

Fleet size: The line runs of the transit network timetable gives the vehicle schedules.  

 

Transfer coordination: Each transfer zone and associated lines should be included in the 

global network timetable (Guihaire & Hao 2008). 

 

 

2.1.4. Vehicle Scheduling 

 

A feasible sequence of line runs is obtained in the vehicle scheduling step.  An optimal 

schedule should minimize fleet size and operational cost.  The objective is to find an 

assignment of trips to vehicles, such as each vehicle performs a feasible sequence of 

trips and every trip should cover once.  
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2.1.5. Crew Scheduling 

 

In this step drivers are assigned to the bus services.  Every driver finishes the timetable 

with a given period.  Maximum number of consecutive working days are included as a 

constraint while assigning the drivers to the buses.  

 

 

2.2 Transit Frequency Setting Problem 

 

All of the processes that we have defined in Section 2.1 can be used in the transit 

planning.  In this study, we will only focus on the transit frequency setting problem.   

The transit network frequencies setting problem arise from choosing sufficient 

frequencies for lines on the network.  An ideal frequency setting should satisfy the 

request for both the passengers and travel agency.  The decrease in the operator‟s costs, 

and in the fleet size is also included in the frequency setting problem (Constantin & 

Florian 1995; Guihaire & Hao 2008).  There are studies related with the capacitated 

models, seat capacitated models, and uncapacitated models.  In these studies, the 

minimization of total travel time is associated with the expected cost.   

 

In their pioneering study, Constantin and Florian (1995) propose a model that aims to 

find the optimum line frequencies minimizing the total of expected travel and waiting 

time of the users on the network while considering fleet size constraints and bounds on 

the frequencies.  They first formulate the problem as a mixed integer nonlinear problem 

but they then reformulate it as a min-min nonlinear bilevel program.  This latter model 

is solved with a gradient projection type algorithm where a subgradient is obtained at 

each iteration by solving the lower level transit assignment problem.  Computational 

results are provided for the transit networks of the cities of Stockholm, Winnipeg and 

Portland.  

 

Cominetti & Correa (2001) consider the common-line problem under congestion, 

passenger assignment and equilibrium in the network.  The authors developed the model 

by using the wardrop equilibrium model.  The model includes effects of congestion over 

the passengers‟ decisions.  Assignment of the passengers to bus lines is based on the 
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common-line frequencies.  The main objective of the study is to consider a network 

equilibrium model with congestion.  The objective function is affected by the flow 

distribution, the waiting times and travel times according to the congestion.  The model 

includes an assumption with the passengers' decision to travel with the shortest paths.  

Also, the authors accept that each passenger can easily get on the first arriving bus.   

Nevertheless, boarding to the bus which come first, avoid to increase the passenger‟s 

waiting time.  Because of the limited bus capacity, the model assumes that the line 

frequencies are decreasing functions of the lines.  Therefore, according to the authors, 

the lines are considered as a differentiable effective frequency function.  In the literature 

the researchers take into account different types of arcs when they are modeling general 

transit networks.  These arcs are: boarding, alight, on-board, and walk arcs.  While the 

other arcs correspond to services which are always available, the waiting processes 

affect mainly the boarding arcs.  Thus, the waiting times are either zero or negligible. 

Therefore, the model is considered as an infinite frequency for the situation.  When the 

transit time and boarding probabilities are considered, then the infinite frequencies are 

replaced with a constant frequency for one or more lines.  Also, time limit is considered.  

Cominetti & Correa (2001) also consider the passenger assignment and equilibrium in 

general networks.  The common-line scheme is used in the model with a dynamic 

programming approach.  Moreover, the equilibrium existence and uniqueness 

conditions are included which shows a simple convex function, and gives the 

circumstances for the model.  Besides, the occurrence of flow in the common lines is 

represented as some unexpected property.  Thus, by restricting the user‟s choices, 

increasing the transit time can be achieved.  The authors have pointed out that the 

system performance is not influenced by the flow increment.  

 

In other respects, there are a variety of studies where transit networks with capacitated 

vehicles are considered.  One of them is due to Lam et al. (2002) that considers  the 

capacity constrained transit assignment problem with elastic line frequency.  The line 

frequency is related to the passenger flows on transit lines.  A fixed point problem with 

the line frequency is used, when the passenger waiting time and the line capacity are 

dependent on the line frequency.  The model is developed by using a stochastic user 

equilibrium transit assignment model.  It also includes both congestion and elastic line 
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frequency.  Besides, not only line capacity but also passenger waiting time is related 

with the line frequencies.  To observe the effects of the suggested model and the 

effectiveness of the proposed solution algorithm, an illustrative example is considered.  

The amount of time that is spent in the intermediate stations on the transit line is 

considered as the effects of the model.  The path between an origin and a destination 

(OD) is defined as a sequence of transfer stops that is the transit route.  The authors 

consider the frequency of each transit line to be dependent on the vehicle dwelling time 

at stations, with the assumptions of fixed transit fleet size and constant in-vehicle travel 

time.  The line frequency is related to the passenger flows on transit line.  A stochastic 

user equilibrium transit assignment model with congestion and elastic line frequency is 

considered with the formulated mathematical programming problem. 

 

Florian (2003) investigates transit line frequency setting in three different problems: 

linear cost model, nonlinear cost model, and variable frequency model.  When the travel 

times and the frequencies are constant, the model is a linear cost model.  In the linear 

cost model, the distribution of the times of arriving vehicles to the destinations is given 

for each line.  The objective is to minimize the sum of expected waiting and the travel 

time.  The author assumes that the network has four types of arcs: wait arcs, in vehicle, 

alighting, and walk arcs.  In the first  part of the solution algorithm, not only from the 

destination nodes to all origins the arc flow is calculated, but also, the expected travel 

times are computed for each node.  In the second part, from all origins to the 

destination, the demand is distributed to the arcs.  The author  mentions that the 

algorithm is applied for each destination.  When the travel time is not constant, but an 

increasing function then the model is the nonlinear cost model which is convex.  The 

passengers choose strategies which minimize the expected travel times.  Since, linear 

cost model can be separated, the nonlinear problems can not be separated.  This 

problem can be solved with convex cost optimization problem.  Moreover, the stopping 

criterion can be used as maximum number of iterations.  According to the research, all 

passengers who board the bus first have a better chance to find a seat.  Therefore, the 

variable frequency or capacitated model is also discussed.  If the transit network is 

crowded and the passengers can not board to the first vehicle, the effective frequency is 

developed.  The linear cost model has been applied in various software packages.  As a 
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result of the study, the variable frequency model is the most effective model for 

congested systems.  

 

The effects of congestion on the expected waiting and travel times are investigated in  

Correa and Cominetti (2001) as a frequency based route choice model for congested 

transit networks.   The authors formulate a new characterization of the equilibrium, and 

this formulation for the equivalent optimization problem does not include the gap 

function.  The proposed solution algorithm can be then applicable on the large scale 

networks.  Path based transit network equilibrium models and the flow with travel times 

is included in the model formulation.  The objective of the study can be explained as to 

define an optional formulation for the frequency based transit equilibrium model 

correctly.  Cepeda et al. (2006) have enhanced the same model by adding the capacity 

constraints.  Many arcs have no waiting time and these arcs are assigned with the 

infinite frequencies, when modeling general transit networks.  In the model‟s 

formulation, it is sufficient to consider the convention in all calculations by replacing 

the infinite frequencies and then these frequencies are converted to number one.   

Especially, when getting on the route of the network, the arcs include infinite 

frequencies with travelling time of the average of the transfer time from origin to the 

destination node.  A heuristic minimization method is used with the value of the gap 

function to determine the optimality difference of the computed solutions.  The easiest 

way to solve equilibrium problems is a well known method of successive averages that 

is used in transportation applications.  By fixing the travel times and the frequencies at 

the values determined by the current flows, the method computes a transit network 

equilibrium for the linear network at each iteration.  Then these flows are updated by 

averaging the previous iterate solution.  To solve the linear program can found the  

equilibrium of the linear cost network.  This linear program calculate the shortest path 

for each destination.  Then, the linear program defines the necessary arc-destination 

flow vector.  This paper introduce a different view then the previous studies on transit 

assignment model in congested networks.   

 

With the improvement of search algorithms, important heuristic approaches is done in 

the literature.  Tom and Mohan (2003) apply genetic algorithms in their study.  The 
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authors  define a group of routes and also finds the correlated frequencies which are 

relevant with transit route network design.  They have formulated a problem which 

reduces the overall cost with the operational constraints.  This cost determines overall 

travel time of passengers, and operating cost.  The authors determine a solution process 

in two phase. In the first phase, a group of route is defined to select a route through this 

group by applying a candidate route generation algorithm.  The second phase includes a 

necessary route set that is chosen as a solution from the candidate routes which was 

found in the first phase by using genetic algorithms.  In the model, the  frequency coded 

model and the route is determined at the same time.  A medium sized network is created 

to see the performance of the model of the route network design.   

 

Bus transit frequency design with the capacity constraints is also examined by 

Monyrath (2006) with variable demand which is defined under fixed total demand.  The 

study also presents the mutual effect of different type of vehicles in the network traffic, 

such as cars, buses and motorbikes are taken into consideration.  Designing bus line 

frequency is not preferred for this study.  The authors used a combined mode split 

assignment model to determine transit demand.  This assignment model is called modal 

split.  Also, the flow of the mixed traffic‟s line is determined according to bus 

frequency.  The study use “diagonalization algorithm” to provide the movement of the 

bus network and the mixed traffic network.  The diagonalization algorithm is related to 

solve a series of standard user equilibrium programs repetitively.  To reduce the overall 

travel cost of multi-modal network users is the objective of the study.  According to the 

results, with using different initial frequencies, the optimal frequencies can approach to 

the global optimum.  In the sensitivity analysis part, the increment in travel demand and 

the change in the operation cost is managed with the continuous modification of the 

transit line frequency.   

 

Different than the above studies Teklu (2007) considers Monte Carlo simulation based 

stochastic process for frequency-based transit assignment.  The author have pointed out 

to forecast the mean route flows and costs together by using the stochastic process 

model.  A stochastic process model for transit assignment is considered based on 

realistic route cost estimates which provides the forecasts of mean route flows and costs 
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together.  A Monte Carlo simulation approach is adopted to model for the capacity 

constraints.  A random utility model for route choice is suggested, because of the 

variation on the passengers‟ reflection to the congestion.  Therefore, the model includes 

a bus and passengers simulator, a random utility model for transit route choice, and a 

learning process model.  Probit route choice model is developed to take into account the 

cost correlations to see the difference with alternative routes.  Deterministic frequency-

based transit assignment models assume all passengers have a knowledge of the 

alternative routes, the associated costs.  By using a simple network, numerical 

experiments are used to illustrate model effectiveness.  In addition, there is some extra 

considerations to include in the model.  For instance, to find empty seats in the buses is 

important for passengers.  But, finding empty seats include stochasticity in the model.  

Deterministic models for transit assignment do not provide information of variability 

which could help transport planners to make more informed decisions. 

 

In their recent studies, Schmöcker et al. (2008) consider dynamic frequency-based 

transit assignment model.  The objective of the model is to provide  the minimum gab 

between schedule-based and frequency-based models.  In highly congested networks a 

static frequency-based approach does not fit capacity problem efficiently.  Because of 

the overcrowding some passengers can not board the first service arriving bus.   

Therefore, a „„fail-to-board” probability is used to present the line capacity constraints.   

Also, the shortest hyperpath is affected by the fail-to-board probability in this line 

problem.  According to the study, the passengers who could not board on the bus, are 

added to the demand of the following time interval.  Therefore, this study is separated in 

lots of time intervals and the passengers route choice can be considered lots of time.  In 

addition, the model is applied both in a small example network and in a case study in 

London.  The case study which is applied in London is tested daily during the peak 

period of the transit capacity problems.  Thus, the authors are applied a dynamic 

frequency based transit assignment model.  Since, the problem is executed in London, 

the dynamic frequency based transit assignment models are convenient for such a 

crowded city.  Because, a static approach can not solve this congestion problem.   

Moreover, because of crowdedness passengers could not get on the bus and they have to 

wait to board to the next bus, as in the case of congested cities.  For that reason, 
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congestion may continue for the next buses.  The authors have some assumptions about 

the time intervals which are constant and the time intervals are selected as 15 min.  

Also, OD demand is changed during the dynamic approach implementation.  In 

addition, different intervals of congestion is applied in the study.  Hereby, congestion 

will affect passengers conclusion on the route.  In the result of the study, passengers 

determine.  Thus, passengers choose different exchange points when they are travelling 

in the off-peak.   

 

Furthermore, another real case study that is considered with uncapacitated and 

capacitated transit networks  is implemented in Santiago, Chile by Leiva et al. (2010).    

From the perspective of users and operators, in bus networks with large demand, finite 

stop services provide help for the passengers and the operators.  The network‟s 

efficiency is necessary to determine the design of these services with frequency and 

vehicle size.  To determine efficient frequency for the unplanned services on an urban 

bus corridor which means bus line is presented by minimizing social costs.  The 

objective of the study is to select the line with sufficient frequency for each route 

section.  The author‟s optimization approach includes minimizing overall costs that 

involve operator cost, waiting time of passenger, and in vehicle travel time.  They 

assume that the travel demand is known.  To decide on the minimum cost the authors 

follow some elements.  To formulate a mathematical programming problem they need 

to determine these elements.  First of all, the set of stops along the bus line need to be 

known.  After, the distance between stops must be specified.  In addition, travel demand 

between stops must be detected.  Besides, the authors are used two different demand 

scenarios to decide on the good candidates for each service.  Then, the model results 

give with the frequencies of the lines and necessary bus sizes.  Also, the authors include 

the passengers‟ decision of transfer points and attractive lines.  The passengers demand 

on each route can be fallowed by a set of variables which is presented by authors.  The 

model is constrained with bus lines and vehicle capacity.  With including these 

constraints, the model is solved as non linear integer model.  After that the models are 

settled to decide on the type of vehicles and about the frequencies which should be used 

in the network.  Moreover, to see the model and algorithm‟s affect a real bus line in 
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Santiago, Chile is handled, and also the paper introduce the solutions.  According to the 

study, the solution algorithm achieves a satisfactory result on the real case problem.   

 

In the same year, Yoo et al., (2010) introduce a method to model the transit frequency 

design problem with variable demand.  According to the non-cooperative Stackelberg 

game, a bilevel optimization model is used.  The authors use lots of assumptions in this 

model to investigate the frequency model.  First of all,  maximization of the demand for 

transit is dependent on one central which can be operator or government.  Then, only 

two modes are used by passengers, such as, a private car or transit.  In addition, there is 

constant overcrowding on the road network which means that the amount of transit flow 

which incurs some trouble on the network is similar with the utility of the private car.  

Moreover, all transit lines are statistically independent and exponential distribution is 

given for the inter-arrival times of the vehicles.  Besides, passengers arrive randomly 

with a uniform distribution at every stop.  Furthermore, in-vehicle travel time is 

constant on each route-section and  it is specified with the level of overcrowding on the 

road network.  The proposed model has upper level problem and also lower level 

problem.  With the fleet size and frequency constraints a non-linear optimization model 

is formulated to maximize demand as the upper level problem.  A gradient projection 

method is used to solve the upper-level model.  A capacity constrained stochastic user 

equilibrium assignment model with variable demand is formulated for the lower level 

problem.  Also, transfer delays is considered in the lower level problem.  To determine 

the transfer delays of the upper level problem, the fixed line frequencies in the lower 

level problem is solved for each iteration for a given frequency.  A new frequency is 

achieved by solving the upper level problem until the gap becomes enough small of two 

sequential frequencies found.  Also, authors increase the total demand and discuss the 

results.  At the same time, evaluation of transfer delays between transit lines to insure 

more realistic situation of real transit networks.  Moreover, an iterative balancing 

method is modified for this study to solve the lower-level model.  A small network is 

used to apply their model and algorithm.  According to the results the algorithm is fitted 

to the optimal point.   
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One year later, Yu et al. (2011), have published bus frequency design with a bilevel 

programming model which finds the optimal bus frequencies.  This study aims to 

decrease the passengers overall travelling time with the constraint on the total fleet size.  

Also, the authors take into account the  users route choice behaviors.  There is upper 

and lower level algorithms in the model.  According to the optimal policy, the objective 

of lower level specify transit lines upon the network.  Moreover, the effect of the 

vehicle congestion is presented among designing frequencies.  On the other way, routes' 

bus frequencies are optimized related with the upper level of that is dependent on the 

passenger assignment as a nonlinear program.  Furthermore, bilevel model is solved by 

using genetic algorithm and a label-marking method.  Also, the upper level model deals 

with the frequency optimization problem which can be observed as a vehicle 

distribution problem of different routes.  In this model the objective is to minimize total 

passenger travel time.  There is limited number of vehicles.  Therefore, the frequencies 

of routes have to satisfy the fleet size constrain.  Because of this limited number of 

vehicles, some routes can occur congestion.  Thus some passengers can change their 

way from the overcrowding to less crowded routes.  The optimal frequency of each 

route is found, when the passenger distribution is near to equilibrium situations.  As a 

comparison of the model and algorithms, two test examples are examined.  According 

to the optimization results, the local service level can be improved.  The bilevel 

formulation is introduced as a relation between passengers‟ route choices which is 

decision takers and setting frequency which is a decision maker.  First of all, initial 

frequency is defined for each route.  Second part is the lower level model that the initial 

frequencies give the assignment of passengers to the network.  Then, according to the 

number of passengers optimizing the frequency of each route which means origin 

destination path from the lower-level model, give the objective of the upper level 

model.  Besides, again in the lower level model, with the determined frequencies from 

the upper level model passengers are assigned to the network again.  These two models 

are used to optimize frequencies of routes and stops when a fixed solution for the 

frequencies and the passenger assignment on the routes is found.  The first one shows 

the validity and feasibility of the bilevel model on the simple network.  On the other 

hand in the second one, the real transit network in the city of Dalian, China is used to 
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presents the performance of the model and the algorithms for optimizing frequencies as 

a solution approach.   

 

In their recent work, Monyrath et al. (2011) consider an analytical model to decide the 

optimal frequency for urban bus transit by thinking about the interaction between 

different vehicles in urban mixed traffic with including variable demand.  In-vehicle 

travel time impact the road congestion by reminding each mode to specifically 

considered in the formulation function of link performance.  There are lots of objectives 

to think about the bus frequency optimization model to choose an optimal frequency of 

bus service.  Therefore, the authors use total waiting time of bus passengers, total travel 

time of all passengers in the network, and the operating cost as the objective.  On the 

transit network in mixed traffic and the passenger flow, the equilibrium flow of vehicle 

is computed by using multi-modal equilibrium assignment.  Firstly, to find the optimal 

frequency of the bus transit the authors study on the changes of equilibrium link flows 

which are line frequencies.  Also, each frequency assigned line is solved for the multi 

modal equilibrium assignment.  As the solution algorithm first of all, a feasible line 

frequency vector is used which fits the constraint in the frequency design model.  

Moreover, on road network and on bus network, link flow vectors are found with modal 

split assignment model.  Then, the objective function is calculated with this equilibrium 

link flow and the frequency which are included into the objective function.  Moreover, 

this equilibrium is used according to the frequency which is selected by Hooke-Jeeves 

algorithm.  The solution algorithm is repeated until better cost of the system which 

means better frequency that decreases the objective function.  Besides, by repeating the 

processes the optimal frequency is found. to show the application of the model and 

algorithm, a numerical example is presented.  Some significant decisions are 

emphasized on sensitivity analysis of the computational results.  The proposed model 

deals with the problem from many points of view with the computational result of bus 

network design in mixed traffic.   

 

A non-linear mixed integer programming model which involves the network route 

design and frequency setting problems simultaneously is introduced by Szeto and Wu 

(2011).  In the investigated problem, the intent is to improve the existing bus services by 
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reducing the number of transfers and the total travel time of the users.  The objectives 

and the constraints of the problem are different from those in the previously existing 

literature.  To solve the problem, a genetic algorithm is hybridized with a neighborhood 

search heuristic.  The first algorithm deals with the route design problem while the 

second one tackles the frequency setting problem.  A new solution representation 

scheme and specific genetic operators are developed to search all possible route 

structures.  Compared with the current network design of Tin Shui Wai, a suburban 

residential area of Honk Kong, the proposed method can generate a design which can 

simultaneously reduce the number of transfers at least by 20.9% and the total travel time 

22.7%. 

 

Besides, Yu et al. (2011) use a parallel genetic algorithm to concern a study and apply 

their study in Dalian City, China about uncapacitated transit networks.  The nonlinear 

program  is formulated which includes the fleet size constraint.  This study objectives to 

increase the quality of service and to decrease the cost of operations mainly.  The 

passenger and operator costs are also introduced in the model.  To determine the relative 

weights between passenger costs and operator costs, an integrated approach is also 

developed in the paper.  Generally, when frequencies are too small, operators have to 

stand against operational costs.  Meanwhile, when frequencies are too large, the service 

may not be sufficient, and the passengers can be unsatisfied.  One key point of the study 

is a parallel genetic algorithm with a coarse-grained strategy and a local search 

algorithm based on Tabu search are considered to solve the headway optimization 

model.  The authors solve the problem using real data which are collected from Dalian 

City, China to control the model applicability and the solution methodology.  Results 

show that the reasonable resource assessment can increase the benefits of transit system. 

 

Additionally, unlike the above study Gallo et al. (2011) focus in both uncapacitated and 

capacitated transit networks.  The paper proposes some models and algorithms to solve 

the transit network design problem under the assumption of elastic demand.  The 

authors deal with elastic demand in the transit network design problem, considering a 

regional metro network which determine the frequencies of a regional metro on a given 

network.  The problem is used not only to increase the given network‟s efficiency but 
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also to determine investments feasibility in the rail network.  In this transportation 

system modal split is used: rail transit system, bus transit system, and private car system 

is included in the transportation system.  To ignore the demand elasticity can not 

represent the actual objectives of the design.  Thus, the elastic demand is taken into 

consideration.  There are four objectives with assumption of elastic demand: operator 

costs, (rail and bus) transit user costs,  car user costs, and external costs.  The authors 

propose a heuristic solution algorithms where a Heuristic Local Search Algorithm is 

applied, and they use a meta-heuristic algorithm that is called as a Scatter Search.  

Another solution algorithm: Genetic Algorithm, is developed to compare the 

performance of the proposed algorithm.  The authors develop a Genetic Algorithm to 

see a benchmark between these proposed algorithms.  As a result of proposed 

algorithms, the comparison through scatter search, the Heuristic Local Search 

Algorithm and genetic algorithm, the scatter search gives better results in terms of 

objective function values.  Because,  the genetic algorithm generates solutions that are 

not necessarily local optima, while scatter search produces local optima.  Thus, the 

genetic algorithm gives better solutions for a small network.  On the other hand, the 

scatter search gives better solutions for a larger network.  They prefer to test their 

algorithms and models not only in a small network but also in a real case network.   

 

Similarly, to distinguish the trouble passengers who can take a seat in the vehicle, and 

who can not is handled as the schedule based equilibrium transit assignment model is 

observed by Hamdouch et al. (2011).  Also, to allocate seats is interested in the model.   

The authors assume that some policies are used by the passengers, while they are 

travelling from the origin to the destination points.  The authors develop an analytical 

model to take a seat in the stochastic nature of the passengers who take a seat and 

standing in the vehicle.  Therefore, first come first serve principle is applied for the 

waiting passengers.  They board to the first coming vehicle respectively.  For example, 

the passengers who arrives to the station to wait the vehicle have priority to take a seat 

previously.  Furthermore, users probabilities are assigned in an order to sit, to stand and 

failure to board by using dynamic network loading.  The authors use their remaining 

travel time and time already spent in vehicle to assign the passengers in an order.  Also, 

the standing passenger‟s motivation is depend up to the travel length and spending time 
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on-board.  If the time (travel length and spending time on-board) is long then the 

passenger‟s motivation increases to sit, vise versa.  Moreover, the passengers may not 

get on the vehicle when it is full, they may wait for the vehicle to arrive.  Unlike the 

Teklu's paper in 2007, the authors did not use the Monte–Carlo simulation about the 

seat availability.  They prefer to use seat allocation model.  The reason of this decision 

is explained as passengers‟ chance of getting a seat can be performed better in seat 

allocation model.  A variational inequality is developed for the equilibrium conditions.   

Expected strategy costs as well as a vector-valued function can be involved in this 

equilibrium conditions.  Therefore, successive averages method is created to find a 

solution.  In each iteration of the solution strategies are generated to solve a dynamic 

program of the method.  Computational solutions are given to see the impacts of the 

proposed algorithm about the travel policies and departure time due to the users‟ 

decisions.   

 

Furthermore, there are also the transit networks studies that concentrate both the 

capacity constraints and the seat capacity constraints in the literature.  Hadas & 

Shnaiderman (2012) present a stochastic demand and travel time that is used when 

uncertainty occurs in the transit line frequency setting problems.  A supply chain 

optimization model where frequency setting is determined by collection data with 

stochastic properties, has two main cost elements to fix the optimization model.  One of 

them is empty-seat driven, and the other is overload demand.  The purpose of their 

problem is to reduce the vehicle capacity, and total cost.  Deterministic data and 

stochastic demand is used to consider optimal frequency setting.  According to the 

model the costs with considering stochastic demand, travelling with empty-seats and 

overcrowd, and travel time provides optimal frequency.   

 

Finally, Codina (2012) introduce a paper about a variational inequality reformulation of 

a congested transit assignment model.  The author extend the Cominetti and Correa's 

study (2001) to the to the common-lines problem for general multidestination networks 

under congestion.  The reformulation of the congested transit equilibrium assignment 

model is performed by expressing the equivalent variational inequality.  The case of 



 

 

 

21 

strictly capacitated transit networks is explored under the scope of the authors new 

reformulation. 

 

When we classify the literature studies; to solve the frequency setting problems, 

Constantin &  Florian, 1995, Lam et al., 2002, Tom. & Mohan, 2003, Monyrath, 2006, 

Cepeda et al., 2006, Teklu, 2007, Schmöcker et al., 2008, Leiva et al., 2010, Yoo et al., 

2010, Szeto & Wub, 2011, Yu, B. et al., 2011, Hamdouch et al., 2011, Gallo et al.,2011, 

Hadas & Shnaiderman, 2012, Cominetti et al., 2001 use Expected Cost models.  Only 

Know, 2011 use Conditional Value at Risk (CVaR) in transportation problem.  From the 

literature review one can see that Conditional Value at Risk (CVaR) is not used in the 

frequency setting problems until now.  
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3 MODEL FORMULATIONS 

 

 

 

In this chapter, the details of the proposed transit network frequency setting model are 

presented.  As this model in a based on the risk measure CVaR and has a bi-level 

structure, these concepts are first introduced. 

 

 

3.1 Considering Risks in Transportation 

 

 

Risk aversion is a perceptivity in psychology, economics, and finance, related with the 

behavior of people when they are faced with an uncertain situation to decrease that 

uncertainty.   For instance, a risk-averse person can decide to put his or her money into 

a bank account with a low but assured interest rate, instead of deciding to put into a 

stock that can have higher expected returns, however this type of decision includes a 

chance of losing that amount of money.  This is because this decision can lead to some 

loss of money, thus involves risk.  

 

In the field of transportation, there are few studies that consider uncertainty and the 

associated risks in mathematical programming transport models.  As for example, users‟ 

route choices in the presence of route costs uncertainty are investigated in Bell and 

Cassir (2002).  Uncertainty about costs differs from variation in cost perception and the 

conventional approach is to add a safety margin based on the standard deviation of link 

cost.  However, this requires the specification of the cost distribution.  An alternative 

approach is presented in this study whereby the network user “plays through” all the 

possible eventualities before selecting his best route.  A deterministic user equilibrium 

traffic assignment is shown to be equivalent to the mixed-strategy Nash equilibrium of 
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an n-player, non-cooperative game.  Then an n+m player, non-cooperative game is 

formulated, where n network users seek their best routes and m origin–destination 

specific demons penalize the network users maximally by failing links.  The mixed-

strategy Nash equilibrium of this game is shown to describe a risk-averse user 

equilibrium traffic assignment.  A simple solution procedure is presented along with an 

illustrative example. 

 

The main details of the literature considering capacity constraints  are considered in 

Table 3.1.  The table deals with the articles in the literature that includes capacity 

constraints, uncapacity constraints or seat capacity constraints.  Also, the Table 3.1 is 

arranged according to years which includes main objective of the study, constraints and 

used method in the paper.  Table 3.1 shows the papers with an application or a 

numerical example.  Hence, the table incrementally increased according to years the 

change from year to year can be seen in transit network.   

 

In transit frequency design problem, the most used objective function is minimizing 

overall cost that reduces time.  Although, frequency is  related with demand, there are 

lots of studies that consider fixed demand with the studies above from literature.  In 

addition, frequency, load factor, and fleet size constraints are used as feasibility 

conditions in the transit frequency setting studies.  With this thesis, we propose bi-level 

optimization model to obtain optimum line frequencies by considering stochastic travel 

times and demand with different type of scenarios.   The overall model is solved by an 

adapted genetic algorithm.  

 

Empirical studies have suggested that travel time reliability plays an important role in 

travelers‟ route choice behavior.  In their study, Lo et al. (2006) develop an approach to 

relate the travel time variability due to stochastic network link capacity variations with 

travelers‟ risk aversive route choice behaviors.  They postulate that travelers acquire the 

variability of route travel times based on their past experiences and factor such 

variability into their route choice consideration in the form of a travel time budget.  This 

travel time budget varies with individuals and trip purposes and is related to the 

requirement on punctual arrivals.  Moreover, all travelers want to minimize their travel 
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time budgets.  The authors formulate a multi-class mixed-equilibrium mathematical 

program to capture the route choice behaviors of travelers with heterogeneous risk 

aversions or requirements on punctual arrivals.  Such an understanding has clearly 

important implications on strengthening critical network links.  

 

Disruptions to the road network such as road repairs, or indeed with events of even 

greater magnitude and impact such as natural disasters, degrade its performance and 

cause the network to be less reliable by reducing its link capacities and thus increasing 

travel times.  To assess the reliability of the network accurately and design a reliable 

transport network properly, Szeto et al. (2006) develop a risk-averse user equilibrium 

traffic assignment model with elastic demand by considering two sub-problems: the 

user problem and the demon problem.  The user problem describes the non-cooperative 

and elastic behavior of the potential travel demand, whereas the demon problem 

describes the evil behavior in the sense of trying to cause maximum damage to the 

users.  These two problems are combined as a nonlinear complementarity problem and 

solved by a modified �branch and bound algorithm.  A small numerical study is set up 

to illustrate the properties and the performance of the algorithm.  

 

Sumalee et al. (2011) propose a multi-modal transport network assignment model 

considering uncertainties in both demand and supply sides of the network.  These 

uncertainties are attributed to the adverse weather conditions with different degrees of 

impacts on different modes.  The paper provides the derivations of mean and variance–

covariance of the stochastic passenger flows and disutility terms involved in the 

route/mode choice model under the common-line framework.  The risk-averse travelers 

are assumed to consider both the mean and variance of the random perceived travel time 

on each multi-modal path in their path choice decisions.  The model also considers 

travelers‟ perception errors by using a Probit stochastic user equilibrium framework 

which is formulated as fixed point problem.  A heuristic solution algorithm is proposed 

to solve the fixed point problem.  Numerical examples are presented to illustrate the 

applications of the proposed model. 
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Table 3.1: The main details of the literature considering vehicle capacity 

 

Authors Method Objectives Constraints Application cap s.cap u.cap 

Constantin & 

Florian (1995) 

projected sub 

gradient 

algorithm 

to minimize the passengers 

total expected travel and 

waiting time 

fleet size 

Ex: Stockholm, 

Winnipeg and 

Portland 
  

* 

Cominetti &  

Correa (2001) 

hyperpath-

Dijkstra method 

minimize the expected transit 

time 

the waiting times,  the 

flow distribution 
Small example * * * 

Lam et al. 

(2002) 

stochastic user 

equilibrium 

transit 

assignment 

model 

minimizes their perceived 

total travel time 

invehicle capacity, line 

flow 

Numerical 

example 
* 

  

Tom & Mohan 

(2003) 

genetic 

algorithms (GA) 

minimize bus operating cost 

and passenger total travel 

time 

operational constraints, 

network size, frequency 

feasibility, load factor 

sample study 

on a medium-

sized network 
* 
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Table 3.1: The main details of the literature considering capacity (Cont'd) 

 

Authors Method Objectives Constraints Application cap s.cap u.cap 

Monyrath 

(2006) 

Hooke and 

Jeeves algorithm 

minimize the total travel 

cost of multi-modal network 

users 

line frequency 
Numerical 

example 
*   

Leiva et al. 

(2010) 

optimization 

programming 

language AMPL 

minimizes wait time, in-

vehicle travel time and 

operator cost 

capacity, attractive 

lines constraint ability 

to transfer 

Santiago, 

Chile 
*  * 

Yoo et al. 

(2010) 

a gradient 

projection 

method 

the upper problem is an 

operator‟s frequency design, 

the demand maximization 

and the lower level problem 

is a user‟s mode and route 

choice problem with 

variable demand 

fleet size constraints, 

capacity, transfer 

delays between transit 

lines 

Small 

example 
*   
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Table 3.1: The main details of the literature considering capacity (Cont'd) 
 

Authors Method Objectives Constraints Application cap s.cap u.cap 

Szeto & Wu 

(2011) 

the route design and 

frequency setting 

problems with GA 

to min.the number of 

transfers and total travel 

time of the passengers 

the fleet size in-

vehicle travel time, 

frequency 

requirement, 

intermediate stops 

Ex: Tin 

Shui Wai, 

Hong Kong 
  * 

Yu et al. 

(2011) 

parallel genetic algorithm 

(PGA), 

the maximization of service 

quality and the 

minimization of operational 

costs. 

vehicle fleet size 
Dalian City, 

China 
  * 

Hamdouch et 

al. (2011) 
method of successive 

averages (MSA) 

to differentiate the 

discomfort level 

experienced by the sitting 

and standing passengers 

First-Come-First-

Serve (FCFS) 

principle, travel 

time, seat and 

standing capacities 

Numerical 

example 
* *  
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Table 3.1: The main details of the literature considering capacity (Cont'd) 

 

Authors Method Objectives Constraints Application cap s.cap u.cap 

Gallo et al. 

(2011) 

a new heuristic 

method and a meta-

heuristic algorithm 

based on scatter 

search 

external costs and private car 

costs 

capacity, 

assignment, 

multimodal 

assignment 

constraint 

small 

network and 

on a real-

scale 

network 

*  * 

Hadas & 

Shnaiderman 

(2012) 

frequency setting 

with the use of 

stochastic properties 

to minimize the total cost  with 

decision variables of either 

frequency or vehicle capacity 

the fleet size, 

frequency 

requirement 

Small 

example 
* *  

 

 

(Table 2.1 summarize the studies such as: cap = capacitated problem, s.cap = seat capacitated problem, u.cap = uncapacitated problem) 
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With the aim to examine the role of risk perception in use of private and public modes 

of transportation, Rundmo et al. (2011) carry out a mailed self-completion questionnaire 

survey among a representative sample of the Norwegian public aged from 18 to 65 

years (n = 1864).  Perceived control related to private modes of transportation, 

knowledge about safety and trust in authorities were found to be significantly different 

among respondents who often used private modes of transportation compared to those 

who most often used public modes.  Additionally, no significant difference is found in 

the severity of consequences due to which transport modes that the respondents used 

most frequently.  The study concludes that the role of consequence judgment for 

precautionary action and demand for risk reduction are misleading when generalized to 

decisions about transport mode use. 

 

A state-of-the-art review of the transport network design problem (NDP) under 

uncertainty is given by Chen et al. (2011).  In their paper, the authors also present a bi-

objective-reliable NDP (BORNDP) model that explicitly optimizes the capacity 

reliability and travel time reliability under demand uncertainty.  These performance 

measures are useful as they can describe the supply-side reliability and demand-side 

reliability of a road network.  A simulation-based multi-objective genetic algorithm 

solution procedure, which consists of a traffic assignment algorithm, a genetic 

algorithm, a Pareto filter, and a Monte-Carlo simulation, is developed to solve the 

proposed BORNDP model.  A numerical example based on the capacity enhancement 

problem is presented to demonstrate the tradeoff between capacity reliability and travel 

time reliability in the NDP. 

 

In their recent study on transit systems, Ceder et al. (2013) claim that out-of-vehicle 

times are perceived as being more onerous than in-vehicle time by transit users when 

making transfers.  To back their claims, authors conduct a user preference survey at to 

major terminals to determine the effects of uncertainty in out-of-vehicle times during 

transfers on the willingness to use transfer routes for transit users.  They also aim 

determine the influence of out-of-vehicle facilities offered by public- transport operators 

on transit users‟ perception of trip attributes related to transfers.  The survey data are 

modeled using cumulative prospect theory and fuzzy logic.  The results show that for all 
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trip attributes, except for comfort, transit users‟ exhibit risk-averse behavior.  Moreover, 

findings indicate that transit users who are accustomed to better out-of-vehicle facilities 

have a lower tolerance for uncertainty in transfer waiting times and delay times.   

 

 

3.2  Measuring Risks: Conditional Value-at-Risk (CVaR) 

 

 

In the work influential work of Artzner et al. (cvar thesis 7) a clear definition of a 

coherent risk measure is given based on four axioms. Within a financial perspective, let 

 and  denote portfolio returns,  and  are the risk measures of these 

portfolios respectively, and  a constant. Then, a coherent risk measure must fulfill the 

following four axioms: 

 

Positive Homogeneity , 

 

Subadditivity , 

 

Transitional invariance , 

 

Monotonicity  

 

The first axiom means that the risk of a portfolio is proportional to its size.  The second 

axiom ensures that the total portfolio risk is less than or equal to the sum of the risks of 

its components.  This is why in fact diversification in a portfolio is a praised 

characteristic.  The third axiom implies that adding some cash to the portfolio decreases 

its risk by the same amount.  Finally, the last axiom implies that if the return of portfolio 

 dominates the return of portfolio , then the risk of portfolio  cannot be lower than 

the risk of portfolio .  Some authors replace the first two axioms of coherence with 

condition that  be convex, or 

 

  (3.1)  
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for .  However, convexity does not necessarily imply positive homogeneity.  

Thus a risk measure that is only convex, monotone and transitionally invariant has 

weaker properties and called weak coherent.  

 

Nobel prize winner Markowitz was the first researcher to propose variance, the 

deviation from the mean of the return distribution, as a risk measure.  However, when 

variance is used as a risk measure, gains and losses are equally penalized.  Additionally, 

mean-variance decisions are usually not consistent with the expected utility approach 

with the exception that normally distributed or a quadratic utility function is used.  

Finally, the variance does not account for fat tails of the underlying distribution and thus 

it is inappropriate to describe the risk of low probability events.    

 

To respond to the need to aggregate the various sources of risks of a portfolio, the 

concept of value-at-risk (VaR) was introduced in 1994.  In simple terms, it is defined as 

the maximum loss with probability   over a certain time horizon.  More formally, let  

be a random variable of loss type with a cumulative distribution function denoted as . 

Then, 

 

  (3.2) 

 

at confidence level .  Despite its wide acceptance in the literature and practice, 

VaR  does not fulfill the axioms of coherence.  The most significant violation is related 

with subadditivity, in other words the risk of a portfolio measured with VaR may be 

larger than the sum of risks of its components.  Another critique on VaR is due to its 

non-convex characteristic.  This limits its use as a risk measure in optimal portfolio 

selection for investment.  Indeed, it has been shown that using VaR may incur larger 

losses in the most adverse states compared to risk neural case (cvar thesis 5).  Other 

criticisms on VaR include its inability to measure losses exceeding VaR, its 

unsuitability for ranking as it has many local extremes and its conflicting results at 

different confidence levels.  
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In general, variance and VaR are not coherent and lead to meaningless results and also 

do not allow to measure the degree of co-dependence (positive or negative) between the 

random variables in the case of non-elliptic (but possibly symmetric) joint probability 

distributions.  To investigate tail events, Embrechts et al. (1997) [Szegö] introduced the 

concept of -expected shortfall or -tail mean. Later on, Uryasev (2000) [Szegö] 

presented a similar measure, namely conditional value-at-risk (CVaR). It is defined as  

 

  (3.3) 

 

Where  denotes the positive part of a number . CVaR is also 

known in the literature as average value-at-risk and tail value-at-risk, due to the 

following expression 

 

  (3.4) 

 

Suppose that  denotes the random total travel cost.  Then,  is the -quantile 

(a high quantile) of the distribution of the total travel cost, which provides an upper 

bound on the cost that is exceeded only with a small probability of .  On the other 

hand,  is a measure of severity of the cost if it is larger than .  It is 

easy to see from (3.4) that  is related to the expectation of the cost exceeding 

the threshold .  This is also depicted in Fig 3.1.  
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Figure 3.1: VaR and CVaR 

 

 

Let  be a random variable with (not necessarily distinct) realizations  and 

corresponding probabilities . Then, for a given confidence level  

the optimum value of the following optimization problem is equal to   

 

min   (3.5a) 

 

s.t.  , (3.5b) 

 

  . (3.5c) 

 

There are very few studies in the available literature that make use of CVaR risk 

measure in the context of transportation.  Chen and Zhou (2010) propose the -reliable 

mean-excess traffic equilibrium model (METT) that explicitly considers both reliability 

and unreliability aspects of travel time variability in the route choice decision process.  

In contrast to the travel time budget (TTB) models that consider only the reliability 

aspect defined by TTB, METT hypothesizes that travelers are willing to minimize their 

mean-excess travel times defined as the conditional expectation of travel times beyond 
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the TTB.  Although authors do not use CVaR risk measure in their model, they claim 

that METT is consistent with CVaR.  The model is formulated as a variational 

inequality problem and solved by a route-based traffic assignment algorithm via the 

self-adaptive alternating direction method.  Illustrative examples are presented to 

demonstrate the characteristics of the model as well as its differences compared to TTB 

models. 

 

Seyedshohadaie et al. (2010) present a method for determining optimal risk-based 

maintenance and rehabilitation policies for transportation infrastructure.  Under a 

predefined level of risk, the proposed policies guarantee a certain performance level 

across the network.  The long-term model is formulated in the Markov Decision Process 

framework with risk-averse actions and transitional probabilities describing the 

uncertainty in the deterioration process.  CVaR is used as the measure of risk and 

policies are modeled assuming no budget restriction.  Two linear programming models 

are formulated to generate network-level polices with different objectives to address the 

short-term resource allocation problem.  The proposed methodology is general and can 

be used with any performance indicator.  Numerical studies are based on pavement 

roughness and an analytical expression for computing CVaR is derived. 

 

Azad and Davoudpour (2013) give a stochastic supply chain network design model in 

which three levels compromised of suppliers, distribution centers and customers seek to 

determine their optimal plans.  CVaR is used as a risk measure to minimize large 

realizations of the annual cost.  The problem is formulated as a convex mixed integer 

program and a two-phase (construction and improvement) heuristic method is 

developed to solve the problem.  An initial solution is built randomly in the construction 

phase.  The initial solution is then improved iteratively in improvement phase by using a 

hybrid algorithm combining Tabu search and simulated annealing methods.  The 

authors validate their model by comparing CVaR measure with mean-variance measure. 

 

Sorokin et al. (2013) consider a formulation for the fixed charge network flow problem 

subject to multiple uncertain arc failures.  Their aim is to provide a robust optimal flow 

assignment in the sense of restricting potential losses using CVaR.  The authors show 
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that a heuristic algorithm referred to as Adaptive Dynamic Cost Updating Procedure can 

be extended to the considered problem under uncertainty and produce high-quality 

heuristic solutions for large problem instances. 

 

The last study that we could access is due to Toumazis and Kwon (2013). The authors 

propose a new method for mitigating risk in routing hazardous materials (hazmat), 

based on CVaR measure on time-dependent vehicular networks.  Specifically, they 

study the problem in which accident probabilities and accident consequences are time-

dependent; that is, the probability of an accident and the resulting consequences depend 

on the shipment‟s entrance time in the arc mainly due to traffic condition.  They also 

provide a numerical method to determine an optimal departure time and an optimal 

route for a given origin–destination pair.  The authors show that the CVaR models are 

flexible and suitable for hazmat transportation. 

 

It can be remarked that as a risk measure, CVaR is very recently used in transportation 

problems and the obtained results are very encouraging.  The traditional objective to 

transit line frequency setting is the minimization of total travel time given forecasted 

mean values.   This approach occasionally leads to excessive delays for the passengers 

due to the changing conditions.  In this study, the random network parameters are 

described by using a finite set of scenarios and a risk-averse mathematical model is 

developed using CVaR.  As CVaR has never been used in planning transit system, this 

study means an important step for forthcoming research.  

 

 

3.3 Bi-Level Programming 

 

 

Many real-world problems involving a hierarchical relationship between decision levels 

can be modeled as multilevel programs.  This type of problems are encountered in many 

fields such as management (facility location, credit allocation, hazardous materials, 

energy policy, environmental regulation,), economic planning (oil production, social 

and agricultural policies, electric power pricing), engineering (optimal design, structures 

and shape), environmental sciences, chemistry, optimal control, etc.  A small set of 
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example studies is provided is here including revenue management (Cote et al., 2003), 

congestion management (Hearn and Ramana, 1998), origin-destination matrix 

estimation (Florian and Chen, 1995), management of hazardous materials (Kara and 

Verter, 2004), network design problems (Constantin and Florian, 1995), energy sector 

(Hobbs and Nelson (1992).   

 

Let us consider the toll-setting problem where the objective is to maximize the revenue 

obtained from the toll-set of a transportation network.  In general network users‟ 

objective is to minimize their travel cost (or in the simplest case, their travel time).  

Therefore at optimality, toll levels should not be set too high to not direct users avoid 

tolled arcs but still generating large revenues.  Once the tolls are set, users react and 

select their route so as to minimize their total travel cost.  This hierarchical relationship 

between the two independent decision makers having probably diverging point of views 

is the significant characteristic of this problem.  In economics theory, it is related with 

the Stackelberg, or leader-follower game (Colson et al., 2007). 

 

Let us denote by  the set of links of the network and by  the subset of toll links. 

Then, the mathematical program related with the network manager is 

 

   (3.6a) 

 

  . (3.6b) 

 

where  denotes the toll level,  the flow,   and  lower and upper bounds 

respectively on toll levels for link .  Let us assume that network users adopt a selfish 

behavior.  Then, the system reaches to an equilibrium where all users are assigned to 

paths of minimum cost with respect to the current congestion levels.  In a congestion-

free environment such user equilibrium coincides with a flow assignment that 

minimizes total system cost.  It follows that the path-flow vector  together with the 

link-flow vector  is solution of the linear program: 
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   (3.7a) 

 

  , (3.7b) 

 

  , (3.7c) 

 

 . (3.7d) 

  

In the above model, the objective (3.7a) sum up tolls  and the costs  for 

each link.   Constraint (3.7b) represents demand satisfaction for an origin and 

destination pair  where  is the set of all origin-destination pairs. 

Constraint (3.7c) links path flows  and link flows  with  

 

 

 

Mathematical programming models (3.6) and (3.7) are connected due to the use of 

common variables  and flows .  Moreover, the profit of the 

network manager given in (3.6a) cannot be calculated until the network flows are 

known.  These flows are the solution of a mathematical program parameterized in the 

toll vector . Hence, the bilevel formulation in (3.8) is built.  
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   (3.8a) 

 

  ,  (3.8b) 

 

   (3.8c) 

 

     , (3.8d) 

 

   , (3.8e) 

 

  . (3.8f) 

 

The hierarchy is a consequence of the fact that the mathematical program related to 

behavior of the network users is part of the manager‟s constraints.  This is the main 

characteristic of bilevel programs: they include two mathematical programs within a 

single instance, one of these problems being part of the constraints of the other one.  

Within this hierarchy, the program (3.6) is called the upper-level problem while (3.7) 

corresponds to the lower-level problem. 

 

The general formulation of a bi-level programming problem is  (Colson et al., 2007), 

   

   (3.9a) 

 

    (3.9b) 

 

   (3.9c) 

 

    (3.9d) 
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where ,  and  are the upper level 

variables, objective function and constraints respectively.  Similarly, , 

 and  are the lower level variables, objective 

function and constraints respectively.  Upper-level constraints involve variables from 

both levels and play a very specific role.  Indeed, they must be enforced indirectly, as 

they do not bind the lower-level decision-maker.  

 

 

3.4 Model Formulation 

 

Analogous to Florian (2003), let‟s assume that the network  is composed of 

four types of arcs: wait arcs (no travel time), in-vehicle (no waiting), alighting (no travel 

and waiting time) and walk arcs (travel time, no waiting).  It is assumed that the 

underlying network is strongly connected.  The segment of a transit line is an arc that is 

served by a vehicle at given intervals.  The transit traveler waits for the link to be served 

by a vehicle.  At each node that is on the itinerary of a transit line, the distribution of the 

interarrival times of the vehicles is known for each line which serves the node.  As a 

consequence, on can compute the combined time for the arrival of the first vehicle, for 

any subset of lines incident at a node, as well as the probability that each line arrives 

first.  

 

 

a. Sets / Indices: 

 

 Set of links 

  Set of nodes 

  Set of destinations 

 Set of lines 

 Set of scenarios 
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b. Parameters: 

 

 Available fleet size 

 Minimum and maximum service frequency respectively for line  

 Travel time for line  

 Confidence level  

 Realization probability for scenario    

 Travel demand from origin  to destination  for a scenario  

 Indicator with value 1 if link  is on line , and 0 otherwise 

 Travel time on arc  for scenario  

 Travel time for line  and scenario   

 Realization or total cost (travel + waiting) for scenario  

 

 

c. Variables: 

 

 Frequency of line   

 Flow on link  heading towards destination  for scenario  

 Total waiting time of passengers heading towards destination   

 at node  for scenario  

 VaR value at confidence interval  

 Auxiliary variable such that  for scenario  

 

 

3.4.1 Lower Level Problem 

 

For simplicity, we assume for now that there is only one destination .  We denote the 

set arcs that will be included in a solution as , and accordingly the solution for a 

single destination  is denoted as a acyclic subgraph .  The travel demand 

from node  to destination  is denoted as . , A traveler at node  is  is 

assumed to board the first vehicle operating on any of the arcs in  where  

corresponds to the forward star of node  or also referred as the set of attractive lines. 
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Let  be the expected waiting time for the arrival of the first vehicle serving any 

of the links , which is denoted as the combined waiting time of links .   

Let  be the probability that link  is the first line to be served among the links 

.  If an exponential distribution of interarrival time is supposed and  is the 

frequency of line , then 

 

 
(3.10) 

 

and 

 

 
(3.11) 

 

Since ¹A  is not known a priori the single destination model is formulated by using 

binary variables  

 

 (3.12) 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

42 

The optimization model may be stated as follows.  

 

   (3.13a) 

 

   (3.13b) 

 

   (3.13c) 

 

   (3.13d) 

 

   (3.13e) 

 

where  is the travel cost (time) on link  and  is the total volume at node .   The 

problem in (3.13) is a mixed integer nonlinear optimization problem.  Hopefully, it can 

be reduced to a simpler linear programming problem as constraint (3.14d) may be 

replaced by the nonnegavity constraints of the link volumes  since 

.  Therefore, by setting  for all ,  

where the new variable  corresponds to the total waiting time of all trips at node , 

one can obtain the following model 

 

   (3.14a) 

 

   (3.14b) 

 

   (3.14c) 

 

  . (3.14d) 
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The objective function (3.14a) is linear.  The binary variables are only used in the 

nonlinear constraint (3.14b) which can be relaxed by  

 

 . (3.15) 

 

With this final modification, the model described with (3.14a), (3.15), (3.14c) and 

(3.14d) becomes a linear programming (Florian, 2003).  This last model can be easily 

extended to the case where there are multiple destinations  and multiple line on a 

link . 

 

   (3.16a) 

 

   (3.16b) 

 

   (3.16c) 

 

  . (3.16d) 

 

In model (3.16),  is the flow on link  heading towards destination node ,  is 

the total waiting time of passengers at node  heading towards destination node  and 

 is travel demand from origin node  to destination node .  

 

In this study, we characterize the inherent uncertainty by a set of scenarios and 

generalize the model in (3.16).  Two types of uncertainty are considered: time and 

demand.  When buses do not operate on dedicated lanes and share the transportation 

infrastructure with other vehicles, the congestion affects their travel times.  Even 

operating on dedicated lanes, adverse conditions such as road constructions or bad 

weather may be the sources of delays for buses.  Travel demand from one location to 

another is also uncertain by nature.  In-day or day-to-day changes in demand are 

common.  Here, we focus only on the peak hour of the workdays. 
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  (3.17a) 

 

   (3.17b) 

 

   (3.17c) 

 

  . (3.17d) 

 

The model in (3.17) has the objective to minimize the expected cost, or the total time 

that passengers travel in the vehicles and wait at the stations.  The constraint (3.17b) is 

based on the assumption that all passengers can get on the first arriving vehicle, in other 

words vehicle capacity is not limited.  In that case, this constraint builds the relationship 

between the flow on a link emanating for a node  and the waiting time of passengers in 

that node based on the total frequency on that link. The constraint (3.17c) corresponds 

to the traditional flow balance constraint for the network flow models, where the sum of 

flows leaving node  must be equal to the sum of flows arriving to node  from other 

nodes and the passengers existing at node .  The last constraint (3.17d) ensures the non-

negativity of link flows, and also the non-negativity of the waiting times indirectly.  

 

 

3.4.2 Upper Level Problem 

 

In the upper level problem, we use a risk measure to take into consideration the effect of 

the stochastic nature of the system and model the network reliability.  In particular, we 

consider CVaR as an asymmetric risk measure on the function of the random travel 

times and demands.  We aim to minimize CVaR value of the system wide passengers‟ 

total travel cost (time) in order to control its realizations that are above certain threshold 

values.  Trying to find a policy that avoids large realizations of the specified random 

performance measure is consistent with the objectives of the risk averse transportation 
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planning manager.  We assume that frequency setting decisions do not vary according 

to the stochastic nature of the network and the users have no information except the 

probability distributions about the network conditions while choosing their routes.  In 

other words, the users have no information about the network realization and observe 

the conditions after making their route choices, and therefore, they cannot vary their 

decisions according to the network realization.  Let us denote the realization of scenario 

 as 

 . (3.18) 

 

Using the definition given in (3.5), we arrive at the upper level model minimizing 

CVaR of the total system cost at a specified confidence level : 

 

   (3.19a) 

 

   (3.19b) 

 

   (3.19c) 

 

   (3.19d) 

 

  . (3.19e) 

 

 

In this formulation, , , variables are introduced to calculate the realization of 

random variable  under each scenario.  By constraints (3.19b) and (3.19c), 

and the nature of the objective function it is guaranteed that  for all 

.  Then, by definition of CVaR given in (3.3) the optimal value of the objective 

function (3.19a) is equal to CVaR( ), as desired.  Constraints (3.19d) are for avoiding 

unrealistic frequency assignments exceeding available fleet size.  The last constraints 
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(3.19e) are so called service constraints as they impose minimum and maximum service 

levels for line frequencies. 

 

In our model, the variables , , are upper level variables whereas , 

, and ,  are the lower level variables.  The 

system wide cost for the network manager cannot be calculated until  and  are 

known.  These values are the solution of the mathematical program in (3.17) 

parameterized in the frequency vector . 
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4 PROPOSED SOLUTION METHOD 

 

 

 

4.1   Solving the Lower Level Model 

 

For simplicity, let us focus on the linear programming model described with (3.14a), 

(3.15), (3.14c) and (3.14d).  The dual of this program is  

 

   (4.1a) 

 

   (4.1b) 

 

   (4.1c) 

 

   (4.1d) 

 

where  and  are dual variables related with constraint (3.14c), and  are the dual 

variables related with the constraint (3.14b). Let  denote the optimum solution 

of the primal problem in (3.14) and  denote the optimum solution of the dual 

problem in (4.1).  We can then write the weak complementary slackness conditions such 

as 

  (4.2) 

 

and 

 . (4.3) 
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Given the primal and dual formulations, it can be observed that the transit route choice 

problem (TRCP) has a close similarity to the shortest path route choice problem.  

Hence, a solution algorithm which solves TRCP can be built in resemblance to the label 

setting algorithm for computing shortest paths.  In the first stage of this algorithm, the 

set of arcs which carry flow, , and the expected travel times  from each node  

to the destination node is computed.  Then the demand from all origins to the 

destination is assigned to the arcs  in the second stage.  The algorithm that solves 

TRCP with a single destination node  is given in Algorithm 1 below (Florian, 2003).  

As the lower level problem given in (3.17) is a linear programming problem that can be 

decomposed in destinations and scenarios, we run  times Algorithm 1 to solve 

a single instance of the problem. Note that we use the convention . 

 

 

4.2  Solving the Bilevel Problem 

 

 

It was not until the early nineteen eighties that the value of the bilevel programs in 

modelling hierarchical decision processes and engineering design problems prompted 

researchers to pay close attention.  As bilevel programming problems are fundamentally 

difficult, most algorithmic research is focused at first on the simplest cases of bilevel 

programs, that is problems having nice properties such as linear, quadratic or convex 

objective and/or constraint functions.  In particular, the most studied instance of bilevel 

programming problems is the linear bilevel programs in which all functions are linear.  

Several surveys such as those by Hsu and Wen (1989), Wen and Hsu (1991) and Ben-

Ayed (1993) are dedicated to this class. 
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Algorithm 1: Algorithm to solve TRCP in (4.1) 

Step 1:  for all  for all  

Step 2: if  then  

  go to Step 3; 

 otherwise 

  find  such that  is the smallest value of ; 

  ; 

  if  then 

    = ; 

   ; 

   ; 

   go to step 2; 

  endif 

 endif 

Step 3:  for all ; 

 for each  in decreasing order of  do 

  ; 

  ; 

 endfor 

 for each  do  

  ; 

 endfor 

  for all ; 

 

 

More complex bilevel programs such as the one due to Vicente et al. (1996) having 

discrete variables are studied over the years.  These studies are included to more general 

surveys as for example to Anandalingam and Friesz (1992).  Dempe (2003) wrote an 

annotated bibliography on both nonlinear bilevel programming problems and 

mathematical programs with equilibrium constraints.  The combinatorial nature of 

bilevel programming is reviewed in Marcotte and Savard (2005).  The most recent study 
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on bilevel programs is due to Colson et al. (2007).  We refer the interested readers to 

this work for an overview on the solution methods for bilevel programs.   

 

In recent years, there has been interest in solving the computationally challenging 

bilevel transportation problems with metaheuristic algorithms.  Among the 

metaheuristics, genetic algorithms (GAs) have attracted a lot of attention due to their 

desirable properties such as the ability to explore large portions of the feasible region, 

ease of parallelization, and a demonstrated effectiveness for a variety of optimization 

problems.  GAs are computationally simple, easy to implement, and powerful search 

procedures (Yin, 2000).  In addition, they are not limited by restrictive assumptions 

about the search space such as continuity and the existence of derivatives.  We are also 

motivated by the fact that GAs have been successfully applied to various transportation 

problems including network design (see, e.g., Drezner and Salhi, 2002; Drezner and 

Wesolowsky, 2003; Karoonsoontawong and Waller, 2006; Dimitriou and Stathopoulos, 

2008; Mathew and Shrama, 2009; Xu et al., 2009), traffic signal control (see, e.g., 

Ceylan and Bell, 2004), network design and frequency setting (Aggarwal and Mathew, 

2004), network design and toll pricing (Dimitriou et al., 2008), and pricing (see, e.g., 

Yin, 2000; Shepherd and Sumalee, 2004; Zhang and Yang, 2004; Sumalee et al., 2005; 

Gardner et al., 2010). 

 

GA is a search heuristic from the class of evolutionary algorithms that simulates the 

process of natural evolution such as inheritance, mutation, selection, and crossover for 

finding the solutions of optimization problems.  In our implementations, we use the GA 

provided in the MATLAB R2012a Toolbox.  MATLAB provides a rich and convenient 

programming environment for rapid algorithm design, and its parallel programming 

environment is especially crucial for computationally efficient implementations of 

parallelizable GAs.  To speed up some tedious calculations related to the objective 

function calls, we also coded routines in C++ and interfaced with MATLAB through 

MEX facility.  

 

We summarize the general framework of the solution methodology in Algorithm 2.  The 

initial population is composed of frequency vectors whose components are randomly 
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generated from uniform distributions on the interval .  If any of the frequency 

vector  is not feasible with respect to constraint (3.19d) or , it is 

restored to feasibility such that .  For each frequency vector , TRCP  

is solved  times for each destination and scenario with Algorithm 1 to obtain 

the optimal link flows and passengers‟ waiting times.  Then, the optimal link flows and 

waiting times associated with each frequency vector are used to obtain the realization of 

the random total cost measure of interest (3.18) under each scenario.  These realizations 

are used to calculate the CVaR of the performance measure.  The CVaR associated with 

each frequency vector is in fact the raw fitness value of an individual.  @fitscalingtop 

and @selectionroulette options of MATLAB are chosen to scale the raw fitness values 

and select the parents for reproduction, respectively.  Top scaling scales the top 

individuals equally while roulette selection chooses parents by simulating a roulette 

wheel, in which the area of the section of the wheel corresponding to an individual is 

proportional to the individual‟s fitness.  The selection algorithm generates a random 

number to select one of the sections; it basically uses a multinomial scheme with the 

success probabilities equal to the corresponding areas.  Once the parents are selected for 

reproduction, crossover and mutation operators are used to form the next generation.  In 

our study, the standard @crossoverintermediate option is chosen as a crossover operator 

to create children by taking a weighted average of the parents.  Meanwhile, a special 

mutation operator is implemented; it alters some random number of components of a 

frequency vector by generating the new value of a selected  component from the 

uniform distribution on the interval .  If any child is not feasible with respect to 

constraint (3.19d) then it is restored to feasibility.  The developed algorithm is elitist in 

the sense that some fraction of the current generation which corresponds to the 

individuals that has the best fitness values are guaranteed to survive to the next 

generation.  The algorithm iterates until a predetermined number of generations is 

reached. 
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Algorithm 2: Algorithm to solve risk-averse transit frequency setting problem 

(initializations) generate the initial population of feasible frequency vectors  by 

sampling from the uniform distributions on the intervals ; 

repeat 

 for each individual of the current population do 

  use Algorithm 1 to find the optimum solution of TRCP; 

  evaluate the realization of each scenario with (3.18); 

  calculate the corresponding CVaR; 

 endfor 

 apply selection, crossover and mutation to generate the new population; 

until maximum number of generations is reached 

output the best frequency vector ; 
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5 NUMERICAL ANAYSIS 

 

 

 

A small transit network to show the advantages of the model is compared with the 

expectation model  in our study.  We compare the  value of the expectation model 

optimum solution with the  value of our model and report the relative 

improvement.  Also, we study the effects of parameters such as time, demand and fleet 

size on the model effectiveness.  Two methods are used when scenarios are generated: 

first, we change the travel time on each link for which a randomly selected node is head 

or tail; second, we change the demand of some randomly selected origin-destination 

pairs.  

 

In the following section we give some details on generating the problem instances.  

Then, in Section 5.2 we provide results to demonstrate the computational effectiveness 

of the proposed  model.   Also, we present numerical results of our algorithm to 

analyze how the optimal  solutions change related with the input parameters.  Finally, 

we discuss the computational study to compare the optimum solution of the  

value of the expectation model and the  value of our model. 

 

 

5.1  Generation of problem instances 

 

 

We deal with the effects of demand on each node  and  and also we 

focus on time on each arc  in the transit frequency setting problem to see the 

effects on the fleet size in the network .   
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After several trials on the model the most significant solutions are found and considered 

for each scenario, respectively;  

 demand on each bus stop,  

 time on each arc, and  

 fleet size values.   

 

Here, we use three nodes to show the results of our model.  There is one destination 

point and two line that goes to the destination point.  For each demand points in the 

network problem instances are generated randomly.  First of all, the set of demand 

points are generated according to a uniform distribution as proposed by Codina, E. 

(2012).  We determine demand values as the Euclidean distance between the origin 

destination points.    

 

Then, demand realizations at each node ,    are generated to see the effects 

of the  value of the expectation model optimum solution with the  value of 

our model.  5 different significant demand distributions are considered such as [50, 

150], [50, 200], [100, 150], [100, 200], and [150, 200] with uniformly distributed  lower 

and upper values respectively.   The demand should be between the given intervals.   

 

Different than demand, time realizations are generated with the  following (5.1), 

 

        (5.1) 

 

5 different meaningful time distributions are related with the following values, [0, 0.5], 

[0, 1], [0, 1.5], [0, 2], and [0, 2.5] with uniformly distributed  lower and upper values 

respectively.  For [0, 2.5] time generation, according to (5.1), the time can be increased 

up to %250 of the original time value that indicates the "2.5" value in the uniform 

distribution, or the original time value will not be changed which is the "0" value in the 

uniform distribution.  

 

The maximum number of vehicles that can be used in the transit network,  is selected 

from the uniform distribution with the interval [0, 8].  As "0" represents minimum 
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number of vehicles, and "8" represents maximum number of vehicles in the network.  

After a variety of trials on the model, the most significant solutions for the fleet size are 

determined such as, 2, 2.5, 3, 3.5, and 4.   

 

Scenario probabilities , are set to be equal.  In this study, 10 scenarios,  30 

scenarios, 50 scenarios, and 100 scenarios are considered as scenario based model.  To 

compare all scenarios under same conditions we use these 4 different scenarios.  With 

these different scenarios one can see explicitly the differences on overall time on each 

stop which includes waiting time, and in-vehicle time on each arc which is related with 

the demand of each node.    

 

In the presented study, we also focus on the  value which is associated with the  

realization formula.  After several tests on the model, 3 different most effective 

confidence level values are noted to compare the scenarios.  We use 0.7, 0.8, and 0.9 as 

confidence level values to show the effects for each scenario.  

 

 

5.2  Computational effectiveness  

 

 

We provide results to demonstrate the computational effectiveness of the proposed 

 model.   

 

To see the significance results of the solution the fleet size that is  value is focused 

separately for each demand and time values.  For instance, for the fleet size , all 

significant demand distributions, and all meaningful time distributions which are 

selected form several trials are considered together.  The model compares the  

value of the expectation model optimum solution with the  value of our model.   

That is why one can see clearly that the results of our model gives better results in 

 under higher uncertainty such as in bigger fleet size, and under higher uniform 

distribution on demand such as [150, 200] with lower and upper values respectively, 

and under higher time such as [0, 2.5] with lower and upper values respectively.  
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To see the significant results of the solution, the fleet size  is considered for each 

demand and time values.  For instance, for the fleet size , all significant demand 

distributions, and all critical time distributions which are selected form several trials, are 

considered together.  The model compares the  value of the expectation model 

optimum solution with the  value of our model.   That is why one can see clearly 

that the results of our model gives better results in  under higher uncertainty such 

as in bigger fleet size, and under higher uniform distribution on demand such as [150, 

200] with lower and upper values respectively, and under higher time such as [1.0, 2.0] 

with lower and upper values respectively.  

  

The demand matrix is given for all scenarios from node 1 to node 3.  That means the 

demand can be transferred in two ways.  One of them is, demand can be transferred 

from 1 directly to destination node 3 by using the arc (1,3), and the other transfer is 

from node 1 through node 2, then to node 3 by using the arcs (1,2) and (2,3) 

respectively.  The time for arc (1,3) is 0.15 hours, for arc (1,2) is 0.30 hours, and for arc 

(2,3) is 0.15 hours.  For each scenario, the time of the arcs are constant. 

 

 

Table 5.1: Time on each arc for 10 scenarios related with the toy problem (in hours). 

 

  
For scenario 10 

  
1 2 3 4 5 6 7 8 9 10 

Arc 

(1,3) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

(1,2) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

(2,3) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

 

 

Table 5.2: Changing time after applying uniform distribution (in hours). 

 

  
For scenario 10 

  
1 2 3 4 5 6 7 8 9 10 

Arc 

(1,3) 0.362 0.150 0.241 0.386 0.383 0.150 0.150 0.352 0.329 0.150 

(1,2) 0.300 0.300 0.300 0.300 0.300 0.80 0.300 0.300 0.300 0.300 

(2,3) 0.150 0.447 0.150 0.150 0.150 0.150 0.280 0.150 0.150 0.250 
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Table 5. 2 represents the generated time values.  The above table defines the uniformly 

distribution time with lower level "0" where the time value will not be changed, and 

with upper level "1.5" where the time can be increased up to % 150 of the original time 

value.  

 

 value of the expectation model optimum solution with the  value of our 

model is compared.   denotes the value of the expectation model that is solved 

with  objective function.   denotes the value of the expectation model 

that is solved with the objective function of  the expectation model.  Then, we define the 

 value of the expectation model optimum solution as follows: 

 

         (5.2) 

 

 denotes the optimum solution of our model that is solved with the objective 

function of  the expectation model.   denotes the optimum solution of our 

model that is solved with  objective function.  Then, we define the  value 

of our model optimum solution as follows: 

 

         (5.3) 

 

The first part of Table 5.3 shows the optimum solutions that are obtained from 

expectation model, that is shown as  in the Table 5.3.  The second part of Table 5.3 

shows the optimum solutions that are obtained from our model, that is shown as   

in the Table 5.3.  

 

The performance of   and  models are considered in the Table 5.3 when 

 on determined demand and time values which are uniformly distributed between 

the values given in the table.  The generation demand and time values are mentioned in 

Section 5.1. 
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Figure 5.1: The Comparison of EXP and CVaR When M=2.0 

 

 

As shown in Figure 5.1 demonstrate the demand and time variation on the  EXP and 

 models when the fleet size is 2.  The right side area shows the relative 

improvement of CVaR model and left side area shows the relative improvement of EXP 

model.  For higher time and demand variation  model gives higher improvements.  
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Table 5.3: The performance of EXP and CVaR models  when M = 2 for defined demand and time values 

 

   
EXP 

M = 2.0  
CVaR 

M = 2.0 

   
demand 

 
demand 

   
50-150 50-200 100-150 100-200 150-200 

 
50-150 50-200 100-150 100-200 150-200 

time 

0.0 - 1.0 
 

0.0000 0.0000 0.0000 0.0000 0.0000 
 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0 - 2.0 
 

0.0821 0.0382 0.0374 0.1004 0.0800 
 

0.0263 0.0174 0.0211 0.0514 0.0428 

0.5 - 1.0 
 

0.0449 0.0572 0.0925 0.0569 0.0907 
 

0.0290 0.0246 0.0678 0.0670 0.0729 

0.5 - 2.0 
 

0.0430 0.0526 0.0678 0.0483 0.0538 
 

0.0745 0.0687 0.0809 0.0548 0.0839 

1.0 - 2.0 
 

0.0622 0.0635 0.0804 0.0775 0.0762 
 

0.0688 0.0715 0.1277 0.1230 0.1293 
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 As one can see that for the same given data when fleet size  is equal to , the 

expected cost value has highest value on uniformly distributed demand between 100 

and 200, and also with the uniformly distributed time between the value 0.0 and 1.0.  As 

the 0.0 on time mention no changes of the original time value, and 1.0 mention % 100 

additional increases is available on the original time value.  On the other hand, when  

is equal to , the  value has highest value on uniformly distributed demand 

between 100 and 150, and also with the uniformly distributed time between the value 

1.0 and 2.0.   That means  value is more sensible while the overall time is 

increasing %200 percent of the original time value.  As our objective function is 

minimizing overall time that includes both waiting time of the vehicle and in-vehicle 

travel time, objective function of  gives better results for the network in Figure 

5.1.   

 

Moreover, we focus on different number of vehicle size as we mentioned in Section 5.1, 

such as M = 2.5, M = 3, M = 3.5, M = 4.  To remember one more time, the vehicle size 

is determined after various trials on our model.  For each vehicle size, the details on 

selected demand and time values with results are given.   

 

In table 5.4, we can see the relative improvements for each fleet size and for each time 

interval with a constant demand variation.  This demand variation value is selected after 

several trials and most effective demand is selected to see the effects on fleet size and 

time variation at the same time.  

 

Figure 5.2 shows the travel time variation and fleet size variation of the model.  If the 

travel time variation is too high or low, or if the fleet is too small or large, the 

improvement decreases.  For example in Table 5.4, with maximum fleet size 3, 

maximum improvement occurs in time interval [0.5, 1.0] with %14.  However, with the 

same fleet size the improvement can be seen as %5.44 between minimum time interval 

[0.0, 1.0] and maximum time interval [1.0, 2.0].  On the other hand, when we consider 

minimum fleet size 2, maximum improvement occurs with minimum time interval [0.0, 

1.0] as %9.36, and minimum improvement occurs with time interval [0.5, 2.0] as 
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%1.15.   Higher improvement occurs with %14.00 when the fleet size 3M   and time 

variation is [0.5, 1.0] for demand between 100 and 150. 

 

 

Table 5.4: Time variation vs. fleet size variation with a constant demand interval for 

CVaR models 

 

 
demand 100 - 150 

 
0.0 - 1.0 0.0 - 2.0 0.5 - 1.0 0.5 - 2.0 1.0 - 2.0 

M = 2 9.36% 3.51% 3.59% 1.15% 2.04% 

M = 2.5 11.77% 5.57% 12.60% 5.22% 6.74% 

M = 3 9.65% 5.73% 14.00% 7.31% 5.44% 

M = 3.5 8.19% 5.56% 12.32% 6.62% 7.83% 

M = 4 6.90% 5.27% 10.90% 5.47% 7.68% 

 

 

 

 

 

Figure 5.2: The effects of travel time variation and fleet size variation 
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In table 5.5, we can see the relative improvements for each fleet size and for each 

demand variation with a constant time interval.  This time interval is selected after 

several trials and most effective time interval is selected to see the effects on fleet size 

and demand variation simultaneously.  

 

For example in Table 5.5, maximum improvement occurs when fleet size M is 2.5 with 

demand variation [150, 200] for time interval [0.0, 1.5] with 13.89%.   But, when we 

consider minimum fleet size M as 2, the improvement is around 3.5% that is too small 

for all demand variations.  Also, when we consider maximum fleet size 4, maximum 

improvement can be seen around 10.5%.  Thus, the higher improvement occurs around 

14.00% for all demand variations. 

 

 

Table 5.5: Demand variation vs. fleet size variation with a constant time interval for 

CVaR models 
 

 
time 0.0-1.5 

 
50-150 50-200 100-150 100-200 150-200 

M = 2 3.62% 3.59% 3.41% 3.52% 3.40% 

M = 2.5 10.09% 12.60% 12.37% 12.59% 13.89% 

M = 3 12.57% 14.00% 13.42% 13.48% 13.48% 

M = 3.5 10.85% 12.32% 11.67% 11.73% 11.77% 

M = 4 9.38% 10.90% 10.18% 10.25% 10.32% 

 

 

The demand variation and fleet size variation of the model is shown in Figure 5.3.  As 

the vehicle capacity is not considered, demand variation does not significantly affect 

improvement.  If the fleet is too small or too large, the improvement decreases. 
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Figure 5.3: The effects of demand variation and fleet size variation 

 

 

In Table 5.6, we consider fleet size as 3.5 to see the demand variation and time variation 

effects at the same time, according to the improvement results of the Table 5.4 and 

Table 5.5.  When the fleet size is 3.5, maximum improvement occurs with 14.00% in 

time interval [0.5, 1.0] and demand variation [50, 200].  Also, high improvements occur 

for all demand variation around 13.50% in time interval [0.5, 1.0].  Also, minimum 

improvements occur around 6% when time variation is between [0.0, 2.0] for all 

demand variations. 

 

Travel time variation and demand variation of the model is presented in Figure 5.4. If 

the travel time variation is too high or low, the improvement decreases.  The relative 

improvements of Table 5.6 can be seen explicitly in Figure 5.4.  Maximum 

improvement is around 14.00% when time interval is between [0.5, 1.0], and minimum 

improvement is around 6% when time interval is between [0.0, 2.0]. When we don‟t 

change the time as in equation (5.1) , the improvement is not 

effected too much.  Thus, it is clear to see minimum improvement around 6% when 

time interval is between [0.0, 2.0]. 
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Table 5.6: Demand variation vs. time variation with a constant fleet size for CVaR 

models 
 

  
M=3.5 

  
demand 

  
50-150 50-200 100-150 100-200 150-200 

time 

0.0 - 1.0 9.69% 9.65% 8.87% 10.18% 9.37% 

0.0 - 2.0 7.46% 5.73% 4.17% 5.92% 5.86% 

0.5 - 1.0 12.57% 14.00% 13.42% 13.48% 13.48% 

0.5 - 2.0 5.79% 7.31% 7.02% 6.85% 6.98% 

1.0 - 2.0 7.08% 5.44% 6.87% 6.91% 8.03% 

 

 

 

 

Figure 5.4: The effects of demand variation and travel time variation 

 

 

Table 5.7 shows the scenario variations for α values are 0.7, 0.8, and 0.9.  For each scenario 

numbers, when α value is increased the relative improvement of the model is increased.  

Also, for each α value, when scenario numbers are increased the relative improvement 

of the model is also increased.  Maximum improvement occurs with 25% when α value 

is 0.9 and when scenario number is 100.  Minimum improvement occurs around 12% 

for all scenarios with 0.7 α value. 

Demand Variation  
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Table 5.7: Scenario variation vs. alpha variation for CVaR models 
 

  
CVaR 

  
scenario 

  
10 30 50 100 

alpha 

0.7 0.0915 0.0654 0.1527 0.1811 

0.8 0.1209 0.0901 0.1893 0.2159 

0.9 0.1466 0.1096 0.2206 0.2499 

 

Figure 5.5 presents the scenario variation and α value variation of the model.  In 

general, the improvement increases when the number of scenarios and/or α value also 

increase.  

 

 

 
 

Figure 5.5: The effects of number of scenarios and α value 

In addition, as it has been noted before we use different  levels such as 0.7, 0.8, and 

0.9, and different number of scenarios such as 10, 30, 50, and 100 to check  the 

reliability of our model, simultaneously.  The  value of our model gives better 

values than  value of the expectation model optimum solution.  Therefore, we 

recommend using  to determine transit frequencies that achieve more accurate 

results.     
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Here, the comparison between expectation model and CVaR model is given in Table 

5.8.  In Figure 5.6, the area on the right side is the relative improvement of CVaR model 

which is higher than the expectation model.   

  

 

Table 5.8: The effect of Confidence Level values 

 

  
EXP 

 
CVaR 

  
scenario 

 
scenario 

  
10 30 50 100 

 
10 30 50 100 

 

0.7 0.0255 0.0404 0.0460 0.0510 
 

0.0206 0.0423 0.0316 0.0297 

0.8 0.0418 0.0670 0.0815 0.0793 
 

0.0380 0.0750 0.0727 0.0717 

0.9 0.0852 0.0878 0.0979 0.0889 
 

0.1016 0.1225 0.1260 0.1339 

 

 

 
 

Figure 5.6: The effects of Confidence Level values 
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Table 5.9: The performance of EXP and CVaR models  when M = 2.5 for defined demand and time values 

 

 

   
EXP 

M = 2.5  

CVAR 

M = 2.5 

   
demand 

 
demand 

   
50-150 50-200 100-150 100-200 150-200 

 
50-150 50-200 100-150 100-200 150-200 

time 

0.0 - 1.0 
 

0.0098 0.0081 0.0162 0.0000 0.0098 
 

0.0018 0.0003 0.0004 0.0000 0.0018 

0.0 - 2.0 
 

0.0697 0.0403 0.0515 0.1074 0.1070 
 

0.0444 0.0257 0.0360 0.0714 0.0652 

0.5 - 1.0 
 

0.0537 0.0574 0.0794 0.0577 0.0820 
 

0.0441 0.0425 0.0924 0.0686 0.0955 

0.5 - 2.0 
 

0.0481 0.0573 0.0726 0.0522 0.0614 
 

0.0824 0.0738 0.1077 0.0757 0.1059 

1.0 - 2.0 
 

0.0676 0.0611 0.0747 0.0717 0.0715 
 

0.0769 0.0879 0.1297 0.1230 0.1191 
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The first part of Table 5.9 shows the optimum solutions that are obtained from 

expectation model, that is shown as  in the Table 5.3.  The second part of Table 5.9 

shows the optimum solutions that are obtained from our model, that is shown as   

in the Table 5.9.   

 

In Figure 5.7 the comparison between expectation model and CVaR model can be seen 

better when the fleet size is increased to 2.5 and as the demand variation is increased 

CVaR has better results. 

 

 

 
 

Figure 5.7: The Comparison of EXP and CVaR When M=2.5 
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Table 5.10: The performance of EXP and CVaR models  when M = 3 for defined demand and time values 

 

 

   
EXP 

M = 3.0  

CVAR 

M = 3.0 

   
demand 

 
demand 

   
50-150 50-200 100-150 100-200 150-200 

 
50-150 50-200 100-150 100-200 150-200 

time 

0.0 - 1.0 
 

0.0368 0.0066 0.0234 0.0095 0.0239 
 

0.0037 0.0019 0.0045 0.0010 0.0041 

0.0 - 2.0 
 

0.0654 0.0487 0.0803 0.0933 0.1014 
 

0.0594 0.0353 0.0411 0.0911 0.0808 

0.5 - 1.0 
 

0.0515 0.0743 0.0692 0.0579 0.0725 
 

0.0570 0.0582 0.1115 0.0801 0.1127 

0.5 - 2.0 
 

0.0468 0.0520 0.0630 0.0415 0.0502 
 

0.0916 0.0940 0.0959 0.0827 0.1131 

1.0 - 2.0 
 

0.0584 0.0552 0.0726 0.0599 0.0616 
 

0.0771 0.0861 0.1120 0.1187 0.1191 
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In Table 5.10, the fleet size is increased to 3.  Although expectation model gives 

sufficient results when time variation is between [0.0-2.0], CVaR is more reliable to see 

the effects when demand variation, time variation and fleet size variations are increased.  

 

In Figure 5.8 the comparison between expectation model and CVaR model can be seen 

better when the fleet size is increased.  Also, it can be seen that as the demand variation 

is increased CVaR gives better results than expectation model. 

 

 

 

 

Figure 5.8:  The Comparison of EXP and CVaR When M=3 
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Table 5.11: The performance of EXP and CVaR models  when M = 3.5 for defined demand and time values 

 

 

   
EXP 

M = 3.5  

CVAR 

M = 3.5 

   
demand 

 
demand 

   
50-150 50-200 100-150 100-200 150-200 

 
50-150 50-200 100-150 100-200 150-200 

time 

0.0 - 1.0 
 

0.0367 0.0211 0.0203 0.0179 0.0391 
 

0.0076 0.0033 0.0080 0.0036 0.0076 

0.0 - 2.0 
 

0.0655 0.0477 0.0794 0.1009 0.1067 
 

0.0721 0.0456 0.0565 0.0984 0.0963 

0.5 - 1.0 
 

0.0546 0.0654 0.0599 0.0620 0.0719 
 

0.0679 0.0715 0.1128 0.0933 0.1273 

0.5 - 2.0 
 

0.0388 0.0418 0.0572 0.0338 0.0431 
 

0.0924 0.0952 0.0960 0.0880 0.0994 

1.0 - 2.0 
 

0.0518 0.0559 0.0620 0.0522 0.0531 
 

0.0802 0.0939 0.1287 0.1103 0.1333 
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In Table 5.11, the fleet size is increased to 3.5.  Here, it is obviously shown that the 

CVaR model has better results than expectation model.  Almost %13 improvement is 

obtained by using CVaR model.  This is obtained when the time variation is between 

[1.0-2.0] and the demand variation is between [100-150] with the fleet size 3.5. 

 

In Figure 5.9, it is explicitly shown that the CVaR model has better results when the 

worst cases are occurred.  Thus, the CVaR model gives better results than expectation 

model as the demand variation is increased.  

 

 

 

Figure 5.9: The Comparison of EXP and CVaR When M=3.5 
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Table 5.12: The performance of EXP and CVaR models  when M = 4 for defined demand and time values 

 

 

   
EXP 

M = 4.0  

CVAR 

M = 4.0 

   
demand 

 
demand 

   
50-150 50-200 100-150 100-200 150-200 

 
50-150 50-200 100-150 100-200 150-200 

time 

0.0 - 1.0 
 

0.0362 0.0179 0.0339 0.0394 0.0560 
 

0.0185 0.0086 0.0186 0.0133 0.0225 

0.0 - 2.0 
 

0.0582 0.0614 0.0725 0.0886 0.0936 
 

0.0704 0.0544 0.0639 0.1040 0.0987 

0.5 - 1.0 
 

0.0579 0.0693 0.0679 0.0677 0.0624 
 

0.0729 0.0832 0.1289 0.0934 0.1417 

0.5 - 2.0 
 

0.0381 0.0351 0.0559 0.0284 0.0371 
 

0.0786 0.0938 0.0957 0.0568 0.0844 

1.0 - 2.0 
 

0.0457 0.0507 0.0523 0.0503 0.0473 
 

0.0644 0.0809 0.1119 0.1218 0.1169 
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In Table 5.12, the fleet size is increased to 4.  Here, it is obviously shown that the CVaR 

model has better results than expectation model.  Almost %15 improvement is obtained 

by using CVaR model.  This is obtained when the time variation is between [0.5-1.0] 

and the demand variation is between [100-150] with the fleet size 4. 

 

In Figure 5.10, it is explicitly shown that the CVaR model has better results when the 

worst cases are occurred.  Thus, the CVaR model gives better results than expectation 

model as the demand variation and time variation is increased.  

 

 

 

Figure 5.10:  The Comparison of EXP and CVaR When M=4 
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6 CONCLUSION 

 

 

 

With the increasing number of registered vehicles in traffic, people are spending too 

much time in traffic to go from their home to their jobs, schools, etc.  Due to the traffic 

congestion, passengers total travel time is increased.  By decreasing private car 

ownership, people need to be redirected to the public transportation system. 

 

Transit network frequency setting is considered as the minimization of total in-vehicle 

and at stop waiting times.  While frequencies of transit system lines are planned, 

minimization of the total travel time spent by the passengers is the most preferred 

objective.  Generally travel time, waiting time, etc.. is determined by using the mean or 

expected value.  However, the determined line frequency based on these data cause 

passengers to travel in the excessing durations, especially with the variability of traffic 

congestion. 

 

As the travelling conditions may change unfavorably and the existing transit systems 

are planned with traditional expected time approaches, passengers occasionally take 

longer times to travel.   Unlike from other studies in the literature, a risk averse 

approach is adopted in this study to find line frequencies.  Optimum line frequencies are 

identified by considering stochastic travel times and demands which are due to 

uncertain network conditions.  Moreover, random parameters are represented with finite 

number of scenarios.  Conditional value-at-risk (CVaR) measure is used as a risk 

modeling approach.  We obtained important improvements on the total traveling times 

of passengers with our approach compared to the expected value based approach under 

uncertain traveling conditions.  
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This study has the potential of being a starting point for many future researches.  We 

can only conceive of apparent ones.  As for example,  the capacity of the vehicles and 

the comfort of passenegers (utility) during their trip may be included to the model. 

 

Besides, network design and/or timetabling stages may be integrated to the frequency 

setting stage. Risk measure other than CVaR can be used.  Also, different scenario 

generation methods can be developed.  Instead of single node, multiple node can be 

deteriorated by changing demand and travel time.  Consecutive links can be used to 

create a different type of scenario.  Further, the validity of the approach can be tested 

with real transit network data. 
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