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Abstract

The objective of a brain-computer interface (BCI) is to provide an alternative way of

interaction between the brain and the environment without the involvement of muscular

pathways. Besides being a revolutionary human computer interface for gaming and en-

tertainment, BCIs constitute the only way of interaction/communication with the outer

world for people who cannot voluntarily control/move their muscles.

Electroencephalography (EEG) is a non-invasive method for measuring the electrical

activity generated within the brain structures, through the scalp. Although new con-

sumer grade, wireless, portable and battery-powered EEG headsets are recently gaining

popularity, most of the non-invasive BCI research depends on high quality but bulky

and expensive EEG acquisition systems. Combined with a decent PC to implement the

software stack of the BCI, the cost of the overall BCI design increases and the technology

quickly becomes unaffordable for many people.

In this study, we present a portable and embedded steady-state visual evoked potential BCI

system in which the user can choose between two targets by focusing on 2 LED matrices

flickering at different frequencies. The output of the system can then be used for different

interaction scenarios like controlling a robot, answering simple yes/no questions, etc. The

use of a consumer grade, wireless EEG headset together with a cheap embedded computer

increases the mobility of the system while reducing the overall cost dramatically.



Résumé

L’objectif d’une interface cerveau-ordinateur (ICO) est de fournir un moyen alternatif

d’interaction entre le cerveau et l’environnement sans la participation des voies mus-

culaires. En plus d’être une interface homme-machine révolutionnaire pour les jeux et

l’amusement, les ICO constituent la seule moyenne d’interaction et de communication

avec le monde extérieur pour les personnes qui ne peuvent pas contrôler/déplacer leurs

muscles volontairement.

L’électroencéphalographie (EEG) est une méthode non-invasive pour mesurer l’activité

électrique générée à l’intérieur des structures du cerveau, à travers le cuir chevelu. Bien

que nouveaux casques EEG portables et sans fil gagnent en popularité récemment, la

plupart des recherches sur les ICO non-invasives utilise des systèmes d’acquisition EEG

encombrants et coûteux de haute qualité. En combinaison avec un bon ordinateur pour

mettre en œuvre la pile logicielle des ICO, le coût de la conception augmente et la

technologie devient vite inaffordable pour beaucoup de gens.

Dans cette étude, nous présentons une ICO réalisée avec un système embarqué dans

laquelle l’utilisateur peut choisir entre deux cibles en se concentrant sur deux matrices

de LED avec différentes fréquences de clignotement. La sortie du système peut alors être

utilisé pour différents scénarios d’interaction comme commander un robot, répondre à des

questions simples oui/non, etc. L’utilisation d’une casque EEG sans fil avec un ordinateur

embarqué pas cher augmente la mobilité du système en réduisant considérablement le

coût total.



Özet

Beyin-bilgisayar arayüzlerinin (BBA) amacı, beyin ve dış dünya arasında, kasların kul-

lanılmadığı alternatif bir etkileşim yöntemi sunmaktır. Oyun ve eğlence dünyası için

devrim niteliğinde bir insan-makine arayüzü olmasının yanı sıra, BBA sistemleri hiçbir

istemli kasını hareket ettiremeyen ancak beyinleri sağlıklı olan insanların, dış dünya ile

iletişime geçmelerinin tek yoludur.

Elektroensefalografi (EEG) kafatası derisi üzerinden beynin elektriksel etkinliğini ölçmek

için kullanılan, girişimsel olmayan (non-invaziv) bir görüntüleme tekniğidir. Son kul-

lanıcı pazarını hedefleyen, kablosuz aktarımı temel alan ve pil ile çalışan ucuz taşınabilir

EEG kaskları son zamanlarda iyiden iyiye popülerleşse de, non-invaziv BBA araştır-

malarının büyük çoğunluğu hâlen yüksek kaliteli, çok fazla taşınabilir olmayan ve pahalı

EEG sistemleriyle yürütülmektedir. Sisteme eklenecek olan iyi bir bilgisayar ile birlikte

toplam maliyet çoğu insanın gelir seviyesini aşacak düzeye ulaşmaktadır.

Bu çalışmada, kullanıcının farklı frekanslarda yanıp sönen LED matrislerine odaklanarak

iki farklı durumdan birini seçebilecekleri taşınabilir ve gömülü bir BBA tasarımı sunul-

maktadır. İki çıkışlı bu BBA, robot kontrolü için veya sorulan sorulara evet/hayır şeklinde

cevap verilmesine olanak sağlayacak etkileşim senaryolarında kullanılabilir. Kablosuz,

ucuz, taşınabilir ve pilli bir EEG kaskı ile ucuz bir gömülü bilgisayarın bütünleştirildiği bu

tasarım, hareket kabiliyetini ve taşınabilirliği arttırırken, toplam maliyeti ciddi bir şekilde

düşürmektedir.
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1 INTRODUCTION

1.1 Motivation and Objective

Research in Brain-Computer Interface (BCI) design often focuses on discovering novel

approaches in experiment protocol design and boosting the performance of signal process-

ing and machine learning algorithms in order to improve the information transfer rate, the

ergonomics and the ease of use.

Although measuring brain activity with electroencephalography (EEG) is more comfort-

able when compared to other measurement methods, clinical and research EEG acquisi-

tion systems are still far from being portable: They heavily rely on wired transmission,

they are generally not battery-powered and the application of a conductive material be-

tween electrodes and the scalp is often necessary to improve the signal quality. Also, the

cost of such systems generally exceeds the income level of many people, thus they can

not be considered as affordable technologies.

With the advent of technology in communication and electronics, new affordable (less

than ~$500) EEG systems started to appear in the market. These consumer grade wireless

and battery-powered headsets are equipped with either dry or saline electrodes which

simplify the setup process and make the whole experience much more comfortable.

Online (real-time) BCIs generally require good computers as stimuli presentation, data

acquisition, signal processing, machine learning and finally production of an output are

all resource hungry processes. Some of these processes are also timing sensitive, e.g. the

stimuli should be presented at exact intervals, the acquisition should not miss a packet,

etc. The progress in computer hardware industry does not always bring the same amount

of progression into software components. According to Wirth’s Law stated by Niklaus

Wirth, software is getting slower more rapidly than hardware becomes faster (Wirth,
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1995). The fact that operating systems (OS) and their software components are becoming

much more sophisticated negatively impacts the precision, the performance and the real-

time expectations of dedicated/critical tasks running on a computer. Once the software

part of a BCI heavily depends on a general purpose and end-user targeted modern OS, the

cost of the overall BCI system increases since the price of the minimum PC (laptop or

desktop) configuration adequate for the software stack is ranging between $700-1000.

Embedded computers are small single-board computers designed to satisfy application

specific designs, e.g. mobile phones, tablets, robot controllers, etc. The cost for these

boards is dramatically reduced with the popularity of smart phones and other ubiquitous

appliances. The price for a Raspberry Pi equipped with single core 700MHz ARM

microprocessor and 256MB of memory is $25 while much more powerful boards in the

price range $40-100 are available. These embedded computers are traditionally running

with Linux distributions which are open-source software stacks built around the Linux

kernel and a plethora of other tools, libraries and utilities. Linux, with its powerful

and productive command line abilities, does not depend on the existence of a graphical

desktop environment. This allows to dedicate the memory and CPU resources normally

wasted by GUIs to other design-specific tasks. The modular nature of Linux allows one

to prepare a customized OS image which will directly boot into the BCI software. More

aggressive resource optimization can be done by removing unused system services and

applications. Each customization step help in reducing overall power consumption of the

BCI system, which is key to designing a portable, battery-powered and ubiquitous BCI.

One big challenge in embedded BCI design is to decide which programming language

and libraries will be used for data acquisition, signal processing, stimuli presentation

and optionally machine learning. This generally is not a big deal for BCIs running on

top of conventional PCs as there exists lots of alternatives be it standalone or MATLAB

based. The major obstacle in reusing these already available frameworks is that they

are all developed, tested and used on x86 CPU architecture and thus are not available

for ARM CPU architecture. Although MATLAB has support for generating code for

embedded targets, MATLAB itself is a commercial product which can not be accessed

free of charge.
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Python is a high-level, easy to learn interpreted language with a huge number of extension

modules developed by the community. Python is also multi-platform thus it is possible

to run Python programs on a wide range of different operating systems and architectures.

Another advantage of Python which made it very popular among scientific researchers is

the ability to write code that will run as fast as the underlying hardware allows, thanks to

scientific Python modules implemented in C like NumPy and SciPy (Oliphant, 2007).

The objective of this thesis is to assess the feasibility of a low-cost and online BCI design

which will be completely driven by an inexpensive embedded computer running BCI

software written purely in Python on Linux OS. We believe that application-specific

embedded computing with consumer grade EEG headsets will help in increasing the

availability of BCIs by reducing the overall cost.

1.2 Thesis Outline

The remainder of this thesis is structured as follows.

In Chapter 2, we briefly introduce the neurophysiological processes behind BCI design

along with the brain activity measurement techniques and the cognitive paradigms often

used to extract useful information out of the brain.

Chapter 3 presents in detail the materials and methods for the embedded BCI system

proposed by this study.

Finally, Chapter 4 concludes what have been achieved by this thesis and discusses further

research possibilities about embedded BCI design.



2 BRAIN COMPUTER INTERFACES

The locked-in syndrome (LIS) is a medical condition in which patients are awake and con-

scious but cannot move or communicate verbally because of complete paralysis of nearly

all voluntary muscles. LIS is mostly caused by traumatic brain injuries, brain strokes,

hemorrhages, head trauma, demyelinating diseases or infectious conditions. Amyotrophic

Lateral Sclerosis (ALS) (Also known as Lou Gehrig’s disease, named after a popular

baseball player who was diagnosed with ALS in 1939) is a neurodegenerative disease

which is one of the major causes of LIS. ALS basically attacks motor neurons that control

voluntary muscles in the body. When those motor neurons stops functioning, the muscles

lose strength and progressively die (Atrophy). A cure for ALS is currently not available

and the cause of the disease is still unknown.

According to ALS Association, nearly 5600 people in the United States are diagnosed

with ALS each year and the incidence of the disease is 2 per 100.000 people1. Although

there doesn’t seem to be an incidence study related to ALS in Turkey, it is estimated that

6000-8000 people have the disease.2.

When consciousness and cortical functions are preserved, it may actually be possible

to use healthy brain activity in order to build a novel way of interaction between the

subject’s brain and the environment using special brain signal acquisition techniques and

computers. These composite systems are called Brain-Computer Interfaces (BCI), Brain-

Machine Interfaces (BMI) or Direct Brain Interfaces (DBI). BCIs in general have the

potential to improve the life quality of disabled people and may actually be the only way

of interaction for completely locked-in people.

1http://www.alsa.org/about-als/facts-you-should-know.html
2http://www.als.org.tr/haber_detay.asp?haberID=77

http://www.alsa.org/about-als/facts-you-should-know.html
http://www.als.org.tr/haber_detay.asp?haberID=77
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2.1 Definition of a BCI

According to Wolpaw et al. (2002), a BCI is a communication system in which messages

or commands sent to the external world do not pass through the brain’s normal neuro-

muscular output pathways; thus BCIs provide an alternative way for people to act on the

world.

Three mandatory elements for a BCI system has further been enumerated by Graimann

et al. (2010):

1. A BCI must directly record brain activity,

2. A BCI must provide realtime feedback to the user,

3. A BCI must be based on intentional control.

The intentional control constraint mentioned above, leaves the devices that detect changes

in brain activity occurring without any intent like workload, arousal or sleep, out of the

definition for BCIs.

A more application-focused definition from the perspective of Human-Computer Interac-

tion (HCI) proposed by Zander et al. (2010) is as follows:

"A BCI is a system to provide computer applications with access to real-time infor-

mation about cognitive state, on the basis of measured brain activity."

Zander et al. (2008) also categorized BCIs into three types:

• Active BCI A BCI deriving its outputs from consciously controlled brain activity.

• Reactive BCI A BCI deriving its outputs from brain activity arising in response to

external stimuli.

• Passive BCI A BCI deriving its outputs from arbitrary brain activity without the

purpose of voluntary control.
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According to this categorization, passive BCIs embrace the systems based on arbitrary

activity detection which were not previously counted as BCIs by Graimann et al. (2010).

Active and Reactive BCIs are also referred as endogenous (self-generated) and exogenous

(evoked) BCIs in literature (Jackson and Mappus, 2010).

2.2 Neural Principles

2.2.1 Central Nervous System

The central nervous system (CNS) is the part of the nervous system which integrates

sensory information it receives from the body and responds to it accordingly. Together

with the peripheral nervous system (PNS) which connects CNS to the limbs and organs,

it plays an important role in determining the behavior. The two structures that make up

the CNS are the brain and the spinal cord which is the information pathway containing

nervous tissue that extends from the brain.

The human brain is divided into two (left and right) cerebral hemispheres covered with

cortex which is also known as the gray matter, the type of CNS tissue made of neurons.

The hemispheres are connected through a central structure called corpus callosum which

is a bundle of neural fibers that enables the communication between hemispheres.

Each cerebral hemisphere is further divided into frontal, parietal, occipital and temporal

lobes (Figure 2.1) which have specialized functions (Table 2.1) driving our cognitive

abilities. It should be noted that each hemisphere is primarily involved in sensory and

motor processes on the opposite side of the body and the "apparently" similar cerebral

hemispheres are neither functionally equivalent nor exactly symmetrical (Kandel et al.,

2013).
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Table 2.1: Functional Description of Cerebral Lobes

Frontal Lobe Executive functions, movement control (Primary motor cortex (M1))

Parietal Lobe Multimodal sensory information integration

Occipital Lobe Visual processing center containing the visual cortex (V1)

Temporal Lobe Hearing and auditory signal processing, memory, emotion

Figure 2.1: Functional Regions of the Cerebral Cortex (Adapted from Wikipedia)

2.2.2 Neurons

Neurons or nerve cells are the core components of the brain. There are approximately

1011 neurons in the human brain (Kandel et al., 2013) forming complex interconnected

networks to produce human behavior.

A typical neuron is composed of four regions: The cell body or soma, dendrites, axon and

presynaptic terminals (Figure 2.2).

The cell body, surrounded by a membrane made of a lipid bilayer, is the center of the

neuron containing the nucleus which is responsible for protein synthesis. A number of

http://en.wikipedia.org/wiki/File:Cerebrum_lobes.svg
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Figure 2.2: The Structure of a Neuron (Adapted from Wikipedia)

short branches called dendrites extend from the cell body. The function of dendrites

is to receive incoming signals sent by other neurons. In contrast to having multiple

dendrites for input, neurons have a single tubular output extension called axon. This single

axon branches out into extremities known as presynaptic terminals which transmit the

electrical signal to the (postsynaptic) dendrites of other neurons (postsynaptic cells) using

special chemicals called neurotransmitters. The zone where these presynaptic terminals

and postsynaptic dendrites communicate with the help of neurotransmitters is called the

synapse. An axon has the ability to carry signals over distances between 0.1mm and 2m

(Kandel et al., 2013).

Figure 2.3: Action Potential. (Sanei and Chambers, 2008)

An action potential (AP), the electrical signal conducted through the neurons, is initiated

at the initial part of the axon and propagates to the synapse. The generation of APs is an

electrochemical phenomenon involving the protein structures found in the cell membrane

http://commons.wikimedia.org/wiki/File:Neuron.svg
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called ion pumps and ion channels. More precisely, an AP is a temporary change in the

membrane potential which normally rests at around -70 mV, produced by an exchange

of ions through the ion channels embedded in the cell membrane. This exchange is

actually caused by an incoming stimulus reaching the dendrites of the neuron. Once

this temporary change reaches a threshold potential around -55 mV, an action potential is

triggered (Figure 2.3): A sudden rise in the membrane potential (depolarization) often

reaching around +30 mV (~+100 mV deflection from the resting potential) followed by

a symmetrical fall (repolarization) ending below the resting potential at around -90 mV

(hyperpolarization). The membrane returns to its resting potential after this short (a few

milliseconds) hyperpolarization phase.

The brain receives, analyzes and carries information with the help of APs. An important

functional characteristic of the brain is that the specificity of an information is not defined

by the form of the signal but by the pathway the signal travels in the brain. It is the

interpretation of signal patterns and pathways which leads to the sensation of several

external stimuli (Kandel et al., 2013).

2.3 Measuring Brain Activity

A BCI requires a method for observing the brain activity produced during various cog-

nitive paradigms. There exists several methods (Table 2.2) for sensing this activity

each with its own pros and cons. We can categorize available methods in terms of the

invasiveness and the neurophysiological origin of the measured activity.

Two other parameters defined below are also important to assess the applicability of the

technique in the BCI field:

• Temporal resolution is the smallest time period of neural activity that can be reliably

observed by the method.

• Spatial resolution is the smallest neuronal area that can be reliably accessed by the

method.
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2.3.1 Invasiveness

Invasiveness is a measure of how deep is a sensor going through the skin. Electroen-

cephalography (EEG), magnetoencephalography (MEG), functional magnetic resonance

imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) are all non-invasive

methods.

In contrast to non-invasive methods, invasive methods need to implant microelectrodes

inside the skull. In electrocorticography (ECoG), microelectrodes are placed on the

surface of the cortex during a surgery, while intracranial (or intracortical) recordings use

arrays of microelectrodes implanted inside the cortex (Figure 2.43).

Since ECoG electrodes stays on the surface of the cortex, it is sometimes referred to as a

partially-invasive technique (Demetriades et al., 2010).

Figure 2.4: Invasiveness of EEG, ECoG and Intracranial Recordings. (Courtesy of B.

Blankertz)

3https://wiki.ml.tu-berlin.de/wiki/NT/Courses/SS13_IL_AAND

https://wiki.ml.tu-berlin.de/wiki/NT/Courses/SS13_IL_AAND
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2.3.2 Neurophysiological Origin

The neurophysiological origin of the measured activity can either be electrophysiological

or hemodynamic (Nicolas-Alonso and Gomez-Gil, 2012).

When neurons are activated, synaptic currents are produced within the dendrites. The

magnetic and electrical fields generated by these currents constitute the so-called elec-

trophysiological activity. These activities can be measured invasively or non-invasively

using MEG, EEG, ECoG and intracranial recordings.

The body adjusts its blood flow to deliver oxygen and glucose to active tissues during

physical activities. The rapid delivery of blood to active neurons in the brain is called

the hemodynamic response. These metabolic changes can be observed using imaging

methods like fMRI and fNIRS. Since the hemodynamic response is the consequence

of an augmented neuronal activity, these methods can be described as indirect methods

(Nicolas-Alonso and Gomez-Gil, 2012).

2.3.3 Overview of Methods

Although each of the imaging methods mentioned before can be used in a BCI sys-

tem, EEG surpasses other methods due to its high temporal resolution, portability, non-

invasiveness and low cost. Consumer grade low cost EEG devices are also available

making the technology more ubiquitous. The rest of this work will solely be focused on

non-invasive EEG based BCI systems.

fMRI and MEG require huge devices which are very expensive, non-portable and uncom-

fortable. ECoG and intracranial recordings can acquire high quality signals for BCI but

they are not easily applicable due to their invasive nature. Once implanted, their signal

quality can gradually become weaker in long term because of tissue reaction issues.

fNIRS is recently gaining popularity for portable and non-invasive BCI design among

researchers (Coyle et al., 2007; Pfurtscheller et al., 2010; Fazli et al., 2012). Although
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Table 2.2: Comparison of Brain Imaging Methods (Nicolas-Alonso and Gomez-Gil,

2012)

Method Temporal

Resolution

Spatial Resolution Invasiveness Activity Portability

EEG ~0.05s ~10mm Non-invasive Electrical Portable

MEG ~0.05s ~5mm Non-invasive Magnetic Non-portable

ECoG ~0.003s ~1mm Invasive Electrical Portable

Intracortical ~0.003s ~0.05mm - 0.5mm Invasive Electrical Portable

fMRI ~1s ~1mm Non-invasive Hemodynamic Non-portable

fNIRS ~1s ~5mm Non-invasive Hemodynamic Portable

it has a low temporal resolution; the ease of installation over the scalp and its simplistic

electronic design will probably make it an even more popular acquisition technique in the

future years.

2.4 Principles of EEG

2.4.1 Electrode Placement

Human EEG is recorded using an internationally recognized electrode naming and place-

ment standard called 10-20 system (Jasper, 1958) (Figure 2.5). This standard is based

on the relationship between electrode locations and the underlying area of the brain. A

combination of a letter and a number is further used to identify each electrode location.

The letters F, Fp, T, C, P and O respectively denotes Frontal, FrontoPolar (or Frontal

Polar), Temporal, Central, Parietal and Occipital lobes. (Note that the C letter is only

meaningful as a notation to define the central line as the brain does not have an area

called central lobe.) An A is used to refer to earlobes. Electrodes over the left hemisphere

are suffixed with odd numbers and those over the right hemisphere are suffixed with even

numbers. A "z" instead of a number refers to an electrode placed on the midline, which is

named the vertex.
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Figure 2.5: International 10-20 System. (Nicolas-Alonso and Gomez-Gil, 2012)

Two anatomical landmarks are used to define the longitudinal axis over the scalp: First,

the Nasion (Ns or Nz), which is the depressed area between the eyes where the bridge of

the nose joins the forehead; second, the Inion (In or Iz), which is indicated by a bump at

the lower rear part of the skull. From these landmarks, Ns-In perimeters are divided into

10% and 20% intervals and electrode locations are fixed at those division points. Three

other electrodes are placed on each hemisphere (F3,C3,P3 and F4,C4,P4) equidistantly

from the already placed adjacent electrodes. The percentage of division intervals clearly

reveals why the system is named after the term 10-20.

Another widely used electrode placement schema is the full 10-10 combinatorial system

(1994) which is a sophisticated 10-20 variant with more and more electrodes placed in

between 10-20 locations (Figure 2.6). New letters are introduced to define intermediate

electrode sites: AF is between Fp and F, FC is between F and C, FT is between F and T,

CP is between C and P, TP is between T and P, and finally PO is between P and O. The

colored locations are actually T3, T4, T5 and T6 electrodes in 10-20 system but they are

renamed to T7, T8, P7 and P8 in this modified schema.

A new 10-5 extension with 345 electrodes was also proposed by Oostenveld and Praam-

stra (2001) for high resolution EEG studies.
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Figure 2.6: 10-10 Combinatorial System (Drawing courtesy of Marius ’t Hart)

2.4.2 Montage and Recording

What is measured in EEG is defined as potential differences between pairs of electrodes

placed on various scalp locations (Nunez and Srinivasan, 2006). One of the electrodes is

generally called recording or signal electrode while the other is defined as the reference

electrode. It is important to note that although the adjective reference seems to desig-

nate an electrode which captures an unchanging baseline/neutral signal, both electrodes

actually record real and alternating brain signals (Wolpaw and Wolpaw, 2012).

Referential recording refers to a montage where EEG is recorded between each recording

electrode and a reference electrode with a fixed position (Figure 2.7a). This is the

montage generally used in cognitive studies and BCIs.
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(a) Referential Montage (b) Bipolar Montage

Figure 2.7: A Comparison of Referential and Bipolar Montages

In contrast, Bipolar recordings measure potential differences between adjacent/very close

electrodes: The reference electrode is not fixed at a specific location but varies according

to the recording electrode (Figure 2.7b).

It is trivial to switch between montages with basic arithmetic operations once EEG is

acquired and digitized. Re-referencing to another electrode is also possible at this stage.

2.4.3 Electrode Types

There are basically two types of electrodes used for recording EEG: Passive electrodes

and active electrodes.

Passive electrodes are tiny metal disks usually made of tin, gold, silver or silver/silver-

chloride (Ag/AgCl) connected to an amplifier through electrical wires. The signal they

acquire is then amplified in the external amplifier circuitry. Since brain signals acquired

through the scalp have amplitudes ranging between 10-100uV (Sanei and Chambers,

2008), higher amplitude noise sources like head movements, environmental factors and

electrical line noise (A 50 or 60 Hz frequency signal depending on the country) have
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(a) (b) (c)

Figure 2.8: Different Types of Electrode: (a) A passive electrode by g.tec (b) An active

electrode (Sullivan et al., 2007) (c) A dry electrode prototype (Grozea et al., 2011)

the risk to garble the signals as their amplitudes become even higher after amplification.

To avoid this problem as much as possible, electrode cables must be short, shielded and

fixed.

A good contact between the scalp and the electrodes is also crucial to improve the signal-

to-noise ratio (SNR) of the acquired signals. A layer of conductive gel paste is generally

applied before recordings to reduce the skin-electrode impedance (opposition to current).

Unfortunately, the application of the gel paste is cumbersome, time consuming and leaves

pasty residue that will not go away without washing. An easier and cleaner alternative

to gel paste is to put sponge-like pads between the electrode and the scalp and to soak

them with saline solution (e.g. salt and water). This sponge-saline approach is the one

preferred in Emotiv’s wireless EEG headsets. The obvious disadvantage of this method is

that the impedance goes up as the sponges dry (Wolpaw and Wolpaw, 2012).

On the other hand, dry electrodes that do not require the application of a conductive

material is heavily researched to improve the ergonomics of EEG recordings (Popescu

et al., 2007; Grozea et al., 2011). These electrodes generally penetrate through the hair

with their fiber-like electrode tips to increase the conductivity.

Active electrodes make use of a small built-in circuitry to amplify the signals before the

transmission takes place. The preamplified brain signals are thus more robust against

external noise sources mentioned above since the additive noises are not preamplified.
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Passive electrodes are generally the preferred type of electrode in EEG recordings since

they are simple to design and cheap to manufacture (Wolpaw and Wolpaw, 2012) com-

pared to expensive and sophisticated active electrodes. A visual comparison of the men-

tioned sensor technologies can be seen in Figure 2.8.

2.4.4 Brain Rhythms in EEG

The frequency (or spectral) content of EEG signals is generally divided into five frequency

bands: Delta rhythm (0.1-3.5 Hz), theta rhythm (4-7.5 Hz), alpha rhythm (8-13 Hz), beta

rhythm (14-30 Hz) and gamma rhythm (> 30 Hz) (Niedermeyer and da Silva, 2005).

A sixth one called mu rhythm (8-12 Hz) can be observed when motor neurons are in

the idling state (Wang et al., 2010). Although the frequency intervals of mu and alpha

rhythms seem to overlap, alpha rhythm is observed over the visual cortex while the mu

rhythm is prominent over the sensorimotor cortex.

Figure 2.9: Alpha Rhythm Over Oz (Courtesy of B.Blankertz)

The observation or absence of these rhythmic activities is generally associated with ex-

ternal stimuli processing, sleep states, cognitive actions or pathological findings. For

example, an alpha rhythm around 10 Hz over the visual cortex is attenuated during visual

processing, e.g. while the eyes are open (Figure 2.94).

2.5 BCI Paradigms

There are several paradigms used in BCI design for extracting control information out of

the brain. A BCI paradigm is defined as active/endogenous or reactive/exogenous based

4https://wiki.ml.tu-berlin.de/wiki/NT/Courses/SS13_IL_AAND

https://wiki.ml.tu-berlin.de/wiki/NT/Courses/SS13_IL_AAND
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on the underlying cognitive mechanism of the paradigm used.

2.5.1 Event-Related Potentials

Event-Related potentials (ERP) are defined as potential changes in neural activity associ-

ated with specific cognitive events (Luck, 2005).

P300 is a widely used and researched ERP in BCI field. It is a positive (a positive

amplitude change happens in the ongoing activity) exogenous response elicited by the

brain approximately 300ms after the presentation of an infrequent target stimulus in a set

of frequent non-target stimuli (Polich, 2007). A special letter matrix (Figure 2.10) was

proposed by Farwell and Donchin (1988) in order to use this neurophysiological fact in

the BCI field. The system randomly highlights the rows and the columns of the letter

matrix while the user focuses on the letter that he/she wants to select. Each letter is

highlighted once for its row and once for its column in a sequence of 2N highlights for a

NxN square letter matrix. The P300 response evoked by these infrequent highlights are

further detected to select the focused letter.

A G M S Y *

B H N T Z *

C I O U * TALK

D J P V FLN SPAC

E K Q W * BKSP

F L R X SPL QUIT

Figure 2.10: Layout of the Farwell-Donchin P300 Speller

P300 response is also evoked in auditory and tactile stimulation.
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2.5.2 Steady-State Visual Evoked Potentials

Figure 2.11: Diagram of a SSVEP BCI (Chumerin et al., 2012)

A steady-state visual evoked potential (SSVEP) is an exogenous response to a repetitive

visual stimuli which usually oscillates at the fundamental and harmonic frequencies of

the flickering stimulus (Wu et al., 2008).

In a typical SSVEP BCI setup, targets are generally represented to the user in a flickering

fashion be it an LED light, a pattern on a CRT or LCD screen, etc (Figure 2.11). The

type of stimulation device, the color and the shape of the stimulus, the frequency band of

the oscillation rate and the phase between stimuli are characteristics of the light stimuli

which can affect the SSVEP (Zhu et al., 2010).

Since SSVEP is a response to a repetitive visual stimulus, it is prominent and observable

through the occipital locations near the primary visual cortex (Herrmann, 2001).



20

2.5.3 Slow Cortical Potentials

Slow Cortical Potentials (SCP) are voltage changes in EEG which occur slowly over

time, e.g. between 0.5-10 seconds (Wolpaw and Boulay, 2010). The fact that these slow

potentials can be consciously regulated by healthy and paralyzed people, makes SCP a

choice for BCI design (Birbaumer et al., 2000; Hinterberger et al., 2004; Birbaumer,

2006).

SCP-based BCIs are active/endogenous systems as the user has to voluntarily adjust the

polarity (negative/positive) of their slow potentials according to some neurofeedback

protocol (Jackson and Mappus, 2010). They can be used to select between binary tar-

gets (target selection) since the control signal is a bi-state negative/positive shift in slow

potentials. This binary selection can also be extended to a speller application in which a

letter is recursively selected by halving the alphabet in each step (Birbaumer et al., 2000).

2.5.4 Sensorimotor Rhythms

Figure 2.12: Mu Rhythm Over Sensorimotor Cortex (Courtesy of B.Blankertz)

Sensorimotor rhythms (SMR) are idling (rhythms observable while the user is at rest)

mu and beta rhythms prominent over the sensorimotor cortex which are desynchronized

(suppressed) with the activation of the motor system like the movement of hands or foot

(Sellers et al., 2010). These changes not only happen with the actual movement but also

with the imagination of movement, e.g. motor imagery (MI) (McFarland et al., 2006).

The terms SMR, MI or mu rhythm can be used interchangeably to define this type of

BCI.
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Figure 2.13: Hand Orthosis for Neurorehabilitation (Ramos-Murguialday et al., 2012)

SMR-based BCIs are active/endogenous systems as the user has to initiate/plan/imagine

a movement to adjust their EEG rhythms. SMR-based BCIs are used in cursor control

applications to select between targets (Wolpaw et al., 1991; Wolpaw et al., 2003; Vaughan

et al., 2006), neurorehabilitation (Figure 2.13) applications (Prasad et al., 2009; Ramos-

Murguialday et al., 2012; Ortner et al., 2013), orthotics and prosthetics control (Guger

et al., 1999; Pfurtscheller and Neuper, 2001).



3 MATERIALS AND METHODS

3.1 Materials

There exists three important hardware components of our embedded BCI design: an

embedded computer to manage all kinds of interaction between the individual parts of

the BCI, an EEG headset for brain signal acquisition and finally an external actuator to

reflect the choices of the BCI user to the environment, e.g. the arms of a humanoid robot

for this study.

3.1.1 BeagleBone Black

BeagleBone Black (BBB) is a 45$ single board computer released in 2013. It has 1GHz TI

AM3359 Sitara ARM Cortex-A8 microprocessor, 512MB DDR3 memory, 3D accelerated

PowerVR SGX530 graphical processing unit (GPU) with HDMI output, onboard 2GB

embedded MMC (eMMC) flash storage pre-loaded with Ångström Linux distribution

(Figure 3.1). Along with a single USB 2.0 host port and 10/100 RJ45 Ethernet port

for general purpose connectivity, the board also provides a wide variety of low-level

expansion interfaces: 66xGPIO, 5xUART, 8xPWM, 8xADC, 2xI2C, SPI and CAN. A

4 port bus powered external USB hub is used for increasing the number of USB devices

that can be connected to the BBB.

We first installed Ubuntu to an 8GB micro SD card as it is a widely adopted Linux

distribution with a rich software repository. A rich software repository is important

for avoiding manual compilation/installation of several tools and libraries, which in turn

decreases the time needed to start experimenting with the BCI system. We also disabled

several unused system services to avoid wasting processor and memory resources.
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Figure 3.1: BeagleBone Black Single-board Computer

3.1.1.1 Programmable Realtime Unit

Although the Cortex-A8 processor is powerful, real-time control of high-speed external

hardware and high precision tasks can be affected by OS latencies. BBB improves the

situation by providing two programmable realtime units (PRU) optimized to perform

embedded tasks with hard realtime constraints. The PRUs have:

• Two 32-bit RISC cores running at 200MHz (Each instruction completes in 5ns)

• 8KB data memory and 8KB instruction memory

• 12KB shared memory

• A small instruction set

It is sometimes possible to encounter delays in OS scheduling while EEG acquisition,

external stimulation (like SSVEP stimulation for example) are both running simultane-

ously. This can negatively impact the precision of flickering intervals causing the BCI to

perform badly. Offloading stimulation or any other high precision tasks to the PRU can

resolve jitters and delays as PRU is a distinct microcontroller unit which is completely

decoupled from the main CPU of the device.

By now, the PRU can only be programmed using assembly language. A helper library for

C and Python is available to launch and terminate custom programs written for the PRU.

It is also possible to share data between the PRU and the CPU using shared memory.
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(a) Emotiv EEG Headset (b) Electrode Locations

Figure 3.2: Emotiv EEG Headset and Electrode Locations

3.1.2 Emotiv EEG

Emotiv EEG (Figure 3.2a) is a battery-powered, wireless consumer headset which can

acquire 14 channels (Figure 3.2b) of EEG signal. Although Emotiv EEG is primarily

researched for gaming and entertainment applications (van Vliet et al., 2012; Chumerin

et al., 2013), several research activities are targeting it to assess and exploit its usability for

assistive BCI applications (Liu et al., 2012; Badcock et al., 2013; Caglayan and Arslan,

2013; Guneysu and Akin, 2013; Choi and Jo, 2013).

The headset internally applies a notch filter (At line frequency 50/60Hz) and a 5th order

band-pass filter (0.2-45Hz) to the signal. Although the internal sampling rate of the

headset is 2048Hz, the device downsamples the signal to 128Hz before sending them

to the computer. Full technical specifications found in the manufacturer’s website5 are

summarized in Table 3.1.

5http://www.emotiv.com/eeg/download_specs.php

http://www.emotiv.com/eeg/download_specs.php
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Table 3.1: Technical Specifications of Emotiv EEG Headset

Number of channels 14 (+ CMS/DRL references, P3/P4 locations)

Channel names AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4

Sampling method Sequential sampling, single ADC

Sampling rate 128 SPS (2048 Hz Internal)

Resolution 14 bits 1 LSB = 0.51uV

Bandwidth 0.2-45Hz, digital notch filters at 50Hz and 60Hz

Filtering Built-in digital 5th order Sinc filter

Dynamic range (input referred) 8400uV (pp)

Coupling mode AC coupled

Connectivity Proprietary wireless, 2.4GHz band

Battery life 12 hours (typical)

Impedance measurement Real-time contact quality using patented system

Emotiv EEG uses a fixed reference electrode pair around P3/P4 region as the default

reference location. The manufacturer also provided an alternative reference electrode pair

right behind the ears. It is possible to switch to that reference location by removing the

plastic rubber pads and inserting the spongy pads to those spots instead of the default

reference locations6.

3.1.2.1 Official Software Development Kit (SDK)

Emotiv provides an SDK for Windows, Mac OS X and Linux operating systems but the

provided SDK is closed-source and only available for x86 CPU architecture. This means

that it is not possible to use the SDK on ARM embedded computers like Raspberry Pi or

Beaglebone Black. Although Emotiv recently made available some closed-source C/C++

libraries initially built for N900 ARM smartphones (Stopczynski et al., 2011), they are

still far from being usable due to possible binary incompatibility between different ARM

6http://emotiv.com/ideas/forum/forum12/topic2507

http://emotiv.com/ideas/forum/forum12/topic2507
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architectures and the lack of documentation. As of now, the only reliable way of using

the Emotiv headset with an ARM based embedded computer is to use the open-source

protocol reverse-engineered by Cody Brocious and Kyle Machulis.

3.1.2.2 Open-Source Protocol

According to the protocol details7 the USB dongle acts as a simple Human Interface

Device (HID) which relays an AES encrypted data packet of size 32 bytes with a rate of

128 packets/sec. Each decrypted EEG packet is tagged with an 8-bit sequence number

ranging from 0 to 127. A sequence number greater than 127 carries the battery level of

the device instead of EEG data. Real-time contact quality information for each sensor is

also embedded within the EEG packets in an interleaved order: 0th packet contains the

contact quality for F3, 1st packet for FC5, and so on.

Figure 3.3: Validation of the Open-Source Protocol

In order to validate the open-source protocol, we connected a function generator to the

headset. The generator is adjusted to produce a 15Hz sinusoidal waveform which is

injected to the O2 electrode of the headset.

7https://raw.github.com/openyou/emokit/master/doc/emotiv_protocol.asciidoc

https://raw.github.com/openyou/emokit/master/doc/emotiv_protocol.asciidoc
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The frequency spectrum of the signal acquired over O2 clearly shows the fundamental

and harmonic frequencies of the injected waveform (Figure 3.3). This proves that the

protocol correctly decrypts and resolves the data packets streamed by the headset.
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3.1.2.3 Python-emotiv

Since we decided to realize the whole BCI in pure Python, we developed an object

oriented Python module called python-emotiv8 implementing the open-source protocol

to access the device on Linux. The module uses libusb to access the dongle in a cross-

platform manner although it has only been tested on Linux so far.

As of December 2013, the features of python-emotiv can be summarized as follows:

• Support for Emotiv EEG using libusb on any platform with Python installed

• Support for reading 14 channel raw EEG, 2-axis gyro, contact qualities and battery

status

• Synchronous acquisition of the data per single sample or requested duration

• Ability to save the acquired data as FieldTrip (Oostenveld et al., 2011) compatible

Matlab (.mat) data

• Ability to stream EEG data through Lab Streaming Layer9

python-emotiv was received well by the open-source community. An individual developer

forked the project and added Mac OS X support10 to it. It is also used in a newly started

BCI controlled wheelchair project11.

3.1.3 Kondo KHR-3HV Humanoid Robot

Kondo KHR-3HV is a 17 degrees of freedom humanoid robot manufactured by Kondo

Kagaku (Figure 3.4). The RCB-4 microcontroller of the robot has the ability to drive up

to 35 serial servos. The board is also equipped with several I/O ports to extend the robot

with sensors and other add-ons.

8https://github.com/ozancaglayan/python-emotiv
9https://code.google.com/p/labstreaminglayer

10https://github.com/simlay/python-emotiv
11http://braingizer.blogspot.com

https://github.com/ozancaglayan/python-emotiv
https://code.google.com/p/labstreaminglayer
https://github.com/simlay/python-emotiv
http://braingizer.blogspot.com
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Figure 3.4: Kondo KHR-3HV Humanoid Robot

The motions for KHR-3HV is designed and programmed into the microcontroller using

a Windows application called Heart-to-Heart. All communication between the computer

and the robot (both for programming and controlling) is realized over a serial USB dongle.

Once the motions are designed and written into the microcontroller using the proprietary

software, it is possible to play those preprogrammed motions and control individual servos

separately with the open-source and community contributed libkondo4 library12. The

library has also language bindings to allow controlling the robot using Python and Java.

3.2 Methods

The interaction of the materials described in the previous section is realized through the

intercommunication of various software blocks written in Python. These software blocks

are explained in detail in the following section.

12https://bitbucket.org/vo/libkondo4

https://bitbucket.org/vo/libkondo4
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3.2.1 SSVEP Stimulation

3.2.1.1 Hardware Design

Figure 3.5: Schematic of SSVEP LED Stimulator

BBB has several General-Purpose Input/Output (GPIO) pins that can be used to commu-

nicate with external devices and circuits. These pins can be raised HIGH (+3.3v) or LOW

(0v) using Adafruit BBIO library for Python.

In order to preserve the portability of the system, we decided to use BBB’s Input/Output

capabilities for LED SSVEP stimulation. A simple digital circuit is designed to drive

LED light sources using transistors (Figure 3.5). We had to use transistors to switch the

LEDs because BBB can not provide enough current through its GPIO pins to light LEDs

brightly. The transistors rapidly switch the current going to the light sources which can

be powered by an external power source.

The final montage of the stimulator using 2 red 5x7 LED matrices can be seen in Figure

3.6. Note that only 9 LEDs per LED matrix are enabled as using all of them is not

comfortable for visual perception.
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Figure 3.6: LED Matrix Montage on BeagleBone Black

3.2.1.2 SSVEP Software Block

A Python script (bbb-bci-ssvepd.py) is written to manage the external stimulation cir-

cuit. To start the stimulator, the flickering frequencies, f1 and f2 are passed as command

line arguments to the script which changes the mode for GPIO pins to output, computes

the triggering periods T1 and T2 for each frequency according to the formula Ti =
1

2fi
and

finally blocks until a signal (namely SIGUSR1 signal) is sent to it to start the stimulation.

Once the process receives this signal, it continuously compares the system time and

previously computed triggering periods to decide whether it is time for changing the state

of the lights or not. The stimulation continues until the arrival of the same signal.

The correctness of the flickering frequencies is tested using an Arduino and a simple

software written with the FreqMeasure13 Arduino library. It has been observed that the

flickering frequencies are pretty accurate during a BCI experiment which led us to the

decision that using the PRU for stimulation is not necessary for the proposed design.

13http://www.pjrc.com/teensy/td_libs_FreqMeasure.html

http://www.pjrc.com/teensy/td_libs_FreqMeasure.html
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The stimulation frequencies are currently tuned to f1 = 17Hz and f2 = 19Hz to

represent respectively the left and the right arm of the robot.

3.2.2 Signal Processing and Classification

The signal processing and classification (SPC) block is implemented as a Python function

which runs as a separate process in the background. The main block and the SPC are

connected to each other using a UNIX inter-process communication (IPC) method called

pipe. SPC continuously receives and analyzes EEG data and sends back a classification

result to the main block over this established pipe channel.

Once a new EEG chunk is received by the SPC block, the predetermined channel of

interest is:

• Detrended to remove the linear trend,

• High-pass filtered using 2nd order Butterworth filter with a cutoff frequency of 5Hz

to eliminate low frequency noise components.

The power spectral density (PSD) of the received chunk is estimated using autoregressive

(AR) Burg’s method (Kay and Marple, 1981) with model order set to 64 (Burg’s method

is available in Python through the spectrum14 package).

A cumulative moving average of the PSD estimates of previously received chunks and the

new one is then calculated for smoothing the spectrum and thus improving the SNR. A

weighted sum of the PSD estimates at the 1st harmonic and at the neighborhood of the 2nd

harmonic is used as a score for each flickering frequency fi:

Score(fi) = PSD(fi) +
PSD(2fi − 1) + PSD(2fi) + PSD(2fi + 1)

2

14https://pypi.python.org/pypi/spectrum

https://pypi.python.org/pypi/spectrum
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If one of the scores win over the other one 3 times consecutively, SPC block sends it back

as the classification result and waits for new data.

3.2.3 EEG Acquisition and BCI Workflow

The main acquisition block (ACQ) is actually what manages the SSVEP and the SPC

block. It can actually be considered as the entry point to the BCI application.

Acquire 2 seconds of EEG

Enable SSVEP stimulation

Detrend + 5Hz highpass filter

Send chunk to SPC block

Estimate PSD of the data

Grand average spectrums

Any classification result?

Disable SSVEP stimulation

Send command to robot

Compute PSD score

No

Yes

Start

SPC Block

Classify?
Possible Not yet

Figure 3.7: Workflow of the Proposed BCI

ACQ first launches the SSVEP block with the desired flickering frequencies. After initial-

izing Emotiv EEG headset and establishing connection to the robot, it signals the SSVEP

block to start the stimulation. ACQ continuously acquires 2 seconds length EEG chunks
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and sends them to the SPC block (over the pipe) until SPC sends back a classification

result. Once the result is received, ACQ signals the SSVEP block to stop the stimulation

and sends a control command to the robot according to the result.

The proposed BCI (Figure 3.7) can run infinitely until the user or someone else interrupts

it. The length of each trial is not fixed to a predetermined value which qualifies the BCI

as being a dynamic stopping one.

3.3 Results and Discussion

The BCI is initially tested on 2 subjects with 2 different recording sessions. Each session

consisted of 6 trials of 14 seconds. 7 chunks of 2 seconds length EEG data has been used

in order to classify the attended frequency. The plots of averaged PSD estimation for a

subject with short hair (OC) and a subject with long hair (PU) are respectively presented

in Figure 3.8 and 3.9.

A classification rate of %100 has been achieved in both sessions for the subject OC while

%66.7 and %83.3 were reached by the subject PU.

The misclassification can be caused by several reasons including movement related arti-

facts or poor conductivity (especially for the subject PU with long hair). Artifact rejection

methods can be dynamically applied to the data during the acquisition to eliminate noisy

trials or chunks of EEG.

It can also be observed empirically that the PSD estimate at the 1st harmonic is more

significant compared to the neighborhood of the 2nd harmonic. So a scoring method solely

based around the 1st harmonic may improve the classification rate.

Finally, the relationship between the duration of a single EEG chunk (which is currently

set to 2 seconds) and the SNR of the smoothed spectrum can be analyzed to see whether

increasing the duration improves the SNR or not.
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Figure 3.8: Averaged PSD Estimation of Subject OC
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Figure 3.9: Averaged PSD estimation of subject PU. Misclassified trials are drawn with

dashed lines



4 CONCLUSION

In this study, a proof of concept, portable, embedded and affordable SSVEP BCI system

allowing humanoid robot control is proposed.

Initially, a free, open-source and architecture independent Python library allowing hard-

ware access to Emotiv EEG is developed from scratch due to the lack of proper SDK

support for ARM architecture. The next step was to tune and customize the selected

embedded computer, namely the BeagleBone Black, to suit the needs of a complete BCI

system.

All of the software blocks regarding stimuli presentation, EEG acquisition, signal process-

ing and robot control are also implemented in Python. We thus conclude that Python is a

very powerful, free and open-source programming language for a wide range of scientific

research topics.

Preliminary results show that the deployment of embedded computers in the BCI field can

be considered feasible depending on the selected BCI paradigm and the complexity of the

overall design. To our knowledge, this is the first BCI system which completely runs on

an embedded computer.

Future studies

More advanced methods like common spatial pattern (CSP) can be implemented and

applied to the channels to select the most feature rich channel combination in terms of

SSVEP response. Moreover, a simple training session can be applied to dynamically tune

several parameters like the channel(s) of interest, trial duration and SSVEP frequencies

to minimize intersubject variations. There is still enough room in BeagleBone Black to

implement a machine learning based BCI using the open-source libraries like scikit-learn

for example.
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The output of the proposed BCI system can be improved and a more intelligent robotic

control using ambient sensing and motion planning algorithms should be possible. It is

also possible to completely change the output modality and use the BCI for answering

simple yes/no questions. We have already been able to successfully integrate espeak

speech synthesizer into our BCI to test this modality.

Finally, the whole BCI stack can be modified to run in an autonomous way once the

embedded computer is turned on. For example, contact qualities of electrodes can be

automatically assessed to start the BCI when the headset is placed over the scalp or

the power button of the BeagleBone Black can be used to switch BCI output modality.

These will turn the embedded computer into an application specific processor similar to

application spefic integrated circuits (ASIC) found in many self-contained appliances.
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