

MILP FORMULATIONS FOR THE ORDER BATCHING PROBLEM IN

LOW-LEVEL PICKER-TO-PART WAREHOUSE SYSTEMS

(SİPARİŞ GRUPLAMA PROBLEMİ İÇİN KARMA TAM SAYILI DOĞRUSAL

PROGRAMLAMA GÖSTERİMLERİ)

by

Merve ÇAĞIRICI, B.S.

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

 Date of Submission : Apr 8, 2014

Date of Defense Examination : Apr 11, 2014

 Supervisor : Assoc. Prof. Dr. Temel ÖNCAN

 Committee Members : Assoc. Prof. Dr. M. Ebru Angün

 Asst. Prof. İbrahim Muter (BAU)

ii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor

Assoc. Prof. Temel Öncan for his exceptional support, insight and encouragement

during the process of preparing this thesis.

I would like to express my thanks to committee members, Assoc. Prof. Dr. M. Ebru

Angün, and Asst. Prof. İbrahim Muter, for their comments and words of

encouragements.

I would like to thank to my family and my friends for their encouragement, love and

support.

Merve ÇAĞIRICI

Apr, 2014

Table of Contents

List of Symbols v

List of Figures vii

List of Tables viii

Abstract ix

Résumé xii

Özet xv

1. Introduction 1

2. Literature Survey 4

 2.1. Routing Policies for the OBP 5

 2.2. Heuristic Solution Procedures for the OBP 9

 2.3. Meta-Heuristic Algorithms for the OBP 11

3. MILP Formulation for the Order Batching 16

 3.1. Traversal Policy 17

 3.2. Return Policy 21

4. Computational Experiments 23

5. Conclusion 31

References 33

Appendix 38

iv

 Appendix A: C ++ Codes of Traversal Strategy 38

 Appendix B: C ++ Codes of Return Strategy 51

Biographical Sketch 58

List of Symbols

ACO : Ant Colony Algorithm

BB : Branch and Bound

BP : Branch and Price

CW : Clark and Wright

CW(ii) : Clark and Wright (ii)

FCFC : First Come First Served

GA : Genetic Algorithm

ILS : Iterated Local Search

KDTP : Karma Tam Sayılı Doğrusal Programlama

MILP : Mixed Integer Linear Programming

MIP : Mixed Integer Programming

OBP : Order Batching Problem

PLMNE : Programmation Linéaire Mixte en Nombres Entiers

PTC : Problème de Traitement des Commandes

RBAS : Ranked Based Ant System

SA : Simulating Annealing

SGP : Sipariş Gruplama Problemi

SPP : Set Partitioning Problem

TS : Tabu Search

VNS : Variable Neighborhood Search

 vi

VRP : Vehicle Routing Problem

List of Figures

Figure 2.1. : Layout of a rectangular warehouse 6

Figure 2.2. : Traversal Routing Policy 7

Figure 2.3. : Return Routing Policy 7

Figure 2.4. : Midpoint Routing Policy 8

Figure 2.5. : Largest Gap Routing Policy 8

Figure 4.1. : Histogram of the UB values are obtained with Q=24 and

 traversal policy 25

Figure 4.2. : Histogram of the UB values are obtained with Q=36 and

 traversal policy 26

Figure 4.3. : Histogram of the UB values are obtained with Q=48 and

 traversal policy 27

Figure 4.4. : Histogram of the UB values are obtained with Q=24 and return

 policy 28

Figure 4.5. : Histogram of the UB values are obtained with Q=36 and return

 policy 29

Figure 4.6. : Histogram of the UB values are obtained with Q=48 and return

 policy 30

List of Tables

Table 3.1. : Notation for the Basic Formulation 16

Table 3.2. : Notation used for the OBP with Traversal Policy 18

Table 3.3. : Notation used for the OBP with Return Policy 21

Table 4.1. : Computational results with the MILP formulation and saving

 algorithm for the OBP considering traversal routing policy

 with picker capacity Q = 24. 25

Table 4.2. : Computational results with the MILP formulation and saving

 algorithm for the OBP considering traversal routing policy

 with picker capacity Q = 36. 26

Table 4.3. : Computational results with the MILP formulation and saving

 algorithm for the OBP considering traversal routing policy

 with picker capacity Q = 48. 27

Table 4.4. : Computational results with the MILP formulation and saving

 algorithm for the OBP considering return routing policy

 with picker capacity Q = 24. 28

Table 4.5. : Computational results with the MILP formulation and saving

 algorithm for the OBP considering return routing policy

 with picker capacity Q = 36. 29

Table 4.6. : Computational results with the MILP formulation and saving

 algorithm for the OBP considering return routing policy

 with picker capacity Q = 48. 30

Abstract

Warehouse systems have many functions including receiving, storage, order picking

and shipping. Order picking is the operation of retrieving products from their storage

locations in order to satisfy customer requests. A picker performs retrieval operations

according to a given pick list from the storage location to the input/output point. Order

picking operations consist of order batching and order picker’s routing. Order batching

is the grouping of customer orders. Order picker’s routing operation consists of

determining the sequence of the order picking.

In this study, we consider the Order Batching Problem (OBP) which is shown to be

NP-hard. Given both a list of customer orders and order picker’s routing policy, the

OBP deals with constructing batches of customer orders such that the total travel length

of the pickers is minimized. Furthermore, the travel time has a substantial role in

customer satisfaction since the shorter the travel time is; the sooner the requested items

are ready for shipping.

To the best of our knowledge, there are no MILP formulations suggested for the OBPs

with traversal and return routing policies in the literature. In the traversal routing

policy, which is also known as the S-shape algorithm, the picker starts from the I/O

point, visits every aisle where an item is required to be picked up and returns the I/O

point. The picker enters an aisle from one end and leaves from the opposite end. In case

the number of aisles that must be visited is odd then the picker enters and returns in the

right-most aisle when it retrieves the item in that aisle. Note that, only in that case the

picker does not necessarily traverses along the right-most aisle completely. In the

return routing policy, a picker starts from the I/O point and proceeds along the front

aisle. The picker enters each aisle where an item has to be picked up and travels along

x

this aisle as far as the deepest location where he must pick up an item, then returns

along the aisle and leaves the aisle from the same end.

Basically, we introduce MILP formulations for the OBP and we also perform

computational study to better expose the strength of the proposed MILP formulations.

For the purpose, we compare the performance of the MILP formulations with the

savings algorithm which is known to be one of the best performing construction

heuristics for the OBP.

We have produced our test instances to carry out computational experiments. In the test

instances that we have randomly generated, the number of orders is selected between 10

and 100 with an increment of 10. For each number of orders we have generated 10

instances which totally make 100 OBP test problems. The number of items for each

order is randomly chosen between 2 and 10. The items are randomly assigned to

locations. According to the capacity of the order picker we have three classes of

randomly generated test instances. These are the Class I, Class II and the Class III

instances, which assume picker capacities Q = 24, Q = 36, and Q = 48, respectively.

The computational results show the usefulness of the MILP and savings heuristic for the

OBP. According to our computational experiments, comparing both methods, savings

heuristic yields significantly better results in reasonable CPU times. Thus, considering

the trade-off between accuracy and efficiency, savings heuristic gives a reasonable

solution approach in terms of CPU times. Savings heuristics clearly outperform MILP

approach.

From the experimental results, we observe that the proposed formulations yield quite

good upper bounds and hence they can be used for benchmarking purposes. These

MILP formulations can also be used as benchmarks for other studies which propose

heuristic and meta-heuristics for the OBP. Moreover, there is also room to devise better

MILP formulations for the OBP.

xi

As a further research avenue, MILP formulations for the OBP with largest gap and

composite policies can be developed. Besides, developing a branch and bound

algorithm exploiting the structure of the problem would be an interesting work for

further developments on this problem. Branch and cut algorithms can be also

developed by suggesting valid inequalities based on the proposed MILP formulations.

Résumé

Les systèmes de gestion des stocks ont plusieurs fonctions incluant la réception, le

stockage, la préparation des commandes et l’expédition. La préparation des

commandes est une opération de récupération des produits de leurs emplacements de

stockage afin de satisfaire les demandes des clients. Un préparateur de commandes

effectue les opérations de prélèvements conformément à une liste de sélection donnée

du lieu de stockage au point d'entrée/sortie (E/S). L’opération de préparation des

commandes consiste à prélever et rassembler les articles de la commande avant son

expédition. Le traitement par lots des commandes est le regroupement des commandes

des clients. L'opération de routage des commandes consiste à déterminer le séquençage

de la préparation de ces commandes.

Dans cette étude nous considérons le Problème de Traitement des Commandes (PTC)

qui est NP_dur. Disposant à la fois d’une liste des commandes des clients et d’une

politique d'acheminement, PTC traite de la construction de lots de commandes des

clients de telle sorte à ce que la longueur totale du voyage du préparateur de commandes

est minimisée. De plus, le temps de voyage a un rôle important dans la satisfaction de

la clientèle puisque plus le temps de voyage est court, plus tôt les articles demandés

sont prêts à être expédié.

A notre connaissance, il n'y a pas de formulations de Programmation Linéaire Mixte en

Nombres Entiers (PLMNE) proposées pour les PTC avec la traversée et les politiques

de retour de routage dans la littérature. Dans la politique de routage de traversée, qui

est également connu comme l'algorithme S-forme, le préparateur de commandes

commence à partir du point d'E/S, des visites chaque couloir où un élément doit être

ramassé et retourne au point d'E/S. Le préparateur de commandes entre dans un couloir

d'une extrémité et sort de l’autre l'extrémité. Dans le cas où le nombre de couloirs qui

http://fr.wikipedia.org/wiki/Article_(commerce)

xiii

doivent être visités est impair alors le préparateur de commandes entre et retourne dans

la plus droite couloir quand il récupère l'élément dans cette allée. Notez que, dans ce

cas seulement le préparateur de commandes ne traverse pas nécessairement le long de la

plus droite couloir complètement. Dans la politique de retour de routage, un préparateur

de commandes commence au point d’E/S et produit le long du couloir avant. Le

préparateur de commandes entre chaque couloir où un article doit être ramassé et se

déplace le long cette couloir aussi loin que l'endroit le plus profond où il doit ramasser

un objet, puis retourne le long du couloir et quitte cet couloir de la même extrémité.

Fondamentalement, nous introduisons les formulations PLMNE pour PTC et nous

effectuons également une étude de calcul afin de mieux exposer la force des

formulations PLMNE proposées. Pour cela, nous comparons les performances des

formulations PLMNE avec l'algorithme de gains qui est connu pour être l'un des

heuristiques de construction les plus performants pour PTC.

Nous avons produit les problèmes de teste pour réaliser des expériences de calcul. Les

problèmes de teste ont été générés de manière aléatoire, le nombre de commandes est

choisi entre 10 et 100 avec un incrément de 10. Pour chaque nombre de commandes

nous avons généré 10 problèmes qui forment au total 100 problèmes de test. Le nombre

d'articles pour chaque commande est choisi aléatoirement entre 2 et 10. Les éléments

sont aléatoirement répartis dans les emplacements. Selon la capacité du préparateur de

commande, nous avons trois catégories de cas de test générés aléatoirement. Il s'agit

des instances de la classe I, de la classe II et la classe III, qui admettent, respectivement,

des capacités de prélèvement de Q = 24, Q = 36 et Q = 48.

Les résultats des calculs montrent l'utilité des formulations de PLMNE pour PTC.

Selon nos expériences de calcul, en comparant les deux méthodes, les rendements de

l’algorithme de gains donnent de meilleurs résultats du point de vue des temps CPU.

Ainsi, en considérant le compromis entre la précision et l'efficacité, l'algorithme de

gains offre une solution raisonnable dans une période de temps admissible. Les

algorithmes de gains sont donc nettement supérieurs à l'approche PLMNE.

A partir des résultats expérimentaux, nous observons que les formulations proposées

offrent des bornes supérieures acceptables et par conséquent, elles peuvent être utilisées

xiv

à des fins de benchmarking. Ces formulations de PLMNE peuvent également être

utilisées comme points de référence pour d'autres études qui proposent les heuristiques

et les méta-heuristiques pour PTC. En outre, il est également possible de mettre au

point de meilleures formulations de PLMNE pour PTC.

Comme autre piste de recherche, les formulations de PLMNE pour PTC peuvent être

développées en considérant d’outres stratégies de routage. En outre, l'élaboration d'une

algorithme de Branch and Bound qui exploite la structure du problème serait un travail

intéressant. En plus, les méthodes de Branch and Cut peuvent également être aussi

développés en suggérant des inégalités valides sur la base des formulations de PLMNE

proposées.

Özet

Günümüz depo sistemleri, ürünlerin depolara alınması, saklanması, siparişlerin

toplanması ve gönderilmesi gibi birçok operasyonel işi gerekli kılar. Sipariş toplama;

sipariş listesinin tamamlanması amacıyla ürünlerin hücrelerinden toplanma işlemidir.

Toplayıcı kişi oluşan sipariş listesine göre ürünleri hücrelerden çıkış kapısına getirir.

Sipariş gruplama ise depoya gelen siparişleri gruplayarak bir arada toplama işlemidir.

Bu çalışmada parça toplayıcıların depodan siparişleri çektiği ortamda, Sipariş Gruplama

Problemi (SGP) ele alınmıştır. Günümüz depo sistemlerinde karşılaşılan bu problem

NP-zor olarak bilinmektedir. SGP, birbirlerine benzer siparişleri gruplayarak, belirli

rotalama stratejileri altında parça toplayıcıların kat ettiği toplam mesafeyi en

küçüklemeyi amaçlamaktadır. Doğal olarak, kat edilen mesafenin azalması, siparişin

teslim sürecini hızlandırdığı için müşteri memnuniyetinin artmasını sağlar.

Bu çalışmada toplayıcı olarak işçilerin çalıştığı ve toplayıcıların parçaları almaya

gittikleri SGP için Karma Tam Sayılı Doğrusal Programlama (KDTP) gösterimleri

geliştirilmiştir. S rotası olarak da bilinmekte olan geçişli stratejide parça toplayıcı

siparişin olduğu her koridora girer ve ters taraftan koridoru terk ederek başlangıç

noktasına döner. Ziyaret edilecek koridor sayısının tek olması durumunda, parça

toplayıcı son (en sağdaki) koridorda en uzak yerde bulunan parçayı alarak başlangıç

noktasına geri döner. Ziyaret edilecek koridor sayısının tek olduğu durumlarda, parça

toplayıcı son koridoru tamamen geçmek zorunda değildir. Dönüşlü stratejide, parça

toplayıcı ön koridorda hareket ederek sipariş olan koridora girer ve en uzaktaki parçayı

alarak koridora girdiği taraftan koridoru terk eder.

xvi

Bu çalışmada, SGP için KTDP gösterimleri geliştirdik ve başarılarını sergilemek için

bilgisayısal deneyler yaptık. Bu amaçla, SGP için geliştirilen KTDP gösterimlerini

çözüm kurucu sezgisel algoritmalarından biri olan kazanç algoritması ile karşılaştırdık.

Bilgisayısal çalışmalarımızı gerçekleştirmek için test örnekleri ürettik. Bu örnekler

rasgele üretilmiştir. Bu örneklerin sipariş sayıları 10 ile 100 arasında 10’ar artarak

değişmektedir. Her sipariş numarası için 10 örnek ürettik. Toplamda SGP için 100 test

problem oluşturduk. Her sipariş için parça sayısı 2 ile 10 arasında rasgele seçildi.

Sipariş toplayıcının kapasitesine göre 3 farklı problem sınıfı elde ettik. Birinci sınıf

problemler 24 parça kapasiteli, ikinci sınıf problemler 36 parça kapasiteli ve üçüncü

sınıf problemler 48 parça kapasiteli olarak üretildi.

Bilgisayısal çalışmalar KTDP ve kazanç sezgiselinin SGP için olumlu sonuçlar

verdiğini gösteriyor. Uyguladığımız sayısal çalışmaların sonuçlarına göre, her iki

metodu karşılaştırdığımızda kazanç sezgiselinin daha kabul edilebilir bir sürede sonuç

verdiğini söyleyebiliriz. Etkinlik ve çözüm niteliği unsurlarını düşündüğümüzde kazanç

sezgiselinin oldukça başarılı olduğunu söyleyebiliriz. Ancak, KTDP gösterimleri küçük

boyutlu problemler için en iyi çözümü bulmaktadır. Bu nedenle, KTDP gösterimleri,

sezgisel ve meta sezgisel çalışmalar için karşılaştırmalı değerlendirme amacıyla

kullanılabilir.

Gelecek araştırma konusu SGP’ine özel, dal sınır ve dal kesme yöntemleri

geliştirilebilir.

1

1. INTRODUCTION

Warehouse systems have several functions including receiving, storage, order picking

and shipping. Among these functions, order picking is known to be the most labor

intensive and costly function (Drury, 1988). Storage is the place where the items are

stocked and retrieved from. Order picking is the process of retrieving products from

their storage locations in order to satisfy customer requests. Order picking costs are

estimated to be as much as of 65 % of total warehouse operating expenses (Drury, 1988,

Coyle et al., 1996, Tompkins et al., 2003).

A picker performs retrieval operations according to a given pick list from the storage

location to the input/output point. Order picking operations consist of order batching

and order picker’s routing operations. Order batching is the grouping of customer

orders. Order picker’s routing consists of the sequence of the order picking.

In this study, we consider the Order Batching Problem (OBP) which is shown to be

NP-hard by Gademann and van de Velde (2005). Given both a list of customer orders

and order picking routing policy, the OBP deals with constructing batches of customer

orders such that the total travel length of the pickers is minimized.

Broadly speaking, order-picking systems can be grouped in two categories according to

the material handling equipment used: picker-to-parts systems and parts-to-picker

systems. In picker-to-parts systems, order pickers travel along the warehouse and

retrieve the items requested. On the other hand, in parts-to-picker systems the requested

items are handled and transported by automatic storage and retrieval systems (AS/RSs)

to order pickers (Wäscher, 2004, De Koster et al., 2007). Particularly, there exist two

types of picker-to-parts systems: low-level and high-level picking systems. In low-level

2

picking systems, the picker travels along the aisles in order to pick the requested items

from the storage bins or racks. In high-level systems, the pickers drive a truck or a

crane to reach the pick locations.

To be specific, we focus on the OBP in a low level picker to part warehouse. For the

sake of clarity, given customer orders and order picking routing policy our problem is to

find groups of customer orders such that the total travel length of all pickers is

minimum. The aisles are numbered in increasing order from the left hand side to the

right hand side. The warehouse is considered rectangular and the input/output point is

assumed to be situated in the leftmost position in front of the first aisle of the front aisle.

Inter-aisle distance of the parallel aisles is fixed and symbolized with . The distance

between the front aisle and the back aisle is denoted by . Starting from the entrance of

the aisle a picker is responsible for the retrieval of all items in the batch.

We particularly adress low-level picker-to-parts picking systems employing human

pickers. De Koster et al. (2007) have claimed that 80 % of all order-picking systems in

Western Europe are of this type. Moreover, the research of European Logistics

Association indicates the significance of warehousing, which is 25% of total logistic

cost (European Logistics Association and A. T. Kearney, 2004). In addition, order

picking is 50% of the total warehousing operation costs (Frazelle, 2002).

In order picking systems, the service level basically consists of order delivery time,

order integrity and accuracy (De Koster et al., 2007). Order delivery time is closely

related with the travel time of the picker. As pointed out by Tompkins et al. (2003)

almost half of the order picker time is wasted while travelling. Despite several other

activities other than travelling requires a considerable amount of the picker’s time (Hall,

1993, Petersen, 1997, Roodbergen and De Koster, 2001), the time devoted to the travel

activity is seen as the most time consuming activity (De Koster et al., 2007).

Furthermore, the travel time has a substantial role in customer satisfaction since the

shorter the travel time is; the sooner the requested items are ready for shipping. Hence,

among several objective functions that can be taken into consideration such as the

minimization of order throughput, maximization of item accessibility, maximization of

3

labor use; minimization of pickers’ total travel distance is the most widely considered

one (De Koster et al., 2007).

To the best of our knowledge, there are no MILP formulations suggested for the OBPs

with traversal and return routing policies in the literature. This is the basic motivation

of this study. First of all, we introduce two MILP formulations for the OBP and we also

perform a computational study to better expose the strength of the proposed MILP

formulations. The MILP formulations suggested in this study have been discussed in

detail by Çağırıcı and Öncan (2013). To this end, we compare the performance of the

MILP formulations with the savings algorithm which is known to be one of the best

performing construction heuristics for the OBP (De Koster et al. 1999). The rest of this

work is organized as follows. Section 2 presents a literature survey on the OBP. Then,

in Section 3 devises two MILP formulations for the OBP with each of them addressing

a different routing strategy (e.g. traversal and return routing strategies). This is followed

by the computational results in Section 4. Finally, concluding remarks are given in

Section 5.

2. LITERATURE SURVEY

In the literature several order picking routing policies have been introduced. These are

traversal (Goetschalckx and Ratliff, 1998), return, midpoint, largest gap (Hall, 1993),

composite and optimal (Ratliff and Rosenthal, 1983) routing policies. Generally

speaking, Petersen (1997) has asserted that the routing policies range from simple to

more complex in that order. Namely, traversal, return and midpoint strategies are

simpler than the largest gap, composite and optimal routing policies. According to the

experiments by Petersen (1997), the optimal routing strategy is the winner at the

expense of its disadvantages such as discernible pattern and the routes with backtracks.

However, the author states also that the heuristic routing policies (traversal, return,

midpoint, largest gap and composite routing policies) are easy to use and they are more

apt to construct similar routes. Besides, Petersen (1997) states that composite and

largest gap policies are the second best choices after the optimal routing strategy. Note

that, complex routing policies may yield congestion problems when several pickers

share long, narrow and two way aisles. Furthermore simple routing policies may arise

to be useful especially for complex order picking systems with many pickers.

In their early study, De Koster et al. (1999) have reported a comparative computational

study of several OBP heuristics. Among them the authors have highlighted that the

seed algorithm and a variant of the Clarke and Wright (1964) heuristic arise to be the

most promising according to both traversal and largest gap policies. Later on, Hwang

and Kim (2005) have also considered several OBP heuristics to perform an in-depth

computational analysis. Furthermore, the authors have designed an efficient OBP

heuristic based on cluster analysis. They have tested their algorithm on randomly

generated 300 instances. They have observed that when the number order size exceeds

5

20 their heuristic is the winner. Further, they have noted that, for small size instances

the seed algorithm yields an outstanding performance.

Now we will introduce a presentation of several routing policies considered for the

OBP. Next we will briefly outline the heuristic procedure for the OBP and then, we

will summarize meta-heuristic procedures devised for the OBP.

2.1. Routing Policies for the OBP

Recall that, in this study we concentrate only on the OBP considering traversal and

return routing policies. First of all, we introduce the definition of these routing policies.

In the traversal routing policy, which is also known as the S-shape algorithm, the picker

starts from the I/O point, visits every aisle where an item is required to be picked up and

returns the I/O point. The picker enters an aisle from one end and leaves from the

opposite end. In case the number of aisles that must be visited is odd then the picker

enters and returns in the right-most aisle when it retrieves the item in that aisle. Note

that, only in that case the picker does not necessarily traverses along the right-most aisle

completely. In the return routing policy, a picker starts from the I/O point and proceeds

along the front aisle. The picker enters each aisle where an item has to be picked up and

travels along this aisle as far as the deepest location where he must pick up an item, then

returns along the aisle and leaves the aisle from the same end. The midpoint policy

divides the warehouse in two sections by drawing horizontal line in the middle of aisles.

A picker which leaves input/output point first crosses the first aisle entirely then, in the

next aisle the picker travels towards to the midpoint and returns back whenever he picks

up an item. In the largest gap policy, the picker enters each aisle which contains items

from the front and back sides such that the maximum distance between two neighbor

items is not crossed. In this policy, the picker travels along the leftmost aisle and the

rightmost aisle which he must pick up an item. The composite policy is a combination

of traversal and return routing policies. The picker may travel along the aisle

completely or the picker can leave the aisle from same end. This policy is considered by

means of a dynamic programming approach.

6

For the sake of clearness, we present with Figure 2.1. an illustration of the warehouse

layout that we focus on here. In Figure 2.1., we consider three orders, i.e. order 1, order

2 and order 3 which include 4, 3 and 5 items, respectively. Note that, the locations of

these items are indicated with order numbers. The shape of the warehouse is assumed

to be rectangular with parallel storage. The warehouse totally incorporates 10 parallel

aisles. The input output (I/O) point located in the left-most corner of the front aisle.

The picking area has the capacity to store 200 items. Each order must be assigned into a

batch. Each order consists of at least one item. The locations of items are known a

priori. The total number of items which belong to the orders assigned to a batch should

not exceed the capacity of the picker responsible of that batch. The quantity to be

picked up of each item is assumed to be one unit. For the OBP test problems, we

assume that the horizontal distance within stocking aisles is negligible and the picker

does not need additional time for entering and leaving the aisles. In Figure 2.2., Figure

2.3., Figure 2.4. and Figure 2.5. we present the routes of the picker serving all of three

orders considering traversal, return, midpoint and largest gap policies, respectively.

w
Back Aisle

Front Aisle

L

I/O

3

1

1

3

2 1

3

2

3

3

1

2

Figure 2.1. Layout of a rectangular warehouse

7

w

Back Aisle

Front Aisle

L

I/O

3

1

1

3

2 1

3

2

3

3

1

2

Figure 2.2. Traversal Routing Policy

w
Back Aisle

Front Aisle

L

I/O

3

1

1

3

2 1

3

2

3

3

1

2

Figure 2.3. Return Routing Policy

8

w
Back Aisle

Front Aisle

L

I/O

3

1

1

3

2 1

3

2

3

3

1

2

Figure 2.4. Midpoint Routing Policy

w
Back Aisle

Front Aisle

L

I/O

3

1

1

3

2 1

3

2

3

3

1

2

Figure 2.5. Largest Gap Routing Policy

9

2.2. Heuristic Solution Procedures for the OBP

To the best of our knowledge, there are only very few studies addressing the exact

solution of the OBP and no MILP formulation of the OBP has ever been proposed.

Gademann et al. (2001) have designed a Branch and Bound (BB) algorithm for the OBP

with the objective of minimizing the maximum travel time of the pickers. The OBP has

been formulated as a Set Partitioning Problem (SPP) by Gademann and van de Velde

(2005) where the authors have devised a Branch and Price (BP) algorithm and have

reported the optimum solution of problems with up to 32 customer orders. For a revised

and simplified version of OBP considering the traversal routing policy, Bozer and Kile

(2008) have proposed a Mixed Integer Programming (MIP) formulation however they

could solve small size instances (up to 25 customers) to optimality. The revised version

of the OBP addressed by Bozer and Kile (2008) is quite different than the original OBP

considering the traversal routing policy. The authors have addressed only the traversal

routing policy when the number of traversals is even. Their formulation does not

compromise the case when the number of traversals is odd and the picker returns back

in the last aisle whenever he retrieves the last requested item. Recently, Henn and

Wäscher, (2012) have claimed that after generating all possible feasible batches they

could solve OBP instances with up to 40 customer orders by solving the SPP

formulation by Gademann and van de Velde (2005). Note that, this approach may

become quite costly since the generation of all possible feasible batches is a painstaking

task.

Several heuristic algorithms have also been developed for the OBP. Among them we

can mention the first fit envelope based batching heuristic by Ruben and Jacobs (1999),

the priority rule based algorithms (Gibson and Sharp, 1992), the seed algorithms

(Elsayed, 1981, Ho et al., 2008, Ho and Tseng, 2006) and the savings algorithms

(Clarke and Wright, 1964). Hwang and Kim (2005) proposed an order batching

algorithm based on cluster analysis. Data mining approaches have been developed by

Chen and Wu (2005a) and Chen et al. (2005b). de Koster et al. (1999) have

computationally tested several construction heuristic procedures and the best

10

performing heuristic is the seed algorithm and the Clarke and Wright savings

algorithm(CW).

In their comparative analysis work, de Koster et al. (1999) indicate that seed algorithms

include two different steps. At first, one order which is not assigned to a batch is

selected as a seed (or initial) order. Subsequently, customer orders which are not

assigned to a batch are added to the seed order without violating capacity limitation.

There are many seed selection rules such as a random customer order (Gibson and

Sharp, 1992) or the customer order which has the farthest item or the customer order

which take longest time for picking between the others etc. Also there are different

rules for addition rules such as the minimization of the sum item distances based on the

seed order (Gibson and Sharp, 1992) or minimization of additional aisles which have to

be entered (Rosenwein, 1996), etc…

Savings algorithm is inspired from the Clarke and Wright (1964) algorithm which is

originally developed for the vehicle routing problem (VRP). This algorithm compares

total travel length which the picker collects the orders i and j separately with the total

travel length such that the picker collects the orders in the same route. Thus,

 . indicates the difference between two situations. Here stands for the

required travel distance to pick up items in order and stands for the distance

required to collect items in both orders and . Briefly, savings algorithm consists of

the following steps.

Step 1. (Initialization) Each order is assigned to a batch

Step 2. Compute saving costs of combining batch i and batch j.

 where is the cost of serving batch i and batch j with a single

picker.

 is the cost of serving batch using a single picker.

Step 3. Considering the capacity restriction merge two batches with the highest is

selected.

11

Step 4. Update values

Step 5. Check for the stopping rule. We perform CW algorithm until no further merge

operation is possible due to either the capacity constraints or because we cannot find

any batch pair with positive saving value .

Step 6. Go to Step 3.

2.3. Meta-Heuristic Algorithms for the OBP

As meta-heuristic algorithms designed for the OBP, we can mention the Genetic

Algorithms (GAs) proposed by Hsu et al. (2005), Tabu Search (TS) algorithm by Henn

and Wäscher (2012) and the Variable Neighborhood Search (VNS) algorithm by

Albareda-Sambola et al. (2009). Tsai et al. (2008) have simultaneously addressed the

OBP and the routing problem considering both travel distance and order due time. The

authors have proposed a GA for this combined problem.

The local search heuristics basically consider neighbor solutions and try to find a new

solution with a better objective function value. To search neighbor solution, local search

heuristics apply some simple operators. In many commentarial optimization problems

MOVE and SWAP operators are widely used as straightforward neighborhood search

schemes. MOVE operator selects an item from its location and inserts it into another

location. SWAP operator exchanges the location of two different items. The local

search heuristics perform neighborhood search operations until no further improvement

in the objective function value is possible. Then the local search heuristic outputs the

best solution found during the neighborhood search phase. For the sake of clarity we

give the steps of the local search heuristics.

Step 1.(Initialization) Generate initial solution and compute the objective function

value

Step 2. Obtain a neighbor of the solution and compute objective function value.

Step 3. If the neighbor solution have a smaller objective value than the current objective

function, then replaces as the incumbent solution.

12

Step 4. Check for stopping criteria. Go to Step 2.

One inconvenience of the local search heuristic is that the solution output may have not

a desired accuracy. However local search heuristics are widely used by many

researchers because of their ease of implementation and short computational time

requirement. For the order batching problem Gademann and van de Velde (2005)

proposed the first local search heuristic. The initial solution is obtained by applying

FCFS method as a neighborhood search approach they have adopted SWAP operations.

In their local search approach, whenever a local minimum is obtained, this solution is

modified by changing locations of three customer orders from their assigned batches

randomly, and this step is so-called the perturbation phase. Later on, Henn et al.(2009)

have also devised local search algorithm which consist of two phases: perturbation and

local search phases. Different than Gademann and van de Velde (2005) the authors

have employed SWAP and MOVE operators in the local search phase. In the

perturbation phase two randomly selected items have been exchanged without harming

the feasibility of the solution.

In addition to, several heuristic approaches, various meta-heuristic algorithms have also

been proposed. Two recent ones are Iterated Local Search (ILS) and the Rank-Based

Ant System (RBAS) (Henn et al., 2009). The ILS includes two phases: a local search

phase and a perturbation phase. In the first phase, a feasible solution is improved

considering the objective function addressed (e.g. maximization of picker usage and/or

minimization of total route length travelled by the pickers). The ILS tries to obtain a

local optimum with an improved objective function value. In this phase, SWAP and/or

SHIFT operators are used for that purpose. SWAP operation tries to exchange the

assignment of two orders which belong to two different batches. On the other hand

SHIFT is used to move an order from its batch into another batch. These two operators

are performed consecutively until no further improvement has been observed in the

objective function. In the second phase, namely perturbation phase, two batches are

randomly chosen. Then, the items in these batches, which are also randomly fixed, are

exchanged without harming the feasibility of the solution.

13

For the OBP, initial solution can be obtained by FCFS. After assigning the customer

orders into the batches, local search operators, such as the SHIFT and/or SHIFT, have

been applied with the hope to improve the objective function value.

Ant Colony Optimization Algorithms (ACOAs), as well as the RBAS, are inspired from

a natural system, namely an ant colony. Generally speaking, the ACOAs minimize the

length of route of an ant colony. Particularly, the RBAS is based on the savings

algorithm which is quite often used for these types of problems. At the start of

algorithm, each order constitutes a single batch. Then batches are constructed without

violating capacity limitation and considering the saving value and a pheromone

intensity . The batches are constructed taking into consideration both saving values

and intensities. Then whenever a feasible solution is constructed a local search

procedure is applied in order to improve the solution quality. In the RBAS each feasible

solution corresponds to an ant and several ants have been generated during the run of

the algorithm. Similar to the natural selection process a percentage of ants are removed

from the system. Furthermore, each solution value of the RBAS corresponds to a

pheromone. Those pheromones can be evaporated during the search process, as well.

The solutions obtained during the algorithm are ordered according to their pheromones.

A fraction of them will be rewarded by increasing their pheromone intensity. Then the

solutions with high pheromone intensities are eligible for the subsequent iteration of the

algorithm. For the details of the algorithm we refer to the study by Henn et al. (2009)

The meta-heuristics can obtain up to 20 % improvement in total travel distance in

comparison with the FCFS solution. Also CW (ii) + Local Search can obtain more than

17 % improvement approximately compared to FCFS solution. Henn et al. (2009)

indicate that meta-heuristics such as RBAS and ILS gives better solutions than CW (ii)

and Local Search in acceptable CPU time.

Genetic Algorithms (GAs) have been devised from the biological evolution processes.

Solutions in GAs are represented by chromosomes and each chromosome is constructed

by a sequence of genes. A GAs tries to find the best sequence of genes by moving from

one solution (chromosome) to another solution. This process is performed by

14

exchanging the genes of a chromosome. For that purpose various operators such as

reproduction, crossover and mutation are applied during the run of the GA. The

reproduction operator generates a new poll of chromosomes from a previous solution

set. In other words reproduction operator selects the best chromosome to the next

generation. The crossover operator randomly selects two different genes from two

different chromosomes and exchanges their locations. Mutation operator modifies the

gene sequences by reallocating them within chromosome. Each solution is represented

with an encoding scheme which serves to translate a solution into a string of genes from

a chromosome.

During the run of the GA a suitable encoding of the solution is crucial for the

performance of the algorithm. Namely, a good representation helps to clearly define

crossover, reproduction and mutation operators. Initial population also affects the

performance of the genetic algorithm. In the literature the initial population is generally

constructed by a set of randomly generated chromosomes. For all we know, two GA

have been proposed for the OBP. For the details we refer to the studies by Hsu et al.

(2005) and Öncan (2013).

Tabu search (TS) is a local search based algorithm which has been suggested by Glover

(1986). Tabu search keeps a tabu list to in order to prevent cycling during the local

search phase. The tabu list is used to memorize moves which have been applied in

previous iterations.

The algorithm starts from an initial solution and each iteration moves from the current

solution to the best one in a subset of its neighborhood. These moves are performed

even if they cause worse solutions. In order to avoid cycling solutions with some

attributes are declared tabu or forbidden for a fixed number of iterations, namely tabu

tenure. The tabu search algorithm stops when a priori defined rule satisfied. The tabu

search algorithm keeps track of short term and long term memories during its run.

Henn and Wäscher (2012) obtained initial solution by applying FCFS and C&W(ii) for

the order batching problem. Neighbor solutions can be reached with only SWAP

moves, SHIFT moves and SWAP or SHIFT moves.

15

Simulating Annealing (SA) has first been proposed inspired from an analogy between

the annealing of solids and the problem of solving the optimization problem. The SA

algorithm avoids to get stuck into local optimum by employing random selection and

acceptance strategy. The random acceptance strategy allows worse solutions with

certain probability which is controlled by a temperature parameter. Furthermore the

temperature parameter is updated according to a cooling schedule. Recently, an SA

algorithm for OBP has been proposed by Matusiak et al. (2013).

The variable neighborhood search (VNS) heuristic is first designed by Mladenovic

(1995) and Mladenovic and Hansen (1997) for solving optimization problems inspired

by the idea of systematically modifying the neighborhood setting to escape from local

optimal. A recent VNS application for the OBP has been suggested by Albareda-

Sambola et al. (2009).

3. MILP FORMULATIONS FOR THE ORDER BATCHING PROBLEM

In this section, we propose two MILP formulations for the OBP considering traversal

and return routing strategies. The proposed MILP formulations are inspired from the

grouping models used in Islam and Sarker (2000) and Hwang and Kim (2005).

In these models, we use the following notation. Given a set of orders, and

aisles ; let L denotes the vertical length of the aisle, stands for the width

between aisles, indicates the capacity of picker and be the number of items in

order . We assume homogeneous capacity for all pickers. Let equal to 1 if and

only if order is assigned to batch . Moreover, note that holds if and only if

batch is represented by order .

Table 3.1. Notation for the Basic Formulation

 The set of orders

 The set of aisles

 The vertical length of aisle

 The width between aisles

 The capacity of picker

 The number of items in order

 1 if order is assigned to batch , and 0 otherwise

 1 if order represents batch , and 0 otherwise

17

Now we present the constraint set developed by Hwang and Kim (2005) to analyze

several similarity measures for the batching of customer orders. The authors have

inspired from an early study by Islam and Sarker (2000) who have devised Binary

Integer Programming formulation for the machine-cell or part-families grouping

problem. The basic formulation is as follows:

∑
 for (1)

 for (2)

∑
 for (3)

Here, constraints (1) assert that each order should be assigned to exactly one batch.

Constraints (2) guarantee that order is assigned to batch j then batch is represented by

order Constraints (3) enforce that the items of all orders assigned to batch satisfy the

capacity of the picker.

3.1. Traversal Policy

Now we give the MILP formulation designed for the OBP considering the traversal

policy. For that purpose we define the following parameters and decision variables.

Parameter stands for the vertical distance, that a picker serving order should travel,

through the aisle starting from the front aisle. Note that is set to zero when there

is no item to be picked up in aisle by the picker serving order . Binary variable

equals to 1 if and only if the picker serving batch traverses aisle . Binary variable

18

equals to 1 if and only if the number of aisles that must be visited by the picker serving

batch is odd.

Binary variable equals to 1 if and only if aisle is the rightmost aisle that is visited

by a picker serving batch . Integer variable denotes the half of the number of aisles

visited by the picker serving batch if the number of aisles that must be visited by

picker serving batch is odd else the half of one plus number of the aisles visited by the

picker serving batch . Continuous variable stands for the one way horizontal travel

distance from the I/O point by the picker serving batch . Continuous variable

indicates the vertical one-way distance travelled in the rightmost aisle , by the picker

serving batch and visits totally an odd number of aisles.

Table 3.2. Notation used for the OBP with Traversal Policy

 The vertical distance, that a picker serving order should travel

 1 if and only if the picker serving batch traverses aisle , and 0

otherwise

 1 if and only if the number of aisles that must be visited by the picker

serving batch is odd, and 0 otherwise

 1 if and only if aisle is the rightmost aisle that is visited by a picker

serving batch , and 0 otherwise

 The half of the number of aisles visited by the picker serving batch if

the number of aisles that must be visited by picker serving batch is

even else the half of one plus number of the aisles visited by the picker

serving batch

 The one way horizontal travel distance from the I/O point by the picker

serving batch j

 The vertical one-way distance travelled in the rightmost aisle , by the

picker serving batch and visits totally an odd number of aisles.

19

Traversal: ∑ ∑ ∑ ∑

 (4)

subject to

(1) – (3) (5)

∑

 for (6)

 ∑

 for (7)

 for (8)

∑

 for (9)

 () for (10)

 ∑

 for (11)

20

 integer for (12)

 for (13)

 for (14)

 for (15)

 for (16)

 for (17)

The objective function minimizes the total distance travelled by all pickers. Constraints

(6) state that when there exists at least one item which belongs to order and which is

located in aisle , then the picker serving the batch which includes order , must enter

into the aisle . Constraints (7) guarantee that when none of the orders belonging to

batch visits aisle then is set to zero.

Constraints (8) calculate the maximum horizontal distance from the I/O point travelled

towards the right of the front aisle by the picker serving batch j. Constraints (9) ensure

that when the number of aisles traversed by a picker serving batch is odd then is set

21

to 1. Recall that in case that number of aisles to be crossed is odd then the picker

performs a round trip along the rightmost aisle.

Constraints (10) compute the one-way vertical distance travelled in the rightmost aisle

by the picker serving batch when the number of aisles visited by that picker is odd.

Constraints (11) state that should be equal to 1 when aisle visited by the picker

serving batch is the rightmost aisle visited by that picker. Finally, constraints (12) -

(17) are for the domain definition of the decision variables.

3.2 Return Policy

In addition to the parameters and variables defined above, the MILP formulation for the

OBP considering return policy employs the following additional decision variable.

Continuous decision variable indicates one way maximum vertical distance travelled

in aisle from the front aisle to the location of an item which belongs to an order

assigned to batch .

Table 3.3. Notation used for the OBP with Return Policy

 one way maximum vertical distance travelled in aisle from the front

aisle to the location of an item which belongs to an order assigned to

batch

Min z=∑ ∑ ∑

 (18)

subject to

(1) - (3), (6) - (8) (19)

22

 for (20)

 for (21)

 for (22)

 for (23)

The objective function (18) calculates the total distance travelled by all pickers.

Constraints (20) compute the maximum vertical distance travelled in each aisle by a

picker serving batch . Constraints (21) – (22) give the domain definitions.

4. COMPUTATIONAL EXPERIMENTS

In this section we present the details of our computational experiments. The algorithms

are coded in C++ and tested on a Dell Server PE2900 with two 3.16 GHz Quad Core

Processors and 32 GB RAM with Microsoft Windows Server 2003 operating system.

MILP problems are solved by CPLEX 11.0 solver with default options.

In the literature, there is no standard test library for the OBP. Hence we have produced

our test instances to carry out computational experiments. In the test instances that we

have randomly produced, the number of orders is selected between 10 and 100 with an

increment of 10. For each number of orders we have generated 10 instances which

totally make 100 OBP test problems. The number of items for each order is randomly

chosen between 2 and 10. The items are randomly assigned to locations. According to

the capacity of the order picker we have three classes of randomly generated test

instances. These are Class I, Class II and Class III test instances, for picker capacities

 , , and respectively.

In Table 1, Table 2 and Table 3, we report the computational results obtained with OBP

considering the traversal routing policy and picker capacities , and

 , respectively. Then in Table 4 and Table 5, we report the computational results

obtained with OBP considering the return routing policy and picker capacities ,

 and respectively.

The first columns in all tables denote the instance names and sizes. The last row of all

tables include the overall column averages. The number of orders is followed by the

capacity of the picker . For example the row 20_36 stands for the computational

experiments obtained with 10 OBP test instances with 20 orders and picker capacity

 . The next two columns include the experimental results obtained with the

MILP model and the last two columns report the results obtained with the savings

24

heuristic. We have chosen the savings heuristic as the benchmarking algorithm because

of its promising performance as pointed out by de Koster et al. (1999).

The CPU times reported are in seconds and UB stands for the upper bound value. We

assess the performance of the proposed MILP models in terms of solution accuracy

within a CPU time limit on randomly generated test problems. For OBP test instances

with number of orders from 10 to 50 (60 to 100) we have imposed a CPU time limit to

1800 secs (10800 secs.). Therefore, the UB values reported are obtained with the

feasible solutions output by the CPLEX. Note that, when CPLEX returns a solution

value in less than these computational time limits, then the reported upper bound is the

optimal solution value. The average percent improvements obtained with the MILP

formulation for the OBP considering traversal policy over the savings algorithm are

0,03 %, 2,80 % and 5,99 % for picker capacity , and ,

respectively. These values are -2,67 %, 1,38 % and 2,28 % for the OBP considering

return policy.

The formulation used to calculate the average percent improvements is

 (24)

where
 and

 are respectively the upper bounds obtained with the savings

algorithm and CPLEX MILP solver. As can be observed, the performance of MILP

formulations improves for larger values of Q. Furthermore, considering the overall

average percent improvements the MILP formulation for the OBP considering traversal

and return policies, which are 2,94 % and 0,33 % respectively. Moreover, when we

consider the CPU times required by the MILP formulations and the savings algorithm;

the winner is the saving algorithm. However, we believe the attempts to obtain exact

solution of the OBP are worthwhile.

25

Table 4.1. Computational results with the MILP formulation and saving algorithm for

the OBP considering traversal routing policy with picker capacity Q = 24.

TRAVERSAL
MILP SAVINGS HEURISTIC

UB CPU UB CPU

10_24 367,0 5 391,4 -

20_24 651,7 1.800 691,8 -

30_24 938,3 1.800 968,4 -

40_24 1.277,2 1.800 1.265,8 0,1

50_24 1.562,4 10.800 1.528,8 0,2

60_24 1.867,8 10.800 1.814,1 0,7

70_24 2.200,3 10.800 2.134,1 1,4

80_24 2.419,4 10.800 2.395,0 2,9

90_24 2.726,8 10.800 2.668,6 4,6

100_24 3.027,3 10.800 2.954,5 8,4

Average 1.703,8 6.120 1.681,3 1,9

Figure 4.1. Histogram of the UB values are obtained with Q=24 and traversal policy

26

Table 4.2. Computational results with the MILP formulation and saving algorithm for

the OBP considering traversal routing policy with picker capacity Q = 36.

TRAVERSAL
MILP

SAVINGS
HEURISTIC

UB CPU UB CPU

10_36 272,2 1.800 291,6 -

20_36 473,4 1.800 511,4 -

30_36 645,0 1.800 687,4 -

40_36 880,7 1.800 922,0 0,1

50_36 1.052,6 10.800 1.107,3 0,2

60_36 1.295,1 10.800 1.307,0 0,6

70_36 1.510,2 10.800 1.534,4 1,2

80_36 1.685,8 10.800 1.691,0 2,2

90_36 1.920,8 10.800 1.913,4 4,0

100_36 2.193,5 10.800 2.107,7 6,4

Average 1.192,9 7.200 1.207,3 1,5

Figure 4.2. Histogram of the UB values are obtained with Q=36 and traversal policy

27

Table 4.3. Computational results with the MILP formulation and saving algorithm for

the OBP considering traversal routing policy with picker capacity Q = 48.

TRAVERSAL
MILP

SAVINGS
HEURISTIC

UB CPU UB CPU

10_48 237,7 1.342 249,7 -

20_48 383,3 1.800 408,2 -

30_48 516,3 1.800 576,6 -

40_48 681,0 1.800 748,3 0,1

50_48 820,3 1.800 889,0 0,2

60_48 970,6 10.800 1.046,2 0,6

70_48 1.150,6 10.800 1.206,5 1,1

80_48 1.293,9 10.800 1.342,7 2,2

90_48 1.455,6 10.800 1.532,2 3,9

100_48 1.642,2 10.800 1.664,2 6,5

Average 915,2 6.254 966,4 1,5

Figure 4.3. Histogram of the UB values are obtained with Q=48 and traversal policy

28

Table 4.4. Computational results with the MILP formulation and saving algorithm for

the OBP considering return routing policy with picker capacity Q = 24.

MILP
SAVINGS

HEURISTIC

UB CPU UB CPU

10_24 458,5 6 471,7 -

20_24 815,8 1.800 855,1 -

30_24 1.179,7 1.800 1.216,6 -

40_24 1.655,2 1.800 1.569,2 0,1

50_24 2.061,4 1.800 1.913,2 0,3

60_24 2.451,2 10.800 2.272,2 0,7

70_24 2.796,5 10.800 2.664,2 1,5

80_24 3.124,5 10.800 2.974,0 2,7

90_24 3.254,8 10.800 3.125,4 3,3

100_24 3.458,1 10.800 3.395,7 3,9

Average 2.125,6 6.121 2.045,7 1,3

Figure 4.4. Histogram of the UB values are obtained with Q=24 and return policy

29

Table 4.5. Computational results with the MILP formulation and saving algorithm for

the OBP considering return routing policy with picker capacity Q = 36.

RETURN
MILP

SAVINGS
HEURISTIC

UB CPU UB CPU

10_36 358,4 1.800 369,3 -

20_36 628,7 1.800 672,6 -

30_36 890,4 1.800 931,5 -

40_36 1.227,1 1.800 1.229,2 0,1

50_36 1.545,0 1.800 1.485,8 0,2

60_36 1.837,4 10.800 1.761,7 0,5

70_36 2.228,8 10.800 2.043,6 1,1

80_36 2.517,7 10.800 2.289,3 2,1

90_36 2.892,1 10.800 2.592,5 3,7

100_36 3.257,8 10.800 2.840,9 6,1

Average 1.738,3 6.300 1.621,6 1,4

Figure 4.5. Histogram of the UB values are obtained with Q=36 and return policy

30

Table 4.6. Computational results with the MILP formulation and saving algorithm for

the OBP considering return routing policy with picker capacity Q = 48.

RETURN
MILP

SAVINGS
HEURISTIC

UB CPU UB CPU

10_48 318,9 843 334,2 -

20_48 519,4 1.800 568,1 -

30_48 735,8 1.800 784,5 -

40_48 1.013,2 1.800 1.022,1 0,1

50_48 1.242,0 1.800 1.228,6 0,2

60_48 1.470,3 10.800 1.450,2 0,5

70_48 1.759,5 10.800 1.713,3 1,1

80_48 2.003,2 10.800 1.883,0 2,1

90_48 2.344,6 10.800 2.147,9 3,7

100_48 2.637,4 10.800 2.343,6 6,2

Average 1.404,4 6.204 1.347,6 1,4

Figure 4.6. Histogram of the UB values are obtained with Q=48 and return policy

5. CONCLUSION

We have investigated the Order Batching Problem (OBP) which is known to be NP-

hard. To the best of our knowledge, in the literature there are no Mixed Integer Linear

Programming (MILP) formulations devised for the OBP considering traversal and

return routing policies. The heuristic routing policies are easy to use and they are more

applicable to construct similar routes. The ones proposed with this study are the very

first attempts to suggest MILP formulations for the OBP. In this work, the proposed

MILP formulations have been tested on randomly generated instances and they have

been compared with the savings algorithm which is known to be one of the most

promising construction heuristics for the OBP.

The computational results indicate that MILP and savings heuristic are useful for the

OBP. According to our computational experiments, comparing both methods, savings

heuristic yields significantly better results in reasonable CPU times. Thus, considering

the trade-off between accuracy and efficiency, savings heuristic gives a reasonable

solution approach in point of CPU times. Savings heuristics clearly outperform MILP

approach.

From the experimental results, we observe that the proposed formulations yield quite

good upper bounds and hence they can be used for benchmarking purposes. These

MILP formulations can also be used as benchmarks for other studies which propose

heuristic and meta-heuristics for the OBP. Moreover, there is also room to devise better

MILP formulations for the OBP.

As a further research avenue, MILP formulations for the OBP with largest gap and

composite policies can be developed. Besides, developing a Branch and Bound

32

algorithm exploiting the structure of the problem would be an interesting future study.

Branch and cut and branch and cut and price algorithms can be also developed by

suggesting valid inequalities based on the proposed MILP formulations.

REFERENCES

Albareda-Sambola, M., Alonso-Ayuso, M., Molina, E., and Simon de Blas, C. (2009).

Variable neighborhood search for order batching in a warehouse. Asia-Pacic Journal of

Operational Research, 26 (5), 655–683.

Bozer, Y.A., and Kile, J.W. (2008). Order batching in walk-and-pick order picking

systems. International Journal of Production Research, 46 (7), 1887–1909.

Chen, M.-C., and Wu, H.-P. (2005a). An association-based clustering approach to order

batching considering customer demand patterns. Omega - The International Journal of

Management Science, 33 (4), 333–343.

Chen, M.-C., Huang, C.-L., Chen, K.-Y., and Wu, H.-P. (2005b). Aggregation of orders

in distribution centers using data mining. Expert Systems with Applications, 28 (3),

453–460.

Clarke, G., and Wright, J.W. (1964). Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research, 12 (4), 568–581.

Coyle, J. J., Bardi, E. J. and Langley, C. J. (1996). The Management of Business

Logistics. St Paul: West Publishing.

34

Çağırıcı, M. and Öncan, T. (2013). MILP Formulations for the Order Batching Problem

in Low-Level Picker-to-Part Warehouse Systems. Proceeding of the 2013 IFAC

Conference on Manufacturing, Modelling, Management and Control, Saint Petersburg

State University and Saint Petersburg National Research University of Information

Technologies, Mechanics and Optics, Saint Petersburg, Russia, June 19-21, 2013.

De Koster, R., Van Der Poort, E., and Wolters, M. (1999). Efficient orderbatching

methods in warehouses. International Journal of Production Research, 37 (7), 1479–

1504.

De Koster, R., Le-Duc, T., and Roodbergen, K.J. (2007). Design and control of

warehouse order picking: A literature review. European Journal of Operational

Research, 182, 481–501.

Drury, J. (1988). Towards more efficient order picking. IMM monograph no. 1, The

Institute of Materials Managements: Cranfield, UK.

Elsayed, E.A. (1981). Algorithms for optimal material handling in automatic

warehousing systems. International Journal of Production Research, 19 (5), 525– 535.

European Logistics Association and Kearney, A.T. (2004). Excellence in Logistics

2004, European Logistics Association, Brussels.

Frazelle, E. (2002). World-Class Warehousing and Material Handling. New York:

McGraw-Hill.

Gademann, N., Van den Berg, J., and Van der Hoff , H. (2001). An order batching

algorithm for wave picking in a parallel-aisle warehouse. IIE Transactions, 33(5), 385–

398.

Gademann, N., and Van de Velde, S. (2005). Order batching to minimize total travel

time in a parallel-aisle warehouse. IIE Transactions, 37(1), 63–75.

35

Glover, F., 1986. Future paths for integer programming and links to artificial

intelligence Computer&Operation Research 13, 533-549.

Gibson, D.R., and Sharp, G.P.(1992). Order Batching Procedures. European Journal of

Operational Research, 58, 57–67.

Goetschalckx, M., and Ratliff, H.D. (1998) Order picking in an aisle. IIE Transactions,

20(1), 53–62.

Hall, R.W. (1993). Distance approximations for routing manual pickers in a warehouse.

IIE Transactions, 24 (4), 76–87.

Henn, S., Koch, S., Karl, D., Strauss, C., and Wäscher, G. (2009). Meta-heuristics for

the order batching problem in manual order picking systems. Working Paper 20/2009,

Faculty of Economics and Management, Otto-von-Guericke-University Magdeburg.

Henn, S., and Wäscher, G. (2012). Tabu search heuristics for the order batching

problem in manual order picking systems. European Journal of Operational Research,

222, 484–494.

Ho, Y.-C., and Tseng, Y.-Y. (2006). A study on orderbatching methods of order-picking

in a distribution centre with two cross-aisles. International Journal of Production

Research, 44(17), 3391–3417.

Ho, Y.-C., Su, T.-S., and Shi, Z.-B. (2008). Order-bathcing methods for an order-

picking warehouse with two cross aisles. Computers and Industrial Engineering, 55(2),

321–347.

Hsu, C.-M., Chen, K.-Y., and Chen, M.-C. (2005). Batching orders in warehouses by

minimizing travel distance with genetic algorithms. Computers in Industry, 56(2), 169–

178.

36

Hwang, H., and Kim, D.G. (2005). Order-batching heuristics based on cluster analysis

in low-level picker-topart warehousing system. International Journal of Production

Research, 43 (17), 3657–3670.

Islam, K.M.S., and Sarker, B.R. (2000). A similarity coefficient measure and machine-

parts grouping in cellular manufacturing systems. International Journal of Production

Research, 38 (3), 699–720.

Matusiak, M., de Koster, R., Kroon, L.,Saarinen, J. (2013). A fast simulated annealing

method for batching precedence-constrained customer orders in a warehouse. European

Journal of Operational Research.

Mladenovic, N.,(1995), A variable neighborhood algorithm- a new meta-heuristic for

combinatorial optimization. In Abstract of papers presented at Optimization Days, page

112, Montreal

Mladenovic, N. and Hansen, P. (1997). Variable neighborhood search. Computers

Operations Research, 24:1097-1100

Öncan, T. (2013). A genetic algorithm for the order batching problem in low-level

picker-to-part warehouse systems. International MultiConference of Engineers and

Computer Scientist 2013. Vol 1, IMECS 2013, March 13-15, 2013, Hong Kong.

Petersen, C.G. (1997). An evaluation of order picking rout ing policies. International

Journal of Operations and Production Management, 17 (11), 1098–1111.

Ratliff, H.D., and Rosenthal, A.S. (1983). Orderpicking in a rectangular warehouse: a

solvable case of the traveling salesman problem. Operations Research, 31, 507–521.

Roodbergen, K.J., and De Koster, R.. (2001). Routing methods for warehouses with

multiple cross aisles. International Journal of Production Research, 39(9), 1865–1883.

37

Rosenwein, M.B. (1996). A comparison of heuristics for the problem of batching

orders for warehouse selection. International Journal of Production Research, 34, 657-

664.

Ruben, R.A., and Jacobs, F.R. (1999). Batch construction and storage assignment.

Management Science, 45(4), 575–596.

Tompkins, J.A., White, J.A., Bozer, Y.A., and Tanchoco, J.M.A. (2003). Facilities

Planning. John Wiley & Sons, New Jersey, 3rd edition.

Tsai, C.-Y., Liou, J.J.M., and Huang, T.-M. (2008). Using a multiple-GA method to

solve the batch picking problem: considering travel distance and order due time.

International Journal of Production Research, 46(22), 6533–6555.

Wäscher, G. (2004). Order picking: a survey of planning problems ans methods. In: H.

Dyckoff, R. Lackes, J. Reeves (eds.) Supply Chain Management and Reverse Logistics,

pages 323–347, Springer, Berlin.

APPENDIX

APPENDIX A : C ++ Codes of Traversal Strategy

#include <ilcplex/ilocplex.h>

ILOSTLBEGIN

#include <cmath>

#include <fstream>

#include <string>

#include <time.h>

using namespace std;

double cpu_time() {

 clock_t t; static clock_t last = (clock_t)-1;

 // TEST_MESSAGE("clock()");

 t = clock();

 if (last == (clock_t)-1) last = t;

 return (double)(t-last)/CLOCKS_PER_SEC;

}

ILOSTLBEGIN

#define EPSCUT 1E-2

#define BIGVAL 10E+12

#define EPSVAL 1E-4

#define myrandom01() (rand() / ((double)RAND_MAX + 1.0))

typedef IloArray<IloBoolVarArray> BoolVarMatrix;

39

typedef IloArray<IloArray<IloBoolVarArray> > BoolVarMatrix2;

typedef IloArray<IloNumArray> NumMatrix;

typedef IloArray<IloArray<IloNumArray> > NumMatrix2;

typedef IloArray<IloNumVarArray> NumVarMatrix;

typedef IloArray<IloArray<IloNumVarArray> > NumVarMatrix2;

typedef IloArray<IloIntVarArray> IntVarMatrix;

typedef IloArray<BoolVarMatrix> BoolVar3DimArray;

typedef IloArray<IloBoolArray> BoolMatrix;

extern IloInt n;

extern IloInt pi;

extern IloNumVarArray H;

extern BoolVarMatrix Y;

extern IloIntVarArray V;

extern IloIntVarArray CV;

extern BoolVarMatrix X;

extern NumVarMatrix BA;

extern BoolVarMatrix POS;

extern IloBoolVarArray CT;

extern NumMatrix distances;

ILOSTLBEGIN

NumMatrix distances;

IloBoolVarArray Xarray;

IloNumVarArray H;

BoolVarMatrix Y;

IloIntVarArray V;

IloIntVarArray CV;

BoolVarMatrix X;

BoolVarMatrix POS;

IloBoolVarArray CT;

40

NumVarMatrix BA;

IloInt n;

IloInt pi;

int main(int argc, char **argv) {

 IloEnv env;

double bas,son;

double sag;

 try {

 IloModel model(env);

 ifstream inFile;

 inFile.open(argv[1]);

 if (!inFile) {

 cout << "Unable to open file";

 exit(1); // terminate with error

 }

 ofstream outFile;

 outFile.open(argv[2],ios::app);

 if (!outFile) {

 cout << "Unable to open file";

 exit(1); // terminate with error

 }

 outFile<<argv[1]<<"\t";

 char name[128];

 IloInt Aisles=10;

 IloInt Capacity=24;

 IloNum Width=2.4;

41

 IloInt i,j,k,s,l,ll,kk;

 IloInt orders;

 IloInt items;

inFile >> orders;

 NumMatrix QQ_X=NumMatrix(env, orders+1);

 NumMatrix QQ_Y=NumMatrix(env, orders+1);

 for (i = 0; i <= orders; i++){

 QQ_X[i] = IloNumArray(env, 2*orders+1);

 QQ_Y[i] = IloNumArray(env, 2*orders+1);

 }

 for (i = 0; i <= orders; i++){

 for (j = 0; j <= 2*orders; j++){

 QQ_X[i][j]=0;

 QQ_Y[i][j]=0;

 }

 }

 IloNumArray SAYAC=IloNumArray(env, orders+1);

 for(j=0;j<=orders;j++){ SAYAC[j]=0;}

for (i = 1; i <= orders; i++){

 inFile >> items;

SAYAC[i]=items;

 for (j = 1; j <= items; j++){

 inFile >>ll;

 inFile >>kk;

 QQ_X[i][j]=ll;

 QQ_Y[i][j]=kk;

 }

}

42

inFile.close();

 NumMatrix Q_ALT=NumMatrix(env, orders+1);

 for (i = 0; i <= orders; i++){

 Q_ALT[i] = IloNumArray(env, 11);

 }

 for (i = 0; i <= orders; i++){

 for (j = 0; j <= 10; j++){

 Q_ALT[i][j]=0;

 }

 }

for(i=1;i<=orders;i++){

 for (j = 1; j <= SAYAC[i]; j++){

 ll=QQ_X[i][j];

 kk=QQ_Y[i][j];

 if(kk>Q_ALT[i][ll]) Q_ALT[i][ll]=kk;

 }

}

NumMatrix AA=NumMatrix(env, orders+1);

for (i = 0; i <= orders; i++){

 AA[i] = IloNumArray(env, 11);

 }

for (i = 0; i <= orders; i++){

 for (j = 0; j <= 10; j++){

 AA[i][j]=0;

 }

 }

43

for(i=1;i<=orders;i++){

 for (j = 1; j <= SAYAC[i]; j++){

 ll=QQ_X[i][j];

AA[i][ll]=1;

 }

}

cout<<"X \n";

X = BoolVarMatrix(env, orders+1);

for (i = 1; i <=orders; i++) {

 X[i] = IloBoolVarArray(env, orders+1);

 for (j = 1; j <= orders; j++) {

 sprintf_s(name, "X[%ld][%ld]", i, j);

 X[i][j] = IloBoolVar(env,0,1, name);

 }

 }

 CT = IloBoolVarArray(env, orders+1);

 for (j = 1; j <= orders; j++) {

 sprintf_s(name, "CT[%ld]", j);

 CT[j] = IloBoolVar(env,0,1, name);

 }

 Y = BoolVarMatrix(env, orders+1);

 for (i = 1; i <=orders; i++) {

 Y[i] = IloBoolVarArray(env, 11);

 for (j = 1; j <= 10; j++) {

 sprintf_s(name, "Y[%ld][%ld]", i, j);

 Y[i][j] = IloBoolVar(env,0,1, name);

 }

 }

44

 H= IloNumVarArray(env, orders+1);

 for (j = 1; j <=orders; j++) {

 sprintf_s(name, "H[%ld]", j);

 H[j] = IloNumVar(env,0,24, name);

 }

 V= IloIntVarArray(env, orders+1);

 for (j = 1; j <=orders; j++) {

 sprintf_s(name, "V[%ld]", j);

 V[j] = IloIntVar(env, 0, 10, name);

 }

 CV= IloIntVarArray(env, orders+1);

 for (j = 1; j <=orders; j++) {

 sprintf_s(name, "CV[%ld]", j);

 CV[j] = IloIntVar(env, 0, 10, name);

 }

 POS = BoolVarMatrix(env, orders+1);

 for (i = 1; i <=orders; i++) {

 POS[i] = IloBoolVarArray(env, 11);

 for (j = 1; j <= 10; j++) {

 sprintf_s(name, "POS[%ld][%ld]", i, j);

 POS[i][j] = IloBoolVar(env,0,1, name);

 }

 }

45

BA = NumVarMatrix(env, orders+1);

 for (i = 1; i <=orders; i++) {

 BA[i] = IloNumVarArray(env, 11);

 for (j = 1; j <= 10; j++) {

 sprintf_s(name, "BA[%ld][%ld]", i, j);

 BA[i][j] = IloNumVar(env,0,10, name);

 }

 }

 for(i=1; i<=orders; i++){

 IloExpr sum1(env);

 for(j=1; j<=orders; j++){

 sum1+=IloExpr(X[i][j]);

 }

 model.add(sum1 == 1);

 sum1.end();

 }

 for(i=1; i<=orders; i++){

 for(j=1; j<=orders; j++){

 if(i!=j){

 IloExpr sum1(env);

 sum1+=IloExpr(X[i][j]);

 sum1-=IloExpr(X[j][j]);

 model.add(sum1 <= 0);

 sum1.end();

 }

 }

 }

for(j=1; j<=orders; j++){

46

 IloExpr sum1(env);

 for(i=1; i<=orders; i++){

 sum1+=IloExpr(SAYAC[i]*X[i][j]);

 }

 model.add(sum1 <= Capacity);

 sum1.end();

}

for(j=1; j<=orders; j++){

 for(k=1; k<=10; k++){

 IloExpr sum1(env);

 ll=0;

 for(i=1; i<=orders; i++){

 sum1+=IloExpr(AA[i][k]*X[i][j]);

 if (AA[i][k])ll++;

 }

 if(ll>0){

 sum1-=IloExpr(orders*Y[j][k]);

 model.add(sum1 <= 0);

 }

 sum1.end();

 }

}

cout<<"c1 \n";

for(j=1; j<=orders; j++){

 for(k=2; k<=10; k++){

 IloExpr sum1(env);

 sum1+=IloExpr((k-1)*Width*Y[j][k]);

 sum1-=IloExpr(H[j]);

47

 model.add(sum1 <= 0);

 sum1.end();

 }

}

for(j=1; j<=orders; j++){

 IloExpr sum1(env);

 for(k=1; k<=10; k++){

 sum1-=IloExpr(Y[j][k]);

 }

 sum1+=IloExpr(2*V[j]);

 sum1-=IloExpr(CT[j]);

 model.add(sum1 == 0);

 sum1.end();

}

for(j=1; j<=orders; j++){

 IloExpr sum1(env);

 sum1+=IloExpr(V[j]);

 sum1-=IloExpr(CT[j]);

 sum1-=IloExpr(CV[j]);

 model.add(sum1 <= 0);

 sum1.end();

}

for(j=1; j<=orders; j++){

 for(k=1; k<=10; k++){

 IloExpr sum1(env);

 for(l=k+1; l<=10; l++){ sum1-=IloExpr(Y[j][l]); }

 sum1+=IloExpr(Y[j][k]);

48

 sum1-=IloExpr((POS[j][k]));

 model.add(sum1 <= 0);

 sum1.end();

 }

}

cout<<"c22 \n";

for(j=1; j<=orders; j++){

 for(k=1; k<=10; k++){

 IloExpr sum1(env);

 //for(l=k+1; l<=10; l++){ sum1-=IloExpr(1-Y[j][l]); }

 //sum1-=IloExpr(10*orders*(Y[j][k]));

 sum1-=IloExpr((Y[j][k]));

 sum1+=IloExpr(POS[j][k]);

 model.add(sum1 <= 0);

 sum1.end();

 }

}

cout<<"c3 \n";

for(j=1; j<=orders; j++){

 for(k=1; k<=10; k++){

 IloExpr sum1(env);

 for(i=1; i<=orders; i++){sum1-=IloExpr(Q_ALT[i][k]*X[i][j]); }

 sum1+=IloExpr(Y[j][k]);

 model.add(sum1 <= 0);

 sum1.end();

 }

}

49

for(i=1; i<=orders; i++){

 for(j=1; j<=orders;j++){

 for(k=1; k<=10; k++){

 if(Q_ALT[i][k]){

 IloExpr sum1(env);

 sum1+=IloExpr(Q_ALT[i][k]*X[i][j]);

 sum1-=IloExpr(10*orders*(1-POS[j][k]));

 sum1-=IloExpr(10*orders*(1-CT[j]));

 sum1-=IloExpr(BA[j][k]);

 model.add(sum1 <= 0);

 sum1.end();

 }

 }

 }

}

IloExpr objective(env);

for(i=1; i<=orders; i++){

 objective+=IloExpr(2*10*(CV[i]));

 objective+=IloExpr(2*H[i]);

 }

for(j=1; j<=orders; j++){

 for(k=1; k<=10; k++){

//objective+=IloExpr(POS[j][k]);

objective+=IloExpr(2*BA[j][k]);

 }

}

50

model.add(IloMinimize(env, objective));

objective.end();

IloCplex cplex(model);

bas=cpu_time() ;

cplex.setParam(IloCplex::TiLim, 10800);

if (!cplex.solve()) {

 env.error() << "Failed to optimize LP" << endl;

 throw(-1);

 }

son=cpu_time() ;

env.out() << "Solution status = " << cplex.getStatus() << endl;

outFile << "Solution status = " << cplex.getStatus() << " ";

env.out() << "Solution value = " << cplex.getObjValue() << endl;

outFile << "Solution value = " << cplex.getObjValue() << " ";

outFile.close();

 env.end();

 }

 catch (IloException& e) {

 cerr << "ERROR: " << e.getMessage() << endl;

 }

 catch (...) {

 cerr << "Error" << endl;

 }

 env.end();

 return 0; }

51

APPENDIX B : C ++ Codes of Return Strategy

#include <ilcplex/ilocplex.h>

ILOSTLBEGIN

#include <cmath>

#include <fstream>

#include <string>

#include <time.h>

using namespace std;

double cpu_time() {

 clock_t t; static clock_t last = (clock_t)-1;

 t = clock();

 if (last == (clock_t)-1) last = t;

 return (double)(t-last)/CLOCKS_PER_SEC;

}

ILOSTLBEGIN

#define EPSCUT 1E-2

#define BIGVAL 10E+12

#define EPSVAL 1E-4

#define myrandom01() (rand() / ((double)RAND_MAX + 1.0))

typedef IloArray<IloBoolVarArray> BoolVarMatrix; //cordeau

typedef IloArray<IloArray<IloBoolVarArray> > BoolVarMatrix2; //cordeau

typedef IloArray<IloNumArray> NumMatrix; //cordeau

typedef IloArray<IloArray<IloNumArray> > NumMatrix2; //cordeau

typedef IloArray<IloNumVarArray> NumVarMatrix;

typedef IloArray<IloArray<IloNumVarArray> > NumVarMatrix2;

typedef IloArray<IloIntVarArray> IntVarMatrix;

typedef IloArray<BoolVarMatrix> BoolVar3DimArray;

typedef IloArray<IloBoolArray> BoolMatrix;

extern IloInt n;

52

extern IloInt pi;

extern IloNumVarArray H;

extern BoolVarMatrix Y;

extern NumVarMatrix B;

extern BoolVarMatrix X;

extern NumMatrix distances;

ILOSTLBEGIN

NumMatrix distances;

IloBoolVarArray Xarray;

IloNumVarArray H;

BoolVarMatrix Y;

NumVarMatrix B;

BoolVarMatrix X;

IloInt n;

IloInt pi;

int main(int argc, char **argv) {

IloEnv env;

double bas,son;

double sag;

 try {

 IloModel model(env);

 ifstream inFile;

 inFile.open(argv[1]);

 if (!inFile) {

 cout << "Unable to open file";

 exit(1); // terminate with error

 }

ofstream outFile;

outFile.open(argv[2],ios::app);

if (!outFile) {

 cout << "Unable to open file";

 exit(1);

53

 }

outFile<<argv[1]<<"\t";

char name[128];

IloInt Aisles=10;

IloInt Capacity=24;

IloNum Width=2.4;

IloInt i,j,k,s,ll,kk;

IloInt orders;

IloInt items;

inFile >> orders;

NumMatrix QQ_X=NumMatrix(env, orders+1);

NumMatrix QQ_Y=NumMatrix(env, orders+1);

for (i = 0; i <= orders; i++){

 QQ_X[i] = IloNumArray(env, 2*orders+1);

 QQ_Y[i] = IloNumArray(env, 2*orders+1);

 }

for (i = 0; i <= orders; i++){

 for (j = 0; j <= 2*orders; j++){

 QQ_X[i][j]=0;

 QQ_Y[i][j]=0;

 }

 }

IloNumArray SAYAC=IloNumArray(env, orders+1);

for(j=0;j<=orders;j++){ SAYAC[j]=0;}

for (i = 1; i <= orders; i++){

 inFile >> items;

SAYAC[i]=items;

 for (j = 1; j <= items; j++){

 inFile >>ll;

 inFile >>kk;

 QQ_X[i][j]=ll;

 QQ_Y[i][j]=kk;

54

 }

}

inFile.close();

NumMatrix AA=NumMatrix(env, orders+1);

for (i = 0; i <= orders; i++){

 AA[i] = IloNumArray(env, 11);

 }

for (i = 0; i <= orders; i++){

 for (j = 0; j <= 10; j++){

 AA[i][j]=0;

 }

 }

for(i=1;i<=orders;i++){

 for (j = 1; j <= SAYAC[i]; j++){

 ll=QQ_X[i][j];

 kk=QQ_Y[i][j];

 if(kk>AA[i][ll])AA[i][ll]=kk;

 }

}

X = BoolVarMatrix(env, orders+1);

 for (i = 1; i <=orders; i++) {

 X[i] = IloBoolVarArray(env, orders+1);

 for (j = 1; j <= orders; j++) {

 sprintf_s(name, "X[%ld][%ld]", i, j);

 X[i][j] = IloBoolVar(env,0,1, name);

 }

 }

 Y = BoolVarMatrix(env, orders+1);

 for (i = 1; i <=orders; i++) {

 Y[i] = IloBoolVarArray(env, 11);

55

 for (j = 1; j <= 10; j++) {

 sprintf_s(name, "Y[%ld][%ld]", i, j);

 Y[i][j] = IloBoolVar(env,0,1, name);

 }

 }

 H= IloNumVarArray(env, orders+1);

 for (j = 1; j <=orders; j++) {

 sprintf_s(name, "H[%ld]", j);

 H[j] = IloNumVar(env,0,BIGVAL, name);

 }

 B= NumVarMatrix(env, orders+1);

 for (i = 1; i <=orders; i++) {

 B[i] = IloNumVarArray(env, 11);

 for (j = 1; j <= 10; j++) {

 sprintf_s(name, "B[%ld][%ld]", i, j);

 B[i][j] = IloNumVar(env, 0, 10, name);

 }

 }

for(i=1; i<=orders; i++){

 IloExpr sum1(env);

 for(j=1; j<=orders; j++){

 sum1+=IloExpr(X[i][j]);

 }

 model.add(sum1 == 1);

 sum1.end();

 }

for(i=1; i<=orders; i++){

 for(j=1; j<=orders; j++){

 if(i!=j){

 IloExpr sum1(env);

 sum1+=IloExpr(X[i][j]);

 sum1-=IloExpr(X[j][j]);

 model.add(sum1 <= 0);

 sum1.end();

56

 }

 }

 }

for(j=1; j<=orders; j++){

 IloExpr sum1(env);

 for(i=1; i<=orders; i++){

 sum1+=IloExpr(SAYAC[i]*X[i][j]);

 }

 model.add(sum1 <= Capacity);

 sum1.end();

}

for(j=1; j<=orders; j++){

 for(k=1; k<=10; k++){

 IloExpr sum1(env);

 ll=0;

 for(i=1; i<=orders; i++){

 sum1+=IloExpr(AA[i][k]*X[i][j]);

 if (AA[i][k])ll++;

 }

 if(ll>0){

 sum1-=IloExpr(10*orders*Y[j][k]);

 model.add(sum1 <= 0);

 }

 sum1.end();

 }

}

for(j=1; j<=orders; j++){

 for(k=2; k<=10; k++){

 IloExpr sum1(env);

 sum1+=IloExpr((k-1)*Width*Y[j][k]);

 sum1-=IloExpr(H[j]);

 model.add(sum1 <= 0);

 sum1.end();

 }

}

57

for(i=1; i<=orders; i++){

 for(j=1; j<=orders; j++){

 for(k=1; k<=10; k++){

 if(AA[i][k]>0){

 IloExpr sum1(env);

 sum1+=IloExpr(AA[i][k]*X[i][j]);

 sum1-=IloExpr(B[j][k]);

 model.add(sum1 <= 0);

 sum1.end();

 }

 }

 }

}

IloExpr objective(env);

for(i=1; i<=orders; i++){

 objective+=IloExpr(2*H[i]);

 }

for(i=1; i<=orders; i++){

 for(k=1; k<=10; k++){

 objective+=IloExpr(2*B[i][k]);

 }

 }

model.add(IloMinimize(env, objective));

objective.end();

IloCplex cplex(model);

bas=cpu_time() ;

cplex.exportModel("mod.lp");

cplex.setParam(IloCplex::TiLim, 1800);

if (!cplex.solve()) {

 env.error() << "Failed to optimize LP" << endl;

 throw(-1);

 }

son=cpu_time() ;

 cout<<" CPU: "<<son-bas<<endl;

 outFile<<" CPU: "<<son-bas<<"\t";

58

 env.out() << "Solution status = " << cplex.getStatus() <<

endl;

 outFile << "Solution status = " << cplex.getStatus() << "\t";

 env.out() << "Solution value = " << cplex.getObjValue() <<

endl;

 outFile << "Solution value = \t " << cplex.getObjValue() <<

endl;

for (i = 1; i <= orders; i++){

 for (j = 1; j <= orders; j++){

 if (cplex.getValue(X[i][j]) > EPSVAL)

 {

 cout << "X[" << i << "][" << j << "] = "

<<cplex.getValue(X[i][j]) << endl;

 }

 }}

outFile.close();

env.end();

 }

 catch (IloException& e) {

 cerr << "ERROR: " << e.getMessage() << endl;

 }

 catch (...) {

 cerr << "Error" << endl;

 }

 env.end();

 return 0;

}

BIOGRAPHICAL SKETCH

Merve ÇAĞIRICI was born December 7, 1987 in İzmir. She has studied at Aydın

Science High School where she graduated in 2006. She started her undergraduate

studies at Industrial Engineering Department of Galatasaray University in 2006.

She has published the paper titled “MILP Formulations for the Order Batching Problem

in Low-Level Picker-to-Part Warehouse Systems” in the proceeding of the 2013 IFAC

Conference on Manufacturing, Modelling, Management, and Control, Saint Petersburg

State University and Saint Petersburg National Research University of Information

Technologies, Mechanics and Optics, Saint Petersburg, Russia, June 19-21, 2013.

She has been working as a sales system developer analyst at ETİ since July 2012.

