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Abstract 

 

 

 

Warehouse systems have many functions including receiving, storage, order picking 

and shipping.  Order picking is the operation of retrieving products from their storage 

locations in order to satisfy customer requests.  A picker performs retrieval operations 

according to a given pick list from the storage location to the input/output point.  Order 

picking operations consist of order batching and order picker’s routing.  Order batching 

is the grouping of customer orders.  Order picker’s routing operation consists of 

determining the sequence of the order picking.   

 

In this study, we consider the Order Batching Problem (OBP) which is shown to be  

NP-hard.  Given both a list of customer orders and order picker’s routing policy, the 

OBP deals with constructing batches of customer orders such that the total travel length 

of the pickers is minimized.  Furthermore, the travel time has a substantial role in 

customer satisfaction since the shorter the travel time is; the sooner the requested items 

are ready for shipping.   

 

To the best of our knowledge, there are no MILP formulations suggested for the OBPs 

with traversal and return routing policies in the literature.  In the traversal routing 

policy, which is also known as the S-shape algorithm, the picker starts from the I/O 

point, visits every aisle where an item is required to be picked up and returns the I/O 

point. The picker enters an aisle from one end and leaves from the opposite end. In case 

the number of aisles that must be visited is odd then the picker enters and returns in the 

right-most aisle when it retrieves the item in that aisle. Note that, only in that case the 

picker does not necessarily traverses along the right-most aisle completely.  In the 

return routing policy, a picker starts from the I/O point and proceeds along the front 

aisle.  The picker enters each aisle where an item has to be picked up and travels along 
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this aisle as far as the deepest location where he must pick up an item, then returns 

along the aisle and leaves the aisle from the same end.  

 

Basically, we introduce MILP formulations for the OBP and we also perform 

computational study to better expose the strength of the proposed MILP formulations.  

For the purpose, we compare the performance of the MILP formulations with the 

savings algorithm which is known to be one of the best performing construction 

heuristics for the OBP. 

 

We have produced our test instances to carry out computational experiments.  In the test 

instances that we have randomly generated, the number of orders is selected between 10 

and 100 with an increment of 10.  For each number of orders we have generated 10 

instances which totally make 100 OBP test problems.  The number of items for each 

order is randomly chosen between 2 and 10.  The items are randomly assigned to 

locations.  According to the capacity of the order picker we have three classes of 

randomly generated test instances.  These are the Class I, Class II and the Class III 

instances, which assume picker capacities Q = 24, Q = 36, and Q = 48, respectively. 

 

The computational results show the usefulness of the MILP and savings heuristic for the 

OBP.  According to our computational experiments, comparing both methods, savings 

heuristic yields significantly better results in reasonable CPU times.  Thus, considering 

the trade-off between accuracy and efficiency, savings heuristic gives a reasonable 

solution approach in terms of CPU times.  Savings heuristics clearly outperform MILP 

approach. 

 

From the experimental results, we observe that the proposed formulations yield quite 

good upper bounds and hence they can be used for benchmarking purposes.  These 

MILP formulations can also be used as benchmarks for other studies which propose 

heuristic and meta-heuristics for the OBP.  Moreover, there is also room to devise better 

MILP formulations for the OBP.  
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As a further research avenue, MILP formulations for the OBP with largest gap and 

composite policies can be developed.  Besides, developing a branch and bound 

algorithm exploiting the structure of the problem would be an interesting work for 

further developments on this problem.  Branch and cut algorithms can be also 

developed by suggesting valid inequalities based on the proposed MILP formulations. 



 

 

  

 

Résumé 

 

 

 

Les systèmes de gestion des stocks ont plusieurs fonctions incluant la réception, le 

stockage, la préparation des commandes et  l’expédition.  La préparation des 

commandes est une opération de récupération des produits de leurs emplacements de 

stockage afin de satisfaire les demandes des clients.  Un préparateur de commandes 

effectue les opérations de prélèvements  conformément à une liste de sélection donnée 

du lieu de stockage au point d'entrée/sortie (E/S).  L’opération de préparation des 

commandes consiste à prélever et rassembler les articles de la commande avant son 

expédition.  Le traitement par lots des commandes est le regroupement des commandes 

des clients.  L'opération de routage des commandes consiste à déterminer le séquençage 

de la préparation de ces commandes. 

 

Dans cette étude nous considérons le Problème de Traitement des Commandes (PTC) 

qui est NP_dur.  Disposant à la fois d’une liste des commandes des clients et d’une 

politique d'acheminement, PTC traite de la construction de lots de commandes des 

clients de telle sorte à ce que la longueur totale du voyage du préparateur de commandes 

est minimisée.  De plus, le temps de voyage a un rôle important dans la satisfaction de 

la clientèle puisque plus le temps de voyage est court,  plus tôt les articles demandés 

sont prêts à être expédié. 

 

A notre connaissance, il n'y a pas de formulations de Programmation Linéaire Mixte en 

Nombres Entiers (PLMNE)  proposées pour les PTC avec la traversée et les politiques 

de retour de routage dans la littérature.  Dans la politique de routage de traversée, qui 

est également connu comme l'algorithme S-forme, le préparateur de commandes 

commence à partir du point d'E/S, des visites chaque couloir où un élément doit être 

ramassé et retourne au point d'E/S.  Le préparateur de commandes entre dans un couloir 

d'une extrémité et sort de l’autre l'extrémité.  Dans le cas où le nombre de couloirs qui 

http://fr.wikipedia.org/wiki/Article_(commerce)
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doivent être visités est impair alors le préparateur de commandes entre et retourne dans 

la plus droite couloir quand il récupère l'élément dans cette allée.  Notez que, dans ce 

cas seulement le préparateur de commandes ne traverse pas nécessairement le long de la 

plus droite couloir complètement.  Dans la politique de retour de routage, un préparateur 

de commandes commence au point d’E/S et produit le long du couloir avant.  Le 

préparateur de commandes entre chaque couloir où un article doit être ramassé et se 

déplace le long cette couloir aussi loin que l'endroit le plus profond où il doit ramasser 

un objet, puis retourne le long du couloir et quitte cet couloir de la même extrémité. 

 

Fondamentalement, nous introduisons les formulations PLMNE pour PTC et nous 

effectuons également une étude de calcul afin de mieux exposer la force des 

formulations PLMNE proposées.  Pour cela, nous comparons les performances des 

formulations PLMNE avec l'algorithme de gains qui est connu pour être l'un des 

heuristiques de construction les plus performants pour PTC. 

 

Nous avons produit les problèmes de teste pour réaliser des expériences de calcul. Les 

problèmes de teste ont été générés de manière aléatoire, le nombre de commandes est 

choisi entre 10 et 100 avec un incrément de 10.  Pour chaque nombre de commandes 

nous avons généré 10 problèmes qui forment au total 100 problèmes de test.  Le nombre 

d'articles pour chaque commande est choisi aléatoirement entre 2 et 10.  Les éléments 

sont aléatoirement répartis dans les emplacements.  Selon la capacité du préparateur de 

commande, nous avons trois catégories de cas de test générés aléatoirement.  Il s'agit 

des instances de la classe I, de la classe II et la classe III, qui admettent, respectivement, 

des capacités de prélèvement de Q = 24, Q = 36 et Q = 48. 

 

Les résultats des calculs montrent l'utilité des formulations de PLMNE pour PTC.  

Selon nos expériences de calcul, en comparant les deux méthodes, les rendements de 

l’algorithme de gains donnent de meilleurs résultats du point de vue des temps CPU.   

Ainsi, en considérant le compromis entre la précision et l'efficacité, l'algorithme de 

gains  offre  une solution raisonnable dans une période de temps admissible.  Les 

algorithmes de gains sont donc nettement supérieurs à l'approche PLMNE. 

 

A partir des résultats expérimentaux, nous observons que les formulations proposées 

offrent des bornes supérieures acceptables et par conséquent, elles peuvent être utilisées 
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à des fins de benchmarking.  Ces formulations de PLMNE peuvent également être 

utilisées comme points de référence pour d'autres études qui proposent les heuristiques 

et les méta-heuristiques pour PTC.  En outre, il est également possible de mettre au 

point de meilleures formulations de PLMNE pour PTC. 

 

Comme autre piste de recherche, les formulations de PLMNE pour PTC peuvent être 

développées en considérant d’outres stratégies de routage.  En outre, l'élaboration d'une 

algorithme de Branch and Bound qui exploite la structure du problème serait un travail 

intéressant.  En plus, les méthodes de Branch and Cut peuvent également être aussi 

développés en suggérant des inégalités valides sur la base des formulations de PLMNE 

proposées.



 

 

Özet 

 

 

 

Günümüz depo sistemleri, ürünlerin depolara alınması, saklanması, siparişlerin 

toplanması ve gönderilmesi gibi birçok operasyonel işi gerekli kılar.  Sipariş toplama;  

sipariş listesinin tamamlanması amacıyla ürünlerin hücrelerinden toplanma işlemidir.  

Toplayıcı kişi oluşan sipariş listesine göre ürünleri hücrelerden çıkış kapısına getirir.  

Sipariş gruplama ise depoya gelen siparişleri gruplayarak bir arada toplama işlemidir.  

 

Bu çalışmada parça toplayıcıların depodan siparişleri çektiği ortamda, Sipariş Gruplama 

Problemi (SGP) ele alınmıştır. Günümüz depo sistemlerinde karşılaşılan bu problem 

NP-zor olarak bilinmektedir. SGP, birbirlerine benzer siparişleri gruplayarak, belirli 

rotalama stratejileri altında parça toplayıcıların kat ettiği toplam mesafeyi en 

küçüklemeyi amaçlamaktadır.  Doğal olarak, kat edilen mesafenin azalması, siparişin 

teslim sürecini hızlandırdığı için müşteri memnuniyetinin artmasını sağlar.  

 

Bu çalışmada toplayıcı olarak işçilerin çalıştığı ve toplayıcıların parçaları almaya 

gittikleri SGP için Karma Tam Sayılı Doğrusal Programlama (KDTP) gösterimleri 

geliştirilmiştir.  S rotası olarak da bilinmekte olan geçişli stratejide parça toplayıcı 

siparişin olduğu her koridora girer ve ters taraftan koridoru terk ederek başlangıç 

noktasına döner.  Ziyaret edilecek koridor sayısının tek olması durumunda, parça 

toplayıcı son (en sağdaki) koridorda en uzak yerde bulunan parçayı alarak başlangıç 

noktasına geri döner. Ziyaret edilecek koridor sayısının tek olduğu durumlarda, parça 

toplayıcı son koridoru tamamen geçmek zorunda değildir.  Dönüşlü stratejide, parça 

toplayıcı ön koridorda hareket ederek sipariş olan koridora girer ve en uzaktaki parçayı 

alarak koridora girdiği taraftan koridoru terk eder.  
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Bu çalışmada, SGP için KTDP gösterimleri geliştirdik ve başarılarını sergilemek için 

bilgisayısal deneyler yaptık.  Bu amaçla, SGP için geliştirilen KTDP gösterimlerini 

çözüm kurucu sezgisel algoritmalarından biri olan kazanç algoritması ile karşılaştırdık. 

 

Bilgisayısal çalışmalarımızı gerçekleştirmek için test örnekleri ürettik.  Bu örnekler 

rasgele üretilmiştir. Bu örneklerin sipariş sayıları 10 ile 100 arasında 10’ar artarak 

değişmektedir.  Her sipariş numarası için 10 örnek ürettik.  Toplamda SGP için 100 test 

problem oluşturduk.  Her sipariş için parça sayısı 2 ile 10 arasında rasgele seçildi.  

Sipariş toplayıcının kapasitesine göre 3 farklı problem sınıfı elde ettik.  Birinci sınıf 

problemler 24 parça kapasiteli, ikinci sınıf problemler 36 parça kapasiteli ve üçüncü 

sınıf problemler 48 parça kapasiteli olarak üretildi.  

 

Bilgisayısal çalışmalar KTDP ve kazanç sezgiselinin SGP için olumlu sonuçlar 

verdiğini gösteriyor.  Uyguladığımız sayısal çalışmaların sonuçlarına göre, her iki 

metodu karşılaştırdığımızda kazanç sezgiselinin daha kabul edilebilir bir sürede sonuç 

verdiğini söyleyebiliriz.  Etkinlik ve çözüm niteliği unsurlarını düşündüğümüzde kazanç 

sezgiselinin oldukça başarılı olduğunu söyleyebiliriz. Ancak, KTDP gösterimleri küçük 

boyutlu problemler için en iyi çözümü bulmaktadır. Bu nedenle, KTDP gösterimleri, 

sezgisel ve meta sezgisel çalışmalar için karşılaştırmalı değerlendirme amacıyla 

kullanılabilir. 

 

Gelecek araştırma konusu SGP’ine özel, dal sınır ve dal kesme yöntemleri 

geliştirilebilir.  
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1. INTRODUCTION 

 

 

 

Warehouse systems have several functions including receiving, storage, order picking 

and shipping.  Among these functions, order picking is known to be the most labor 

intensive and costly function (Drury, 1988).  Storage is the place where the items are 

stocked and retrieved from.  Order picking is the process of retrieving products from 

their storage locations in order to satisfy customer requests.  Order picking costs are 

estimated to be as much as of 65 % of total warehouse operating expenses (Drury, 1988, 

Coyle et al., 1996, Tompkins et al., 2003). 

 

A picker performs retrieval operations according to a given pick list from the storage 

location to the input/output point.  Order picking operations consist of order batching 

and order picker’s routing operations.  Order batching is the grouping of customer 

orders.  Order picker’s routing consists of the sequence of the order picking.   

 

In this study, we consider the Order Batching Problem (OBP) which is shown to be  

NP-hard by Gademann and van de Velde (2005).  Given both a list of customer orders 

and order picking routing policy, the OBP deals with constructing batches of customer 

orders such that the total travel length of the pickers is minimized. 

 

Broadly speaking, order-picking systems can be grouped in two categories according to 

the material handling equipment used: picker-to-parts systems and parts-to-picker 

systems.  In picker-to-parts systems, order pickers travel along the warehouse and 

retrieve the items requested.  On the other hand, in parts-to-picker systems the requested 

items are handled and transported by automatic storage and retrieval systems (AS/RSs) 

to order pickers (Wäscher, 2004, De Koster et al., 2007).  Particularly, there exist two 

types of picker-to-parts systems: low-level and high-level picking systems.  In low-level 
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picking systems, the picker travels along the aisles in order to pick the requested items 

from the storage bins or racks.  In high-level systems, the pickers drive a truck or a 

crane to reach the pick locations. 

 

To be specific, we focus on the OBP in a low level picker to part warehouse.  For the 

sake of clarity, given customer orders and order picking routing policy our problem is to 

find groups of customer orders such that the total travel length of all pickers is 

minimum.  The aisles are numbered in increasing order from the left hand side to the 

right hand side. The warehouse is considered rectangular and the input/output point is 

assumed to be situated in the leftmost position in front of the first aisle of the front aisle.  

Inter-aisle distance of the parallel aisles is fixed and symbolized with  .  The distance 

between the front aisle and the back aisle is denoted by  .  Starting from the entrance of 

the aisle a picker is responsible for the retrieval of all items in the batch.  

 

We particularly adress low-level picker-to-parts picking systems employing human 

pickers.  De Koster et al. (2007) have claimed that 80 % of all order-picking systems in 

Western Europe are of this type.  Moreover, the research of European Logistics 

Association indicates the significance of warehousing, which is 25% of total logistic 

cost (European Logistics Association and A. T. Kearney, 2004).  In addition, order 

picking is 50% of the total warehousing operation costs (Frazelle, 2002). 

 

In order picking systems, the service level basically consists of order delivery time, 

order integrity and accuracy (De Koster et al., 2007).  Order delivery time is closely 

related with the travel time of the picker.  As pointed out by Tompkins et al. (2003) 

almost half of the order picker time is wasted while travelling.  Despite several other 

activities other than travelling requires a considerable amount of the picker’s time (Hall, 

1993, Petersen, 1997, Roodbergen and De Koster, 2001), the time devoted to the travel 

activity is seen as the most time consuming activity (De Koster et al., 2007).  

Furthermore, the travel time has a substantial role in customer satisfaction since the 

shorter the travel time is; the sooner the requested items are ready for shipping.  Hence, 

among several objective functions that can be taken into consideration such as the 

minimization of order throughput, maximization of item accessibility, maximization of 
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labor use; minimization of pickers’ total travel distance is the most widely considered 

one (De Koster et al., 2007).  

 

To the best of our knowledge, there are no MILP formulations suggested for the OBPs 

with traversal and return routing policies in the literature.  This is the basic motivation 

of this study.  First of all, we introduce two MILP formulations for the OBP and we also 

perform a computational study to better expose the strength of the proposed MILP 

formulations.  The MILP formulations suggested in this study have been discussed in 

detail by Çağırıcı and Öncan (2013).  To this end, we compare the performance of the 

MILP formulations with the savings algorithm which is known to be one of the best 

performing construction heuristics for the OBP (De Koster et al. 1999).  The rest of this 

work is organized as follows.  Section 2 presents a literature survey on the OBP. Then, 

in Section 3 devises two MILP formulations for the OBP with each of them addressing 

a different routing strategy (e.g. traversal and return routing strategies).  This is followed 

by the computational results in Section 4. Finally, concluding remarks are given in 

Section 5. 



 

 

 

 

2. LITERATURE SURVEY 

 

 

 

In the literature several order picking routing policies have been introduced.  These are 

traversal (Goetschalckx and Ratliff, 1998), return, midpoint, largest gap (Hall, 1993), 

composite and optimal (Ratliff and Rosenthal, 1983) routing policies. Generally 

speaking, Petersen (1997) has asserted that the routing policies range from simple to 

more complex in that order. Namely, traversal, return and midpoint strategies are 

simpler than the largest gap, composite and optimal routing policies.  According to the 

experiments by Petersen (1997), the optimal routing strategy is the winner at the 

expense of its disadvantages such as discernible pattern and the routes with backtracks.  

However, the author states also that the heuristic routing policies (traversal, return, 

midpoint, largest gap and composite routing policies) are easy to use and they are more 

apt to construct similar routes.  Besides, Petersen (1997) states that composite and 

largest gap policies are the second best choices after the optimal routing strategy.  Note 

that, complex routing policies may yield congestion problems when several pickers 

share long, narrow and two way aisles.  Furthermore simple routing policies may arise 

to be useful especially for complex order picking systems with many pickers. 

 

In their early study, De Koster et al. (1999) have reported a comparative computational 

study of several OBP heuristics.  Among them the authors have highlighted that the 

seed algorithm and a variant of the Clarke and Wright (1964) heuristic arise to be the 

most promising according to both traversal and largest gap policies. Later on, Hwang 

and Kim (2005) have also considered several OBP heuristics to perform an in-depth 

computational analysis.  Furthermore, the authors have designed an efficient OBP 

heuristic based on cluster analysis.  They have tested their algorithm on randomly 

generated 300 instances.  They have observed that when the number order size exceeds 
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20 their heuristic is the winner.  Further, they have noted that, for small size instances 

the seed algorithm yields an outstanding performance.  

 

Now we will introduce a presentation of several routing policies considered for the 

OBP.  Next we will briefly outline the heuristic procedure for the OBP and then, we 

will summarize meta-heuristic procedures devised for the OBP.  

 

2.1. Routing Policies for the OBP 

 

Recall that, in this study we concentrate only on the OBP considering traversal and 

return routing policies. First of all, we introduce the definition of these routing policies. 

In the traversal routing policy, which is also known as the S-shape algorithm, the picker 

starts from the I/O point, visits every aisle where an item is required to be picked up and 

returns the I/O point. The picker enters an aisle from one end and leaves from the 

opposite end. In case the number of aisles that must be visited is odd then the picker 

enters and returns in the right-most aisle when it retrieves the item in that aisle. Note 

that, only in that case the picker does not necessarily traverses along the right-most aisle 

completely.  In the return routing policy, a picker starts from the I/O point and proceeds 

along the front aisle.  The picker enters each aisle where an item has to be picked up and 

travels along this aisle as far as the deepest location where he must pick up an item, then 

returns along the aisle and leaves the aisle from the same end. The midpoint policy 

divides the warehouse in two sections by drawing horizontal line in the middle of aisles.  

A picker which leaves input/output point first crosses the first aisle entirely then, in the 

next aisle the picker travels towards to the midpoint and returns back whenever he picks 

up an item. In the largest gap policy, the picker enters each aisle which contains items 

from the front and back sides such that the maximum distance between two neighbor 

items is not crossed. In this policy, the picker travels along the leftmost aisle and the 

rightmost aisle which he must pick up an item.  The composite policy is a combination 

of traversal and return routing policies.  The picker may travel along the aisle 

completely or the picker can leave the aisle from same end. This policy is considered by 

means of a dynamic programming approach. 
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For the sake of clearness, we present with Figure 2.1. an illustration of the warehouse 

layout that we focus on here.  In Figure 2.1., we consider three orders, i.e. order 1, order 

2 and order 3 which include 4, 3 and 5 items, respectively.  Note that, the locations of 

these items are indicated with order numbers.  The shape of the warehouse is assumed 

to be rectangular with parallel storage.  The warehouse totally incorporates 10 parallel 

aisles.  The input output (I/O) point located in the left-most corner of the front aisle.  

The picking area has the capacity to store 200 items. Each order must be assigned into a 

batch.  Each order consists of at least one item.  The locations of items are known a 

priori.  The total number of items which belong to the orders assigned to a batch should 

not exceed the capacity of the picker responsible of that batch.  The quantity to be 

picked up of each item is assumed to be one unit.  For the OBP test problems, we 

assume that the horizontal distance within stocking aisles is negligible and the picker 

does not need additional time for entering and leaving the aisles.  In Figure 2.2., Figure 

2.3., Figure 2.4. and Figure 2.5. we present the routes of the picker serving all of three 

orders considering traversal, return, midpoint and largest gap policies, respectively. 
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Figure 2.1. Layout of a rectangular warehouse 
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Figure 2.2. Traversal Routing Policy 
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Figure 2.3. Return Routing Policy 
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Figure 2.4. Midpoint Routing Policy 
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Figure 2.5. Largest Gap Routing Policy 
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2.2. Heuristic Solution Procedures for the OBP 

 

To the best of our knowledge, there are only very few studies addressing the exact 

solution of the OBP and no MILP formulation of the OBP has ever been proposed. 

Gademann et al. (2001) have designed a Branch and Bound (BB) algorithm for the OBP 

with the objective of minimizing the maximum travel time of the pickers.  The OBP has 

been formulated as a Set Partitioning Problem (SPP) by Gademann and van de Velde 

(2005) where the authors have devised a Branch and Price (BP) algorithm and have 

reported the optimum solution of problems with up to 32 customer orders.  For a revised 

and simplified version of OBP considering the traversal routing policy, Bozer and Kile 

(2008) have proposed a Mixed Integer Programming (MIP) formulation however they 

could solve small size instances (up to 25 customers) to optimality.  The revised version 

of the OBP addressed by Bozer and Kile (2008) is quite different than the original OBP 

considering the traversal routing policy.  The authors have addressed only the traversal 

routing policy when the number of traversals is even.  Their formulation does not 

compromise the case when the number of traversals is odd and the picker returns back 

in the last aisle whenever he retrieves the last requested item.  Recently, Henn and 

Wäscher, (2012) have claimed that after generating all possible feasible batches they 

could solve OBP instances with up to 40 customer orders by solving the SPP 

formulation by Gademann and van de Velde (2005). Note that, this approach may 

become quite costly since the generation of all possible feasible batches is a painstaking 

task. 

 

Several heuristic algorithms have also been developed for the OBP.  Among them we 

can mention the first fit envelope based batching heuristic by Ruben and Jacobs (1999), 

the priority rule based algorithms (Gibson and Sharp, 1992), the seed algorithms 

(Elsayed, 1981, Ho et al., 2008, Ho and Tseng, 2006) and the savings algorithms 

(Clarke and Wright, 1964). Hwang and Kim (2005) proposed an order batching 

algorithm based on cluster analysis.  Data mining approaches have been developed by 

Chen and Wu (2005a) and Chen et al. (2005b).  de Koster et al. (1999) have 

computationally tested several construction heuristic procedures and the best 
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performing heuristic is the seed algorithm and the Clarke and Wright savings 

algorithm(CW).   

 

In their comparative analysis work, de Koster et al. (1999) indicate that seed algorithms 

include two different steps.  At first, one order which is not assigned to a batch is 

selected as a seed (or initial) order.  Subsequently, customer orders which are not 

assigned to a batch are added to the seed order without violating capacity limitation.  

There are many seed selection rules such as a random customer order (Gibson and 

Sharp, 1992) or the customer order which has the farthest item or the customer order 

which take longest time for picking between the others etc.  Also there are different 

rules for addition rules such as the minimization of the sum item distances based on the 

seed order (Gibson and Sharp, 1992) or minimization of additional aisles which have to 

be entered (Rosenwein, 1996), etc… 

 

Savings algorithm is inspired from the Clarke and Wright (1964) algorithm which is 

originally developed for the vehicle routing problem (VRP).  This algorithm compares 

total travel length which the picker collects the orders i and j separately with the total 

travel length such that the picker collects the orders in the same route.  Thus,         

      .      indicates the difference between two situations.  Here         stands for the 

required travel distance to pick up items in order      and     stands for the distance 

required to collect items in both orders   and  .  Briefly, savings algorithm consists of 

the following steps. 

 

Step 1. (Initialization) Each order is assigned to a batch 

Step 2. Compute saving costs     of combining batch i and batch j. 

               where     is the cost of serving batch i and batch j with a single 

picker.  

       is the cost of serving batch      using a single picker. 

Step 3. Considering the capacity restriction merge two batches with the highest     is 

selected.  
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Step 4. Update     values  

Step 5. Check for the stopping rule. We perform CW algorithm until no further merge 

operation is possible due to either the capacity constraints or because we cannot find 

any batch pair with positive saving value    . 

Step 6. Go to Step 3. 

 

2.3. Meta-Heuristic Algorithms for the OBP 

 

As meta-heuristic algorithms designed for the OBP, we can mention the Genetic 

Algorithms (GAs) proposed by Hsu et al. (2005), Tabu Search (TS) algorithm by Henn 

and Wäscher (2012) and the Variable Neighborhood Search (VNS) algorithm by 

Albareda-Sambola et al. (2009).  Tsai et al. (2008) have simultaneously addressed the 

OBP and the routing problem considering both travel distance and order due time.  The 

authors have proposed a GA for this combined problem. 

 

The local search heuristics basically consider neighbor solutions and try to find a new 

solution with a better objective function value. To search neighbor solution, local search 

heuristics apply some simple operators.  In many commentarial optimization problems 

MOVE and SWAP operators are widely used as straightforward neighborhood search 

schemes.  MOVE operator selects an item from its location and inserts it into another 

location.  SWAP operator exchanges the location of two different items.  The local 

search heuristics perform neighborhood search operations until no further improvement 

in the objective function value is possible.  Then the local search heuristic outputs the 

best solution found during the neighborhood search phase.  For the sake of clarity we 

give the steps of the local search heuristics.    

 

Step 1.(Initialization)  Generate initial solution   and compute the objective function 

value 

Step 2.  Obtain a neighbor    of the solution    and compute objective function value.  

Step 3. If the neighbor solution have a smaller objective value than the current objective 

function, then    replaces   as the incumbent solution.  
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Step 4.  Check for stopping criteria. Go to Step 2.  

 

One inconvenience of the local search heuristic is that the solution output may have not 

a desired accuracy.  However local search heuristics are widely used by many 

researchers because of their ease of implementation and short computational time 

requirement.   For the order batching problem Gademann and van de Velde (2005) 

proposed the first local search heuristic.  The initial solution is obtained by applying 

FCFS method as a neighborhood search approach they have adopted SWAP operations.  

In their local search approach, whenever a local minimum is obtained, this solution is 

modified by changing locations of three customer orders from their assigned batches 

randomly, and this step is so-called the perturbation phase.  Later on, Henn et al.(2009)  

have also devised local search algorithm which consist of two phases: perturbation and 

local search phases.  Different than Gademann and van de Velde (2005) the authors 

have employed SWAP and MOVE operators in the local search phase. In the 

perturbation phase two randomly selected items have been exchanged without harming 

the feasibility of the solution.   

 

In addition to, several heuristic approaches, various meta-heuristic algorithms have also 

been proposed.  Two recent ones are Iterated Local Search (ILS) and the Rank-Based 

Ant System (RBAS) (Henn et al., 2009).  The ILS includes two phases: a local search 

phase and a perturbation phase. In the first phase, a feasible solution is improved 

considering the objective function addressed (e.g. maximization of picker usage and/or 

minimization of total route length travelled by the pickers). The ILS tries to obtain a 

local optimum with an improved objective function value.  In this phase, SWAP and/or 

SHIFT operators are used for that purpose.  SWAP operation tries to exchange the 

assignment of two orders which belong to two different batches.  On the other hand 

SHIFT is used to move an order from its batch into another batch.  These two operators 

are performed consecutively until no further improvement has been observed in the 

objective function.  In the second phase, namely perturbation phase, two batches are 

randomly chosen.  Then, the items in these batches, which are also randomly fixed, are 

exchanged without harming the feasibility of the solution.  



13 

 

 

 

For the OBP, initial solution can be obtained by FCFS.  After assigning the customer 

orders into the batches, local search operators, such as the SHIFT and/or SHIFT, have 

been applied with the hope to improve the objective function value.  

 

Ant Colony Optimization Algorithms (ACOAs), as well as the RBAS, are inspired from 

a natural system, namely an ant colony. Generally speaking, the ACOAs minimize the 

length of route of an ant colony. Particularly, the RBAS is based on the savings 

algorithm which is quite often used for these types of problems. At the start of 

algorithm, each order constitutes a single batch. Then batches are constructed without 

violating capacity limitation and considering the saving value     and a pheromone 

intensity     .  The batches are constructed taking into consideration both saving values 

and intensities. Then whenever a feasible solution is constructed a local search 

procedure is applied in order to improve the solution quality. In the RBAS each feasible 

solution corresponds to an ant and several ants have been generated during the run of 

the algorithm. Similar to the natural selection process a percentage of ants are removed 

from the system. Furthermore, each solution value of the RBAS corresponds to a 

pheromone. Those pheromones can be evaporated during the search process, as well. 

The solutions obtained during the algorithm are ordered according to their pheromones. 

A fraction of them will be rewarded by increasing their pheromone intensity. Then the 

solutions with high pheromone intensities are eligible for the subsequent iteration of the 

algorithm. For the details of the algorithm we refer to the study by Henn et al. (2009) 

 

The meta-heuristics can obtain up to 20 % improvement in total travel distance in 

comparison with the FCFS solution.  Also CW (ii) + Local Search can obtain more than 

17 % improvement approximately compared to FCFS solution. Henn et al. (2009) 

indicate that meta-heuristics such as RBAS and ILS gives better solutions than CW (ii) 

and Local Search in acceptable CPU time.  

 

Genetic Algorithms (GAs) have been devised from the biological evolution processes. 

Solutions in GAs are represented by chromosomes and each chromosome is constructed 

by a sequence of genes. A GAs tries to find the best sequence of genes by moving from 

one solution (chromosome) to another solution. This process is performed by 
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exchanging the genes of a chromosome. For that purpose various operators such as 

reproduction, crossover and mutation are applied during the run of the GA.  The 

reproduction operator generates a new poll of chromosomes from a previous solution 

set. In other words reproduction operator selects the best chromosome to the next 

generation. The crossover operator randomly selects two different genes from two 

different chromosomes and exchanges their locations. Mutation operator modifies the 

gene sequences by reallocating them within chromosome. Each solution is represented 

with an encoding scheme which serves to translate a solution into a string of genes from 

a chromosome.  

 

During the run of the GA a suitable encoding of the solution is crucial for the 

performance of the algorithm. Namely, a good representation helps to clearly define 

crossover, reproduction and mutation operators. Initial population also affects the 

performance of the genetic algorithm. In the literature the initial population is generally 

constructed by a set of randomly generated chromosomes.  For all we know, two GA 

have been proposed for the OBP. For the details we refer to the studies by Hsu et al. 

(2005) and Öncan (2013).  

 

Tabu search (TS) is a local search based algorithm which has been suggested by Glover 

(1986).  Tabu search keeps a tabu list to in order to prevent cycling during the local 

search phase.  The tabu list is used to memorize moves which have been applied in 

previous iterations.    

 

The algorithm starts from an initial solution and each iteration moves from the current 

solution to the best one in a subset of its neighborhood. These moves are performed 

even if they cause worse solutions. In order to avoid cycling solutions with some 

attributes are declared tabu or forbidden for a fixed number of iterations, namely tabu 

tenure. The tabu search algorithm stops when a priori defined rule satisfied. The tabu 

search algorithm keeps track of short term and long term memories during its run.  

Henn and Wäscher (2012) obtained initial solution by applying FCFS and C&W(ii) for 

the order batching problem.  Neighbor solutions can be reached with only SWAP 

moves, SHIFT moves and SWAP or SHIFT moves. 
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Simulating Annealing (SA) has first been proposed inspired from an analogy between 

the annealing of solids and the problem of solving the optimization problem. The SA 

algorithm avoids to get stuck into local optimum by employing random selection and 

acceptance strategy. The random acceptance strategy allows worse solutions with 

certain probability which is controlled by a temperature parameter. Furthermore the 

temperature parameter is updated according to a cooling schedule.  Recently, an SA 

algorithm for OBP has been proposed by Matusiak et al. (2013).  

 

The variable neighborhood search (VNS) heuristic is first designed by Mladenovic 

(1995) and Mladenovic and Hansen (1997) for solving optimization problems inspired 

by the idea of systematically modifying the neighborhood setting to escape from local 

optimal. A recent VNS application for the OBP has been suggested by Albareda-

Sambola et al. (2009). 



 

 

 

 

3. MILP FORMULATIONS FOR THE ORDER BATCHING PROBLEM 

 

 

 

In this section, we propose two MILP formulations for the OBP considering traversal 

and return routing strategies.  The proposed MILP formulations are inspired from the 

grouping models used in Islam and Sarker (2000) and Hwang and Kim (2005). 

 

In these models, we use the following notation.  Given a set of orders,           and 

aisles          ; let L denotes the vertical length of the aisle,   stands for the width 

between aisles,   indicates the capacity of picker and    be the number of items in 

order  .  We assume homogeneous capacity for all pickers.  Let     equal to 1 if and 

only if order   is assigned to batch  .  Moreover, note that        holds if and only if 

batch   is represented by order  . 

  

Table 3.1. Notation for the Basic Formulation 

 

          The set of orders 

          The set of aisles 

  The vertical length of aisle 

  The width between aisles 

  The capacity of picker 

   The number of items in order   

    1 if order   is assigned to batch  , and 0 otherwise  

    1 if order   represents batch  , and 0 otherwise 
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Now we present the constraint set developed by Hwang and Kim (2005) to analyze 

several similarity measures for the batching of customer orders.  The authors have 

inspired from an early study by Islam and Sarker (2000) who have devised Binary 

Integer Programming formulation for the machine-cell or part-families grouping 

problem. The basic formulation is as follows: 

 

 

∑       
         for                                  (1) 

 

 

             for                      (2) 

 

 

∑         
        for                                  (3) 

 

 

Here, constraints (1) assert that each order should be assigned to exactly one batch.  

Constraints (2) guarantee that order   is assigned to batch j then batch   is represented by 

order     Constraints (3) enforce that the items of all orders assigned to batch   satisfy the 

capacity of the picker. 

 

3.1. Traversal Policy 

 

Now we give the MILP formulation designed for the OBP considering the traversal 

policy.  For that purpose we define the following parameters and decision variables.  

Parameter     stands for the vertical distance, that a picker serving order   should travel, 

through the aisle   starting from the front aisle.  Note that     is set to zero when there 

is no item to be picked up in aisle   by the picker serving order  .  Binary variable     

equals to 1 if and only if the picker serving batch   traverses aisle  .  Binary variable    
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equals to 1 if and only if the number of aisles that must be visited by the picker serving 

batch   is odd. 

 

Binary variable     equals to 1 if and only if aisle   is the rightmost aisle that is visited 

by a picker serving batch  .  Integer variable    denotes the half of the number of aisles 

visited by the picker serving batch   if the number of aisles that must be visited by 

picker serving batch   is odd else the half of one plus number of the aisles visited by the 

picker serving batch  .  Continuous variable    stands for the one way horizontal travel 

distance from the I/O point by the picker serving batch  .  Continuous variable      

indicates the vertical one-way distance travelled in the rightmost aisle  , by the picker 

serving batch   and visits totally an odd number of aisles. 

 

 

Table 3.2. Notation used for the OBP with Traversal Policy 

 

    The vertical distance, that a picker serving order   should travel 

    1 if and only if the picker serving batch   traverses aisle  , and 0 

otherwise 

   1 if and only if the number of aisles that must be visited by the picker 

serving batch   is odd, and 0 otherwise 

    1 if and only if aisle   is the rightmost aisle that is visited by a picker 

serving batch  , and 0 otherwise 

   The half of the  number of aisles visited by the picker serving batch   if 

the number of aisles that must be visited by picker serving batch   is 

even else the half of one plus number of the aisles visited by the picker 

serving batch   

   The one way horizontal travel distance from the I/O point by the picker 

serving batch j 

    The vertical one-way distance travelled in the rightmost aisle  , by the 

picker serving batch   and visits totally an odd number of aisles. 
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Traversal:         ∑ ∑      ∑      ∑        
 
   

 
   

 
   

 
              (4) 

 

 

subject to 

 

 

(1) – (3)                    (5) 

 

 

∑             
 
        for                                (6) 

 

 

    ∑       
 
        for                            (7) 

 

 

                 for                                (8) 

 

 

∑           
 
        for                                  (9) 

 

 

             (     )            for                            (10) 

 

 

    ∑            
 
         for                              (11) 
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    integer      for                                (12) 

 

 

                for                                 (13) 

 

 

                   for                              (14)  

 

 

              for                                (15) 

 

 

           for                                (16) 

 

 

            for                              (17) 

  

  

The objective function minimizes the total distance travelled by all pickers.  Constraints 

(6) state that when there exists at least one item which belongs to order   and which is 

located in aisle  , then the picker serving the batch   which includes order  , must enter 

into the aisle  .  Constraints (7) guarantee that when none of the orders belonging to 

batch   visits aisle   then     is set to zero. 

 

Constraints (8) calculate the maximum horizontal distance from the I/O point travelled 

towards the right of the front aisle by the picker serving batch j.  Constraints (9) ensure 

that when the number of aisles traversed by a picker serving batch   is odd then    is set 



21 

 

 

 

to 1.  Recall that in case that number of aisles to be crossed is odd then the picker 

performs a round trip along the rightmost aisle. 

 

Constraints (10) compute the one-way vertical distance travelled in the rightmost aisle 

by the picker serving batch   when the number of aisles visited by that picker is odd.  

Constraints (11) state that     should be equal to 1 when aisle   visited by the picker 

serving batch   is the rightmost aisle visited by that picker.  Finally, constraints (12) -

(17) are for the domain definition of the decision variables. 

 

3.2 Return Policy 

 

In addition to the parameters and variables defined above, the MILP formulation for the 

OBP considering return policy employs the following additional decision variable.  

Continuous decision variable     indicates one way maximum vertical distance travelled 

in aisle   from the front aisle to the location of an item which belongs to an order 

assigned to batch  . 

 

 

Table 3.3. Notation used for the OBP with Return Policy 

 

    one way maximum vertical distance travelled in aisle   from the front 

aisle to the location of an item which belongs to an order assigned to 

batch   

 

 

Min z=∑     ∑ ∑     
 
   

 
   

 
                 (18) 

 

 

subject to   

 

 

(1) - (3), (6) - (8)                (19) 
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                for                           (20) 

 

 

                     for                                 (21) 

 

 

            for                              (22) 

 

 

            for                                             (23) 

 

  

The objective function (18) calculates the total distance travelled by all pickers.  

Constraints (20) compute the maximum vertical distance travelled in each aisle   by a 

picker serving batch  .  Constraints (21) – (22) give the domain definitions. 



 

 

 

 

4. COMPUTATIONAL EXPERIMENTS 

 

 

 

In this section we present the details of our computational experiments.  The algorithms 

are coded in C++ and tested on a Dell Server PE2900 with two 3.16 GHz Quad Core 

Processors and 32 GB RAM with Microsoft Windows Server 2003 operating system. 

MILP problems are solved by CPLEX 11.0 solver with default options. 

 

In the literature, there is no standard test library for the OBP.  Hence we have produced 

our test instances to carry out computational experiments.  In the test instances that we 

have randomly produced, the number of orders is selected between 10 and 100 with an 

increment of 10.  For each number of orders we have generated 10 instances which 

totally make 100 OBP test problems.  The number of items for each order is randomly 

chosen between 2 and 10.  The items are randomly assigned to locations.  According to 

the capacity of the order picker we have three classes of randomly generated test 

instances.  These are Class I, Class II and Class III test instances, for picker capacities 

      ,       , and         respectively.  

 

In Table 1, Table 2 and Table 3, we report the computational results obtained with OBP 

considering the traversal routing policy and picker capacities       ,        and 

      , respectively. Then in Table 4 and Table 5, we report the computational results 

obtained with OBP considering the return routing policy and picker capacities       , 

       and         respectively. 

 

The first columns in all tables denote the instance names and sizes.  The last row of all 

tables include the overall column averages.  The number of orders   is followed by the 

capacity of the picker  .  For example the row 20_36 stands for the computational 

experiments obtained with 10 OBP test instances with 20 orders and picker capacity 

      .  The next two columns include the experimental results obtained with the 

MILP model and the last two columns report the results obtained with the savings 
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heuristic.  We have chosen the savings heuristic as the benchmarking algorithm because 

of its promising performance as pointed out by de Koster et al. (1999).   

 

The CPU times reported are in seconds and UB stands for the upper bound value.  We 

assess the performance of the proposed MILP models in terms of solution accuracy 

within a CPU time limit on randomly generated test problems.  For OBP test instances 

with number of orders from 10 to 50 (60 to 100) we have imposed a CPU time limit to 

1800 secs (10800 secs.).  Therefore, the UB values reported are obtained with the 

feasible solutions output by the CPLEX.  Note that, when CPLEX returns a solution 

value in less than these computational time limits, then the reported upper bound is the 

optimal solution value.  The average percent improvements obtained with the MILP 

formulation for the OBP considering traversal policy over the savings algorithm are 

0,03 %, 2,80 % and 5,99 % for picker capacity       ,        and       , 

respectively.  These values are -2,67 %, 1,38 % and 2,28 % for the OBP considering 

return policy. 

 

The formulation used to calculate the average percent improvements is 

 

 

     
   

     
    

   
       (24) 

 

 

where    
  and    

    are respectively the upper bounds obtained with the savings 

algorithm and CPLEX MILP solver.  As can be observed, the performance of MILP 

formulations improves for larger values of Q.  Furthermore, considering the overall 

average percent improvements the MILP formulation for the OBP considering traversal 

and return policies, which are 2,94 % and 0,33 % respectively.  Moreover, when we 

consider the CPU times required by the MILP formulations and the savings algorithm; 

the winner is the saving algorithm.  However, we believe the attempts to obtain exact 

solution of the OBP are worthwhile. 
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Table 4.1. Computational results with the MILP formulation and saving algorithm for 

the OBP considering traversal routing policy with picker capacity Q = 24. 

 

TRAVERSAL 
MILP SAVINGS HEURISTIC 

UB CPU UB CPU 

10_24          367,0                        5              391,4               -       

20_24          651,7                1.800              691,8               -       

30_24          938,3                1.800              968,4               -       

40_24      1.277,2                1.800          1.265,8             0,1     

50_24      1.562,4              10.800          1.528,8             0,2     

60_24      1.867,8              10.800          1.814,1             0,7     

70_24      2.200,3              10.800          2.134,1             1,4     

80_24      2.419,4              10.800          2.395,0             2,9     

90_24      2.726,8              10.800          2.668,6             4,6     

100_24      3.027,3              10.800          2.954,5             8,4     

Average       1.703,8                6.120          1.681,3             1,9     

 

 

 

 

Figure 4.1. Histogram of the UB values are obtained with Q=24 and traversal policy 
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Table 4.2. Computational results with the MILP formulation and saving algorithm for 

the OBP considering traversal routing policy with picker capacity Q = 36. 

 

TRAVERSAL 
MILP 

SAVINGS 
HEURISTIC 

UB CPU UB CPU 

10_36          272,2                1.800              291,6            -       

20_36          473,4                1.800              511,4            -       

30_36          645,0                1.800              687,4            -       

40_36          880,7                1.800              922,0          0,1     

50_36      1.052,6              10.800          1.107,3          0,2     

60_36      1.295,1              10.800          1.307,0          0,6     

70_36      1.510,2              10.800          1.534,4          1,2     

80_36      1.685,8              10.800          1.691,0          2,2     

90_36      1.920,8              10.800          1.913,4          4,0     

100_36      2.193,5              10.800          2.107,7          6,4     

Average       1.192,9                7.200          1.207,3          1,5     

 

 

 

 

Figure 4.2. Histogram of the UB values are obtained with Q=36 and traversal policy 
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Table 4.3. Computational results with the MILP formulation and saving algorithm for 

the OBP considering traversal routing policy with picker capacity Q = 48. 

 

TRAVERSAL 
MILP 

SAVINGS 
HEURISTIC 

UB CPU UB CPU 

10_48          237,7                1.342              249,7            -       

20_48          383,3                1.800              408,2            -       

30_48          516,3                1.800              576,6            -       

40_48          681,0                1.800              748,3          0,1     

50_48          820,3                1.800              889,0          0,2     

60_48          970,6              10.800          1.046,2          0,6     

70_48      1.150,6              10.800          1.206,5          1,1     

80_48      1.293,9              10.800          1.342,7          2,2     

90_48      1.455,6              10.800          1.532,2          3,9     

100_48      1.642,2              10.800          1.664,2          6,5     

Average           915,2                6.254              966,4          1,5     

 

 

 

 

Figure 4.3. Histogram of the UB values are obtained with Q=48 and traversal policy 
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Table 4.4. Computational results with the MILP formulation and saving algorithm for 

the OBP considering return routing policy with picker capacity Q = 24. 

 

 

MILP 
SAVINGS 

HEURISTIC 

UB CPU UB CPU 

10_24          458,5                        6              471,7            -       

20_24          815,8                1.800              855,1            -       

30_24      1.179,7                1.800          1.216,6            -       

40_24      1.655,2                1.800          1.569,2          0,1     

50_24      2.061,4                1.800          1.913,2          0,3     

60_24      2.451,2              10.800          2.272,2          0,7     

70_24      2.796,5              10.800          2.664,2          1,5     

80_24      3.124,5              10.800          2.974,0          2,7     

90_24      3.254,8              10.800          3.125,4          3,3     

100_24      3.458,1              10.800          3.395,7          3,9     

Average       2.125,6                6.121          2.045,7          1,3     

 

 

 

 

Figure 4.4. Histogram of the UB values are obtained with Q=24 and return policy 
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Table 4.5. Computational results with the MILP formulation and saving algorithm for 

the OBP considering return routing policy with picker capacity Q = 36. 

 

RETURN 
MILP 

SAVINGS 
HEURISTIC 

UB CPU UB CPU 

10_36          358,4                1.800              369,3            -       

20_36          628,7                1.800              672,6            -       

30_36          890,4                1.800              931,5            -       

40_36      1.227,1                1.800          1.229,2          0,1     

50_36      1.545,0                1.800          1.485,8          0,2     

60_36      1.837,4              10.800          1.761,7          0,5     

70_36      2.228,8              10.800          2.043,6          1,1     

80_36      2.517,7              10.800          2.289,3          2,1     

90_36      2.892,1              10.800          2.592,5          3,7     

100_36      3.257,8              10.800          2.840,9          6,1     

Average       1.738,3                6.300          1.621,6          1,4     

 

 

 

 

Figure 4.5. Histogram of the UB values are obtained with Q=36 and return policy 
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Table 4.6. Computational results with the MILP formulation and saving algorithm for 

the OBP considering return routing policy with picker capacity Q = 48. 

 

RETURN 
MILP 

SAVINGS 
HEURISTIC 

UB CPU UB CPU 

10_48          318,9                    843              334,2            -       

20_48          519,4                1.800              568,1            -       

30_48          735,8                1.800              784,5            -       

40_48      1.013,2                1.800          1.022,1          0,1     

50_48      1.242,0                1.800          1.228,6          0,2     

60_48      1.470,3              10.800          1.450,2          0,5     

70_48      1.759,5              10.800          1.713,3          1,1     

80_48      2.003,2              10.800          1.883,0          2,1     

90_48      2.344,6              10.800          2.147,9          3,7     

100_48      2.637,4              10.800          2.343,6          6,2     

Average       1.404,4                6.204          1.347,6          1,4     

 

 

 

 

Figure 4.6. Histogram of the UB values are obtained with Q=48 and return policy



 

 

 

 

5. CONCLUSION 

 

 

 

We have investigated the Order Batching Problem (OBP) which is known to be NP-

hard.  To the best of our knowledge, in the literature there are no Mixed Integer Linear 

Programming (MILP) formulations devised for the OBP considering traversal and 

return routing policies. The heuristic routing policies are easy to use and they are more 

applicable to construct similar routes.  The ones proposed with this study are the very 

first attempts to suggest MILP formulations for the OBP.  In this work, the proposed 

MILP formulations have been tested on randomly generated instances and they have 

been compared with the savings algorithm which is known to be one of the most 

promising construction heuristics for the OBP.   

 

The computational results indicate that MILP and savings heuristic are useful for the 

OBP.  According to our computational experiments, comparing both methods, savings 

heuristic yields significantly better results in reasonable CPU times. Thus, considering 

the trade-off between accuracy and efficiency, savings heuristic gives a reasonable 

solution approach in point of CPU times. Savings heuristics clearly outperform MILP 

approach. 

 

From the experimental results, we observe that the proposed formulations yield quite 

good upper bounds and hence they can be used for benchmarking purposes.  These 

MILP formulations can also be used as benchmarks for other studies which propose 

heuristic and meta-heuristics for the OBP.  Moreover, there is also room to devise better 

MILP formulations for the OBP.  

 

As a further research avenue, MILP formulations for the OBP with largest gap and 

composite policies can be developed.  Besides, developing a Branch and Bound 
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algorithm exploiting the structure of the problem would be an interesting future study.   

Branch and cut and branch and cut and price algorithms can be also developed by 

suggesting valid inequalities based on the proposed MILP formulations.



 

 

 

 

REFERENCES 

 

 

 

Albareda-Sambola, M., Alonso-Ayuso, M., Molina, E., and Simon de Blas, C. (2009). 

Variable neighborhood search for order batching in a warehouse. Asia-Pacic Journal of 

Operational Research, 26 (5), 655–683. 

 

Bozer, Y.A., and Kile, J.W. (2008).  Order batching in walk-and-pick order picking 

systems. International Journal of Production Research, 46 (7), 1887–1909.  

 

Chen, M.-C., and Wu, H.-P. (2005a).  An association-based clustering approach to order 

batching considering customer demand patterns. Omega - The International Journal of 

Management Science, 33 (4), 333–343.  

 

Chen, M.-C., Huang, C.-L., Chen, K.-Y., and Wu, H.-P. (2005b).  Aggregation of orders 

in distribution centers using data mining. Expert Systems with Applications, 28 (3), 

453–460. 

 

Clarke, G., and Wright, J.W. (1964).  Scheduling of vehicles from a central depot to a 

number of delivery points. Operations Research, 12 (4), 568–581. 

 

Coyle, J. J., Bardi, E. J. and Langley, C. J. (1996).  The Management of Business 

Logistics. St Paul: West Publishing.  



34 

 

 

 

Çağırıcı, M. and Öncan, T. (2013).  MILP Formulations for the Order Batching Problem 

in Low-Level Picker-to-Part Warehouse Systems. Proceeding of the 2013 IFAC 

Conference on Manufacturing, Modelling, Management and Control, Saint Petersburg 

State University and Saint Petersburg National Research University of Information 

Technologies, Mechanics and Optics, Saint Petersburg, Russia, June 19-21, 2013. 

 

De Koster, R., Van Der Poort, E., and Wolters, M. (1999).  Efficient orderbatching 

methods in warehouses. International Journal of Production Research, 37 (7), 1479–

1504. 

 

De Koster, R., Le-Duc, T., and Roodbergen, K.J. (2007).  Design and control of 

warehouse order picking: A literature review. European Journal of Operational 

Research, 182, 481–501. 

 

Drury, J. (1988).  Towards more efficient order picking. IMM monograph no. 1, The 

Institute of Materials Managements: Cranfield, UK. 

 

Elsayed, E.A. (1981).  Algorithms for optimal material handling in automatic 

warehousing systems. International Journal of Production Research, 19 (5), 525– 535. 

 

European Logistics Association and Kearney, A.T. (2004).  Excellence in Logistics 

2004, European Logistics Association, Brussels.  

 

Frazelle, E. (2002).  World-Class Warehousing and Material Handling. New York: 

McGraw-Hill. 

 

Gademann, N., Van den Berg, J., and Van der Hoff , H. (2001).  An order batching 

algorithm for wave picking in a parallel-aisle warehouse. IIE Transactions, 33(5), 385–

398. 

 

Gademann, N., and Van de Velde, S. (2005).  Order batching to minimize total travel 

time in a parallel-aisle warehouse. IIE Transactions, 37(1), 63–75. 



35 

 

 

 

Glover, F., 1986. Future paths for integer programming and links to artificial 

intelligence Computer&Operation Research 13, 533-549.  

 

Gibson, D.R., and Sharp, G.P.(1992). Order Batching Procedures. European Journal of 

Operational Research, 58, 57–67. 

 

Goetschalckx, M., and Ratliff, H.D. (1998) Order picking in an aisle. IIE Transactions, 

20(1), 53–62. 

 

Hall, R.W. (1993). Distance approximations for routing manual pickers in a warehouse. 

IIE Transactions, 24 (4), 76–87. 

 

Henn, S., Koch, S., Karl, D., Strauss, C., and Wäscher, G. (2009).  Meta-heuristics for 

the order batching problem in manual order picking systems.  Working Paper 20/2009, 

Faculty of Economics and Management, Otto-von-Guericke-University Magdeburg.  

 

Henn, S., and Wäscher, G. (2012). Tabu search heuristics for the order batching 

problem in manual order picking systems. European Journal of Operational Research, 

222, 484–494. 

 

Ho, Y.-C., and Tseng, Y.-Y. (2006). A study on orderbatching methods of order-picking 

in a distribution  centre with two cross-aisles. International Journal of Production 

Research, 44(17), 3391–3417. 

 

Ho, Y.-C., Su, T.-S., and Shi, Z.-B. (2008). Order-bathcing methods for an order-

picking warehouse with two cross aisles. Computers and Industrial Engineering, 55(2), 

321–347. 

 

Hsu, C.-M., Chen, K.-Y., and Chen, M.-C. (2005). Batching orders in warehouses by 

minimizing travel distance with genetic algorithms. Computers in Industry, 56(2), 169–

178. 

 



36 

 

 

 

Hwang, H., and Kim, D.G. (2005). Order-batching heuristics based on cluster analysis 

in low-level picker-topart warehousing system. International Journal of Production 

Research, 43 (17), 3657–3670. 

 

Islam, K.M.S., and Sarker, B.R. (2000). A similarity coefficient measure and machine-

parts grouping in cellular manufacturing systems. International Journal of Production 

Research, 38 (3), 699–720. 

 

Matusiak, M., de Koster, R., Kroon, L.,Saarinen, J. (2013). A fast simulated annealing 

method for batching precedence-constrained customer orders in a warehouse. European 

Journal of Operational Research. 

 

Mladenovic, N.,(1995), A variable neighborhood algorithm- a new meta-heuristic for 

combinatorial optimization. In Abstract of papers presented at Optimization Days, page 

112, Montreal 

 

Mladenovic, N. and Hansen, P. (1997). Variable neighborhood search. Computers 

Operations Research, 24:1097-1100 

 

Öncan, T. (2013). A genetic algorithm for the order batching problem in low-level 

picker-to-part warehouse systems.  International MultiConference of Engineers and 

Computer Scientist 2013. Vol 1, IMECS 2013, March 13-15, 2013, Hong Kong.  

 

Petersen, C.G. (1997). An evaluation of order picking rout ing policies. International 

Journal of Operations and Production Management, 17 (11), 1098–1111. 

 

Ratliff, H.D., and Rosenthal, A.S. (1983). Orderpicking in a rectangular warehouse: a 

solvable case of the traveling salesman problem. Operations Research, 31, 507–521. 

 

Roodbergen, K.J., and De Koster, R.. (2001). Routing methods for warehouses with 

multiple cross aisles. International Journal of Production Research, 39(9), 1865–1883. 

 



37 

 

 

 

Rosenwein, M.B. (1996).  A comparison of heuristics for the problem of batching 

orders for warehouse selection. International Journal of Production Research, 34, 657-

664. 

 

Ruben, R.A., and Jacobs, F.R. (1999). Batch construction and storage assignment. 

Management Science, 45(4), 575–596. 

 

Tompkins, J.A., White, J.A., Bozer, Y.A., and Tanchoco, J.M.A. (2003). Facilities 

Planning. John Wiley & Sons, New Jersey, 3rd edition. 

 

Tsai, C.-Y., Liou, J.J.M., and Huang, T.-M. (2008). Using a multiple-GA method to 

solve the batch picking problem: considering travel distance and order due time. 

International Journal of Production Research, 46(22), 6533–6555. 

 

Wäscher, G. (2004). Order picking: a survey of planning problems ans methods. In: H. 

Dyckoff, R. Lackes, J. Reeves (eds.) Supply Chain Management and Reverse Logistics, 

pages 323–347, Springer, Berlin. 



 

 

 

 

APPENDIX 

 

 

 

APPENDIX A : C ++ Codes of Traversal Strategy 
 

#include <ilcplex/ilocplex.h> 

ILOSTLBEGIN 

#include <cmath> 

#include <fstream> 

#include <string> 

#include <time.h> 

 

using namespace std; 

 

double cpu_time() {  

    clock_t t;  static clock_t last = (clock_t)-1;  

    //  TEST_MESSAGE("clock()");  

    t = clock();  

    if (last == (clock_t)-1) last = t;  

      return (double)(t-last)/CLOCKS_PER_SEC;  

}  

 

ILOSTLBEGIN 

#define EPSCUT 1E-2 

#define BIGVAL 10E+12 

#define EPSVAL 1E-4 

#define myrandom01() (rand() / ((double)RAND_MAX + 1.0)) 

 

typedef IloArray<IloBoolVarArray> BoolVarMatrix;  
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typedef IloArray<IloArray<IloBoolVarArray> > BoolVarMatrix2;  

typedef IloArray<IloNumArray> NumMatrix;   

typedef IloArray<IloArray<IloNumArray> > NumMatrix2;  

typedef IloArray<IloNumVarArray> NumVarMatrix; 

typedef IloArray<IloArray<IloNumVarArray> > NumVarMatrix2; 

typedef IloArray<IloIntVarArray> IntVarMatrix; 

typedef IloArray<BoolVarMatrix>  BoolVar3DimArray; 

typedef IloArray<IloBoolArray> BoolMatrix; 

 

extern IloInt n; 

extern IloInt pi; 

extern IloNumVarArray H; 

extern BoolVarMatrix Y; 

extern IloIntVarArray V; 

extern IloIntVarArray CV; 

extern BoolVarMatrix X; 

extern NumVarMatrix BA; 

extern BoolVarMatrix POS; 

extern IloBoolVarArray CT; 

extern NumMatrix distances; 

 

ILOSTLBEGIN 

 

NumMatrix distances; 

IloBoolVarArray Xarray; 

IloNumVarArray H; 

BoolVarMatrix Y; 

IloIntVarArray V; 

IloIntVarArray CV; 

BoolVarMatrix X; 

BoolVarMatrix POS; 

IloBoolVarArray CT; 
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NumVarMatrix BA; 

IloInt n; 

IloInt pi; 

 

int main(int argc, char **argv) { 

 

   IloEnv env;  

double bas,son; 

 

double sag; 

 

   try { 

        IloModel model(env);  

     ifstream inFile; 

   inFile.open(argv[1]); 

 if (!inFile ) { 

        cout << "Unable to open file"; 

     exit(1); // terminate with error 

    } 

 

 ofstream outFile; 

 outFile.open(argv[2],ios::app ); 

 if (!outFile ) { 

        cout << "Unable to open file"; 

     exit(1); // terminate with error 

    } 

 outFile<<argv[1]<<"\t"; 

 

 char name[128]; 

 IloInt Aisles=10; 

 IloInt Capacity=24; 

 IloNum Width=2.4; 
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 IloInt i,j,k,s,l,ll,kk; 

 IloInt orders; 

 IloInt items; 

inFile >> orders; 

 

 NumMatrix QQ_X=NumMatrix(env, orders+1); 

 NumMatrix QQ_Y=NumMatrix(env, orders+1); 

 for (i = 0; i <= orders; i++){ 

     QQ_X[i] = IloNumArray(env, 2*orders+1); 

     QQ_Y[i] = IloNumArray(env, 2*orders+1); 

 } 

 for (i = 0; i <= orders; i++){ 

  for (j = 0; j <= 2*orders; j++){ 

   QQ_X[i][j]=0; 

   QQ_Y[i][j]=0; 

  } 

 } 

 

 IloNumArray SAYAC=IloNumArray(env, orders+1); 

 for(j=0;j<=orders;j++){ SAYAC[j]=0;} 

for (i = 1; i <= orders; i++){ 

 inFile >> items; 

SAYAC[i]=items; 

 for (j = 1; j <= items; j++){ 

  inFile >>ll; 

  inFile >>kk; 

  QQ_X[i][j]=ll; 

  QQ_Y[i][j]=kk; 

 } 

} 
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inFile.close(); 

 NumMatrix Q_ALT=NumMatrix(env, orders+1); 

 for (i = 0; i <= orders; i++){ 

     Q_ALT[i] = IloNumArray(env, 11); 

 } 

 

  for (i = 0; i <= orders; i++){ 

  for (j = 0; j <= 10; j++){ 

   Q_ALT[i][j]=0; 

  } 

 } 

for(i=1;i<=orders;i++){ 

 for (j = 1; j <= SAYAC[i]; j++){ 

   ll=QQ_X[i][j]; 

   kk=QQ_Y[i][j]; 

   if(kk>Q_ALT[i][ll]) Q_ALT[i][ll]=kk;  

    

 } 

} 

 

NumMatrix AA=NumMatrix(env, orders+1);  

 

for (i = 0; i <= orders; i++){ 

     AA[i] = IloNumArray(env, 11);      

 } 

for (i = 0; i <= orders; i++){ 

 for (j = 0; j <= 10; j++){ 

   AA[i][j]=0; 

  } 

 } 
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for(i=1;i<=orders;i++){  

 for (j = 1; j <= SAYAC[i]; j++){ 

 ll=QQ_X[i][j]; 

AA[i][ll]=1; 

 } 

} 

cout<<"X \n"; 

X = BoolVarMatrix(env, orders+1); 

for (i = 1; i <=orders; i++) { 

      X[i] = IloBoolVarArray(env, orders+1); 

     for (j = 1; j <= orders; j++) { 

   sprintf_s(name, "X[%ld][%ld]", i, j); 

   X[i][j] = IloBoolVar(env,0,1, name); 

  } 

  } 

    CT = IloBoolVarArray(env, orders+1); 

 

    for (j = 1; j <= orders; j++) { 

  sprintf_s(name, "CT[%ld]", j); 

  CT[j] = IloBoolVar(env,0,1, name);  

    } 

   Y = BoolVarMatrix(env, orders+1); 

 

  for (i = 1; i <=orders; i++) { 

    Y[i] = IloBoolVarArray(env, 11); 

 

     for (j = 1; j <= 10; j++) { 

  sprintf_s(name, "Y[%ld][%ld]", i, j); 

  Y[i][j] = IloBoolVar(env,0,1, name);  

    } 

  } 
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   H= IloNumVarArray(env, orders+1); 

 

   for (j = 1; j <=orders; j++) { 

  sprintf_s(name, "H[%ld]", j);  

  H[j] = IloNumVar(env,0,24, name);  

    } 

 

   V= IloIntVarArray(env, orders+1); 

 

   for (j = 1; j <=orders; j++) { 

  sprintf_s(name, "V[%ld]", j);   

  V[j] = IloIntVar(env, 0, 10, name); 

   } 

 

  CV= IloIntVarArray(env, orders+1); 

 

   for (j = 1; j <=orders; j++) { 

  sprintf_s(name, "CV[%ld]", j);   

  CV[j] = IloIntVar(env, 0, 10, name); 

   } 

 

  POS = BoolVarMatrix(env, orders+1); 

 

  for (i = 1; i <=orders; i++) { 

     POS[i] = IloBoolVarArray(env, 11); 

     for (j = 1; j <= 10; j++) { 

   sprintf_s(name, "POS[%ld][%ld]", i, j); 

   POS[i][j] = IloBoolVar(env,0,1, name); 

  } 

  } 
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BA = NumVarMatrix(env, orders+1); 

 for (i = 1; i <=orders; i++) { 

 BA[i] = IloNumVarArray(env, 11); 

  for (j = 1; j <= 10; j++) { 

  sprintf_s(name, "BA[%ld][%ld]", i, j); 

  BA[i][j] = IloNumVar(env,0,10, name);  

    } 

  } 

  

 for(i=1; i<=orders; i++){ 

  IloExpr sum1(env); 

  for(j=1; j<=orders; j++){     

   sum1+=IloExpr(X[i][j]);      

  }   

  model.add(sum1 == 1); 

  sum1.end(); 

 } 

 

 for(i=1; i<=orders; i++){ 

  for(j=1; j<=orders; j++){     

   if(i!=j){ 

    IloExpr sum1(env); 

    sum1+=IloExpr(X[i][j]);      

    sum1-=IloExpr(X[j][j]);      

     

    model.add(sum1 <= 0); 

    sum1.end(); 

   } 

  } 

 } 

 

for(j=1; j<=orders; j++){ 
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 IloExpr sum1(env); 

 for(i=1; i<=orders; i++){ 

 sum1+=IloExpr(SAYAC[i]*X[i][j]);  

 }  

 model.add(sum1 <= Capacity); 

 sum1.end(); 

} 

 

for(j=1; j<=orders; j++){ 

 for(k=1; k<=10; k++){ 

  IloExpr sum1(env); 

  ll=0; 

  for(i=1; i<=orders; i++){ 

   sum1+=IloExpr(AA[i][k]*X[i][j]);  

   if (AA[i][k])ll++; 

  }  

  if(ll>0){ 

  sum1-=IloExpr(orders*Y[j][k]);  

  model.add(sum1 <= 0); 

  } 

  sum1.end(); 

 } 

} 

 

cout<<"c1 \n"; 

 

for(j=1; j<=orders; j++){ 

 for(k=2; k<=10; k++){ 

  IloExpr sum1(env); 

 

  sum1+=IloExpr((k-1)*Width*Y[j][k]);  

  sum1-=IloExpr(H[j]);  
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  model.add(sum1 <= 0); 

  sum1.end(); 

 } 

} 

 

for(j=1; j<=orders; j++){ 

 IloExpr sum1(env); 

 for(k=1; k<=10; k++){ 

  sum1-=IloExpr(Y[j][k]);  

 } 

 sum1+=IloExpr(2*V[j]);  

 sum1-=IloExpr(CT[j]);  

 model.add(sum1 == 0); 

 sum1.end(); 

} 

 

 

for(j=1; j<=orders; j++){ 

 IloExpr sum1(env); 

 sum1+=IloExpr(V[j]);  

 sum1-=IloExpr(CT[j]);  

 sum1-=IloExpr(CV[j]);  

 model.add(sum1 <= 0); 

 sum1.end(); 

} 

 

for(j=1; j<=orders; j++){ 

 for(k=1; k<=10; k++){   

  IloExpr sum1(env);   

  for(l=k+1; l<=10; l++){ sum1-=IloExpr(Y[j][l]); } 

  sum1+=IloExpr(Y[j][k]); 
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  sum1-=IloExpr((POS[j][k])); 

  model.add(sum1 <= 0);   

  sum1.end(); 

 } 

} 

 

cout<<"c22 \n"; 

 

for(j=1; j<=orders; j++){ 

 for(k=1; k<=10; k++){   

  IloExpr sum1(env);   

  //for(l=k+1; l<=10; l++){ sum1-=IloExpr(1-Y[j][l]); } 

  //sum1-=IloExpr(10*orders*(Y[j][k])); 

  sum1-=IloExpr((Y[j][k])); 

 

  sum1+=IloExpr(POS[j][k]); 

  model.add(sum1 <= 0);   

  sum1.end(); 

 } 

} 

 

cout<<"c3 \n"; 

 

for(j=1; j<=orders; j++){ 

 for(k=1; k<=10; k++){   

  IloExpr sum1(env);  

  for(i=1; i<=orders; i++){sum1-=IloExpr(Q_ALT[i][k]*X[i][j]); } 

  sum1+=IloExpr(Y[j][k]); 

  model.add(sum1 <= 0);   

  sum1.end(); 

 } 

} 
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for(i=1; i<=orders; i++){ 

 for(j=1; j<=orders;j++){ 

  for(k=1; k<=10; k++){ 

   if(Q_ALT[i][k]){ 

    IloExpr sum1(env); 

    sum1+=IloExpr(Q_ALT[i][k]*X[i][j]);  

    sum1-=IloExpr(10*orders*(1-POS[j][k]));  

 

    sum1-=IloExpr(10*orders*(1-CT[j]));   

 

    sum1-=IloExpr(BA[j][k]);   

    model.add(sum1 <= 0); 

    sum1.end(); 

   }  

  } 

 } 

} 

 

IloExpr objective(env); 

for(i=1; i<=orders; i++){ 

  objective+=IloExpr(2*10*(CV[i])); 

  objective+=IloExpr(2*H[i]); 

  } 

 

for(j=1; j<=orders; j++){ 

 for(k=1; k<=10; k++){  

//objective+=IloExpr(POS[j][k]); 

objective+=IloExpr(2*BA[j][k]); 

 } 

 

} 
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model.add(IloMinimize(env, objective)); 

objective.end(); 

IloCplex cplex(model); 

bas=cpu_time() ; 

cplex.setParam(IloCplex::TiLim, 10800); 

 

if ( !cplex.solve() ) { 

         env.error() << "Failed to optimize LP" << endl; 

   throw(-1); 

      } 

    

son=cpu_time() ;  

env.out() << "Solution status = " << cplex.getStatus() << endl; 

outFile << "Solution status = " << cplex.getStatus() << " "; 

env.out() << "Solution value  = " << cplex.getObjValue() << endl; 

outFile << "Solution value  = " << cplex.getObjValue() << " "; 

outFile.close(); 

     

 env.end(); 

   }     

   catch (IloException& e) { 

      cerr << "ERROR: " << e.getMessage() << endl; 

   } 

   catch (...) { 

      cerr << "Error" << endl; 

   } 

    

 

  

   env.end(); 

   return 0; }  
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APPENDIX B : C ++ Codes of Return Strategy 

 

#include <ilcplex/ilocplex.h> 

ILOSTLBEGIN 

#include <cmath> 

#include <fstream> 

#include <string> 

#include <time.h> 

 

using namespace std; 

 

 

double cpu_time() {  

    clock_t t;  static clock_t last = (clock_t)-1;  

    t = clock();  

    if (last == (clock_t)-1) last = t;  

      return (double)(t-last)/CLOCKS_PER_SEC;  

}  

 

 

ILOSTLBEGIN 

#define EPSCUT 1E-2 

#define BIGVAL 10E+12 

#define EPSVAL 1E-4 

#define myrandom01() (rand() / ((double)RAND_MAX + 1.0)) 

 

 

 

typedef IloArray<IloBoolVarArray> BoolVarMatrix; //cordeau 

typedef IloArray<IloArray<IloBoolVarArray> > BoolVarMatrix2; //cordeau 

typedef IloArray<IloNumArray> NumMatrix;  //cordeau 

typedef IloArray<IloArray<IloNumArray> > NumMatrix2; //cordeau 

typedef IloArray<IloNumVarArray> NumVarMatrix; 

typedef IloArray<IloArray<IloNumVarArray> > NumVarMatrix2; 

typedef IloArray<IloIntVarArray> IntVarMatrix; 

typedef IloArray<BoolVarMatrix>  BoolVar3DimArray; 

typedef IloArray<IloBoolArray> BoolMatrix; 

 

extern IloInt n; 
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extern IloInt pi; 

extern IloNumVarArray H; 

extern BoolVarMatrix Y; 

extern NumVarMatrix B; 

extern BoolVarMatrix X; 

extern NumMatrix distances; 

 

ILOSTLBEGIN 

NumMatrix distances; 

IloBoolVarArray Xarray; 

IloNumVarArray H; 

BoolVarMatrix Y; 

NumVarMatrix B; 

BoolVarMatrix X; 

IloInt n; 

IloInt pi; 

 

int main(int argc, char **argv) { 

 

IloEnv env;  

double bas,son; 

 

double sag; 

 try { 

     

    IloModel model(env);  

     ifstream inFile; 

   inFile.open(argv[1]); 

 if (!inFile ) { 

        cout << "Unable to open file"; 

     exit(1); // terminate with error 

    } 

 

 

ofstream outFile; 

outFile.open(argv[2],ios::app ); 

if (!outFile ) { 

        cout << "Unable to open file"; 

     exit(1);  
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    } 

 

 

outFile<<argv[1]<<"\t"; 

char name[128]; 

IloInt Aisles=10; 

IloInt Capacity=24; 

IloNum Width=2.4; 

IloInt i,j,k,s,ll,kk; 

IloInt orders; 

IloInt items; 

 

inFile >> orders; 

 

NumMatrix QQ_X=NumMatrix(env, orders+1); 

NumMatrix QQ_Y=NumMatrix(env, orders+1); 

for (i = 0; i <= orders; i++){ 

 QQ_X[i] = IloNumArray(env, 2*orders+1); 

  QQ_Y[i] = IloNumArray(env, 2*orders+1); 

 } 

for (i = 0; i <= orders; i++){ 

 for (j = 0; j <= 2*orders; j++){ 

   QQ_X[i][j]=0; 

   QQ_Y[i][j]=0; 

  } 

 } 

 

IloNumArray SAYAC=IloNumArray(env, orders+1); 

 

for(j=0;j<=orders;j++){ SAYAC[j]=0;} 

 

for (i = 1; i <= orders; i++){ 

 inFile >> items; 

SAYAC[i]=items; 

 for (j = 1; j <= items; j++){ 

  inFile >>ll; 

  inFile >>kk; 

  QQ_X[i][j]=ll; 

  QQ_Y[i][j]=kk; 
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 } 

} 

 

inFile.close(); 

 

NumMatrix AA=NumMatrix(env, orders+1);  

for (i = 0; i <= orders; i++){ 

     AA[i] = IloNumArray(env, 11);      

 } 

 

for (i = 0; i <= orders; i++){ 

 for (j = 0; j <= 10; j++){ 

  AA[i][j]=0; 

  } 

 } 

 

for(i=1;i<=orders;i++){  

 for (j = 1; j <= SAYAC[i]; j++){ 

  ll=QQ_X[i][j]; 

  kk=QQ_Y[i][j]; 

   

  if(kk>AA[i][ll])AA[i][ll]=kk; 

 } 

} 

 

X = BoolVarMatrix(env, orders+1); 

  for (i = 1; i <=orders; i++) { 

      X[i] = IloBoolVarArray(env, orders+1); 

     for (j = 1; j <= orders; j++) { 

   sprintf_s(name, "X[%ld][%ld]", i, j); 

   X[i][j] = IloBoolVar(env,0,1, name); 

  } 

  } 

 

 

 

  Y = BoolVarMatrix(env, orders+1); 

  for (i = 1; i <=orders; i++) { 

    Y[i] = IloBoolVarArray(env, 11); 
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    for (j = 1; j <= 10; j++) { 

  sprintf_s(name, "Y[%ld][%ld]", i, j); 

  Y[i][j] = IloBoolVar(env,0,1, name);  

    } 

  } 

 

   H= IloNumVarArray(env, orders+1); 

   for (j = 1; j <=orders; j++) { 

  sprintf_s(name, "H[%ld]", j);  

  H[j] = IloNumVar(env,0,BIGVAL, name);  

    } 

 

   B= NumVarMatrix(env, orders+1); 

   for (i = 1; i <=orders; i++) { 

    B[i] = IloNumVarArray(env, 11); 

      for (j = 1; j <= 10; j++) { 

    sprintf_s(name, "B[%ld][%ld]", i, j);   

    B[i][j] = IloNumVar(env, 0, 10, name); 

   } 

   } 

 

for(i=1; i<=orders; i++){ 

 IloExpr sum1(env); 

 for(j=1; j<=orders; j++){     

   sum1+=IloExpr(X[i][j]);      

  }   

 model.add(sum1 == 1); 

 sum1.end(); 

 } 

  

for(i=1; i<=orders; i++){ 

 for(j=1; j<=orders; j++){     

  if(i!=j){ 

   IloExpr sum1(env); 

   sum1+=IloExpr(X[i][j]);      

   sum1-=IloExpr(X[j][j]);      

     

   model.add(sum1 <= 0); 

   sum1.end(); 
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   } 

  } 

 } 

 

for(j=1; j<=orders; j++){ 

 IloExpr sum1(env); 

 for(i=1; i<=orders; i++){ 

 sum1+=IloExpr(SAYAC[i]*X[i][j]);  

 }  

 model.add(sum1 <= Capacity); 

 sum1.end(); 

} 

 

for(j=1; j<=orders; j++){ 

 for(k=1; k<=10; k++){ 

  IloExpr sum1(env); 

  ll=0; 

  for(i=1; i<=orders; i++){ 

   sum1+=IloExpr(AA[i][k]*X[i][j]);  

   if (AA[i][k])ll++; 

  }  

  if(ll>0){ 

  sum1-=IloExpr(10*orders*Y[j][k]);  

  model.add(sum1 <= 0); 

  } 

  sum1.end(); 

 } 

} 

 

for(j=1; j<=orders; j++){ 

 for(k=2; k<=10; k++){ 

  IloExpr sum1(env); 

 

  sum1+=IloExpr((k-1)*Width*Y[j][k]);  

  sum1-=IloExpr(H[j]);  

  model.add(sum1 <= 0); 

  sum1.end(); 

 } 

} 



57 

 

 

 

 

for(i=1; i<=orders; i++){ 

 for(j=1; j<=orders; j++){ 

  for(k=1; k<=10; k++){ 

   if(AA[i][k]>0){ 

    IloExpr sum1(env); 

    sum1+=IloExpr(AA[i][k]*X[i][j]);  

    sum1-=IloExpr(B[j][k]);  

    model.add(sum1 <= 0); 

    sum1.end(); 

   } 

  } 

 } 

} 

IloExpr objective(env); 

for(i=1; i<=orders; i++){    

  objective+=IloExpr(2*H[i]); 

 } 

 

for(i=1; i<=orders; i++){ 

 for(k=1; k<=10; k++){  

 objective+=IloExpr(2*B[i][k]); 

  } 

 } 

 

model.add(IloMinimize(env, objective)); 

objective.end(); 

IloCplex cplex(model); 

bas=cpu_time() ; 

cplex.exportModel("mod.lp"); 

 

cplex.setParam(IloCplex::TiLim, 1800); 

if ( !cplex.solve() ) { 

         env.error() << "Failed to optimize LP" << endl; 

  throw(-1); 

      } 

son=cpu_time() ;  

   cout<<"  CPU:   "<<son-bas<<endl; 

   outFile<<"  CPU:   "<<son-bas<<"\t"; 
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   env.out() << "Solution status = " << cplex.getStatus() << 

endl; 

      outFile << "Solution status = " << cplex.getStatus() << "\t"; 

    

   env.out() << "Solution value  = " << cplex.getObjValue() << 

endl; 

   outFile << "Solution value  = \t " << cplex.getObjValue() << 

endl; 

   

for (i = 1; i <= orders; i++){ 

 for (j = 1; j <= orders; j++){ 

   if (   cplex.getValue(X[i][j]) > EPSVAL) 

   { 

     cout << "X[" << i << "][" << j << "] = " 

<<cplex.getValue(X[i][j]) << endl; 

    } 

  }} 

  

outFile.close(); 

 

 

env.end(); 

   }     

   catch (IloException& e) { 

      cerr << "ERROR: " << e.getMessage() << endl; 

   } 

   catch (...) { 

      cerr << "Error" << endl; 

   } 

    

   env.end(); 

   return 0; 

}
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