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ABSTRACT

ONLINE CONTEXT RECOGNITION WITH MOBILE PHONE SENSING

Activity Recognition (AR) or in other saying Context Recognition is an active area of
research in the domain of pervasive and mobile computing that has direct applications
about life quality and health of the users. Previous studies aim to classify different daily
human activities with high accuracy rates using various types of sensors. Becoming a
substantial part in our daily lives with their sensing capabilities, smartphones are
becoming increasingly sophisticated and the latest generations of smart cell phones now
incorporate many diverse and powerful sensors. Therefore, they are now considered
feasible platforms that enable people to make use of AR technologies without being
obliged to use or wear some extra devices. Nevertheless, due to power and
computational constraints of these devices, it becomes a challenging task to attain

accurate results by using power and CPU-intensive classifiers.

In this study, we present a research based on other works in the literature that analyze
the performance of the classification methods for online AR systems on smart phones.
The previous studies generally focus on single phone location of the users despite the
fact that users carry their phones in various positions. Hence, we also focus on phone
position uncertainty problem and compare the classification results with position
independent and position dependent classification models. Finally, we propose our own
implementations to make and run an activity recognition system on an Android based

smartphone.



RESUME

RECONNAISSANCE DE CONTEXTE EN LIGNE AVEC UN TELEPHONE
PORTABLE DE LA DETECTION

Reconnaissance d’activités (AR) ou dans d'autres mots reconnaissance de contexte est
un domaine de recherche actif dans le domaine de l'informatique omniprésente et
mobile qui a des applications directes sur la qualité de vie et la santé des utilisateurs.
Les études précédentes ont pour but de classer les différentes activités humaines
quotidiennes avec des taux de haute précision en utilisant différents types de capteurs.
Devenir une partie substantielle dans notre vie quotidienne avec leurs capacités de
détection, les smartphones sont plus en plus sophistiquées et les derniéres générations
de smartphones integrent désormais de nombreux capteurs divers et puissants. Par
conséquent, ils sont désormais considérés comme les plates-formes possibles qui
permettent aux gens de faire usage de technologies AR sans étre obligé d'utiliser ou de
porter des appareils supplémentaires. Néanmoins, en raison de la puissance de calcul et
les contraintes de ces dispositifs, il devient une tache difficile a atteindre des résultats

précis en utilisant I'énergie et gourmandes en temps processeur classificateurs.

Dans cette étude, nous présentons une recherche basée sur d'autres ceuvres dans la
littérature qui analysent la performance des méthodes de classification des systemes AR
en ligne sur les téléphones intelligents. Les études antérieures se concentrent
généralement sur I'emplacement de téléphone unique des utilisateurs, malgré le fait que
les utilisateurs effectuent leurs téléphones dans diverses positions. Par conséquent, nous
nous concentrons é¢galement sur le probléme de l'incertitude de position de téléphone et
comparons les résultats de la classification des modéles de la position dépendants et
indépendants. Enfin, nous proposons nos propres implémentations de faire et exécuter

un systeme de reconnaissance de l'activité sur un smartphone basé Android.



OZET

AKILLI TELEFONLAR UZERINDE GERCEK ZAMANLI EYLEM TANIMA

Aktif bir bilisim aragtirma konusu olan eylem tanima, hayat kalitesi ve e-saglik gibi
uygulama alanlarinda giinimiizde artarak kullanilmaktadir. Literatiirdeki g¢alismalar,
cesitli algilayict tipleri kullanarak degisik insan aktivitelerini isabetli bir sekilde
siiflandirmaya ¢alismaktadir. Hayatimizin degisilmez bir parcasi olmaya baslayan
akilli telefonlar genis algilama kapasiteleri ile son derece sofistike bir hal almis ve
giiniimiiz teknolojisinin en kapsamli ¢evresel sensorler ile donatilmaya baglanmistir. Bu
durum akalli telefonlari, insanlarin eylem tanima teknolojilerini herhangi baska bir cihaz
tasimadan kullanabilmelerine olanak saglamaktadir. Ancak, akilli telefonlarda hala
varolmakta olan gii¢ ve hesaba dayali kisitlamalar, yiiksek islem kabiliyetine ihtiyac
duyan simiflandirma algoritmalarinin  bu cihazlar {izerinde verimli bir sekilde

kullanilmasini engellemektedir.

Bu calismada, literatiirde yer alan diger cevrim i¢i aktivite tanima ¢alismalari
incelenmis, cevrim i¢i siniflandirmada kullanilan siiflandirma algoritmalarinin test
sonuglart analiz edilmistir. Ayrica gecmis ¢alismalarda gercek hayattan farkli olarak
kullanicin telefonun sadece bir pozisyonda tasidigi varsayimi iizerine yogunlastigi
goriildiigii icin telefon taginma pozisyon sorununun, eylem tamima siniflandirma
basariminin iizerindeki etkisi incelenmis ve telefon pozisyonu bilinerek yapilan
siniflandirma basarimi ile telefon pozisyonu bilinmeden yapilan siniflandirma basarimi
karsilagtirilmistir. Son olarak bu incelemelerden yola ¢ikilarak Android isletim

sistemine sahip telefonlar igin ¢evrim igi aktivite tanima sistemi gergeklenmistir.



1 - INTRODUCTION

The recent advances in networking and sensor technology has created a growing interest
in sensor networks which are necessary technology for the development of the concept
of ambient intelligence where the users receive services depending on their context. The
concept of “context” is very critical because determining the context of the user; it is a
key to create a dynamic and flexible ambient intelligence environment. A good effective
ambient intelligence environment must provide three major functionalities; context
awareness, ubiquitous access and natural interaction. Classical low cost sensors are not
satisfying these requirements. Therefore, the researchers must come up with something

new.

In recent years, the researchers started using mobile devices on their works on the
ambient intelligence. Mobile devices are becoming increasingly sophisticated and the
latest generations of smart cell phones now incorporate many diverse and powerful
sensors. During years of usage of the smart phones, the two of the three functionalities
of the ambient intelligence, which are the natural interaction and ubiquitous access,
have been implemented satisfactorily on the ambient intelligence systems. But the

context awareness functionality is the notion that the researchers are still working on.

Context awareness is the idea that computers can sense and react to a user's situation; it
has been a popular research topic for a number of years. The mobile devices that are
generally used for providing the context awareness for an ambient intelligence system
are one of the most ubiquitous tools in the progress of the context awareness. They have
an enormous popularity and permeation in to daily life. Therefore, they have a perfect
potential for context awareness. The very mobility of these devices creates a new
concept called “mobile context awareness”, where sensing and reacting is enabled by

the device itself.



The release of high-end mobile devices like smart-phones enabled the human activity
recognition on the mobile platforms. There are other devices like MSP (Mobile Sensing
Platform) equipped by a set of sensors like a barometer and humidity sensors, which
aren’t found even on today’s smart-phones, were used for AR but distributing the
application and collecting data from the users were a great problem. Hence smartphones
have a great advantage over MSPs and this advantage is called the application stores.
The market of mobile operating systems is shared by two major operating systems, they
are, namely 10S and Android. These mobile operating systems have application stores
for the developers to distribute their applications. An AR system is based on machine
learning models and to build these models, the large amount of data that gathered from
the mobile devices has a crucial importance. Since a developer can reach out thousands
of people around the world by using these application stores, data gathering and
distributing the application to the people is no longer a problem. These lacks of
infrastructure of the other mobile devices like MSP cause great disadvantages for
making an AR system. Therefore, the uses of the smart phones are eminent because of

its high infrastructure.

Smartphones also embed large resources in terms of computation, storage, battery,
which could allow performing online embedded activity recognition. However,
according to a survey from Incel et al. (2013), online activity recognition is an under
explored area. They report that most studies deal with online classification and that
classifiers still require much resource for embedding them on smartphones. Yet, some
recent work has started studying online AR classification, using Decision Tree and K-
Nearest Neighbors (Reddy et al., 2010; Kose et al., 2012)

Beyond those temporary limitations of resources, other issues need to be tackled with.
First, the large variability of sensors does not seem to be standardized yet, which means
that one should not make a system depend on the availability of such a sensor on every
smartphone. For instance, accelerometer is quite common but proximity sensor or
barometer is far less common. Hence, a system of human AR should deal with this
variable sensor availability. Also, unlike the previously mentioned study of Bao &

Intille (2004), sensor location and orientation may change in time. Indeed, smartphone



users can carry them in different locations. A survey (Chon et al., 2012) performed
among 55 volunteers reported the preferred locations for users to carry their
smartphones. The four most frequent answers were hand, pants pocket, bag and jacket
pocket. The change of location may make it more difficult for a system to infer user

activity, yet it needs to be taken into account.

| presented a different thesis (Coskun, 2014) based on a different point of view on the
online activity recognition by using a sequence model approach different from other
works in literature that uses sequential algorithms only as supplementary for the
classical classification algorithms. This work also focused on phone location uncertainty
problem since the previous studies generally focused on single phone location of the
users despite the fact that users carry their phones in various positions. | ran some tests
in order to address this uncertainty problem by using accelerometer, audio and
accelerometer + audio features together which were extracted from raw sensor data that

were collected in three different phone locations.

Apart from my previous thesis, this study focuses on the systems that only use
embedded accelerometer sensor on smart phones for building an AR framework. The
rest of the study is organized as follows. In chapter 2, state of art is presented. Chapter 3
focused on the exploratory phase of activity recognition. Chapter 4 contains our activity
recognition framework and chapter 5 is about experiments on data which was collected
by using our framework. Finally, chapter 6 will provide you the conclusion and

directions for future research.



2 - BACKGROUND

2.1 LITERATURE OVERVIEW

Previous studies are mainly concentrated on the type of the classification which is
online or offline and the performance of these classifiers. In Kononen et al. (2010), a
system that contains multiple accelerometers is proposed. These accelerometers are
located on wrist and hip. This system is implemented for recognizing activities like
biking, soccer, lying, walking, rowing, running, sitting, and standing. This system can
recognize very large sets of activities. Authors use Min. Distance algorithm, decision
trees and support vector machines as classifiers and they obtain relatively accurate

results of recognition with SVM (%80) by using offline classification.

In a similar study, Reddy et al. (2010), a system is proposed but this time authors of this
paper added a new sensor called GPS that is also located on smart phones. They tried to
recognize transportation activities like stationary, walking, biking and motorized
transports. Unlike other researchers, they also used the frequency domain features with
the time domain features. For example, the Fast-Fourier-Transform coefficients of a
sensor signal are a frequency domain feature, but the standard deviation or a mean of a
sensor signal is a time domain feature. The studies about the signal processing show us
that the frequency domain features has better information about the characteristic of a
signal. Authors of this paper proved that, they obtain high recognition results with
decision trees + discrete hidden markov model (%93) and SVM (%91). This system

also used the offline classification.



We mentioned two papers that used the offline classification to build models and make
classifications but there are other studies like (Siirtola & Roéning, 2012), (Kononen et
al., 2010) that used the online classification. Online classification is a bit different than

the offline classification; it basically depends on making classifications in real-time.

In Siirtola & Roning (2012), the authors proposed a system that uses two distinct
classifiers for classification process. As you can acknowledge, online classification
contains online data streaming and the system must handle the sensor data in real-time.
It means that the system makes the classifications on phone and because of the nature of
the online streaming and smart phone’s limited CPU power; classical classification
algorithms can’t be used. Generally the researchers use multiple classification
algorithms step-by-step just like a single algorithm to handle this online data streaming
problem. So in Siirtola & Roning (2012), the authors used decision trees + QDA and
decision trees + KNN separately and evaluate their performance. Both methods obtain

high recognition results, %95 and %94 respectively.

Similar in Bieber et al. (2010), the authors of this paper proposed a custom
classification method called “Cross correlating vertical acceleration waveform with
characteristic waveform of sit-to-stand transition”. In this research, authors analyze the

accelerometer value transition between two activities sit-to-stand and stand-to-sit.

The systems that use online classification have generally one thing in common; they use
only one sensor (generally accelerometer) because of the CPU limitation of the smart
phones. But due to recent advances in hardware technologies, the researchers on this

field believe that the constraints on the CPU limitation can be overcome in time.

Accelerometer appears to be the most popular sensor for the domain. However, we
previously noticed in the introduction that smartphone location and orientation might
change due to the habits of users that can carry it in different locations. This can have an
impact on accelerometer readings as Alanezi & Mishra (2013) report. They collected
accelerometer data from two different positions: hand holding and pants pocket.

Magnitudes of acceleration hardly reached the value of 15 m/s? when in hand while



they often exceeded 15 m/s? and even reached 20 m/s? in pants pocket. The difference
was also noticeable on standard deviations of readings. Hence, as the authors concluded,

accelerometer data are affected by smartphone position.

2.2 HUMAN ACTIVITY MODELLING AND CLASSIFICATION

In this section, we will explain the classification algorithms and common steps of the
AR process. In other words, some activity recognitions systems in the literature will be
examined and their methods will be analyzed for using in our implementation of the AR
system. A bunch of question must be answered for analyzing a method of an activity
recognition system for this purpose. First question that needs to be answered is “What is
needed for building an activity recognition system?”” Today’s smart phones are not only
the key computing or communicational devices; they have also a rich set of sensors
such as accelerometer, GPS etc. (Lane et al., 2010). Naturally, these sensors enable new
application opportunities across a wide variety of domains. One of these domains is

activity recognition.

Sensor-based activity recognition can be performed with mobile devices and today’s
technology offers us a new mobile devices; smart phones. A typical smart phone

contains many sensors.

But these cheap embedded sensors are not the only reason that researchers use smart
phones for their applications. Smart phones are also programmable; they have high
computational and communicational resources than other mobiles devices like MSP that
are used for activity recognition systems earlier. They have also application stores for
distributing the activity recognition application for collecting data from the users of the

system.



| Ambient light |

| Proximity |

Dual cameras

| GPS |

l Accelerometer |

Dual microphones

| Compass |

l Gyroscope |

Figure 2.1. An off-the-self iPhone 4, representative of the growing class of sensor
enabled phones. (Lane et al., 2010)

Another question that is needed to be answered is “which classification type?” In
literature, there are two classification types, offline classification and online
classification. Offline classification uses the offline processing, that means the model
building and classification process are implemented offline (not real-time) (Kose et al.,
2012) . As you can imagine, there are some advantages of using offline classification,
for example efficient model building is a computationally challenging task, by doing
this offline; you can use the resources of a desktop computer that has a better CPU
power than smart phones. On the other hand, online classification is implemented in
real-time, that means the model building can be done offline but the classification
process must be done in real-time. Another example is in Siirtola & Roning (2012),
when we tried to analyze a routine of a daily activities of a person, offline classification
can be more appropriate but when it comes to applications such as a fitness coach where
the users activities must be observed instantly by a third person, online classification is

more appropriate.



Another question that is needed to be answered is “which classification method?” As it
was mentioned before, the trendy classification algorithms are not feasible for an
activity recognition system, especially the ones that use the online classification. In
literature, most of the researchers created a custom classification algorithm by using
other classification algorithms step-by-step like in Kose et al. (2012) where authors
proposed two-step algorithm by using the decision tree and discrete hidden markov
model. Authors created a custom classifier called DT+DHMM and used it in their
research. They also obtained good recognition results, but popular classifiers like c4.5
decision tree or support vector machines also obtained high recognition results even
when they are used separately. Eventually, it can be deduced the selection of the
classification algorithm is important especially when the system is supposed to use the

online classification.

A typical online activity recognition system consists of five steps (Incel et al., 2013).

After the raw sensor data is collected, the steps of the activity recognition include

I.  Preprocessing of sensor data
[l.  Segmentation
I1l.  Feature extraction
IV.  Optionally dimension reduction

V. Classification

The figure 2.2 illustrates these steps in detail.
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ACTIVITY RECOGNITION

Figure 2.2. Typical steps of activity recognition. (Incel et al., 2013)

The preprocessing step contains data re-organizing algorithms like noise removal or
“SMOTE” for preventing the over fitting problem. The segmentation step is applied to
continuous data streams of real-time sensor data for dividing the signal in time
windows. The feature extraction step is an important step. This step is used for
characterizing the raw sensor data. The raw sensor data is itself not feasible for
classifying process, so a feature extraction must be applied to raw data to represent the
original data in best way (Incel et al., 2013). Dimension reduction step can be applied
for removing irrelevant and useless features to decrease the computational cost of the
training and classifying process. It also increases the performance of the system (Incel

et al., 2013). Last step is the classification step that includes the mapping of the data.

After the examination of these questions that are valid for all of AR systems, the more
specific questions are needed to be answered which are highly dependent on the

application.
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One of these questions is “which activities are needed to be recognized?” It is obvious
that these activities are highly dependent on the application. It is decided to recognize
coarse-grained activities like running, walking, standing still etc. Coarse-grained
activities are much easier to recognize than fine-grained activities like cooking or
shopping. Fine-grained activities need various sensors like GPS or thermometer. We
used only the accelerometer in our initial prototype, but later we are hoping to change

this approach and use other sensors for recognizing more activities.

The other question is “which features that is needed to be used for building the model?”
The feature selection is very important in an AR application because you can’t build an
efficient machine learning model for recognition purposes. As we said before, many
features must be extracted from the raw sensor data in order to understand the
underlying meaning of the raw sensor data. As figure 2.3 indicates, there are many

feature types in literature that we can use in our system.

Type | Features |
Mean

Variance, Std. Dev.,
Mean Abs. Dev.
EMS

Cum. Histogram
Jero or Mean
Crossing Rate
Derivative

Peak Count & Amp.
Sign

Discrete FFT Coef.
Spectral Centroid
Frequency-Domain Spectral Energy
Spectral Eniropy
Freq. Range Power
[ Time-Frequency Dom. | Wavelet Coer. |
SMA

Heuristic Features AT

Inter-axis Corr.
Time-Domain  Gait
Detection

Yertical or Horzon-
tal Acceleration

Time-Domain

Domain-Specific

Figure 2.3. Types of features. (Lockhart et al., 2012)
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Time domain and frequency domain features are the prominent features which were
generally used in the other applications in literature. It has been observed that their
accuracy was fine so that’s why these feature types are used in scope of this project, but
these feature types have different characteristics and the selection of these features is an
issue that must be overcome. There are some concepts like normalization that must be
considered during the feature selection. Normalization is generally used in the
applications which use the algorithms that need distance calculation. We used c4.5
decision tree so we didn’t need normalization. Another concept is periodicity; we
planned to recognize acts like running and walking. These activities contain periodic
actions. Periodicity can be detected in a certain activity by applying auto-correlation
functions to its raw data. Auto-correlation can be implemented by applying two times
FFT to a signal. Therefore it was rational for using FFT coefficients as a feature (Jun-
geun et al., 2012). Finally, the usage of the peak points in a certain data window can
also determine the periodic actions. We decided to use both peak points and FFT
coefficients for determining the periodicity. Below, you can find rest of the features that

we used in our system.

e Mean of accelerometer magnitude

e Variance of accelerometer magnitude

e Time Between Peaks(3)(For each accelerometer axis)
e Standard Deviation(3)(For each accelerometer axis)

e FFT Coefficients(1-20th coefficient)(The number depends on the window size)

2.3. EVALUATION OF HUMAN ACTIVITY CLASSIFIERS

Researchers generally evaluate the performance of the classifiers and sensors for

performing an experiment on a system. As you can see from the introduction part of the

study, in this section we will evaluate experiments on the classifiers in the literature.

Selection of the activities is important as the selection of the classifiers. The

performance of a classifier can differ hugely depending on the activities that we want
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our system to recognize. In literature, there are many activity groups like locomotion
activities which include biking, running, walking etc. or daily activities which include
cooking, washing hands etc. The feasible recognition of these activities is very

contingent upon the selection of the algorithm.
In this paper (Reddy et al., 2010), authors ran the experiments on the locomotion

activities. They used GPS + Accelerometer and they evaluated the performance of

several classifiers in terms of precision and recall.

Table 2.1. Precision results for classifiers. (Reddy et al., 2010)

Still Walk Run Bike Motor All
DT %95 | %87,6 | %955 | %845 %093,9 %91,3
KMC %54 %81 %98,5 %45,6 %98,9 %75,6
NB %88,4 | %88,1 | %93,5 %75,6 %71,3 %83,4
NN %96,4 | %87,3 | %93,3 %84,8 %92,7 %90,9
SVM %90,7 | %88,8 | %959 %81,6 %97,8 %91
CHMM %89,2 %90 %94,3 %80,5 %77,6 %86,3
DT-DHMM | %955 | %92,4 | %96,4 | %87,9 %096,2 %93,7
Table 2.2. Recall results for classifiers. (Reddy et al., 2010)
Still Walk Run Bike Motor All
DT %97,2 | %884 | %919 | %853 %093,4 %91,3
KMC %99,7 | %75,3 %81 %34,8 %63,2 %70,8
NB %972 | %774 | %94,2 %51,2 %95,3 %83
NN %96,6 %88 %92,9 %84,2 %92,9 %90,9
SVM %97,4 | %86,9 | %92,7 %87,1 %89,4 %90,7
CHMM %97,5 %79 %94,7 %63,5 %95,9 %386,1
DT-DHMM | %97,8 | %90,8 | %94,4 | %90,6 %094,5 %093,6
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This system uses the online classification, so as we mentioned before custom classifiers

are fabricated for solving the real-time data streaming problem that the online

classification caused. As table 2.1 and 2.2 indicate, DT-DHMM classifier performs

better than other classification algorithms. The decision tree classifier performs

significantly well by itself but nevertheless if you support the decision tree classifier

with a different classifier, the performance will increase.

Feature selection is also important in the experiments. As we mentioned in the method

section, there are two types of features, time domain features and frequency domain

features. In this paper (Yan et al., 2012), authors analyzed the influence of sample rate

and feature types to the performance of the system.

Table 2.3. Accuracy of the activity recognition using different feature groups. (Yan et

al., 2012)

Activity Classification Accuracy
SamplingRatel SamplingRate2 SamplingRate3 SamplingRated
i 100Hz) i50Hz) (16Hz) (5Hz)
Ff!:li'ie’! F[z:m'.""FfJ'r.q Ftlrm: Fh:m:"'-Ffﬁ:'r; Fflmr. -Ftlrm:'l'F_,fﬁ'.'r; -Ff::lnr. Fflrnr."'F_,l'rf:q
‘stand” | 0.9116 (.9203 | 0.8958 0.924410.9516 0.92110.9123 0.9141
‘slowWalk™ | 0.9379 0.935 09151 0.9069 | 0.9171 0.9064 | 0.8971 (0.8486
“sitRelax” | 0.9822 (.9821 | 0.9892 0.982 | 0.9836 0.9824 | 0.9717 0.9823
sit | 0.980 (0.089 | 0.9887 0.9783 | 0.0855 0.0880 | 0.9816 0.9533
‘normalWalk™ | 0.9407 0.9364 | 0.9542 0.9424 10,0237 0.9154 | 0.8663 (0.8386
‘escalatorUp” | 0.6786 (.7048 | 0.7263 0.7455 | 0.6592 0.6830 | 0.6378 (0.6653
‘escalatorDown’ | 0.6803 0.756 | 0.6356 0.6642 10,5947 0.6488 | 0.5868 (0.6368
‘elevatorUp’ | 0.7026 0.7606 | 0.7265 0.7863 | 0.7025 0.7224 0.7827 0.7596
‘elevatorDown’” | 0.7353 0.7763 | 0.7648 0.8059 | 0.7669 0.7933 | 0.8056 (0.7926
‘downStairs’ 0.8 (.8065 | 0.8097 0.8239 | 0.8344 0.7816 0.7559 0.7515

As you can see from Table 2.3, the usage of the both F;,, and Fy,., at the same time

generally has a better performance than the usage of only Fype. Frime and Fppoq are

acronyms of time domain features and frequency domain features respectively. You can

also see that the increase of the sampling rate increases the classification accuracy.
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There is a similar paper (Bao & Intille, 2004) that uses C4.5 decision tree classifier that
has a satisfactory performance. Authors proposed a system where the users wear five
small biaxial accelerometers. Accelerometer data was collected from 20 subjects. C4.5
decision tree classifier has a performance with a good accuracy rate of %84. 20 different

activities are recognized by this system.

Table 2.4. Aggregate recognition rates for activities. (Bao & Intille, 2004)

Activity Accuracy Activity Accuracy
Walking %89.71 Carrying items %82.10
Sitting & Relaxing %94.78 Working on PC %97.49
Standing still %95.67 Eating or drinking %88.67
Watching TV %77.29 Reading %91.79
Running %87.68 Bicycling %96.29
Stretching %41.42 Strength-training %82.51
Scrubbing %81.09 Vacuuming %96.41
Folding laundry %95.14 Lying down %94.96
Brushing teeth %85.27 Climbing stairs %85.61
Riding elevator %43.48 Riding escalator %70.56

The systems that have been analyzed previously can recognize 5 or 6 activities max, but
it has been observed in table 2.4., the system can recognize 20 activities. This system
uses five different accelerometers, each located on different parts of a human body.
Therefore, it’s normal that if you increase the diversity of the sensor data (in this case

increases the number of the sensors), you can recognize more activities.

Likewise, this paper (Kose et al., 2012) evaluated the performance of the classifier in
terms of accuracy, precision, recall and F-measure. This system can recognize four

activities and uses the online classification. Results are shown in table 2.5.
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Table 2.5. Comparison of clustered KNN, NB and DT without biking. (Kose et al.,

2012)
Clustered KNN Naive Bayes Decision Tree
Accuracy %92,13 %75,23 %85,52
Precision %92,45 %70,08 %83,56
Recall %92,09 %75,07 %81,22
F-Measure %92,27 %72,10 %82,37

Authors of this paper also pointed out that they made two different experiments. The
accuracy results of running, walking, standing and sitting is above. In their second
experiment they added another activity called biking and they performed their
experiment again. After the second experiment, they observed and significant decrease
on the accuracy results. They tied this observation to activity similarity between biking
and running. They confirmed this result by looking at the accelerometer readings. This
similarity leaded to misclassification. They also indicated that they can overcome this
problem by extracting the frequency domain features since their system used only the
time domain features. As it has been observed previous sections of this report, they are
proven right. A system can detail the nature of a sensor signal by using the frequency

domain.

They also analyzed the performance of the classifier dependent on the sample rate and

window size.

Table 2.6. Impact of window size and sampling interval on the accuracy rates of
classifiers with biking. (Kose et al., 2012)

Window size (sec.) 0.5 l 2
Sample Rate 10 50 100 10 50 100 10 50 100
C-KNN 61.6% 59.3% 61.2% | 64.9% 66.6% 658% | TLS% TLTA  T0.T%
DT 64.7% 67.2% 58.0% | 63.0% 67.8% 651% | 68.9% T76.2% TL2%
NB 41.0%  44.4% 43.6% | 433% 429% 432% | 8% 45T%  46.1%
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It has been observed that the window size is a more dominant system parameter than the
sampling rates (Kose et al., 2012). In general, bigger window sizes obtain better results
regardless of the significant effects of the sampling rates. In addition to that, smaller
sample rates revealed better results. Generally, increasing the sampling rates should be
detailed the nature of the activities, yet for this experiment it created a negative effect on
the results (Kose et al., 2012). You can see from Figure 2.6, the accuracy rates of 50 Hz

are better than the 100 Hz.



3 - EXPLORATORY ACTIVITY RECOGNITION PHASE

The design and implementation of an effective AR system need to be informed by a
holistic understanding of machine learning models. We started the modelling process by
discussing several considerations in model development, such as purpose of our study,
the availability of the knowledge of smartphone orientation and feasible human

activities which were recognizable by wearable sensors.

In this chapter, we presented an exploratory phase towards the activity recognition. We
ran some experiments in order to take a closer look to elements of online activity

recognition systems.

The design and implementation of an effective AR system need to be informed by a
holistic understanding of machine learning models. We started the modelling process by
discussing several considerations in model development, such as purpose of our study,
the availability of the knowledge of smartphone orientation and feasible human

activities which were recognizable by wearable sensors.
In this chapter, we presented an exploratory phase towards the activity recognition. We

ran some experiments in order to take a closer look to elements of online activity

recognition systems.

3.1. MACHINE LEARNING MODELS

Machine learning is a type of artificial intelligence that provides the ability to learn

without being explicitly programmed to the computers. This ability basically allows



18

computers to handle new situations via analysis, self-training, observation and
experience (Domingos, 2012). Therefore we can ask ourselves the following question
“How can we create systems to automatically learn and to improve with more data?”
The learning in this context is recognizing complex patterns and makes intelligent
decisions based on data. The difficulty lies in here that the set of all possible decisions
given all possible inputs is too complex for us to understand (Domingos, 2012). The
field of Machine Learning develops algorithms that discover knowledge and some
patterns from specific data and experience, based on sound statistical and computational
principles (Domingos, 2012). An activity recognition system uses these algorithms in
order to recognize the activities. In this study we used Decision Trees and Random

Forest as machine learning algorithms.

A decision tree is a graph that uses a branching method to illustrate every possible
outcome of a decision. Therefore we can say that decision trees are graphical
representations of a classification process. A classical DT is consisted of 3 parts;
“nodes” represent a test on an attribute, “link” represents a possible value for the tested
attribute and ”leafs” are estimated class for the considered instance. The general
algorithm of the decision trees are based on creating purer and purer instance subsets
recursively. Therefore the recursive process continues until all instances in the subset
belong to the same class. Steps of the DT algorithm contain initializing of the tree,
creating a new node and selecting an attribute for this node. The selection of the
attribute is the most important step. There various selection criterias are available but
the most common one is the information gain. Information gain is a measure based on
information theory principles and DTs learn the decision boundary by recursively
partitioning the space in a manner that maximizes this information gain. The concept of
entropy is used to calculate the information gain. Entropy basically measures the
average quantity of information over the different possible realizations, weighted by
their probability. We used C4.5 decision tree which is developed by Ross Quinlan
(Quinlan, 1986). This version of the decision trees differs from classical one by its

ability to handle continuous data and enables the pruning after the creation of tree.



19

Random forests are an ensemble learning method for classification that operate by
constructing multiple decision trees at training time and outputting the class that is the
mode of the classes output by individual trees’. Basically, a classification of a instance
is made by all trees in the forests and Leo Breiman and Adele Cutler who are the
creators of Random Forests call this process “Voting”. The classification process is
finalized by the forest chooses the class that has the most votes. The parameters such as
“number of trees” and “number of tried attributes” must be set before applying the
algorithm. The general algorithm of Random Forests is based on bootstrap aggregating.
Bootstrap aggregating is a machine learning meta-algorithm for improving the accuracy
of the machine learning algorithm by using the resampling with replacement. It
basically creates multiple datasets from one dataset. Bootstrap aggregating, also known
as “Bagging”, is commonly used in the field of machine learning, especially in decision
trees. Random Forests creating a fixed number of bootstrap subsets from original
training data by using bootstrap aggregating. The algorithms start with the dispersion of
original data into two. About two-third of the data is used for constructing each tree of
the forest by using a different bootstrap subset from the original data. Remaining
training data are used to estimate error and variable importance. At the each node of the
trees, a randomly selected subset of features is used for splitting. Finally the class

assignment of is made by the number of votes from all of the trees.

3.2. MODEL BUILDING AND TESTING

Before getting into the machine learning models we must understand the concept of
“model” in this context. The process of activity recognition is some kind of supervised
classification and it is known that the supervised classification algorithms use the
models for classifying the instances. Like in every supervised classification process,
data needs to be labelled. Labelled data is also known as training data and training data
refers to the data used for “building the model”. The training data is an important
requirement for the application; therefore we implemented simple android application
called “AndroidAcc”. This application is used for logging the user’s accelerometer

readings. AnroidAcc has a very simple user interface.

! Random Forests. URL: http://stat-www.berkeley.edu/users/breiman/RandomForests/. [accessed June 2014]
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'el AndroidAcc

[ ] Remove Gravity
Sample Rate: 100 Hz 7
Activity: StandingStill 4
Time Interval in Seconds:

Type your name:

Start

Figure 3.1. Main Screen of AndroidAcc

The user chooses the time interval, the sample rate and the activity that the user is about
to perform from the graphic interface. When the user presses the start button, the
application gives “Five seconds” of preparation time for the user to put the smartphone
in their pocket and perform the action. The application logs the data to csv text file.

We collected sensor data from single person that consisted of five different activities
with 100Hz sample rate. Each activity was performed for 60 seconds. When we merged
the data of five activities with one second window size, we had a raw labeled
accelerometer data with 291 instances. We used WEKA program? for the model
building. As we said at the beginning, we used c4.5 decision tree as the supervised
classification algorithm. The usage of WEKA is simple, but there are some settings
which must be set. The most important setting is the count of folds of the cross-
validation. The cross-validation is a model validation technique. It is used to estimate
how accurately a machine learning model will perform in action. In practice, the
training set is used for building models but in addition to that extra data which is
generally called test data must be used for validating the model. Validation of the model

2 Machine Learning Group at University of Waikato, (2012). Weka Machine Learning Toolkit.
URL: http://www.cs.waikato.ac.nz/ml/index.html[accessed_February 2014]
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is crucial for an efficient machine learning model. The collection of the test data is
another challenge and one of the main reasons that we used cross-validation in our
system, is to overcome this challenge. This is simply a way of coming up with partition
of your entire dataset into training and test data. For example, if you do 10-fold cross-
validation, your entire dataset is partitioned into 10 sets of equal parts. Nine of these are
combined and used for training; the remaining one is used for testing. This process is
repeated with nine different sets combined for training and so on until all of the ten
individuals have been used for training. Therefore we say that training/test sets and
cross-validation are conceptually doing the same thing; cross-validation simply takes a
more rigorous approach by averaging over the entire dataset.

In our initial tests, we used 10-fold cross-validation. Our first tests without FFT features
were split into two. In the first one, we left out the stairs data. You can see the results in

Figure 3.2.

=== Summary ===

Correctly Classified Instances 172 98.2857 %

Incorrectly Classified Inatances 3 1.7143 %

Kappa statistic 0.9743

Mean absolute error 0.0114

Root mean sguared error 0.106%9

Relative absolute error 2.5711 %

Root relative sguared errocr 22.68741 %

Total Number of Instances 175

=== Detailed Accuracy By Class ===

TF Rate FF Rate Frecision Eecall F-Measure ROC Area Class

0.96868 a 1 0.966 0.982 0.983 Standing3till
0.983 0.017 0.9a87 0.983 0.975 0.983 Walking
1 0.009 0.983 1 0.991 0.99&8 Running

Weighted &wvg. 0.983 0.009 0.983 0.983 0.983 0.987

=== Confusion Matrix ===

a b c «<—— clazzified as
58 2 0| &a = StandingStill
058 11| bk = Walking

0 0 58 | c = Bunning

Figure 3.2. Test results of the data without stairs
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In the second one, we added the stairs data and ran another test.

=== Summary ===

Correctly Classified Instances
Incorrectly Classified Instances

ka

26

Kappa statistic 0.8883
Mean absolute error 0.0414
Root mean sguared error 0.1854
Relatiwve abksclute error 12.9498 %
Root relatiwve sguared error 45.3493 %
Total Humber of Instances 291
=== Detailed RAccuracy By Class ===
IF Eate FF Rate Frecision Recall
0.983 a 1 0.983
0.315 0.03 0.885 0.3915
1 0.004 0.983 1
0.914 0.043 0.841 0.914
0.741 0.034 0.843 0.741
Weighted Awvg. 0.911 0.022 0.91 0.911
=== Confusion Matrix ===
a b c 4 e «<—-— classified as
57 a a 1 a | a = StandingStill
0 54 a a 5 | b = Walking
[n] 0 58 a (s c = Running
o 2 053 3 | d = AscendingStairs
o 5 1 9 43 | e = DescendingStairs

91.06853
8.9347

F-Measure
a.

-9

. 991

.B748

. TE9

-9l

oo o oo

991

o

oo ooooI0

Area
991
943

- 9598
.948
-875

-951

Figure 3.3. Test results of the data with stairs

Class
StandingStill
Walking
Running
AscendingStairs
DescendingStairs

As you can see from the results in figure 3.2 and 3.3, when we added the stairs data, the

accuracy of the classification decreased. It has been observed that the stairs activity

especially the “DescendingStairs” decreases the accuracy by observing the confusion

matrix from the results. It is a normal thing since the similarity between stairs and

walking activities is indisputable. We proved this with these tests.

For the last test we added FFT features to the feature set that we used in our dataset.
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=== 5Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 270 92.7835 %
Incorrectly Classified Instances 21 T7.2165 %
Kappa statistic 0.9098

Mean absolute error 0.038

Root mean sguared error 0.1857

Relative absclute error 11.2588 %

Root relatiwve sguared error 41.4158 %

Total Humber of Instances 291

=== Detalled Accuracy By Class ===

IF Rate FF Rate Precision Recall F-Measure ROC Rrea Class
0.383 a 1 0.983 0.9351 0.992 Standing3Still
0.914 0.017 0.93 0.914 0.922 0.959 Walking
1 0.004 0.983 1 0.951 0.9398 Running
0.931 0.034 0.871 0.931 0.9 0.945 Ascending3tairs
0.81 0.034 0.855 0.81 0.832 0.931 DescendingStairs
Weighted Awvg. 0.928 0.018 0.928 0.928 0.928 0.9466
=== Confusion Matrix ===
a b c d e «—- classified as
S8 0 0 1 01 & = Standing3till
053 0 0 5| = Walking
O 0% 0 0] ¢ = Bunning
0 1 054 31| d= AscendingStairs
o 3 1 7 47 | e = DescendingStairs

Figure 3.4. Test results of the data with FFT features

We observed an increase of 1 point to %92.78 but this increase didn’t satisfy us. When
we examined the confusion matrix, we were able to see that there were some
misclassifications between the stairs activities. Hence, we merged the stairs activities
into one activity called “Stairs”. In other words, “AscendingStairs” and
“DescendingStairs” were merged into “Stairs” activity. We ran another test after this

merger.
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94.38454 %
5.1546 %

8]

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Mean absolute error

Root mean sgquared error
RBelative absolute error

Root relative sguared error
Total Number of Instances

[

[T ]
[l I ¢ I o T e Y O 3 Y
LI B e Y
=1 Ra A L R
w oo oM
[ R T S |
L

]

=== Detailed Accuracy By Class =—=

TF Rate FP Rate Frecision Recall F-Measure ROC Area Class

0.983 0.004 0.983 0.983 0.983 0.9&839 StandingStill
0.914 0.021 0.914 0.914 0.914 0.942 Walking
1 0.017 0.935 1 0.987 0.991 Bunning
0.922 0.029 0.955 0.922 0.939 0.947 Stairs
Weighted Rvyg. 0.948 0.02 0.949 0.948 0.948 0.963
=== Confusion Matrix ===
a b c d «<—— classified as
1= Ju] Ju] 11 a2 = StandingStill
a 53 1 4 | b = Walking
a o 58 ol c = Running
1 5 3 107 | d = Stairs

Figure 3.5. Test results of the data with “Stairs” activity

The accuracy of the classifier was increased by 2.8 points to %94.8454. This is a very
good accuracy but it can be much better since when we merged the stairs activities, the
instance count of the “Stairs” activity was two time bigger than the other activities. This

could cause an overfitting problem. But this accuracy is sufficient for us in this point.

3.3. CLUSTERING APPROACH

The results in the previous section were successful, but it has been displayed that there
are some misclassifications. As we said before, the activities like walking, ascending
stairs and descending stairs are similar, therefore this means they had some similarities
between their numerical feature values. It has been decided to make a cluster analysis in
my dataset for examining these similarities and detecting the features which cause the
misclassifications. For these purposes, we used a distance based clustering algorithm
called “Simple K-Means”. K-means is a clustering algorithm that uses the Euclidean
distance. The process of the algorithm follows an easy way to classify a given data set

through a certain number of clusters (K clusters) fixed a priori. The main idea is to
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define “K” centroids, one for each cluster, and create clusters based on the distances
between these centroids and other instances. Then the algorithm defines a new centroid
based on its cluster members and creates new clusters again. This process continues till
fixed amount of iterations. WEKA has its own k-means implementation hence we
decided to run the tests on WEKA again. This algorithm needs the cluster count at the
beginning; we had five activities so we determined the cluster count as five. The result

of the first test is below.

Cluster centroids:

Clusterd

Letribute Full Data a 1 2 3 4

{291) {145) {29) {58) {27) {32)
Mean 3.5874 3.24B5 0.101& B.2045 3.3545 0.1123
SDheviationX 2.1151 1.9624 0.0598 4.6969 2.0243 0.08687
SDeviation¥ 2.7234 2.8237 0.0713 5.79749 2.6l28 0.1007
SDeviationZ 2.2183 1.9632 0.065 5.2364 1.97895 0.0&58
TBPeaksi 298.7285 259.6414 225.8621 376.2414 425.8519 294,125
TBPeaksY 232.0859 209.2345 355.7241 209.5517 251.5558 248
TBPeaksZ 239.6254 112.6138 645.3103 150.0172 727.2963 198.4375
Variance 5.8014 4.3443 0.0421 18.3302 3.9903 0.0699
FFT1 63,4287 T4.6447 1.4875 97.8991 B8.7835 1.7268
FFI2 44.0959 52.0839 0.9336 68.4957 45.7313 1.4113
FFT3 39.772 42.8938 1.0276 71.6923 40.9277 1.908
FFT4 36.1628 32.4323 0.952 87.7435 24.5358 1.2971
Time taken to build model (full training data) : 0.02 seccnds

== Model and ewvaluation on training set =—=
Clustered Instances

1 50%)
10%)
20%)
9%)
11%)

LR TR S T c i e |
Ld R A RS
B3 =] O w3 R
e ]

Figure 3.6. Test results of K-means cluster analysis

The results were not satisfying, as you see the distribution must be %20 for each cluster
since we had same amount of instances for each activity. This test gave us nothing in

the terms of feature examination.
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After some research, we realized that the separate clustering could work better. In this
case, separate clustering means that testing the activities in dual or triple groups. First

we tested three activities “Running, Walking and StandingStill”.

Time taken to build model (full training data) : 0.01 seconds
=== Mpdel and evaluation on training set ===
Clustered Instances

59 ( 34%)

{ 33%)
58 ( 33%)

[ T e i |
o
oo

Class attribute: Activity
Classes to Clusters:

0 1 2 <-- assigned to cluster
5% 0 0 | Standing3till

0 0 58 | Walking

058 0 | Bunning
Cluster <—— StandingS5till

0
Cluster 1 «<-- Running
2

Cluster <-- Walking

Incorrectly clustered instances : 0.0 u] ]

Figure 3.7. Test results of K-means cluster analysis with 3 activities

It can be seen that there is no misclustering, this means there are no similarities between

their features of these activities. Then we started to run dual groups tests.
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Time taken to build model (full training data) : 0.0l seccnds Time taken to build model (full training data) : 0.01 seccnds
=== Model and evaluation on training set === === Model and evaluation on training set ===

Clustered Instances Clustered Instances

i 63 [ 54%) 0 58 ( 50%)

1 53 ( 46%) 1 58 ( 50%)

Class attribute: Rctivity Class attribute: Rctivity

Classes to Clusters: Classes to Clusters:

0 1 <«-- assigned to cluster 0 1 <-- assigned to cluster
58 0 | Walking 58 0 | Running
5 53 | AscendingStairs 0 58 | AscendingStairs

Cluster 0 <-- Walking Cluster 0 <-- Running
Cluster 1 <-- AscendingStairs Cluster 1 <-- AscendingStairs
Incorrectly clustered instances : 5.0 4.3103 % Incorrectly clustered instances : 0.0 i} %

Figure 3.8. Test results of AscendingStairs-Walking and AscendingStairs-Running

Time taken to build model (full training data) : 0.0l seconds  Iime taken to build model (full training data) @ 0.01 seconds
=== Model and evaluation on training set === === Model and evaluation on training set ===
Clustered Instances Clustered Inatances
a S8 ( 50%) a 58 ( 50%)
1 58 ( 50%) 1 58 { 50%)
Class attribute: Rctivity Class attribute: Rctivity
Classes to Clusters: Classes to Clusters:
0 1 <«-- assigned to cluster 0 1 <«-- assigned to cluster
0 58 | Running 35 23 | Walking
58 0 | DescendingStairs 23 35 | DescendingStairs
Cluster 0 <-- DescendingStairs Cluster 0 <-- Walking
Cluster 1 <-- Bunning Cluster 1 <-- DeacendingStairs
Incorrectly clustered instances : 0.0 0 2 Incorrectly clustered instances : 46.0 39.6552 %

Figure 3.9. Test results of DescendingStairs-Running and DescendingStairs-Walking
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Time taken to build model (full training data) : 0.06 seconds
=== Mpgdel and evaluation on training set ===
Clustered Instances
47 [ 41%)

1 88 [ 59%)
Class attribute: Rctivity
Classes to Clusters:

0 1 <-- assigned to cluster

5 53 | AscendingStairs

42 16 | DescendingStairs

Cluster 0 «—— DescendingStairs
Cluster 1 «<-- AscendingStairs

Incorrectly clustered instances : 21.0 18,1034 %

Figure 3.10. Test results of DescendingStairs-AscendingStairs

It has been observed that the outcome was consisted as with earlier predictions, the
clustering groups of AscendingStairs-Walking, DescendingStairs-Walking and
DescendingStairs-AscendingStairs have some instances of misclustering. This means
that there are some similarities between the features of these activities and these
similarities cause the misclassification in our model building and testing. A way to

increase the accuracy of this cluster analysis was needed to be found.

We had 12 features in our dataset and each feature had its own importance. There are
some feature reduction methods in literature that also increases the accuracy of a
system. It is known that k-means uses the Euclidean distance calculation and the
distance calculation between the less important features can cause a misclustering,
therefore we decided to make a feature selection in a set of features and observed the
results. There are several methods that we can use like SFS or SBS but instead of
implementing these complex methods, we thought to implement a very simple
approach. In the previous section, we used c4.5 decision tree as the classification
algorithm. Every implementation of a decision tree uses entropy for building the
classification model. In this case the model is a tree and simply the root of the tree must
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be feature that gives us the most information about the dataset than the others. In other
words, features are ranked in the tree based on their information potential. When we
examined our tree, it has been seen that there are six features took part in the tree
instead of 12. This means our classification model uses only six of the features. Thusly
we made another test, but this time we used only six of the features. We observed that

there are some improvements in certain groups in figure 3.11.

Clustered Instances Clustered Instances

74 ( B4%) 0 62 ( 53%)
1 42 ( 36%) 1 54 ( 47%)
Class attribute: Rctivicy Class attribute: RActivity
Classes to Clusters: Classes to Clusters:
0 1 <«-- assigned to cluster 0 1 <-- azsigned to cluster
37 1 | Walking 58 0 | Walking
17 41 | DescendingStairs 4 54 | AscendingStairs
Cluster 0 <-- Walking Cluster 0 <-- Walking
Cluster 1 <-- DescendingStairs Cluster 1 <-- RAscendingStairs
Incorrectly clustered instances : 18.0 15.5172 % Incorrectly clustered instances : 4.0 3.4433 %

Figure 3.11. Test results of DescendingStairs-Walking and AscendingStairs-Walking

3.4. ORIENTATION/POSITION RECOGNITION

In the previous sections, it has been observed that an activity recognition system can be
implemented with good accuracy by using raw accelerometer data. The dataset that the
model is built on and ran the tests was collected by a smartphone which is located in a
pants pocket. However, one of the major problems in the activity recognition systems
during everyday life is that peoples carry their smartphones in various places like bag or
jacket pockets. The model that we created in the previous sections was just for the pants
pocket. So this model isn’t applicable when the smartphones is carried in different
orientations. For solving this issue, orientation recognition functionality added to our
AR system. In addition, we had to log raw accelerometer data in various orientations for

building the models in each orientation. In other words, we had to collect every activity
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in each orientation for building the new models. But this collection of data is very
challenging, so we used a new dataset (Ustev et al., 2013) from WiSe lab (Wireless
Sensor Networks Research Group) from Bogazici University, Turkey. This dataset
contains data from 10 people (five male, five female) in five different activities with 4

different orientations.

Today’s smartphones have a sensor called orientation sensor. This sensor is actually not
a hardware sensor. This sensor uses the combination of the accelerometer and gravity

sensor. You can get azimuth, pitch and roll data with this sensor.

Azimuth

Figure 3.12. Orientation axis of a smartphone

This sensor can be used in our AR system for orientation recognition functionality but
this means an addition of a new sensor to our system. This system is needed to be
implemented in energy efficient way and because of that as few sensors as possible
must be used. Also this sensor was deprecated in Android 2.2(API level 8). After some
research, a way to calculate the pitch and the roll values by using the accelerometer was
found. Roll and pitch values are sufficient for the orientation recognition since the

azimuth value isn’t needed for the model.
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p="2tan"'(y/g,z/g) (1)
a="2.tan"'(x/g.2/g) ()

We created a simple program that displayed the results of the orientation sensor and
calculated pitch and roll values by using (1) and (2). You can find the readings in

various phone positions in Figure 3.13.

- 5 .
'=I Accelerometer vs Orientation & Accelerometer vs Orientation

Orientation Sensor Orientation Sensor
Azimuth=70.17855 Azimuth=159.87451
Pitch=12.9268875 Pitch=-36.389027
Roll=85.34849 Roll=-84.39664

Acceleration Sensor Acceleration Sensor
Pitch=16.50436118413936 Pitch=-34.99202103995045
Roll=85.75199329933636 Roll=-87.6815990430817
axisX=9.901993 axisX=-10.092678
axisY=-0.21792556 axisY=0.2860273
axisZ=0.7354988 axisZ=0.40861043

Remove Gravity Remove Gravity

Figure 3.13. Orientation readings of the both sensor

As you see from the figures, the values were close. There are some differences but these

differences weren’t effect the recognition.

After these tests that validate the formula, we built a dataset from the raw dataset. The
features that we used in this data were pitch and roll values and their standard deviation
in one second window. Our final dataset had four different orientation (Pants pocket,
backpack bag pocket, messenger bag pocket and jacket pocket) and 32319 instances.

We applied c4.5 decision tree algorithm to this dataset and results are in figure 3.14.
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Correctly Classified Instances 31084 96.1787 %

Incorrectly Classified Instances 1235 3.8213 %

Kappa statistic 0.94%9

Mean absolute error 0.0247

Boot mean sgquared error 0.1327

Relative absolute error 0.5934 %

Bocot relative sguared errcor 30.6369 %

Coverage of cases (0.95 lewvel) 97.3638 %

Mean rel. region size (0.95 lewel) 27.0824 %

Total Numker of Instances 32315

=== [Detalled Rccuracy By Class ===
TP Rate FFP Rate Precision Reecall F-Measure MCC ROC Lrea PRC Area Class
0,959 0,010 0,969 0,859 0,964 0,452 0,985 0,962 Jacket
0,955 0,018 0,952 0,855 0,953 0,938 0,981 0,943 Pants
0,968 0,012 0,964 0,968 0,966 0,855 0,988 0,964 Backpack
0,964 0,013 0,982 0,964 0,963 0,951 0,983 0,958 MessengerBag

Weighted Awvg. 0,962 0,013 0,982 0,982 0,962 0,943 0,984 0,858

=== Confusion Matrix ===

a b c d <-- classified as
7725 162 &7 a8 | a = Jacket
119 7744 128 121 | b = Pants

&3 107 7835 g5 | c = Backpack

66 123 98 7780 | d = MessengerBag

Figure 3.14. Test results of orientation recognition

The results were very positive. These satisfying results show us the orientation
recognition can be done by using only the accelerometer. There is no need for an extra
sensor for this purpose and this is going to save plausible amount of energy in the AR

system.

In “Model Building and Testing” section, it has been seen that the orientation and
activity recognition can be implemented efficiently by using the accelerometer sensor.
We also run some clustering tests for examining the relation between the activities and
detecting the similar ones. In addition to that, a simple feature reduction technique was
applied and its effect was examined. In the next section, these models and test will be

carried out in Android environment.
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3.5. ANDROID IMPLEMENTATION

After the implementation on the PC like model building and testing with WEKA, the
implementations were carried out in Android platform, but there were some issues that

are need to be solved.

First of this issues was an implementation of a machine learning algorithm to Android
platform. At initial implementations, we used c4.5 decision tree and we were very
satisfied with its performance so we decided to use this algorithm on Android.
Formally, WEKA on the PC for both model building and testing was used, WEKA is an
open-source program; therefore their source code are available publicly. WEKA and
Android platform are both implemented by JAVA programming language; hence it can
possible to port any machine learning implementation of WEKA to Android platform.
Initially, it was decided to build our implementation of machine algorithms but at the
later stages as similar open-source project® was found. They ported all of WEKA
algorithms to Android and created a jar library that was compatible with Android

environment. It was decided to use this library.

Another issue was the usage of the model. At PC, it is possible to create a model on
WEKA by using a dataset, save it and even reuse it another time. We had to be able to
use this reusable model on Android since WEKA and Android both use the same
programming language but the results were contradicting. The model creation and
saving it on WEKA is some kind of serialization of a file and serialization of a file
depends on certain things like computer environment, operating system etc. In other
words, you can’t just use the model which is created on PC with WEKA on Android
platform. Hence, our dataset must be carried out in Android smartphone and the model

building must be implemented on the smartphone.

In previous section, it has been observed that we had new dataset which had more
instances than ours. This dataset contained 5 different activities (Running, Walking,

$ WEKA for Android. URL: https://github.com/rjmarsan/Weka-for-Android [accessed February 2014]
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StandingsStill, Biking, Sitting) with 4 different orientations (jacket, messenger bag,
backpack, pants) from 10 different people (5 male, 5 female). For the implementation in
this report, only the data with pants pocket orientation was used. Before using the
dataset on Android, a test on WEKA was ran in order to examine the accuracy. The

result was in figure 3.15.

=== Stratified cross-validatiocn ===

=== Jummary ===
Correctly Classified Instances 8083 99,6671 %
Incorrectly Classified Instances 27 0.3329 %
Kappa statistic 0.9958
Mean absolute error 0.0017
RBoot mean sgquared error 0.0364
Relative absclute error 0.5232 %
Root relative squared error 9.1038 %
Coverage of cases (0.95 lewel) 99,6917 %
Mean rel. regicn size (0.395 lewvel) 20,037 3
Total Humber of Instances g110
=== Detailed Accuracy By Clazs ===
TF Rate FF Rate Precision Recall F-Measure MCC ROC BRrea FPRC RArea Class
0,998 a,000 1,000 0,999 1,000 1,000 1,000 0,998 StandingStill
0,992 0,002 0,992 0,992 0,992 0,990 0,997 0,981 Walking
0,997 0,001 0,987 0,997 0,997 0,998 0,998 0,998 Running
0,995 0,001 0,994 0,995 0,995 0,993 a,997 0,990 Bicycle
1,000 0,000 1,000 1,000 1,000 1,000 1,000 1,000 Sitting
Weighted Rwvy. 0,997 0,001 0,997 0,997 0,997 0,996 0,998 0,993
=== Confusion Matrix ===
a b (] d e <-- claszsified as
1555 0 i} 1 a1 a = Standing3till
0 1q&0 5 2 [ b = Walking
a 5 1525 a o o = Running
[u} g 0 1575 [ d = Bicycle
[u} i} a 0 1788 | e = Sitting

Figure 3.15. Test results of the new dataset with pants pocket orientation

It has been displayed that the results were satisfying for carrying the dataset to

smartphone since the accuracy of the classifier was almost perfect.

The model building on Android can be made by a JAVA code. WEKA has a perfect
Javadoc for these purposes. How to build a model and how to use this model for
classifying the instances were clearly explained in the Javadoc. This facilitated code

writing and implementation to Android platform. We also created an Android
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application called “ARService”. ARService is generally an android service with a small
GUI that the user can control the service. The infrastructure of the application is simple.
In the user’s first run the application, the application creates a model from the dataset
and saves the model to its own running directory. Thus the application doesn’t need
model building anymore. This technique saved a considerable amount of time. After the
model building, ARService uses the accelerometer sensor for making the online activity
recognition and saves the recognized acts to the local SQL database called SQLite. This
application is only for the testing and observing the performance of the classifier. In the
real application, the readings of the recognized act will be sent to a different server. The

screenshots of the ARService GUI and SQL.ite database can be found below.

i@ AR Service Console ¢ 1@ sensorDB [ | >

: . . UPDATE? DELETE? SELECT? FROM? WHERE? ORDER BY ?
Start Service Service isn't Running

SELECT * FROM Activity

Service is online for - seconds
1-97/79

TIME ACT
21.11.2013_.20:20:40 Walking/Running
21.11.2013_20:20:50 Walking/StandingStill
21.11.2013_.20:21:00 Walking/StandingStill
21.11.2013_20:21:11 Walking/StandingsStill
21.11.2013_20:21:21 Walking/StandingStill
21.11.2013_20:21:31 Walking/StandingStill

21.11.2013_20:21:41 Walking/StandingStill
21.11.2013_20:21:52 StandingStill/Walking
21.11.2013_20:22:02 StandingStill/Walking

Figure 3.16. ARService and service readings

The recognized act was split into two. The first one is the real recognized activity and
the second one is the first one’s alternative. This implies that the recognized act of the

users is mostly the first one, but it can be the second one either.
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3.6. POSITION-AWARE RECOGNITION: PERFORMANCE EVALUATION

It has been observed in Figure 3.15, the accuracy which was generated by only using the
pants pocket position was good but on the other hand, people carry their phones at
various positions like bag or jacket pocket. This situation causes a challenging task to
attain accurate results by just using directly one classification model based on every
phone position. In this section, we focused on phone position uncertainty problem and
also we compared the classification results with position -independent and position-

dependent classification models.

The dataset that was used in previous section allowed us to perform these position-
dependent and position-independent tests. These tests were consisted of the usage of the
classification models that was created from the data which was gathered by different
persons who carried their phones at different positions (messenger bag, backpack, jacket
pocket, pants pocket).The data of nine people was used for learning phase and the data
of one person was used for testing phase. This method is known as “leave-one-out”
approach. The goal in here was to secure a good comparison between the results of
position-dependent and position-position independent tests by using user-independent
way. The algorithms of KNN and decision trees were used for creating the models in

the learning phase.

Table 3.1. Classification Accuracy of position-independent model

KNN Decision Tree
Precision F-measure Precision F Measure

StandingStill %47,5 %51,7 %53,9 %56,9

Walking %99,2 %90,9 %98,9 %93,8

Running %87,7 %93,5 %89,2 %94,3

Biking %91,1 %94,6 %95,8 %96,4

Sitting %65,6 %61 %66,5 %63,3

Weighted %79,2 %79,1 %81,7 %81,7
Average
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Table 3.2. Classification accuracy of pants pocket position model

KNN Decision Tree
Precision F Measure Precision F Measure

StandingsStill %100 %100 %100 %100

Walking %100 %92,6 %100 %96,8

Running %100 %100 %93,3 %96,6

Biking %82,4 %90,4 %99,4 %99,7

Sitting %100 %100 %100 %100

Weighted %96,5 %96,4 %98,5 %98,5
Average

Table 3.3. Classification accuracy of messenger bag position model

KNN Decision Tree
Precision F Measure Precision F Measure

StandingStill %19,7 %32,8 %61,2 %74,4

Walking %100 %98,1 %99,5 %99,5

Running %96,9 %98,4 %100 %100

Biking %98,8 %99,4 %98,2 %98,8

Sitting %99,4 %72,1 %98,1 %83,5

Weighted %84,1 %81,2 %92,0 %91,7
Average

Table 3.4. Classification accuracy of backpack position model

KNN Decision Tree
Precision F Measure | Precision | F Measure

StandingStill %84,1 %75,4 %87,4 %76,1
Walking %100 %99,7 %98,4 %98,6
Running %99,4 %99,7 %100 %99,1
Biking %100 %100 %98,8 %99,4

Sitting %63,4 %71,1 %60,2 %70
Weighted %89,8 %89,7 %89,3 %89,2

Average
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Table 3.5. Classification accuracy of jacket pocket model

KNN Decision Tree
Precision F Measure | Precision | F Measure
StandingStill %1,3 %2 %0 %0

Walking %100 %94,8 %100 %100

Running %88,1 %93,7 %100 %100

Biking %92,1 %95,9 %100 %100

Sitting %70,6 %51,7 %81,3 %58,7

Weighted %72,1 %69,3 %77,9 %73,6
Average

Table 3.6. Overall results of weighted averages from position model tables

KNN Decision Tree
Precision F Measure Precision F Measure

Position %79,2 %79,1 %81,7 %81,7
Independent

Pants Pocket %96,5 %96,4 %98,5 %98,5

Messenger %84,1 %81,2 %92,0 %91,7

bag
Backpack %89,8 %89,7 %89,3 %89,2
Jacket %72,1 %69,3 %77,9 %73,6
Pocket

It has been observed from the results, the tests that were performed with knowing the
phone position, was better than the test that was performed without knowing the phone
position except the jacket pocket position. In addition to that, it can be seen that the
classification accuracies of “StandingStill” and “Sitting” activities were poorer at
messenger bag, backpack and jacket pocket positions. When the confusion matrix of
tests of these positions was analyzed, it has been observed that “StandingStill” activity
was generally labeled as “Sitting”. This situation decreased the classification accuracy.
As a matter of fact, the classification accuracy of “Sitting” activity in jacket pocket
position was observed as %0. This was an expected situation since “Sitting” and

“StandingStill” is very similar activities and misclassification was normal in these
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circumstances. On the other hand, all of the activities were almost perfectly classified at

pants pocket position because of the nature of the leg movement.

As an improvement for these misclassifications, it was possible to merge “Sitting” and
“StandingStill” activity into one called “Stationary”. When this modification was
implemented to the tests at Table 3.1, precision and F measure values were recorded as
%97.7 and %96.2 for KNN, %98.5 and %98.7 for decision tree, respectively. As you

can acknowledge that was a very considerable improvement.



4 —~ARSERV: ADVANCED DATA COLLECTION AND ACTIVITY
RECOGNITION FRAMEWORK

In this chapter, the work of the exploratory phase was taken one step further. In the
exploratory phase, the implemented android application was only capable of recording
accelerometer data. As an improvement, the new set of sensors like GPS, gyroscope etc.
was added to the system. Besides these sensors, the ability of reading logs of messages,
calls and phone state was also added to this new implementation. By using these logs
and new set of sensors, a transition from the notion of “context” to the notion of “scene”
can be secured which was very important because more information about the user
(current location, call and message logs etc.) is a key to create a dynamic and flexible

ambient intelligence environment.

Another development on the previous system was about the phone location. The
previous system used only the data with pants pocket orientation which means the
system was only capable of recognizing the activities when the phone was carried in the
pants pocket. However, as you can acknowledge in real life, people carry their phones at
different locations. Therefore, it was necessary to add position aware recognition ability
to our new system. In brief; you will find the improvements on our previous systems

based on these topics.

4.2. SYSTEM OVERVIEW

We mentioned some issues that are need to be solved in order to implement a feasible
activity recognition system in the section of initial implementations. In this section, we
will present our new system which is an improved version of the previous activity
recognition system. The new system which is called “ARServ”, was built on our

previous system with some important modifications.
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ARServ has some important differences comparing to old system. The old system was
basically an Android service with a very simple GUI. ARServ has more sophisticated
GUL.

A AR Service

AcT

welcome! doruk Log Out

Status:ldle

Start / Update

Settings

Stop Recording

Upload Data

Figure 4.1. ARServ GUI

ARServ has four main android services which work in the background. These services
are

e Activity and Smartphone Location Service

e Online Markup Service

e Data Upload Service

Activity and Smartphone Location Recognition Service is the main service of the
system. This service is basically same as the previous one. However this service has
several different abilities. First one is the ability of collecting data from other sensors
and smartphone logs. The system gives the user a selection among this sensors and logs

before starting the service.
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A AR Service

AcT

Sensors

Accelerometer Magnetic

Light Proximity

Gyro

Smartphone Log

Headset Battery

Screen State App

Communication

Calls Sms

Data Bluetooth

Location

GPS-Wifi Cell Towers

Start Recording

Figure 4.2. Sensor Selection Interface

There are four main data group which are sensor, smartphone log, communication and
location. The user can select desired toggle button and starts the service. The service

collects the data from selected sensors or logs. The microphone sensor is disabled for

now.

The other ability is the ability of recognizing phone location. As you can acknowledge
from the section of “Position-aware recognition”, this ability can have a great impact on
the recognition results since the knowledge of phone location during the activity
recognition can increase the accuracy of the system considerably. The logic of position-
aware recognition is implemented in two steps in this service. The main idea is to
recognize the position of the phone then make the classification of the activity. There
are five classification models that were created by the system for this purpose. One of
these models is phone location model. This model uses 4 features that are extracted
from only the accelerometer data. These features are the same feature (pitch and roll

angles + their standard deviation over a window) which were mentioned at the section
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of “Orientation”. Other four models are for each phone location (messenger bag,
backpack, pants pocket, jacket pocket). The process of recognizing an activity starts
with arriving of the accelerometer data to the service and two feature extraction (one for
recognizing the phone location, one for recognizing the activity) methods is applied to
this raw accelerometer data. These features are the same feature that we mentioned at
the previous sections. There are two feature extraction methods. The service first
recognizes current phone location of the user then uses the relevant classification model

for recognizing the activity.

Online Markup Service is the service for marking the current activity. This system is
kind of a validation system. It has been observed in the previous sections, the overall
classification accuracy of our models is good. Nevertheless these results don’t mean that
the online classification results will be satisfying too; therefore there is a need for a
validation system. This service basically creates popups when the recognition service is
online. These popups ask user to annotate their activity based on their previous

activities which also are recognized by the system.

18.05.2014 12:56:09

What were you doing?

Stationary Neither Walking

Figure 4.3. Online Markup Popup
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The interval of popup appearance can be set on the settings. Each popup displays two
most occurring activities which are recognized by the system in last one minute. User
can choose relevant activity or simply can choose neither of them. These user
annotations are recorded by the service. We can have an idea about the accuracy of the
online recognition by comparing the user annotations and activity results. In addition to
that user does not have to wait for the popup since the manual markup is available

within the system.

Lastly, Data Upload Service is responsible for the data transfer between Android
smartphone and server. The data that is gathered from the system is sent to a server for
future examinations and offline recognition. This service works at intervals and these
intervals can be set at the settings in the application. There is also a button for the
manual upload for instant upload of the data. Data upload service is only able to operate
when the phone is connected to a Wi-Fi connection. The server side of the system is
also changeable at the settings. For now we use a simple MySQL database and an

apache server for storing the data on the web.



5—-GSUACTIVITY SET: ANEW DATA COLLECTION
EXPERIMENTS

In this chapter, we collected data by using our ARSERV framework in order to analyze
more complex data than the previous one. Previous data collection scenario was rather
simple compared to our new data collection in terms of natural interaction between
users and phones. In our data collection scenario, participants also performed activities
such as making a phone call, interacting with an application on the smart phone,
sending an SMS, using the phone carried in the hand. The phones carried in the
backpack and the pocket were stationary whereas the participants held freely the phone
in the hand, could put it on the table while sitting, could shake the arm while walking,
running, or keep it static, or change the hand holding the phone.

We collected activity data from 15 participants carrying three phones in different
positions, in a backpack, in the hand and in a pocket. In total, 700 minutes of activity
data is collected from the participants, performing primary activities of walking,
running, sitting, standing, climbing up/down stairs and transportation with a bus. In the
data collection scenario, participants also performed activities such as making a phone
call, interacting with an application on the smart phone, sending a SMS, using the phone
carried in the hand. The phones carried in the backpack and the pocket were stationary
whereas the participants held freely the phone in the hand, could put it on the table
while sitting, could shake the arm while walking, running, or keep it static, or change
the hand holding the phone. The data collected was then processed using the WEKA

machine learning toolkit, using the Random Forest* classifier.

In the data collection process, 15 participants were included, eight male and seven

female. The age range among participants was between 20 and 40 who are research

* Random Forests. URL: http://stat-www.berkeley.edu/users/breiman/RandomForests/. [accessed June 2014]
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assistants, faculty and students in the Engineering Faculty at Galatasaray University.
The data was collected using two different phone models: Samsung Galaxy S2 and
Samsung Galaxy S3-Mini. Three phones (two Samsung Galaxy S3 Mini and one
Samsung Galaxy S2) were carried by the participants in three different positions: one in
the hand, one in the backpack and one in the pocket. A scenario was predefined and the
participants followed the same scenario during the experiments. In the scenario, we had
two types of activities: primary activities and secondary activities. Primary activities
include stationary (sitting and standing), walking, stairs (up and down), jogging and
transportation (with a bus), whereas secondary activities include making a phone call,
sending an SMS, opening an application. Secondary activities were included to make
the scenario more realistic, reflecting the daily usage of the phone. During the data
collection, all the activities were tagged by an annotator who was with the participants
during the data collection for keeping the ground truth data. The list and sequence of
activities were as follows: stand, walk and exit the office, go upstairs, stop and stand
while making a phone call, go downstairs, walk to the cafeteria, sit in the cafeteria while
interacting with an app, stand, run to the campus entrance (100 meters), walk to the
second entrance of the campus (100 meters), cross the street to get to the bus stop, get
on the bus, get off at the next stop (250 meters), walk to the traffic lights (50 meters),
stand at the traffic lights, run to the campus entrance (100 meters), stop at the entrance,
walk back to the office, sit and send an SMS. The scenario locations are presented in

Figure 5.1 on Google Maps, in Galatasaray University campus.

O .
Kabatas Erkek lise

Figure 5.1. Data Collection Scenario Locations on Google Maps
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In the data collection experiments, data from all the sensors available on the phones
were collected. Accelerometer was the primary sensor and it was sampled at 100Hz.
Data from gyroscope, magnetic field, proximity, microphone and light sensors were
also captured. Besides these, we also collected location data using Google Location
services, communication data such as WiFi access point SSIDs, Bluetooth scans, as well
as the phone state data such as battery information, screen state (turned on and off), app
usage and headset information (plugged in and out). However, in this paper we only
utilize the information from accelerometer for activity and position recognition. Other
data is planned to be exploited in other studies and will be made available for other

researchers.

5.1. POSITION RECOGNITION

In the evaluations, we considered the worst-case scenario and applied leave-one-
subject-out cross validation, hence in the training phase we included the data from 14
participants from 3 different positions as well as the data from the test person, from the
positions other than the data used in the test phase. In the test phase, data from one
person from a specific position is used. Hence, in the results average value calculated
from 45 (15 participants*3 positions) tests is reported. This was due to the fact that, we
are interested in developing a practical application that works in real time and we aim to

test user generalization with these experiments.

5.1.1. Classification with Basic Acceleration Features

In the first experiment, our objective was to examine the position recognition
performance using basic acceleration features that are also used for the activity
recognition purpose. Hence, instead of extracting additional features for the position
recognition task, we used the same set of features that are given in Section 2.2. In Table
5.1, the results of the experiment are provided. The average recognition accuracy was
reported as 77.34%, while the F-measure was found to be 86.43%. Instead of computing
average values, weighted averages are given where the number of instances for each

specific case is taken into account. When we consider the position-specific results, they
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are similar, only differing by 2-3%. Using the same set of features that are also used in
the activity identification, acceptable position recognition accuracy is achieved in this

set of experiments.

Table 5.1. Phone position recognition with basic acceleration features

Accuracy F-Measure
Hand %78,84 %88,03
Bag %77,58 %86,61
Pocket %75,59 %84,66
Weighted Average %77,34 %86,43

5.1.2. Classification with Angular Features

In the second experiments, instead of using basic features that are also used for the
activity recognition, we focused on using angular features that are extracted from pitch
and roll values. The intuition was that these features can provide more information

about the position of the phone based on the orientation changes.

Table 5.2. Phone position recognition with angular acceleration features

Accuracy F-Measure
Hand %83,64 %90,69
Bag %81,65 %86,82
Pocket %68,07 %75,89
Weighted Average %77,78 %84,46

In Table 5.2, the results of the experiment are provided. The average recognition
accuracy was reported as 77.78%, while the F-measure was found to be 84.46%.
Looking at the position-specific results, the highest accuracy was achieved with the

hand position whereas the pocket position was identified with a fairly lower accuracy.
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We believe that, this is due to the tight positioning of the phone in the pocket. The
changes in the orientation of the phone were less compared with the hand and bag
positions. Compared with the results achieved using only the basic features, the average
results are similar, however, bag and hand positions were recognized with a higher
accuracy, around 4-5%.

5.1.3. Classification with Angular and Basic Acceleration Features

As a final experiment, we considered using both the angular features and the basic
features to investigate the combined effect. In Table 5.3., the results are provided. The
average position recognition accuracy is reported as 85.04% in this case, while the F-
measure is 90.01%. Compared to the results achieved with using basic features
presented in Table 5.1 and the results of using angular features presented in Table 5.2,
in each position higher recognition performance is achieved. On average, 8% increase

in accuracy and 5.5% increase in F-measure is reported.

Table 5.3.. Phone position recognition with basic and angular acceleration features

Accuracy F-Measure
Hand %90,86 %95,14
Bag %85,80 %89,63
Pocket %78,47 %85,27
Weighted Average %85,04 %90,01

Although it is difficult to compare the results of our experiment with related studies that
aim to recognize phone positions, due to the fact that not exactly the same experiment
scenarios were followed, 85% recognition accuracy with three different positions and
six different activities can be considered relatively high. For instance in Jun-geun et al.
(2012), bag, ear, hand and pocket positions were considered and the average recognition
accuracy was reported to be 94% using leave-one-participant-out method. However,

only the walking activity was performed by the participants. In Lane et al. (2010), 80%
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accuracy was reported for in-pocket versus out of pocket recognition. Nevertheless, the
number of positions to be recognized was limited and the microphone on a smart phone
platform was used and the number of subjects was not provided. In Martin et al. (2013),
the best position recognition accuracy was reported as 92.94% with best set of all
features and 66% with selected features. However, in that study not only the
accelerometer was used but also light, proximity, magnetometer, gyroscope, gravity and
linear acceleration were also integrated and as a future work position recognition with
only accelerometer was targeted. As mentioned, in the experiments we also collected
different modalities with different sensors, such as gyroscope, microphone, and in
future work we aim to investigate the combined effect of using different sensors for
position recognition and study the tradeoffs between accuracy and battery consumption

levels.

5.2. ACTIVITY RECOGNITION: PERFORMANCE EVALUATION

Since the accelerometer generates different signals when the phone is carried in
different positions, by knowing the position/placement of the phone a position-specific
algorithm can be used to improve the recognition accuracy. Although this has been
investigated in previous studies (Martin et al., 2013), (Jun-geun et al., 2012), (Yang et
al., 2013), there is no clear conclusion whether position-specific physical activity
recognition provides improved accuracy compared to the position-independent
recognition. In this section, we focus on this issue and first study position-independent
classification and next position-specific classification providing the results for each

activity and phone position.

5.2.1. Position-Independent Activity Classification

In this set of experiments, activity recognition is performed without knowing the phone
position. Random forest classifier is used and leave-one-subject-out cross validation is
applied similar to the position recognition experiments with 45 tests in total. The
average recognition accuracy considering all position and activities is 74.51% and the

detailed results are presented in Table 5.4.
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Table 5.4. Position-independent activity classification

Hand Bag Pocket

Accuracy | F-measure | Accuracy | F-measure | Accuracy | F-measure
Sit %26,55 %33,96 %49,81 %54,07 %74,38 %72,53
Stand %77,75 %71,13 %83,37 %77,56 %83,67 %380,60
Walk %87,86 %82,69 %90,06 %385,55 %388,39 %385,36
Stairs %18,14 %22,62 %29,77 %36,32 %37,01 %42,59
Run %88,21 %91,02 %93,14 | %93,07 %94,93 %92,56
Bus %31,65 %33,46 %36,46 %43,28 %33,02 %43,91
Weighted | 969,05 %67,01 %75,82 %74,12 %78,64 %77,41
Average
Weighted
Average
Accuracy %74,51
(All
Positions)

Considering the weighted average results, recognition performance with the hand
position is relatively lower. The reason is that in the hand position, it is challenging to
extract body-movement related information and in the experiments, the users freely held
the phone, could put it on the table while sitting, could shake the arm while walking,
running, or keep it static, or change the hand holding the phone. Additionally, the
participants performed the secondary activities (sending SMS, making a phone call,
starting an app) using the phone in the hand. Considering the activity-specific activity
recognition results, the recognition accuracy for the sitting activity was considerably
low for hand and bag cases. When we examined the detailed confusion matrices, we
realized that sitting activity was confused with the standing activity since the users are
stationary in both cases. However, in the pocket case since the posture of the leg can be
captured, this effect was lower. In the hand case, while the participants were sitting or

standing, they were also performing the secondary activities and this increases the
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confusion rate. Walking and running activities were recognized with a high accuracy.
Analyzing the confusion matrices, we also realized that the stairs activity is confused
with the walking activity while the transportation (bus) activity is confused with
walking and standing activities. Confusion of the transportation activity was expected
since the users walked and stood still while travelling in the bus. In the future work, we

aim to increase the recognition of transportation activity with using linear acceleration.

5.2.2. Position-Aware Activity Classification

In the last set of experiments, random forest classifier was trained for each position.
Leave-one-subject-out method is applied similar to the other experiments. The average
recognition accuracy considering all position and activities is 74.88% and the detailed

results are presented in Table 5.5.

Table 5.5. Position-specific activity classification

Hand Bag Pocket

Accuracy | F-measure | Accuracy | F-measure | Accuracy | F-measure
Sit %39,04 %42,65 %46,18 %45,76 %75,64 | %76,71
Stand %78,62 %72,50 %79,45 %76,38 %86,03 | %83,84
Walk %87,04 %82,29 %87,65 %84,77 %89,60 | %85,07
Stairs %15,62 %19,44 | %38,53 %40,88 %35,67 | %40,62
Run %91,14 %92,7 %93,47 %94,59 %89,60 | %91,70
Bus %22,93 %28,4 %40,59 %46,50 %48,22 | %54,51
Weighted | %69,98 %67,90 %74,40 %73,24 %80,24 | %79,32
Average
Weighted
Average
Accuracy %74,88
(Al

Positions)
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Similar to the results of position-independent recognition presented in Table 5.4, sitting,
stairs and transportation activities were recognized with a lower accuracy and stand,
walk and run activities revealed a higher accuracy. Considering activities individually,
in the case of sitting activity improved accuracies are achieved for hand and pocket
positions, but in the pocket position the increase is not significant. For the standing and
walking activities, results were not significantly different. In the case of running
activity, results were not significantly different for hand and bag positions, but in the
pocket case the accuracy dropped. For the transportation (bus) activity there is a
significant increase in bag and pocket positions but there is a significant decrease in the
hand position. Finally for the stairs activity, there is a significant increase in the bag
position. Hence, the effect of the position information on classifier performance is
dependent on the activities and the locations involved. These findings are consistent
with previous results found in the literature (Thiemjarus et al., 2013), (Jun-geun et al.,
2012).

5.2.3. Discussion

Overall, with a perfect position classification assumption, the position-specific
classification performs nearly the same with the position-independent recognition
accuracy, revealing 74% average accuracy, whereas it performs slightly better by 2% in
average for the pocket case. In previous studies, particularly in Jun-geun et al. (2012),
Thiemjarus et al. (2013), similar results were reported, and our study also confirms that
position-specific activity recognition does not perform significantly superior compared
to the position independent recognition. However, it contradicts with the findings in
Martin et al. (2013) where it was reported that there is strong evidence that the
classifiers that take into consideration the position outperform the ones that classify
regardless of it according to the applied Mann-Whitney U-test to the data. As a future
work, the different datasets should be explored with the same set of features and
classifiers to provide concrete conclusions on the use of position-specific recognition

compared to position independent recognition.



6 — CONCLUSION

In this study, we evaluated the impact of the classifiers and some other characteristics
like feature types on the performance of online activity recognition systems.
Accordingly, the performance of some classical classifiers like naive Bayes, decision
trees etc. and custom classifiers like Clustered-KNN, DT-DHMM in the context of
activity recognition was evaluated. It has been seen that the custom classifiers generally
exhibited a much better performance than the classical classifiers. We also saw that this
result is associated with the online data streaming property of the online activity
recognition systems. But we must indicate that C4.5 decision tree classifiers performed
just well as other custom classifiers. This is the reason that nearly every work in
literature has an experiment based on decision trees and as you can observed that we

also used C4.5 decision tree in our AR system as the classifier.

Another theme in our work is centered on phone position. It is known that phone
position/placement information can provide valuable context data for mobile sensing
applications. As an example different sensor readings may be triggered depending on
the position of the phone and also improved resource management can be achieved
using algorithms that use phone position as input. In this study one challenge that we
pursued is to successfully identify phone positions using accelerometer only data
without additional sensors. Moreover, in order to evaluate how much performance gain
the position information can provide, we focused on the accelerometer-based physical
activity recognition scenario. Specifically, we evaluated the gain that can be achieved in
the activity recognition accuracy by using position-specific classifiers compared to
position-independent classifiers. For this purpose, we collected physical activity data
from 15 participants from three different phone positions, and the participants followed
a daily life scenario instead of performing an artificial and disconnected series of

activities. To make the data collection more realistic, participants performed secondary
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activities, such as making a phone call, sending an SMS and opening an application on
the phone. The collected data is processed with the Random Forest classifier. According
to the results of position recognition, using basic accelerometer features which are also
used in the activity recognition, can achieve an accuracy of 77.34%, and this ratio
increases to 85% when basic features are combined with angular features calculate from

the orientation of the phone.

After the position recognition experiments, activity recognition experiments are
performed to explore the impact of position information. In our experiments, we
showed that the effect of the location information on classifier performance is
dependent on the activities and the locations involved, which is consistent with previous
results found in the literature. On average, the recognition accuracies are similar for
position specific and position independent recognition. Only for the pocket case, slight

increase is achieved.

Even if online activity recognition is a primitive research field, when this research field
begins to mature, high quality and innovative commercial applications would be
developed instantly (Lockhart et al., 2012). Because of this research field is in its
infancy, these applications are rare at the moment, although the researchers believe that
these application will arrive shortly due to the ubiquity and robustness of the mobile
devices (Lockhart et al., 2012). There are many application fields that use the activity
recognition systems. The researchers believe that the future work of this field will take

form in these application fields that you can see in figure 6.1.
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End User Applications

Actitracker provides online activity

Fitness tracking history

Evaluate patients over time

Health monitoring . .
rather than single session

Fall detection Detect falls and take action

Context-aware behavior |Disable calls while jogging

Smart homes that anticipate

Home/work automation \
user's needs

Save battery by turning off

Self-managing systems . e .
=T WiFi while jogging

Third Party Applications

Targeted advertising Provide vsers with relevant ads

Provide platform for collecting

Research platform .
P actrvity data

Corporate management | Track employee time and
& accounting ensure spent appropriately

Crowd and Social Network [SN) Applications

Share activity information with

Traditional SNs friends and followers

Connect people based on their

Activity-based SNs o
y activity profiles

Identify popular areas for

Place & event detection A .
exercise and recreation

Figure 6.1. Summary of activity recognition applications (Lockhart et al., 2012).

As you can acknowledge from this study there are many issues on this field. Some of
these issues are caused because of the lack of infrastructure; some of them are caused
because of the algorithmic problems but it can be said that all of these issues are an
obstacle to build a stable system and because of these issues the activity recognition and
mobile sensing were still in its infancy. It our belief that once these issues are overcome,
this field will advance quickly, acting as a disruptive technology across many domains

including social networking, health and energy.

For future works, we plan to improve our AR system. At the moment, we have an
Android application which uses accelerometer sensor for recognizing the user’s acts. Its
accuracy is satisfying. As an improvement, new sets of sensor like GPS and microphone
was implemented to the system and also Android platform gives us the opportunity to
use the phone logs. The phone logs include the state of the phone like network
connection status, the phone idle or not, call logs, message logs etc. For now, we are

only able to collect them but we believe that by using these logs and new sets of



57

sensors, we can make a transition from the notion of “context” to the notion of “scene”
which is able to give us more information about the user’s current state. As it has been
said in the first place, the concept of “context” is very critical because determining a
context of a user, is a key to create a dynamic and flexible ambient intelligence
environment and it’s know that the more information about the user’s current state, in
other words the user’s current scenec means more dynamic and flexible ambient

intelligence environment.

As another future work we also plan to investigate our findings at chapter 5 on different
datasets and with other sensor modalities available in our dataset. When other sensor
modalities are taken into account, it will be interesting to investigate the resource,
particularly battery, consumption and analyze the tradeoffs between recognition

accuracy and resource usage.
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