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ABSTRACT

First of all, we review important topological properties of elliptic curves in dependence
of coefficient of defining equation of elliptic curves. Especially, we study singular points
of elliptic curves by means of discriminant of defining equation of the curve. We see
that the elliptic curve is non singular if it is defined by an equation whose coefficients

will give non zero discriminant.

In Chapter 2, we review fundamental properties of elliptic functions, i.e. doubly peri-

odic meromorphic functions on projective space P1(C).

In Chapter 3, we define Jacobi elliptic functions as inverse function to elliptic integrals.
Moreover, we see that Jacobi elliptic function solves mechanic problem on the period-

icity of Galileo pendulum.

In Chapter 4, we study solution to non linear reaction diffusion equation. This equa-
tion is described by an quartic polynomial that depends on three parameters. We
examine the bifurcation of the elliptic curves associated to this quartic equation. That
is to say first we draw a bifurcation diagram in a 2-dimensional parameter space for
a fixed energy level parameter. Then we shall achieve case studies for each connected
component of the bifurcation diagram to analyze the behavior (e.g. the length of
the period) of periodic solution to the reaction diffusion equation expressed by Jacobi

elliptic function.



OZET

Ik 6nce, tanimlanan eliptik egri denklemlerinin kat sayilarma bagl olarak, eliptik
egrilerin 6nemli topolojik 6zelliklerini inceliyoruz. Ozellikle, tanimlanan bu egri den-
kleminin diskriminanti vasitasiyla bulunan tekil noktalar iizerinde calisiyoruz. Eger bu
egriler, kat sayilarinin sifirdan farklh diskriminant veren bir denklem tarafindan tanim-

lanmigsa, bu eliptik egrilerin tekil olmadigini goriiyoruz.

2. iinitede eliptik fonksiyonlarin temel 6zellikleri, yani P (C) projektif uzaymda bulu-

nan iki kat periyodik meromorfik fonksiyonlar iizerinde ¢alisiyoruz.

3. iinitede, Jacobi eliptik fonksiyonlari, eliptik integrallerin ters fonksiyonu olarak
tamimliyoruz. Ayrica, Galileo sarkacinin periyotlugu iizerinden, Jacobi eliptik fonksiy-

onlarin mekanik problemleri ¢ozdiigiinii goriiyoruz.

4. iinitede, dogrusal olmayan reaksiyon difiizyon tiirevli denklemi iizerinde ¢alisiyoruz.
Bu denklemi, 3 parametreye bagh 4. dereceden polinomla belirtiyoruz. Bu denklemle
iligkili olan eliptik egrilerin bifiirkasyonunu inceliyoruz. Yani, sabitlenmis enerji se-
viye parametresinin 2 boyutlu parametre uzayinda bifiirkasyon diyagramini ¢iziyoruz.
Bunun sonucunda, Jacobi eliptik fonksiyonu ile ifade edebilen reaksiyon difiizyon den-
kleminin periyodik ¢ozlimiiniin davranigini analiz etmek icin bifiirkasyon diyagraminin

biitiin bagh unsurlarinin durum incelemelerine ulagiyoruz.



1. INTRODUCTION

We can see ellipses such as orbits of planets because of Kepler’s laws. Also, we learn

in analytic geometry that ellipses can be described as below.
2 2
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Generally, people think that it is called an elliptic curve. But, they do not. So that we
should analyze what elliptic curves are. In the plane C2, an elliptic curve is the set of
solutions to an equation of the form F(z,y) = 0 where F(z,y) is a cubic polynomial
in z and y. If we compare figure of an ellipse and an elliptic curve, we can see they

look different.

If we want to search relation between ellipse and elliptic curve, we should consider
history by analyzing first the ellipses, secondly elliptic integrals, next elliptic functions

and finally elliptic curves.

The 4th century BCE mathematician Menaechmus studied on one of the three clas-
sical construction problems which is called the Duplication Problem. He showed that
proportions, which are found by Hyppocrates of Chios (460-380 BCE), yield the
curves which are two parabolas and a hyperbola. Next, Menaechmus described these

as conic sections, discovering the ellipses in the process.

There was a question about how to find are length of an ellipse. Thanks to find-
ing of the integral in calculus in the 1660’s, new ways were found to answer this
question and many mathematicians such as Isaac Newton, Leonhard Euler and
Colin Maclaurin searched new processes. Legendre developed kinds of non elemen-

tary integrals and he found the integrals which are defined as elliptic integrals.

Moreover, Abel and Jacobi rewrote elliptic integrals by substituting of trigonometry.
Jacobi had an idea which we can find the inverse of elliptic integrals which are called
elliptic functions. After that, by using series, Weierstrass showed that the Weier-

strass differential equation lies on a cubic curve.



In this thesis, we try to search the behavior of the quartic equation which is called
reaction diffusion equation by using the elliptic functions and the Jacobi elliptic

functions. Therefore, understanding their definition and applications is significant.



2. ELLIPTIC CURVES
2.1 Addition of Points

Definition 2.1.1. Let f be a non zero polynomial. The set of points (a,b)€ER? is called

plane algebraic curve satisfying f(a,b) = 0.

To describe the addition of points, we need natural laws. For example, we can apply
the laws on any straight line and on the unit circle 22 + 4> = 1. Let us think about
the addition points of a line. If we take a fixed point O on the line, we get that the
sum of points X and Y is the point Z where 07:62+0—3>/. Moreover, if we want to
search the addition point on the circle, we find that the sum of the points (cos z,sin x),
(cosy,siny) is the point (cos(x + y),sin(z + y)).

We can interpret geometrically the addition of points. (Prasolov & Solovyev, 1997)
Let K be the point (0,1), L and M be two points of the unit circle. The sum of the
points L and M is the point P where the straight line through K which is parallel to
the straight line LM intersects the circle at.

Now, we will define the addition of points on any conic i.e. on a second order curve.
Definition 2.1.2. Let K be a fixed point on a conic. The sum of the points L and

M s the intersection of the straight line through K parallel to the straight line LM on

the conic for second time.

Definition 2.1.3. A plane algebraic curve is called cubic, if > a;jx'y’ = 0 where the
mazimum value of the addition of © and j is equal to 3.

Now, we will define the sum of the points on a cubic by using a new point on the cubic

as different from a conic.

Definition 2.1.4. For fized point K, we suppose that X which the straight line LM
intersect on a cubic is a point. The sum of the points L and M is the point of the

intersection of the line X K with the cubic.

In addition, we will think about a new condition where L is a fixed point on a curve



and a point M moves towards L along the curve.

2.2 The Tangents and Inflection Points

We analyze a line A; A5 on a cubic which has a fixed point A; on the cubic and a point
Ay moves towards A; along the cubic. The line has the tendency to a fixed line and
the tangent at A;. We will search the addition of A; and Aj, so that we will find the

tangent at A; rather than drawing the line A; As.

Also, we can see that if Ay coincides with A;, the equation of the curve has a multiple
root at Aj. Therefore, the restriction of the equation of the curve to the tangent has
a multiple root at the tangent point. We will use this information to get the equation

of the tangent of a curve on a cubic.

Let F' =0 be a curve, a point A = (a1, as, az) be on the curve and let X = (x1, z9, x3)
be an arbitrary point. We can describe the points of the plane T'X is of the form
AT+ pX. Now, we consider that the curve F'is restricted to the line T'X as a function

t. As F'is a polynomial of degree 3, we can write that

F(T+tX)=F(T) +at + bt + ct’ = Q(t) (2.2.1)

where a = Y Fi(T)x; and b = 3> F;;(T)z;z; where F; is the partial derivative of
F reference to ith variable.(Prasolov & Solovyev, 1997) We can see easily that when

a =0, Q(t) has a multiple root at t = 0.

Definition 2.2.1. We call non singular point T of the curve F in (2.2.1), if at least

one of the F;(T) is nonzero.

So that the line [ which is determined by the equation ) F;(T")z; tangent to the curve

at T" which is a non singular point.

Definition 2.2.2. We call that F is an inflection point of the curve F' if F' =0 and
a=Y Fi(T)z; =0 suggest that b= 3> Fi;(T)zz; =0

Moreover, we have that if the second degree polynomial 27 Az which is in the matrix

form is divisible by the linear function z”1 where 27 Az = 271k™ x for some k. So that



we can say that the matrix A = [kT is the product of a column by a row. Espe-
cially, detA = 0. Therefore, it can be concluded that if 7" is an inflection point, then
det(F;;(T)) = 0. We remark that the converse condition also true for non singular

points.

To sum up, all the inflection points of the curve F' = 0 is included in the set of inter-
section points of the curves F' = 0 and H = 0 where H(X) = det(F;;(X)) which is

called Hessian of the curve F' = 0.

Let us consider the third degree curves. Let F(x,y) and H(z,y) be two third degree

polynomials in the form

F(z,y) = apy® + a1 (2)y* + as(x)y + as(z) (2.2.2)

H(z,y) = boy® + bi(2)y* + ba(2)y + ba() (2.2.3)

where ai(z) and bi(z) are two polynomials. We can say that if F(z,y) = 0 and

H(z,y) = 0 have a common point (zg,yo), then yy is a common root of the curves

fy) = aoy® + ary® + azy + as (2.2.4)

h(y) = boy” + b1y® + bay + bs (2.2.5)

such that ay = ax(x) and by = bi(x). Moreover, we can say that if the polynomials

have a common root o, then the point (xg, o) is the common point of the curves.

While analyzing over C, we think that having a common root is the same meaning
of having a common non constant divisor. Further, if agby # 0, then we say that the
polynomials f(y) and h(y) have a common divisor in the case that we can find the
polynomials f; and h; such that fhy = hf; where the degrees of F(x,y) and H(x,y)
are higher than the degrees of f; and hy respectively.

Therefore, we can substitute f; = fd~!' and hy = hd~!. As fhy = hf, and degf; <
degf, we can write all prime divisors of f in the prime factorization of hf;. But, we

cannot do it in the factorization of f;.



Let hi(y) = moy? + miy + mo and fi(y) = noy® + n1y + na be two polynomials. We
can express the equality fhy = hf; as

agmo — bono =0

aimqg + agmyp — b1n0 — b0n1 =0

aomg + a1my + agmso — bQTLO — b1n1 — bong =0
asmo + agmy + aymso — bsng — bang — bing =0
asmsi + aGaMo — b3n1 — b2n2 =0

agmg—bgng =0 (226)

Definition 2.2.3. (Prasolov & Solovyev, 1997) The determinant is called resultant
which vanishes in the case that the system (2.2.6) of linear homogeneous equations

related to m and n i.e.

apg ap ao as 0 0

—0 (2.2.7)

where ap and by, depend on x. The resultant noted by R(X).

That is to say that for every root xy of the polynomial R(z), the curves F(x,y) = 0

and H(x,y) = 0 have a common point (xg, yo).

Here, we try to find multiple root of the equation of a curve by using its derivation.

Proposition 2.2.4. Let H(w) a polynomial. If H(w) has a multiple root if and only

if H(w) and H'(w) has a common root.

Proof. Let H(w) = (w —w')?D(w) such that D(w')#0. So that we find that
H'(w) = 2(w — w")D(w) + (w — w")2D'(w), then we can see easily w’ is also a solution

of H'(w). O



We want to analyze discriminant as an example for resultant. Let take a curve G(w)

such that

H(w) = h0w3 + h1w2 + hg’w + hg (228)

So that the derivative of the equation of H(w) is

H'(w) = 3how® + 2hyw + hy (2.2.9)

Definition 2.2.5. We call the discriminant of H(w) (2.2.8) is the determinant of

the matriz A such that

ho M

0 ho

3ho 2hy

0 3hg

0 0

ho hi he

0 ho M

where A= | 3hy 2h; hs
0 3ho 2my

0 0 3h

ha  hs
hi Do
hey 0
2hy  he
3ho 2hy
hs 0
hy  hy
0 0
hy 0
2hy  ho

0 wy?
hs wp?
0] w? [=0 (2.2.10)
0 wy?
ho wWo

and wq is a solution of H(w) = H'(w) =

Proposition 2.2.6. The following statements are equivalent.

1. detA = 0 where A is the given matriz (2.2.10) in definition of discriminant.

2. The equation H(w) =0 (2.2.8) has a multiple solution w = wy

3. The system of the equations (2.2.8) and (2.2.9) has a common solution.

We have an analogous result for the quartic equation

G(U)) = h0w4+h1w3+h2w2+h3w+h4 (2211)

So that the derivative of the equation of G(w) is

G'(w) = 4how® +3hiw? +2hyw + hs (2.2.12)



discriminant of G(w) is determinant of the matrix B given

he hi hy hs hy 0 0O
0 hy hy hy hg hy O
0 0 hy hi hy hg hy
B=|4hy 3hy 2hy hy 0 0 O (2.2.13)
0 4hg 3hy 2hy hy 0 O
0 0 4hy 3hy 2hy hy O
0 0 0 4hy 3hy 2hy M

2.3 Singular Points

We defined non singular points in the previous section. Also, we call non singular

curve (elliptic curve) which its all points are non singular.

We try to construct the equation of a non singular cubic curve as below (Prasolov &

Solovyev, 1997)

v = (z—ay)(z — az)(x — a3) (2.3.1)
where a1, as, and as are different.
Let us suppose the inequality a;<as<as.

If a; and as are equal, we can find a curve example which can be constructed by
following equation

y? = 2?(z—1) (2.3.2)

Figure 2.1: Graph of y* = 2?(z — 1)



Also, if as and a3 are equal, we can find similarly a curve example which can be

constructed by following equation

y? = 2% (v+1) (2.3.3)

R |

Figure 2.2: Graph of y* = 2?(z + 1)

Over R, the difference between the curves can be seen clearly. On the other hand, we

cannot see this difference over C.

If we suppose that all roots are same, we can see easily that the equation of the curve

(2.3.1) becomes

y? =a2* (2.3.4)

Q
SR |

Figure 2.3: Graph of 3? = 23

Now, we will define two notions which are the multiplicity and singular point.

Definition 2.3.1. We call the multiplicity which describes the number of time that

a curve passes through a point on the curve.
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Definition 2.3.2. If the multiplicity of a point X is at least two, the point X 1is called

singular point.

If we search singular points these three curves, we get that the point (0,0) is a singular
point. So that any straight lines which pass through the origin intersect the curves
r?y? = 2?(x &+ 1) and r%y? = 2® at the singular point with multiplicity two or more
than two for all reR. If we analyze that, r?y*> = 2%(z & 1) and r?y* = 2% have root at
x = 0 where the curves pass through this point at least 2 times. Moreover, the sum
of the singular points is the other singular point which any straight lines which pass

through the origin intersect the curves at.

Let us analyze the curve (2.3.4). We can make two substitutions as * = k72 and
y = k73 on the curve. We will find out the intersection points of this curve with the line
tix +toy +1t3 = 0. With the parametrization, the line transforms to t3k® 4 t1k 4ty = 0.
By definition, if the line does not pass through the singular point, then we can say
that t3#£0, so k1 + ko + ks = 0 where ky, ko, ks are the roots of the equation since the

coefficient of k% is equal to 0.

Now, we assume a infinite point for the zero element P corresponding to the parameter
kp = 0 and let k7, and kj; be parameters refers to the points L and M of the curve. If the
straight line LM passes through a point X on the cubic, then we get kp +ky +kx =0
and the straight line PX passes through L + M on the curve, so kp + kx + kra = 0.
Therefore, we find —kx = kr.y = kr + ky and it can be concluded that we must add

the corresponding values of the parameter k for the addition points on the curve (2.3.4).

Secondly, let us apply a similar method on the curve (2.3.3). If we suppose the equality
y =k, we get v = k* — 1 and y = k3 — k since k?2% = 2*(z + 1). In the same way,
we will find out the intersection points of this curve with the line t,x + toy + t3 = 0.
With the parametrization, the line transforms to ¢ (k* — 1) + t2(k* — k) +t3 = 0. We
have kiks + koks + ki1ks = —1 in the case t37#0 where ky, ks, k3 are roots of the line as
above. After the substitution k¥ = (1 + x)(1 — k)™, we get kikor3 = 1 where k1, Ko,

k3 are roots of the line.

Now, we assume a infinite point for the zero element P’ corresponding to the parameter
kpr = 1 and let k1 and Ky be parameters refers to the points L' and M’ of the curve.

If the straight line L' M’ passes through a point X’ on the cubic, then we get
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kpkakx = 1 and the straight line P’X’ passes through L' + M’ on the curve, so
kpkxkray = 1. Therefore, we find kp/iopy = K + Ky and it can be concluded
that we add points by multiplying the corresponding values of the parameter x for the
addition points on the curve (2.3.3). However,there exist two values which correspond

of the parameters k and . They are k = —1,1 and xk = 0, cc.

2.4 Projective Spaces

Definition 2.4.1. Let D be a set and ~ be a binary relation on the set D. D/~ is
called equivalence class which provides the following statements

e a~a foralla € Dy

e ifa~Db, thenb ~ a for all a,b € D;

e ifa~Dbandb~ c, then a ~ c for all a,b,c € D.

Definition 2.4.2. (Brieskorn & Knérrer, 1986) Let (g, 1), (24, x}),(zf, 7)) be in C?-
{(0,0)} and X\ and p be in C-{0}. We call that P,(C) is projective space with
dimension 1 such that P;(C)=C?-{(0,0)}/ ~, i.e. Pi(C) is an equivalence class
where ~ is a binary relation on C*-{(0,0)} such that

o (zg,21) ~ (wg, 1) i.e. xo=1.29 and x1=1.21;

o if (zg,x1) ~ (2(,2)), i.e. xy = Axg and x| = Ay, then (xf,z}) ~ (zo, 1),

i.e. xo = AN 'xy and vy = \7a);
o if (xo,21) ~ (x),2)) and (z(,x)) ~ (x5,27), i.e. x5 = A\xg and z) = A\xy and

xy = pay and o = pxl, then (xg,x1) ~ (xf,2Y), i.e. x5 = pAzy and o = pAz.

Let us consider P;(C)=AyUA; where

AO = {(ao, CL1)€P1(C) . ao#O} A1 = {(ao, al)G]P’l((C) . al%O} (24].)

Now, let us take a point (ag,a;)€Ag and let us consider the complex number 2y = 2.

In the similar way, let us take a point (ag,a;)€A; and let us consider the complex

number z; = i—; It is enough taking only one point in a equivalence class to analyze.

In addition let f, g be two bijective applications such that
f:A —C g: A —C (2.4.2)

(ag,a1) = 2o (ap,a1) — 2
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If we look at the intersection AqNA;, we get the equality z; = -=. We should find

20

out what happened to the point (0,1). To obtain P;(C) on Ap, £ tends to infinity

zo

as £9—0. (Brieskorn & Knorrer, 1986). Let us explain this statement with an example.

On the set {(z,y,2)eR?: 22 + y* + (z — 1) = 0} €5?%, we can see easily that the set
A= {(,52,0)}, which is in R, is well defined for z72.

Since R?~C, C is homeomorphic to Ay, i.e. S% — {(0,0,2)} is homeomorphic to Ay
since the following application is a homeomorphism.
d:S*-{(0,0,2)} — R? (2.4.3)

2x 2y
2—2'2—2

0)

(#,y,2) = (

In the same way, On the set {(z,y,2)€R?: 2% +y?> + (2 — 1) = 0} €52, we can see

easily that the set A, = {(;fz, ;j’z, O)}, which is in R?, is well defined for z# — 2.

So that S? — {(0,0,—2)} is homeomorphic to A; since the following application is a

homeomorphism.
h:S*-{(0,0,-2)} — R? (2.4.4)
2z 2y
——0
@92 (5 o)

We have that P;(C)=AgUA;. So that
P1(C) = AgUA; = (S* — {(0,0,2)})U(S* — {(0,0,—2)}) = 5?
Proposition 2.4.3. P,(C) is homeomorphic to sphere S*.
Now, we will study the application on Ay = {(ag, a;)€P;(C) : ap#0}
f:P(C) = P4 (C) (2.4.5)

(1'0, 371) — (:C027 x12>

We can transform the application f to

X Zp2 2
zp=——(1,— )=(1
0 T (>$1 ) ( 720)
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where zp€Ay. But, the application
g: AO — AO (246)
20 > 202

is not injective since f~1((1,20%)) = (1, 20)U(1, —z0) except zg = 0. Therefore, we get

: ")
0<argzy =t < mou w<argzy = t' < 27 where zy = r.e’ ou 2y = r.e’*.

It can be concluded that the image of the application (2.4.5) turns around the origin.
Let us analyze the application (2.4.5) on the following sets

H" = {2€C : Im(z) > 0} H™ ={%€C: Im(z) < 0}

Then we get the applications f’ and f” by restricting f to Ag

fliHY = C—{R"} (2.4.7)
7’.6“ — 7’2€2it
where 0 < t < 27 and
[ H —»C— {R*} (2.4.8)
T.eit — T2€2it

where —m < t < 0.



3. ELLIPTIC FUNCTIONS

3.1 Topological Interpretation of Non Singular Curves in P,(C)

If we analyze the addition of points on the circle, it is related to its parametrization
by the functions sine and cosine. Let f:R — S! a map such that f(¢) = (cos ¢, sin ¢).
We draw a parametrization of the circle by using real numbers such that the addition

of points on the circle accords to the addition of real numbers.

We will study a similar parametrization for cubics. We defined the addition of the

points on the cubic in the first chapter.

In this chapter, we will define new functions which are called elliptic functions, and
we will demonstrate how one can parametrize a non singular cubic by using elliptic
functions.

Let us describe the topological structure of non singular cubics in Py(C). We can define
Py(C)=C? —{(0,0,0)}/~ where (z,y,2) ~ (Az, \y, Az) for AéC — {0} similarly P;(C).
We can write the equation of any non singular cubic in Py(C) as below (Prasolov &

Solovyev, 1997)
Yy = (x—t12)(w—t92) (v—1t32) (3.1.1)

where t;’s are different. The equation describes a complex curve in Py(C). Let us

consider the projection map
7 Py(C)—{(0,1,0)} =P (C) (3.1.2)

(2,9, 2)=(, 2)

We have that the complex projection line P;(C) is homoemorphic to the 2-dimensional

sphere S? (see proposition (2.4.3)).
We know that y? = b has two different solutions for b # 0.

If we suppose that z # 0 and = — t,z # 0, then there exists a point (z,2) € P;(C)

which has two preimages of 7 that belong to the curve y?z = (z—t12)(x —t22)(z —t32).
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If we suppose that z # 0 and Z is equal to one of ¢z, then we can find only one preimage.

If we suppose that z = 0, the equation becomes to 2° = 0. Then it is argued from that

there exists only one preimage of the point co=(1,0), that is to say (0, 1,0).

Also, we can say more generally that the preimage of the point (1,2z) converge to

(0,1,0) as z tends to 0.

Let us add the points ¢, and oo of P1(C). So we can find that all points have two
preimages. We want to study more detail on the structure of the projection map 7 in

neighborhood of the points #; and oc.

Let us suppose that ¢;=0. If we consider affine coordinates by setting z = 1, the
projection map of the curve is described as (x,y)—xz. Therefore, we write that in the

form

y* = w(z —to)(z — ts) (3.1.3)

where tot3 # 0. We have nearly the equation y?—cx for points x that its value is
near to zero. So we find solutions which are in the form x=cA\?e??, x=cAe®. While
0 is changing from 0 to 7, a revolution happens around the point (0,1) on P;(C). In
this situation, y alters sign. While raising the revolution around (0,1) to the curve
v’z = (z — t12)(x — t22)(x — t32), it does not get back the initial point. However, it

can get back the initial point as yo changing the sign.

In the same way, we can construct the structure of the projection of the curve on P;(C)
in neighborhood of the point co. To see it more clearly, let x = 1. So we have almost
the equation y? = 1/z in a neighborhood of z = 0. Then we can say that under a

revolution about the point z = 0, y changes sign.

To sum up, the ramification points of the curve are (x,y, 2)=(t1,0,1),(t2,0,1),(¢3,0,1),

(0,1,0). If we consider the following cubic curve

Y’z = (v—t12)(x—t22) (x—132), (3.1.4)

it also has 4 ramification points (tx,0,1) € Py(C) where k = 1,2, 3, 4.

Now, we will cut P1(C) from ¢; to t5 and from t3 to co.
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Figure 3.1: Steps of construction of a torus

Then we see above that the part of the curve that lies this plane which consists of two
pieces. Now, we will glue this pieces. To apply this, we match same roots which are in

the planes y, and y_ . Therefore, we construct a torus.

3.2 Elliptic Functions

We parametrize a cubic in Py(C) by using a map h:C' — Py(C) where
h(z) = (Hy(z), Hy(z),1). Then, we reach that its image is a torus. Therefore, we
identify points of the form z 4+ aw; + bws. Indeed, we say that w; and ws are periods

of the functions H; and Ho, respectively. (Brieskorn & Knorrer, 1986).
Before we begin the section, we should learn a few definition to use there.

Definition 3.2.1. L is called lattice, if L = {aw; + bws; (a,b)€Z?*} where
wy,wy € C—{0}.
Definition 3.2.2. A function f is called meromorphaic, if f has no singular points

other than poles in a finite domain of C where f is an analytic function.

Definition 3.2.3. Let f be a function. We call doubly periodic, if
f(z + awy + bwy) = f(2) for any (a,b) € Z* where Im(w; /ws)>0.
Definition 3.2.4. A function f is called elliptic, if f is a meromorphic function and

doubly periodic.
Theorem 3.2.5. (Golubev, 1960) An elliptic function is constant where it has no

poles.
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Proof. Firstly, we assume that a function f which is elliptic has no poles. Then,
we can say that | f| is continuous on C. Also, f is bounded since the lattice is compact.

By using Liouwville’s theorem, we can say that f is constant. O

Theorem 3.2.6. For any non-constant function f, we have
Zva(f) = #{zeros} — #{poles} =0 (3.2.1)

i.e. the difference the number of zeros of f and the number of poles of f is equal to 0.
Corollary 3.2.7. There exist no elliptic function which has only one simple pole.

Now, let us analyze Weierstrass’s function as an example of elliptic functions.
3.3 Weierstrass’s Function

Definition 3.3.1. (Armitage, 2008) A meromorphic function @ is called Weierstrass’s

function such that

p(2) = l+z : ! 5 — S (3.3.1)

Z + njwy + nowy) (n1wy + nawy)

where (ny,n2) € Z* — {0}.
Theorem 3.3.2. The function o is an elliptic function, i.e.
1. p(2) is convergent for z # L where L is a lattice, i.e. ©(z) is holomorphic on
C- L.
2. p(z +nywy + naws) = p(2) for any z € C where (ny,ny) € Z*

Proof. 1.We can see easily that
1 1

(z + njwy + naws)? B (njwy + n2w2)2

o (n1w1 + n2w2)2 — (22 + 2z(n1w1 + ngwg)) + (n1w1 + n2w2)2
(Z + njwy + n2w2)2(n1w1 + n2w2)2
—(2% + 2z(nywy + naws))

(z + nqwy + nows)?(nqwy + nowsy)

2

Let us suppose that w = njw; + nowsy. Then, we can draw a comparison as below

2|

z 42w | < Clz|
(z + w)?w?

|w]?
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and we see that C' is positive number on the condition |w|>2|z].

Now, let us study on the case L' = {w € L;|w| > 2|z|}. Then we draw a comparison

as below

le—i—w |<C’Z||—|

wel/ lw|>2|2|

Also, we can write that

w .
[nqws + naws| = |wil[ng + "2w_2| = |wiln1 + (@ + Bi)na| = [wi]y/(n1 + ans)? + 52ny?
1
where « + i = 72 such that 5 > 0.

Moreover, we can draw another a comparison as below

1 4
<
|njwy + nows|  V/ng? + ny?

: dud dud
and an integral C' [ ﬁ greater than 35, o ‘w—lg,| We know that [ ﬁ

is convergent. So that it be concluded that Weierstrass’s function is convergent.

We have that p(z) = 5 + >

(z+1w)2 — =5 where weL — {0}.

Let us add a fixed number w’ to x. Then,
phw)= e by —
o ) (z+w)? Z(Z—i—w—i—w’)Q w2

1 1 1 1
“ET L e T W

Therefore, if we have a parametrization W = w + w’, we find that

() = s 1 S =0(2)

24w) = —us R ———

v (z +w)? (z+w+w)® w? v

where w, weL — {0}. In conclusion, p(z + w') = p(z) O

Now, let us analyze Weierstrass’s function as differential equation and find differential

equation satisfying the function p(z). If we regard a new function

- + Y — - (3.3.2)

27
w
wel— {0}
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We can see easily that —('(z) = @(z). (Brieskorn & Knorrer, 1986) Also, we would

like to rewrite ﬁ as a serie.

1 11 1 =, 2 1 z oz
= S — =l + S+ S+
Z—w w ( w w w woow
Therefore, we see that
1 1+z_( 1z z2+ )+1+z
z—w w w? ow w: w 7w w?
- Wkl

where o9, = > ﬁ So that

1 = 2%h—1
((2) = . + ;ngz

= % i 2k — 1)ogp,2% 2 (3.3.3)
k=2
Let us search derivative of p(z).
o(z) = —% - i (2k — 1)(2k — 2)rapa2t (3.3.30)
k=2
= (=) = o5~ — gt~ 800 (3.3.30)
Ap(2))® = %- —3(234 6007 (3.3.3¢)

It follows that

(¢'(2))* — 4(p(2))* + 60049(2) + 14006 = o(z) (3.3.4)
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is an elliptic function without pole. Therefore, the right side o(z) = 0 by theorem

(3.2.5). In addition, we can say that the following differential equation is valid.

e

= 4(p(2))* — g20(2) — g3 (3.3.5)

)2 = 4(p(2))* — 6004p(2) — 1400

where gy = 600y, g5 = 14006. Then, we find that p(2) is the solution of the equation

dw

2 Awd — _
dz \/w goWw — g3

by parametrizing p(z) = w. Therefore, it can be concluded that

p(2) d
/ v S, (3.3.6)
b(z0) \V/AWP — gow — g

To say that this integral is well defined, we have to claim the path of the integration.

So that let us consider the curve

{(y, w)eC?*y* — (4w’ — gow — g3) = 0}

and let us suppose that the equation 4w? — gow — g3 has three distinct solutions which

are ej,eq,e3. S0 that we rewrite the equation of the curve as below

=y(w) = i\/4(w —e)(w—e;+e —ey)(w—e +e —e3)

Moreover, y(w) behaves like y/4(e; — e2)(e1 — e3).1/(w — €1)(14+0(w—e;)) as w—e; —0.
Then, we say that \/w — e; can be expressed by /re®/2. So that w = e, + /re??/?
where 0<A<27, and we can see easily that the behavior of \/w — e; is nearly to the

point w = ey.

Since the equation \/4(w — e;)(w — e3)(w — e3) has two different roots in the way plus

and minus, values of the integral follow two different paths as below

Therefore, we have to make clear paths of which follows the function y(w). Let us

parametrize w = % If we substitute it on the equation, we write

d(%) V(w3 dw’

w

N T Ve T R
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If we replace w' = 0, we find w = oo the point of ramification, since y(w) have two

different values except at points of ramification. More clearly, the function

\/4(w —e1)(w — ez)(w — e3) change sign during that w turn around points ey,es,e3,00

in other words ramification points.



4. JACOBI ELLIPTIC FUNCTIONS

4.1 Jacobi Elliptic Functions

We have from trigonometry

Y dx
) :/0 i (4.1.1)

sin~'(z) = arcsin(x

We will focus on sin(z) and we will form Jacobi elliptic functions by using ellipse. We

know the general ellipse equation as below

1,2 y2
=1 (4.1.2)

Now, we will suppose that n = 1, so that the equation becomes

.TQ 2
ity =1 (4.1.3)

Also, it provides that z? + y? = r2.
Definition 4.1.1. The eccentricity of an ellipse is € where the equation of the conic

18 % + Z—z =1 such that

e=+4/1— — (4.1.4)

Since we suppose that n = 1, the eccentricity of (4.1.2) is

1
e:,/1—wzk (4.1.5)

where k is called modulus of the elliptic function (4.1.3) That’s why, 0 < k < 1.

In addition, we know the argument of a trigonometric function is an angle ¢. But, we

will describe it differently for elliptic function.
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Definition 4.1.2. We call that u is argument of the elliptic function (4.1.3) such
that

"= /A rdis (4.1.6)

B

Here, we do not talk about arc length or area. However, in the condition m—1 or

k—0, u becomes an angle since the ellipse turn to circle in this case.

By using the argument and the modulus of the elliptic function (4.1.3), we construct

a new function system as below

sn(u, k) =y en(u, k) = z/m dn(u, k) =r/m (4.1.7)

where x, y describe cos ¢, sin ¢ respectively and 7 is not constant on an ellipse. More-
over, when m = 1, these functions tend to y, x, 1 respectively since r—1. Let us define

these functions.

Definition 4.1.3. (Meyer, 2001) Let k be in the interval (0,1) and let t be real vari-
able which describes time. The functions sn(t, k), en(t, k), and dn(t,k) are called

Jacobt elliptic functions as the solutions of the system of differential equations

m*y = xr
¥=—ry (4.1.8)
r = —k*yx

satisfying the initial conditions y(0) = 0, x(0) = 1, and r(0) = 1 where the variables

x, y, and r are given in (4.1.7).

We know from trigonometry that ¢ = arctan(%) = tan='(¥).

xdy —ydr  wxdy —ydr  xdy —ydz

=d = 4.1.9
2 $2(1 + Z_z) 2 +y2 r2 ( )
Also, we have du = rdy by definition of the argument, so that
dy — yd
du = rdp = —4 I (4.1.10)

r
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Moreover, we have —“zdx + ydy = 0 from (4.1.3). Then, by using this, we can rewrite

as below

dy = ———dz
may
m?y
de = ——=dy (4.1.11)
x

1 x?
du = L+ T (4.1.12)
u-r T - Y 1.

By using the differential equation system as above, we reach the equalities which are

dy
du = 4113
V(L =y2)/(1 - k2y?) ( )
du = de (4.1.14)

VI =)/ + )

where k2 = 1 — # Anymore we will use the time variable ¢ instead of the variable
u since we will use the Jacobi elliptic functions. Because of the equalities (4.1.12), we

get a system of differential system

d
%Sﬂ(t’ k) = en(t, k)dn(t, k)

d
%cn(t, k) = —dn(t, k)sn(t, k) (4.1.15)

d
adn(t, k) = —k*sn(t, k)en(t, k)

Now, let us search the solutions of ¢ by using the system of differential system as above.

We have cn(t, k) = \/1 — sn2(t, k) and dn(t, k) = \/1 — k2sn2(t, k). If we replace these
on the differential equation £ sn(t, k) = cn(t, k)dn(t, k), we get

%sn(t, k) = en(t, k)dn(t, k) = /1 — sn2(t, k)\/1 — k2sn2(t, k). (4.1.16)
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Since y = sn(t, k), we obtain

(%%V==(1—y5(l—k%ﬁ) (4.1.17)
. y(t) dy
ét—1+ém N N (4.1.18)

In the similar way, we get also

z(t) du
b= et 41.19
: L@ V(L= 22)y/(k? + k2a2?) ( )

from Len(t, k) = —dn(t, k)sn(t, k); and

r(t) dr
t:%+[@«¢ﬂ—ﬂhﬂﬂ—k% (4.1.20)
from Ldn(t, k) = —k*sn(t, k)en(t, k).

Proposition 4.1.4. (—sn(—t, k),cn(—t, k), dn(—t,k)), (sn(—t, k), —cn(—t, k), dn(—t, k))
and (sn(—t, k), en(—t, k), —dn(—t, k)) are solutions of the system (4.1.15) in the case
that (sn(t, k), cn(t, k), dn(t, k)) is a solution of the system (4.1.15).

Proof. Let us assume (p(t),q(t),s(t)) = (—sn(—t, k), cn(—t, k), dn(—t, k)). If we
take derivatives of (p(t), q(t), s(t)), we get

p(t) = isn'(—t, k) = en(—t, k)dn(—t, k) = q(t)s(t)

dt
q(t) = —%cn’(—t,k) =dn(—t,k)sn(—t, k) = —s(t)p(t) (4.1.21)
s'(t) = —%dn’(—t, k) = E?sn(—t, k)en(—t, k) = —k*p(t)q(t)

It can be concluded that (p(t),q(t),s(t)) is a solution also. For other solutions, we

follow the same way. ]

That’s why, this proposition says us that when we take solution with reversing time,

it gives us another solution. We call reversing symmetries for such symmetries.
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Moreover, by the proposition, we get thet sn(t, k) is an odd function of ¢; en(t, k) and
dn(t, k) are even functions of ¢ for fixed ke€(0,1).

Now, let us interpret geometrically these solutions by using the differential equations
sn?(t, k) +en?(t, k) =1 (4.1.22)
k*sn®(t, k) +dn*(t, k) = 1 (4.1.23)

The first equation gives us a circular cylinder, and the second equation gives us a
right elliptic cylinder. Since we study both cylinder in the same case, we look at the

intersection of two cylinder. Therefore, we get the inequalities

—1<sn(t, k)<1
—1<en(t, k)<1 (4.1.24)

K <dn(t, k)<1

The solution (sn(t, k), cn(t, k), dn(t, k)) starts in this intersection region, and it rests

in this area for all ¢.

Theorem 4.1.5. (Theorem of Continuous Dependence of Solutions) (Hirsch &
Smale, 2004) Let w' = f(w) be a differential equation such that f:R™ — R™ is derivable,
and let w(t) be a solution of f(w) on the interval [t,t'] such that x(tg) = xo. Therefore,
there exist a neighborhood D C R of x¢ and a constant M in the case that there exists a
unique solution y(t) on the interval [to, '] such that yo € D and y(to) =yo. In addition,

the given inequality occurs

ly(t) — ()| <Mlyo — ole™ ) (4.1.25)

for all t € [to,'].

So that the theorem say us that the solutions z(¢) and y(t) reste close for ¢ nearby ¢,

in the case that they move on approximately.



27

Proposition 4.1.6. If k tends to 0 from the right, we get

sn(t, k)—sin(t), en(t, k)—cos(t), dn(t, k)—1 (4.1.26)

and if k tends to 1 from the left, we get

sn(t, k)—tanh(t), en(t, k)— (1), dn(t, k)—(t). (4.1.27)
Moreover, they convergent uniformly on compact sets.

Proof. By using the formulas (4.1.18), (4.1.19), and (4.1.20), we can found these
limits. Also we can see easily that this is the solution of the system (4.1.8). O

4.2 Periodicity of Jacobi Elliptic Functions

Now, we will try to find the periodicity of the Jacobi elliptic functions. Let us begin
by analyzing the function sn(t, k). We have the integral from (4.1.18)

(1) dz
:>t:cl+/z(0) (e N o= (4.2.1)

where k < 1. Let ¢; equal to 0. If we analyze the integral (4.2.1), we see that there
exist four ramification points which are z = 1,—1,1/k,—1/k. If paths of the integra-
tion (4.2.1) circulate around the ramification points or circulate around a pole of the
integral (4.2.1), then it is possible that the integral (4.2.1) has more than one valued
function in z. Therefore, the Riemann surface is formed by cutting on the projective

space along two intervals which are bounded by the ramification points.

Let us assume that the intervals are [—1,1/k] and [1,1/k]. As we made the ramification
process in Chapter 2, Section 1, by using an other copy of this space, we glue these
two copies along the cuts. Therefore, we obtain a torus. Let us analyze the following

torus and define the paths Ay and Ay on the torus
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[P

Y, -1/k -1

i g
-1k -1

Figure 4.1: Ramification of Jacobi elliptic function sn

dz

K =
| vy

(4.2.2)

1/k d
K = © (4.2.3)

L Va2 e

First, we want to calculate the value of the path A\; by using the integrals K and K.
While seeing the figure as above, we can make calculation as below.

dz
W VA= 2R

dz dz dz

- ¢u—z%¢u—k%%f[ _vn—wawu—k%%+ﬂ NN

= 4K (4.2.4)

_ 4 / ! dz
o V- 21 R2)
Let us apply the similar calculation for the path s on the torus.

dz
o V(1= 22) /(1 = k222)

1/k dz 1 dz
= — — 4.2.5
/ 'wu—z%Vu—k%%'Am NN (425)
dz

1/k
=2 = 2K’
[ VI -2/ k)
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Briefly, if there is a path x which have initial point in 1£(0) and ending point in p(2), it
can be found a simple path o which have same initial and ending point. As we obtain

the periodicity of the path as above, we describe like

1(z) dz dz
_ Apy K+2p, K 1.2.6
[, NN e R AN M 428

where p; and p, are integers.

Figure 4.2: Periodicity of Jacobi elliptic functions

The figure as above show periodicity Jacobi elliptic function sn, cn and dn in one

graph.

4.3 Galileo Pendulum

Now, we will apply Jacob: elliptic functions to analyze the differential equation of

Galileo pendulum which is as below

d? .
mlﬁw(t) = —mgsiny(t) (4.3.1)

where the angle ¢(t) describes the angle depending on the time ¢ which results from

the matter, m describes the mass of the matter, and [ describes the length of the span.

Let us analyze the given system of differential equation as below
! g . /o
v = —75111(,0 Y =7 (4.3.2)

In addition, v describes the angular velocity in the system as above.
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Definition 4.3.1. (Hirsch & Smale, 2004) Let H:R?*—>R be a C™ function. We call

that H is Hamiltonian function such that

,  0H
¢ = (a,b)

,  OH
b __aa (a7b)

where (a,b)€ER?.  Moreover, such system of differential equation as above is called

Hamzltonian system.

So that we say that the system (4.3.2) is an Hamiltonian system. Therefore,

1, 9

H(p,7) = 57" =7 cose (4.3.3)
1

= H= 5@’2—%@5@ (4.3.4)

Let us suppose ¢(0) = 0. If we apply the multiplication of ¢’ on both sides of the
equation (4.3.1)

mlp" o' = —mgsinpy’, (4.3.5)
we get
mld, d
e = — 4.3.
5 7 (P)° = mgcosp (4.3.6)
ne 49,0 o
= (¢) = T(k —sin (5)) (4.3.7)
where k? = l(ﬂ);(o). Therefore, we find out three situation on the equation (4.3.7)

regarding to the value of k.

Situation 1 : If k = 1, we have (¢')? = 2Lcos?(£) and so that ¢’ = 2,/Zcos(£).Then

we reach that

t w(t) g ©

o(t) :/ gp’dt:/ 2\/jcos(—)dg0 (4.3.8)
0 o) V2

t= \/glog tan <<p 1— 7T) (4.3.9)
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1

Situation 2 : If & < 1, let us define a new variable z; such that z; =

sin%. When we

replace the variable z; in the equation (4.3.7), we obtain

le

9
<dt

)= (=2 (1=k27). (4.3.10)

So that we can integrate the equation as above

t—/tdt—/zl iz (4.3.11)
0 0 \/%(1—212)(1—1472212) o

By previous section, this equation is in the form of the Jacobi elliptic function sn.

Situation 3 : If £ > 1, in the similar way with situation 2, let us define a new variable
zp such that zp = sin?. When we replace the variable z; in the equation (4.3.7), we

obtain
(d22y2 _ k?g(l—zf)u—ziz). (4.3.12)
dt z 2

So that we can integrate the equation as above

t 29
t:/ dt:/ dz : (4.3.13)
ol H -0 -

By previous section, this equation is in the form of the Jacobi elliptic function sn.



5. BIFURCATION OF REACTION DIFFUSION EQUATION

5.1 Dissipative Structures

Let us analyze the chemical system which is imagined by Schldgl (Lefever, 1978). The
following equation describes the kinetic equation by considering the diffusion of K
oK PK
— =g AK® — aoK® —a3K + ayB+ D—— 5.1.1
ot ] as agl +agb + or2 ( )
satisfying the conditions K (0) = K (I) = € where [ is length and € is a solution of (5.1.1)

by choosing parameters as below

A 0
5= X:al—:——l—e €(d+ € — xe) =
(05} a9 €

CL4B

. (5.1.2)

If we apply the transformation which are t = agty, r = (%)'/2r1, and K = z +¢€, we

can rewrite the equation (5.1.1) as

dr 5 0 9 9 ’x O
5 = ¢ +(6—26)x +(6—e¢ )$+8r2 = f(x)+ar2 (5.1.3)

where f(z) = —2® + (£ — 2¢)2? + (0 — €*)x.

5.2 A Solution Analysis on The Reaction Diffusion Equation
5.2.1 Dissipative Wave Solution

We shall look for the dissipative wave solution x(z1,t) = x(z1 — ct) to the reaction

diffusion equation

ox 0%z

o5 = f($)+8x12 (5.2.1)

where f(x) is polynomial. In the case f(z) = rz(1 — §) the logistic z(z1,t). As we

look for the dissipative wave solution, we assume that © = x(z, — ct). Let z = x; — ct.
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So that 2 = —¢2% and 8122 = 8—m§. Thus (5.2.1) transformed into a second order non
ot 0z ox1 0z

linear equation

2’ +ex'+f(x) =0 (5.2.2)

where 2/ = %. If we consider the Lyapunov function (Hirsch & Smale, 2004) %(x’)2 -

F(xz) where j-(F(z)) = f(z) ,

G+ P(@) = —ela'?<0 (523)

provided the dissipative wave speed c is positive.

Let us assume that 3 roots of p1, pe, p3 of f(x) are located in such away that n(—a) = py,
n(0) = pa, n(a) = ps for some linear function 7 real value a#0. Then in making the

scale transform x = Av(fz)+ B choosing suitable ¢, the equation (5.2.2) is transformed

into
V" +3av =20 +2a*v = 0 (5.2.4)
—a 1 p A
In other words, the linear equation | 0 1 p, B | = 0 has non zero solution
a 1 p3 1
A
B
1

Proposition 5.2.1. The solution to (5.2.4) is expressed by Jacobi elliptic function
sngz——1(u)

v(w) = Me™ " snje_ 1 (Me™™ + M) (5.2.5)

where M and M, are constants.

Proof. Let v(w) = Me "V (Me= " + M;) and u = Me~* + M;. We look for the

function V' (u).
g—z)(w) = —Mae ™V (u)—V'(u) M*ae™ " (5.2.6)
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”u

502 (u) = MPae V" (u) — 2M?a*e™ >V’ (u) + Ma*e "V (u) (5.2.7)

When we replace (5.2.5) and (5.2.6) into (5.2.4), we get

MPae™ V" (u) + 3M?a*e V' (u) + Ma’e” "V (u) + 3a(—Mae ™"V (u)

—M?ae 2™V (u)) + 2M3e V3 (u) 4 2a* Me™ "V (u)

— —MPe 3 (a®V" (1) =2V (u)) (5.2.8)

Now a?V"(u) — 2V3(u) can be integrated by

(,%((aV’(u))Q —VHu)+1)=0

oV (u)
ou

Y u Vi) AV (u)
su=af NEOEREOESY (529)

=a’( P =Viu) -1

=V (u) = Snkzz_l(g) (5.2.10)

by definition, i.e. inverse function to Jacobi elliptic integral. Jacobi elliptic integral for

general k

u:/z dz
o V- 21— R2)

=z = sn(u)
O
Now, we aim to transform the integral
2= / - (5.2.11)
@ o V@D

to the integral

u
a

& dz
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where k is in the domain (0, 1). For this purpose, we consider the projective transfor-

mation w = é;ig where AD — BC#0, especially AD — BC = 1.

Definition 5.2.2. The projective transformation is the mapping given by

B Az+ B

T() = Cz+D

(5.2.13)

where T: P1(C)—P,(C) and A, B, C, and D are complex numbers such that
AD — BC#0.

Let us analyze the above integral by using projective transformation and write

4

(Vi) -1t = ([l it = L=t o 1‘;)(5” D)’
- : r(J[(Az+B-ai(Cz+D)))2 (5.2.14)

(Cz+ D)% i=1

(A(Cz+D)—(Az+D)C
(C2+D)2

Let w = 22+8 Then we can see easily that dw = Jdz Also, we can

Cz+D*

rewrite such as
4 4

[[(A=iC)z+ (B - D) =[](A- aC)(2

i=1 =1

In addition, we can find out that the inverse of T(z) is T!(z) = _Dcz;i. The integral

(5.2.11) transforms to an integral as below. We choose «;, a; from the set of the points

{+1, -1, +i, —i}.

” +dz N S 4de
/i \/Hle(A —aO)z-p) VASC /ﬂ m (5.2.15)

DO&j—B

where 3; = oA = T Ya;), i.e T(B;) = a; and A* — C* = k%, Therefore,

“ dx Bj d
/oé,- \/(xQ —1)(z? + 1) - / \/(1 — (- k22 (5.2.16)

i

We look for transformation 7'(z) such that {ay = —1,a =i, a3 = —i,a4 = 1}
{61 = —%,62 = %7ﬁ3 =—1,0,= 1} for some k€(0,1). This relation gives rise to the

following linear equation
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-1 -k 1 =k A 0
1 kK —i —ki B 0
_ (5.2.17)
1 -1 4 —1 C 0
1 1 -1 -1 D 0

that has non trivial solution (A, B,C, D)#(0,0,0,0) if and only if the determinant
-1 -k 1 -k

of the matrix Lok ke equals to —2(1+]§+’€2). Therefore, the equation
1 -1 1 —1
1 1 -1 -1

(5.2.17) has non trivial solution k& = 342+/2. We choose k = 3 —2+/2 since k€(0, 1). In

conclusion, the elliptic integral (5.2.11) is reduced to the elliptic integral (5.2.12) with

k = 3 — 2v/2 with period 34.9958.

5.2.2 Analysis on The Bifurcation Sets of The Stationary Reaction Diffusion

Equation
Especially, the stationary state of the system % = 0 (5.1.3) is given by the following
non linear differential equation
dz .,
(d—) + F(x;d) = 0. (5.2.18)
r

for F(z;d) such that $F'(z;d) = f(z) (5.2.1). Let us consider the following fourth
order polynomial for 3 F’(x;d) = f()

4 2d 3
F(x;d) = —%—i— ;m

+dox® +dj, (5.2.19)

here the parameter d = (dy, ds, d3), especially the constant term dy corresponds to the

energy level.

The discriminant of the quartic equation F'(z;d) = 0 is given by

A(d) = do(4(4dy—ds?)dy®+256dy> +do(—27ds" +144dods® —128d57)).  (5.2.20)
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Definition 5.2.3. We say that the point (ds, d3) is on the bifurcation set where dy,ds
are coefficients of the function (5.2.19), if the function F(x;d) = 0 (5.2.19) has less

than three different critical values.

Its bifurcation loci i.e. the discriminant of A(d) as a polynomial in dy is equal to
Bif(dy, ds) = dyds?(ds® 4 4dy)?(2d5* 4 9d,)*. (5.2.21)

If we replace dy by (6 — €?) and d3 by (6/e — 2¢), then we get

55(6 — 26%)2(6 — €%)5(—€* + €% + 20?)?

B(d,¢€) = ST (5.2.22)
Also, if we replace do by (6 — €2) and ds by (§/€ — 2¢) on F(x;d), we get
zt 2 3 2y,.2
H(x;d)-—;%—g(é/e—%)x + (0 — €)x” + dy (5.2.23)

In (5.2.21), it can be concluded that the curves A; : § = 262, Ay : § = €2, A3 : § = €2/2
Ay 8 =0, and As : § = —€? are the bifurcation sets of the reaction diffusion equation.

Let us analyze the solutions of the equation on the bifurcation sets.

-\\\ \\x A : a — !__g
N @ | ® Ja
L T S
o TR 56 .
- e = L s =0
: 05 — 03 :
1.0 0.5 ; - - 0 1.0
.-'F".-. .H-HH.
S @ 7 @
// 5,
7 -1o} ﬁ“: 2

Figure 5.1: Bifurcation diagram of H(z;d)

When we solve H(x;d) either on bifurcation sets or between bifurcation sets, we see
that there are 3 types root which are 4 different real roots, 2 different real and 2

imaginary
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complex roots, and 2 double imaginary complex roots. We will analyze real roots in
the cases. Let us look at the case of 2 imaginary complex roots. Let x1 = m — nq,
ro = m+ni, x3 = p and x4 = 7 be roots of H(x;d) where m, n, p, r are real numbers.

If we apply projective transformation, we reach that the periodicity of solution is

! dz
4/0 V(1= 22)(1 + k222)

Moreover, we see that there is no real periodicity if H(z;d) has 2 double imaginary

complex roots since the integral is divergent.

Case 1: Let (¢,0) = (1,2) be a point on A; of the bifurcation set. So that in the case

dy = —1/2 the equation transforms to
z? 1
Fiu=-"—+2"—< 5.2.24
11 5 + 5 ( )
We have choices the parameters ¢ = 1 or ¢ = —1 and 0 = 2 boundary corresponds

to a point on the bifurcation set that is the boundary between the domains (1) and
(3) or (2) and (4), i.e. on the curve § = 2¢%. If we choose dy = 0, then we get 2 real
double roots * = —1 and x = 1. We study the critical points and critical values of the
function Fj;. The calculation above shows that the polynomial Fi; has three critical
points (—1,0), (0,—1/2), (1,0). But the critical values are —1/2 and 0. That is to say
the function has only two instead of three critical values. Therefore, we can say that

the point (¢,0) = (£1,2) is on the bifurcation set.

Figure 5.2: Graph of H(z;(1,2,0))
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In other hand, when we take —1/2 < dy < 0, we get 4 distinct real roots. Therefore,

we can apply transformation method in this interval to find solution. For example, let

do = —1/3. So that we get the function

4
1
Fiig = —= +a” - 3 (5.2.25)
We see that the roots of Fiy, are v1 = — %(3 —V3), 1y = %(3 —/3),
x5 = —/3B+V3), 1= /33 +V3).
P ':"JE e
I—ll.il _.-I : I—]:.':'I I ""_\';*:_-' e '3"3_,, I Il.l':'I I“\‘l.‘il
! \H--:l.l L \
/ 7y \
| Y
f 0.6 I||I
= \

I -1.0 lII

|
-12
I|

Figure 5.3: Graph of H(z; (1,2, —%)

In the symmetric case as the above example, we will study on an easier method. Let
+a and £+ the roots of the equation F(x;d) = 0 where 5§ > a > 0. We will try to

transform of the Jacobi elliptic function sn(r, k) form. We have periods

p dx
t = /a N CET T (5.2.26)

If we substitute z = az, we find out

a adz
ﬂ/ Via? —a22)(5? — a222) 2
‘ dz (5.2.28)

:\/5/1

If we establish the equality k =

a
aff \/(1 —a?2?)(1 - g—222)

, we have

I

(5.2.29)

_@ a dz
B /1 VI —2)(1 - k22
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Hence we have a solution x(r) = asn(%,%) with periods %EK’(%) and %K(%)

Therefore, we can see easily that the solution of Fiq, is

1 V3B +V3)r 1/(3—V3)
o(r) = ,/5(3 — V/3)sn( 7% : )) (5.2.30)

\/(3+V3

i

22

11V (3=V3) 42 —
V3(3+VE) (\/(3+\/§)) and \/§(3+\/§)K( )

V3B+V3

with periods

=

Case 2: Let (¢,0) = (—1,1) be a point on Ay of the bifurcation set. So that in the

case dy = 0 the equation transforms to

273 ot
Fo=——— 5.2.31
12 3 5 ( )
We have choices the parameters ¢ = —1 and § = 1 boundary corresponds to a point on

the bifurcation set that is the boundary between the domains (3) and (5) or (4) and

(6), i.e. on the curve § = €

. If we choose dy = 0, then we get 2 real roots x = 4/3
and x = 0 where x = 0 is triple root, i.e. the inflection point. We study the critical
points and critical values of the function Fj,. The calculation above shows that the

polynomial Fy5 has two critical points (0,0), (1,1/6).

Figure 5.4: Graph of H(z;(—1,1,0))

But the critical values are 0 and 1/6. That is to say the function has only two instead

of three critical values. Therefore, we can say that the point (¢,0) = (—1,1) is on the
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bifurcation set.

However, if we suppose dy#0, we see that there exist two double different conjugate

complex roots of Fis.

Case 3: Let (¢,0) = (—1,1/2) be a point on Az of the bifurcation set. In the case

dy = 0 the equation transforms to

4 ZE2

Fiy = —% ot (5.2.32)
We have choices the parameters ¢ = —1 and 6 = 1/2 boundary corresponds to a
point on the bifurcation set that is the boundary between the domains (6) and (8),
i.e. on the curve & = 2¢%/2. If we choose dy = 0, then we get 2 real double roots
x = 0 and z = 1. We study the critical points and critical values of the function
Fi3. The calculation above shows that the polynomial Fi3 has three critical points
(0,0), (1/2,—1/32), (1,0). But the critical values are —1/32 and 0. That is to say the
function has only two instead of three critical values. Therefore, we can say that the

point (€,9) = (—1,1/2) is on the bifurcation set.

Figure 5.5: Graph of H(z; (-1, 3,0))

If we assume that dy#0, we get three different types root of F'(x;d) = 0 as below

Situation 1: If 0 < dy < 1/32, there are four distinct real roots. For example; if dy =
1/64, the roots of H(x;d) = 0 are 21 = (2 —1/(2 = V2)), 22 = (2 + /(2 = V2)),
23 =1(2—1/(2+V2)) and 24 = 12+ /(2 + V2))
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If we apply the transformation 2’ = x + %, we get

1 1.1 1 1,1
Fiza = — = (=42 +(z+2') = (z+2')* 5.2.33
13 = &7 2(2+x)+(2+.7:) 2(2+a:) ( )
Therefore, we can see that the roots of H(z;d) = 0 are z; = — /5 + ﬁ, Ty =,/7+ 4%2,
x5 = —11/2(2—Vv2) and 2, = 1,/1(2 — V/2). Since the roots are symmetric, we can
apply directly the method in (5.2.29)
'-1'.-:-',# *--_::;_' _.:“ T
’// _:|J - “
- %
/ —04f \
Fi —o6f \\'-.
ik \
;. :l.s: \.\
-Lof \
||"II -12F ‘Illl
f 3 \
f —14F \

Figure 5.7: Graph of Graph of Fis,(2; d)

So that in this case, the solution of H(x;d) =0 is

2 —V2)t
2 (t) = i+ 4\1/§sn( ( 1 ) ,%) (5.2.34)

Because of the transformation z’ = z + %, we get the solution
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(5.2.35)

with periods 4v/2 — V2K'(75) and 8v/2 — V2K ().

Situation 2 : If dy < 0, there are two double distinct complex conjugate roots. For
example; if dy = —1/16, the roots of F(z;d) = 0 are z; = 1/2(1 — V1 —iv/2),
Ty =1/2(1 + V1 —iv2), 23 = 1/2(1 — V14 iv/2) and 24 = 1/2(1 + V1 + i/2).

Situation 3 : If 1/32 < dy, there are one double complex conjugate roots and two
distinct real roots. For example; if dy = 1/16, the roots of H(z;d) = 0 are x; =
1/2(1 — i/ =1+ V2), 2 = 1/2(1 + iv/ =1+ v2), 25 = 1/2(1 — /1 +v/2) and z, =
1/2(1+V1+72).
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Case 4: Let (¢,0) = (—1,—1) be a point on As of the bifurcation set. So that in the

case dg = 0 the equation transforms to

4
Fiy= —%+2x3—2x2 (5.2.36)

We have choices the parameters ¢ = —1 and 0 = —1 boundary corresponds to a point
on the bifurcation set that is the boundary between the domains (10) and (12), i.e. on
the curve § = —¢e2. If we choose dy = 0, then we get 2 real double roots x = 0 and z = 2.
We study the critical points and critical values of the function Fj,. The calculation
above shows that the polynomial Fi4 has three critical points (0,0), (1,—1/2), (2,0).
But the critical values are —1/2 and 0. That is to say the function has only two instead
of three critical values. Therefore, we can say that the point (¢,d) = (—1,2) is on the

bifurcation set.

05 T~ 05 1.0 15 720~ 25
S0 . hS
\\ Fg A
L e _‘.r"' 1
e S !
A Y 1 Y
i 4
| it
| -osf \
{ ~1of \

-12E 1

Figure 5.10: Graph of H(x;(—1,—1,0)

Situation 1 : If 0 < dy < %, there are four distinct real roots. For example; if dy =
L, the roots of H(z;d) = 0 are 1 = £(3—1/3(3 = V6)), 2o = $(3+1/3(3 = V6)),
x5 =13 —1/(3+V6)) and 24 = (3 + /(3 + V6)).

ol ™ J_,-—"’ '“‘x\
) "\\ r S
i - i e A
-0.5/ 05 ™ 10 _~1 10 2
{ -0zl — \
."l \
[ -oaf \

Figure 5.11: Graph of H(z;(—1,—1,3)
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If we apply the transformation 2’ = x + 1, we get

1 1
F14a = 5_2(1 + l’/>2—|—2(1 + I,)3—§(1 + $/)4 (5237)

Therefore, we can see that the roots of H(z;d) = 0 are z; = —/%(3 — V6),

13+ V6), z3=4/1(3—+6) and x4 = /(34 V06). Since the roots are
symmetric, we can apply directly the method in (5.2.29).

Figure 5.12: Graph of Fiu,

So that in this case, the solution of H(x;d) =0 is

Z'(t) = 3 —V6)sn( \ / t,\/5 (5.2.38)

Because of the transformation 2’ = = + 1, we get the solution

z(t) = ,/%(3 —V6)sn(y /% + %t, \/5—2V6) -1 (5.2.39)

with periods 21/6 — 2v/6K'(v/5 — 2v/6) and 4v/6 — 2V6K (/5 — 2v/6).

Situation 2 : If dy < 0, there are two double distinct complex conjugate roots. For
example; if dy = —1, the roots of H(x;d) = 0 are 2, = 1 — /1 -2, 25 = 1 +

V1—iv2, z3=1—vV1+ivV2and 24 =14+ 1+ iv2.
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Figure 5.13: Graph of H(z;(—1,—1,-1))

Situation 3 : If % < dy, there are one double complex conjugate roots and two distinct
real roots. For example; if dy = 1, the roots of H(z;d) = 0 are z; = 1 —iy/—1 + V/2,

o =14ivV—-14+vV2, 25=1—+vV1++v2and 2, =14+ 1+ V2.

Figure 5.14: Graph of H(x;(—1,—1,1))

5.2.3 Analysis Between The Bifurcation Sets of The Reaction Diffusion

Equation

Proposition 5.2.4. Let z1, xo, x3 and x4 be 4 different real roots of H(x;d) such that

xr1<wo<wz<x4. Therefore, H(x;d) has solutions with period

sngll where k= \/(x?’ — ) (w4 1)

(24 — 22) (23 — 1)
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Case 1: Let (¢,0) = (1,3) be a point between on the region (1). In the case dy = 0
the equation transforms to

G = 4x + 22% — 223 (5.2.40)

We have choices the parameters ¢ = 1 and d = 3 boundary corresponds to a point out
of the bifurcation set that is in the domain (1), i.e. on the region § > 2¢2. When we
choose do = 0, then we get 3 real roots 21 = 0, 22 = (1 — /10) and x5 = (1 + /10).
We study the critical points and critical values of the function G;. The calculation
above shows that the polynomial Gy has three critical points (-1, 2), (0,0), (2, %) and

the critical values are %, 0 and %. Therefore, we can say that the point (¢,0) = (1, 3)
is not on the bifurcation set.

Figure 5.15: Graph of G,

If we assume that dy#0, we get three different types root of H(x;d) = 0 as below

Situation 1 : If —2

¢ < do < 0, there are four distinct real roots.
dy = — 14619

Gisa0> the roots of H(x;d) = 0 are x; =

For example; if
—1.2, &y = 2.75, x3 = —0.755582 and
x4 = 0.557668.
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Figure 5.16: Graph of H(z; (1,3, —21649)

T 64220

Since all roots of H(xz;d) = 0 is real in this situation, we can apply the projective
transformation and we find £ = 0.435126 in the integral of Jacobi elliptic function

sn(r, k). So that by using the value k, we find the solution of H(z;d) as the following
graphic with period 0.0802142.

T LH T

Figure 5.17: Graph of solution of H(z; (1,3, —5333))

Situation 2 : If 0 < dj or —% < dy < —%, there are one double complex conjugate
roots and two distinct real roots. For example; if d

= 2, the roots of H(z;d) = 0

are r; = 0.0339426 — 0.4800657, x2 = 0.0339426 + 0.4800657, x3 = —1.53934 and
x4 = 2.80479.
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Figure 5.18: Graph of H(z;(1,3,3))

Situation 3 : If dy < —13—6, there are two double distinct complex conjugate roots.
For example; if dy = —6, the roots of H(x;d) = 0 are ;7 = —1.36302 + 0.990422,
x9 = —1.36302 — 0.9904227, x5 = 2.02968 — 0.328026¢ and x4 = 2.02968 + 0.328026:

Figure 5.19: Graph of H(x;(1,3,—6))

Case 2: Let (¢,6) = (1, 2) be a point on the region (3). So that in the case dy = 0 the

equation transforms to

Gon=%5—%5—% (5.2.41)



20

We have choices the parameters ¢ = 1 and § = % boundary corresponds to a point
out of the bifurcation set that is between the domains (1) and (3), i.e. on the region
e* < § < 2¢>. When we choose dy = 0, then we get 3 real roots 21 = 0, 5 = 2(1—+/10)
and x3 = %(1 +4/10). We study the critical points and critical values of the function
G12. The calculation above shows that the polynomial G5 has three critical points
(—1, %), (0,0), (%, %) and the critical values are %, 0 and %. Therefore, we can prove

that the point (¢,6) = (1, 2) is not on the bifurcation set.

Figure 5.20: Graph of G

If we assume that dy#0, we get three different types root of H(x;d) = 0 as below

Situation 1 : If —% < dy < 0, there are four distinct real roots. For example; if

dy = —223032680800070, the roots of H(x;d) = 0 are x; = —1.35, zo = 0.55, 3 = —0.373794

and x4 = 0.625849.

Figure 5.21: Graph of H(x; (1,3, — 22589%))

Since all roots of H(z;d) = 0 is real in this situation, we can apply the projective

transformation and we find £ = 0.670223 in the integral of Jacobi elliptic function
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sn(t, k). So that by using the value k, we find the solution of H(z;d) as the following

graphic with period 0.940988.
- 1.0 e —~
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Figure 5.22: Graph of solution of H(z; (1, %,

5

— 6> there are one double complex conjugate

1, the roots of H(z;d) =0

Situation 2 : If 0 < dy or —% < dy <

roots and two distinct real roots. For example; if dj
are r1 = 0.632878 — 0.414422:, x5 = 0.632878 + 0.414422i, x5 = —1.21089 and x4 =

—0.721533.

-10F
L \

Figure 5.23: Graph of H (z; (1,3, -1))

Situation 3 : If dy < —%, there are two double distinct complex conjugate roots.
1, the roots of H(z;d) = 0 are z; = 0.720376 — 0.5548824,

For example; if d,
x9 = 0.720376 + 0.554882¢, x5 = —1.05371 — 0.314845¢ and x4 = —1.05371 + 0.3148451.
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Figure 5.24: Graph of H(z; (1,2, —3))

Case 3: Let (¢,6) = (1, 2) be a point on the region (5). In the case dy = 0 the equation

transforms to

x2 53 gt

=_- = = 2.42
Gy =~ 202 (5.242)

We have choices the parameters ¢ = 1 and 6 = % boundary corresponds to a point
out of the bifurcation set that is between the domains (3) and (5), i.e. on the region
1€2 < § < €% When we choose dy = 0, then we get 3 real roots x1 = 0, T = +(—5—/7)
and z3 = %(—5 + /7). We study the critical points and critical values of the function
G13. The calculation above shows that the polynomial G113 has three critical points
(—1,75), (0,0), (—%, —15) and the critical values are 75, 0 and — 5. Therefore, we

prove that the point (¢,8) = (1, 2) is not on the bifurcation set.

/ 0z ™y

/ -04f N

/ o8l

-1.0F

Figure 5.25: Graph of G3

If we assume that dy#0, we get three different types root of H(x;d) = 0 as below
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Situation 1 : If 0 < dy < —%-, there are four distinct real roots. For example; if

1536°
dy = 755 the roots of H(z;d) = 0 are 21 = —1.28, @, = 0.1, 23 = —0.317423 and
ry = —0.164789.
a5 = 10 _'______-_::_'_h ~—0 10
& .
! -0.2 \
4 %,
\,
—osf W
-0.5 \H‘
\

) ' (1 3 136
Figure 5.26: Graph of H(x; (1, E _40625)

Since all roots of H(z;d) = 0 is real in this situation, we can apply the projective
transformation and we find £ = 0.14946 in the integral of Jacobi elliptic function
sn(t, k). So that by using the value k, we find the solution of H(z;d) as the following
graphic with period 3.76741.

Figure 5.27: Graph of solution of H(z; (1,32, £2)

Situation 2 : If —1—12 < dy < 0or T736 < dy, there are one double complex conjugate

roots and two distinct real roots. For example; if dy = %, the roots of H(z;d) = 0
are r1 = —0.377602 — 0.876168:, x5 = —0.377602 + 0.8761687, x3 = —1.59866 and
x4 = 0.687197.
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Figure 5.28: Graph of H(z;(1,32,1))

Situation 3 : If dy < —%, there are two double distinct complex conjugate roots.
For example; if dy = —%, the roots of H(z;d) = 0 are z; = 0.204409 + 0.4244134,
o = 0.204409 — 0.4244134, x5 = —1.03774 — 0.2228847 and x4 = —1.03774 4 0.2228841

L
1.0

i
10k

3))

Figure 5.29: Graph of H(x; (1, %, —

Case 4: Let (¢,6) = (1,3) be a point between on the region (7). So that in the case
(5.2.43)

2¢2 102° 2*

dy = 0 the equation transforms to
Gyu=—7"F""—"""-——
H 3 9 2

1.2

56.

We have choices the parameters ¢ = 1 and § = % boundary corresponds to a point

out of the bifurcation set that is in the domain (5), i.e. on the region 0 < § <
When we choose dy = 0, then we get 3 real roots z; = 0, x5 = %(—5 —iv/2) and

T3 = %(—5 + z\/§) We study the critical points and critical values of the function G4
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The calculation above shows that the polynomial G4 has three critical points (—1, %),

(—2,—55), (0,0) and the critical values are —

16 1
2130 0 and 15. Therefore, we can say that

the point (¢,6) = (1, 1) is not on the bifurcation set.

Figure 5.30: Graph of G4

If we assume that dy#0, we get three different types root of H(x;d) = 0 as below

Situation 1 : If = < dy < 2%, there are four distinct real roots. For example; if

18 2437
dy = 123%225, the roots of H(z;d) = 0 are x; = —1.8, x5 = 0.24, 3 = —0.898026 and
xa = —0.470104.
i
-5~ T -Lo i ez ST
r 02 kY
i LY

Figure 5.31: Graph of H(z; (1,1, 876258 )

» 37 16015625

Since all roots of H(x;d) = 0 is real in this situation, we can apply the projective
transformation and we find £ = 0.397154 in the integral of Jacobi elliptic function
sn(t, k). So that by using the value k, we find the solution of H(z;d) as the following
graphic with period 6.75411.
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Figure 5.32: Graph of solution of H (z; (1, 3, 5e0225-))

Situation 2 : If % <dpor0<dy< %, there are one double complex conjugate roots
and two distinct real roots. For example; if dy = -

35+ the roots of H(z;d) = 0 are x; =
—1.01938 — 0.122561, x5 = —1.01938 + 0.122567, v3 = —0.413103 and x4 = 0.229635.

Figure 5.33: Graph of H(z; (1,3, 55))

Situation 3 : If dy < 0, there are two double distinct complex conjugate roots. For
example; if dy = —%, the roots of H(x;d) = 0 are z; = —1.3139 — 0.593298i, =5 =
—1.3139 + 0.593298i, x3 = 0.202787 — 0.5288177 and x4 = 0.202787 + 0.528817i.

Figure 5.34: Graph of H(x; (1, %, —%))

Case 5: Let (¢,8) = (1, —3) be a point between on the region (9). In the case dy =0
the equation transforms to
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3x2  bad ot
Gs=——FF———F5 =

x
5.2.44
2 3 2 ( )
We have choices the parameters ¢ = 1 and 6 = —% boundary corresponds to a point
out of the bifurcation set that is in the domain (9), i.e. on the region —e? < § < 0.

When we choose dy = 0, then we get 3 real roots x; = 0, x9 = %(—5 - Z\/§) and

The calculation above shows that the polynomial G5 has three critical points
( 3 9 o

x5 = (=5 +iv/2). We study the critical points and critical values of the function
Gis.
—2,—3), (—1,—3), (0,0) and the critical values are

9 1

35> —3 and 0. Therefore, we
can say that the point (e,6) = (1, —3) is not on the bifurcation set.
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Figure 5.35: Graph of G5

If we assume that dy#0, we get three different types root of H(x;d) = 0 as below

Situation 1 : If 2

32
dy = 43435359

150781250

< dy < %, there are four distinct real roots. For example; if

the roots of H(x;d) =0 are z; = —1.64, x5 = 0.36, x3 = —1.43617 and
ry = —0.679474.
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-1.0F |

Figure 5.36: Graph of H(z; (1, —3, 1oa23%)

Since all roots of H(z;d) = 0 is real in this situation, we can apply the projective
transformation and we find £ = 0.481004 in the integral of Jacobi elliptic function

sn(t, k) . So that by using the value k, we find the solution of H(x;d) as the following
graphic with period 4.61404.
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Figure 5.37: Graph of solution of H(z; (1, =3, 1oro25))

Situation 2 : If % < dgor0 < dy < %, there are one double complex conjugate

roots and two distinct real roots. For example; if dy = %, the roots of H(x;d) = 0
are —0.946059 — 0.500774%, x4

x4 = 0.459234.

—0.946059 + 0.500774¢, x5 = —1.90045 and
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Figure 5.38:

Graph of H(x;(1,—3,3))
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Situation 3 : If dy < 0, there are two double distinct complex conjugate roots. For
example; if dy = —3, the roots of H(z;d) = 0 are z; = —1.74281 — 0.587893i, x5 =
—1.74281 4 0.587893¢, x3 = 0.0761406 — 0.376837 and x4 = 0.0761406 + 0.37683:.

Figure 5.39: Graph of H(x; (1, —%, —3))

L=

Case 6: Let (¢,6) = (1, —32) be a point between on the region (11). So that in the case

do = 0 the equation transforms to

Gg=—————— (5.2.45)

We have choices the parameters e = 1 and 6 = —% boundary corresponds to a point
out of the bifurcation set that is in the domain (11), i.e. on the region § < —e?. When
we choose dy = 0, then we get 3 real roots z; = —3, x5 = —g and r3 = 0. We study
the critical points and critical values of the function G15. The calculation above shows
that the polynomial G has three critical points (—g, %), (-1, —%), (0,0) and the

critical values are —%, 0 and £22. Therefore, we can say that the point (¢,0) = (1,—3)

is not on the bifurcation set.

Figure 5.40: Graph of G
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If we assume that dy#0, we get three different types root of H(x;d) = 0 as below
Situation 1 : If 0 < dy < %, there are four distinct real roots. For example; if

the roots of H(z;d) = 0 are x; = —3.05, 5 = 0.3, 3 = —1.49256 and

do — 636201
0 2176250
xa = —0.428179.
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Figure 5.41: Graph of H(z; (1, -3, 517635

Since all roots of H(z;d) = 0 is real in this situation, we can apply the projective
transformation and we find £ = 0.341172 in the integral of Jacobi elliptic function

sn(t, k). So that by using the value k, we find the solution of H(z;d) as the following

graphic with period 1.74795.
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Figure 5.42: Graph of solution of H (z; (1, —32

Situation 2 : If —% < dy < 0 or % < dy, there are one double complex conjugate

roots and two distinct real roots. For example; if dyg = 1, the roots of H(x;d) = 0 are

x1 = —1.02 — 04537737, x9 = —1.02 4+ 0.453773¢, x5 = —3.13804 and z4 = 0.511379.
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there are two double distinct complex conjugate roots.

Situation 3 : If dy < —12
= —%, the roots of H(x;d) = 0 are ; = 0.179863 — 0.6498834,

For example; if dy
o = 0.179863 + 0.649883¢, x5 = —2.5132 — 0.1930537 and x4 = —2.5132 + 0.193053:.



6. CONCLUSION

We draw a comparison between real solutions of the reaction diffusion equation different

points of the bifurcation diagram.

In the cases where at least two roots are real, we can analyze the behavior of the

solution as a real solution with a real period calculated by real elliptic integral. We

find that

e [f there are four real roots of the quartic equation, the period is given by

1 dz . .
4, T s for some k (0 < k < 1) calculated by means of a projective
transformation.

e If there are only two real roots of the quartic equation, the period is given

by 4f01 m for some k (0 < k) calculated by means of a projective

transformation.

In case all four complex roots, we cannot see the behavior of the solution as a real
solution. In fact we see that there is no real periodic solution. Both of two periods are

real.
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