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ABSTRACT

The container relocation problem (CRP) which is known to be NP-hard, tries to empty a
single yard-bay which contains S containers each having a given retrieval order so as to
minimize the total number of relocations performed. The DCRP is an extension of the
CRP where containers are both received and retrieved from a single yard-bay and the
arrival and departure sequences of containers are assumed to be known in advance. Two
enhanced Binary Integer Programming (BIP) formulations for the CRP and a novel BIP
formulation for the DCRP are devised. Computational experiments are performed to
analyze new formulations by using standart test instances from the literature. Our results
show that, new formulations are promising and yield better results in general for both
CRP and DCRP. A new heuristic called as Path Index heuristic, is proposed to solve the
CRP. Tabu search based heuristic approaches are proposed to solve the DCRP. In
addition, two Index Based heuristics are developed and tested for the DCRP.
Computational experiments are performed on an extensive set of test instances from the
literature. Our results indicate that the proposed algorithms are efficient and vyield
promising outcomes. Especially, IB heuristics show a superior performance than the ones

from the literature on a set of standard test instances for the DCRP.

Keywords: container stacking, integer programming, container relocation, heuristics,

container terminals.



OZET

Diinya deniz ticaretinin % 50'sinden fazlasin1 konteyner tasimaciligi olusturur.
Gliniimiizde teknolojik gelismeler daha biiyiik ve yiiksek hizli gemilerin tiretimine olanak
vermistir. Bu nedenle konteyner terminallerini dncesine gore daha yiiksek miktarlarda
konteyner tasima durumunda kalmustir. Ozellikle mega konteyner gemilerinin ortaya
cikistyla konteyner terminallerinin Oncesine goére daha iyi organize edilmesini bir
zorunluluk haline gelmistir. Biitiin bunlar g6z Oniine alindiginda, konteyner

terminallerinin etkin yonetimi biiylik 6nem tagimaktadir.

Konteyner terminal alani rihtim ve depolama alani olarak ikiye ayrilmaktadir. Genel
olarak, liman isletmecileri rihtim tahsisi, rthtim vinci atama ve zamanlama ve depolama
planlamasi1 gibi rithtim alani operasyonlarina daha fazla 6nem vermektedir. Depolama
alani islemleri, rihtim tarafindan konteynerlerin transfer edilmesi, ving planlamasi,
konteyner islemlerinin halledilmesinden olusur. Depolama alani islemlerinin Gnemi
terminal operatdrleri tarafindan siklikla gzardi edilmektedir. Ote yandan depolama alani
operasyonlarmin etkin yonetimi iskele alani iglemlerinin basaris1 ile dogrudan

baglantilidir.

Bir konteyner sirasi belirli yiikseklik ve ve siitun sayisina sahiptir. Siitundaki
konteynerlere erisim sadece yukaridan yapilmaktadir. Hedef konteynerin iizerindeki
konteynerleri, hedef konteyner alinmadan 6nce baska siitunlara taginmasi gerekmektedir.
Bu tasinma olay1 yer degistirme olarak tanimlamaktadir. Bu calismada depolama alam
problemlerinden olan konteyner yer degistirme problemine odaklanilmistir. Konteyner
yer degistirme problemi, konteynerlerin baslangi¢c diizeninin ve konteynerlerin ayrilis
sirasinin belli oldugu bir konteyner sirasini bosaltilir yapilan yer degistirme sayisini en
azlamay1 hedefler. Konteyner yer degistirme problemi sadece konteyner sirasindan

ayrilan konteynerlerin oldugu duragan bir problemdir. Dinamik konteyner yer degistirme



probleminde ek olarak konteyner sirasina eklenen gelis zamani bilinen gelen konteyner
vardir. Bu calismada oOncelikle konteyner yer degistirme problemi literatiirdeki
gosterimler literatiirdeki smama ortami kullanilarak karsilagtirilmis ve literatiirden
secilen bir gosterim modifiye edilerek konteyner yer degistirme problemi i¢in daha iyi
sonuglar alinmigtir. Bu yeni gosterim iizerinde degisiklikler yapilarak ikinci bir gosterim
elde edilmistir. Yeni elde edilen iki gdsterim literatiirdeki gosterimlerle karsilastirilmis
ve Onerdigimiz gosterimlerin daha iyi performans sergiledigi gozlenmistir. Konteyner yer
degistirme problemi i¢in yapilmis gosterim dinamik probleme uyarlanarak iiclincii bir
gosterim elde edilmistir. Sonuclarda literatiirdeki dinamik gdsterimlere gore daha fazla
islem hesaplayabildigi gozlenmistir. Bu gosterimlerden yola ¢ikarak degisik sezgisel
yontemler konteyner yer degistirme problemleri i¢in olusturulmustur. Sezgiselllerin ilki
konteyner yer degistirme problemi i¢in olusturulmustur ve kiigiik érneklemler {izerinde
basarili olmustur fakat biiylik 6rneklemlerde ayni performansi sergileyememistir. Diger
lic sezgisel dinamik konteyner yer degistirme problemi i¢in tasarlanmustir. Ilk olarak tabu
arama sezgiseli ile literatiirdeki bir indeks tabanli sezgiselin karigimi seklinde iiretilen
method literatiirdeki sezgisellere gore bir gelisme gosterememistir. Daha sonrasinda
literatlirdeki bir konteyner yer degistirme problemi sezgiselinin dinamik probleme
uyarlanmasi sonucu iki adet sezgisel olusturulmus ve bunlar literatiirdeki mevcut

sezgisellere gore daha iyi performans gostermislerdir.

Xi



1. INTRODUCTION

More than 50% of the world sea borne trade in terms of dollars are carried with
containerized cargo (UNCTAD, 2014). Drastic changes in emerging technologies such
as increased speed and size of vessels; enforce, container terminals has to transfer larger
amounts of containers than before. In particular, with the introduction of mega container
vessels, well organized container terminal operations are needed nowadays. Therefore,

efficient management of container terminals is crucial.

The container terminal area can be separated into two: quay side area and yard side area.
In general, terminal operators give more priority to quay side area operations which
include berth allocation, quay crane assignment and scheduling, and vessel storage
planning. Yard side operations include transferring containers from quay side, yard crane
scheduling, and storing and handling of containers at the yard storage area. The
importance of yard side operations is usually ignored by terminal operators since they
mostly charge liner shipping companies according to the number of containers handled
with quay cranes. On the other hand, efficiency of yard side highly interrelated with the

success of quay side operations.

A yard area includes blocks of containers which is illustrated with Figure 1.1. A yard-
bay is served with a yard crane so that containers are received and retrieved at top of the
columns. Containers on top of a column are directly accessible for retrieval. However,
if a target container (a container that will be retrieved from yard-bay immediately) isn’t
positioned at top of a column, then all containers above the target container have to be
relocated to other columns of the yard-bay. Once blocking containers are cleared, target
container can be retrieved. These clearing movements are called as relocations.

Relocations are idle operations for yard cranes.
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Figure 1.1: A block of containers. Source Akyiiz and lee (2014)

We refer to the works by Steenken et al. (2004) and Stahlbock and Vop (2008) as
excellent surveys on container terminal operations. Two problems, which arise in the
yard side of the container terminals, is focused in this work. We first address the
Container Relocation Problem (CRP) which aims to minimize the total number of
relocations accomplished to empty out a single yard-bay with a capacity of C columns
(stacks) having a height of P rows (tiers) where S containers, whose retrieval sequences
is given a priori, are initially located within the yard-bay. The CRP is a static problem in
the sense that it only considers departure of containers from the yard-bay. We also
consider a dynamic extension of the CRP where containers arrive and depart at the yard-
bay, namely the Dynamic Container Relocation Problem (DCRP).

The CRP is an intensively studied problem which is introduced by Kim and Hong (2006).
It is synonymously referred to as the “Blocks Relocation Problem” in the works by
Caserta et al. (2012, 2011). In the CRP relocations can only occur when a container has
to be taken out from the yard-bay. Thus, pre-marshalling is not allowed to reduce the
number of future relocations henceforth. The CRP is also called as “restricted” CRP
when this assumption is made. On the other hand, “unrestricted” CRP allows pre-
marshalling by relaxing this assumption. Here, we follow the same framework described
by Kim and Hong (2006) and limit ourselves with the restricted CRP.

DCRP is more realistic extension of the CRP when containers also arrive at the yard-bay.
Given arrival and retrieval sequences of S containers, the DCRP tries to minimize the
total number of relocations in a yard-bay. The DCRP inherits and extends the

assumptions of the CRP such that it also considers the case of container arrivals.



We suggest two mathematical programming formulations for the CRP. Our formulations
enhance the one originally proposed by Wan et al. (2009) and yields promising outcomes.
Existing formulations and the ones presented in thesis are compared on standard
benchmark instances from the literature. A novel mathematical programming
formulation is developed which enhances the formulation previously offered by Akyiiz
and Lee (2014) for the DCRP. In light of these information we propose efficient heuristics
for both CRP and DCRP.

In the reminder of this work is organized as follows. Section 2 gives a brief review of the
literature for the CRP and DCRP. Section 3 presents definition of CRP problem and our
solution methods for it. Section 4 contains DCRP problem definition and our brand new
formulation for DCRP. Furthermore we present new heuristic approaches for DCRP in
section 4. Numerical experiments given in section 5. Lastly, section 6 present our

conclusions and a discussion for future research directions.



2. LITERATUR REVIEW

Kim et al. (2000) propose a dynamic programming model to minimize the total number
of relocations where containers are grouped based on their weights. Kim and Hong
(2006) propose a branch and bound (BB) algorithm and offer a rule of thumb heuristic
procedure for the CRP. Since the seminal work by Kim and Hong (2006), there exist
several studies addressing the CRP. The first mathematical programming formulation of
the CRP is presented in the work by Wan et al. (2009) in which efficient heuristics are
also presented. Caserta et al. (2011) develop a metaheuristic algorithm which employs a
dynamic programming scheme for the CRP. An efficient tree search procedure for the
CRP is offered by Forster and Bortfeldt (2012). Caserta et al. (2012) show that the CRP
is NP-hard and suggest two formulations for the CRP. These formulations solve
unrestricted CRP and restricted CRP formulation, respectively. Unliiyurt and Aydin
(2012) minimize the total time to empty a single yard-bay by a BB algorithm and propose
heuristic procedures. Petering and Hussein (2013) introduce a new look-ahead algorithm
that yields better solutions than other algorithms presented by Kim and Hong (2006), Lee
and Lee (2010), Caserta et al. (2011), Unliiyurt and Aydin (2012) for the CRP. Jovanovic
and Voss (2014) implement a chain heuristic based on the “Max-Min” (MM) algorithm
of Caserta et al. (2012) and offer an improvement on the MM algorithm for the CRP. For
an in-depth discussion on container terminal operations and on stacking problems in
storage areas, we refer to excellent surveys by Stahlbock and Voss (2008) and Lehnfeld
and Knust (2014), respectively. Lehnfeld and Knust (2014) offer a classification scheme
which covers other variants of the stacking problems as well as their complexity results
that exist in the literature. Recently, Jin et al. (2015) develop a greedy look-ahead solution
procedure which is employed for both restricted and unrestricted variants of the CRP as
well as grouped and individual containers. Their tree search based approach yields the
best results in shorter running times than the previous heuristic procedures in the

literature. A modification on the formulation of Caserta et al. (2012) is offered by



Exposito-lzquierdo et al. (2015) and they implement a BB algorithm for the CRP.
Zehendner et al. (2015) made correction on the second formulation presented by Caserta
et al. (2012) and offer an improved alternative CRP formulation. A preprocessing
strategy is applied to improve the performance of the alternative formulation. Recently,
Ku and Arthanari (2016) follow a new perspective and offer an abstraction method. This
method significantly reduces the search space of the CRP and exactly solves small to

medium size test instances from the literature in reasonable computing times.

In contrast to CRP, the researchers did not give much attention to the DCRP. Wan et al.
(2009) is the first work which introduces the DCRP. Rei and Pedroso (2013) work with
the DCRP denominated as Stacking Problem (SP), which is shown to be NP-hard, where
containers arrive and depart at a single yard-bay. Akyiiz and Lee (2014) propose a
mathematical programming formulation including a Beam Search (BS) heuristic for the
DCRP. Konig et al. (2007) address a closely related problem to the DCRP where they
deal with the stacking of steel slabs. Tang et al. (2012) also work on similar relocation
problems in steel plants. Casey and Kozan (2012) focus on a variant of the DCRP where
the total processing time of the straddle carrier serving a single yard-bay is minimized.
Borjian et al. (2015) work on a variant of the DCRP considering a class of exible service
policies that permit minor changes in the order of container retrievals. Recently, Zhang
et al. (2016) study a connected problem with the CRP where blocks (or containers) can
be relocated and/or retrieved in batches. This problem arises in steel plants to remove
multiple steel slabs which can be handled by special cranes.



3. CONTAINER RELOCATION PROBLEM

In this section definition of CRP and two formulation for CRP is presented. Next, a index

based heuristic developed for CRP.

3.1 Container Relocation Problem Definition

Container Relocation Problem (CRP) which aims to minimize the total number of
relocations accomplished to empty out a single yard-bay with a capacity of C columns
(stacks) having a height of P rows (tiers) where S containers, whose retrieval sequences
Is given a priori, are initially located within the yard-bay. The CRP is a static problem in
the sense that it only considers departure of containers from the yard-bay. The CRP has

the following assumptions introduced by Kim and Hong (2006):

Assumption (Al): The yard-bay is served by a single yard crane which can handle one
container at a time

Assumption (A2): The retrieval sequence of containers are known a priori

Assumption (A3): Relocations can only occur to take out a retrieval container from the
yard-bay.

Assumption (A4): Relocations can only be made among the columns of the yard-bay

Assumption (A5): Containers have the same type in the yard-bay.

3.2 Container Relocation Problem Formulations

Our formulations, which satisfy assumptions A1-Ab5, are based on the one developed by

Wan et al. (2009) and. We use the original formulation by Wan et al. (2009) and named
itas WLT-I.



3.2.1 WLT-II Formulation

The notation employed for the CRP formulations is as follows. Let S be the number of
time stages where S containers are retrieved with an order of time stages s = 1,..., S. Here,
stage s also refers to the retrieval rank of container s from the yard bay. ¢ presents the
number of columns for ¢ = 1,...,C and p for the number of rows forp=1,..., Pin a yard-
bay. To elaborate better, an example of the CRP is illustrated with figure 3.1 The yard-
bay consists of C = 3 columns and P = 3 rows and contains S = 6 containers at the initial
stage. Each container is numbered according to the order of their retrieval from the yard-
bay. In the first stage (i.e., s = 1), the retrieval container 1 should be taken out from the
yard-bay. In the second stage (i.e., s = 2), the retrieval container 2 should be removed

from the yard-bay, and so on.

The container number of a retrieval container (e.g., i = 1) is equal to the stage number
(e.g., s = 1). To satisfy this, two reshuffling containers 3 and 6, which block container 1,
needs to relocate. These are indicated above the initial stage of the yard-bay. In the second
stage (s =2), the retrieval container 2 departs from the yard-bay. Two reshuffling
containers 6 and 5 are placed to other columns. As the remaining yard-bay configuration
does not have any blocking container, no relocation is required until the retrieval of
container 6 at stage s = 6. Let S(i) stands for the smallest ranked container to be retrieved
under a container i including container i in the initial yard-bay configuration. Then, for
containers 6, 3 and 1 in the first column S(i) values are S(6) = 1, S(3) = 1 and S(1) = 1,

respectively.



Initial stage 1% Stage ¥ Stage
gmi gm?

Figure 3.1: lllustrative example for the CRP

Binary variables x;., are set to 1 if and only if container i is located in row p of column
c at stage s and zero otherwise. Binary variables z,; are equal to 1 if and only if at stage
s container i is situated in a different column than the retrieval container s. yg; denotes
the binary variables taking a value of 1 if and only if container i is relocated at stage s.
wg;; states the binary variables having a value of 1 if and only if container i and container
J are relocated, and container j is at a higher position than container i at stage s. Then,

our CRP formulation called as WLT-II is as follows.



WLT-II:

Zyir-11 = Z Z Vsi

s=1 i=s+1

S.t.

c p=1 c=1 p
p c P
Zsi = Z Zcxsicp 2 CXsscp
c=1 p=1 c=1 p=1

(1)

1<s<i<S(2)

1<s<i<S(3)

1<s<i<S(4)

1<s<i<S(5)

1<s<i<5(6)

1<s<i<S(7)

S
szicpﬁl 1<s<S51<c<(C1<p<P(8)
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S S

szicpszxsic,p—l 1SSSS,1SCSC,1SpSP(9)
p P

Zx5+1.iCpS2_ySi_zxsscp 1<s<i<§1<c<C(10)
p=1 p=1

Cc P (o P
2 —Vsi = Vsj — Wsu Z prsjcp Z Z PXsicp

Cc P Cc P
Ysi +Ysj + Wsij < 2 szS]Cp z prsicp /P

c=1 p=1 c=1 p=1
1<s<i<S1<s<j<Si+j(12)
Weij < Vsi 1<s<i<S1<s<j<Si#j(13)
Weif < Vs 1<s<i<S1<s<j<S,i#j(14)

P
zp (xs+1,icp _xs+1,jcp)
p=1
P
=—P (1 - Wsij) + (1 - ysi) + (1 - ysj) +{1- z xs+1,icp
p=1
1<s<i<S§51<s<j<Si+j(15
Xs+1,icp — Xsicp = —Vsi 1<s<i<$§51<c<(C1<p<P(l6)

Xsicp — Xs+1,icp = —Vsi 1<s<i<$5,1<c<C1<p<sP((17)
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X1icp = Xicp 1<i<S51<c<C1<p<P(18)
Xsicp = Xicp 2<s5<S8(i),1<i<S51<c<C1<p<P(19)
Ysi»Zsi € {0,1} 1<s<i<5(20)
wg;j € {0,1} 1<s<i<S§1<s<j<S,i+j21)
xg; € {0,1} 1<s5<S51<c<C(C1<p<P(22)

The objective function (1) minimizes of the total number of the relocations performed
until the last container leaves the yard-bay. Constraints (2) and (3) determine the value
of binary variables z;;. Constraint (2) enforces z; to be equal to 1 if containers s and i
are in different columns at stage s (i.e., in the retrieval stage of container s). For the case,
namely, when containers s and i are in the same column at stage s, z,; is set to 0.
Constraints (4) and (5) impose that a container i is relocated at stage s, i.e., yg;=1, when
the retrieval container s and container i are in the same column and container i stands at
a higher position than container s which leaves the yard-bay earlier than container i, i.e.,
s <i. Constraint (6) makes sure that y;;= 0 when retrieval container s is situated above
container i at stage s. Note that, in that case, constraints (4) and (5) become redundant.
Constraint (7) states that container i occupies exactly one slot at stage sfor1 <s <i <
S. Constraint (8) implies that a slot of the yard-bay can contain at most one container
among the containers remaining in the yard-bay at each stage s. Constraint (9) ensures
that given a column c to locate a container in row p there a must be a container underneath,
that is in row p — 1. At the retrieval of container s from its column c, if there exists
another container i in the same column that has to be relocated, then constraint (10)
guarantees that container i is not placed in column c again. Constraints (11) and (12) are
used to define the value of binary variable w;;. Constraint (11) states that wy;; takes a
value of 1 when containers i and j are relocated at stage s and container i is at a lower slot
than container j. When container j stays at a lower slot than container i constraint (12)

implies wy;; = 0. Constraints (13) and (14) give the dependency of wg;; on relocation
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variables y;; and yg; of containers i and j. ws;; = 0 when either container i or j is not
relocated at stage s and constraints (11) and (12) become redundant. Assuming two
containers i and j are relocated at stage s then new locations of containers i and j should
be decided in the reverse order prior to their locations before relocations. For example,
when they are located in the same column both before and after their relocations, the
container at a higher row before the relocation should be placed below the lower row
container after relocations. Constraint (15) achieves this property. When a container i is
not relocated at stage s constraints (16) and (17) impose that container i maintains the

same slot at the next stage s + 1.

Constraint (18) introduces the initial locations of containers in the yard-bay. Notice that
a container i preserves its position until stage s = i as long as it does not block another
container which should be retrieved before stage s = i. Constraint (19) aims to satisfy this
property. Constraints (20), (21) and (22) state binary restrictions. Our enhancements on
the WLT-I formulation can be summarized as follows. First, in the original WLT-I
formulation, there are two extra binary decision variables to keep record of the position
of a container i with respect to container s such that s < i. One of the binary variables
states that container i is on the left side of the retrieval container s at stage s. The other
binary variable checks whether container i is located on the right side of the retrieval
container s at stage s or not. Notice that, x;.,, contains the slot, i.e., the column and row,
information for container i at stage s. Therefore, we replaced the constraints originally
labelled as (7)-(11) in the WLT-I formulation with our new constraints (3) and (4). To
achieve this, the definition of binary variables z; is reversed as explained in our WLT-1I
formulation. Shortly, binary variable zg; in the WLT-I formulation is substituted with -
Zg; inour WLT-II formulation and its interpretation is modified accordingly. Constraints
(5) and (6) are also changed in the WLT-II formulation with respect to our modification
on zy. The remaining parts of the WLT-II formulation are the same as in the WLT-I

formulation.
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3.2.2 WLT-I11 Formulation

The WLT-II formulation is tightened by adding the following lower and upper bounding

constraints

s-1 S
Z Ysi < Zyp (23)
s=1 i=s+1
s-1 S
Zs<) ) v (24
s=1 i=s+1

where Z;  and Z; are lower and upper bounds on the optimal objective function value
Zwirnn- Vo calculate lower bound Z;5, we benefit from the following definition.
Container 1 is named as a “singly-blocking” container when it is located above of an
earlier departing container within the same column. Clearly, the total number of singly-
blocking containers constitutes a lower bound on Zy,;r;; . Besides, let i be a singly-
blocking container that will be relocated at stage s from its column, say column c, in the
initial yard-bay configuration. When there exists a container j which will be retrieved
between time stages sand i, e.g., s <] </, for all remaining columnsc’'=1,..., Cand ¢'#
¢, then container i will continue to be a blocking container. This implies that container |
will increase the number of relocations by one for a second time. Let us define such a
container as “doubly-blocking™ container. Note that, doubly-blocking containers consist
of singly-blocking containers. Now, summing the total number of doubly-blocking
containers with total number of singly-blocking containers in the initial yard-bay
configuration yields Z, 5, that is used in constraints (24). The calculation of the Z, 5, is
illustrated with Figure 3.2. for an initial yard-bay of 3 columns and 4 rows. Containers 2,
6 and 7 are singly-blocking containers at the initial yard-bay configuration. At the
retrieval of container 1, container 7 is relocated to column ¢ = 2 or ¢ = 3. However,
container 7 will continue to be a blocking container in both columns since it leaves the

yard-bay last. Therefore, container 7 is a doubly-blocking container. Consequently, the
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sum of singly-blocking containers and doubly-blocking containers yields the lower bound
aSZLB, =3+1=4.

Figure 3.2: lllustrative example for Z, 5 calculation

A heuristic procedure initially proposed by Murty et al for determine upper bound Z 5.
(2005) based on the Reshuffling Index (RI) of the columns of the yard-bay. We call their
heuristic as the R1 heuristic in the sequel. RI1 of a column is show us the number of singly-
blocking containers at that column. Next, RI heuristic selects the column with the lowest
RI to relocate a blocking container. In case of a tie, the column with largest number of
containers (i.e., the highest column) is chosen among the columns with lowest RI. When
a further tie arises, then the column is arbitrarily selected from qualifying columns. The
RI heuristic is very efficient and we employ the best outcome of 100 runs as the Z,z value
in constraint (23). Lastly, to make a fair comparison with WLT-I and WLT-II
formulations, we separately introduce our second CRP formulation named as WLT-III.
We present the WLT-11I formulation as follows.
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WLT-III:
s-1 S

Zyrr-111 = z z Vsi (25)
s=1 i=s+1

s.t. (2)-(24) 26)

3.3 A New Heuristic Approach for Container Relocation Problem

We designee Path Index (PI) heuristic by inspiring from possible shortest paths for a
container before its retrieval. Container path stands for a stage s and all paths resets at the
end of stage s when target container taken out. In this path, each path step is indicated by
a container retrieval of the earliest container in column c. For example in Figure 3.3 if
container i=22 is reshuffling container we start our path by container i=1. Next, if there
is a possibility of container i=22 makes a movement to column c=1; path of container
I=22 is updated as path;—,, .=1=1, 13. If we continue reshuffle container i=22 and
relocate it above container i=14 then path;—,, .=1= (1, 13, 14). Finally we will move
our reshuffling container to empty or above a earliest container which has lower priority
than container i=22. That means our path become path;—,, .=1= (1, 13, 14, 0). At the

end of the movements we made three relocation for path;—,, .=1=(1, 13, 14, 0).

Path index is calculated one by one for each blocking container.

1212216 | 0| O
19 | 21 | 24
20 10| 18| 15| 23
9 |17 2 | 5 |16
13|14 |1 (11|14 3

elleoliole)
~
00

Figure 3.3 Initial yard-bay configuration for PI
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Calculation of path index is given below in Algorithm 3.1

For each blocking container i do the steps which presented below.
Step O: (Initialization) Set pathindex;.s=0 for i=1,...,S, c=1,...,C and s=1,...,S

Step 1: Set pathindex;.s=M for blocking container i which is above target container s at

column c. For the rest of the columns update path;.s,-o = pathicsx=o , target

container.

Step 2: Define the earliest leaving container i* in these columns and add the i* in to the
path for each column update path;csy+1 = pathicsk=o, I*. If columns are empty or

have lower priority than i, update path;cs x+1 = pathcs x=o, 0.

Step 4: If there is any path;.s, which has 0 as last element then stop and update,
pathindex;.=the number of elements in path;.; for all paths which has 0 as last element
choose that column c for relocate container i or there is multiple paths fulfills this
requirement, randomly select one of the paths for relocate the blocking container.

Relocate the blocking container then stop the algorithm. Otherwise continue to Step 5.

Step 5: If the i* in a path not equal O then write a yard-bay configuration cpﬁath"“k (Figure
3.4) by removing earliest containers in columns which has lower priority than i* the in
path and you should also remove containers above the earliest removed container in

columns.

o|lo|Oo|Oo

13 14

Figure 3.4 Configuration image after removal for PI
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Step 6: Create new path;.s, and add the earliest leaving containers i* to the path for all
available columns. If these columns are not empty or don’t have lower priority than i, add

the i* to the path for each column path;cskmew) = Pathicsk(oiay, 1 and go to Step 4.

Otherwise update path;cskmew) = Pathicsk(oiay, 0- GO to Step 4.

Yard-bay configuration after taken out of target container s=1 is given in Figure 3.5
Blocking containers are 22,8,10 and 17 respectively for stage s=1. Path indexes of each
column for container i=22, calculated as 2,M,M,M,2,2, respectively. Blocking container
is relocated to the column which has the smallest Path index. In case of a further tie, the

container is randomly assigned to a column.

0|12 0 | 6 |22 |17
0|7 |0 ([19]21]24
10(20| 0 | 18 | 15| 23
819|102 |5]16
13| 4 |0 |11 |14 3

Figure 3.5: Configuration after retrieval of target container for Pl



4. DYNAMIC CONTAINER RELOCATION PROBLEM

4.1 Dynamic Container Relocation Problem Definition

The DCRP is a dynamic problem in a sense that containers both depart and arrive at the
yard-bay. The difficulty of solving the DCRP can be seen better when a new container
arrives at the yard-bay. Observe that, the DCRP reduces to solving a CRP as long as
containers depart from the yard-bay until the next container arrival. However, an
incoming container is likely to change the retrieval sequence of the existing containers
within the yard-bay. Therefore, incoming containers change plans repetitively at each
arrival. Now, not only the relocation of the containers but also finding the best location
for incoming containers gains importance in order to increase the efficiency of yard cranes

in yard-bay planning

In this study, we employ the following assumptions used by Akyiiz and Lee (2014).
Assumptions A1,A3,A4 and A5 are the same for both problems CRP and DCRP. The
assumption A2 of the CRP is replaced with the following assumption for the DCRP:

e Assumption (A2’): The arrival and retrieval sequences of containers are known a

priori.

4.2 Dynamic Container Relocation Problem Formulation

In the CRP formulations (WLT-I, WLT-II, WLT-III) each stage s stands for the retrieval
of container s. We preserve a similar conditions for the DCRP formulation and match the
arrival sequence of containers with the retrieval of container s. It is assumed that arrival
containers located right after the retrieval of container s. Notice that, this does not cause

any change on generality for the problem. As the arrival and departure order of containers
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are known, arrival pattern of containers can be adjusted for any instance accordingly. Let
parameter K(i) denote a retrieval container s after which container i arrives at the yard-
bay and i starts to occupy a slot at stage s+1. Notice that K(i) also states the latest time
stage before container i joins the yard-bay. There can be multiple containers arriving at
the yard-bay which have the same K(i) value. They are distinguished with respect to their
arrival order which is represented as O(i). For example, if container i arrives before
container j after retrieval container s at stage s, then K(i) = K(j) = s and O(i) < O(j). Ug;
is a parameter that is equal to 1 if and only if container i arrives immediately after the
retrieval of container s, i.e., K(i) =s. A DCRP example is given in figure 4.1. The yard-
bay consist of C = 3 columns and P = 3 rows containing S = 5 containers at the initial
stage. Each container is numbered in the order of their retrieval from the yard-bay. In
the first stage (s = 1), the retrieval container 1 should be taken out from the yard-bay.
Reshuffling container 3 is placed to column ¢ = 3 to enable access to container 1. Then,
container 1 is retrieved from the yard-bay. Next, two containers 7 and 6 consecutively
arrive to the yard-bay right after the retrieval of container 1 at stage s = 1. Here, the arrival
order of containers 7 and 6 are O(7) = 1 < O(6) = 2 respectively. The remaining stages
are similar to the CRP example as there are no new container arrival. Binary variables
ag;; are equal to 1 if and only if there exist a blocking container i above the retrieval
container s and an arrival container j, i.e., y;; = 1 and K(j) = s, respectively. Then, the

DCRP formulation is stated as follows.



‘ Arriving Container ‘ Arriving Container
7 6
5 - 6 3
2 4 7 4
Initial stage 1% Stage
5=
Figure 4.1 DCRP example
WLT-DCRP:
S-1 S
Zpcrp = Z Ysi
s=1 i=s+1

s.t.

20

5

6 3

7 4
2" Stage

s=2

(27)

1<s<i<S$K(@)<s(28)
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1<s<i<SK(@i)<s(29)

1<s<i<§K(@)<s(30)
1<s<i<§K(@)<s(31)

1<s<i<$§K(@{)<s(32)
1<s<i<SK(@)<s(33)
1<s<$51<c<C(C1<p<P(34)

1<s<S51<c<C1<p<P(35)

P
Z PXsicp

p:
i<51<s<j<Si+#]jK({) <s(37)



Cc P Cc P
Vsi +)’51 +WSL] = Z prS]Cp Z z PXsicp

c=1 p=1
1<s<i<S§1<s<j<S,i#jK({) <s (38)

Wsij < Vi 1<s<i<§1<s<j<Si+jK0<s(39)
Wsiijsj 1SS<1SS,1SS<]SS,li],K(l)<S(40)

P
z p (xs+1,icp . xs+1,jcp)
p=1

P
= —P (1 - Wsij) + (1 - ysi) + (1 - ysj) +{1- z Xs+1,icp
p=1

1<s<i<S1<s<j<Si#jK({ <s (41)

Xsi1icp — Xsicp = —Vsi 1<s<i<S51<c<C1<p<PK(@)<s(42)
Xsicp — Xs+1,icp = —Vsi 1<s<i<$§51<c<C(C1<p<PK(@)<s (43
X1icp = Xicp 1<i<S$1<c<C1<p<PK(@{)<s (44)
Xsicp = Xicp 2<s<S(),1<i<S51<c<C1<p<PK()<s (45)
Ysi» Zsi € {0,1} 1<s<i<S$K(i)<s (46)
wgij € {0,1} 1<s<i<S1<s<j<Si#j(47)
xg; € {0,1} 1<s<S51<c<C1<p<P (48)

c P
Zmewp 1<s<i<S$(49)

c=1p=1
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—1+y,+ Uy < agj 1<s<i<§1<s<j<S§,i+j(50)
agij < ysi 1<s<i<S§1<s<j<Si=#j(5)
ag;j < Uy 1<s<i<S$1<s<j<S,i#j(52)

P P
Z p xs+1,jcp— Z p xs+1,icp
p=1 p=1

P
> —P(1-ag;) —P(1—yg) —P(1—Ug) — P <1 - Z xs+1,jcp>
p=1

1<s<i<§1<s<j<S,i+#j,s=K(), 1<c<C(53)

S S

Z Z Xsicp = 0 s < k(i) (54)

i=s i=s

P P P
Z p xs+1,jcp— z pxs+1,icp = _P(1 - Usi) - P(l - Usj) —P (1 - z p xs+1,jcp>

p=1 p=1 p=1

1<s<i<8§1<s<j<S00)<0(),i*js=K(>0),s=K(@)1<c<C(55)

Constraints (34), (35) and (46)-(48) are the same as the CRP formulations given.
Constraints (28)-(33) and (36)-(45) are adapted from CRP formulations for the DCRP.
However, these constraint sets are restricted for each arriving container, say container i
that is handled after time stage s, i.e., K(i) < s. Constraint (49) ensures that when a
container i arrives at the yard-bay after retrieval of container s at stage s, i.e., U;; = 1, then
arriving container i occupies a slot at the next stage s+1. Constraints (50), (51) and (52)
define the value of the binary variables ay;; . Constraint (50) enforces a,;; = 1 when there
exist a container i that will be relocated, i.e., y,; = 1, to discharge the retrieval container
s and a container j arrives immediately after retrieval of container s, i.e., Us; = 1.
Otherwise constraint (50) is redundant. Constraint (51) sets the value of ag;; to 0 when

there is no blocking container i at the retrieval of container s. Similarly, constraint (52)
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forces a,;; to be O when there is no arriving container j with Ug; = 1 at the retrieval of
container s. Constraint (53) arranges handling order between arrival containers and
reshuffling containers in the yard-bay. When ag;= 1 constraint (53) implies that arrival
container j is taken to the yard-bay after relocation of reshuffling container i and retrieval
of container s at stage s. Therefore, arrival container j is placed at a higher slot than the

relocated container i when they are both located in the same column c at next stage s + 1.

When blocking container i and arrival container j are not located in the same column c,
then this constraint becomes redundant. Constraint (54) ensure that arriving containers
do not occupy a slot in yard-bay before their arrival. Constraint (55) is the DCRP
equivalent of constraints (15) in the CRP formulations to consider container arrivals.
Constraint (55) maintains arriving containers are placed in the yard-bay in their arrival
order.

There are at most S(S -1) + S(S +1)CP/2+2S(S -1)(S -2)/3 binary variables in the DCRP
formulation. However, the total number of binary variables are less than this bound in
practice. The number of binary variables significantly reduces by taking into account
only the ones satisfying K(i) < s. Unfortunately, solving the DCRP formulation to
optimality can be demanding. Therefore, heuristic methods are more reasonable to obtain

solutions for the DCRP instead of optimum solution.

4.3 Heuristic Approaches for Dynamic Container Relocation Problem

4.3.1 Reshuffling Index Heuristic

Reshuffling index (RI) heuristic is initially used by Murty et al. (2005) and adapted for
the DCRP by Wan et al. (2009). The RI heuristic is an efficient upper bounding method
which is employed in our TS heuristic approaches. RI defines the number of relocations
that should be made to clear blocking containers above the earliest outgoing container in
a column. For each column the RI is calculated and incoming (or relocating) containers

are located on top of the column with the lowest RI. Clearly, Rl is calculated among the
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columns which are not full. In case of a tie, the container is placed on top of the highest

column. In case of a further tie, the container is randomly assigned to a column.

4.3.2 Tabu Search Algorithms

Broadly speaking, TS algorithms move from one solution to another by changing values
of one or more decision variables depending on the structure of the problem considered
(Gluver and Laguna,1997). Unfortunately, changing the value of a decision variable,
which represents locations of containers within a yard-bay at a time-step, affects all
subsequent container movements to be made in the DCRP. Hence and efficient algorithm
is required to restore the feasibility. To this end we employ the RI heuristic which is
tailored for the tabu search. We present a modification to the RI heuristic which is used
for that purpose in the following. Next, we give details of the two suggested TS based
algorithms, namely TS algorithm-1 (TSA1) and TS algorithm-Il (TSA2) for the DCRP.
In the tabu search based heuristic methods section, we call an arriving (departing)

container at the yard-bay as incoming (outgoing) container.

To avoid the randomness of the RI heuristic, the latter tie breaking rule is modified to
assigning the container into the leftmost column. The slot assignment of containers in
the yard-bay is called as yard-bay configuration. A feasible solution of the DCRP is
obtained by keeping track of yard-bay configurations at each time-step. Initially, the RI
heuristic is run to obtain a feasible solution. A Tabu List (TL) records the status of
columns of the yard-bay for each container. Once a container, denoted by n, is assigned
to a column4 c, in a feasible solution, then column c is declared as tabu for container n
for at least b iterations. Here, b stands for the number of iterations of the tabu duration
(tenure). Then, container n can not be positioned at the tabu column c for at least b
iterations. The TS heuristic is run for a total number of K iterations. A tabu iteration
consists of finding a feasible solution by following the RI heuristic steps described
considering the TL which provides diversification of solutions, and hence, the generation
of different solutions at each iteration of the TS algorithm. We use two different strategies
to declare a column c tabu for a container n. In the first strategy, a percentage of the

incoming containers are randomly selected. In the second strategy, the container that is
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relocated after w relocations is selected. In the following we present details of these two

TS heuristic approaches.

4.3.2.1 Tabu Search Algorithm-I

Now, we present the notation used and a generic algorithm for it. Let TList, . and ~
denote the TL value of container n for column ¢ and the set of available columns on which
container n can be pladced, respectively. The number of containers that exist in a column
c is given by N.. The total number of time-steps t is shown with T. A formal outline of
the TSAL is given in Algorithm 1.

4.3.2.2 Tabu search algorithm-I1

On the other hand, TSA2 employs the number of relocations made since the last tabu
declaration. Atevery w relocations the last relocated container is selected for tabu. Thus,
the random parameter a is replaced with a constant parameter w in TSA2. TSAZ2 differs
from the TSAL in two aspects. The first one is the selection of tabu containers. The
TSAL chooses incoming containers to declare a column as tabu while the TSA2 considers
the relocating containers for that purpose. The second one is the parameter used for tabu
declarations. The TSAL uses the parameter a to randomly decide if a container is going
to be marked as tabu at Step 4 of the Algorithm 1. All other steps of TSA2 are the same
as the ones that of the TSA1. TSA-I pseudo code is presented below.

Step 0. (Initialization): Set TList, . = 0 forn=1,...,Nandc=1,..., Cand ~ 3= for
n=1,..., N. Set tabu iteration number k=1 and time-step t=1.

Step 1.For time-step t if container n is an arriving container then go to Step 2. Otherwise
go to Step 6.

Step 2. (Incoming container): Check TList, . forc=1,....Cand ~ 3={c: TList,. =0,
N, < H}.

Step 3. If the cardinality of the set ~ &, ~ ¢ > 1 then use RI heuristic steps to determine

the location of container n for columnsce ~ . If | ~ % | =1, then place container n to

column ce ~ §;. Otherwise, select the column with lowest TList,, . among the columns
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satisfying N. < H to locate container n. Set c¢* equals the selected column to place
container n.

Step 4. Generate a random number re[0,100]. If » < a then TList,.- = + 1.

Step 5.1f t < T,sett =t + 1 and go to Step 2. Otherwise, go to Step 7.

Step 6. (Outgoing container): If there is no container above the outgoing container n then
remove the container n from the yard-bay configuration and go to Step 5. Otherwise for
each container n’ above the container n at column c* repeat the following starting from
the highest slot and go to Step 5. Check the TList,. forallc=1,...,C,cgc*andset ~§ =
{c:TList,. = 0,N, < H,cec"}. If the cardinality of the set %, | ~2,[>1 then use RI
heuristic steps to determine the location of container n’ for columnsce ~ %. Otherwise,
select the column with lowest TList, . among the columns satisfying N, < H to locate
container n'.

Step 7. If k<K then set k =k+1 a feasible solution is found and update the best upper
bound accordingly. Set TList, .=TList,. — 1,t = 1 and go to Step 1. Otherwise, stop

and report the best upper bound.

4.3.3 Min-Max Heuristics for the DCRP

The DCRP formulation becomes intractable for large instances. Heuristic procedures are
useful to get approximate solutions within reasonable computational times. In what
follows, we suggest an efficient heuristic procedure named as Min-Max DCRP (MMD)
heuristic. Next, an extension of the MMD heuristic that is originally proposed by
Jovanovic and Vo (2014) for the CRP is described. The Min-Max (MM) algorithm is
initially proposed by Caserta et al. (2012) as an efficient heuristic for the CRP. Unliiyurt
and Aydin (2012) present a similar solution procedure for the CRP with different
objective functions. Next, an improved MM algorithm is proposed by Jovanovic and
Vo (2014) for the CRP. The MM algorithm tries to avoid from creating new relocations
when a reshuffling container will be relocated to retrieve a target container from the yard-
bay. To obtain a solution, when there exist a blocking container over a target container,
it is relocate in a column depending on container priorities. The priority of a container is
defined with the inverse order of retrieval of containers. That is to say, earlier departing

containers have higher priority than the containers leaving the yard-bay later. Next, the
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priority of a column is determined as the highest priority container in that column. The
priority of an empty column is assumed to be of lowest priority. In case, there are multiple
columns with a lower priority than the blocking container, then the column having the
highest priority is selected among them to locate the blocking container. When there is
no column with a lower priority than the blocking container, it is relocated to the column
with the lowest priority. This implies that, the blocking container will continue to be a
blocking container after its relocation. Hence, by choosing the column with the lowest
priority the relocation of the blocking container has been retarded as much as possible
until the corresponding highest priority container is retrieved from that column. We
benefit from the ideas behind the MM algorithm and suggest, the so called, MMD
heuristic for the DCRP. In addition to the retrieval of containers, the DCRP also considers
arrival of containers. Hence, we adapt the MM algorithm so that it can also handle
arriving containers for the DCRP. The definition of priority of a container stays the same.
However, to obtain priority values of containers, their retrieval times should be sorted
first since there are arriving containers to the yard-bay. The MMD heuristic works the
same as the MM algorithm for the blocking containers as described. Blocking containers
has to be reshuffled to one of other columns than its current column. Unlike the blocking
containers, an incoming container can be placed in any column without such a restriction.
Therefore, priority calculations is performed for all columns. Figure 4.2 gives an example
for the MMD heuristic. Now, we introduce some additional notation used in MMD
heuristic. Let C° be the yard-bay configuration at time stage s where container s is
retrieved from the yard-bay. The priority of a container i is represented with p(i) and the
priority of a column c is show as p(c). P? stands for the columns that have a lower
priority than a selected blocking or arriving container. We present a formal outline of the
MMD heuristic in Algorithm 1. Jovanovic and Vof3 (2014) suggest an improvement on
the MM algorithm that works as follows. Assume that a blocking container is relocated
and it will continue to be a blocking container. Now, when the selected column using the
MM algorithm for relocation becomes full, then that column misses the chance to host a
higher priority (earlier departing) container on its top. The suggested changes avoids
putting a blocking container on the highest row P in such a case. We modified this
improvement on the MMD heuristic and call the resulting method as MMD-JV heuristic
in the sequel.
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(Initialization) Set time stage s = 0 and C* as the initial configuration of the yard-
bay. Sort containers with respect to their retrieval times in ascending order to
obtain container priorities p(i). Set upper bound value Z;z = 0.
Sets=s+land C5= CS"L If container s directly accessible from top of a
column, remove s from C* and go to Step 5.

If container s is not directly accessible, let c® be the column of container s, starting
from top to bottom of column c*® for each blocking container | above container s.
i. Set Zyp = Zyg + 1.

ii. Determine column priorities show as p*(c) for c=1,..., Cand c # ¢,

iii. Constructset P° £ {c: p*(c) <p(i)and c # ¢’ }.

iv. If PS # & then select highest priority column ¢”as ¢” = argmax, p. {p*(c) }
v. If P® = & then select lowest priority column c*as ¢ = argmin, p, {p*(c) }
vi. Locate container i in column ¢”. Update C* accordingly.

If there is no arriving container at time stage s go to Step 5. Otherwise in the order
of their arrival, for each arriving container | at time stage s.

i. Determine column priorities show as p*(c) for c=1,..., C.

ii. Construct set P*# { ¢ : p*(c) <p(i) }.

iii. If P* # & then select highest priority column ¢”as ¢ = argmax, p. {p*(c) }
iv. If P* = & then select lowest priority column ¢ as ¢ = argmin, p, {p*(c) }
v. Locate container i in column ¢”. Update C* accordingly.

If s = Sstop and report Z; 5. Otherwise go to Step 2.
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| Arriving Container Arriving Container

6
7 ) 7 . ) 7
4 5 3 4 5 3 4 5
Initial stage 1*'Stage 2" Stage
s=1 s=2

Figure 4.2: Illustrative examples for the MMD heuristic



5. COMPUTATIONAL EXPERIMENTS

In this section, we present our computational experiments for the CRP and DCRP,
respectively. The experiments are performed on a computer with a Intel(R) Core(TM)
i7-4790 CPU 3.60 GHz and 16 GB RAM operating within Microsoft Windows 10 Pro
64-bit environment. The formulations are solved using Gams 24.1.3 with Gurobi solver

and codes are written in C++.

5.1 Container Relocation Problem

In this section, we present our computational experiments for the. Then, we show the
performance of the CRP formulation on randomly generated test instances. The CRP is
tested on a standard test bed given by Caserta et al. (2011) that is employed as benchmark
in most (if not all) of the studies offering a CRP formulation. It consists of the first 5
instances randomly generated for 10 different yard-bay size. These test instances are
generated so that initially the yard-bay consisting of C columns and H’ tiers where the
slots are fully loaded by C*H’ containers. Then, the maximum height of the
corresponding yard-bay is set as P = H’ + 2 which means the yard-bay contains 2 empty
tiers for each instance. Table 5.1 gives a comparison of the CRP formulations. The first
and second columns stand for the number of fully loaded rows H’ and the number of
columns C-H' is chosen as 3 and 4 rows, thus, the maximum height P of the yard-bay
takes values of 5 and 6 respectively. Total number of columns C of the yard-bay is
selected from the set {3, 4, 5, 6, 7, 8}. The third column gives the instance number as
shown in the work by Caserta et al. (2012). For each formulation considered, the rows
under UB and CPU(s) indicate the total number of relocations and the CPU times in
seconds, respectively. BRP-II* states the outcome of the formulation suggested by
Exposito-1zquierdo et al. (2015). BRP-II formulation is proposed by Zehendner et al.
(2015). The values in columns from 4 to 7 are directly taken from the reference works
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mentioned. The columns from 8 to 13 stands for the performance of WLT-1, WLT-II and
WLT-I1II formulations. Note that, WLT-I is the original CRP formulation suggested by
Wan et al. (2009). Here, we reproduce their results and test on the standard CRP
instances. The average value of 5 test instances belonging to different yard-bay
configurations is denoted with bold characters underneath them. For the case that a
formulation does not find a solution, the average values are not reported and indicated
with N/A. Note that, WLT formulations yields an outcome on all test instances, and hence,
there is no N/A value for them. It is observed that BRP-11*, BRP-Il, WLT-I, WLT-II and
WLT-III formulations require an overall average of 1681.73, 2498.78, 292.73, 118.36
and 149.16 seconds of running time, respectively. These values are calculated with the
instances for which the corresponding formulation yields an outcome. For the WLT-I,
WLT-I1I and WLT-I formulations a CPU time limit of 7200 seconds is imposed. Cells
marked with “-“ indicate that no outcome is produced for that instance by the associated
formulation. The cells indicated with a “*” imply that the CPU time of 18000 seconds
is exceeded by the BRP-II formulation and report the best upper bound found. Outcomes
of the test instances with H' = 4 and C = 7 are not reported for the BRP-11* and BRP-1I
formulations in the reference works mentioned. As a result, they are shown with empty
cells at the bottom of Table 5.1. The WLT-II formulation outperforms other formulations
in an overall average of CPU times. A pairwise comparison is performed among the WLT
formulations to give a verdict. In Table 5.2 each cell represents the total number of
instances for which the formulation stated in the row is superior then the formulation
given in the column of the corresponding cell. For example, the number in the first row
and third column of Table 5.1 states that WLT-I formulation yields the optimum value in
shorter CPU times than the WLT-II formulation on 9 instances. The last column shows
the total number of such instances in each row. The WLT-II formulation produce better
results than the WLT-1 and WLT-I111 formulations on 37 and 18 instances, respectively.
On the other hand, for the WLT-I1I formulation, these numbers are 36 and 31 instances
over the WLT-1 and WLT-II formulations. To sum up, the suggested WLT-Il and WLT-
Il formulations generally yields better outcomes than the WLT-1 formulation. Besides,
the addition of constraints (23)-(24) in the WLT-III formulation mostly enhances the
performance of the WLT-II formulation. Hence, we can say that the WLT-11l formulation

outperforms others in the majority of the test instances.
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Table 5.1: A comparison of the performance of the formulations for the CRP on standard

test instances.

Instance Info. BRP-I1*a BRP-IIb WLT-Ic WLT-II WLT-11I
H C No. | UB CPUs) | UB CPUGs) | UB  CPUls) | UB  CPU(s) | UB CPU(s)
1 6 1.18 6 3.85 6 0.06 6 0.06 6 0.08
2 5 1.39 5 375 5 0.05 5 0.05 5 0.03
3 (3] 3 2 1 2 0.92 2 0.02 2 0.02 2 0.02
4 4 1.09 4 1.83 4 0.06 4 0.05 4 0.05
5 1 0.68 1 15 1 0.03 1 0.03 1 0.03
Average 36 1.07 36 2.37 36 0.04 36 004 36 0.04
1 5 476 5 561 5 013 5 0.13 5 011
2 3 18.39 3 5.71 3 0.19 3 0.16 3 0.09
3 (4] 3 7 11.71 7 39.05 7 0.19 7 0.2 7 0.17
4 5 16.06 5 18.01 5 02 5 0.19 5 0.17
5 6 18.04 6 29.4 6 0.19 6 0.17 6 0.16
Average 5.2 13.79 5.2 19.56 5.2 0.18 52 017 5.2 0.14
1 6 83.09 6 332341 | 6 059 6 033 6 0.34
2 7 75.95 7 311528 | 7 0.48 7 0.39 7 0.27
3 (5] 3 8 100.71 8 244787 | 8 0.44 8 0.47 8 0.49
4 6 95.31 6 559.52 6 055 6 055 6 0.59
5 9 65.32 9 141847 | 9 0.92 9 0.77 9 0.42
Average 72 84.08 72 217201 | 72 06 72 05 72 0.42
1 11 12411 11 1085851 | 11 10073 | 11 6158 | 11 8.06
2 7 113.29 7 3705 7 1.02 7 1.06 7 0.88
3le| 3 | 11 89.06 15 * 11 1545 | 11 5.74 11 13.05
4 7 93.12 7 * 7 152 7 1.33 7 1.25
5 4 96.5 4 73 4 0.48 4 041 4 0.38
Average 8 10322 | N/A N/A 8 23.84 8 14.02 8 472
1 7 182.14 7 3396.4 7 1.2 7 1.09 7 1.05
2 |10 28429 | 10 105365 | 10 2.39 10 253 10 25
3 (7] 3 9 119.2 - * 9 6.78 9 2.23 9 37
4 8 472.32 8 2560.7 8 2.06 8 2.06 8 1.92
5 |12 27797 12 15273 12 1202 | 12 2.06 12 19.3
Average 92 26718 | N/A N/A 92 489 9.2 2 9.2 5.69
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1 8 84.66 8 11058.7 8 22.66 8 14.39 8 3.3
2 10 14403.33 - * 10 4.36 10 12.22 10 6.75
3 8 3 9 8298.85 - * 9 4.45 9 3.09 9 2.98
4 10 250.33 - * 10 21.05 10 7.42 10 3.09
5 13 6384.65 - * 13 8.72 13 5.08 13 125
Average 10 5884.36 N/A N/A 10 12.25 10 8.44 10 5.73
1 10 71.96 - * 10 0.63 10 0.49 10 0.58
2 10 228.91 10 484 10 0.44 10 0.38 10 0.39
4 4 3 10 71.99 10 1102 10 0.97 10 0.75 10 1.03
4 7 65.25 7 90.77 7 0.42 7 0.36 7 0.34
5 9 89.36 9 5544.12 9 0.55 9 0.5 9 0.49
Average 9.2 105.49 N/A N/A 9.2 0.6 9.2 0.49 9.2 0.57
1 16 3544.86 - * 16 90.47 16 81.23 16 199.77
2 10 326.54 10 2256.4 10 1.73 10 1.56 10 2.7
4 5 3 13 1023.98 - * 13 10.78 13 15.38 13 8.61
4 8 119.86 8 1493.2 8 0.83 8 0.8 8 0.63
5 16 2656.67 17 1213.2 16 821.5 16 286.38 16 1680.09
Average 12.6 1534.38 N/A N/A 12.6 185.06 12.6 77.07 12.6 378.36
1 17 4077.08 - * 17 5814.58 17 1842.52 17 1603.97
2 8 18985 8 177 8 2.84 8 2.03 8 1.84
4 6 3 13 1706.75 - * 13 35.08 13 24.27 13 9.08
4 14 2376.86 - * 14 16.86 14 8.06 14 145.63
5 15 8564.2 - * 15 1160.59 15 21.25 15 39.7
Average 13.4 7141.98 N/A N/A 13.4 1405.99 | 134 379.62 13.4 360.04
1 17 134.55 17 133.84 17 3314.67
2 18 3074.91 18 793.94 18 86.47
4 7 3 13 103.94 13 11.05 13 7.52
4 16 1641.25 16 1049.42 16 240.14
5 16 1514.36 16 1517.84 16 30.72
Average N/A N/A N/A N/A 16 1293.8 16 701.22 16 735.9

a The results of the BRP-I1* formulation are taken from Exposito-lzquierdo et al. (2015)
b The results of the BRP-I1 formulation are taken from Zehendner et al. (2015)
¢ The original CRP formulation proposed by Wan et al. (2009)
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WLT-1 | WLT-II | WLT-1II | Total
WLT-l |- 9 13 22
WLT-II | 37 - 18 55
WLT-III | 36 31 - 67

In this following, we present our results obtained by using P1 heuristic for the CRP. The
CRP is tested on a standard test bed given by Caserta et al. (2011) that is employed as
benchmark in most of the studies offering a CRP formulation. It consists of the first 5
instances randomly generated for 9 different yard-bay size. These test instances are
generated so that initially the yard-bay consisting of C columns and H’ tiers where the
slots are fully loaded by C- H’ containers. Then, the maximum height of the corresponding
yard-bay is set as P = H' + 2 which means the yard-bay contains 2 empty tiers for each
instance. Table 5.3 gives a comparison of the CRP heuristics Rl and PI. The first and
second columns stand for the number of fully loaded rows H’and the number of columns
C. H'is chosen as 3 and 4 rows, thus, the maximum height P of the yard-bay takes values
of 5 and 6 respectively. Total number of columns C of the yard-bay is selected from the
set {3, 4, 5, 6, 7, 8}. The third column gives the instance number as shown in the work
by Caserta et al. 2012). For each heuristic considered, the rows under UB indicate the
total number of relocations, respectively. The columns 4 and 5 show the performance of
Pl and RI, respectively. Here, we reproduce their results and test on the standard CRP

instances.
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1 17 20
2 8 8
4 6 3 13 15
4 15 15
5 15 16

5.2 Dynamic Container Relocation Problem

For the DCRP, we follow a similar strategy with Akyiiz and Lee (2014). The instances
are randomly generated so that the yard crane movements do not get into a deadlock by
trying to move a blocking container above the maximum height P of the yard-bay. That
is, relocations only occur within the yard-bay. It is assumed that initially there are

S’=C (P -1)= 2 containers in the yard-bay. Here, the number of arrival containers are
limited to a maximum of 30 containers considering the capabilities of the suggested
DCRP formulation. In Table 5.4, the first three columns consecutively give the number
of columns C, the number of rows P and the initial number of existing containers S’ of
the yard-bay. The fourth column states the instance number denoted with “No.”. Note
that 5 random instances are created for each instance combination. 5 different number of
arrival containers are chosen from the set 10, 15, 20, 25, 30. In the columns from 5 to 13,
for each number of arrival containers, we present the number of relocations made and the
CPU time in seconds under the rows named “UB” and “CPU(s)”, respectively. Hence,
there are 125 randomly generated test instances in total. The average of 5 test instances
is denoted with bold characters under them. Similar to the WLT formulations for the
CRP, a CPU time limit of 7200 seconds is imposed for the DCRP formulation on the
DCRP instances. The suggested DCRP formulation yields the optimal solution on 109
out of 125 test instances. The values indicated with "¢" are the best solutions reported on
7 test instances when computing time exceeds the CPU time limit. Lastly, our DCRP
formulation can not produce an outcome on 9 out of 125 test instances within 7200
seconds. The DCRP formulation proposed by Akyiiz and Lee (2014) can exactly solve
up to 10 time steps where each time step includes either a container arrival or departure.
However, the test instances solved with our DCRP formulation contains up to handling

of 30 arrivals and 42 retrievals (departure of 12 existing containers and 30 arriving
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containers) that it corresponds to a total of 72 time steps defined by Akyiiz and Lee
(2014). Therefore, our proposed DCRP formulation can solve larger instances then the

former formulation suggested by Akyiiz and Lee (2014).

Table 5.4: The performance of the DCRP formulation on randomly generated test

instances.
Instance Info. 10 15 20 25 30
C P S No uB CPU |(UB CPU uB CPU uB CPU uB CPU
1] 0 013 0 033] 0 155 0 197 O 2.31
2| 0 0.08 0 0.22 0 1.25 0 8.2 0 10.59
6 2 3 3] 0 013| O 028| O 256 O 036| 0 16.67
41 0 0.13 0 0.16 0 1.16 0 3.06 0 11.74
5] 0 013| O 03] 0 263 O 595( 0 1.27
Average 0 012 O 026 0 183 0 3911 O 8.52
1] 0 0.38 0 1.19 0 1.78 0 2169 1 321.8
2| 0 031 O 049| 0 4421 0 528 0 96.73
6 3 6 3] 0 033 0 0.99 1 488.7 0 9.47 2 6060.98
41 0 0.27 0 1.27 0 3.61 1 397.95 1 165.73
5] 0 0.28 0 0.77 0 2.16 0 5.24 0 15.11
Average 0 031 0 0.94( 0.2 100.13| 0.2 87.93| 0.8 1332.07
1 2 1.36 0 1.13 3 13.91 2 4928.67 1 144.02
21 0 117 1 1.61 1 3.02 0 121.84 1 78.42
6 4 9 3] 1 103 O 2271 1 5.33 1 13.05| 8¢ 7200.38
41 1 0.66 1 3 1 18.25 1 380.02 1 3058.97
5| 2 1.94 2 6.67 1 2.25 3 35.84(24%* 7200.41
Average 1.2 1.23] 0.8 2941 1.4 8.55| 1.4 1095.88 7 3536.44
1] 1 2 3 7.03 1 13.39 3 58 1 2664.06
2] 3 1.78 2 6.3 3 313941 3 274752 2 19.61
6 5 12 3] 3 4.39 4 2108.25 2 3485 2 321.39 2 836.52
41 3 281 3 5.66 4 41.3 1 75.17|16% 7200.47
51 1 2.53 2 5.45 2 1407.13 3 204091 26%* 7200.48
Average 2.2 27| 2.8 42654 2.4 989.95| 24 1048.6| 9.4 3584.23
1] 7 265.36 3 434.36(12% 7200.35]- 7200.28 | - 7200.38
2| 7 8.64|11% 7200.28|21% 7200.36 1 379.08]- 7200.31
6 6 15 3| 5 454.08 3 227553 5 2249.92]- 7200.28 | - 7200.39
41 4 17.03 4 1655.39 0 48.69(- 7200.24 | - 7200.33
5| 7 592]|- 7200.13 4 6659.98 2 14.28 | - 7200.34
Average 6 150.21|N/A 3753.14| 8.4 4671.86(N/A 4398.83[N/A 7200.35
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We use the test bed given by Akyiiz and Lee (2014). There are two groups of instances
in the test bed: Group-1 and Group-II instances. Each group consists of medium and high
density of container traffic at the yard-bay with C = 6 columns. The range of height, H,
is chosen from the set {2, 3, 4, 5, 6} and the number of containers, N, which departs from
the yard-bay, is selected from the set {5, 50, 100, 200, 400, 800}. This makes a total of
60 different combinations for each group of instances. 20 test instances for each
combination are randomly generated. Therefore, there are 1200 instances for each group.
We refer to the work by Akyiiz and Lee (2014) for more details on the test bed. In the
following, we report our results obtained by the heuristic methods proposed for the
DCRP. In Table 5.5, we summarize the performance of the TSA1 on Group-1 and Group-
Il instances. The number of TS iterations is set to K = 10000. The first column indicates
the group and the density of the test instances. The second column gives the size of the
test instances so that (C, H) stands for the number of columns and rows (height) in the
yard-bay, respectively. The tabu duration parameter b is set to be b = 3 after our
preliminary experiments. The percentage to declare a column as tabu for an incoming
container, denoted with parameter, is calibrated as o =2 and a = 3 in the light of our initial
experiments. The columns “UB” and “CPU” indicate the total number of relocations and
the CPU times in seconds, respectively. Each cell gives the average of 20 - 6 = 120 test
instances with different number of containers, N. Columns 3 to 6 include the results when
a=2;p=3and o = 3; B =3. Incolumn 7, we remove the limit on number of tabu
iterations and impose a time limit of 4 seconds to run the TSA1 algorithm with the same
parameters o= 2, p = 3. The last two columns present the performance of the original RI
heuristic whose results are taken from Akyiiz and Lee (2014) for comparison. The best
outcomes are shown with bold characters for each row. Clearly, the performance of TSA1
increases as the number of TS iterations (or CPU time limit) increases. Observe that the
RI heuristic is more efficient than the TSA1. We observe that the suggested TSA1
performs better than the RI heuristic for H =2 and H = 3 on all instances. Moreover, for
Group-I and Group-II instances with medium density having a height of H = 4 the TSA1
yields better outcomes than the RI heuristic. The TSA2 works 22.2% faster than RI
heuristic on the average. However, RI heuristic produces better upper bounds than the
TSA 2. Therefore, the results of the TSA2 are not reported.
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Table 5.5: Summary of the performance of the TSA1 on Group-I and Group-II instances

Instance Group | Size | a=2 p=3 | a=3 p=3 | a=2 p=3 RI
(CH)| uB CPU| UB CPU| UB(4s.) UB CPU

Group-l medium | (6,2) | 0.04 | 1.19 | 0.04 | 0.92 0.04 0.11 |0.08
(6,3) [ 224 | 141 | 23 | 1.16 2.2 3.37 [0.08

6,4) | 2468 | 1.72 | 249 | 1.66 | 2437 25.41 |0.08
(6,5) | 63.03 | 2.22 | 64.03 | 2.34 |  62.33 57.6 |0.08
(6,6) |113.86| 2.71 |115.16| 2.94 | 11355 | 98.84 |0.09
Group-l high | (6.2) | 2541 | 1.2 [ 25.96 | 093 | 25.05 30.57 | 0.08
6,3) | 8342|172 | 83 |142| 8216 86.3 |0.09
(6,4) |144.05| 2.31 |144.15| 2.2 | 14319 |138.650.09
(6,5) |221.84| 3.13 |222.48| 3.00 | 22138 |211.95] 0.1
(6,6) |293.23| 3.68 |293.64| 3.98 | 29251 |276.32|0.11
Group-Il medium| (6,2) | 4.91 [ 087 | 492 | 1.02 4.85 5.24 [0.07
(6,3) | 44.67 | 1.29 | 44.83 | 1.36 | 44.45 45.88 |0.08
6,4) | 92.41 | 212 | 9235 | 1.76 | 91.62 91.63 | 0.08
(6,5) |121.82| 257 |122.24| 2.16 | 122.08 | 117.45|0.09
(6,6) |171.92| 3.28 | 1718 | 2.7 | 17122 |158.92] 0.1
Group-1lhigh | (6,2) | 71.24 | 1.06 | 7168 [ 1.27 |  70.81 76.48 |0.08
(6,3) |139.43| 1.65 | 139.6 | 1.8 | 139.23 |139.89 |0.09
(6,4) |200.71| 25 |201.55| 2.17 | 200.16 | 188.72| 0.1
(6,5) |278.15| 3.46 |278.81| 2.85 | 278.13 | 247.38|0.11
(6,6) |368.43| 4.14 |369.25| 3.67 | 368.43 | 315.57 |0.13

The results of the MMD heuristic is obtained on the so called "Group-I" test instances
proposed by Akyiiz and Lee (2014). In Table 5.6, the performance of the MMD heuristic
is summarized on the test instances. The first column indicates the density of the test
instances: medium and high. The second and third column gives the size of the test
instances so that C and H are the number of columns and rows (height) in the yard-bay.
The results of the heuristic procedures indicate the number of relocations. Column 4
shows the best Index Based (1B) heuristic result reported by Akyiiz and Lee (2014). As a
remark, 1B heuristics use some rule of thumb to give weights to columns of the yard-bay
in order to decide the location of a container in the yard-bay. Columns 5 and 6 contain
the results of the MMD and MMD-JV heuristics. Last column states the best outcome of

the BS heuristic reported by Akyiiz and Lee (2014). Each cell from columns 4 to 7 of
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Table 5.6 gives the average of 120 test instances. Further, outcomes of the best
performing heuristic method are shown with bold characters. The running times of MMD
and MMD-JV heuristics are negligible, and thus, CPU times are not reported here.
Nevertheless, the MMD and MMD-JV heuristics are both more efficient than IB and BS
heuristics. The MMD heuristic performs better than the IB heuristics on high density
instances for all height values H of the yard-bay and on medium density instances for H
> 4. Broadly speaking, the MMD heuristic outperforms the MMD-JV heuristic in yard-
bays having smaller height value H. The converse holds in favor of MMD-JV heuristics
when H gets larger. In particular, the MMD-JV heuristic is superior than the MMD
heuristic on medium and high density instances having H > 4. A similar result can be
drawn between the MMD-JV and BS heuristics. The MMD-JV heuristic gives poor
results than the BS heuristics on medium and high density instances with H < 3and H <
4, respectively. On the remaining instances the MMD-JV heuristic performs better than
the BS heuristic. Notice that, the CPU time required for the BS heuristic can be
prohibitive. Therefore, for yard-bays having a height of H > 5, the MMD-JV heuristic is
a better alternative. The MMD-JV heuristic is also an efficient choice for yard-bays

having a height of H <4.

Table 5.6: The performance of the heuristic procedures for the DCRP on standard test

instances
Instance Info. IB MMD MMD-JV BS
Density H | Heuristic | Heuristic | Heuristic | Heuristic
2 0.11 0.22 1.24 0.03
3 3.08 3.13 3.01 1.77
Medium 4 23.82 16.18 15.86 17.14
5 53.29 35.88 35.51 44.99
6 95.45 63.11 61.01 82.17
2 30.16 27.42 47.88 15.59
3 78.16 70.39 88.73 54.39
High 4 133.25 117.17 120.26 103.32
5 210.64 185.79 176.06 177.7
6 271.03 239.43 227.03 244.97




6. CONCLUSION

In this work, we address the CRP and its dynamic extension DCRP. The CRP tries to
discharge existing containers from a single yard-bay while minimizing total number of
container relocations. Unlike the CRP, the DCRP permits new containers to join the yard-
bay as well. We propose mathematical programming formulations for the CRP and
DCRP. Efficient heuristics are also suggested for the CRP and DCRP. An extensive set
of computational experiments is performed on both standard and randomly generated test

instances.

WLT-I formulation originally developed by Wan et al. (2009) is modified and two new
formulation is proposed for the CRP. WLT-1l and WLT-1Il compared with existing
formulations in literature. Our results show that WLT-I1 and WLT-111 formulations yields
better outcomes than existing formulations in literature. Next, we propose a new DCRP
formulation wich performs better than the former formulation suggested by Akyliz and
Lee (2014). In particular, the new DCRP formulation can solve instances having a
planning period of up to seven times longer than we can obtain with the existing

formulation.

Two TS based heuristic algorithms are proposed for the DCRP. The first algorithm,
TSAL, uses a random selection strategy for tabu declarations while the second algorithm
TSA2 employs a fixed number of steps for that purpose. According to our computational
experiment we observe that the proposed TSA-I is efficient and yields promising
outcomes. Next, we develop the PI heuristic which performs better than the RI heuristic
for the CRP.

Two efficient heuristic procedures are devised for the DCRP. Basically, they are
enhancements of the MM algorithm. The MMD and MMD-JV heuristics are tested on
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standard test instances. Our computational experiments state that both MMD and MMD-
JV heuristics are very efficient and yield promising outcomes compared to other heuristic

procedures from the literature for the DCRP.

Introducing valid inequalities for existing CRP and DCRP formulations and the design of
exact solution procedures can be a worthwhile further research. Moreover, unrestricted
CRP and DCRP, which relax assumption A3 by allowing container pre-marshalling
operations, may be a fruitful research area. In particular, enhanced formulations can be

designed for the unrestricted problems as a future work.
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