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ABSTRACT 

 

 

 

The container relocation problem (CRP) which is known to be NP-hard, tries to empty a 

single yard-bay which contains S containers each having a given retrieval order so as to 

minimize the total number of relocations performed. The DCRP is an extension of the 

CRP where containers are both received and retrieved from a single yard-bay and the 

arrival and departure sequences of containers are assumed to be known in advance. Two 

enhanced Binary Integer Programming (BIP) formulations for the CRP and a novel BIP 

formulation for the DCRP are devised. Computational experiments are performed to 

analyze new formulations by using standart test instances from the literature. Our results 

show that, new formulations are promising and yield better results in general for both 

CRP and DCRP. A new heuristic called as Path Index heuristic, is proposed to solve the 

CRP. Tabu search based heuristic approaches are proposed to solve the DCRP. In 

addition, two Index Based heuristics are developed and tested for the DCRP. 

Computational experiments are performed on an extensive set of test instances from the 

literature. Our results indicate that the proposed algorithms are efficient and yield 

promising outcomes. Especially, IB heuristics show a superior performance than the ones 

from the literature on a set of standard test instances for the DCRP. 

 

Keywords: container stacking, integer programming, container relocation, heuristics, 

container terminals. 

 

 

 

 

 

 



 

 

ÖZET 

 

 

 

Dünya deniz ticaretinin % 50'sinden fazlasını konteyner taşımacılığı oluşturur. 

Günümüzde teknolojik gelişmeler daha büyük ve yüksek hızlı gemilerin üretimine olanak 

vermiştir. Bu nedenle konteyner terminallerini öncesine göre daha yüksek miktarlarda 

konteyner taşıma durumunda kalmıştır.  Özellikle mega konteyner gemilerinin ortaya 

çıkışıyla konteyner terminallerinin öncesine göre daha iyi organize edilmesini bir 

zorunluluk haline gelmiştir. Bütün bunlar göz önüne alındığında, konteyner 

terminallerinin etkin yönetimi büyük önem taşımaktadır. 

 

Konteyner terminal alanı rıhtım ve depolama alanı olarak ikiye ayrılmaktadır. Genel 

olarak, liman işletmecileri rıhtım tahsisi, rıhtım vinci atama ve zamanlama ve depolama 

planlaması gibi rıhtım alanı operasyonlarına daha fazla önem vermektedir. Depolama 

alanı işlemleri, rıhtım tarafından konteynerlerin transfer edilmesi, vinç planlaması, 

konteyner işlemlerinin halledilmesinden oluşur. Depolama alanı işlemlerinin önemi 

terminal operatörleri tarafından sıklıkla gözardı edilmektedir. Öte yandan depolama alanı 

operasyonlarının etkin yönetimi iskele alanı işlemlerinin başarısı ile doğrudan 

bağlantılıdır. 

 

Bir konteyner sırası belirli yükseklik ve ve sütun sayısına sahiptir. Sütundaki 

konteynerlere erişim sadece yukarıdan yapılmaktadır. Hedef konteynerin üzerindeki 

konteynerleri, hedef konteyner alınmadan önce başka sütunlara taşınması gerekmektedir. 

Bu taşınma olayı yer değiştirme olarak tanımlamaktadır. Bu çalışmada depolama alanı 

problemlerinden olan konteyner yer değiştirme problemine odaklanılmıştır.  Konteyner 

yer değiştirme problemi, konteynerlerin başlangıç düzeninin ve konteynerlerin ayrılış 

sırasının belli olduğu bir konteyner sırasını boşaltılır yapılan yer değiştirme sayısını en 

azlamayı hedefler. Konteyner yer değiştirme problemi sadece konteyner sırasından 

ayrılan konteynerlerin olduğu durağan bir problemdir. Dinamik konteyner yer değiştirme



 

xi 

 probleminde ek olarak konteyner sırasına eklenen geliş zamanı bilinen gelen konteyner 

vardır. Bu çalışmada öncelikle konteyner yer değiştirme problemi literatürdeki 

gösterimler literatürdeki sınama ortamı kullanılarak karşılaştırılmış ve literatürden 

seçilen bir gösterim modifiye edilerek konteyner yer değiştirme problemi için daha iyi 

sonuçlar alınmıştır. Bu yeni gösterim üzerinde değişiklikler yapılarak ikinci bir gösterim 

elde edilmiştir. Yeni elde edilen iki gösterim literatürdeki gösterimlerle karşılaştırılmış 

ve önerdiğimiz gösterimlerin daha iyi performans sergilediği gözlenmiştir. Konteyner yer 

değiştirme problemi için yapılmış gösterim dinamik probleme uyarlanarak ücüncü bir 

gösterim elde edilmiştir. Sonuçlarda literatürdeki dinamik gösterimlere göre daha fazla 

işlem hesaplayabildiği gözlenmiştir. Bu gösterimlerden yola çıkarak değişik sezgisel 

yöntemler konteyner yer değiştirme problemleri için oluşturulmuştur. Sezgiselllerin ilki 

konteyner yer değiştirme problemi için oluşturulmuştur ve küçük örneklemler üzerinde 

başarılı olmuştur fakat büyük örneklemlerde aynı performansı sergileyememiştir. Diğer 

üç sezgisel dinamik konteyner yer değiştirme problemi için tasarlanmıştır. İlk olarak tabu 

arama sezgiseli ile literatürdeki bir indeks tabanlı sezgiselin karışımı şeklinde üretilen 

method literatürdeki sezgisellere göre bir gelişme gösterememiştir.  Daha sonrasında 

literatürdeki bir konteyner yer değiştirme problemi sezgiselinin dinamik probleme 

uyarlanması sonucu iki adet sezgisel oluşturulmuş ve bunlar literatürdeki mevcut 

sezgisellere göre daha iyi performans göstermişlerdir.  
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1. INTRODUCTION 

                  

 

          

More than 50% of the world sea borne trade in terms of dollars are carried with 

containerized cargo (UNCTAD, 2014).  Drastic changes in emerging technologies such 

as increased speed and size of vessels; enforce, container terminals  has to transfer larger 

amounts of containers than before.  In particular, with the introduction of mega container 

vessels, well organized container terminal operations are needed nowadays.  Therefore, 

efficient management of container terminals is crucial.  

 

The container terminal area can be separated into two: quay side area and yard side area. 

In general, terminal operators give more priority to quay side area operations which 

include berth allocation, quay crane assignment and scheduling, and vessel storage 

planning.  Yard side operations include transferring containers from quay side, yard crane 

scheduling, and storing and handling of containers at the yard storage area.  The 

importance of yard side operations is usually ignored by terminal operators since they 

mostly charge liner shipping companies according to the number of containers handled 

with quay cranes.   On the other hand, efficiency of yard side highly interrelated with the 

success of quay side operations. 

 

 A yard area includes blocks of containers which is illustrated with Figure 1.1. A yard-

bay is served with a yard crane so that containers are received and retrieved at top of the 

columns.  Containers on top of a column are directly accessible for retrieval.  However, 

if a target container (a container that will be retrieved from yard-bay immediately) isn’t 

positioned at top of a column, then all containers above the target container have to be 

relocated to other columns of the yard-bay.  Once blocking containers are cleared, target 

container can be retrieved.  These clearing movements are called as relocations. 

Relocations are idle operations for yard cranes. 
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Figure 1.1:  A block of containers.  Source Akyüz and lee (2014) 

  

 

We refer to the works by Steenken et al. (2004) and Stahlbock and Voβ (2008) as 

excellent surveys on container terminal operations.  Two problems, which arise in the 

yard side of the container terminals, is focused in this work.  We first address the 

Container Relocation Problem (CRP) which aims to minimize the total number of 

relocations accomplished to empty out a single yard-bay with a capacity of C columns 

(stacks) having a height of P rows (tiers) where S containers, whose retrieval sequences 

is given a priori, are initially located within the yard-bay.  The CRP is a static problem in 

the sense that it only considers departure of containers from the yard-bay.  We also 

consider a dynamic extension of the CRP where containers arrive and depart at the yard-

bay, namely the Dynamic Container Relocation Problem (DCRP).  

 

The CRP is an intensively studied problem which is introduced by Kim and Hong (2006).  

It is synonymously referred to as the “Blocks Relocation Problem” in the works by 

Caserta et al. (2012, 2011).  In the CRP relocations can only occur when a container has 

to be taken out from the yard-bay.  Thus, pre-marshalling is not allowed to reduce the 

number of future relocations henceforth.  The CRP is also called as “restricted” CRP 

when this assumption is made.  On the other hand, “unrestricted” CRP allows pre-

marshalling by relaxing this assumption.  Here, we follow the same framework described 

by Kim and Hong (2006) and limit ourselves with the restricted CRP.  

 

DCRP is more realistic extension of the CRP when containers also arrive at the yard-bay. 

Given arrival and retrieval sequences of S containers, the DCRP tries to minimize the 

total number of relocations in a yard-bay.  The DCRP inherits and extends the 

assumptions of the CRP such that it also considers the case of container arrivals. 
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We suggest two mathematical programming formulations for the CRP.  Our formulations 

enhance the one originally proposed by Wan et al. (2009) and yields promising outcomes. 

Existing formulations and the ones presented in thesis are compared on standard 

benchmark instances from the literature.  A novel mathematical programming 

formulation is developed which enhances the formulation previously offered by Akyüz 

and Lee (2014) for the DCRP. In light of these information we propose efficient heuristics 

for both CRP and DCRP.  

 

In the reminder of this work is organized as follows.  Section 2 gives a brief review of the 

literature for the CRP and DCRP.  Section 3 presents definition of CRP problem and our 

solution methods for it.  Section 4 contains DCRP problem definition and our brand new 

formulation for DCRP.  Furthermore we present new heuristic approaches for DCRP in 

section 4.  Numerical experiments given in section 5.  Lastly, section 6 present our 

conclusions and a discussion for future research directions. 

 

 

 

 

 

 

 

 

 



 

 

2. LITERATUR REVIEW 

 

 

 

Kim et al. (2000) propose a dynamic programming model to minimize the total number 

of relocations where containers are grouped based on their weights.  Kim and Hong 

(2006) propose a branch and bound (BB) algorithm and offer a rule of thumb heuristic 

procedure for the CRP.  Since the seminal work by Kim and Hong (2006), there exist 

several studies addressing the CRP.  The first mathematical programming formulation of 

the CRP is presented in the work by Wan et al. (2009) in which efficient heuristics are 

also presented.  Caserta et al. (2011) develop a metaheuristic algorithm which employs a 

dynamic programming scheme for the CRP.  An efficient tree search procedure for the 

CRP is offered by Forster and Bortfeldt (2012).  Caserta et al. (2012) show that the CRP 

is NP-hard and suggest two formulations for the CRP.  These formulations solve 

unrestricted CRP and restricted CRP formulation, respectively.  Ünlüyurt and Aydin 

(2012) minimize the total time to empty a single yard-bay by a BB algorithm and propose 

heuristic procedures.  Petering and Hussein (2013) introduce a new look-ahead algorithm 

that yields better solutions than other algorithms presented by Kim and Hong (2006), Lee 

and Lee (2010), Caserta et al. (2011),  Ünlüyurt and Aydin (2012)  for the CRP. Jovanovic 

and Voss (2014) implement a chain heuristic based on the “Max-Min” (MM) algorithm 

of Caserta et al. (2012) and offer an improvement on the MM algorithm for the CRP.  For 

an in-depth discussion on container terminal operations and on stacking problems in 

storage areas, we refer to excellent surveys by Stahlbock and Voss (2008) and Lehnfeld 

and Knust (2014), respectively.  Lehnfeld and Knust (2014) offer a classification scheme 

which covers other variants of the stacking problems as well as their complexity results 

that exist in the literature.  Recently, Jin et al. (2015) develop a greedy look-ahead solution 

procedure which is employed for both restricted and unrestricted variants of the CRP as 

well as grouped and individual containers.  Their tree search based approach yields the 

best results in shorter running times than the previous heuristic procedures in the 

literature.  A modification on the formulation of Caserta et al. (2012) is offered by
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 Expòsito-Izquierdo et al. (2015) and they implement a BB algorithm for the CRP.  

Zehendner et al. (2015) made correction on the second formulation presented by Caserta 

et al. (2012) and offer an improved alternative CRP formulation.  A preprocessing 

strategy is applied to improve the performance of the alternative formulation.  Recently, 

Ku and Arthanari (2016) follow a new perspective and offer an abstraction method.  This 

method significantly reduces the search space of the CRP and exactly solves small to 

medium size test instances from the literature in reasonable computing times. 

 

In contrast to CRP, the researchers did not give much attention to the DCRP.  Wan et al. 

(2009) is the first work which introduces the DCRP.  Rei and Pedroso (2013) work with 

the DCRP denominated as Stacking Problem (SP), which is shown to be NP-hard, where 

containers arrive and depart at a single yard-bay.  Akyüz and Lee (2014) propose a 

mathematical programming formulation including a Beam Search (BS) heuristic for the 

DCRP.  Konig et al. (2007) address a closely related problem to the DCRP where they 

deal with the stacking of steel slabs.  Tang et al. (2012) also work on similar relocation 

problems in steel plants.  Casey and Kozan (2012) focus on a variant of the DCRP where 

the total processing time of the straddle carrier serving a single yard-bay is minimized. 

Borjian et al. (2015) work on a variant of the DCRP considering a class of exible service 

policies that permit minor changes in the order of container retrievals.  Recently, Zhang 

et al. (2016) study a connected problem with the CRP where blocks (or containers) can 

be relocated and/or retrieved in batches.  This problem arises in steel plants to remove 

multiple steel slabs which can be handled by special cranes.  

 

 

 



 

  

3. CONTAINER RELOCATION PROBLEM 

 

 

 

In this section definition of CRP and two formulation for CRP is presented. Next, a index 

based heuristic developed for CRP. 

 

3.1 Container Relocation Problem Definition 

 

Container Relocation Problem (CRP) which aims to minimize the total number of 

relocations accomplished to empty out a single yard-bay with a capacity of C columns 

(stacks) having a height of P rows (tiers) where S containers, whose retrieval sequences 

is given a priori, are initially located within the yard-bay.  The CRP is a static problem in 

the sense that it only considers departure of containers from the yard-bay.  The CRP has 

the following assumptions introduced by Kim and Hong (2006):  

 

Assumption (A1): The yard-bay is served by a single yard crane which can handle one 

container at a time 

Assumption (A2): The retrieval sequence of containers are known a priori 

Assumption (A3): Relocations can only occur to take out a retrieval container from the 

yard-bay. 

Assumption (A4): Relocations can only be made among the columns of the yard-bay 

Assumption (A5): Containers have the same type in the yard-bay. 

 

3.2 Container Relocation Problem Formulations 

 

Our formulations, which satisfy assumptions A1-A5, are based on the one developed by 

Wan et al. (2009) and. We use the original formulation by Wan et al. (2009) and named 

it as WLT-I.  
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3.2.1 WLT-II Formulation 

 

The notation employed for the CRP formulations is as follows. Let S be the number of 

time stages where S containers are retrieved with an order of time stages s = 1,…, S. Here, 

stage s also refers to the retrieval rank of container s from the yard bay. c presents the 

number of columns for c = 1,…,C and p for the number of rows for p = 1,…, P in a yard-

bay. To elaborate better, an example of the CRP is illustrated with figure 3.1 The yard-

bay consists of C = 3 columns and P = 3 rows and contains S = 6 containers at the initial 

stage. Each container is numbered according to the order of their retrieval from the yard-

bay. In the first stage (i.e., s = 1), the retrieval container 1 should be taken out from the 

yard-bay. In the second stage (i.e., s = 2), the retrieval container 2 should be removed 

from the yard-bay, and so on. 

 

The container number of a retrieval container (e.g., i = 1) is equal to the stage number 

(e.g., s = 1). To satisfy this, two reshuffling containers 3 and 6, which block container 1, 

needs to relocate. These are indicated above the initial stage of the yard-bay. In the second 

stage (s =2), the retrieval container 2 departs from the yard-bay. Two reshuffling 

containers 6 and 5 are placed to other columns. As the remaining yard-bay configuration 

does not have any blocking container, no relocation is required until the retrieval of 

container 6 at stage s = 6. Let S(i) stands for the smallest ranked container to be retrieved 

under a container i including container i in the initial yard-bay configuration. Then, for 

containers 6, 3 and 1 in the first column S(i) values are S(6) = 1, S(3) = 1 and S(1) = 1, 

respectively.
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Figure 3.1: Illustrative example for the CRP 

 

 

Binary variables 𝑥𝑠𝑖𝑐𝑝 are set to 1 if and only if container i is located in row p of column 

c at stage s and zero otherwise.  Binary variables 𝑧𝑠𝑖 are equal to 1 if and only if at stage 

s container i is situated in a different column than the retrieval container s.  𝑦𝑠𝑖 denotes 

the binary variables taking a value of 1 if and only if container i is relocated at stage s. 

𝑤𝑠𝑖𝑗 states the binary variables having a value of 1 if and only if container i and container 

j are relocated, and container j is at a higher position than container i at stage s.  Then, 

our CRP formulation called as WLT-II is as follows. 
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WLT-II: 

 

 

𝑧𝑊𝐿𝑇−𝐼𝐼
∗ = ∑  

𝑆−1

𝑠=1

∑ 𝑦𝑠𝑖

𝑆

𝑖=𝑠+1

                                                                                                             (1) 

            

s.t. 

 

-zsi≤ (∑  

C

c=1

∑ cxsicp

P

p=1

- ∑  ∑ cxsscp

P

p=1

C

c=1

) /C                                                1 ≤ 𝑠 < 𝑖 ≤ 𝑆 (2) 

  

𝑧𝑠𝑖 ≥ (∑  

𝐶

𝑐=1

∑ 𝑐𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

− ∑  ∑ 𝑐𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝐶                                    1 ≤ 𝑠 < 𝑖 ≤ 𝑆 (3) 

 

𝑦𝑠𝑖 ≥ −𝑧𝑠𝑖 + (∑  

𝐶

𝑐=1

∑ 𝑐𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

− ∑  ∑ 𝑐𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃                        1 ≤ 𝑠 < 𝑖 ≤ 𝑆 (4) 

 

𝑦𝑠𝑖 ≥ −𝑧𝑠𝑖 + 1                                                                                                1 ≤ 𝑠 < 𝑖 ≤ 𝑆(5) 

 

(∑  

𝐶

𝑐=1

∑ 𝑝𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

− ∑  ∑ 𝑝𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃 ≤ 1 − 𝑦𝑠𝑖                                     1 ≤ 𝑠 < 𝑖 ≤ 𝑆 (6) 

 

∑  ∑ 𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

= 1                                                                                            1 ≤ 𝑠 ≤ 𝑖 ≤ 𝑆 (7)  

 

∑  𝑥𝑠𝑖𝑐𝑝

𝑆

𝑖=𝑠

≤ 1                                                                 1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (8) 
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∑  𝑥𝑠𝑖𝑐𝑝

𝑆

𝑖=𝑠

≤ ∑  𝑥𝑠𝑖𝑐,𝑝−1

𝑆

𝑖=𝑠

                                             1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (9)  

 

∑  𝑥𝑠+1,𝑖𝑐𝑝

𝑃

𝑝=1

≤ 2 − 𝑦𝑠𝑖 − ∑  𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

                                     1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶 (10) 

 

2 − 𝑦𝑠𝑖 − 𝑦𝑠𝑗 − 𝑤𝑠𝑖𝑗 ≥ (∑  

𝐶

𝑐=1

∑ 𝑝𝑥𝑠𝑗𝑐𝑝

𝑃

𝑝=1

− ∑  ∑ 𝑝𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃  

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (11) 

 

𝑦𝑠𝑖 + 𝑦𝑠𝑗 + 𝑤𝑠𝑖𝑗 ≤ (∑  

𝐶

𝑐=1

∑ 𝑝𝑥𝑠𝑗𝑐𝑝

𝑃

𝑝=1

− ∑  ∑ 𝑝𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃 

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (12) 

 

𝑤𝑠𝑖𝑗 ≤ 𝑦𝑠𝑖                                                                  1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (13) 

 

𝑤𝑠𝑖𝑗 ≤ 𝑦𝑠𝑗                                                                 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (14) 

 

∑ 𝑝

𝑃

𝑝=1

(𝑥𝑠+1,𝑖𝑐𝑝 − 𝑥𝑠+1,𝑗𝑐𝑝)

≥ −𝑃 [(1 − 𝑤𝑠𝑖𝑗) + (1 − 𝑦𝑠𝑖) + (1 − 𝑦𝑠𝑗) + (1 − ∑ 𝑥𝑠+1,𝑖𝑐𝑝

𝑃

𝑝=1

)] 

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (15) 

 

𝑥𝑠+1,𝑖𝑐𝑝 − 𝑥𝑠𝑖𝑐𝑝 ≥ −𝑦𝑠𝑖                                     1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (16) 

 

𝑥𝑠𝑖𝑐𝑝 − 𝑥𝑠+1,𝑖𝑐𝑝 ≥ −𝑦𝑠𝑖                                     1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (17)
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𝑥1𝑖𝑐𝑝 = 𝑋𝑖𝑐𝑝                                                                1 ≤ 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (18) 

 

𝑥𝑠𝑖𝑐𝑝 = 𝑋𝑖𝑐𝑝                                      2 ≤ 𝑠 ≤ 𝑆(𝑖), 1 ≤ 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (19) 

 

𝑦𝑠𝑖 , 𝑧𝑠𝑖 ∈ {0,1}                                                                                               1 ≤ 𝑠 < 𝑖 ≤ 𝑆(20) 

 

𝑤𝑠𝑖𝑗 ∈ {0,1}                                                              1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗(21)   

 

𝑥𝑠𝑖 ∈ {0,1}                                                                      1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃(22) 

 

  

The objective function (1) minimizes of the total number of the relocations performed 

until the last container leaves the yard-bay.  Constraints (2) and (3) determine the value 

of binary variables 𝑧𝑠𝑖.  Constraint (2) enforces 𝑧𝑠𝑖  to be equal to 1 if containers s and i 

are in different columns at stage s (i.e., in the retrieval stage of container s).  For the case, 

namely, when containers s and i are in the same column at stage s, 𝑧𝑠𝑖  is set to 0. 

Constraints (4) and (5) impose that a container i is relocated at stage s, i.e.,  𝑦𝑠𝑖= 1, when 

the retrieval container s and container i are in the same column and container i stands at 

a higher position than container s which leaves the yard-bay earlier than container i, i.e., 

s < i.  Constraint (6) makes sure that 𝑦𝑠𝑖= 0 when retrieval container s is situated above 

container i at stage s.  Note that, in that case, constraints (4) and (5) become redundant. 

Constraint (7) states that container i occupies exactly one slot at stage s for 1 ≤ 𝑠 < 𝑖 ≤

𝑆.  Constraint (8) implies that a slot of the yard-bay can contain at most one container 

among the containers remaining in the yard-bay at each stage s.  Constraint (9) ensures 

that given a column c to locate a container in row p there a must be a container underneath, 

that is in row 𝑝 − 1.  At the retrieval of container s from its column c, if there exists 

another container i in the same column that has to be relocated, then constraint (10) 

guarantees that container i is not placed in column c again.  Constraints (11) and (12) are 

used to define the value of binary variable 𝑤𝑠𝑖𝑗.  Constraint (11) states that 𝑤𝑠𝑖𝑗  takes a 

value of 1 when containers i and j are relocated at stage s and container i is at a lower slot 

than container j.  When container j stays at a lower slot than container i constraint (12) 

implies 𝑤𝑠𝑖𝑗  = 0.  Constraints (13) and (14) give the dependency of 𝑤𝑠𝑖𝑗  on relocation 
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variables 𝑦𝑠𝑖  and 𝑦𝑠𝑗  of containers i and j. 𝑤𝑠𝑖𝑗  = 0 when either container i or j is not 

relocated at stage s and constraints (11) and (12) become redundant.  Assuming two 

containers i and j are relocated at stage s then new locations of containers i and j should 

be decided in the reverse order prior to their locations before relocations.  For example, 

when they are located in the same column both before and after their relocations, the 

container at a higher row before the relocation should be placed below the lower row 

container after relocations.  Constraint (15) achieves this property.  When a container i is 

not relocated at stage s constraints (16) and (17) impose that container i maintains the 

same slot at the next stage s + 1. 

 

Constraint (18) introduces the initial locations of containers in the yard-bay.  Notice that 

a container i preserves its position until stage s = i as long as it does not block another 

container which should be retrieved before stage s = i.  Constraint (19) aims to satisfy this 

property.  Constraints (20), (21) and (22) state binary restrictions.  Our enhancements on 

the WLT-I formulation can be summarized as follows.  First, in the original WLT-I 

formulation, there are two extra binary decision variables to keep record of the position 

of a container i with respect to container s such that s < i.  One of the binary variables 

states that container i is on the left side of the retrieval container s at stage s.  The other 

binary variable checks whether container i is located on the right side of the retrieval 

container s at stage s or not.  Notice that, 𝑥𝑠𝑖𝑐𝑝  contains the slot, i.e., the column and row, 

information for container i at stage s.  Therefore, we replaced the constraints originally 

labelled as (7)-(11) in the WLT-I formulation with our new constraints (3) and (4).  To 

achieve this, the definition of binary variables 𝑧𝑠𝑖 is reversed as explained in our WLT-II 

formulation.  Shortly, binary variable 𝑧𝑠𝑖  in the WLT-I formulation is substituted with -

𝑧𝑠𝑖 in our WLT-II formulation and its interpretation is modified accordingly.  Constraints 

(5) and (6) are also changed in the WLT-II formulation with respect to our modification 

on 𝑧𝑠𝑖.  The remaining parts of the WLT-II formulation are the same as in the WLT-I 

formulation.
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3.2.2 WLT-III Formulation 

 

The WLT-II formulation is tightened by adding the following lower and upper bounding 

constraints 

 

 

∑  

𝑆−1

𝑠=1

∑ 𝑦𝑠𝑖

𝑆

𝑖=𝑠+1

≤ 𝑍𝑈𝐵                                                                                                                   (23) 

 

𝑍𝐿𝐵 ≤ ∑  

𝑆−1

𝑠=1

∑ 𝑦𝑠𝑖

𝑆

𝑖=𝑠+1

                                                                                                                  (24) 

 

 

where 𝑍𝐿𝐵 and 𝑍𝑈𝐵 are lower and upper bounds on the optimal objective function value 

𝑍𝑊𝐿𝑇𝐼𝐼.  To calculate lower bound 𝑍𝐿𝐵, we benefit from the following definition. 

Container i is named as a “singly-blocking” container when it is located above of an 

earlier departing container within the same column.  Clearly, the total number of singly-

blocking containers constitutes a lower bound on 𝑍𝑊𝐿𝑇𝐼𝐼 .  Besides, let i be a singly-

blocking container that will be relocated at stage s from its column, say column c, in the 

initial yard-bay configuration.  When there exists a container j which will be retrieved 

between time stages s and i, e.g., s < j < i, for all remaining columns c′ = 1,…, C and c′ ≠ 

c, then container i will continue to be a blocking container.  This implies that container I 

will increase the number of relocations by one for a second time.  Let us define such a 

container as “doubly-blocking" container. Note that, doubly-blocking containers consist 

of singly-blocking containers.  Now, summing the total number of doubly-blocking 

containers with total number of singly-blocking containers in the initial yard-bay 

configuration yields 𝑍𝐿𝐵,  that is used in constraints (24).  The calculation of the 𝑍𝐿𝐵,  is 

illustrated with Figure 3.2. for an initial yard-bay of 3 columns and 4 rows. Containers 2, 

6 and 7 are singly-blocking containers at the initial yard-bay configuration.  At the 

retrieval of container 1, container 7 is relocated to column c = 2 or c = 3.  However, 

container 7 will continue to be a blocking container in both columns since it leaves the 

yard-bay last.  Therefore, container 7 is a doubly-blocking container. Consequently, the 
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sum of singly-blocking containers and doubly-blocking containers yields the lower bound 

as 𝑍𝐿𝐵,  = 3 + 1 = 4.  

 

 

Figure 3.2: Illustrative example for 𝑍𝐿𝐵 calculation 

 

 

A heuristic procedure initially proposed by Murty et al for determine upper bound 𝑍𝑈𝐵. 

(2005) based on the Reshuffling Index (RI) of the columns of the yard-bay.  We call their 

heuristic as the RI heuristic in the sequel.  RI of a column is show us the number of singly-

blocking containers at that column.  Next, RI heuristic selects the column with the lowest 

RI to relocate a blocking container.  In case of a tie, the column with largest number of 

containers (i.e., the highest column) is chosen among the columns with lowest RI.  When 

a further tie arises, then the column is arbitrarily selected from qualifying columns.  The 

RI heuristic is very efficient and we employ the best outcome of 100 runs as the 𝑍𝑈𝐵 value 

in constraint (23).  Lastly, to make a fair comparison with WLT-I and WLT-II 

formulations, we separately introduce our second CRP formulation named as WLT-III. 

We present the WLT-III formulation as follows.
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WLT-III: 

 

𝑧𝑊𝐿𝑇−𝐼𝐼𝐼
∗ = ∑  

𝑆−1

𝑠=1

∑ 𝑦𝑠𝑖

𝑆

𝑖=𝑠+1

                                                                                                         (25) 

             

s.t. (2)-(24)                                                                                                                26) 

    

 

3.3 A New Heuristic Approach for Container Relocation Problem 

 

We designee Path Index (PI) heuristic by inspiring from possible shortest paths for a 

container before its retrieval. Container path stands for a stage s and all paths resets at the 

end of stage s when target container taken out. In this path, each path step is indicated by 

a container retrieval of the earliest container in column c. For example in Figure 3.3 if 

container i=22 is reshuffling container we start our path by container i=1. Next, if there 

is a possibility of container i=22 makes a movement to column c=1; path of container 

i=22 is updated as 𝑝𝑎𝑡ℎ𝑖=22,   𝑐=1=1, 13. If we continue reshuffle container i=22 and 

relocate it above container i=14 then 𝑝𝑎𝑡ℎ𝑖=22,   𝑐=1= (1, 13, 14). Finally we will move 

our reshuffling container to empty or above a earliest container which has lower priority 

than container i=22. That means our path become 𝑝𝑎𝑡ℎ𝑖=22,   𝑐=1= (1, 13, 14, 0). At the 

end of the movements we made three relocation for 𝑝𝑎𝑡ℎ𝑖=22,   𝑐=1= (1, 13, 14, 0). 

 

Path index is calculated one by one for each blocking container.   

 

 

0 12 22 6 0 0 

0 7 8 19 21 24 

0 20 10 18 15 23 

0 9 17 2 5 16 

13 4 1 11 14 3 
 

Figure 3.3 Initial yard-bay configuration for PI
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Calculation of path index is given below in Algorithm 3.1  

For each blocking container i do the steps which presented below. 

 

Step 0: (Initialization) Set 𝑝𝑎𝑡ℎ𝑖𝑛𝑑𝑒𝑥𝑖𝑐𝑠 
=0 for i= 1,…,S , c=1,…,C and s=1,…,S 

 

Step 1: Set 𝑝𝑎𝑡ℎ𝑖𝑛𝑑𝑒𝑥𝑖𝑐𝑠 
=M for blocking container i which is above target container s at 

column c.  For the rest of the columns update 𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘=0 =  𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘=0 , target 

container. 

 

Step 2:  Define the earliest leaving container i* in these columns and add the i* in to the 

path for each column update 𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘+1 =   𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘=0, i*.  If columns are empty or 

have lower priority than i, update 𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘+1 =  𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘=0, 0.  

  

Step 4: If  there is any 𝑝𝑎𝑡ℎ𝑖𝑐𝑠𝑘 which has 0 as last element then stop and update, 

𝑝𝑎𝑡ℎ𝑖𝑛𝑑𝑒𝑥𝑖𝑐 
=the number of elements in 𝑝𝑎𝑡ℎ𝑖𝑐𝑠𝑘 for all paths which has 0 as last element 

choose that column c for relocate container i or there is multiple paths fulfills this 

requirement, randomly select one of the paths for relocate the blocking container. 

Relocate the blocking container then stop the algorithm. Otherwise continue to Step 5. 

 

Step 5: If the i* in a path  not equal 0 then write a yard-bay configuration φ𝑖∗
 𝑝𝑎𝑡ℎ𝑖𝑐𝑠𝑘 (Figure 

3.4) by removing earliest containers in columns which has lower priority than i* the in  

path and you should also remove containers above the earliest removed container in 

columns.    

 

 

0      

0      

0      

0      

13    14  

 

Figure 3.4 Configuration image after removal for PI 
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Step 6: Create new  𝑝𝑎𝑡ℎ𝑖𝑐𝑠𝑘 and add the earliest leaving containers i* to the path for all 

available columns. If these columns are not empty or don’t have lower priority than i, add 

the i* to the path for each column  𝑝𝑎𝑡ℎ𝑖𝑐𝑠𝑘(𝑛𝑒𝑤) =  𝑝𝑎𝑡ℎ𝑖𝑐𝑠𝑘(𝑜𝑙𝑑), i* and go to Step 4. 

Otherwise update  𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘(𝑛𝑒𝑤) =  𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘(𝑜𝑙𝑑), 0. Go to Step 4. 

  

Yard-bay configuration after taken out of target container s=1 is given in Figure 3.5 

Blocking containers are 22,8,10 and 17 respectively for stage s=1.  Path indexes of each 

column for container i=22, calculated as 2,M,M,M,2,2, respectively.  Blocking container 

is relocated to the column which has the smallest Path index. In case of a further tie, the 

container is randomly assigned to a column.   

 

 

0 12 0 6 22 17 

0 7 0 19 21 24 

10 20 0 18 15 23 

8 9 0 2 5 16 

13 4 0 11 14 3 
 

Figure 3.5: Configuration after retrieval of target container for PI



 

  

4. DYNAMIC CONTAINER RELOCATION PROBLEM 

 

 

 

4.1 Dynamic Container Relocation Problem Definition  

 

The DCRP is a dynamic problem in a sense that containers both depart and arrive at the 

yard-bay.  The difficulty of solving the DCRP can be seen better when a new container 

arrives at the yard-bay.  Observe that, the DCRP reduces to solving a CRP as long as 

containers depart from the yard-bay until the next container arrival.  However, an 

incoming container is likely to change the retrieval sequence of the existing containers 

within the yard-bay.  Therefore, incoming containers change plans repetitively at each 

arrival.  Now, not only the relocation of the containers but also finding the best location 

for incoming containers gains importance in order to increase the efficiency of yard cranes 

in yard-bay planning  

 

In this study, we employ the following assumptions used by Akyüz and Lee (2014). 

Assumptions A1,A3,A4 and A5 are the same for both problems CRP and DCRP.  The 

assumption A2 of the CRP is replaced with the following assumption for the DCRP:  

 

 Assumption (A2’): The arrival and retrieval sequences of containers are known a 

priori.  

 

4.2 Dynamic Container Relocation Problem Formulation 

 

In the CRP formulations (WLT-I, WLT-II, WLT-III) each stage s stands for the retrieval 

of container s.  We preserve a similar conditions for the DCRP formulation and match the 

arrival sequence of containers with the retrieval of container s. It is assumed that arrival 

containers located right after the retrieval of container s.  Notice that, this does not cause 

any change on generality for the problem.  As the arrival and departure order of containers 
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are known, arrival pattern of containers can be adjusted for any instance accordingly.  Let 

parameter K(i) denote a retrieval container s after which container i arrives at the yard-

bay and i starts to occupy a slot at stage s+1.  Notice that K(i) also states the latest time 

stage before container i joins the yard-bay.  There can be multiple containers arriving at 

the yard-bay which have the same K(i) value.  They are distinguished with respect to their 

arrival order which is represented as O(i).  For example, if container i arrives before 

container j after retrieval container s at stage s, then K(i) = K(j) = s and O(i) < O(j). 𝑈𝑠𝑖 

is a parameter that is equal to 1 if and only if container i arrives immediately after the 

retrieval of container s, i.e., K(i) = s.  A DCRP example is given in figure 4.1.  The yard-

bay consist of C = 3 columns and P = 3 rows containing S = 5 containers at the initial 

stage.  Each container is numbered in the order of their retrieval from the yard-bay.  In 

the first stage (s = 1), the retrieval container 1 should be taken out from the yard-bay. 

Reshuffling container 3 is placed to column c = 3 to enable access to container 1.  Then, 

container 1 is retrieved from the yard-bay.  Next, two containers 7 and 6 consecutively 

arrive to the yard-bay right after the retrieval of container 1 at stage s = 1. Here, the arrival 

order of containers 7 and 6 are O(7) = 1 < O(6) = 2 respectively.  The remaining stages 

are similar to the CRP example as there are no new container arrival.  Binary variables 

𝑎𝑠𝑖𝑗 are equal to 1 if and only if there exist a blocking container i above the retrieval 

container s and an arrival container j, i.e., 𝑦𝑠𝑖 = 1 and K(j) = s, respectively.  Then, the 

DCRP formulation is stated as follows. 



20 

  

 

 

Figure 4.1 DCRP example 

 

 

WLT-DCRP: 

 

 

𝑧𝐷𝐶𝑅𝑃
∗ = ∑  

𝑆−1

𝑠=1

∑ 𝑦𝑠𝑖

𝑆

𝑖=𝑠+1

                                                                                                              (27) 

 

s.t. 

 

−𝑧𝑠𝑖 ≤ (∑  

𝐶

𝑐=1

∑ 𝑐𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

− ∑  ∑ 𝑐𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝐶                   1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (28)   
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𝑧𝑠𝑖 ≥ (∑  

𝐶

𝑐=1

∑ 𝑐𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

− ∑  ∑ 𝑐𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝐶                        1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (29) 

  

𝑦𝑠𝑖 ≥ −𝑧𝑠𝑖 + (∑  

𝐶

𝑐=1

∑ 𝑐𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

− ∑  ∑ 𝑐𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃          1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (30) 

 

𝑦𝑠𝑖 ≥ −𝑧𝑠𝑖 + 1                                                                              1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (31) 

 

(∑  

𝐶

𝑐=1

∑ 𝑝𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

− ∑  ∑ 𝑝𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃 ≤ 1 − 𝑦𝑠𝑖                1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (32) 

 

∑  ∑ 𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

= 1                                                                         1 ≤ 𝑠 ≤ 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (33) 

 

∑  𝑥𝑠𝑖𝑐𝑝

𝑆

𝑖=𝑠

≤ 1                                                                1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (34) 

 

∑  𝑥𝑠𝑖𝑐𝑝

𝑆

𝑖=𝑠

≤ ∑  𝑥𝑠𝑖𝑐,𝑝−1

𝑆

𝑖=𝑠

                                             1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃(35) 

 

∑  𝑥𝑠+1,𝑖𝑐𝑝

𝑃

𝑝=1

≤ 2 − 𝑦𝑠𝑖 − ∑  𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

                  1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶 , 𝐾(𝑖) < 𝑠 (36)  

 

2 − 𝑦𝑠𝑖 − 𝑦𝑠𝑗 − 𝑤𝑠𝑖𝑗 ≥ (∑  

𝐶

𝑐=1

∑ 𝑝𝑥𝑠𝑗𝑐𝑝

𝑃

𝑝=1

− ∑  ∑ 𝑝𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃 

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗, 𝐾(𝑖) < 𝑠 (37) 
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𝑦𝑠𝑖 + 𝑦𝑠𝑗 + 𝑤𝑠𝑖𝑗 ≤ (∑  

𝐶

𝑐=1

∑ 𝑝𝑥𝑠𝑗𝑐𝑝

𝑃

𝑝=1

− ∑  ∑ 𝑝𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃 

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗, 𝐾(𝑖) < 𝑠  (38) 

 

𝑤𝑠𝑖𝑗 ≤ 𝑦𝑠𝑖                                               1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗, 𝐾(𝑖) < 𝑠 (39) 

  

𝑤𝑠𝑖𝑗 ≤ 𝑦𝑠𝑗                                               1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗, 𝐾(𝑖) < 𝑠 (40) 

 

∑ 𝑝

𝑃

𝑝=1

(𝑥𝑠+1,𝑖𝑐𝑝 − 𝑥𝑠+1,𝑗𝑐𝑝)

≥ −𝑃 [(1 − 𝑤𝑠𝑖𝑗) + (1 − 𝑦𝑠𝑖) + (1 − 𝑦𝑠𝑗) + (1 − ∑ 𝑥𝑠+1,𝑖𝑐𝑝

𝑃

𝑝=1

)] 

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗, 𝐾(𝑖) < 𝑠  (41) 

 

𝑥𝑠+1,𝑖𝑐𝑝 − 𝑥𝑠𝑖𝑐𝑝 ≥ −𝑦𝑠𝑖                   1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃, 𝐾(𝑖) < 𝑠 (42) 

 

𝑥𝑠𝑖𝑐𝑝 − 𝑥𝑠+1,𝑖𝑐𝑝 ≥ −𝑦𝑠𝑖                   1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃, 𝐾(𝑖) < 𝑠  (43) 

 

𝑥1𝑖𝑐𝑝 = 𝑋𝑖𝑐𝑝                                                1 ≤ 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃, 𝐾(𝑖) < 𝑠  (44) 

 

𝑥𝑠𝑖𝑐𝑝 = 𝑋𝑖𝑐𝑝                     2 ≤ 𝑠 ≤ 𝑆(𝑖), 1 ≤ 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃, 𝐾(𝑖) < 𝑠  (45) 

 

𝑦𝑠𝑖 , 𝑧𝑠𝑖 ∈ {0,1}                                                                       1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (46) 

 

𝑤𝑠𝑖𝑗 ∈ {0,1}                                                             1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (47) 

 

𝑥𝑠𝑖 ∈ {0,1}                                                              1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃  (48) 

 

∑ ∑ 𝑥𝑠+1,𝑖𝑐𝑝

𝑃

𝑝=1

≥ 𝑈𝑠𝑖

𝐶

𝑐=1

                                                                                    1 ≤ 𝑠 < 𝑖 ≤ 𝑆 (49)
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−1 + 𝑦𝑠𝑖 + 𝑈𝑠𝑖 ≤ 𝑎𝑠𝑖𝑗                                             1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (50) 

 

𝑎𝑠𝑖𝑗 ≤ 𝑦𝑠𝑖                                                              1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (51) 

 

𝑎𝑠𝑖𝑗 ≤ 𝑈𝑠𝑖                                                                 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (52) 

 

∑ 𝑝

𝑃

𝑝=1

𝑥𝑠+1,𝑗𝑐𝑝− ∑ 𝑝

𝑃

𝑝=1

𝑥𝑠+1,𝑖𝑐𝑝

≥ −𝑃(1 − 𝑎𝑠𝑖𝑗) − 𝑃(1 − 𝑦𝑠𝑖) − 𝑃(1 − 𝑈𝑠𝑖) − 𝑃 (1 − ∑ 𝑥𝑠+1,𝑗𝑐𝑝

𝑃

𝑝=1

) 

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗, 𝑠 = 𝐾(𝑗), 1 ≤ 𝑐 ≤ 𝐶 (53) 

 

∑  

𝑆

𝑖=𝑠

∑  𝑥𝑠𝑖𝑐𝑝

𝑆

𝑖=𝑠

= 0                                                                                                     𝑠 ≤ 𝑘(𝑖) (54) 

 

∑ 𝑝

𝑃

𝑝=1

𝑥𝑠+1,𝑗𝑐𝑝− ∑ 𝑝

𝑃

𝑝=1

𝑥𝑠+1,𝑖𝑐𝑝 ≥ −𝑃(1 − 𝑈𝑠𝑖) − 𝑃(1 − 𝑈𝑠𝑗) − 𝑃 (1 − ∑ 𝑝

𝑃

𝑝=1

𝑥𝑠+1,𝑗𝑐𝑝) 

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑂(𝑖) < 𝑂(𝑗), 𝑖 ≠ 𝑗, 𝑠 = 𝐾(𝑖), 𝑠 = 𝐾(𝑗), 1 ≤ 𝑐 ≤ 𝐶 (55) 

 

 

Constraints (34), (35) and (46)-(48) are the same as the CRP formulations given. 

Constraints (28)-(33) and (36)-(45) are adapted from CRP formulations for the DCRP. 

However, these constraint sets are restricted for each arriving container, say container i 

that is handled after time stage s, i.e., K(i) < s.  Constraint (49) ensures that when a 

container i arrives at the yard-bay after retrieval of container s at stage s, i.e., 𝑈𝑠𝑖 = 1, then 

arriving container i occupies a slot at the next stage s+1.  Constraints (50), (51) and (52) 

define the value of the binary variables 𝑎𝑠𝑖𝑗 .  Constraint (50) enforces 𝑎𝑠𝑖𝑗 = 1 when there 

exist a container i that will be relocated, i.e., 𝑦𝑠𝑖 = 1, to discharge the retrieval container 

s and a container j arrives immediately after retrieval of container s, i.e., 𝑈𝑠𝑗 = 1. 

Otherwise constraint (50) is redundant.  Constraint (51) sets the value of 𝑎𝑠𝑖𝑗 to 0 when 

there is no blocking container i at the retrieval of container s.  Similarly, constraint (52) 
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forces 𝑎𝑠𝑖𝑗 to be 0 when there is no arriving container j with 𝑈𝑠𝑗 = 1 at the retrieval of 

container s.  Constraint (53) arranges handling order between arrival containers and 

reshuffling containers in the yard-bay.  When 𝑎𝑠𝑖𝑗= 1 constraint (53) implies that arrival 

container j is taken to the yard-bay after relocation of reshuffling container i and retrieval 

of container s at stage s.  Therefore, arrival container j is placed at a higher slot than the 

relocated container i when they are both located in the same column c at next stage s + 1.  

 

When blocking container i and arrival container j are not located in the same column c, 

then this constraint becomes redundant.  Constraint (54) ensure that arriving containers 

do not occupy a slot in yard-bay before their arrival.  Constraint (55) is the DCRP 

equivalent of constraints (15) in the CRP formulations to consider container arrivals. 

Constraint (55) maintains arriving containers are placed in the yard-bay in their arrival 

order.  

 

There are at most S(S -1) + S(S +1)CP/2+2S(S -1)(S -2)/3 binary variables in the DCRP 

formulation.  However, the total number of binary variables are less than this bound in 

practice.  The number of binary variables significantly reduces by taking into account 

only the ones satisfying K(i) < s.  Unfortunately, solving the DCRP formulation to 

optimality can be demanding. Therefore, heuristic methods are more reasonable to obtain 

solutions for the DCRP instead of optimum solution.  

 

4.3 Heuristic Approaches for Dynamic Container Relocation Problem 

 

4.3.1 Reshuffling Index Heuristic 

 

Reshuffling index (RI) heuristic is initially used by Murty et al. (2005) and adapted for 

the DCRP by Wan et al. (2009).  The RI heuristic is an efficient upper bounding method 

which is employed in our TS heuristic approaches.  RI defines the number of relocations 

that should be made to clear blocking containers above the earliest outgoing container in 

a column.  For each column the RI is calculated and incoming (or relocating) containers 

are located on top of the column with the lowest RI.  Clearly, RI is calculated among the 
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columns which are not full. In case of a tie, the container is placed on top of the highest 

column.  In case of a further tie, the container is randomly assigned to a column.  

 

4.3.2 Tabu Search Algorithms 

 

Broadly speaking, TS algorithms move from one solution to another by changing values 

of one or more decision variables depending on the structure of the problem considered 

(Gluver and Laguna,1997).  Unfortunately, changing the value of a decision variable, 

which represents locations of containers within a yard-bay at a time-step, affects all 

subsequent container movements to be made in the DCRP. Hence and efficient algorithm 

is required to restore the feasibility.  To this end we employ the RI heuristic which is 

tailored for the tabu search.  We present a modification to the RI heuristic which is used 

for that purpose in the following. Next, we give details of the two suggested TS based 

algorithms, namely TS algorithm-I (TSA1) and TS algorithm-II (TSA2) for the DCRP. 

In the tabu search based heuristic methods section, we call an arriving (departing) 

container at the yard-bay as incoming (outgoing) container. 

 

To avoid the randomness of the RI heuristic, the latter tie breaking rule is modified to 

assigning the container into the leftmost column.  The slot assignment of containers in 

the yard-bay is called as yard-bay configuration.  A feasible solution of the DCRP is 

obtained by keeping track of yard-bay configurations at each time-step. Initially, the RI 

heuristic is run to obtain a feasible solution.  A Tabu List (TL) records the status of 

columns of the yard-bay for each container.  Once a container, denoted by n, is assigned 

to a column4 c, in a feasible solution, then column c is declared as tabu for container n 

for at least b iterations.  Here, b stands for the number of iterations of the tabu duration 

(tenure).  Then, container n can not be positioned at the tabu column c for at least b 

iterations.  The TS heuristic is run for a total number of K iterations.  A tabu iteration 

consists of finding a feasible solution by following the RI heuristic steps described 

considering the TL which provides diversification of solutions, and hence, the generation 

of different solutions at each iteration of the TS algorithm.  We use two different strategies 

to declare a column c tabu for a container n. In the first strategy, a percentage of the 

incoming containers are randomly selected.  In the second strategy, the container that is 
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relocated after 𝑤 relocations is selected.  In the following we present details of these two 

TS heuristic approaches.  

 

4.3.2.1 Tabu Search Algorithm-I 

 

Now, we present the notation used and a generic algorithm for it.  Let 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 and C   

denote the TL value of container n for column c and the set of available columns on which 

container n can be pla4ced, respectively.  The number of containers that exist in a column 

c is given by 𝑁𝑐.  The total number of time-steps t is shown with T.  A formal outline of 

the TSA1 is given in Algorithm 1.  

 

4.3.2.2 Tabu search algorithm-II 

 

On the other hand, TSA2 employs the number of relocations made since the last tabu 

declaration.  At every w relocations the last relocated container is selected for tabu.  Thus, 

the random parameter α is replaced with a constant parameter w in TSA2.  TSA2 differs 

from the TSA1 in two aspects.  The first one is the selection of tabu containers.  The 

TSA1 chooses incoming containers to declare a column as tabu while the TSA2 considers 

the relocating containers for that purpose.  The second one is the parameter used for tabu 

declarations.  The TSA1 uses the parameter α to randomly decide if a container is going 

to be marked as tabu at Step 4 of the Algorithm 1.  All other steps of TSA2 are the same 

as the ones that of the TSA1.  TSA-I pseudo code is presented below.

 

Step 0. (Initialization): Set 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 = 0 for n= 1,…, N and c= 1,…, C and C   𝑛
𝛼for 

n= 1,…, N. Set tabu iteration number k=1 and time-step t=1. 

Step 1.For time-step t if container n is an arriving container then go to Step 2. Otherwise 

go to Step 6. 

Step 2. (Incoming container): Check  𝑇𝐿𝑖𝑠𝑡𝑛,𝑐   for c= 1,…,C and C   𝑛
𝛼= {c: 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐   =0, 

𝑁𝑐 < 𝐻}. 

Step 3. If the cardinality of the set C    𝑛
𝛼, C   𝑛

𝛼 > 1 then use RI heuristic steps to determine 

the location of container n for columns c C   𝑛
𝛼. If  C   𝑛

𝛼  =1, then place container n to 

column cC   𝑛
𝛼. Otherwise, select the column with lowest 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 among the columns 
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satisfying 𝑁𝑐 < 𝐻 to locate container n. Set 𝑐∗ equals the selected column to place 

container n. 

Step 4. Generate a random number r[0,100]. If r < α then  𝑇𝐿𝑖𝑠𝑡𝑛𝑐∗ = 𝛽 + 1. 

Step 5. If 𝑡 < 𝑇, set 𝑡 = 𝑡 + 1 and go to Step 2. Otherwise, go to Step 7.   

Step 6. (Outgoing container): If there is no container above the outgoing container n then 

remove the container n from the yard-bay configuration and go to Step 5. Otherwise for 

each container 𝑛′ above the container n at column  𝑐∗ repeat the following starting from 

the highest slot and go to Step 5. Check the   𝑇𝐿𝑖𝑠𝑡n`c  for all c= 1,…,C, c𝑐∗ and setC 𝑛
𝛼 =

{𝑐: 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 = 0, 𝑁𝑐 < 𝐻 , c𝑐∗}. If the cardinality of the setC 𝑛′
𝛼   C  𝑛′

𝛼 >1 then use RI 

heuristic steps to determine the location of container 𝑛′ for columns cC   𝑛
𝛼. Otherwise, 

select the column with lowest 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 among the columns satisfying   𝑁𝑐 < 𝐻 to locate 

container 𝑛′. 

Step 7. If  k<K then set k =k+1 a feasible solution is found and update the best upper 

bound accordingly. Set 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐=𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 − 1, 𝑡 = 1 and go to Step 1. Otherwise, stop 

and report the best upper bound. 

 

4.3.3 Min-Max Heuristics for the DCRP 

 

The DCRP formulation becomes intractable for large instances.  Heuristic procedures are 

useful to get approximate solutions within reasonable computational times. In what 

follows, we suggest an efficient heuristic procedure named as Min-Max DCRP (MMD) 

heuristic.  Next, an extension of the MMD heuristic that is originally proposed by 

Jovanovic and Voβ (2014) for the CRP is described.  The Min-Max (MM) algorithm is 

initially proposed by Caserta et al. (2012) as an efficient heuristic for the CRP.  Ünlüyurt 

and Aydin (2012) present a similar solution procedure for the CRP with different 

objective functions.  Next, an improved MM algorithm is proposed by Jovanovic and 

Voβ (2014) for the CRP.  The MM algorithm tries to avoid from creating new relocations 

when a reshuffling container will be relocated to retrieve a target container from the yard-

bay.  To obtain a solution, when there exist a blocking container over a target container, 

it is relocate in a column depending on container priorities.  The priority of a container is 

defined with the inverse order of retrieval of containers.  That is to say, earlier departing 

containers have higher priority than the containers leaving the yard-bay later.  Next, the 
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priority of a column is determined as the highest priority container in that column.  The 

priority of an empty column is assumed to be of lowest priority.  In case, there are multiple 

columns with a lower priority than the blocking container, then the column having the 

highest priority is selected among them to locate the blocking container.  When there is 

no column with a lower priority than the blocking container, it is relocated to the column 

with the lowest priority.  This implies that, the blocking container will continue to be a 

blocking container after its relocation.  Hence, by choosing the column with the lowest 

priority the relocation of the blocking container has been retarded as much as possible 

until the corresponding highest priority container is retrieved from that column. We 

benefit from the ideas behind the MM algorithm and suggest, the so called, MMD 

heuristic for the DCRP.  In addition to the retrieval of containers, the DCRP also considers 

arrival of containers.  Hence, we adapt the MM algorithm so that it can also handle 

arriving containers for the DCRP.  The definition of priority of a container stays the same. 

However, to obtain priority values of containers, their retrieval times should be sorted 

first since there are arriving containers to the yard-bay.  The MMD heuristic works the 

same as the MM algorithm for the blocking containers as described.  Blocking containers 

has to be reshuffled to one of other columns than its current column.  Unlike the blocking 

containers, an incoming container can be placed in any column without such a restriction. 

Therefore, priority calculations is performed for all columns.  Figure 4.2 gives an example 

for the MMD heuristic.  Now, we introduce some additional notation used in MMD 

heuristic. Let 𝐶𝑠 be the yard-bay configuration at time stage s where container s is 

retrieved from the yard-bay.  The priority of a container i is represented with p(i) and the 

priority of a column c is show as 𝑝(c).   𝑃𝑠 stands for the columns that have a lower 

priority than a selected blocking or arriving container.  We present a formal outline of the 

MMD heuristic in Algorithm 1.   Jovanovic and Voβ (2014) suggest an improvement on 

the MM algorithm that works as follows.  Assume that a blocking container is relocated 

and it will continue to be a blocking container.  Now, when the selected column using the 

MM algorithm for relocation becomes full, then that column misses the chance to host a 

higher priority (earlier departing) container on its top.  The suggested changes avoids 

putting a blocking container on the highest row P in such a case.  We modified this 

improvement on the MMD heuristic and call the resulting method as MMD-JV heuristic 

in the sequel. 
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1. (Initialization) Set time stage s = 0 and 𝐶𝑠 as the initial configuration of the yard-

bay.  Sort containers with respect to their retrieval times in ascending order to 

obtain container priorities p(i).  Set upper bound value 𝑍𝑈𝐵 = 0.  

2.  Set s = s +1 and  𝐶𝑠 =  𝐶𝑠−1.  If container s directly accessible from top of a 

column, remove s from 𝐶𝑠 and go to Step 5. 

3. If container s is not directly accessible, let 𝑐𝑠 be the column of container s, starting 

from top to bottom of column 𝑐𝑠 for each blocking container I above container s. 

            i. Set 𝑍𝑈𝐵 = 𝑍𝑈𝐵 + 1. 

            ii. Determine column priorities show as 𝑝∗(𝑐) for c=1,…, C and c ≠ cs
. 

 iii. Construct set Ps ≠ { c : 𝑝∗(𝑐) < p(i) and c ≠ cs }. 

 iv. If Ps ≠  then select highest priority column c* as c*  = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃∗ 
 {𝑝∗(𝑐) } 

v. If Ps =  then select lowest priority column c* as c*  = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝑃∗ 
 {𝑝∗(𝑐) } 

vi. Locate container i in column c*. Update 𝐶𝑠 accordingly. 

4. If there is no arriving container at time stage s go to Step 5. Otherwise in the order 

of their arrival, for each arriving container I at time stage s. 

            i. Determine column priorities show as 𝑝∗(𝑐) for c=1,…, C. 

 ii. Construct set Ps ≠ { c : 𝑝∗(𝑐) < p(i) }. 

 iii. If Ps ≠  then select highest priority column c* as c* = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃∗ 
 {𝑝∗(𝑐) } 

iv. If Ps =  then select lowest priority column c* as c* = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝑃∗ 
 {𝑝∗(𝑐) } 

v. Locate container i in column c*. Update 𝐶𝑠  accordingly. 

5. If s =  S stop and report 𝑍𝑈𝐵.  Otherwise go to Step 2.
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Figure 4.2: Illustrative examples for the MMD heuristic 

 

 



 

  

5. COMPUTATIONAL EXPERIMENTS 

 

 

 

In this section, we present our computational experiments for the CRP and DCRP, 

respectively.  The experiments are performed on a computer with a Intel(R) Core(TM) 

i7-4790 CPU 3.60 GHz and 16 GB RAM operating within Microsoft Windows 10 Pro 

64-bit environment.  The formulations are solved using Gams 24.1.3 with Gurobi solver 

and codes are written in C++. 

 

5.1 Container Relocation Problem 

 

In this section, we present our computational experiments for the.  Then, we show the 

performance of the CRP formulation on randomly generated test instances.  The CRP is 

tested on a standard test bed given by Caserta et al. (2011) that is employed as benchmark 

in most (if not all) of the studies offering a CRP formulation.  It consists of the first 5 

instances randomly generated for 10 different yard-bay size.  These test instances are 

generated so that initially the yard-bay consisting of C columns and H′ tiers where the 

slots are fully loaded by C*H′ containers.  Then, the maximum height of the 

corresponding yard-bay is set as P = H′ + 2 which means the yard-bay contains 2 empty 

tiers for each instance.  Table 5.1 gives a comparison of the CRP formulations.  The first 

and second columns stand for the number of fully loaded rows H′ and the number of 

columns C∙H′ is chosen as 3 and 4 rows, thus, the maximum height P of the yard-bay 

takes values of 5 and 6 respectively.  Total number of columns C of the yard-bay is 

selected from the set {3, 4, 5, 6, 7, 8}.  The third column gives the instance number as 

shown in the work by Caserta et al. (2012).  For each formulation considered, the rows 

under UB and CPU(s) indicate the total number of relocations and the CPU times in 

seconds, respectively.  BRP-II* states the outcome of the formulation suggested by 

Expósito-Izquierdo et al. (2015). BRP-II formulation is proposed by Zehendner et al. 

(2015).  The values in columns from 4 to 7 are directly taken from the reference works
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mentioned. The columns from 8 to 13 stands for the performance of WLT-I, WLT-II and 

WLT-III formulations.  Note that, WLT-I is the original CRP formulation suggested by 

Wan et al. (2009).  Here, we reproduce their results and test on the standard CRP 

instances.  The average value of 5 test instances belonging to different yard-bay 

configurations is denoted with bold characters underneath them.  For the case that a 

formulation does not find a solution, the average values are not reported and indicated 

with N/A. Note that, WLT formulations yields an outcome on all test instances, and hence, 

there is no N/A value for them.  It is observed that BRP-II*, BRP-II, WLT-I, WLT-II and 

WLT-III formulations require an overall average of 1681.73, 2498.78, 292.73, 118.36 

and 149.16 seconds of running time, respectively.  These values are calculated with the 

instances for which the corresponding formulation yields an outcome.  For the WLT-I, 

WLT-II and WLT-III formulations a CPU time limit of 7200 seconds is imposed. Cells 

marked with “-“ indicate that no outcome is produced for that instance by the associated 

formulation.  The cells indicated with a “*” imply that the CPU time of 18000 seconds 

is exceeded by the BRP-II formulation and report the best upper bound found. Outcomes 

of the test instances with H′ = 4 and C = 7 are not reported for the BRP-II* and BRP-II 

formulations in the reference works mentioned.  As a result, they are shown with empty 

cells at the bottom of Table 5.1.  The WLT-II formulation outperforms other formulations 

in an overall average of CPU times.  A pairwise comparison is performed among the WLT 

formulations to give a verdict.  In Table 5.2 each cell represents the total number of 

instances for which the formulation stated in the row is superior then the formulation 

given in the column of the corresponding cell.  For example, the number in the first row 

and third column of Table 5.1 states that WLT-I formulation yields the optimum value in 

shorter CPU times than the WLT-II formulation on 9 instances.  The last column shows 

the total number of such instances in each row.  The WLT-II formulation produce better 

results than the WLT-I and WLT-III formulations on 37 and 18 instances, respectively. 

On the other hand, for the WLT-III formulation, these numbers are 36 and 31 instances 

over the WLT-I and WLT-II formulations.  To sum up, the suggested WLT-II and WLT-

III formulations generally yields better outcomes than the WLT-I formulation. Besides, 

the addition of constraints (23)-(24) in the WLT-III formulation mostly enhances the 

performance of the WLT-II formulation.  Hence, we can say that the WLT-III formulation 

outperforms others in the majority of the test instances.
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Table 5.1: A comparison of the performance of the formulations for the CRP on standard 

test instances. 

Instance Info. BRP-II*a BRP-IIb WLT-Ic WLT-II WLT-III 

H′ C No. UB CPU(s) UB CPU(s) UB CPU(s) UB CPU(s) UB CPU(s) 

    1 6 1.18 6 3.85 6 0.06 6 0.06 6 0.08 

    2 5 1.39 5 3.75 5 0.05 5 0.05 5 0.03 

3 3 3 2 1 2 0.92 2 0.02 2 0.02 2 0.02 

    4 4 1.09 4 1.83 4 0.06 4 0.05 4 0.05 

    5 1 0.68 1 1.5 1 0.03 1 0.03 1 0.03 

Average 3.6 1.07 3.6 2.37 3.6 0.04 3.6 0.04 3.6 0.04 

    1 5 4.76 5 5.61 5 0.13 5 0.13 5 0.11 

    2 3 18.39 3 5.71 3 0.19 3 0.16 3 0.09 

3 4 3 7 11.71 7 39.05 7 0.19 7 0.2 7 0.17 

    4 5 16.06 5 18.01 5 0.2 5 0.19 5 0.17 

    5 6 18.04 6 29.4 6 0.19 6 0.17 6 0.16 

Average 5.2 13.79 5.2 19.56 5.2 0.18 5.2 0.17 5.2 0.14 

    1 6 83.09 6 3323.41 6 0.59 6 0.33 6 0.34 

    2 7 75.95 7 3115.28 7 0.48 7 0.39 7 0.27 

3 5 3 8 100.71 8 2447.87 8 0.44 8 0.47 8 0.49 

    4 6 95.31 6 559.52 6 0.55 6 0.55 6 0.59 

    5 9 65.32 9 1418.47 9 0.92 9 0.77 9 0.42 

Average 7.2 84.08 7.2 2172.91 7.2 0.6 7.2 0.5 7.2 0.42 

    1 11 124.11 11 10858.51 11 100.73 11 61.58 11 8.06 

    2 7 113.29 7 370.5 7 1.02 7 1.06 7 0.88 

3 6 3 11 89.06 15 * 11 15.45 11 5.74 11 13.05 

    4 7 93.12 7 * 7 1.52 7 1.33 7 1.25 

    5 4 96.5 4 73 4 0.48 4 0.41 4 0.38 

Average 8 103.22 N/A N/A 8 23.84 8 14.02 8 4.72 

    1 7 182.14 7 3396.4 7 1.2 7 1.09 7 1.05 

    2 10 284.29 10 10536.5 10 2.39 10 2.53 10 2.5 

3 7 3 9 119.2 - * 9 6.78 9 2.23 9 3.7 

    4 8 472.32 8 2560.7 8 2.06 8 2.06 8 1.92 

    5 12 277.97 12 15273 12 12.02 12 2.06 12 19.3 

Average 9.2 267.18 N/A N/A 9.2 4.89 9.2 2 9.2 5.69 
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    1 8 84.66 8 11058.7 8 22.66 8 14.39 8 3.3 

    2 10 14403.33 - * 10 4.36 10 12.22 10 6.75 

3 8 3 9 8298.85 - * 9 4.45 9 3.09 9 2.98 

    4 10 250.33 - * 10 21.05 10 7.42 10 3.09 

    5 13 6384.65 - * 13 8.72 13 5.08 13 12.5 

Average 10 5884.36 N/A N/A 10 12.25 10 8.44 10 5.73 

           

    1 10 71.96 - * 10 0.63 10 0.49 10 0.58 

    2 10 228.91 10 484 10 0.44 10 0.38 10 0.39 

4 4 3 10 71.99 10 1102 10 0.97 10 0.75 10 1.03 

    4 7 65.25 7 90.77 7 0.42 7 0.36 7 0.34 

    5 9 89.36 9 5544.12 9 0.55 9 0.5 9 0.49 

Average 9.2 105.49 N/A N/A 9.2 0.6 9.2 0.49 9.2 0.57 

    1 16 3544.86 - * 16 90.47 16 81.23 16 199.77 

    2 10 326.54 10 2256.4 10 1.73 10 1.56 10 2.7 

4 5 3 13 1023.98 - * 13 10.78 13 15.38 13 8.61 

    4 8 119.86 8 1493.2 8 0.83 8 0.8 8 0.63 

    5 16 2656.67 17 1213.2 16 821.5 16 286.38 16 1680.09 

Average 12.6 1534.38 N/A N/A 12.6 185.06 12.6 77.07 12.6 378.36 

    1 17 4077.08 - * 17 5814.58 17 1842.52 17 1603.97 

    2 8 18985 8 177 8 2.84 8 2.03 8 1.84 

4 6 3 13 1706.75 - * 13 35.08 13 24.27 13 9.08 

    4 14 2376.86 - * 14 16.86 14 8.06 14 145.63 

    5 15 8564.2 - * 15 1160.59 15 21.25 15 39.7 

Average 13.4 7141.98 N/A N/A 13.4 1405.99 13.4 379.62 13.4 360.04 

    1         17 134.55 17 133.84 17 3314.67 

    2         18 3074.91 18 793.94 18 86.47 

4 7 3         13 103.94 13 11.05 13 7.52 

    4         16 1641.25 16 1049.42 16 240.14 

    5         16 1514.36 16 1517.84 16 30.72 

Average N/A N/A N/A N/A 16 1293.8 16 701.22 16 735.9 

 

a The results of the BRP-II* formulation are taken from Exposito-Izquierdo et al. (2015) 

b The results of the BRP-II formulation are taken from Zehendner et al. (2015) 

c The original CRP formulation proposed by Wan et al. (2009)
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Table 5.2: Comparison of WLT formulations for the CRP. 

 

 WLT-I WLT-II WLT-III Total 

WLT-I - 9 13 22 

WLT-II 37 - 18 55 

WLT-III 36 31 - 67 

 

 

In this following, we present our results obtained by using PI heuristic for the CRP. The 

CRP is tested on a standard test bed given by Caserta et al. (2011) that is employed as 

benchmark in most of the studies offering a CRP formulation. It consists of the first 5 

instances randomly generated for 9 different yard-bay size. These test instances are 

generated so that initially the yard-bay consisting of C columns and H′ tiers where the 

slots are fully loaded by C∙ H′ containers. Then, the maximum height of the corresponding   

yard-bay is set as P = H′ + 2 which means the yard-bay contains 2 empty tiers for each 

instance. Table 5.3 gives a comparison of the CRP heuristics RI and PI. The first and 

second columns stand for the number of fully loaded rows H′ and the number of columns 

C. H′ is chosen as 3 and 4 rows, thus, the maximum height P of the yard-bay takes values 

of 5 and 6 respectively. Total number of columns C of the yard-bay is selected from the 

set {3, 4, 5, 6, 7, 8}. The third column gives the instance number as shown in the work 

by Caserta et al. 2012). For each heuristic considered, the rows under UB indicate the 

total number of relocations, respectively. The columns 4 and 5 show the performance of 

PI and RI, respectively. Here, we reproduce their results and test on the standard CRP 

instances.  
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Table 5.3 A comparison of the CRP heuristics RI and PI 

 

Instances PI RI 

H' C No. UB UB 

    1 6 6 
   2 5 6 
3 3 3 2 2 
   4 4 4 
    5 1 1 

    1 5 6 
   2 3 3 
3 4 3 7 7 
   4 5 5 
    5 6 6 

   1 6 6 
   2 7 7 
3 5 3 8 9 
   4 6 6 
    5 9 9 

   1 11 14 
   2 7 7 
3 6 3 11 11 
   4 7 7 
    5 4 4 

    1 7 7 
   2 10 10 
3 7 3 9 9 
   4 8 8 
    5 12 12 

    1 8 8 
   2 10 11 
3 8 3 9 9 
   4 10 10 
    5 13 14 

    1 10 11 
   2 10 11 
4 4 3 10 10 
   4 7 7 
    5 9 9 

    1 16 16 
   2 10 11 
4 5 3 13 14 
   4 8 9 
    5 16 18 
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   1 17 20 
   2 8 8 
4 6 3 13 15 
   4 15 15 
  5 15 16 

 

 

5.2 Dynamic Container Relocation Problem 

 

For the DCRP, we follow a similar strategy with Akyüz and Lee (2014).  The instances 

are randomly generated so that the yard crane movements do not get into a deadlock by 

trying to move a blocking container above the maximum height P of the yard-bay.  That 

is, relocations only occur within the yard-bay.  It is assumed that initially there are  

S′ = C (P -1)= 2 containers in the yard-bay.  Here, the number of arrival containers are 

limited to a maximum of 30 containers considering the capabilities of the suggested 

DCRP formulation.  In Table 5.4, the first three columns consecutively give the number 

of columns C, the number of rows P and the initial number of existing containers S′ of 

the yard-bay.  The fourth column states the instance number denoted with “No.”.  Note 

that 5 random instances are created for each instance combination.  5 different number of 

arrival containers are chosen from the set 10, 15, 20, 25, 30.  In the columns from 5 to 13, 

for each number of arrival containers, we present the number of relocations made and the 

CPU time in seconds under the rows named “UB” and “CPU(s)”, respectively.  Hence, 

there are 125 randomly generated test instances in total.  The average of 5 test instances 

is denoted with bold characters under them.  Similar to the WLT formulations for the 

CRP, a CPU time limit of 7200 seconds is imposed for the DCRP formulation on the 

DCRP instances.  The suggested DCRP formulation yields the optimal solution on 109 

out of 125 test instances.  The values indicated with "𝑎" are the best solutions reported on 

7 test instances when computing time exceeds the CPU time limit.  Lastly, our DCRP 

formulation can not produce an outcome on 9 out of 125 test instances within 7200 

seconds.  The DCRP formulation proposed by Akyüz and Lee (2014) can exactly solve 

up to 10 time steps where each time step includes either a container arrival or departure. 

However, the test instances solved with our DCRP formulation contains up to handling 

of 30 arrivals and 42 retrievals (departure of 12 existing containers and 30 arriving  
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containers) that it corresponds to a total of 72 time steps defined by Akyüz and Lee 

(2014).  Therefore, our proposed DCRP formulation can solve larger instances then the 

former formulation suggested by Akyüz and Lee (2014).   

 

 

Table 5.4: The performance of the DCRP formulation on randomly generated test 

instances. 

Instance Info. 10 15 20 25 30 

C P S' No. UB CPU UB CPU UB CPU UB CPU UB CPU 

      1 0 0.13 0 0.33 0 1.55 0 1.97 0 2.31 

    2 0 0.08 0 0.22 0 1.25 0 8.2 0 10.59 

6 2 3 3 0 0.13 0 0.28 0 2.56 0 0.36 0 16.67 

    4 0 0.13 0 0.16 0 1.16 0 3.06 0 11.74 

    5 0 0.13 0 0.3 0 2.63 0 5.95 0 1.27 

Average 0 0.12 0 0.26 0 1.83 0 3.91 0 8.52 

      1 0 0.38 0 1.19 0 1.78 0 21.69 1 321.8 

    2 0 0.31 0 0.49 0 4.42 0 5.28 0 96.73 

6 3 6 3 0 0.33 0 0.99 1 488.7 0 9.47 2 6060.98 

    4 0 0.27 0 1.27 0 3.61 1 397.95 1 165.73 

    5 0 0.28 0 0.77 0 2.16 0 5.24 0 15.11 

Average 0 0.31 0 0.94 0.2 100.13 0.2 87.93 0.8 1332.07 

      1 2 1.36 0 1.13 3 13.91 2 4928.67 1 144.02 

    2 0 1.17 1 1.61 1 3.02 0 121.84 1 78.42 

6 4 9 3 1 1.03 0 2.27 1 5.33 1 13.05 8𝛼 7200.38 

    4 1 0.66 1 3 1 18.25 1 380.02 1 3058.97 

    5 2 1.94 2 6.67 1 2.25 3 35.84 24𝛼 7200.41 

Average 1.2 1.23 0.8 2.94 1.4 8.55 1.4 1095.88 7 3536.44 

      1 1 2 3 7.03 1 13.39 3 58 1 2664.06 

    2 3 1.78 2 6.3 3 3139.41 3 2747.52 2 19.61 

6 5 12 3 3 4.39 4 2108.25 2 348.5 2 321.39 2 836.52 

    4 3 2.81 3 5.66 4 41.3 1 75.17 16𝛼 7200.47 

    5 1 2.53 2 5.45 2 1407.13 3 2040.91 26𝛼 7200.48 

Average 2.2 2.7 2.8 426.54 2.4 989.95 2.4 1048.6 9.4 3584.23 

      1 7 265.36 3 434.36 12𝛼 7200.35 - 7200.28 - 7200.38 

    2 7 8.64 11𝛼 7200.28 21𝛼 7200.36 1 379.08 - 7200.31 

6 6 15 3 5 454.08 3 2275.53 5 2249.92 - 7200.28 - 7200.39 

    4 4 17.03 4 1655.39 0 48.69 - 7200.24 - 7200.33 

    5 7 5.92 - 7200.13 4 6659.98 2 14.28 - 7200.34 

Average 6 150.21 N/A 3753.14 8.4 4671.86 N/A 4398.83 N/A 7200.35 
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We use the test bed given by Akyüz and Lee (2014).  There are two groups of instances 

in the test bed: Group-I and Group-II instances.  Each group consists of medium and high 

density of container traffic at the yard-bay with C = 6 columns.  The range of height, H, 

is chosen from the set {2, 3, 4, 5, 6} and the number of containers, N, which departs from 

the yard-bay, is selected from the set {5, 50, 100, 200, 400, 800}.  This makes a total of 

60 different combinations for each group of instances. 20 test instances for each 

combination are randomly generated.  Therefore, there are 1200 instances for each group. 

We refer to the work by Akyüz and Lee (2014) for more details on the test bed. In the 

following, we report our results obtained by the heuristic methods proposed for the 

DCRP. In Table 5.5, we summarize the performance of the TSA1 on Group-I and Group-

II instances.  The number of TS iterations is set to K = 10000.  The first column indicates 

the group and the density of the test instances.  The second column gives the size of the 

test instances so that (C, H) stands for the number of columns and rows (height) in the 

yard-bay, respectively.  The tabu duration parameter b is set to be b = 3 after our 

preliminary experiments.  The percentage to declare a column as tabu for an incoming 

container, denoted with parameter, is calibrated as α =2 and α = 3 in the light of our initial 

experiments.  The columns “UB” and “CPU” indicate the total number of relocations and 

the CPU times in seconds, respectively.  Each cell gives the average of 20 ∙ 6 = 120 test 

instances with different number of containers, N.  Columns 3 to 6 include the results when 

α= 2; β = 3 and α = 3; β = 3.  In column 7, we remove the limit on number of tabu 

iterations and impose a time limit of 4 seconds to run the TSA1 algorithm with the same 

parameters α= 2, β = 3.  The last two columns present the performance of the original RI 

heuristic whose results are taken from Akyüz and Lee (2014) for comparison.  The best 

outcomes are shown with bold characters for each row. Clearly, the performance of TSA1 

increases as the number of TS iterations (or CPU time limit) increases. Observe that the 

RI heuristic is more efficient than the TSA1.  We observe that the suggested TSA1 

performs better than the RI heuristic for H = 2 and H = 3 on all instances.  Moreover, for 

Group-I and Group-II instances with medium density having a height of H = 4 the TSA1 

yields better outcomes than the RI heuristic.  The TSA2 works 22.2% faster than RI 

heuristic on the average.  However, RI heuristic produces better upper bounds than the 

TSA 2.  Therefore, the results of the TSA2 are not reported.
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Table 5.5: Summary of the performance of the TSA1 on Group-I and Group-II instances 

Instance Group Size α=2 β=3 α=3 β=3 α=2 β=3 RI 

  (C,H) UB CPU UB CPU UB (4 s. ) UB CPU 

Group-I medium (6,2) 0.04 1.19 0.04 0.92 0.04 0.11 0.08 

  (6,3) 2.24 1.41 2.3 1.16 2.2 3.37 0.08 

  (6,4) 24.68 1.72 24.9 1.66 24.37 25.41 0.08 

  (6,5) 63.03 2.22 64.03 2.34 62.33 57.6 0.08 

  (6,6) 113.86 2.71 115.16 2.94 113.55 98.84 0.09 

Group-I high (6,2) 25.41 1.2 25.96 0.93 25.05 30.57 0.08 

  (6,3) 83.42 1.72 83 1.42 82.16 86.3 0.09 

  (6,4) 144.05 2.31 144.15 2.2 143.19 138.65 0.09 

  (6,5) 221.84 3.13 222.48 3.09 221.38 211.95 0.1 

  (6,6) 293.23 3.68 293.64 3.98 292.51 276.32 0.11 

Group-II medium (6,2) 4.91 0.87 4.92 1.02 4.85 5.24 0.07 

  (6,3) 44.67 1.29 44.83 1.36 44.45 45.88 0.08 

  (6,4) 92.41 2.12 92.35 1.76 91.62 91.63 0.08 

  (6,5) 121.82 2.57 122.24 2.16 122.08 117.45 0.09 

  (6,6) 171.92 3.28 171.8 2.7 171.22 158.92 0.1 

Group-II high (6,2) 71.24 1.06 71.68 1.27 70.81 76.48 0.08 

  (6,3) 139.43 1.65 139.6 1.8 139.23 139.89 0.09 

  (6,4) 200.71 2.5 201.55 2.17 200.16 188.72 0.1 

  (6,5) 278.15 3.46 278.81 2.85 278.13 247.38 0.11 

  (6,6) 368.43 4.14 369.25 3.67 368.43 315.57 0.13 

 

 

 

The results of the MMD heuristic is obtained on the so called "Group-I" test instances 

proposed by Akyüz and Lee (2014).  In Table 5.6, the performance of the MMD heuristic 

is summarized on the test instances.  The first column indicates the density of the test 

instances: medium and high.  The second and third column gives the size of the test 

instances so that C and H are the number of columns and rows (height) in the yard-bay. 

The results of the heuristic procedures indicate the number of relocations. Column 4 

shows the best Index Based (IB) heuristic result reported by Akyüz and Lee (2014). As a 

remark, IB heuristics use some rule of thumb to give weights to columns of the yard-bay 

in order to decide the location of a container in the yard-bay.  Columns 5 and 6 contain 

the results of the MMD and MMD-JV heuristics.  Last column states the best outcome of 

the BS heuristic reported by Akyüz and Lee (2014).  Each cell from columns 4 to 7 of 



41 

  

Table 5.6 gives the average of 120 test instances.  Further, outcomes of the best 

performing heuristic method are shown with bold characters.  The running times of MMD 

and MMD-JV heuristics are negligible, and thus, CPU times are not reported here. 

Nevertheless, the MMD and MMD-JV heuristics are both more efficient than IB and BS 

heuristics.  The MMD heuristic performs better than the IB heuristics on high density 

instances for all height values H of the yard-bay and on medium density instances for H 

≥ 4.  Broadly speaking, the MMD heuristic outperforms the MMD-JV heuristic in yard-

bays having smaller height value H.  The converse holds in favor of MMD-JV heuristics 

when H gets larger. In particular, the MMD-JV heuristic is superior than the MMD 

heuristic on medium and high density instances having H ≥ 4.  A similar result can be 

drawn between the MMD-JV and BS heuristics.  The MMD-JV heuristic gives poor 

results than the BS heuristics on medium and high density instances with H ≤  3 and H ≤ 

4, respectively.  On the remaining instances the MMD-JV heuristic performs better than 

the BS heuristic.  Notice that, the CPU time required for the BS heuristic can be 

prohibitive.  Therefore, for yard-bays having a height of H ≥ 5, the MMD-JV heuristic is 

a better alternative.  The MMD-JV heuristic is also an efficient choice for yard-bays 

having a height of H ≤ 4. 

 

 

Table 5.6: The performance of the heuristic procedures for the DCRP on standard test 

instances 

Instance Info. IB MMD MMD-JV BS 

Density C H Heuristic Heuristic Heuristic Heuristic 

    2 0.11 0.22 1.24 0.03 

    3 3.08 3.13 3.01 1.77 

Medium 6 4 23.82 16.18 15.86 17.14 

    5 53.29 35.88 35.51 44.99 

    6 95.45 63.11 61.01 82.17 

    2 30.16 27.42 47.88 15.59 

    3 78.16 70.39 88.73 54.39 

High 6 4 133.25 117.17 120.26 103.32 

    5 210.64 185.79 176.06 177.7 

    6 271.03 239.43 227.03 244.97 

 



 

  

6. CONCLUSION 

 

 

 

In this work, we address the CRP and its dynamic extension DCRP. The CRP tries to 

discharge existing containers from a single yard-bay while minimizing total number of 

container relocations. Unlike the CRP, the DCRP permits new containers to join the yard-

bay as well. We propose mathematical programming formulations for the CRP and 

DCRP. Efficient heuristics are also suggested for the CRP and DCRP. An extensive set 

of computational experiments is performed on both standard and randomly generated test 

instances. 

 

WLT-I formulation originally developed by Wan et al. (2009) is modified and two new 

formulation is proposed for the CRP. WLT-II and WLT-III compared with existing 

formulations in literature. Our results show that WLT-II and WLT-III formulations yields 

better outcomes than existing formulations in literature. Next, we propose a new DCRP 

formulation wich performs better than the former formulation suggested by Akyüz and 

Lee (2014). In particular, the new DCRP formulation can solve instances having a 

planning period of up to seven times longer than we can obtain with the existing 

formulation. 

 

Two TS based heuristic algorithms are proposed for the DCRP. The first algorithm, 

TSA1, uses a random selection strategy for tabu declarations while the second algorithm 

TSA2 employs a fixed number of steps for that purpose. According to our computational 

experiment we observe that the proposed TSA-I is efficient and yields promising 

outcomes. Next, we develop the PI heuristic which performs better than the RI heuristic 

for the CRP.  

 

Two efficient heuristic procedures are devised for the DCRP. Basically, they are 

enhancements of the MM algorithm. The MMD and MMD-JV heuristics are tested on 



43 

  

standard test instances. Our computational experiments state that both MMD and MMD-

JV heuristics are very efficient and yield promising outcomes compared to other heuristic 

procedures from the literature for the DCRP. 

 

Introducing valid inequalities for existing CRP and DCRP formulations and the design of 

exact solution procedures can be a worthwhile further research. Moreover, unrestricted 

CRP and DCRP, which relax assumption A3 by allowing container pre-marshalling 

operations, may be a fruitful research area. In particular, enhanced formulations can be 

designed for the unrestricted problems as a future work.
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