

STATIC AND DYNAMIC CONTAINER RELOCATION PROBLEMS:

FORMULATIONS AND EFFICIENT HEURISTIC PROCEDURES

(STATİK VE DİNAMİK KONTEYNER PROBLEMİLERİ İÇİN

FORMÜLASYONLAR VE ETKİN SEZGİSEL YAKLAŞIMLAR)

by

O s m a n K A R P U Z O Ğ L U

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

in

LOGISTICS AND FINANCIAL MANAGEMENT

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

May 2016

This is to certify that the thesis entitled

STATIC AND DYNAMIC CONTAINER RELOCATION PROBLEMS:

FORMULATIONS AND EFFICIENT HEURISTIC PROCEDURES

prepared by Osman KARPUZOĞLU in partial fulfillment of the requirements for the

degree of Master of Science in Logistics and Financial Management at the

Galatasaray University is approved by the

Examining Committee:

Yrd. Doç. Dr. M. Hakan AKYÜZ (Supervisor)

Department of Industrial Engineering

Galatasaray University -------------------------

Prof. Dr. Temel ÖNCAN

Department of Industrial Engineering

Galatasaray University -------------------------

Doç. Dr. İbrahim MUTER

Department of Industrial Engineering

Bahçeşehir University -------------------------

Date: -------------------------

iii

ACKNOWLEDGEMENTS

I would first like to thank my family, especially Mom and Dad, for the continuous support

they have given me throughout my time in graduate school; I could not have done it

without them. Second, I would like to express my sincere gratitude to my advisors Prof.

Temel Öncan and Assist. Prof. M. Hakan Akyüz for the continuous support of my master

study and research, for their patience, motivation and immense knowledge. Their

guidance helped me in all the time of research and writing of this thesis. I could not have

imagined having better advisors and mentors for my master study.

May 2016

Osman Karpuzoğlu

TABLE OF CONTENTS

LIST OF SYMBOLS ... vi

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

ABSTRACT .. ix

ÖZET ... x

1. INTRODUCTION .. 1

2. LITERATURE REVIEW .. 4

3. CONTAINER RELOCATION PROBLEM .. 6

 3.1 Container Relocation Problem Definition .. 6

 3.2 Container Relocation Problem Formulations ... 6

 3.2.1 WLT-II Formulation ... 7

 3.2.2 WLT-III Formulation .. 13

 3.3 A New Heuristic Approach for Container Relocation Problem 15

4. DYNAMIC CONTAINER RELOCATION PROBLEM 18

 4.1 Dynamic Container Relocation Problem Definition ... 18

 4.2 Dynamic Container Relocation Problem Formulation 18

 4.3 Heuristic Approaches for Dynamic Container Relocation Problem 24

 4.3.1 Reshuffling Index Heuristic ... 24

 4.3.2 Tabu Search Algorithms .. 25

 4.3.2.1 Tabu Search Algorithm-I .. 26

 4.3.2.2 Tabu Search Algorithm-II ... 26

 4.3.3 Min-Max Heuristics for the DCRP .. 27

5. COMPUTATIONAL EXPERIMENTS ... 31

 5.1 Container Relocation Problem ... 31

v

 5.2 Dynamic Container Relocation Problem .. 37

6. CONCLUSION ... 42

REFERENCES .. 44

BIOGRAPHICAL SKETCH ... 48

LIST OF SYMBOLS

CRP : Container relocation problem

DCRP : Dynamic container relocation problem

PI : Path index

TSA : Tabu search algorithm

BS : Beam search

MMD : Min Max heuristic algorithm

MMDJV : Modified MMD heuristic by using Javonovic-Voss heuristic

WLT : Original CRP formulation presented by Wan et al. (2009)

WLT-DCRP : Modified version of WLT-II for DCRP

RI : Reshuffling index heuristic

BRP : Block relocation problem

LIST OF FIGURES

Figure 1.1: A block of containers .. 2

Figure 3.1: Illustrative example for the CRP ... 8

Figure 3.2: Illustrative example for 𝑍𝐿𝐵 calculation .. 14

Figure 3.3: Initial yard-bay configuration for PI ... 15

Figure 3.4: Configuration image after removal for PI ... 16

Figure 3.5: Configuration after retrieval of target container for PI 17

Figure 4.1: DCRP example .. 20

Figure 4.2: Illustrative examples for the MMD heuristic .. 30

LIST OF TABLES

Table 5.1: A comparison of the performance of the formulations for the CRP on

standard test instances ... 33

Table 5.2: Comparison of WLT formulations for the CRP .. 35

Table 5.3: A comparison of the CRP heuristics RI and PI ... 36

Table 5.4: The performance of the DCRP formulation on randomly generated test

instances .. 38

Table 5.5: Summary of the performance of the TSA1 on Group-I and Group-II instances

 .. 40

Table 5.6: The performance of the heuristic procedures for the DCRP on standard test

instances .. 41

ABSTRACT

The container relocation problem (CRP) which is known to be NP-hard, tries to empty a

single yard-bay which contains S containers each having a given retrieval order so as to

minimize the total number of relocations performed. The DCRP is an extension of the

CRP where containers are both received and retrieved from a single yard-bay and the

arrival and departure sequences of containers are assumed to be known in advance. Two

enhanced Binary Integer Programming (BIP) formulations for the CRP and a novel BIP

formulation for the DCRP are devised. Computational experiments are performed to

analyze new formulations by using standart test instances from the literature. Our results

show that, new formulations are promising and yield better results in general for both

CRP and DCRP. A new heuristic called as Path Index heuristic, is proposed to solve the

CRP. Tabu search based heuristic approaches are proposed to solve the DCRP. In

addition, two Index Based heuristics are developed and tested for the DCRP.

Computational experiments are performed on an extensive set of test instances from the

literature. Our results indicate that the proposed algorithms are efficient and yield

promising outcomes. Especially, IB heuristics show a superior performance than the ones

from the literature on a set of standard test instances for the DCRP.

Keywords: container stacking, integer programming, container relocation, heuristics,

container terminals.

ÖZET

Dünya deniz ticaretinin % 50'sinden fazlasını konteyner taşımacılığı oluşturur.

Günümüzde teknolojik gelişmeler daha büyük ve yüksek hızlı gemilerin üretimine olanak

vermiştir. Bu nedenle konteyner terminallerini öncesine göre daha yüksek miktarlarda

konteyner taşıma durumunda kalmıştır. Özellikle mega konteyner gemilerinin ortaya

çıkışıyla konteyner terminallerinin öncesine göre daha iyi organize edilmesini bir

zorunluluk haline gelmiştir. Bütün bunlar göz önüne alındığında, konteyner

terminallerinin etkin yönetimi büyük önem taşımaktadır.

Konteyner terminal alanı rıhtım ve depolama alanı olarak ikiye ayrılmaktadır. Genel

olarak, liman işletmecileri rıhtım tahsisi, rıhtım vinci atama ve zamanlama ve depolama

planlaması gibi rıhtım alanı operasyonlarına daha fazla önem vermektedir. Depolama

alanı işlemleri, rıhtım tarafından konteynerlerin transfer edilmesi, vinç planlaması,

konteyner işlemlerinin halledilmesinden oluşur. Depolama alanı işlemlerinin önemi

terminal operatörleri tarafından sıklıkla gözardı edilmektedir. Öte yandan depolama alanı

operasyonlarının etkin yönetimi iskele alanı işlemlerinin başarısı ile doğrudan

bağlantılıdır.

Bir konteyner sırası belirli yükseklik ve ve sütun sayısına sahiptir. Sütundaki

konteynerlere erişim sadece yukarıdan yapılmaktadır. Hedef konteynerin üzerindeki

konteynerleri, hedef konteyner alınmadan önce başka sütunlara taşınması gerekmektedir.

Bu taşınma olayı yer değiştirme olarak tanımlamaktadır. Bu çalışmada depolama alanı

problemlerinden olan konteyner yer değiştirme problemine odaklanılmıştır. Konteyner

yer değiştirme problemi, konteynerlerin başlangıç düzeninin ve konteynerlerin ayrılış

sırasının belli olduğu bir konteyner sırasını boşaltılır yapılan yer değiştirme sayısını en

azlamayı hedefler. Konteyner yer değiştirme problemi sadece konteyner sırasından

ayrılan konteynerlerin olduğu durağan bir problemdir. Dinamik konteyner yer değiştirme

xi

 probleminde ek olarak konteyner sırasına eklenen geliş zamanı bilinen gelen konteyner

vardır. Bu çalışmada öncelikle konteyner yer değiştirme problemi literatürdeki

gösterimler literatürdeki sınama ortamı kullanılarak karşılaştırılmış ve literatürden

seçilen bir gösterim modifiye edilerek konteyner yer değiştirme problemi için daha iyi

sonuçlar alınmıştır. Bu yeni gösterim üzerinde değişiklikler yapılarak ikinci bir gösterim

elde edilmiştir. Yeni elde edilen iki gösterim literatürdeki gösterimlerle karşılaştırılmış

ve önerdiğimiz gösterimlerin daha iyi performans sergilediği gözlenmiştir. Konteyner yer

değiştirme problemi için yapılmış gösterim dinamik probleme uyarlanarak ücüncü bir

gösterim elde edilmiştir. Sonuçlarda literatürdeki dinamik gösterimlere göre daha fazla

işlem hesaplayabildiği gözlenmiştir. Bu gösterimlerden yola çıkarak değişik sezgisel

yöntemler konteyner yer değiştirme problemleri için oluşturulmuştur. Sezgiselllerin ilki

konteyner yer değiştirme problemi için oluşturulmuştur ve küçük örneklemler üzerinde

başarılı olmuştur fakat büyük örneklemlerde aynı performansı sergileyememiştir. Diğer

üç sezgisel dinamik konteyner yer değiştirme problemi için tasarlanmıştır. İlk olarak tabu

arama sezgiseli ile literatürdeki bir indeks tabanlı sezgiselin karışımı şeklinde üretilen

method literatürdeki sezgisellere göre bir gelişme gösterememiştir. Daha sonrasında

literatürdeki bir konteyner yer değiştirme problemi sezgiselinin dinamik probleme

uyarlanması sonucu iki adet sezgisel oluşturulmuş ve bunlar literatürdeki mevcut

sezgisellere göre daha iyi performans göstermişlerdir.

1

1. INTRODUCTION

More than 50% of the world sea borne trade in terms of dollars are carried with

containerized cargo (UNCTAD, 2014). Drastic changes in emerging technologies such

as increased speed and size of vessels; enforce, container terminals has to transfer larger

amounts of containers than before. In particular, with the introduction of mega container

vessels, well organized container terminal operations are needed nowadays. Therefore,

efficient management of container terminals is crucial.

The container terminal area can be separated into two: quay side area and yard side area.

In general, terminal operators give more priority to quay side area operations which

include berth allocation, quay crane assignment and scheduling, and vessel storage

planning. Yard side operations include transferring containers from quay side, yard crane

scheduling, and storing and handling of containers at the yard storage area. The

importance of yard side operations is usually ignored by terminal operators since they

mostly charge liner shipping companies according to the number of containers handled

with quay cranes. On the other hand, efficiency of yard side highly interrelated with the

success of quay side operations.

 A yard area includes blocks of containers which is illustrated with Figure 1.1. A yard-

bay is served with a yard crane so that containers are received and retrieved at top of the

columns. Containers on top of a column are directly accessible for retrieval. However,

if a target container (a container that will be retrieved from yard-bay immediately) isn’t

positioned at top of a column, then all containers above the target container have to be

relocated to other columns of the yard-bay. Once blocking containers are cleared, target

container can be retrieved. These clearing movements are called as relocations.

Relocations are idle operations for yard cranes.

2

Figure 1.1: A block of containers. Source Akyüz and lee (2014)

We refer to the works by Steenken et al. (2004) and Stahlbock and Voβ (2008) as

excellent surveys on container terminal operations. Two problems, which arise in the

yard side of the container terminals, is focused in this work. We first address the

Container Relocation Problem (CRP) which aims to minimize the total number of

relocations accomplished to empty out a single yard-bay with a capacity of C columns

(stacks) having a height of P rows (tiers) where S containers, whose retrieval sequences

is given a priori, are initially located within the yard-bay. The CRP is a static problem in

the sense that it only considers departure of containers from the yard-bay. We also

consider a dynamic extension of the CRP where containers arrive and depart at the yard-

bay, namely the Dynamic Container Relocation Problem (DCRP).

The CRP is an intensively studied problem which is introduced by Kim and Hong (2006).

It is synonymously referred to as the “Blocks Relocation Problem” in the works by

Caserta et al. (2012, 2011). In the CRP relocations can only occur when a container has

to be taken out from the yard-bay. Thus, pre-marshalling is not allowed to reduce the

number of future relocations henceforth. The CRP is also called as “restricted” CRP

when this assumption is made. On the other hand, “unrestricted” CRP allows pre-

marshalling by relaxing this assumption. Here, we follow the same framework described

by Kim and Hong (2006) and limit ourselves with the restricted CRP.

DCRP is more realistic extension of the CRP when containers also arrive at the yard-bay.

Given arrival and retrieval sequences of S containers, the DCRP tries to minimize the

total number of relocations in a yard-bay. The DCRP inherits and extends the

assumptions of the CRP such that it also considers the case of container arrivals.

3

We suggest two mathematical programming formulations for the CRP. Our formulations

enhance the one originally proposed by Wan et al. (2009) and yields promising outcomes.

Existing formulations and the ones presented in thesis are compared on standard

benchmark instances from the literature. A novel mathematical programming

formulation is developed which enhances the formulation previously offered by Akyüz

and Lee (2014) for the DCRP. In light of these information we propose efficient heuristics

for both CRP and DCRP.

In the reminder of this work is organized as follows. Section 2 gives a brief review of the

literature for the CRP and DCRP. Section 3 presents definition of CRP problem and our

solution methods for it. Section 4 contains DCRP problem definition and our brand new

formulation for DCRP. Furthermore we present new heuristic approaches for DCRP in

section 4. Numerical experiments given in section 5. Lastly, section 6 present our

conclusions and a discussion for future research directions.

2. LITERATUR REVIEW

Kim et al. (2000) propose a dynamic programming model to minimize the total number

of relocations where containers are grouped based on their weights. Kim and Hong

(2006) propose a branch and bound (BB) algorithm and offer a rule of thumb heuristic

procedure for the CRP. Since the seminal work by Kim and Hong (2006), there exist

several studies addressing the CRP. The first mathematical programming formulation of

the CRP is presented in the work by Wan et al. (2009) in which efficient heuristics are

also presented. Caserta et al. (2011) develop a metaheuristic algorithm which employs a

dynamic programming scheme for the CRP. An efficient tree search procedure for the

CRP is offered by Forster and Bortfeldt (2012). Caserta et al. (2012) show that the CRP

is NP-hard and suggest two formulations for the CRP. These formulations solve

unrestricted CRP and restricted CRP formulation, respectively. Ünlüyurt and Aydin

(2012) minimize the total time to empty a single yard-bay by a BB algorithm and propose

heuristic procedures. Petering and Hussein (2013) introduce a new look-ahead algorithm

that yields better solutions than other algorithms presented by Kim and Hong (2006), Lee

and Lee (2010), Caserta et al. (2011), Ünlüyurt and Aydin (2012) for the CRP. Jovanovic

and Voss (2014) implement a chain heuristic based on the “Max-Min” (MM) algorithm

of Caserta et al. (2012) and offer an improvement on the MM algorithm for the CRP. For

an in-depth discussion on container terminal operations and on stacking problems in

storage areas, we refer to excellent surveys by Stahlbock and Voss (2008) and Lehnfeld

and Knust (2014), respectively. Lehnfeld and Knust (2014) offer a classification scheme

which covers other variants of the stacking problems as well as their complexity results

that exist in the literature. Recently, Jin et al. (2015) develop a greedy look-ahead solution

procedure which is employed for both restricted and unrestricted variants of the CRP as

well as grouped and individual containers. Their tree search based approach yields the

best results in shorter running times than the previous heuristic procedures in the

literature. A modification on the formulation of Caserta et al. (2012) is offered by

5

 Expòsito-Izquierdo et al. (2015) and they implement a BB algorithm for the CRP.

Zehendner et al. (2015) made correction on the second formulation presented by Caserta

et al. (2012) and offer an improved alternative CRP formulation. A preprocessing

strategy is applied to improve the performance of the alternative formulation. Recently,

Ku and Arthanari (2016) follow a new perspective and offer an abstraction method. This

method significantly reduces the search space of the CRP and exactly solves small to

medium size test instances from the literature in reasonable computing times.

In contrast to CRP, the researchers did not give much attention to the DCRP. Wan et al.

(2009) is the first work which introduces the DCRP. Rei and Pedroso (2013) work with

the DCRP denominated as Stacking Problem (SP), which is shown to be NP-hard, where

containers arrive and depart at a single yard-bay. Akyüz and Lee (2014) propose a

mathematical programming formulation including a Beam Search (BS) heuristic for the

DCRP. Konig et al. (2007) address a closely related problem to the DCRP where they

deal with the stacking of steel slabs. Tang et al. (2012) also work on similar relocation

problems in steel plants. Casey and Kozan (2012) focus on a variant of the DCRP where

the total processing time of the straddle carrier serving a single yard-bay is minimized.

Borjian et al. (2015) work on a variant of the DCRP considering a class of exible service

policies that permit minor changes in the order of container retrievals. Recently, Zhang

et al. (2016) study a connected problem with the CRP where blocks (or containers) can

be relocated and/or retrieved in batches. This problem arises in steel plants to remove

multiple steel slabs which can be handled by special cranes.

3. CONTAINER RELOCATION PROBLEM

In this section definition of CRP and two formulation for CRP is presented. Next, a index

based heuristic developed for CRP.

3.1 Container Relocation Problem Definition

Container Relocation Problem (CRP) which aims to minimize the total number of

relocations accomplished to empty out a single yard-bay with a capacity of C columns

(stacks) having a height of P rows (tiers) where S containers, whose retrieval sequences

is given a priori, are initially located within the yard-bay. The CRP is a static problem in

the sense that it only considers departure of containers from the yard-bay. The CRP has

the following assumptions introduced by Kim and Hong (2006):

Assumption (A1): The yard-bay is served by a single yard crane which can handle one

container at a time

Assumption (A2): The retrieval sequence of containers are known a priori

Assumption (A3): Relocations can only occur to take out a retrieval container from the

yard-bay.

Assumption (A4): Relocations can only be made among the columns of the yard-bay

Assumption (A5): Containers have the same type in the yard-bay.

3.2 Container Relocation Problem Formulations

Our formulations, which satisfy assumptions A1-A5, are based on the one developed by

Wan et al. (2009) and. We use the original formulation by Wan et al. (2009) and named

it as WLT-I.

7

3.2.1 WLT-II Formulation

The notation employed for the CRP formulations is as follows. Let S be the number of

time stages where S containers are retrieved with an order of time stages s = 1,…, S. Here,

stage s also refers to the retrieval rank of container s from the yard bay. c presents the

number of columns for c = 1,…,C and p for the number of rows for p = 1,…, P in a yard-

bay. To elaborate better, an example of the CRP is illustrated with figure 3.1 The yard-

bay consists of C = 3 columns and P = 3 rows and contains S = 6 containers at the initial

stage. Each container is numbered according to the order of their retrieval from the yard-

bay. In the first stage (i.e., s = 1), the retrieval container 1 should be taken out from the

yard-bay. In the second stage (i.e., s = 2), the retrieval container 2 should be removed

from the yard-bay, and so on.

The container number of a retrieval container (e.g., i = 1) is equal to the stage number

(e.g., s = 1). To satisfy this, two reshuffling containers 3 and 6, which block container 1,

needs to relocate. These are indicated above the initial stage of the yard-bay. In the second

stage (s =2), the retrieval container 2 departs from the yard-bay. Two reshuffling

containers 6 and 5 are placed to other columns. As the remaining yard-bay configuration

does not have any blocking container, no relocation is required until the retrieval of

container 6 at stage s = 6. Let S(i) stands for the smallest ranked container to be retrieved

under a container i including container i in the initial yard-bay configuration. Then, for

containers 6, 3 and 1 in the first column S(i) values are S(6) = 1, S(3) = 1 and S(1) = 1,

respectively.

 8

Figure 3.1: Illustrative example for the CRP

Binary variables 𝑥𝑠𝑖𝑐𝑝 are set to 1 if and only if container i is located in row p of column

c at stage s and zero otherwise. Binary variables 𝑧𝑠𝑖 are equal to 1 if and only if at stage

s container i is situated in a different column than the retrieval container s. 𝑦𝑠𝑖 denotes

the binary variables taking a value of 1 if and only if container i is relocated at stage s.

𝑤𝑠𝑖𝑗 states the binary variables having a value of 1 if and only if container i and container

j are relocated, and container j is at a higher position than container i at stage s. Then,

our CRP formulation called as WLT-II is as follows.

 9

WLT-II:

𝑧𝑊𝐿𝑇−𝐼𝐼
∗ = ∑

𝑆−1

𝑠=1

∑ 𝑦𝑠𝑖

𝑆

𝑖=𝑠+1

 (1)

s.t.

-zsi≤ (∑

C

c=1

∑ cxsicp

P

p=1

- ∑ ∑ cxsscp

P

p=1

C

c=1

) /C 1 ≤ 𝑠 < 𝑖 ≤ 𝑆 (2)

𝑧𝑠𝑖 ≥ (∑

𝐶

𝑐=1

∑ 𝑐𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

− ∑ ∑ 𝑐𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝐶 1 ≤ 𝑠 < 𝑖 ≤ 𝑆 (3)

𝑦𝑠𝑖 ≥ −𝑧𝑠𝑖 + (∑

𝐶

𝑐=1

∑ 𝑐𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

− ∑ ∑ 𝑐𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃 1 ≤ 𝑠 < 𝑖 ≤ 𝑆 (4)

𝑦𝑠𝑖 ≥ −𝑧𝑠𝑖 + 1 1 ≤ 𝑠 < 𝑖 ≤ 𝑆(5)

(∑

𝐶

𝑐=1

∑ 𝑝𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

− ∑ ∑ 𝑝𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃 ≤ 1 − 𝑦𝑠𝑖 1 ≤ 𝑠 < 𝑖 ≤ 𝑆 (6)

∑ ∑ 𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

= 1 1 ≤ 𝑠 ≤ 𝑖 ≤ 𝑆 (7)

∑ 𝑥𝑠𝑖𝑐𝑝

𝑆

𝑖=𝑠

≤ 1 1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (8)

 10

∑ 𝑥𝑠𝑖𝑐𝑝

𝑆

𝑖=𝑠

≤ ∑ 𝑥𝑠𝑖𝑐,𝑝−1

𝑆

𝑖=𝑠

 1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (9)

∑ 𝑥𝑠+1,𝑖𝑐𝑝

𝑃

𝑝=1

≤ 2 − 𝑦𝑠𝑖 − ∑ 𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶 (10)

2 − 𝑦𝑠𝑖 − 𝑦𝑠𝑗 − 𝑤𝑠𝑖𝑗 ≥ (∑

𝐶

𝑐=1

∑ 𝑝𝑥𝑠𝑗𝑐𝑝

𝑃

𝑝=1

− ∑ ∑ 𝑝𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (11)

𝑦𝑠𝑖 + 𝑦𝑠𝑗 + 𝑤𝑠𝑖𝑗 ≤ (∑

𝐶

𝑐=1

∑ 𝑝𝑥𝑠𝑗𝑐𝑝

𝑃

𝑝=1

− ∑ ∑ 𝑝𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (12)

𝑤𝑠𝑖𝑗 ≤ 𝑦𝑠𝑖 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (13)

𝑤𝑠𝑖𝑗 ≤ 𝑦𝑠𝑗 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (14)

∑ 𝑝

𝑃

𝑝=1

(𝑥𝑠+1,𝑖𝑐𝑝 − 𝑥𝑠+1,𝑗𝑐𝑝)

≥ −𝑃 [(1 − 𝑤𝑠𝑖𝑗) + (1 − 𝑦𝑠𝑖) + (1 − 𝑦𝑠𝑗) + (1 − ∑ 𝑥𝑠+1,𝑖𝑐𝑝

𝑃

𝑝=1

)]

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (15)

𝑥𝑠+1,𝑖𝑐𝑝 − 𝑥𝑠𝑖𝑐𝑝 ≥ −𝑦𝑠𝑖 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (16)

𝑥𝑠𝑖𝑐𝑝 − 𝑥𝑠+1,𝑖𝑐𝑝 ≥ −𝑦𝑠𝑖 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (17)

11

𝑥1𝑖𝑐𝑝 = 𝑋𝑖𝑐𝑝 1 ≤ 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (18)

𝑥𝑠𝑖𝑐𝑝 = 𝑋𝑖𝑐𝑝 2 ≤ 𝑠 ≤ 𝑆(𝑖), 1 ≤ 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (19)

𝑦𝑠𝑖 , 𝑧𝑠𝑖 ∈ {0,1} 1 ≤ 𝑠 < 𝑖 ≤ 𝑆(20)

𝑤𝑠𝑖𝑗 ∈ {0,1} 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗(21)

𝑥𝑠𝑖 ∈ {0,1} 1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃(22)

The objective function (1) minimizes of the total number of the relocations performed

until the last container leaves the yard-bay. Constraints (2) and (3) determine the value

of binary variables 𝑧𝑠𝑖. Constraint (2) enforces 𝑧𝑠𝑖 to be equal to 1 if containers s and i

are in different columns at stage s (i.e., in the retrieval stage of container s). For the case,

namely, when containers s and i are in the same column at stage s, 𝑧𝑠𝑖 is set to 0.

Constraints (4) and (5) impose that a container i is relocated at stage s, i.e., 𝑦𝑠𝑖= 1, when

the retrieval container s and container i are in the same column and container i stands at

a higher position than container s which leaves the yard-bay earlier than container i, i.e.,

s < i. Constraint (6) makes sure that 𝑦𝑠𝑖= 0 when retrieval container s is situated above

container i at stage s. Note that, in that case, constraints (4) and (5) become redundant.

Constraint (7) states that container i occupies exactly one slot at stage s for 1 ≤ 𝑠 < 𝑖 ≤

𝑆. Constraint (8) implies that a slot of the yard-bay can contain at most one container

among the containers remaining in the yard-bay at each stage s. Constraint (9) ensures

that given a column c to locate a container in row p there a must be a container underneath,

that is in row 𝑝 − 1. At the retrieval of container s from its column c, if there exists

another container i in the same column that has to be relocated, then constraint (10)

guarantees that container i is not placed in column c again. Constraints (11) and (12) are

used to define the value of binary variable 𝑤𝑠𝑖𝑗. Constraint (11) states that 𝑤𝑠𝑖𝑗 takes a

value of 1 when containers i and j are relocated at stage s and container i is at a lower slot

than container j. When container j stays at a lower slot than container i constraint (12)

implies 𝑤𝑠𝑖𝑗 = 0. Constraints (13) and (14) give the dependency of 𝑤𝑠𝑖𝑗 on relocation

12

variables 𝑦𝑠𝑖 and 𝑦𝑠𝑗 of containers i and j. 𝑤𝑠𝑖𝑗 = 0 when either container i or j is not

relocated at stage s and constraints (11) and (12) become redundant. Assuming two

containers i and j are relocated at stage s then new locations of containers i and j should

be decided in the reverse order prior to their locations before relocations. For example,

when they are located in the same column both before and after their relocations, the

container at a higher row before the relocation should be placed below the lower row

container after relocations. Constraint (15) achieves this property. When a container i is

not relocated at stage s constraints (16) and (17) impose that container i maintains the

same slot at the next stage s + 1.

Constraint (18) introduces the initial locations of containers in the yard-bay. Notice that

a container i preserves its position until stage s = i as long as it does not block another

container which should be retrieved before stage s = i. Constraint (19) aims to satisfy this

property. Constraints (20), (21) and (22) state binary restrictions. Our enhancements on

the WLT-I formulation can be summarized as follows. First, in the original WLT-I

formulation, there are two extra binary decision variables to keep record of the position

of a container i with respect to container s such that s < i. One of the binary variables

states that container i is on the left side of the retrieval container s at stage s. The other

binary variable checks whether container i is located on the right side of the retrieval

container s at stage s or not. Notice that, 𝑥𝑠𝑖𝑐𝑝 contains the slot, i.e., the column and row,

information for container i at stage s. Therefore, we replaced the constraints originally

labelled as (7)-(11) in the WLT-I formulation with our new constraints (3) and (4). To

achieve this, the definition of binary variables 𝑧𝑠𝑖 is reversed as explained in our WLT-II

formulation. Shortly, binary variable 𝑧𝑠𝑖 in the WLT-I formulation is substituted with -

𝑧𝑠𝑖 in our WLT-II formulation and its interpretation is modified accordingly. Constraints

(5) and (6) are also changed in the WLT-II formulation with respect to our modification

on 𝑧𝑠𝑖. The remaining parts of the WLT-II formulation are the same as in the WLT-I

formulation.

13

3.2.2 WLT-III Formulation

The WLT-II formulation is tightened by adding the following lower and upper bounding

constraints

∑

𝑆−1

𝑠=1

∑ 𝑦𝑠𝑖

𝑆

𝑖=𝑠+1

≤ 𝑍𝑈𝐵 (23)

𝑍𝐿𝐵 ≤ ∑

𝑆−1

𝑠=1

∑ 𝑦𝑠𝑖

𝑆

𝑖=𝑠+1

 (24)

where 𝑍𝐿𝐵 and 𝑍𝑈𝐵 are lower and upper bounds on the optimal objective function value

𝑍𝑊𝐿𝑇𝐼𝐼. To calculate lower bound 𝑍𝐿𝐵, we benefit from the following definition.

Container i is named as a “singly-blocking” container when it is located above of an

earlier departing container within the same column. Clearly, the total number of singly-

blocking containers constitutes a lower bound on 𝑍𝑊𝐿𝑇𝐼𝐼 . Besides, let i be a singly-

blocking container that will be relocated at stage s from its column, say column c, in the

initial yard-bay configuration. When there exists a container j which will be retrieved

between time stages s and i, e.g., s < j < i, for all remaining columns c′ = 1,…, C and c′ ≠

c, then container i will continue to be a blocking container. This implies that container I

will increase the number of relocations by one for a second time. Let us define such a

container as “doubly-blocking" container. Note that, doubly-blocking containers consist

of singly-blocking containers. Now, summing the total number of doubly-blocking

containers with total number of singly-blocking containers in the initial yard-bay

configuration yields 𝑍𝐿𝐵, that is used in constraints (24). The calculation of the 𝑍𝐿𝐵, is

illustrated with Figure 3.2. for an initial yard-bay of 3 columns and 4 rows. Containers 2,

6 and 7 are singly-blocking containers at the initial yard-bay configuration. At the

retrieval of container 1, container 7 is relocated to column c = 2 or c = 3. However,

container 7 will continue to be a blocking container in both columns since it leaves the

yard-bay last. Therefore, container 7 is a doubly-blocking container. Consequently, the

14

sum of singly-blocking containers and doubly-blocking containers yields the lower bound

as 𝑍𝐿𝐵, = 3 + 1 = 4.

Figure 3.2: Illustrative example for 𝑍𝐿𝐵 calculation

A heuristic procedure initially proposed by Murty et al for determine upper bound 𝑍𝑈𝐵.

(2005) based on the Reshuffling Index (RI) of the columns of the yard-bay. We call their

heuristic as the RI heuristic in the sequel. RI of a column is show us the number of singly-

blocking containers at that column. Next, RI heuristic selects the column with the lowest

RI to relocate a blocking container. In case of a tie, the column with largest number of

containers (i.e., the highest column) is chosen among the columns with lowest RI. When

a further tie arises, then the column is arbitrarily selected from qualifying columns. The

RI heuristic is very efficient and we employ the best outcome of 100 runs as the 𝑍𝑈𝐵 value

in constraint (23). Lastly, to make a fair comparison with WLT-I and WLT-II

formulations, we separately introduce our second CRP formulation named as WLT-III.

We present the WLT-III formulation as follows.

15

WLT-III:

𝑧𝑊𝐿𝑇−𝐼𝐼𝐼
∗ = ∑

𝑆−1

𝑠=1

∑ 𝑦𝑠𝑖

𝑆

𝑖=𝑠+1

 (25)

s.t. (2)-(24) 26)

3.3 A New Heuristic Approach for Container Relocation Problem

We designee Path Index (PI) heuristic by inspiring from possible shortest paths for a

container before its retrieval. Container path stands for a stage s and all paths resets at the

end of stage s when target container taken out. In this path, each path step is indicated by

a container retrieval of the earliest container in column c. For example in Figure 3.3 if

container i=22 is reshuffling container we start our path by container i=1. Next, if there

is a possibility of container i=22 makes a movement to column c=1; path of container

i=22 is updated as 𝑝𝑎𝑡ℎ𝑖=22, 𝑐=1=1, 13. If we continue reshuffle container i=22 and

relocate it above container i=14 then 𝑝𝑎𝑡ℎ𝑖=22, 𝑐=1= (1, 13, 14). Finally we will move

our reshuffling container to empty or above a earliest container which has lower priority

than container i=22. That means our path become 𝑝𝑎𝑡ℎ𝑖=22, 𝑐=1= (1, 13, 14, 0). At the

end of the movements we made three relocation for 𝑝𝑎𝑡ℎ𝑖=22, 𝑐=1= (1, 13, 14, 0).

Path index is calculated one by one for each blocking container.

0 12 22 6 0 0

0 7 8 19 21 24

0 20 10 18 15 23

0 9 17 2 5 16

13 4 1 11 14 3

Figure 3.3 Initial yard-bay configuration for PI

16

Calculation of path index is given below in Algorithm 3.1

For each blocking container i do the steps which presented below.

Step 0: (Initialization) Set 𝑝𝑎𝑡ℎ𝑖𝑛𝑑𝑒𝑥𝑖𝑐𝑠
=0 for i= 1,…,S , c=1,…,C and s=1,…,S

Step 1: Set 𝑝𝑎𝑡ℎ𝑖𝑛𝑑𝑒𝑥𝑖𝑐𝑠
=M for blocking container i which is above target container s at

column c. For the rest of the columns update 𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘=0 = 𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘=0 , target

container.

Step 2: Define the earliest leaving container i* in these columns and add the i* in to the

path for each column update 𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘+1 = 𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘=0, i*. If columns are empty or

have lower priority than i, update 𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘+1 = 𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘=0, 0.

Step 4: If there is any 𝑝𝑎𝑡ℎ𝑖𝑐𝑠𝑘 which has 0 as last element then stop and update,

𝑝𝑎𝑡ℎ𝑖𝑛𝑑𝑒𝑥𝑖𝑐
=the number of elements in 𝑝𝑎𝑡ℎ𝑖𝑐𝑠𝑘 for all paths which has 0 as last element

choose that column c for relocate container i or there is multiple paths fulfills this

requirement, randomly select one of the paths for relocate the blocking container.

Relocate the blocking container then stop the algorithm. Otherwise continue to Step 5.

Step 5: If the i* in a path not equal 0 then write a yard-bay configuration φ𝑖∗
 𝑝𝑎𝑡ℎ𝑖𝑐𝑠𝑘 (Figure

3.4) by removing earliest containers in columns which has lower priority than i* the in

path and you should also remove containers above the earliest removed container in

columns.

0

0

0

0

13 14

Figure 3.4 Configuration image after removal for PI

17

Step 6: Create new 𝑝𝑎𝑡ℎ𝑖𝑐𝑠𝑘 and add the earliest leaving containers i* to the path for all

available columns. If these columns are not empty or don’t have lower priority than i, add

the i* to the path for each column 𝑝𝑎𝑡ℎ𝑖𝑐𝑠𝑘(𝑛𝑒𝑤) = 𝑝𝑎𝑡ℎ𝑖𝑐𝑠𝑘(𝑜𝑙𝑑), i* and go to Step 4.

Otherwise update 𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘(𝑛𝑒𝑤) = 𝑝𝑎𝑡ℎ𝑖𝑐𝑠,𝑘(𝑜𝑙𝑑), 0. Go to Step 4.

Yard-bay configuration after taken out of target container s=1 is given in Figure 3.5

Blocking containers are 22,8,10 and 17 respectively for stage s=1. Path indexes of each

column for container i=22, calculated as 2,M,M,M,2,2, respectively. Blocking container

is relocated to the column which has the smallest Path index. In case of a further tie, the

container is randomly assigned to a column.

0 12 0 6 22 17

0 7 0 19 21 24

10 20 0 18 15 23

8 9 0 2 5 16

13 4 0 11 14 3

Figure 3.5: Configuration after retrieval of target container for PI

4. DYNAMIC CONTAINER RELOCATION PROBLEM

4.1 Dynamic Container Relocation Problem Definition

The DCRP is a dynamic problem in a sense that containers both depart and arrive at the

yard-bay. The difficulty of solving the DCRP can be seen better when a new container

arrives at the yard-bay. Observe that, the DCRP reduces to solving a CRP as long as

containers depart from the yard-bay until the next container arrival. However, an

incoming container is likely to change the retrieval sequence of the existing containers

within the yard-bay. Therefore, incoming containers change plans repetitively at each

arrival. Now, not only the relocation of the containers but also finding the best location

for incoming containers gains importance in order to increase the efficiency of yard cranes

in yard-bay planning

In this study, we employ the following assumptions used by Akyüz and Lee (2014).

Assumptions A1,A3,A4 and A5 are the same for both problems CRP and DCRP. The

assumption A2 of the CRP is replaced with the following assumption for the DCRP:

 Assumption (A2’): The arrival and retrieval sequences of containers are known a

priori.

4.2 Dynamic Container Relocation Problem Formulation

In the CRP formulations (WLT-I, WLT-II, WLT-III) each stage s stands for the retrieval

of container s. We preserve a similar conditions for the DCRP formulation and match the

arrival sequence of containers with the retrieval of container s. It is assumed that arrival

containers located right after the retrieval of container s. Notice that, this does not cause

any change on generality for the problem. As the arrival and departure order of containers

19

are known, arrival pattern of containers can be adjusted for any instance accordingly. Let

parameter K(i) denote a retrieval container s after which container i arrives at the yard-

bay and i starts to occupy a slot at stage s+1. Notice that K(i) also states the latest time

stage before container i joins the yard-bay. There can be multiple containers arriving at

the yard-bay which have the same K(i) value. They are distinguished with respect to their

arrival order which is represented as O(i). For example, if container i arrives before

container j after retrieval container s at stage s, then K(i) = K(j) = s and O(i) < O(j). 𝑈𝑠𝑖

is a parameter that is equal to 1 if and only if container i arrives immediately after the

retrieval of container s, i.e., K(i) = s. A DCRP example is given in figure 4.1. The yard-

bay consist of C = 3 columns and P = 3 rows containing S = 5 containers at the initial

stage. Each container is numbered in the order of their retrieval from the yard-bay. In

the first stage (s = 1), the retrieval container 1 should be taken out from the yard-bay.

Reshuffling container 3 is placed to column c = 3 to enable access to container 1. Then,

container 1 is retrieved from the yard-bay. Next, two containers 7 and 6 consecutively

arrive to the yard-bay right after the retrieval of container 1 at stage s = 1. Here, the arrival

order of containers 7 and 6 are O(7) = 1 < O(6) = 2 respectively. The remaining stages

are similar to the CRP example as there are no new container arrival. Binary variables

𝑎𝑠𝑖𝑗 are equal to 1 if and only if there exist a blocking container i above the retrieval

container s and an arrival container j, i.e., 𝑦𝑠𝑖 = 1 and K(j) = s, respectively. Then, the

DCRP formulation is stated as follows.

20

Figure 4.1 DCRP example

WLT-DCRP:

𝑧𝐷𝐶𝑅𝑃
∗ = ∑

𝑆−1

𝑠=1

∑ 𝑦𝑠𝑖

𝑆

𝑖=𝑠+1

 (27)

s.t.

−𝑧𝑠𝑖 ≤ (∑

𝐶

𝑐=1

∑ 𝑐𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

− ∑ ∑ 𝑐𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝐶 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (28)

 21

𝑧𝑠𝑖 ≥ (∑

𝐶

𝑐=1

∑ 𝑐𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

− ∑ ∑ 𝑐𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝐶 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (29)

𝑦𝑠𝑖 ≥ −𝑧𝑠𝑖 + (∑

𝐶

𝑐=1

∑ 𝑐𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

− ∑ ∑ 𝑐𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (30)

𝑦𝑠𝑖 ≥ −𝑧𝑠𝑖 + 1 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (31)

(∑

𝐶

𝑐=1

∑ 𝑝𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

− ∑ ∑ 𝑝𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃 ≤ 1 − 𝑦𝑠𝑖 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (32)

∑ ∑ 𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

= 1 1 ≤ 𝑠 ≤ 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (33)

∑ 𝑥𝑠𝑖𝑐𝑝

𝑆

𝑖=𝑠

≤ 1 1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (34)

∑ 𝑥𝑠𝑖𝑐𝑝

𝑆

𝑖=𝑠

≤ ∑ 𝑥𝑠𝑖𝑐,𝑝−1

𝑆

𝑖=𝑠

 1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃(35)

∑ 𝑥𝑠+1,𝑖𝑐𝑝

𝑃

𝑝=1

≤ 2 − 𝑦𝑠𝑖 − ∑ 𝑥𝑠𝑠𝑐𝑝

𝑃

𝑝=1

 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶 , 𝐾(𝑖) < 𝑠 (36)

2 − 𝑦𝑠𝑖 − 𝑦𝑠𝑗 − 𝑤𝑠𝑖𝑗 ≥ (∑

𝐶

𝑐=1

∑ 𝑝𝑥𝑠𝑗𝑐𝑝

𝑃

𝑝=1

− ∑ ∑ 𝑝𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗, 𝐾(𝑖) < 𝑠 (37)

22

𝑦𝑠𝑖 + 𝑦𝑠𝑗 + 𝑤𝑠𝑖𝑗 ≤ (∑

𝐶

𝑐=1

∑ 𝑝𝑥𝑠𝑗𝑐𝑝

𝑃

𝑝=1

− ∑ ∑ 𝑝𝑥𝑠𝑖𝑐𝑝

𝑃

𝑝=1

𝐶

𝑐=1

) /𝑃

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗, 𝐾(𝑖) < 𝑠 (38)

𝑤𝑠𝑖𝑗 ≤ 𝑦𝑠𝑖 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗, 𝐾(𝑖) < 𝑠 (39)

𝑤𝑠𝑖𝑗 ≤ 𝑦𝑠𝑗 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗, 𝐾(𝑖) < 𝑠 (40)

∑ 𝑝

𝑃

𝑝=1

(𝑥𝑠+1,𝑖𝑐𝑝 − 𝑥𝑠+1,𝑗𝑐𝑝)

≥ −𝑃 [(1 − 𝑤𝑠𝑖𝑗) + (1 − 𝑦𝑠𝑖) + (1 − 𝑦𝑠𝑗) + (1 − ∑ 𝑥𝑠+1,𝑖𝑐𝑝

𝑃

𝑝=1

)]

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗, 𝐾(𝑖) < 𝑠 (41)

𝑥𝑠+1,𝑖𝑐𝑝 − 𝑥𝑠𝑖𝑐𝑝 ≥ −𝑦𝑠𝑖 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃, 𝐾(𝑖) < 𝑠 (42)

𝑥𝑠𝑖𝑐𝑝 − 𝑥𝑠+1,𝑖𝑐𝑝 ≥ −𝑦𝑠𝑖 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃, 𝐾(𝑖) < 𝑠 (43)

𝑥1𝑖𝑐𝑝 = 𝑋𝑖𝑐𝑝 1 ≤ 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃, 𝐾(𝑖) < 𝑠 (44)

𝑥𝑠𝑖𝑐𝑝 = 𝑋𝑖𝑐𝑝 2 ≤ 𝑠 ≤ 𝑆(𝑖), 1 ≤ 𝑖 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃, 𝐾(𝑖) < 𝑠 (45)

𝑦𝑠𝑖 , 𝑧𝑠𝑖 ∈ {0,1} 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 𝐾(𝑖) < 𝑠 (46)

𝑤𝑠𝑖𝑗 ∈ {0,1} 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (47)

𝑥𝑠𝑖 ∈ {0,1} 1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑝 ≤ 𝑃 (48)

∑ ∑ 𝑥𝑠+1,𝑖𝑐𝑝

𝑃

𝑝=1

≥ 𝑈𝑠𝑖

𝐶

𝑐=1

 1 ≤ 𝑠 < 𝑖 ≤ 𝑆 (49)

23

−1 + 𝑦𝑠𝑖 + 𝑈𝑠𝑖 ≤ 𝑎𝑠𝑖𝑗 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (50)

𝑎𝑠𝑖𝑗 ≤ 𝑦𝑠𝑖 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (51)

𝑎𝑠𝑖𝑗 ≤ 𝑈𝑠𝑖 1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗 (52)

∑ 𝑝

𝑃

𝑝=1

𝑥𝑠+1,𝑗𝑐𝑝− ∑ 𝑝

𝑃

𝑝=1

𝑥𝑠+1,𝑖𝑐𝑝

≥ −𝑃(1 − 𝑎𝑠𝑖𝑗) − 𝑃(1 − 𝑦𝑠𝑖) − 𝑃(1 − 𝑈𝑠𝑖) − 𝑃 (1 − ∑ 𝑥𝑠+1,𝑗𝑐𝑝

𝑃

𝑝=1

)

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑖 ≠ 𝑗, 𝑠 = 𝐾(𝑗), 1 ≤ 𝑐 ≤ 𝐶 (53)

∑

𝑆

𝑖=𝑠

∑ 𝑥𝑠𝑖𝑐𝑝

𝑆

𝑖=𝑠

= 0 𝑠 ≤ 𝑘(𝑖) (54)

∑ 𝑝

𝑃

𝑝=1

𝑥𝑠+1,𝑗𝑐𝑝− ∑ 𝑝

𝑃

𝑝=1

𝑥𝑠+1,𝑖𝑐𝑝 ≥ −𝑃(1 − 𝑈𝑠𝑖) − 𝑃(1 − 𝑈𝑠𝑗) − 𝑃 (1 − ∑ 𝑝

𝑃

𝑝=1

𝑥𝑠+1,𝑗𝑐𝑝)

1 ≤ 𝑠 < 𝑖 ≤ 𝑆, 1 ≤ 𝑠 < 𝑗 ≤ 𝑆, 𝑂(𝑖) < 𝑂(𝑗), 𝑖 ≠ 𝑗, 𝑠 = 𝐾(𝑖), 𝑠 = 𝐾(𝑗), 1 ≤ 𝑐 ≤ 𝐶 (55)

Constraints (34), (35) and (46)-(48) are the same as the CRP formulations given.

Constraints (28)-(33) and (36)-(45) are adapted from CRP formulations for the DCRP.

However, these constraint sets are restricted for each arriving container, say container i

that is handled after time stage s, i.e., K(i) < s. Constraint (49) ensures that when a

container i arrives at the yard-bay after retrieval of container s at stage s, i.e., 𝑈𝑠𝑖 = 1, then

arriving container i occupies a slot at the next stage s+1. Constraints (50), (51) and (52)

define the value of the binary variables 𝑎𝑠𝑖𝑗 . Constraint (50) enforces 𝑎𝑠𝑖𝑗 = 1 when there

exist a container i that will be relocated, i.e., 𝑦𝑠𝑖 = 1, to discharge the retrieval container

s and a container j arrives immediately after retrieval of container s, i.e., 𝑈𝑠𝑗 = 1.

Otherwise constraint (50) is redundant. Constraint (51) sets the value of 𝑎𝑠𝑖𝑗 to 0 when

there is no blocking container i at the retrieval of container s. Similarly, constraint (52)

24

forces 𝑎𝑠𝑖𝑗 to be 0 when there is no arriving container j with 𝑈𝑠𝑗 = 1 at the retrieval of

container s. Constraint (53) arranges handling order between arrival containers and

reshuffling containers in the yard-bay. When 𝑎𝑠𝑖𝑗= 1 constraint (53) implies that arrival

container j is taken to the yard-bay after relocation of reshuffling container i and retrieval

of container s at stage s. Therefore, arrival container j is placed at a higher slot than the

relocated container i when they are both located in the same column c at next stage s + 1.

When blocking container i and arrival container j are not located in the same column c,

then this constraint becomes redundant. Constraint (54) ensure that arriving containers

do not occupy a slot in yard-bay before their arrival. Constraint (55) is the DCRP

equivalent of constraints (15) in the CRP formulations to consider container arrivals.

Constraint (55) maintains arriving containers are placed in the yard-bay in their arrival

order.

There are at most S(S -1) + S(S +1)CP/2+2S(S -1)(S -2)/3 binary variables in the DCRP

formulation. However, the total number of binary variables are less than this bound in

practice. The number of binary variables significantly reduces by taking into account

only the ones satisfying K(i) < s. Unfortunately, solving the DCRP formulation to

optimality can be demanding. Therefore, heuristic methods are more reasonable to obtain

solutions for the DCRP instead of optimum solution.

4.3 Heuristic Approaches for Dynamic Container Relocation Problem

4.3.1 Reshuffling Index Heuristic

Reshuffling index (RI) heuristic is initially used by Murty et al. (2005) and adapted for

the DCRP by Wan et al. (2009). The RI heuristic is an efficient upper bounding method

which is employed in our TS heuristic approaches. RI defines the number of relocations

that should be made to clear blocking containers above the earliest outgoing container in

a column. For each column the RI is calculated and incoming (or relocating) containers

are located on top of the column with the lowest RI. Clearly, RI is calculated among the

25

columns which are not full. In case of a tie, the container is placed on top of the highest

column. In case of a further tie, the container is randomly assigned to a column.

4.3.2 Tabu Search Algorithms

Broadly speaking, TS algorithms move from one solution to another by changing values

of one or more decision variables depending on the structure of the problem considered

(Gluver and Laguna,1997). Unfortunately, changing the value of a decision variable,

which represents locations of containers within a yard-bay at a time-step, affects all

subsequent container movements to be made in the DCRP. Hence and efficient algorithm

is required to restore the feasibility. To this end we employ the RI heuristic which is

tailored for the tabu search. We present a modification to the RI heuristic which is used

for that purpose in the following. Next, we give details of the two suggested TS based

algorithms, namely TS algorithm-I (TSA1) and TS algorithm-II (TSA2) for the DCRP.

In the tabu search based heuristic methods section, we call an arriving (departing)

container at the yard-bay as incoming (outgoing) container.

To avoid the randomness of the RI heuristic, the latter tie breaking rule is modified to

assigning the container into the leftmost column. The slot assignment of containers in

the yard-bay is called as yard-bay configuration. A feasible solution of the DCRP is

obtained by keeping track of yard-bay configurations at each time-step. Initially, the RI

heuristic is run to obtain a feasible solution. A Tabu List (TL) records the status of

columns of the yard-bay for each container. Once a container, denoted by n, is assigned

to a column4 c, in a feasible solution, then column c is declared as tabu for container n

for at least b iterations. Here, b stands for the number of iterations of the tabu duration

(tenure). Then, container n can not be positioned at the tabu column c for at least b

iterations. The TS heuristic is run for a total number of K iterations. A tabu iteration

consists of finding a feasible solution by following the RI heuristic steps described

considering the TL which provides diversification of solutions, and hence, the generation

of different solutions at each iteration of the TS algorithm. We use two different strategies

to declare a column c tabu for a container n. In the first strategy, a percentage of the

incoming containers are randomly selected. In the second strategy, the container that is

26

relocated after 𝑤 relocations is selected. In the following we present details of these two

TS heuristic approaches.

4.3.2.1 Tabu Search Algorithm-I

Now, we present the notation used and a generic algorithm for it. Let 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 and C

denote the TL value of container n for column c and the set of available columns on which

container n can be pla4ced, respectively. The number of containers that exist in a column

c is given by 𝑁𝑐. The total number of time-steps t is shown with T. A formal outline of

the TSA1 is given in Algorithm 1.

4.3.2.2 Tabu search algorithm-II

On the other hand, TSA2 employs the number of relocations made since the last tabu

declaration. At every w relocations the last relocated container is selected for tabu. Thus,

the random parameter α is replaced with a constant parameter w in TSA2. TSA2 differs

from the TSA1 in two aspects. The first one is the selection of tabu containers. The

TSA1 chooses incoming containers to declare a column as tabu while the TSA2 considers

the relocating containers for that purpose. The second one is the parameter used for tabu

declarations. The TSA1 uses the parameter α to randomly decide if a container is going

to be marked as tabu at Step 4 of the Algorithm 1. All other steps of TSA2 are the same

as the ones that of the TSA1. TSA-I pseudo code is presented below.

Step 0. (Initialization): Set 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 = 0 for n= 1,…, N and c= 1,…, C and C 𝑛
𝛼for

n= 1,…, N. Set tabu iteration number k=1 and time-step t=1.

Step 1.For time-step t if container n is an arriving container then go to Step 2. Otherwise

go to Step 6.

Step 2. (Incoming container): Check 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 for c= 1,…,C and C 𝑛
𝛼= {c: 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 =0,

𝑁𝑐 < 𝐻}.

Step 3. If the cardinality of the set C 𝑛
𝛼, C 𝑛

𝛼 > 1 then use RI heuristic steps to determine

the location of container n for columns c C 𝑛
𝛼. If C 𝑛

𝛼  =1, then place container n to

column cC 𝑛
𝛼. Otherwise, select the column with lowest 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 among the columns

27

satisfying 𝑁𝑐 < 𝐻 to locate container n. Set 𝑐∗ equals the selected column to place

container n.

Step 4. Generate a random number r[0,100]. If r < α then 𝑇𝐿𝑖𝑠𝑡𝑛𝑐∗ = 𝛽 + 1.

Step 5. If 𝑡 < 𝑇, set 𝑡 = 𝑡 + 1 and go to Step 2. Otherwise, go to Step 7.

Step 6. (Outgoing container): If there is no container above the outgoing container n then

remove the container n from the yard-bay configuration and go to Step 5. Otherwise for

each container 𝑛′ above the container n at column 𝑐∗ repeat the following starting from

the highest slot and go to Step 5. Check the 𝑇𝐿𝑖𝑠𝑡n`c for all c= 1,…,C, c𝑐∗ and setC 𝑛
𝛼 =

{𝑐: 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 = 0, 𝑁𝑐 < 𝐻 , c𝑐∗}. If the cardinality of the setC 𝑛′
𝛼 C 𝑛′

𝛼 >1 then use RI

heuristic steps to determine the location of container 𝑛′ for columns cC 𝑛
𝛼. Otherwise,

select the column with lowest 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 among the columns satisfying 𝑁𝑐 < 𝐻 to locate

container 𝑛′.

Step 7. If k<K then set k =k+1 a feasible solution is found and update the best upper

bound accordingly. Set 𝑇𝐿𝑖𝑠𝑡𝑛,𝑐=𝑇𝐿𝑖𝑠𝑡𝑛,𝑐 − 1, 𝑡 = 1 and go to Step 1. Otherwise, stop

and report the best upper bound.

4.3.3 Min-Max Heuristics for the DCRP

The DCRP formulation becomes intractable for large instances. Heuristic procedures are

useful to get approximate solutions within reasonable computational times. In what

follows, we suggest an efficient heuristic procedure named as Min-Max DCRP (MMD)

heuristic. Next, an extension of the MMD heuristic that is originally proposed by

Jovanovic and Voβ (2014) for the CRP is described. The Min-Max (MM) algorithm is

initially proposed by Caserta et al. (2012) as an efficient heuristic for the CRP. Ünlüyurt

and Aydin (2012) present a similar solution procedure for the CRP with different

objective functions. Next, an improved MM algorithm is proposed by Jovanovic and

Voβ (2014) for the CRP. The MM algorithm tries to avoid from creating new relocations

when a reshuffling container will be relocated to retrieve a target container from the yard-

bay. To obtain a solution, when there exist a blocking container over a target container,

it is relocate in a column depending on container priorities. The priority of a container is

defined with the inverse order of retrieval of containers. That is to say, earlier departing

containers have higher priority than the containers leaving the yard-bay later. Next, the

28

priority of a column is determined as the highest priority container in that column. The

priority of an empty column is assumed to be of lowest priority. In case, there are multiple

columns with a lower priority than the blocking container, then the column having the

highest priority is selected among them to locate the blocking container. When there is

no column with a lower priority than the blocking container, it is relocated to the column

with the lowest priority. This implies that, the blocking container will continue to be a

blocking container after its relocation. Hence, by choosing the column with the lowest

priority the relocation of the blocking container has been retarded as much as possible

until the corresponding highest priority container is retrieved from that column. We

benefit from the ideas behind the MM algorithm and suggest, the so called, MMD

heuristic for the DCRP. In addition to the retrieval of containers, the DCRP also considers

arrival of containers. Hence, we adapt the MM algorithm so that it can also handle

arriving containers for the DCRP. The definition of priority of a container stays the same.

However, to obtain priority values of containers, their retrieval times should be sorted

first since there are arriving containers to the yard-bay. The MMD heuristic works the

same as the MM algorithm for the blocking containers as described. Blocking containers

has to be reshuffled to one of other columns than its current column. Unlike the blocking

containers, an incoming container can be placed in any column without such a restriction.

Therefore, priority calculations is performed for all columns. Figure 4.2 gives an example

for the MMD heuristic. Now, we introduce some additional notation used in MMD

heuristic. Let 𝐶𝑠 be the yard-bay configuration at time stage s where container s is

retrieved from the yard-bay. The priority of a container i is represented with p(i) and the

priority of a column c is show as 𝑝(c). 𝑃𝑠 stands for the columns that have a lower

priority than a selected blocking or arriving container. We present a formal outline of the

MMD heuristic in Algorithm 1. Jovanovic and Voβ (2014) suggest an improvement on

the MM algorithm that works as follows. Assume that a blocking container is relocated

and it will continue to be a blocking container. Now, when the selected column using the

MM algorithm for relocation becomes full, then that column misses the chance to host a

higher priority (earlier departing) container on its top. The suggested changes avoids

putting a blocking container on the highest row P in such a case. We modified this

improvement on the MMD heuristic and call the resulting method as MMD-JV heuristic

in the sequel.

29

1. (Initialization) Set time stage s = 0 and 𝐶𝑠 as the initial configuration of the yard-

bay. Sort containers with respect to their retrieval times in ascending order to

obtain container priorities p(i). Set upper bound value 𝑍𝑈𝐵 = 0.

2. Set s = s +1 and 𝐶𝑠 = 𝐶𝑠−1. If container s directly accessible from top of a

column, remove s from 𝐶𝑠 and go to Step 5.

3. If container s is not directly accessible, let 𝑐𝑠 be the column of container s, starting

from top to bottom of column 𝑐𝑠 for each blocking container I above container s.

 i. Set 𝑍𝑈𝐵 = 𝑍𝑈𝐵 + 1.

 ii. Determine column priorities show as 𝑝∗(𝑐) for c=1,…, C and c ≠ cs
.

 iii. Construct set Ps ≠ { c : 𝑝∗(𝑐) < p(i) and c ≠ cs }.

 iv. If Ps ≠  then select highest priority column c* as c* = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃∗
 {𝑝∗(𝑐) }

v. If Ps =  then select lowest priority column c* as c* = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝑃∗
 {𝑝∗(𝑐) }

vi. Locate container i in column c*. Update 𝐶𝑠 accordingly.

4. If there is no arriving container at time stage s go to Step 5. Otherwise in the order

of their arrival, for each arriving container I at time stage s.

 i. Determine column priorities show as 𝑝∗(𝑐) for c=1,…, C.

 ii. Construct set Ps ≠ { c : 𝑝∗(𝑐) < p(i) }.

 iii. If Ps ≠  then select highest priority column c* as c* = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃∗
 {𝑝∗(𝑐) }

iv. If Ps =  then select lowest priority column c* as c* = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝑃∗
 {𝑝∗(𝑐) }

v. Locate container i in column c*. Update 𝐶𝑠 accordingly.

5. If s = S stop and report 𝑍𝑈𝐵. Otherwise go to Step 2.

30

Figure 4.2: Illustrative examples for the MMD heuristic

5. COMPUTATIONAL EXPERIMENTS

In this section, we present our computational experiments for the CRP and DCRP,

respectively. The experiments are performed on a computer with a Intel(R) Core(TM)

i7-4790 CPU 3.60 GHz and 16 GB RAM operating within Microsoft Windows 10 Pro

64-bit environment. The formulations are solved using Gams 24.1.3 with Gurobi solver

and codes are written in C++.

5.1 Container Relocation Problem

In this section, we present our computational experiments for the. Then, we show the

performance of the CRP formulation on randomly generated test instances. The CRP is

tested on a standard test bed given by Caserta et al. (2011) that is employed as benchmark

in most (if not all) of the studies offering a CRP formulation. It consists of the first 5

instances randomly generated for 10 different yard-bay size. These test instances are

generated so that initially the yard-bay consisting of C columns and H′ tiers where the

slots are fully loaded by C*H′ containers. Then, the maximum height of the

corresponding yard-bay is set as P = H′ + 2 which means the yard-bay contains 2 empty

tiers for each instance. Table 5.1 gives a comparison of the CRP formulations. The first

and second columns stand for the number of fully loaded rows H′ and the number of

columns C∙H′ is chosen as 3 and 4 rows, thus, the maximum height P of the yard-bay

takes values of 5 and 6 respectively. Total number of columns C of the yard-bay is

selected from the set {3, 4, 5, 6, 7, 8}. The third column gives the instance number as

shown in the work by Caserta et al. (2012). For each formulation considered, the rows

under UB and CPU(s) indicate the total number of relocations and the CPU times in

seconds, respectively. BRP-II* states the outcome of the formulation suggested by

Expósito-Izquierdo et al. (2015). BRP-II formulation is proposed by Zehendner et al.

(2015). The values in columns from 4 to 7 are directly taken from the reference works

32

mentioned. The columns from 8 to 13 stands for the performance of WLT-I, WLT-II and

WLT-III formulations. Note that, WLT-I is the original CRP formulation suggested by

Wan et al. (2009). Here, we reproduce their results and test on the standard CRP

instances. The average value of 5 test instances belonging to different yard-bay

configurations is denoted with bold characters underneath them. For the case that a

formulation does not find a solution, the average values are not reported and indicated

with N/A. Note that, WLT formulations yields an outcome on all test instances, and hence,

there is no N/A value for them. It is observed that BRP-II*, BRP-II, WLT-I, WLT-II and

WLT-III formulations require an overall average of 1681.73, 2498.78, 292.73, 118.36

and 149.16 seconds of running time, respectively. These values are calculated with the

instances for which the corresponding formulation yields an outcome. For the WLT-I,

WLT-II and WLT-III formulations a CPU time limit of 7200 seconds is imposed. Cells

marked with “-“ indicate that no outcome is produced for that instance by the associated

formulation. The cells indicated with a “*” imply that the CPU time of 18000 seconds

is exceeded by the BRP-II formulation and report the best upper bound found. Outcomes

of the test instances with H′ = 4 and C = 7 are not reported for the BRP-II* and BRP-II

formulations in the reference works mentioned. As a result, they are shown with empty

cells at the bottom of Table 5.1. The WLT-II formulation outperforms other formulations

in an overall average of CPU times. A pairwise comparison is performed among the WLT

formulations to give a verdict. In Table 5.2 each cell represents the total number of

instances for which the formulation stated in the row is superior then the formulation

given in the column of the corresponding cell. For example, the number in the first row

and third column of Table 5.1 states that WLT-I formulation yields the optimum value in

shorter CPU times than the WLT-II formulation on 9 instances. The last column shows

the total number of such instances in each row. The WLT-II formulation produce better

results than the WLT-I and WLT-III formulations on 37 and 18 instances, respectively.

On the other hand, for the WLT-III formulation, these numbers are 36 and 31 instances

over the WLT-I and WLT-II formulations. To sum up, the suggested WLT-II and WLT-

III formulations generally yields better outcomes than the WLT-I formulation. Besides,

the addition of constraints (23)-(24) in the WLT-III formulation mostly enhances the

performance of the WLT-II formulation. Hence, we can say that the WLT-III formulation

outperforms others in the majority of the test instances.

33

Table 5.1: A comparison of the performance of the formulations for the CRP on standard

test instances.

Instance Info. BRP-II*a BRP-IIb WLT-Ic WLT-II WLT-III

H′ C No. UB CPU(s) UB CPU(s) UB CPU(s) UB CPU(s) UB CPU(s)

 1 6 1.18 6 3.85 6 0.06 6 0.06 6 0.08

 2 5 1.39 5 3.75 5 0.05 5 0.05 5 0.03

3 3 3 2 1 2 0.92 2 0.02 2 0.02 2 0.02

 4 4 1.09 4 1.83 4 0.06 4 0.05 4 0.05

 5 1 0.68 1 1.5 1 0.03 1 0.03 1 0.03

Average 3.6 1.07 3.6 2.37 3.6 0.04 3.6 0.04 3.6 0.04

 1 5 4.76 5 5.61 5 0.13 5 0.13 5 0.11

 2 3 18.39 3 5.71 3 0.19 3 0.16 3 0.09

3 4 3 7 11.71 7 39.05 7 0.19 7 0.2 7 0.17

 4 5 16.06 5 18.01 5 0.2 5 0.19 5 0.17

 5 6 18.04 6 29.4 6 0.19 6 0.17 6 0.16

Average 5.2 13.79 5.2 19.56 5.2 0.18 5.2 0.17 5.2 0.14

 1 6 83.09 6 3323.41 6 0.59 6 0.33 6 0.34

 2 7 75.95 7 3115.28 7 0.48 7 0.39 7 0.27

3 5 3 8 100.71 8 2447.87 8 0.44 8 0.47 8 0.49

 4 6 95.31 6 559.52 6 0.55 6 0.55 6 0.59

 5 9 65.32 9 1418.47 9 0.92 9 0.77 9 0.42

Average 7.2 84.08 7.2 2172.91 7.2 0.6 7.2 0.5 7.2 0.42

 1 11 124.11 11 10858.51 11 100.73 11 61.58 11 8.06

 2 7 113.29 7 370.5 7 1.02 7 1.06 7 0.88

3 6 3 11 89.06 15 * 11 15.45 11 5.74 11 13.05

 4 7 93.12 7 * 7 1.52 7 1.33 7 1.25

 5 4 96.5 4 73 4 0.48 4 0.41 4 0.38

Average 8 103.22 N/A N/A 8 23.84 8 14.02 8 4.72

 1 7 182.14 7 3396.4 7 1.2 7 1.09 7 1.05

 2 10 284.29 10 10536.5 10 2.39 10 2.53 10 2.5

3 7 3 9 119.2 - * 9 6.78 9 2.23 9 3.7

 4 8 472.32 8 2560.7 8 2.06 8 2.06 8 1.92

 5 12 277.97 12 15273 12 12.02 12 2.06 12 19.3

Average 9.2 267.18 N/A N/A 9.2 4.89 9.2 2 9.2 5.69

34

 1 8 84.66 8 11058.7 8 22.66 8 14.39 8 3.3

 2 10 14403.33 - * 10 4.36 10 12.22 10 6.75

3 8 3 9 8298.85 - * 9 4.45 9 3.09 9 2.98

 4 10 250.33 - * 10 21.05 10 7.42 10 3.09

 5 13 6384.65 - * 13 8.72 13 5.08 13 12.5

Average 10 5884.36 N/A N/A 10 12.25 10 8.44 10 5.73

 1 10 71.96 - * 10 0.63 10 0.49 10 0.58

 2 10 228.91 10 484 10 0.44 10 0.38 10 0.39

4 4 3 10 71.99 10 1102 10 0.97 10 0.75 10 1.03

 4 7 65.25 7 90.77 7 0.42 7 0.36 7 0.34

 5 9 89.36 9 5544.12 9 0.55 9 0.5 9 0.49

Average 9.2 105.49 N/A N/A 9.2 0.6 9.2 0.49 9.2 0.57

 1 16 3544.86 - * 16 90.47 16 81.23 16 199.77

 2 10 326.54 10 2256.4 10 1.73 10 1.56 10 2.7

4 5 3 13 1023.98 - * 13 10.78 13 15.38 13 8.61

 4 8 119.86 8 1493.2 8 0.83 8 0.8 8 0.63

 5 16 2656.67 17 1213.2 16 821.5 16 286.38 16 1680.09

Average 12.6 1534.38 N/A N/A 12.6 185.06 12.6 77.07 12.6 378.36

 1 17 4077.08 - * 17 5814.58 17 1842.52 17 1603.97

 2 8 18985 8 177 8 2.84 8 2.03 8 1.84

4 6 3 13 1706.75 - * 13 35.08 13 24.27 13 9.08

 4 14 2376.86 - * 14 16.86 14 8.06 14 145.63

 5 15 8564.2 - * 15 1160.59 15 21.25 15 39.7

Average 13.4 7141.98 N/A N/A 13.4 1405.99 13.4 379.62 13.4 360.04

 1 17 134.55 17 133.84 17 3314.67

 2 18 3074.91 18 793.94 18 86.47

4 7 3 13 103.94 13 11.05 13 7.52

 4 16 1641.25 16 1049.42 16 240.14

 5 16 1514.36 16 1517.84 16 30.72

Average N/A N/A N/A N/A 16 1293.8 16 701.22 16 735.9

a The results of the BRP-II* formulation are taken from Exposito-Izquierdo et al. (2015)

b The results of the BRP-II formulation are taken from Zehendner et al. (2015)

c The original CRP formulation proposed by Wan et al. (2009)

35

Table 5.2: Comparison of WLT formulations for the CRP.

 WLT-I WLT-II WLT-III Total

WLT-I - 9 13 22

WLT-II 37 - 18 55

WLT-III 36 31 - 67

In this following, we present our results obtained by using PI heuristic for the CRP. The

CRP is tested on a standard test bed given by Caserta et al. (2011) that is employed as

benchmark in most of the studies offering a CRP formulation. It consists of the first 5

instances randomly generated for 9 different yard-bay size. These test instances are

generated so that initially the yard-bay consisting of C columns and H′ tiers where the

slots are fully loaded by C∙ H′ containers. Then, the maximum height of the corresponding

yard-bay is set as P = H′ + 2 which means the yard-bay contains 2 empty tiers for each

instance. Table 5.3 gives a comparison of the CRP heuristics RI and PI. The first and

second columns stand for the number of fully loaded rows H′ and the number of columns

C. H′ is chosen as 3 and 4 rows, thus, the maximum height P of the yard-bay takes values

of 5 and 6 respectively. Total number of columns C of the yard-bay is selected from the

set {3, 4, 5, 6, 7, 8}. The third column gives the instance number as shown in the work

by Caserta et al. 2012). For each heuristic considered, the rows under UB indicate the

total number of relocations, respectively. The columns 4 and 5 show the performance of

PI and RI, respectively. Here, we reproduce their results and test on the standard CRP

instances.

36

Table 5.3 A comparison of the CRP heuristics RI and PI

Instances PI RI

H' C No. UB UB

 1 6 6
 2 5 6
3 3 3 2 2
 4 4 4
 5 1 1

 1 5 6
 2 3 3
3 4 3 7 7
 4 5 5
 5 6 6

 1 6 6
 2 7 7
3 5 3 8 9
 4 6 6
 5 9 9

 1 11 14
 2 7 7
3 6 3 11 11
 4 7 7
 5 4 4

 1 7 7
 2 10 10
3 7 3 9 9
 4 8 8
 5 12 12

 1 8 8
 2 10 11
3 8 3 9 9
 4 10 10
 5 13 14

 1 10 11
 2 10 11
4 4 3 10 10
 4 7 7
 5 9 9

 1 16 16
 2 10 11
4 5 3 13 14
 4 8 9
 5 16 18

37

 1 17 20
 2 8 8
4 6 3 13 15
 4 15 15
 5 15 16

5.2 Dynamic Container Relocation Problem

For the DCRP, we follow a similar strategy with Akyüz and Lee (2014). The instances

are randomly generated so that the yard crane movements do not get into a deadlock by

trying to move a blocking container above the maximum height P of the yard-bay. That

is, relocations only occur within the yard-bay. It is assumed that initially there are

S′ = C (P -1)= 2 containers in the yard-bay. Here, the number of arrival containers are

limited to a maximum of 30 containers considering the capabilities of the suggested

DCRP formulation. In Table 5.4, the first three columns consecutively give the number

of columns C, the number of rows P and the initial number of existing containers S′ of

the yard-bay. The fourth column states the instance number denoted with “No.”. Note

that 5 random instances are created for each instance combination. 5 different number of

arrival containers are chosen from the set 10, 15, 20, 25, 30. In the columns from 5 to 13,

for each number of arrival containers, we present the number of relocations made and the

CPU time in seconds under the rows named “UB” and “CPU(s)”, respectively. Hence,

there are 125 randomly generated test instances in total. The average of 5 test instances

is denoted with bold characters under them. Similar to the WLT formulations for the

CRP, a CPU time limit of 7200 seconds is imposed for the DCRP formulation on the

DCRP instances. The suggested DCRP formulation yields the optimal solution on 109

out of 125 test instances. The values indicated with "𝑎" are the best solutions reported on

7 test instances when computing time exceeds the CPU time limit. Lastly, our DCRP

formulation can not produce an outcome on 9 out of 125 test instances within 7200

seconds. The DCRP formulation proposed by Akyüz and Lee (2014) can exactly solve

up to 10 time steps where each time step includes either a container arrival or departure.

However, the test instances solved with our DCRP formulation contains up to handling

of 30 arrivals and 42 retrievals (departure of 12 existing containers and 30 arriving

38

containers) that it corresponds to a total of 72 time steps defined by Akyüz and Lee

(2014). Therefore, our proposed DCRP formulation can solve larger instances then the

former formulation suggested by Akyüz and Lee (2014).

Table 5.4: The performance of the DCRP formulation on randomly generated test

instances.

Instance Info. 10 15 20 25 30

C P S' No. UB CPU UB CPU UB CPU UB CPU UB CPU

 1 0 0.13 0 0.33 0 1.55 0 1.97 0 2.31

 2 0 0.08 0 0.22 0 1.25 0 8.2 0 10.59

6 2 3 3 0 0.13 0 0.28 0 2.56 0 0.36 0 16.67

 4 0 0.13 0 0.16 0 1.16 0 3.06 0 11.74

 5 0 0.13 0 0.3 0 2.63 0 5.95 0 1.27

Average 0 0.12 0 0.26 0 1.83 0 3.91 0 8.52

 1 0 0.38 0 1.19 0 1.78 0 21.69 1 321.8

 2 0 0.31 0 0.49 0 4.42 0 5.28 0 96.73

6 3 6 3 0 0.33 0 0.99 1 488.7 0 9.47 2 6060.98

 4 0 0.27 0 1.27 0 3.61 1 397.95 1 165.73

 5 0 0.28 0 0.77 0 2.16 0 5.24 0 15.11

Average 0 0.31 0 0.94 0.2 100.13 0.2 87.93 0.8 1332.07

 1 2 1.36 0 1.13 3 13.91 2 4928.67 1 144.02

 2 0 1.17 1 1.61 1 3.02 0 121.84 1 78.42

6 4 9 3 1 1.03 0 2.27 1 5.33 1 13.05 8𝛼 7200.38

 4 1 0.66 1 3 1 18.25 1 380.02 1 3058.97

 5 2 1.94 2 6.67 1 2.25 3 35.84 24𝛼 7200.41

Average 1.2 1.23 0.8 2.94 1.4 8.55 1.4 1095.88 7 3536.44

 1 1 2 3 7.03 1 13.39 3 58 1 2664.06

 2 3 1.78 2 6.3 3 3139.41 3 2747.52 2 19.61

6 5 12 3 3 4.39 4 2108.25 2 348.5 2 321.39 2 836.52

 4 3 2.81 3 5.66 4 41.3 1 75.17 16𝛼 7200.47

 5 1 2.53 2 5.45 2 1407.13 3 2040.91 26𝛼 7200.48

Average 2.2 2.7 2.8 426.54 2.4 989.95 2.4 1048.6 9.4 3584.23

 1 7 265.36 3 434.36 12𝛼 7200.35 - 7200.28 - 7200.38

 2 7 8.64 11𝛼 7200.28 21𝛼 7200.36 1 379.08 - 7200.31

6 6 15 3 5 454.08 3 2275.53 5 2249.92 - 7200.28 - 7200.39

 4 4 17.03 4 1655.39 0 48.69 - 7200.24 - 7200.33

 5 7 5.92 - 7200.13 4 6659.98 2 14.28 - 7200.34

Average 6 150.21 N/A 3753.14 8.4 4671.86 N/A 4398.83 N/A 7200.35

39

We use the test bed given by Akyüz and Lee (2014). There are two groups of instances

in the test bed: Group-I and Group-II instances. Each group consists of medium and high

density of container traffic at the yard-bay with C = 6 columns. The range of height, H,

is chosen from the set {2, 3, 4, 5, 6} and the number of containers, N, which departs from

the yard-bay, is selected from the set {5, 50, 100, 200, 400, 800}. This makes a total of

60 different combinations for each group of instances. 20 test instances for each

combination are randomly generated. Therefore, there are 1200 instances for each group.

We refer to the work by Akyüz and Lee (2014) for more details on the test bed. In the

following, we report our results obtained by the heuristic methods proposed for the

DCRP. In Table 5.5, we summarize the performance of the TSA1 on Group-I and Group-

II instances. The number of TS iterations is set to K = 10000. The first column indicates

the group and the density of the test instances. The second column gives the size of the

test instances so that (C, H) stands for the number of columns and rows (height) in the

yard-bay, respectively. The tabu duration parameter b is set to be b = 3 after our

preliminary experiments. The percentage to declare a column as tabu for an incoming

container, denoted with parameter, is calibrated as α =2 and α = 3 in the light of our initial

experiments. The columns “UB” and “CPU” indicate the total number of relocations and

the CPU times in seconds, respectively. Each cell gives the average of 20 ∙ 6 = 120 test

instances with different number of containers, N. Columns 3 to 6 include the results when

α= 2; β = 3 and α = 3; β = 3. In column 7, we remove the limit on number of tabu

iterations and impose a time limit of 4 seconds to run the TSA1 algorithm with the same

parameters α= 2, β = 3. The last two columns present the performance of the original RI

heuristic whose results are taken from Akyüz and Lee (2014) for comparison. The best

outcomes are shown with bold characters for each row. Clearly, the performance of TSA1

increases as the number of TS iterations (or CPU time limit) increases. Observe that the

RI heuristic is more efficient than the TSA1. We observe that the suggested TSA1

performs better than the RI heuristic for H = 2 and H = 3 on all instances. Moreover, for

Group-I and Group-II instances with medium density having a height of H = 4 the TSA1

yields better outcomes than the RI heuristic. The TSA2 works 22.2% faster than RI

heuristic on the average. However, RI heuristic produces better upper bounds than the

TSA 2. Therefore, the results of the TSA2 are not reported.

40

Table 5.5: Summary of the performance of the TSA1 on Group-I and Group-II instances

Instance Group Size α=2 β=3 α=3 β=3 α=2 β=3 RI

 (C,H) UB CPU UB CPU UB (4 s.) UB CPU

Group-I medium (6,2) 0.04 1.19 0.04 0.92 0.04 0.11 0.08

 (6,3) 2.24 1.41 2.3 1.16 2.2 3.37 0.08

 (6,4) 24.68 1.72 24.9 1.66 24.37 25.41 0.08

 (6,5) 63.03 2.22 64.03 2.34 62.33 57.6 0.08

 (6,6) 113.86 2.71 115.16 2.94 113.55 98.84 0.09

Group-I high (6,2) 25.41 1.2 25.96 0.93 25.05 30.57 0.08

 (6,3) 83.42 1.72 83 1.42 82.16 86.3 0.09

 (6,4) 144.05 2.31 144.15 2.2 143.19 138.65 0.09

 (6,5) 221.84 3.13 222.48 3.09 221.38 211.95 0.1

 (6,6) 293.23 3.68 293.64 3.98 292.51 276.32 0.11

Group-II medium (6,2) 4.91 0.87 4.92 1.02 4.85 5.24 0.07

 (6,3) 44.67 1.29 44.83 1.36 44.45 45.88 0.08

 (6,4) 92.41 2.12 92.35 1.76 91.62 91.63 0.08

 (6,5) 121.82 2.57 122.24 2.16 122.08 117.45 0.09

 (6,6) 171.92 3.28 171.8 2.7 171.22 158.92 0.1

Group-II high (6,2) 71.24 1.06 71.68 1.27 70.81 76.48 0.08

 (6,3) 139.43 1.65 139.6 1.8 139.23 139.89 0.09

 (6,4) 200.71 2.5 201.55 2.17 200.16 188.72 0.1

 (6,5) 278.15 3.46 278.81 2.85 278.13 247.38 0.11

 (6,6) 368.43 4.14 369.25 3.67 368.43 315.57 0.13

The results of the MMD heuristic is obtained on the so called "Group-I" test instances

proposed by Akyüz and Lee (2014). In Table 5.6, the performance of the MMD heuristic

is summarized on the test instances. The first column indicates the density of the test

instances: medium and high. The second and third column gives the size of the test

instances so that C and H are the number of columns and rows (height) in the yard-bay.

The results of the heuristic procedures indicate the number of relocations. Column 4

shows the best Index Based (IB) heuristic result reported by Akyüz and Lee (2014). As a

remark, IB heuristics use some rule of thumb to give weights to columns of the yard-bay

in order to decide the location of a container in the yard-bay. Columns 5 and 6 contain

the results of the MMD and MMD-JV heuristics. Last column states the best outcome of

the BS heuristic reported by Akyüz and Lee (2014). Each cell from columns 4 to 7 of

41

Table 5.6 gives the average of 120 test instances. Further, outcomes of the best

performing heuristic method are shown with bold characters. The running times of MMD

and MMD-JV heuristics are negligible, and thus, CPU times are not reported here.

Nevertheless, the MMD and MMD-JV heuristics are both more efficient than IB and BS

heuristics. The MMD heuristic performs better than the IB heuristics on high density

instances for all height values H of the yard-bay and on medium density instances for H

≥ 4. Broadly speaking, the MMD heuristic outperforms the MMD-JV heuristic in yard-

bays having smaller height value H. The converse holds in favor of MMD-JV heuristics

when H gets larger. In particular, the MMD-JV heuristic is superior than the MMD

heuristic on medium and high density instances having H ≥ 4. A similar result can be

drawn between the MMD-JV and BS heuristics. The MMD-JV heuristic gives poor

results than the BS heuristics on medium and high density instances with H ≤ 3 and H ≤

4, respectively. On the remaining instances the MMD-JV heuristic performs better than

the BS heuristic. Notice that, the CPU time required for the BS heuristic can be

prohibitive. Therefore, for yard-bays having a height of H ≥ 5, the MMD-JV heuristic is

a better alternative. The MMD-JV heuristic is also an efficient choice for yard-bays

having a height of H ≤ 4.

Table 5.6: The performance of the heuristic procedures for the DCRP on standard test

instances

Instance Info. IB MMD MMD-JV BS

Density C H Heuristic Heuristic Heuristic Heuristic

 2 0.11 0.22 1.24 0.03

 3 3.08 3.13 3.01 1.77

Medium 6 4 23.82 16.18 15.86 17.14

 5 53.29 35.88 35.51 44.99

 6 95.45 63.11 61.01 82.17

 2 30.16 27.42 47.88 15.59

 3 78.16 70.39 88.73 54.39

High 6 4 133.25 117.17 120.26 103.32

 5 210.64 185.79 176.06 177.7

 6 271.03 239.43 227.03 244.97

6. CONCLUSION

In this work, we address the CRP and its dynamic extension DCRP. The CRP tries to

discharge existing containers from a single yard-bay while minimizing total number of

container relocations. Unlike the CRP, the DCRP permits new containers to join the yard-

bay as well. We propose mathematical programming formulations for the CRP and

DCRP. Efficient heuristics are also suggested for the CRP and DCRP. An extensive set

of computational experiments is performed on both standard and randomly generated test

instances.

WLT-I formulation originally developed by Wan et al. (2009) is modified and two new

formulation is proposed for the CRP. WLT-II and WLT-III compared with existing

formulations in literature. Our results show that WLT-II and WLT-III formulations yields

better outcomes than existing formulations in literature. Next, we propose a new DCRP

formulation wich performs better than the former formulation suggested by Akyüz and

Lee (2014). In particular, the new DCRP formulation can solve instances having a

planning period of up to seven times longer than we can obtain with the existing

formulation.

Two TS based heuristic algorithms are proposed for the DCRP. The first algorithm,

TSA1, uses a random selection strategy for tabu declarations while the second algorithm

TSA2 employs a fixed number of steps for that purpose. According to our computational

experiment we observe that the proposed TSA-I is efficient and yields promising

outcomes. Next, we develop the PI heuristic which performs better than the RI heuristic

for the CRP.

Two efficient heuristic procedures are devised for the DCRP. Basically, they are

enhancements of the MM algorithm. The MMD and MMD-JV heuristics are tested on

43

standard test instances. Our computational experiments state that both MMD and MMD-

JV heuristics are very efficient and yield promising outcomes compared to other heuristic

procedures from the literature for the DCRP.

Introducing valid inequalities for existing CRP and DCRP formulations and the design of

exact solution procedures can be a worthwhile further research. Moreover, unrestricted

CRP and DCRP, which relax assumption A3 by allowing container pre-marshalling

operations, may be a fruitful research area. In particular, enhanced formulations can be

designed for the unrestricted problems as a future work.

REFERENCES

Akyüz M H, Lee C (2014). A mathematical formulation and efficient heuristics for the

dynamic container relocation problem., Naval Research Logistics 61:101–118

Borjian, S., Manshadi, V. H., Barnhart, C., & Jaillet, P. (2015). Managing Relocation and

Delay in Container Terminals with Flexible Service Policies. arXiv preprint arXiv:

1503.01535 Accessed 06.04.2016.

Caserta, M., Voss, S., & Sniedovich, M. (2011). Applying the corridor method to a blocks

relocation problem., OR Spectrum, 33, 915-929.

Caserta M, Schwarze S, Voβ S (2012). A mathematical formulation and complexity

considerations for the blocks relocation problem., European Journal of Operational

Research 219:96–104

Casey, B., & Kozan, E. (2012). Optimising container storage processes at multimodal

terminals., Journal of the Operational Research Society, 63, 1126-1142.

Expósito-Izquierdo, C., Meli_an-Batista, B., & Moreno-Vega, J. M. (2015). An exact

approcah for the blocks relocation problem., Expert Systems with Applications, 42, 6408-

6422.

Forster, F., & Bortfeldt, A. (2012). A tree search procedure for the container relocation

problem., Computers & Operations Research, 39, 299-309.

Glover F, Laguna M (1997) Tabu search. Kluwer academic publishers, Boston

45

Jin B, Zhu W, Lim A (2015). Solving the container relocation problem by an improved

greedy look-ahead heuristic., European Journal of Operational Research 240: 837–847

Jovanovic R, Voss S (2014). A chain heuristic for the blocks relocation problem.,

Computers & Industrial Engineering 75:79–86

Kim, K. H., Park, T. P., & Ryu, K. R. (2000). Deriving decision rules to locate export

containers in container yards., European Journal of Operational Research 124: 89-101.

Kim K H, Hong G P (2006). A heuristic rule for relocating blocks., Computers &

Operations Research 33:940– 954

Konig, F. G., Lübbecke, M., Möhring, R., Schafer, G., & Spenke, I. (2007). Solutions to

real-world instances of PSPACE-complete stacking. In L. Arge, M. Hoffmann, & E.

Welzi (Eds.), Algorithms - ESA 15th Annual European Symposium, Lecture Notes in

Computer Science, , Berlin, Springer. vol. 4698 (pp. 729:749)

Ku, D., & Arthanari, T. S. (2016). On the abstraction method for the container relocation

problem., Computers & Operations Research: 68, 110-122.

Lee, Y., & Lee, Y.-J. (2010). A heuristic for retrieving containers from a yard., Computers

& Operations Research, 37, 1139-1147.

Lehnfeld J, Knust S (2014). Loading, unloading and premarshalling of stacks in storage

areas: survey and classification., European Journal of Operational Research: 239:297–

312.

Murty K, Liu J, Wan Y et al (2005) A decision support system for operations in a

container terminal., Decision Support Systems 39:309-332.

46

Petering M E H, Hussein M I (2013) A new mixed integer program and extended look-

ahead heuristic algorithm for the block relocation problem., European Journal of

Operational Research 231:120–130.

Rei, R., & Pedroso, J. P. (2013). Tree search for the stacking problem., Annals of

Operations Research 203: 371-388.

Stahlbock R, Voβ S (2008) Operations research at container terminals: a literature

update., OR Spectrum 30:1–52.

Steenken, D., Voβ, S., & Stahlbock, R. (2004). Container terminal operation and

operations research - a classification and literature review., OR Spectrum, 26:3-49.

Tang, L., Zhao, R., & Liu, J. Y. (2012). Models and algorithms for shuffling problems in

steel plants., Naval Research Logistics, 59: 502-524.

UNCTAD (2014) Review of Maritime Transportation 2014. Paper presented at the United

Nations Conference on Trade and Development, New York and Geneva.

http://unctad.org/en/PublicationsLibrary/rmt2014 en.pdf. Cited 28 June 2015

Ünlüyurt, T., & Aydın, C. (2012). Improved rehandling strategies for the container

retrieval process., Journal of Advance Transportation, 46: 378-393.

Wan Y, Liu J, Tsai P (2009) The assignment of storage locations to containers for a

container stack., Naval Research Logistics 56:699–713.

Zehendner, E., Caserta, M., Feillet, D., Schwarze, S., & Voβ, S. (2015). An improved

mathematical formulation for the blocks relocation problem., European Journal of

Operational Research, 245, 415{422.

47

Zhang, R., Liu, S., & Kopfer, H. (2016). Tree search procedures for the blocks relocation

problem with batch moves. Flexible Services and Manufacturing Journal, article in press,

1-28.

BIOGRAPHICAL SKETCH

Osman Karpuzoğlu born on July 28, 1991 in Bursa, Turkey. He studied Tan Fen Private

High School where he was graduated in 2009. He started his undergraduate studies at the

Industrial Engineerin Department of Galatasaray University in 2009. In 2014, he obtained

the B.S degree in Industrial Engineering. Since April 2014, he has been working as a

Tubitak project asistant in Galatasaray University. Currently, he is working towards

master’s degree in Lojistics and Financial Management under supervision of Yrd. Doç.

Dr. M. Hakan AKYÜZ at Institute of Science and Engineering, Galatasaray University.

