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ABSTRACT

In this thesis, we study in details the article (Popescu-Pampu, 2009). We apply its
results for plane curve singularities to the rational singularities of complex surfaces
using the results given in (Lé & Tosun, 1990).

In Chapter 1 we review some basic definitions from algebra which will be useful in the
sequel.

In Chapter 2, we define a singular point (or a singularity) of a variety and a
desingularization of a singular point. It is well known that, H.Hironaka proved in
(Hironaka, 1964) that any singularity of an algebraic variety S of any dimension defined
on a field of characteristic 0 can be desingularized by a sequence of normalized blowing
up. A desingularization of a singularity of S consists of finding a proper birational map
m: X — § with X non-singular variety. The existence of a desingularization in the
case of fields of characteristic p is still an open problem. Assume that S is a normal
variety. Otherwise, we normalize it, that means to find the integral closure of the
local rings Og,, (see Section 1.2); the normalised variety may have a finite number of
isolated singularities. Let us fix a singular point p of a normal algebraic variety S and
blow it up (see Section 2.2). The blow up of a point consists of the blowing up of the
maximal ideal of the point. If the blowed up surface Bl;(.S) is not normal we again
normalize it. The normalised blowed up surface Bl;(S) contains a connected curve over
the singular point p which is the projectivized tangent cone of the singular point. Of
course, it is possible that the blowed up surface is non-singular (has no singularity). By
Hironaka’s theorem, after a finite blow ups and normalising process Bl (S) will be a
non-singular variety. Here we are interested rather easy singularities of curves in C? and,
of surfaces in C" which are absolutely isolated (means that each blowed up surface in
the desingularisation process is normal). Following the literature, we associate a graph,
called dual graph, to the inverse image of the singularity p by the desingularization map
m, called exceptional curve. This correspondence is very important as we can obtain
many properties of a singularity by using simply the combinatorial properties of its
desingularization graph.

In Chapter 3, we study the singularities of plane curves and the effects of the blowing
ups of a point ¢ on the exceptional curve according to the fact that ¢ is a smooth point
or a singular point of the exceptional curve; these blow ups are called the elementary
modifications.

In chapter 4, we introduce Enriques tree corresponding to a plane curve singularity.
It helps to read the geometry of each blowing up in the desingularization process.
As in (Popescu-Pampu, 2009), we construct sails corresponding to the elementary
modifications leading to "the kite of a plane singularity”; it is a perfect configuration
where we can read many information on the corresponding singularity, namely each



blow up process, self-intersection of the irreducible components of the exceptional fibre,
so the dual graph and Enrique tree of the singularity. This is the only configuration
having so many information about the plane curve singularity.

In Chapter 5, we try to understand all the concepts given in Chapter 4 in the case of
singularities of complex surfaces. For this, we first introduce the minimal singularities
of complex surfaces. The dual graphs of these singularities are very special, means
easy to work in purely combinatorics way. Using (Spivakovsky, 1990), we define the
distance of a vertex in a minimal tree and construct a tree which will be called
depth tree of the minimal singularity. The word "depth” is used in (Lé & Tosun, 1990)
where the authors give a generalisation of the distance of a vertex in a minimal tree to a
rational tree. So we claim that the depth tree of a rational singularity serves as an
Enriques tree of a plane curve singularity. Using this information, we define a new
elementary modification and construct the sail for rational singularities. To distinguish
the dimensional difference, we call it "royal sail”; also it doesn’t contain only triangles
as in the case of curves but also some rectangles, pentagons,... etc. The problem we
have in the case of surface singularities, the sail doesn’t say anything about the self
intersections (or weights) of the irreducible components of the exceptional curve (of the
vertices in the dual graph) of the singularity. We call this problem "weight problem”.
This is because we don’t have control on the number neither on the self-intersection
of an irreducible components of the exceptional fibre after each blow up map. We also
know that we can obtain many different rational trees having the same shape with
different weights. However, we can take the minimum weights of the vertices such that
the tree is rational and draw the dual graph of the singularity from the corresponding
the royal sail.

In the last section, we aimed to find a relation between the sails of the singularities
of plane curves and of the rational singularities using sandwiched singularities as they
are the singularities of surfaces obtained by the blow up of a complete ideal in C? and
are a subclass of the class of rational singularities. We hope to find a nice royal sail
configuration for a sandwiched singularity having all the information as in the case of
plane curve singularities.



OZET

Bu tezde (Popescu-Pampu, 2009) makalesini detayl gekilde ¢aligtik. Bu makelenin
diizlemsel egri tekillikleri iizerine elde edilmig sonuglarini, (Lé & Tosun, 1990)
makelesinde verilen sonuclar1 da kullanarak kompleks rasyonel tekilliklere uyguladik.

Birinci boliime, tezin ilerleyen béliimlerinde kullanacagimiz bazi cebirsel tanim ve
ozellikleri vererek bagladik.

Ikinci boliimde ise kompleks tekillikler ve onlarm coziimlenmesiyle ilgili bazi tanim
ve Ozellikler verdik. Herhangi bir yiizey tekilliginin normallegtirilmis patlatma dizisi
yolu ile ¢oziimlenebilecegini (Hironaka, 1964) makalesinden biliyoruz. Karakteristigi O
olan cisimlerde yagayan tekilliklerin her zaman ¢oziimlenebilecegi yine (Hironaka, 1964)
makalesinde gosterilmigtir. Bir V' cebirsel kiimesinin tekilliklerinin ¢oziimlenmesi, W
tekil olmayan bir cebirsel kiime olmak iizere; birasyonel ve proper bir f : W — V tasviri
bulmak demektir. Burada dim(V') < dim(W)’dir. Coziimlenmenin karakteristigi sifir
olmayan cisimlerde her zaman bulunup bulunamayacagi halen acik bir problemdir. Bir
S cebirsel kiimesini alalim ve S’in normal oldugunu varsayalim. Eger degilse S’i
normallestirelim. Bu da Og, nin cebirsel kapanigin1 bulmak demektir (bknz. Boliim
1.2); normallegtirilmig bir cebirsel kiimenin sonlu sayida izole tekilligi olabilir. Normal
S cebirsel kiimesinden bir p izole tekilligi segelim ve S’i bu noktada patlatalim (bknz.
Bolim 2.2).  Bir nokta patlatmasi, o noktaya kargilik gelen maksimal ideali pat-
latmaktan ibarettir. Eger patlatilmig yiizey Bli(S) normal degil ise, tekrar
normallegtirme uygulariz. Normal patlatilmig yiizey Bli(S), p tekilligi iizerine
baglantili bir egriyi kapsar. Bu egri de tekilligin projectivize edilmis tanjant konudur
ve onun iizerinde patlatilmig yiizey tekillikleri vardir. Tabi ki patlatilmig yiizeyin
tekilliginin olmamasi1 durumu da mevzu bahistir. Hironaka'nin teoremi, k kez patlatma
ve normallegtirme iglemi uygulanarak tekil olmayan diizgiin bir Bly(S)
bulunulabilecegini gostermektedir.

Biz daha cok C?de yasayan egri tekillikleri ve C"'de yasayan tamamen izole yiizey
tekillikleri ile ilgilenecegiz. Boylece her patlatmadan sonra normallestirme yapmamiza
gerek kalmayacak. Ardindan, literatiirii takip ederek p tekilliginin ¢éziimlenme tasviri
altindaki ters goriitiisiine dual diagram olarak adlandirilan bir graf atamasi yaptik.
Dual diagramlar ve ¢oziimlenme arasindaki bu iligski ve dual diagramlarin kombinatorik
ozellikleri bizim icin tekilliklerin 6zelliklerini arastirmada 6nemli olacak.

3. boliimde, egri tekilliklerini ve bir ¢ noktasini patlatmanin dual diagramlar iizerindeki
etkilerini anlamaya calistik. Bunun i¢in iki temel modifikasyon tanimladik.

4. boliimde, egri tekilliklerine karsilik gelen Enriques agaclarini tanittik. Bu agaclar,
¢oziimlenme iglemindeki patlatmalar: geometrik olarak okumada bize yardim etti.
(Popescu-Pampu, 2009) makalesindeki gibi temel doniigiimlere kargilik gelen
yelkenleri olusturduk ve bu da bize diizlem tekilliklerine atanan ucurtmayi verdi. Bu



s0z konusu olan tekilligin 6zelliklerini ozellikle de patlatma siirecini anlamamiz igin
onemli bi yapidir.

5. boliimde, 4. boliimde verilen biitiin konseptleri yiizey tekillikleri i¢cin anlamaya
calistik. Oncelikle minimal yiizey tekilliklerini tamttik. Bu tekillikler gayet ozeldir,
kombinatorik olarak anlagilmasi kolaydir. (Spivakovsky, 1990) makalesinden
yararlanarak minimal bir agagta uzaklik kavramini tanimladik ve minimal tekillikler
i¢in derinlik agacit adim verdigimiz bir aga¢ tanimladik. "Derinlik” kelimesi
(Lé & Tosun, 1990) makalesinde kullanilmigtir ve yazarlar minimal agaglar igin
tanimlanan uzaklhk kavramini, rasyonel tekillikler i¢in genellestirmistir. Biz rasyonel
tekillikler icin derinlik agacinin, egri tekilliklerine atanan Enriques agaclarina karsilik
geldigini iddaa ediyoruz. Bu bilgiyi kullanarak, yeni bir temel doniigiim tanimladik ve
rasyonel tekillikler igin yelken tanimladik. Boyutsal farklilhigi ayirt etmek icin
bunlara royal yelkenler adini verdik. Ayrica bu yelkenler egri tekilliklerindeki gibi
sadece {icgenlerden olugsmaz, dortgen ve besgenler de bulunabilir. Yiizey tekillikleri icin
olugturdugumuz yelkenlerin, istisnai bélenlerin agirlgr hakkinda bilgi vermemesi gibi
bir problemimiz var. Bu probleme agirlik problemi adin verdik. Ciinkii yiizeylerdeki
patlatmalardan sonra istisnai bolenlerin kesigim sayilarini kontrol edemiyoruz. Ayrica,
dual diagramlar olarak ayni sekle ancak farkl agirliklara sahip olan farkli rasyonel
tekillikler mevcuttur. Buna ragmen, agirliklar agaglar minimal kalmak sartiyla
minimal alip, tekillige karsilik gelen dual diagramlara yelkenlerden ulagabiliyoruz.

Son boliimde, egri tekilliklere ve rasyonel tekilliklere atanan yelkenler arasinda bir
iligki bulmay1 hedefledik ve rasyonel tekilliklerin bir alt sinifi olan ve complete ideallerin
patlatilmasi ile elde edilen sandivig tekilliklerini kullandik. Egri tekilliklerinde oldugu
gibi rasyonel tekillikler ile ilgili biitiin bilgilere ulagabilecegimiz uygun bir royal yelken
olugturmay1 hedefliyoruz.



1. INTRODUCTION

Let A be a ring. A zero divisor in A is a non-zero element x such that there exists an
y € A with y # 0 and zy = 0. A ring A is said to be an integral domain if A # {0}
and it has no zero divisors. In other words, a nonzero ring A is an integral domain if,
for all z,y € A with x # 0 and y # 0 we have zy # 0. It is well known that a finite
integral domain A is a field.

1.1 Characteristic of a Field

Let A be an integral domain. Consider the function f : Z — A defined by f(n) =n-1
is a ring homomorphism and the image by f is the cyclic subgroup < 1 > of (A, +)
generated by 1. So either 1 has finite order n, hence < 1 >= Z/nZ or, 1 has infinite
order, hence < 1 >= 7Z. In the first case, n = p is a prime number and every nonzero
element of A has order p; in the later case, every nonzero element of A has infinite
order.

Definition 1.1.1. Let A be an integral domain. If 1 € A has infinite order, the
characteristic of A is said to be zero. If 1 € A has finite order, which is necessarily a
prime p, we say that the characteristic of A is p. This is written as write char(A) = 0
or char(A) = p.

1.2 Integral Closure

An element x € k is integral over A if one of the following equivalent condition holds:

(1) x verify an equation of the form
a4 +a,=0

where a; € A for all 7.
(2) Alz] C k[z] is finitely generated A-module.

Definition 1.2.1. The integral closure_fl of A is the set of x € k integral over A. The
domain A is called integrally closed if A = A.

Exemple 1.2.1. The integral domain C[t?, #3] is not integrally closed since the rational
3

function ¢ = m is a root, of the monic polynomial 22 —#2. Then ¢ is integral over C[t?, {3

but ¢t ¢ C[t?,¢*]. In fact C[t2,t3] = C[t].
1.3 Normal Local Ring

Let K be a field. A discrete valuation on K is a mapping v from K — {0} onto Z
such that for all z,y € K — {0} we have following properties:

(i) v(zy) = v(z) + v(y)
(ii) v(z +y) = min(v(z), v(y)).



If v is a discrete valuation, the subring
R = {z € Klv(z) > 0} U {0}

of K is called discrete valuation ring of v. Moreover, R is a local ring with maximal
ideal
m = {z € K|v(z) > 0} U {0}.

In general, an integral domain A which is equal to the valuation ring of some valuation
of its quotient field is called discrete valuation ring.

Exemple 1.3.1. Let K = K(z) and p € K[z] be an irreducible polynomial. Every
r € K = K(x) can be written uniquely as p®q where a € Z, numerator and denominator
of ¢ are both prime to p. We define valuation v,(r) to be a. The corresponding discrete
valuation ring is the prime ideal (p).

Let A be a discrete valuation ring and I # 0 be an ideal of A. Then {v(y)|y € I}
allows minumum value. So, for some z € I, v(z) < v(y) for all y in I. Suppose that
v(z) = d. Tt follows that I contains every y € A with v(y) > d and the only non-zero
ideals in A are

my ={y € Alu(y) = k}

So A is Noetherian. The dimension of Noetherian domain A defined as the length of
longest possible chain of prime ideals. We say that A is a Noetherian local domain of
dimension 1.

Proposition 1.3.1. (Atiyah & MacDonald, 1990) Let A be a noetherian local domain
of dimension one, m its mazimal ideal, k = A/m its resideue field. Then, the followings
are equivalent:

(i) A is a discrete valuation ring,

(ii) A is integrally closed,

(#i) m is a principal ideal,

(iv) dimg(m/m?) = dim(A),

(v) Every non-zero ideal is a power of m.

If A be a Noetherian local ring with maximal ideal m and residue field £, then
dimy(m/m?) > dim(A). We say that A is regular local ring if

dimy(m/m?) = dimA.

Let A be an integral domain with quotient field K. The normalization of A in K
denoted by A, is the unique largest subring M C K such that evey homomorphism
¢ : M — R to a discrete valuation ring extends to a homomorphism ¢ : M — R.

Theorem 1.3.2. (Atiyah & MacDonald, 1990) The integral clousure A of A in K is
equal to the intersection of all the valuation ring of K which contain A.

Corallary 1.3.3. The normalization of an integral domain A is equal to its integral
clousure in its quotient field.

Definition 1.3.4. An integrally closed local ring is called normal.



1.4 Krull Dimension

Let R be a ring and M be an R-module. The sequence z1, ..., x, of elements of R is
called regular sequence for M if x; is not zero divisor in M and for all t = 2,...,7;
x; 1s not zero divisor in

M/(:m ..... :Bi_l)M

If R is local ring with maximal ideal m, the depth of M is defined as the maximum
length of a regular sequence xy,...,z, for M with all z; € m. We say that a local
noetherian domain R is Cohen-Macaulay if depthR = dimR.

Theorem 1.4.1 Let R be a local noetherian ring with maximal ideal m.

(a) If R is regular, then it is Cohen-Macaulay.

(b) If R is Cohen-Macaulay, then any localization of R at prime ideal is also Cohen-
Macaulay.

(c) If R is Cohen-Macaulay, then a set of elements xy,...,x, € m forms a regular
(d) If R is Cohen-Mcaulay and x1, ..., x, is a reqular sequence for R, then R/4, . is
also Cohen-Macaulay.

Definition 1.4.2. Let R be a ring. The Krull dimension of R, denoted dimR, is
the maximal length of an ascending chain of prime ideals in R:

po?:]h;'“;pd

not counting the minimal prime po. If p € SpecR, the height of p is defined by
ht(p) = dimR,, (which is the mazimal length of a chain of prime ideals contained in p)

Theorem 1.4.3. A noetherian ring R is normal if and only if it satisfies the following
two conditions:

(i) for every prime ideal p C R of height < 1, A, is reqular (hence a field or a discrete
valuaiton ring); and

(11) for every prime ideal p C R of height > 2, we have depth A, > 2.

Definition 1.4.4. Let I be an ideal of a commutative ring R. An element x € R is
called wntegral over I, if

-1
"+ a4+ ap_1a, =0

for some a; € I' fori = 1,2,...,n. The set consisting of elements which are integral

over I is called integral closure of I and denoted by I. We say that I is a complete
ideal if [ = 1.

Following (Kollar, 2007):

Theorem 1.4.5. Let R be a one-dimensional, normal, noetherian integral domain.
Then R is regular. In other words, for every mazimal ideal m C R, the quotient m/m?
is one-dimensional over R/m.

Proof. We can reduce the case where (R, m) is local ring by localizing R at m,,. Let
z € m\m? If m = (z), we are done. If m # (), m/(z) is non-trivial. Since R local
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ring with dimension 1, R/(x) is 0-dimensional and it means m/(z) is killed by a power
of m. Thus, there is a y € m\(z) such that my € (z). Hence

ngR.
T

1f Lm contains an unit element, then Y, = u for some 2 € m and a unit u. That gives
x x

us x = yzu~' € m?, which is impossible.

Thus Zm C m. Now, we will use Nakayama’s lemma :
x

Let m = (21,...,x,). Then there are r;; € R such that

max

= E f .
T J : J]
%

So, (x1,...,x,) is a null vector of the matrix
Yy
~La = (riy),

and the determinant is zero. This determinant is a monic polynomial in Y with coeffi-
x

cients in R. Since R is normal that gives us Y ¢ Rand y € (x) contrary to our choice
x

of y.



2. DESINGULARIZATION MAP

An algebraic set X C C" is the vanishing set of a finite set of polynomials fi,..., fi in
Clzy,. .., x,); it is denoted by X = V(fi,..., fr). When k = 1, the algebraic set V'(f1)
is called an hypersurface. An irreducible algebraic set is called variety. Here we are
interested in varieties of dimension 1 in C2, called plane curves and, of dimension 2 in
C", called surfaces.

2.1 Singular Points

Definition 2.1.1. Let C' be a curve defined by f(x,y) =0 in C% A point p = (a,b) is
called singular point of C' if

0 0
f(a,b) = 6—£(a, b) = a—i(a, b) =0

If f(a,b) = 0 but %(a,b) # 0 or g—i(a, b) # 0 then p is called a regular (or smooth)

point of C'. A plane curve having only reqular points is called a smooth curve.

Definition 2.1.2. Let X be surface defined as the zero locus of

filzr, e, .. ) = oo = f(z1, 29, .., 2) =0

in C*. A point p € X is said to be a regular point of X if the rank of the Jacobian

matrix (gj:l)(p) attains mazximal. Otherwise, we say that p is a singular point (or a

singularity) of X.
If all points of X are regular we say that X is a smooth surface, means that the local
ring Ox, at each point p is a regular local ring. The set of singular points of X is

called singular locus of X and denoted by Sing(X); it is a proper closed subset of X.
Note that dimX = minyex{dimT,X}. In general, dimT,X > dimX.

Definition 2.1.3. Let (X,0) be a normal surface with singularity at 0. This says that
Ox, is a normal ring. A map ©: X' — X is called a desingularization of (X,0) if
X' is non-singular and the map 7 is birational and proper.

Recall that a function f : X — Y between two topological spaces is called proper if
the preimage of every compact set in Y is compact in X.

2.2 Blow-up

The blowing up of a point in a variety is a significative example of birational maps.
Let us first look at blowing up of C? at (0,0). The idea depends on the fact that every
point of C? except the origin lies on unique line through origin and set of all lines
through the origin corresponds P*. Let us consider the set

B={(z,) cC*xPlzel} cC*x P!
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The blow-up of (0,0) in C? is the natural projection of B to the first factor
II: B— C?
(x,1) — x
Hence we have:
B = {(a,b,p1 : ps) € C* x P'|apy = bp1}.

where x = (a,b) and | = (p1 : p2). More generally, we have:

={(21,. . ;Y1 : oY) = Ay, Vi, A € C}
= V(ziy; — 250 < i < j <n)

-----

Let S be an algebraic variety in C". The blow up of a point p € S in S, denoted by
B,(S) is the closure of II"1(S'\ p) in B,(C™). The fibre II"!(p) is called exceptional
divisor of II.

Consider the plane curve X = V(y? — 22 — 23) C C? which has a singularity at (0, 0).
The blow-up (0,0) in X is nothing but closure of ITI"'(X \ (0,0)) together with the
restriction of the natural projection. Since IT is an isomorphism from B\ II71(0,0) to
K2\ (0,0), restiriction of II to IT"!(X \ (0,0)) is an isomorphism onto X \ (0,0). We
have:
M (V(y? — 2% — 2%)) = {(a,b,p1 : p)|V* — a® — a®, apy = bp1 }.
Let’s look at first chart defined by p; # 0:
By(X) = {(a,b,1:)|b* — a* — a®,at = b}

=~ {(a,b,t)|a’t* — a* — a*}

= {(a,t)]a®(t* — 1 —a)}
The subvariety V(a?) is called the exceptionnel divisor of II. The subvariety
V(t? — 1 — a) is called the strict transform of X.

Definition 2.2.1.(Blow-up of an ideal) Let X = V(fi,..., f.) C C" an affine variety.
Let I = (g1,...,q) be an ideal in A = Clxq,...,2,]/(f1,-.., fi). The blow-up of X
along I is the graph Br(X) of the rational map
p: X — P!
x> [g1(2), ..., qu()]
together with the projection 11 : By(X) C X x P'™! — X. The restriction of the
projection into Br(X) \ I~ (V(I)) give rise to an isomorphism onto X \ V(I).

Theorem 2.2.2. (Hironaka, 1964) Let S be an algebraic variety over an algebrically
closed field of char 0. There exists a desingularization of the singularities of S, means
that there exists a map ©: X — S such that

(i) X is a smooth surface
(i) 7 is a birational map
(#ii) 7 is a proper map

Remark 2.2.3. A desingularization of a variety is a sequence of finite number of
blow-ups of points.
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By (Hironaka, 1964), there exists a unique desingularization which is dominated by all
the other desingularizations of (5,0), called the minimal desingularization. Let X be a
surface with singularity at 0 and 7 : X’ — X be its resolution. The fibre 77(0) := E
is called exceptional fibre.

Theorem 2.2.4.(Zariski’s Main Theorem) If X is a normal surface then the excep-
tional fiber 7=1(0) := E is connected and has dimension 1.

If X is a normal surface, the exceptional fibre is in the form £ = F; U E,U--- U E,
with E;’s are irreducible components called exceptional divisors. The desingularization
7 is called strong resolution if £ is normal crossing. Normal crossing means that all
the exceptional divisors are smooth and intersect each other at most one point.



3. PLANE CURVES AND DESINGULARIZATION

Here we will introduce the Enrique tree of a plane curve singularity is an invariant of
the curve describing the desingularization process of a plan curve singularity.

Let C be a curve with singularity at O and II; : £ — C be the blow-up of C' with
center O. The pullback of C by II; contains the strict transform CV) together with the
exceptional locus E(M). The singularities of C(!) lying above O € C are called infinitely
near points in the first infinitesimal neighborhood of (C, O). Inductively, the singular-
ities in the first infinitesimal neighborhood of IT;*(O) € CV) are called infinitely near
points in the second infinitesimal neighborhood of (C, O). Now, let us take the strong
desingularization map of (C,0O) :

(S paviny ZVe, (oN pay Ty I 50 (2, 0)
where II;,; denoting the blow-up of X! with finite set of infinitely near singularities
{07 € J(i)} € E® where J(i) is set of indices depending on i.
Let O € £ be an infinitely near singularity. We consider the map
Iy : DY — £®)

If Oy € II,},(0), we say that O is the direct predecessor of O; and we write
pp(0O1) = O. We denote the set of infinitely near singularities on ) by P®.

Definition 3.0.1 The set Ufio P9 s called the constellation of desingularization.
So, the constellation consists of centers of the blowing-up process of (C,O).
Let O; € PY C %;. The point O; is called satellite point if O; € E,(jl) N E]g) for

ki1 # ko. When pp(0;) = O,(j;l), then we set pr(O;) = O,(CJ;T) where r < j and p;(O;)
is called indirect predecessor of O;. If O; is not a satellite point (this means if O;
is smooth point of EY, O; is called a free point. The set of proximity points of O;
denoted by P(O;) defined as

P(0;) = Pp(0;) U P(0;)

where Pp(O;) = {O|pp(O)) = O;} Pi(O;) = {O|p;(O;)) = O;}. So, these two sets

contain direct and indirect predecessors of O;.

Here is an exemple of the blowing-up process of (C,O) :



x

Figure 3.1: The constellation is P = {O, Oy, 04, 03,04, 05} of (C,O).

Let (C,O) be a curve singularity and let P be its constellation. The Enriques tree
e(C) of (C,0) is defined as follows:

1. The vertices corresponds to the points O; of the constellation,

2. There is an edge between two vertices O; and O; if one of them is direct predecessor

of the other one. Let us say pp(O;) = O;,

3. If O, is a satellite point, the edge between them is a curvilinear line, if O; is a free
point then the edge between them is a segment,

4. The union of two consecutive segments is a straight line if the two starting points O;
and pp(0O;) have the same indirect predecessor, if indirect predessors of O; and pp(O;)

differ, the union of two segments is broken line.

The Enriques tree of the constellation above is:
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Figure 3.2: Enriques tree of (C,O) in Figure 3.1.

Corallary 3.0.2 (Castellini, 2015) Let C; and Cy be curve singularities. The following
statements are equivalent:

(i) C1, Cy have same topological type;
(i1) Cy, Cy have isomorphic Enriques trees;

(iii) Cy, Cy have isomorphic dual graphs.

3.1 Elementary Modifications

We saw that there are two kinds of point on an exceptional fibre of the blowing-up map
to continue to desingularization process: Free point and satellite point. Here we will
explain the effects of a blow-up of each these points: Let (C,O) be a curve singularity
in (C2,0) and let

X =x® Dy Ieoeo Do (02 0)

be a strong desingularization of (C, O). Let us define Iy o[Iyo- - -oIl; := ®; : 37 — 3O,
Let us consider the exceptional fibre @;1(0). Suppose that ®; is not giving the strong
resolution. Then, we need a few blow-ups to get strong resolution. Consider the blow-
up 1144 : 341 — X of ¥, at some point of exceptional fibre CIDJ-_I(O). The type of that
point gives us two elementary modification on dual graphs. Let us denote I' the dual
graph corresponding to ®;'(0) and I" the dual graph corresponding to ®;},(O).

(a) Let z € [I'| and E, corresponding exceptional divisor. If the point we blow-up is
a free point y € E, we get elementary modification of the first kind denoted by
e(y, z) which turns I' into I obtained by adding a new vertex y to I' such that:

(1 {y}={zy} in I
(2) wr(y) =1

wr () = wp(z) + 1
wr(z) =wr(z) for z#x,y.

We can describe this effect like this:
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(k) ~(k+1)
E; E,

Figure 3.3. Effects of blow-up a free point on weights

(b) Let z,y € I" be two adjacent vertices with corresponding exceptional divisor E,
and E,. This adjaceny says E, N E, # (. If the point we blow-up is a satellite point
y € E, N E, we get elementary modification of the second kind, ¢(z, z,y) which
turns I' into I obtained by adding a new vertex z between z and y such that:

(1) {z}={z.y.2} in T,

(2) wr(z)=1
wr(x) = wr(z) + 1
wr(y) = wr(y) + 1
wr(t) = wr(t) for t#z,y.z

For the case of satellite points, we can describe like this:

E1 Eg El EQ

Figure 3.4. Effects of blow-up a satellite point on weights

(c) For I' = (), we have elementary modification of first kind e(x) which is

1
) — e,
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T wp(z)

Figure 3.5. An elementary modification of first kind

/
L I wp(z) +1

1
— 7 .
T Yy &L 2

Figure 3.6. An elementary modification of second kind

wp(y) +1

=

Definition 3.1.1 An elementary sequence is a sequence of elementary modifica-
tions. Let ', T be two weighted graphs. We say that I dominates I', denoted by I' < T,
if I can be obtained from T' by an elementary sequence.
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4. SAILS AND KITES

Definition 4.0.1 A half sail is a triangle with three edges named as the basis of
triangle, simple edge and invisible edge. The corner point appearing as the intersection
of the basis and invisible edge will be called the fancy point of the half-sail. The other
two wvertices will be called simple vertices; but they will differ as the basis vertex and
the terminal vertex.

terminal vertex

simple edge

fancy point base basis vertex

Figure 4.1: A half sail

A half sail will be oriented by ordering its vertices: The basis vertex, the terminal
vertex and then the fancy point.

Definition 4.0.2 A simple sail is the gluing of two half-sails in such a way. It has
two simple edges, one base. All vertices of simple sail are simple vertices, one of them
15 terminal verter and the other two are basis vertices.

terminal vertex

simple edges

N

fancy point

A
first basis vertex basis second basis vertex

Figure 4.2: A simple sail
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By gluing half sails and simple sails we will obtain multiple sails. The gluing conditions
described as follows:

1. If we dont have a multiple sails already existed, we start with taking axis of the
elementary sail.

2. Suppose that we have a multiple sails already existed, let us denote this multiple
sails by V. We glue a half sail or a simple sail to V with respecting following conditions:

(i) Assume that we will attach a half sail S. The basis vertex of S will be attached to
a simple vertex of V.

simple vertex of
closest sail

present multiple sails

basis vertex

Figure 4.3: Gluing of a half sail

(ii) Assume that we will attach a simple sail S to V. We glue the basis of S to the
simple edge [ of multiple sails V by defining an (unique) affine isomorphisme which
identifies the second basis vertex of S to terminal vertex lying on [.

closest sail

simple edge (can be half or

simple sail)

second basis

terminal vertex

vertex

Figure 4.4: Gluing of a simple sail
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We can construct multiple sails by adding elementary sails one by one. Now, we will
build a relation between multiple sails and constellation. Briefly, we can say that half
sails corresponding to free points and simple sails corresponding to satellite points.
More precisely, let us consider the curve singularity (C,O) and its strong resolution

(2D, poveny T v gy I, Iy 590 = (2, 0)

Let C be the associated constellation. Let O; be the satellite point which lies on
the intersection of Ej, and Ej, where Ej,, Ey, € EW. Let E; := II;},(0;) be the
divisor existed by blowing-up O;. Then we will associate a simple sail. The vertices
will corresponds bijectively to the divisors Ej,, Ey, and E;. The segment [Ey,, E,| will
be the basis of simple sail and then Ej, and Ej, will be the basis vertices and E; will
be the terminal vertex of simple sail. The middle point of the basis so the fancy point
corresponds to the infinitely near singularity O;. Consequently, the invisible edge will
be between the fancy point O; and the terminal vertex FE; which is the exceptional
divisor existed by blowing up O;.

L

ki, O; Ey,

Now let us consider free point O; lies on Ej, € E®. Let E; := H,;il(Oi) be the
exceptional divisor existed by O;. We will associate a half sail as follows. The vertices
fancy vertex, basis vertex and terminal vertex corresponds bijectively (with respecting
the order) to infinitely near singularity O;, exceptional divisor Fj, and the exceptional
divisor F;. The invisible edge will be between the infinitely near singularity O; and the
exceptional divisor F; which is the exceptional divisor existed by blowing up O;.

We want to divide a multiple sails into smaller pieces. Let V be a multiple sails. If
we remove vertices of every sails in a multiple sails V, we can regard V as a union
of connexe components. Then, adherence of each of those components are callded
complete sails. All of the complete sails except axis has exactly one half-sail due to
the construction rules just described above.

We will now assign an orientation to the complete sails. Only half sail of complete
sails will be the key to assign an orientation on complete sails. More precisely, we will
assign an orientation on every complete sails by extending the orientation on the half
sail belongs to them. After assigning an orientation on every complete sails, we will
define new notion to distinguish two simple edges of a simple sail from each other.
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Thus, the simple edge of a simple sail coming after the base with respecting to the
orientation is called right simple edge and the other one is called left simple edge.

Gluing a simple sail to a multiple sails can be made on right simple edges or left simple
edges of closest sails. But, if closest sail is a half sail, attachement is always made on
right simple edges. Thus, consider the suite of simple sails (71, ..., 7,) being glued each
other with respecting the order. If we glue all of them on right (or left) simple edges,
we say that these simple sails turning in the same direction.

We will now associate kites K to a given multiple sails V : To do that, we will attach
some vertices on the multiple sails by two types of cords, free cord or satellite cord.
Each gluing of an elementary sail gives a cord of K. The type of cord is depending on
type of elementary sail we have been glued:

(a) If we glue a half-sail; we attach a free cord identfying its final point to fancy
vertex of the half-sail, its initial point to fancy vertex or fancy point of the closest sail.

gluing of basis vertex to

closestsa/il_;
rd

. r

final p0|n\t\ ’

~~ - -

4

Figure 4.5: Gluing of a half sail and existence of a free cord

(b) Assume that we glue a simple sail. Let us denote B terminal vertex and C' basis
vertex of the closest sail such that BC' is the simple edge on which we glue basis of
the simple sail and M is fancy vertex of the closest sail. we attach a satellite cord
identfying its final point to midpoint of BC and its initial point to M.

satellite cord

Figure 4.6: Gluing of a simple sail and existence of a satellite cord
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In Figure 4.7, we have a kite associated to multiple sail. We always represent free
cords by curved lines to distinguish them from satellite cords which are represented by
straight lines.

Figure 4.7: A multiple sails with associated kite

In the sequel of this section, we will interrelate sails with desingularization which is our
main topic. Briefly, we associate a multiple sails to the constellation of desingularization
of a curve singularity. Two kind of sails will corresponds to two elementary operation of
desingularization which are blow-up a free point or blow-up a satellite point. In Chapter
3, we explain these two elementary operation by charecterization of their effects on
dual graphs of desingularization. Now, we will present a new charecterization using
elementary sails. Let’s say C' is a finite constellation and C’ is another constellation
which contains C' and C” has exactly one more infinitely near singularity O;. We will
explain how to construct multiple sails V(C')’) associated to C' from V(C') de C:

(i) If C =0, V({O;}) is just axis we represent with dotted line where initial vertex of
axis noted by I(O) and the terminal vertex by 7'(O).

(ii) If C' # 0, we have two case to consider depending on the type of infinitely near
singularity O;:

Case 1: If O, is free point, pp(0;) = O;, we attach a half-sail v(0;) to V(C') identifying
its basis vertex with 7°(0;). Fancy point of v(O;) is denoted by I(O;) and its terminal
vertex is denoted by T'(0;).

Case 2: If O; is satellite point with pp(0;) = O; and p;(0;) = Oy, we attach a
simple sail v(0;) to V(C) gluing its base to simple edge with simple vertices O;, Oy, of
V(C) identfying second basis vertex of v(O;) with O;. Fancy vertex of new simple sail
denoted by I(0;) and terminal vertex by T'(O;).

Let us see how to construct the other configurations given one of the followings in
purely combinatorics way:

e A multiple sail,

e A constellation C

e An Enriques tree

e Dual Graph

e f(x,y) =0in C?
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From Enriques tree of (C,O) we can easily extract the configuration exceptional fibre.
So, we can write associated dual graphs without weights. Moreover, next two
proposition tells us about how we extract weights of vertices of dual graph from Enrique
tree. With respecting the notation in Definition 3.1, let

I, : (E(k), E'(k)) N (E(k—l)’ E(k—l))

be the blow-up of ¥*~1 along the point P of the exceptional divisor D ¢ E*-1),
Proposition 4.0.3 Let D’ be the strict transform of D. Then, we have

(D')* = (D)* - L.

Proof. Let I1*(D) be the full preimage of D in X’. Then, [I*(D) = D' + E.
D? = II*(D) 11I*(D)
=(D+E) D+ FE)
— (D')? +2D'E + B
=(D')?+2-1= (D) +1.

Corallary 4.0.4 Let EZ-(N) C Z(N) be an irreducible component. Then,

(B2 = —1— #P(0y).

1

Proof. When we blow-up an infinitely near point O;, corresponding exceptional divisor
exists with self intersection (—1). By the proposition above, each time we blow-up a
point of E; its self intersection drops by one. ]

Exemple 4.0.1 In Figure 4.8, we give an example of cosntellation C'. At first, we will
find its Enriques tree £(C) and dual graph D(C) using usual way. See Figure 4.9 and
Figure 4.10.
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Figure 4.8 : A finite constellation C' = {O, 04,0, ..., 011 }.

Or O1o

O

Figure 4.9 : Enriques tree of the constellation C' above.

Now, in order to find dual graph of constellation above, we will use Corallary 4.0.4
which says weight of a vertex e; with corresponding infinitely near singularity O; is
equal to

w(e;) = =1 = #P(0;).
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Figure 4.10 : Dual graph associated to the constellation C' above.

The following theorem tells us how to extract a dual graph and Enriques tree of a
constellation C' from multiple sails V' (C') and kites K (C) associated to C'.

Following (Popescu-Pampu, 2009):
Theorem 4.0.5 Let C' be a finite constellation starting from O.

(i) Enriques tree e(C') is isomorphic to kites K(C') of constellation by an isomorphism
which sends infinitely near singularity O; to the fancy vertex or fancy point of the sail
corresponding to O;. Curvilinear lines of e(C') corresponding to the free cords of K(C')
and segments of e(C) corresponding to the satellite cords.

(i) Dual graph D(C) of constellation is isomorphic to the graph obtained by union of
simple edges of multiple sails V(C') where the isomorphisme sends every infinitely near
singularity O; of C' to the terminal vertex (which represents the exceptional divisor
existed by blowing-up O;) of the sail corresponding to O;. Weight of an exceptional
divisor which corresponds to a simple vertex v of K(C) is equal to

(—=1)  x  # {number of elementary sails has arrived at v}

where 'azis included.

Exemple 4.0.2 In Figure 4.11, we will associate multiple sail V' (C') to the constellation
C' in Figure 4.8. In Figure 4.12, we will extract kites K (C') from V(C).
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Figure 4.11: Multiple sails V' (C) asssociated to the constellation C' in Figure 4.8
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0

Figure 4.12: Kites K(C) associated to multiple sails V' (C).

It is easy to check the tree K (C') (in red) is isomorphic with the tree we have found in
Figure 4.9; the tree (in purple) is isomorphic to the dual graph in Figure 4.10 where
weight of a vertex Fj; is equal to number of elementary sails arrived to the vertex FEj.

Remark 4.0.6 A Fkite is the best configuration corresponding to a plane curve
singularity in the sense that a kite collect many invariants of the singularity at once.
Note that given any of these information we can construct the kite.
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5. SINGULARITIES OF SURFACES

5.1 Desingularization Graph

In this section, we will be interested in desingularization process of a surface singularity.
We will define a special tree for a surface singularity giving the similar information as
Enrique tree in the case of the curve singularities.

Let S denotes a normal surface in C". As any normal surface has isolated singularities
(Laufer, 1973), we assume that 0 is the only singularity of the surface S. In 1935,
R. J. Walker proved the existence of desingularization of an analytic surface (.5,0)
and, in 1939 O. Zariski proved it for algebraic surfaces. Let 7 : (X, E) — (5,0) be
a desingularization of (S,0). By the Main Theorem of Zariski, the normality of the
surface S implies that the exceptional fibre E := 7=1(0) is a connected curve. Hence
E is of dimension 1. The universal property of blow-up (Hartshorne, 1977) says that:

Theorem 5.1.1. With preceding notation, let m be the maximal ideal in the local ring
Oso. If mOx s invertible in X then m can be factorized by the blow-up of 0 in S.

Furthermore, we can find many desingularization of S and a desingularization which
is convenient for our aim. For example, 7 is called a good desingularization if E is
normal crossing and, for all ¢, F; is non-singular. Let us assume that 7 is a good
desingularization of (S,0). We associate a matrix M (F) to E using the intersection
form of the curves Ej;, called intersection matrix; the coefficients of M (F) are defined
by (€ij)1<ij<n With e; = —(E; - E;) and e;; = is the number of intersection points of
E; and Ej;.

Theorem 5.1.2. (Mumford, 1961) The intersection matriz is negative definite.

Now let us associate a weighted graph I' to 7=1(0). The vertices of the graph I' are
in one-to-one correspondence with the irreducible components of 77(0). Two vertices
are connected by an edge if the corresponding irreducible components intersect. If x; is
a vertex with corresponding irreducible component FE;, we define the weight of vertex
ZI; as

where E? is the self-intersection number of E;. The weighted graph T is called desin-
gularization graph (or dual graph) of 7.

Theorem 5.1.3. (Artin, 1966) A weighted graph is the dual graph of a surface
singularity if and only if the intersection matriz of the corresponding curve configuration
s negative definite.

A prime divisor on X is an irreducible subvariety of codimension 1 in X. A divisor
D = > " m;E; on a desingularization X is a formal linear combination of prime divisors
E; C X with coefficients m; € Z. The group of divisors Div(X) is a free abelian group
generated by prime divisors.
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5.2 Minimal Trees

Let I' be a weighted graph with vertices 1, ..., x; such that:

(i) For each ¢ # j, there exists a unique path between the vertex x; and the vertex z;,

(ii) There is no cycle in T.

These two conditions together are equivalent to say that I' is a tree. Form now on,
[' will represent a tree and |I'| will represent the set of vertices of ', means we have
| = {z1,...,2}. We say that the distance between the vertices x; and z; is 1 (or
they are adjacent) if they are attached to each other by an edge. We denote it as
distr(z;,x;) = 1. The number of all the vertices in I' having distance 1 to a vertex z
is called the valency of z in I'. We will denote it by vr(x).

Definiton 5.2.1. Let S be a normal complex surface and 0 a singular point of S. The
singular point 0 of S is called minimal singularity if

(1) multyS = emdimo(S) — dimo(S) + 1

(i) The tangent cone Csq of S at 0 is reduced.

Definiton 5.2.2. A weighted tree T' is called minimal tree if w(x) > vr(x) for all
xz e |I].

Proposition 5.2.3. (Artin, 1966) If I' is a minimal tree then the matriz M(I") is
negative definite.

It is clear that we have:
Proposition 5.2.4. (Artin, 1966) Any subtree of a minimal tree I' is a minimal tree.

Remark 5.2.5. For a normal surface singularity being minimal can be charecterized
entirely by the dual graph. A normal surface singularity whose dual graph is a minimal
tree ', is a minimal singularity. A minimal tree I" is dual graph of some minimal normal
surface singularity. In the next section, we will see that a normal minimal singularity
is a rational singularity with reduced fundemental cycle.

Remark 5.2.6. If0 € S is a minimal singularity then blow-up ByS has only minimal
singularities.

Remark 5.2.7. Let I' be a minimal tree. So w(x;) > v(z;) for alli €| ' | and, this
implies (Z - x;) < 0 for all i where Z = Zle x; 18 a diwisor in X supported on E.

Theorem 5.2.8. Let (S,0) be a minimal singularity and
T (X, E)— (S,0)

its minimal desingularization. Let o : S — S the blow-up of 0 in S. Then there is a
map r: X' — S such that 1 = o or and a component x; of E = n=(0) is contracted
to a point by r if and only if (Z - x;) = 0 where Z = Zle x;.

From now on, let us denote by M a minimal tree. Let E be the curve configuration
corresponding to M with the irreducible components E;, ..., Ey. We take a unique
irreducible component FE;,. We want to compute the appearance level of E;, in the
sequence of blowing ups giving m. This level is called the depth of E; (or x; in T,
denoted by depth,(z;). By theorem , a vertex z € | M| has depth one if w(z) > v(z),
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which means that these components of E/ appears after the first blow up of 0 in S. Let
I'rc be the set of vertices x1,...,x; of depth one. We have:

M_{xlu"wxl}:Hjjjﬁ ]:17;]7

Each T; is called a Tjurina subtree of M. The depth.(x) of a vertex = in M is defined
as:
depth,(x) = d, == min(dist(x,x;))

among all z; € I'pe. This means that the component E, of F corresponding to z
appears in the d,-th blow up of 0.

5.3 Royal Sails and Kites

Here we will try to find the sails and kites for a minimal normal surface singularity. In
the case of surfaces, the irreducible components of the exceptional fibre don’t appear
one by one after the blow ups process of the singularity. By theorem , the blow up of
the minimal singularity may produce many singularities of the blowed up surface and
many irreducible components of the exceptional divisor. Before we proceed we need to
add one more elementary modifications to three modifications given before in the case
of the singularity of a plane curve.

(d) Let Ei,..., E, be the irreducible components which intersect all at one point p
which is singular for the blowed up surface S. We call that point non-normal crossing
point. Let us blow up p in S; such a blow up will be called an elementary modifica-
tion of the third kind, ¢(xy,...,x,,). We will get some new components separating
all of them. When m = 3, geometrically this can be seen as:

(<) (=k2) (=k) (k) (k)

E; <— (=hs)

E2 El E]_ E2 E3
Figure 5.1: Elementary modification of third kind

Now let us consider the following minimal tree:



o

The vertices o (resp. X, and <) represents the weight 2 (reap. 3 and 4). It is easy to
compute the depth of each vertex from the discussion above. In this special case, the
depths are obtained as:

Ow
o+

1
S
&

o~
(o

Q2

1
%

Q2

o1

Definition 5.3.1. The tree above s called the depth graph of the minimal tree.

Remark 5.3.2. The depth graph of a surface singularity gives the same information
as the Enriques tree in the case of plane curve singularities. So, a depth graph can be
seen as the generaized Enriques tree of the minimal surface singularity.

Definition 5.3.3. (Construction of royal sails)
Now, we will attach royal sail to depth graph of a minimal normal surface singularity.
(i) First of all, we start to construct the royal sail by putting the singularity O at the
bottom, we can think the place of O like ground floor,
(ii) We put divisors with depth 1 to first floor of the royal sail, divisors with depth 2 to
the second floor of the royal sail and goes like this . ..
(111) If a divisor E; existed by blowing-up of a singularity lying above divisor E;, there
is a line between E; and E;. If E; and E; are not neighborhood in desingularization
graph, the line between them is a dotted line.
(iv) We now give how to describe exceptional divisors and the singularities lying above
them. We have two situation to describe:

(a) The singularity O lying above exactly one exceptional divisor
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0 5 %----e
0 B

E

(b) The singularity O lying above more than one exceptional divisor

Ey
Ei ks .. !

(v) If O; is existed by blowing-up O;, there is a dotted line between them.

Exemple 5.3.1. Let us consider the minimal graph of type A,,. The depth graph for
A,, changes according to n = 2k or n = 2k + 1 with k£ € N5,.

1 2 3 k k 3 2 1
0—0—0---0_0...0_0_0

Figure 5.2: Depth graph of A, when n =2k, k € N.

2 3 4 k+1 k-1 3 2 1
0 0 0 00— 0—0—90

Figure 5.3: Depth graph of A, when n =2k + 1, k € N.

We will now give royal sails associated to A,,. We again have two cases:

Figure 5.4: Royal sail associated to dual graph in Figure 5.2. ( n = 2k )
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Eop 1

Figure 5.5: Royal sail associated to dual graph in Figure 5.3. (n =2k +1)

Exemple 5.3.2. Let us consider another depth graph I';.

O'—‘
Sow
R

x -
Sow
S0~

Y3 Q2

xr3 ¥1

ys O 2

T4 01

Figure 5.6: Depth graph I'y
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We will now give blow-up process and royal sails associated to I';.

ry T3
L1

21
Ya —

o 0
Ys & /
I3

p— Y2 L4 0,
T1

T2

\ /

Ty I3 Y2 L1

T3

Ya

Figure 5.7: Blow-up process of I’y

Figure 5.8: Royal sail associated to I'y

Remark 5.3.4. The dual graph of a plane curve singularity can be obtained from
Enriques tree as we have seen in Proposition 4.5 but that process doesn’t work in the
case of depth graph.
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5.4 Rational Trees

In this section, we will generalize the concept of depth to the case of rational singu-
larities of surfaces given in (Lé & Tosun, 1999) Let I" be a dual graph of a rational
singularity, called rational tree. If we consider a weighted tree I with vertices z1, ..., z,
and weights w; we can say whether I' is a rational tree as follows: Let D = Zle m; F;
be a divisor supported on I' with m; > 1 for all i. Assume that (D - E;) < 0 for all
1. Such divisors form a semigroups of divisors which admits a smallest element, called
Artin divisor.

Definition 5.4.1. Let Z = Zle a;E; be the Artin divisor of T'. If

1=0
5 +

then I' is a rational tree.
Proposition 5.4.2. (Artin, 1966) Any subtree of a rational tres I' is a rational tree.

Let I' be a rational tree. A vertex of I' is called non-Tjurina component of I' with
respect to D if (D - x;) < 0 (or equivalently (D - ;) < 0. Let us denote by yi, ...,y
the vertices of I" such that (D - z;) < 0. As before, we have:

F_{y17"’7yk}:Hj}7 j:].,,l{f

where T} is a rational tree. The subtrees 7} are called Tjurina subtrees of I'" with
respect to D.

Consider a rational tree I' and its Artin divisor Z(I'). Let us denote by 7 a Tjurina
component with respect to Z. Let F' be a vertex of I' which is contained in 7. Put
To = T. Let Z(To) be the Artin divisor of Ty. If (Z(7p) - F)) < 0 then the depth of
F is said to be 0. If (Z(Ty) - F') = 0 let us denote by 7; the Tjurina component with
respect to Z(7Ty) containing F. A finite step in this way will give a finite sequence

T CTine1 C ... To=T

where 7; is the Tjurina component of the Artin divisor Z(7;_1). Note that each 7;
contains F' as non-Tjurina component, which means we have (Z(7;) - F)) = 0 for all 4
and (Z(Tn) - F) < 0.

Definition 5.4.3. The length m of the chain above is called the depth of F in I

Exemple 5.4.1. Let us consider the rational tree Fs. The depth graph for Eg and
blow-up process is as below:
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2 3 4 3 2
(o, 0 0 O 0
E, E, E6I E; Es
E,01
o .
L
Es
E; / Q
03 / 01
g, \ 7
B 5,
(0))
E 1 E2

Figure 5.9: Blow-up process of Fg

The corresponding royal sail is:

Figure 5.10: Royal sail of Fjg

Corallary 5.4.4. Let I' be a rational tree and let (S,0) be the corresponding singu-
larity. The number of blowing-ups leading to the minimal resolution is b := maw;cr h;
where h; is the depth of the vertex F; in |['|.

Proposition 5.4.5. In a minimal tree, the number b is given(bounded) by the largest
subtree of A,,.
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5.5 Sandwiched Singularites

Let O be a normal 2-dimensional complex-analytic local ring. We say that O has
a sandwiched singularity if there exists a non-singular algebraic surface Xy over C,
an ideal sheaf Z on X, and a point £ in the blowing-up S of X, along 7 such that
(Osg)an = O. A normal local ring O which is a localization of a finitely generated
C-algebra is said to have a sandwiched singulartiy if O,, has one. Let X, be a regular

surface and 7 a point of X, I be a complete ideal in Ox,, and let I = Hpia(i) be

=1
its factorizationinto simple complete ideals. Let my : S — X, be blowing-up of I and
m: X — S the minimal desingularization of S. Each p; is a valuation ideal for some
valuation v of the function field K of X,. We define A; as set of all the simple v-ideals

p such that p C p;. Let

1<i<r

M.Spivakovsky (1990) proved that the map
mpom: X — Xy

is blowing-up of the ideal Hpe 4 p- This is an important result, because blowing-up maps
are birational dominant maps. Hence,

mpom: X =5 —= Xy

is a birational dominant map between two non-singular surfaces. Birational domi-
nant maps between non-singular surfaces can be decomposed into a sequence of point
blowing-ups. Hence m o 7 is nothing but sequence of point blowing-ups.

Dual graph I' associated to m1(£) is the weighted subgraph of the dual graph I”
associated to (mg o m)~%(n). Since X is a minimal desingularization of &, T contains no
vertices of weight 1. It follows any connected subgraph of I containing no vertices of
weight 1 corresponding to some sandwiched singularity.

Definition 5.5.1. We will define two kinds of dual graph:
(1) T is called non-singular if T' dominates the empty graph.

(2) T is sandwiched if there exists a non-singular graph I'" containing I' as weighted
subgraph.

As expected, dual graph associated to the desingularization of some sandwiched sin-
gularity is a sandwiched graph. Next proposition will say the converse is also true.
This proposition is analagous to the theorem proved in (Artin, 1966) and it says for a
rational tree I', we can always find a desingularization of rational singularity with dual
desingularization graph I'.

Following (Spivakovsky, 1990):
Proposition 5.5.2. The followings on I' are equivalent:
(1) Any singularity having a desingularization with dual graph T is sandwiched.

(2) There exists a sanwiched singularity having a desingularization with dual graph T.
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(3) T is sandwiched.

We will classify the sandwiched singularities using dual graphs. Note that if there is
a sandwiched graph I' there is infinitely many non-singular graph I containing I' as
weighted subgraph. It will be convenient to choose one type between them:

Proposition 5.5.3. (Spivakovsky, 1990) Let I' be sandwiched graph. The among the
non-singular graphs containing I' there exists a graph I'* such that for any x € |I*|\|T'|

distp«(z,T") = wp«(z) = 1.

Proof. Let I'* be any non-singular graph containing I'. By definition, there exists an
elementary sequence
0T 2. ST,

For 1 <i < mn, let z; denote the unique vertex in |I;| \ |I'; — 1|. We write
g; = e(x;, y;) if &; is of the first kind,
g; = e(xy, v, 2)  if g; is of the second kind,

where y;, z; € |T'; — 1]. Now, replace the elementary sequence above with
eh el el
P—I ... =T
where

gi=c(@i{yn 2zt NIL) if {yiz}n[D[#0 and w; € I,
=e(x;) if I ;=0 and z; €|l

g is an isomorphisme otherwise .

In the first two cases we identify the unique vertex of |I';| \ |I'; — 1| with z;. Replacing
maps €; s are also elementary modifications. So I'} is non-singular as it is dominates
empty graph. For any vertex x € |I'|, we have x = z; for some i, 1 < i < n. Hence, x
appears as a vertex in I}, actually x is created by €. This costruction gives us some

important results. At first,

{ 7 | i<j<n andx appears as an argument in ¢, }

>{ j | i<j<mn andx appears as an argument in .}.

Also by the construction of the €] s, the set of arcs of I'], is a subset of arcs of I'. Hence,
IV contains I' as unweighted graph, with

wr(z) # wry, (z)

for all x € |I"|. Take any = € || \ [I'|. Then z = x; for some 1 <i < n. Since x ¢ T,
by definition of the ), z does not appear in any ¢ such that j > i. And by definition
of &%, there exists y € |I'| such that

distr (z,y) = 1.
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Hence

disty, (z, ') <distr, (z,y) = distp (7, y) = 1,

wry (z) = wr(z) = 1,

as desired. Iterating the elementary modification e(z,z), wr(x) — wr, () times for
every x € |I'|, we obtain a weighted graph I'* with desired properties.
|

Now, let’s concentrate on what proposition above actually says. Let IV be the non-
singular graph with desired properties. The proposition says that all vertices z €
II'|'\ |I'| has weight 1 at least. So, the sequence of elementary modifications which
transform I' to I are just elementary modifications of the first kind. Let’s denote
those modifications by e(z,y). And, the second equality distr(z,I') = 1 says that if
e(z,y) is one of those modification, x is always an element of |I'|. Well, this choice of I
depending on those combinotorial properties leads us the following algebraic corollory:

Corallary 5.5.4. (Spivakovsky, 1990) Let O has sandwiched singularity. With
respecting notation in Section 5.5, let my : S — X blowing up of T and m : X — S the
minimal desingularization of S. Let n = cosupp(Z). Then Xy and I can be chosen in
such a way that

(1) € is the only singularity of S.

(2) Every irreducible curve in (moom) t(n)\ 7n71(€) is an exceptional curve of the first

kind.

For sandwiched singularity, we shall always assume that Z and X, are chosen as above.



6. CONCLUSION

In this thesis, we wanted understand in detail Sails and Kites theory on curve
singularities given in (Popescu-Pampu, 2009). Then we tried to generalise it to some
singularities of complex surfaces, namely to rational singularities of surfaces. In first
two chapters, we studied the basic definitions and results on singularities and their
resolutions. In chapter 3 and 4, we started to understand our main reference (Popescu-
Pampu, 2009) and in chapter 4, we presented the sail and the kite associated to a curve
singularities based on Enriques tree of the singularity. In the last chapter, we defined
the notion of depth for a vertex in a minimal tree and in rational tree, which is equal
to the minimum number of blow-ups to make appear the corresponding exceptional
divisor in the resolution process of the singularity. We claim that the depth graph
(the resolution graph with the depth assigned on each if its vertices) is the generalised
Enriques tree for surface singularities with rational singularities. Following (Popescu-
Pampu, 2009), we define one more elementary modification to construct a sail for a
rational singularity. The corresponding sail is called royal sail to distinguish the cases
of curve and surface singularities. Since we can’t control the number of the irreducible
components and their self-intersection as in the case of plane curve singularities, the
kite is not a perfect configuration where we can read as many information as we did in
the curve case. We just discovered two articles in the literature which can help us to
develop our works.
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