
GALATASARAY UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

SINGULARITIES, SAILS AND KITES

Ercan BALCI

August 2016



SINGULARITIES, SAILS AND KITES
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I would like to thank all my professors Ayşegül Yıldız Ulus, Susumu Tanabe, Muhammed
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ABSTRACT

In this thesis, we study in details the article (Popescu-Pampu, 2009). We apply its
results for plane curve singularities to the rational singularities of complex surfaces
using the results given in (Lê & Tosun, 1990).

In Chapter 1 we review some basic definitions from algebra which will be useful in the
sequel.

In Chapter 2, we define a singular point (or a singularity) of a variety and a
desingularization of a singular point. It is well known that, H.Hironaka proved in
(Hironaka, 1964) that any singularity of an algebraic variety S of any dimension defined
on a field of characteristic 0 can be desingularized by a sequence of normalized blowing
up. A desingularization of a singularity of S consists of finding a proper birational map
π : X → S with X non-singular variety. The existence of a desingularization in the
case of fields of characteristic p is still an open problem. Assume that S is a normal
variety. Otherwise, we normalize it, that means to find the integral closure of the
local rings OS,p (see Section 1.2); the normalised variety may have a finite number of
isolated singularities. Let us fix a singular point p of a normal algebraic variety S and
blow it up (see Section 2.2). The blow up of a point consists of the blowing up of the
maximal ideal of the point. If the blowed up surface Bl1(S) is not normal we again
normalize it. The normalised blowed up surface Bl1(S) contains a connected curve over
the singular point p which is the projectivized tangent cone of the singular point. Of
course, it is possible that the blowed up surface is non-singular (has no singularity). By
Hironaka’s theorem, after a finite blow ups and normalising process Blk(S) will be a
non-singular variety. Here we are interested rather easy singularities of curves in C2 and,
of surfaces in Cn which are absolutely isolated (means that each blowed up surface in
the desingularisation process is normal). Following the literature, we associate a graph,
called dual graph, to the inverse image of the singularity p by the desingularization map
π, called exceptional curve. This correspondence is very important as we can obtain
many properties of a singularity by using simply the combinatorial properties of its
desingularization graph.

In Chapter 3, we study the singularities of plane curves and the effects of the blowing
ups of a point q on the exceptional curve according to the fact that q is a smooth point
or a singular point of the exceptional curve; these blow ups are called the elementary
modifications.

In chapter 4, we introduce Enriques tree corresponding to a plane curve singularity.
It helps to read the geometry of each blowing up in the desingularization process.
As in (Popescu-Pampu, 2009), we construct sails corresponding to the elementary
modifications leading to ”the kite of a plane singularity”; it is a perfect configuration
where we can read many information on the corresponding singularity, namely each



blow up process, self-intersection of the irreducible components of the exceptional fibre,
so the dual graph and Enrique tree of the singularity. This is the only configuration
having so many information about the plane curve singularity.

In Chapter 5, we try to understand all the concepts given in Chapter 4 in the case of
singularities of complex surfaces. For this, we first introduce the minimal singularities
of complex surfaces. The dual graphs of these singularities are very special, means
easy to work in purely combinatorics way. Using (Spivakovsky, 1990), we define the
distance of a vertex in a minimal tree and construct a tree which will be called
depth tree of the minimal singularity. The word ”depth” is used in (Lê & Tosun, 1990)
where the authors give a generalisation of the distance of a vertex in a minimal tree to a
rational tree. So we claim that the depth tree of a rational singularity serves as an
Enriques tree of a plane curve singularity. Using this information, we define a new
elementary modification and construct the sail for rational singularities. To distinguish
the dimensional difference, we call it ”royal sail”; also it doesn’t contain only triangles
as in the case of curves but also some rectangles, pentagons,... etc. The problem we
have in the case of surface singularities, the sail doesn’t say anything about the self
intersections (or weights) of the irreducible components of the exceptional curve (of the
vertices in the dual graph) of the singularity. We call this problem ”weight problem”.
This is because we don’t have control on the number neither on the self-intersection
of an irreducible components of the exceptional fibre after each blow up map. We also
know that we can obtain many different rational trees having the same shape with
different weights. However, we can take the minimum weights of the vertices such that
the tree is rational and draw the dual graph of the singularity from the corresponding
the royal sail.

In the last section, we aimed to find a relation between the sails of the singularities
of plane curves and of the rational singularities using sandwiched singularities as they
are the singularities of surfaces obtained by the blow up of a complete ideal in C2 and
are a subclass of the class of rational singularities. We hope to find a nice royal sail
configuration for a sandwiched singularity having all the information as in the case of
plane curve singularities.



ÖZET

Bu tezde (Popescu-Pampu, 2009) makalesini detaylı şekilde çalıştık. Bu makelenin
düzlemsel eğri tekillikleri üzerine elde edilmiş sonuçlarını, (Lê & Tosun, 1990)
makelesinde verilen sonuçları da kullanarak kompleks rasyonel tekilliklere uyguladık.

Birinci bölüme, tezin ilerleyen bölümlerinde kullanacağımız bazı cebirsel tanım ve
özellikleri vererek başladık.

İkinci bölümde ise kompleks tekillikler ve onların çözümlenmesiyle ilgili bazı tanım
ve özellikler verdik. Herhangi bir yüzey tekilliğinin normalleştirilmiş patlatma dizisi
yolu ile çözümlenebileceğini (Hironaka, 1964) makalesinden biliyoruz. Karakteristiği 0
olan cisimlerde yaşayan tekilliklerin her zaman çözümlenebileceği yine (Hironaka, 1964)
makalesinde gösterilmiştir. Bir V cebirsel kümesinin tekilliklerinin çözümlenmesi, W
tekil olmayan bir cebirsel küme olmak üzere; birasyonel ve proper bir f : W → V tasviri
bulmak demektir. Burada dim(V ) < dim(W )’dir. Çözümlenmenin karakteristiği sıfır
olmayan cisimlerde her zaman bulunup bulunamayacağı halen açık bir problemdir. Bir
S cebirsel kümesini alalım ve S’in normal olduğunu varsayalım. Eğer değilse S’i
normalleştirelim. Bu da OS,p’nin cebirsel kapanışını bulmak demektir (bknz. Bölüm
1.2); normalleştirilmiş bir cebirsel kümenin sonlu sayıda izole tekilliği olabilir. Normal
S cebirsel kümesinden bir p izole tekilliği seçelim ve S’i bu noktada patlatalım (bknz.
Bölüm 2.2). Bir nokta patlatması, o noktaya karşılık gelen maksimal ideali pat-
latmaktan ibarettir. Eğer patlatılmış yüzey Bl1(S) normal değil ise, tekrar
normalleştirme uygularız. Normal patlatılmış yüzey Bl1(S), p tekilliği üzerine
bağlantılı bir eğriyi kapsar. Bu eğri de tekilliğin projectivize edilmiş tanjant konudur
ve onun üzerinde patlatılmış yüzey tekillikleri vardır. Tabi ki patlatılmış yüzeyin
tekilliğinin olmaması durumu da mevzu bahistir. Hironaka’nın teoremi, k kez patlatma
ve normalleştirme işlemi uygulanarak tekil olmayan düzgün bir Blk(S)
bulunulabileceğini göstermektedir.

Biz daha çok C2’de yaşayan eğri tekillikleri ve Cn’de yaşayan tamamen izole yüzey
tekillikleri ile ilgileneceğiz. Böylece her patlatmadan sonra normalleştirme yapmamıza
gerek kalmayacak. Ardından, literatürü takip ederek p tekilliğinin çözümlenme tasviri
altındaki ters görütüsüne dual diagram olarak adlandırılan bir graf ataması yaptık.
Dual diagramlar ve çözümlenme arasındaki bu ilişki ve dual diagramların kombinatorik
özellikleri bizim için tekilliklerin özelliklerini araştırmada önemli olacak.

3. bölümde, eğri tekilliklerini ve bir q noktasını patlatmanın dual diagramlar üzerindeki
etkilerini anlamaya çalıştık. Bunun için iki temel modifikasyon tanımladık.

4. bölümde, eğri tekilliklerine karşılık gelen Enriques ağaçlarını tanıttık. Bu ağaçlar,
çözümlenme işlemindeki patlatmaları geometrik olarak okumada bize yardım etti.
(Popescu-Pampu, 2009) makalesindeki gibi temel dönüşümlere karşılık gelen
yelkenleri oluşturduk ve bu da bize düzlem tekilliklerine atanan uçurtmayı verdi. Bu



söz konusu olan tekilliğin özelliklerini özellikle de patlatma sürecini anlamamız için
önemli bi yapıdır.

5. bölümde, 4. bölümde verilen bütün konseptleri yüzey tekillikleri için anlamaya
çalıştık. Öncelikle minimal yüzey tekilliklerini tanıttık. Bu tekillikler gayet özeldir,
kombinatorik olarak anlaşılması kolaydır. (Spivakovsky, 1990) makalesinden
yararlanarak minimal bir ağaçta uzaklık kavramını tanımladık ve minimal tekillikler
için derinlik ağacı adını verdiğimiz bir ağaç tanımladık. ”Derinlik” kelimesi
(Lê & Tosun, 1990) makalesinde kullanılmıştır ve yazarlar minimal ağaçlar için
tanımlanan uzaklık kavramını, rasyonel tekillikler için genelleştirmiştir. Biz rasyonel
tekillikler için derinlik ağacının, eğri tekilliklerine atanan Enriques ağaçlarına karşılık
geldiğini iddaa ediyoruz. Bu bilgiyi kullanarak, yeni bir temel dönüşüm tanımladık ve
rasyonel tekillikler için yelken tanımladık. Boyutsal farklılığı ayırt etmek için
bunlara royal yelkenler adını verdik. Ayrıca bu yelkenler eğri tekilliklerindeki gibi
sadece üçgenlerden oluşmaz, dörtgen ve beşgenler de bulunabilir. Yüzey tekillikleri için
oluşturduğumuz yelkenlerin, istisnai bölenlerin ağırlğı hakkında bilgi vermemesi gibi
bir problemimiz var. Bu probleme ağırlık problemi adını verdik. Çünkü yüzeylerdeki
patlatmalardan sonra istisnai bölenlerin kesişim sayılarını kontrol edemiyoruz. Ayrıca,
dual diagramlar olarak aynı şekle ancak farklı ağırlıklara sahip olan farklı rasyonel
tekillikler mevcuttur. Buna rağmen, ağırlıkları ağaçlar minimal kalmak şartıyla
minimal alıp, tekilliğe karşılık gelen dual diagramlara yelkenlerden ulaşabiliyoruz.

Son bölümde, eğri tekilliklere ve rasyonel tekilliklere atanan yelkenler arasında bir
ilişki bulmayı hedefledik ve rasyonel tekilliklerin bir alt sınıfı olan ve complete ideallerin
patlatılması ile elde edilen sandiviç tekilliklerini kullandık. Eğri tekilliklerinde olduğu
gibi rasyonel tekillikler ile ilgili bütün bilgilere ulaşabileceğimiz uygun bir royal yelken
oluşturmayı hedefliyoruz.
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1. INTRODUCTION

Let A be a ring. A zero divisor in A is a non-zero element x such that there exists an
y ∈ A with y 6= 0 and xy = 0. A ring A is said to be an integral domain if A 6= {0}
and it has no zero divisors. In other words, a nonzero ring A is an integral domain if,
for all x, y ∈ A with x 6= 0 and y 6= 0 we have xy 6= 0. It is well known that a finite
integral domain A is a field.

1.1 Characteristic of a Field

Let A be an integral domain. Consider the function f : Z→ A defined by f(n) = n · 1
is a ring homomorphism and the image by f is the cyclic subgroup < 1 > of (A,+)
generated by 1. So either 1 has finite order n, hence < 1 >= Z/nZ or, 1 has infinite
order, hence < 1 >= Z. In the first case, n = p is a prime number and every nonzero
element of A has order p; in the later case, every nonzero element of A has infinite
order.

Definition 1.1.1. Let A be an integral domain. If 1 ∈ A has infinite order, the
characteristic of A is said to be zero. If 1 ∈ A has finite order, which is necessarily a
prime p, we say that the characteristic of A is p. This is written as write char(A) = 0
or char(A) = p.

1.2 Integral Closure

An element x ∈ k is integral over A if one of the following equivalent condition holds:

(1) x verify an equation of the form

xn + a1x
n−1 + . . .+ an = 0

where ai ∈ A for all i.

(2) A[x] ⊂ k[x] is finitely generated A-module.

Definition 1.2.1. The integral closure Ā of A is the set of x ∈ k integral over A. The
domain A is called integrally closed if Ā = A.

Exemple 1.2.1. The integral domain C[t2, t3] is not integrally closed since the rational

function t =
t3

t2
is a root of the monic polynomial x2−t2. Then t is integral over C[t2, t3]

but t /∈ C[t2, t3]. In fact C[t2, t3] = C[t].

1.3 Normal Local Ring

Let K be a field. A discrete valuation on K is a mapping υ from K − {0} onto Z
such that for all x, y ∈ K− {0} we have following properties:

(i) υ(xy) = υ(x) + υ(y)

(ii) υ(x+ y) ≥ min(υ(x), υ(y)).
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If υ is a discrete valuation, the subring

R = {x ∈ K|υ(x) ≥ 0} ∪ {0}

of K is called discrete valuation ring of υ. Moreover, R is a local ring with maximal
ideal

m = {x ∈ K|υ(x) > 0} ∪ {0}.

In general, an integral domain A which is equal to the valuation ring of some valuation
of its quotient field is called discrete valuation ring.

Exemple 1.3.1. Let K = K(x) and p ∈ K[x] be an irreducible polynomial. Every
r ∈ K = K(x) can be written uniquely as pαq where α ∈ Z, numerator and denominator
of q are both prime to p. We define valuation υp(r) to be α. The corresponding discrete
valuation ring is the prime ideal (p).

Let A be a discrete valuation ring and I 6= 0 be an ideal of A. Then {υ(y)|y ∈ I}
allows minumum value. So, for some x ∈ I, υ(x) ≤ υ(y) for all y in I. Suppose that
υ(x) = d. It follows that I contains every y ∈ A with υ(y) ≥ d and the only non-zero
ideals in A are

mk = {y ∈ A|υ(y) ≥ k}

So A is Noetherian. The dimension of Noetherian domain A defined as the length of
longest possible chain of prime ideals. We say that A is a Noetherian local domain of
dimension 1.

Proposition 1.3.1. (Atiyah & MacDonald, 1990) Let A be a noetherian local domain
of dimension one, m its maximal ideal, k = A/m its resideue field. Then, the followings
are equivalent:

(i) A is a discrete valuation ring,
(ii) A is integrally closed,
(iii) m is a principal ideal,
(iv) dimk(m/m

2) = dim(A),
(v) Every non-zero ideal is a power of m.

If A be a Noetherian local ring with maximal ideal m and residue field k, then
dimk(m/m

2) ≥ dim(A). We say that A is regular local ring if

dimk(m/m
2) = dimA.

Let A be an integral domain with quotient field K. The normalization of A in K
denoted by Ā, is the unique largest subring M̄ ⊂ K such that evey homomorphism
φ : M −→ R to a discrete valuation ring extends to a homomorphism φ : M̄ −→ R.

Theorem 1.3.2. (Atiyah & MacDonald, 1990) The integral clousure Ā of A in K is
equal to the intersection of all the valuation ring of K which contain A.

Corallary 1.3.3. The normalization of an integral domain A is equal to its integral
clousure in its quotient field.

Definition 1.3.4. An integrally closed local ring is called normal.
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1.4 Krull Dimension

Let R be a ring and M be an R-module. The sequence x1, . . . , xr of elements of R is
called regular sequence for M if x1 is not zero divisor in M and for all i = 2, . . . , r;
xi is not zero divisor in

M/(x1,...,xi−1)M

If R is local ring with maximal ideal m, the depth of M is defined as the maximum
length of a regular sequence x1, . . . , xr for M with all xi ∈ m. We say that a local
noetherian domain R is Cohen-Macaulay if depthR = dimR.

Theorem 1.4.1 Let R be a local noetherian ring with maximal ideal m.
(a) If R is regular, then it is Cohen-Macaulay.
(b) If R is Cohen-Macaulay, then any localization of R at prime ideal is also Cohen-
Macaulay.
(c) If R is Cohen-Macaulay, then a set of elements x1, . . . , xr ∈ m forms a regular
sequence for R if and only if dimR/(x1,...,xr) = dimR− r.
(d) If R is Cohen-Mcaulay and x1, . . . , xr is a regular sequence for R, then R/x1,...,xr is
also Cohen-Macaulay.

Definition 1.4.2. Let R be a ring. The Krull dimension of R, denoted dimR, is
the maximal length of an ascending chain of prime ideals in R:

p0 $ p1 $ · · · $ pd

not counting the minimal prime p0. If p ∈ SpecR, the height of p is defined by
ht(p) = dimRp (which is the maximal length of a chain of prime ideals contained in p)

Theorem 1.4.3. A noetherian ring R is normal if and only if it satisfies the following
two conditions:
(i) for every prime ideal p ⊆ R of height ≤ 1, Ap is regular (hence a field or a discrete
valuaiton ring); and
(ii) for every prime ideal p ⊆ R of height ≥ 2, we have depth Ap ≥ 2.

Definition 1.4.4. Let I be an ideal of a commutative ring R. An element x ∈ R is
called integral over I, if

xn + a1x
n−1 + · · ·+ an−1an = 0

for some ai ∈ I i for i = 1, 2, . . . , n. The set consisting of elements which are integral
over I is called integral closure of I and denoted by I. We say that I is a complete
ideal if I = I.

Following (Kollar, 2007):

Theorem 1.4.5. Let R be a one-dimensional, normal, noetherian integral domain.
Then R is regular. In other words, for every maximal ideal m ⊂ R, the quotient m/m2

is one-dimensional over R/m.

Proof. We can reduce the case where (R,m) is local ring by localizing R at mp. Let
x ∈ m\m2. If m = (x), we are done. If m 6= (x), m/(x) is non-trivial. Since R local
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ring with dimension 1, R/(x) is 0-dimensional and it means m/(x) is killed by a power
of m. Thus, there is a y ∈ m\(x) such that my ∈ (x). Hence

y

x
m ⊂ R.

If
y

x
m contains an unit element, then

y

x
z = u for some z ∈ m and a unit u. That gives

us x = yzu−1 ∈ m2, which is impossible.

Thus
y

x
m ⊂ m. Now, we will use Nakayama’s lemma :

Let m = (x1, . . . , xn). Then there are rij ∈ R such that

y

x
xj =

max∑
i

rijxj.

So, (x1, . . . , xn) is a null vector of the matrix

y

x
1n − (rij),

and the determinant is zero. This determinant is a monic polynomial in
y

x
with coeffi-

cients in R. Since R is normal that gives us
y

x
∈ R and y ∈ (x) contrary to our choice

of y.

�
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2. DESINGULARIZATION MAP

An algebraic set X ⊆ Cn is the vanishing set of a finite set of polynomials f1, . . . , fk in
C[x1, . . . , xn]; it is denoted by X = V(f1, . . . , fk). When k = 1, the algebraic set V (f1)
is called an hypersurface. An irreducible algebraic set is called variety. Here we are
interested in varieties of dimension 1 in C2, called plane curves and, of dimension 2 in
Cn, called surfaces.

2.1 Singular Points

Definition 2.1.1. Let C be a curve defined by f(x, y) = 0 in C2. A point p = (a, b) is
called singular point of C if

f(a, b) =
∂f

∂x
(a, b) =

∂f

∂y
(a, b) = 0

If f(a, b) = 0 but ∂f
∂x

(a, b) 6= 0 or ∂f
∂y

(a, b) 6= 0 then p is called a regular (or smooth)
point of C. A plane curve having only regular points is called a smooth curve.

Definition 2.1.2. Let X be surface defined as the zero locus of

f1(x1, x2, . . . , xn) = . . . = fm(x1, x2, . . . , xn) = 0

in Cn. A point p ∈ X is said to be a regular point of X if the rank of the Jacobian
matrix ( ∂fi

∂xj
)(p) attains maximal. Otherwise, we say that p is a singular point (or a

singularity) of X.

If all points of X are regular we say that X is a smooth surface, means that the local
ring OX,p at each point p is a regular local ring. The set of singular points of X is
called singular locus of X and denoted by Sing(X); it is a proper closed subset of X.
Note that dimX = minp∈X{dimTpX}. In general, dimTpX ≥ dimX.

Definition 2.1.3. Let (X, 0) be a normal surface with singularity at 0. This says that
OX,0 is a normal ring. A map π : X ′ −→ X is called a desingularization of (X, 0) if
X ′ is non-singular and the map π is birational and proper.

Recall that a function f : X → Y between two topological spaces is called proper if
the preimage of every compact set in Y is compact in X.

2.2 Blow-up

The blowing up of a point in a variety is a significative example of birational maps.
Let us first look at blowing up of C2 at (0, 0). The idea depends on the fact that every
point of C2 except the origin lies on unique line through origin and set of all lines
through the origin corresponds P1. Let us consider the set

B = {(x, l) ∈ C2 × P1|x ∈ l} ⊂ C2 × P1
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The blow-up of (0, 0) in C2 is the natural projection of B to the first factor

Π : B 7−→ C2

(x, l) 7−→ x

Hence we have:
B = {(a, b, p1 : p2) ∈ C2 × P1|ap2 = bp1}.

where x = (a, b) and l = (p1 : p2). More generally, we have:

B(0,...,0)(Cn) = {(x, l) ∈ Cn × Pn−1|x ∈ l}
= {(x1, . . . , xn; y1 : . . . : yn)|xi = λyi,∀i, λ ∈ C}
= V(xiyj − xjyi|0 ≤ i < j ≤ n)

The blow up of origin in Cn is the projection Π of B(0,...,0)(Cn) into the first factor.

Let S be an algebraic variety in Cn. The blow up of a point p ∈ S in S, denoted by
Bp(S) is the closure of Π−1(S \ p) in Bp(Cn). The fibre Π−1(p) is called exceptional
divisor of Π.

Consider the plane curve X = V(y2 − x2 − x3) ⊂ C2 which has a singularity at (0, 0).
The blow-up (0, 0) in X is nothing but closure of Π−1(X \ (0, 0)) together with the
restriction of the natural projection. Since Π is an isomorphism from B \ Π−1(0, 0) to
K2 \ (0, 0), restiriction of Π to Π−1(X \ (0, 0)) is an isomorphism onto X \ (0, 0). We
have:

Π−1(V(y2 − x2 − x3)) = {(a, b, p1 : p2)|b2 − a2 − a3, ap2 = bp1}.
Let’s look at first chart defined by p1 6= 0:

B1(X) = {(a, b, 1 : t)|b2 − a2 − a3, at = b}
∼= {(a, b, t)|a2t2 − a2 − a3}
∼= {(a, t)|a2(t2 − 1− a)}

The subvariety V(a2) is called the exceptionnel divisor of Π. The subvariety
V(t2 − 1− a) is called the strict transform of X.

Definition 2.2.1.(Blow-up of an ideal) Let X = V(f1, . . . , fr) ⊂ Cn an affine variety.
Let I = (g1, . . . , gl) be an ideal in A = C[x1, . . . , xn]/(f1, . . . , fl). The blow-up of X
along I is the graph BI(X) of the rational map

ϕ : X −→ Pl−1

x 7−→ [g1(x), . . . , gl(x)]

together with the projection Π : BI(X) ⊂ X × Pl−1 −→ X. The restriction of the
projection into BI(X) \ Π−1(V(I)) give rise to an isomorphism onto X \ V(I).

Theorem 2.2.2. (Hironaka, 1964) Let S be an algebraic variety over an algebrically
closed field of char 0. There exists a desingularization of the singularities of S, means
that there exists a map π : X̃ −→ S such that

(i) X̃ is a smooth surface

(ii) π is a birational map

(iii) π is a proper map

Remark 2.2.3. A desingularization of a variety is a sequence of finite number of
blow-ups of points.
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By (Hironaka, 1964), there exists a unique desingularization which is dominated by all
the other desingularizations of (S, 0), called the minimal desingularization. Let X be a
surface with singularity at 0 and π : X ′ → X be its resolution. The fibre π−1(0) := E
is called exceptional fibre.

Theorem 2.2.4.(Zariski’s Main Theorem) If X is a normal surface then the excep-
tional fiber π−1(0) := E is connected and has dimension 1.

If X is a normal surface, the exceptional fibre is in the form E = E1 ∪ E2 ∪ · · · ∪ En
with Ei’s are irreducible components called exceptional divisors. The desingularization
π is called strong resolution if E is normal crossing. Normal crossing means that all
the exceptional divisors are smooth and intersect each other at most one point.
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3. PLANE CURVES AND DESINGULARIZATION

Here we will introduce the Enrique tree of a plane curve singularity is an invariant of
the curve describing the desingularization process of a plan curve singularity.

Let C be a curve with singularity at O and Π1 : Σ(1) −→ C be the blow-up of C with
center O. The pullback of C by Π1 contains the strict transform C(1) together with the
exceptional locus E(1). The singularities of C(1) lying above O ∈ C are called infinitely
near points in the first infinitesimal neighborhood of (C,O). Inductively, the singular-
ities in the first infinitesimal neighborhood of Π−1

1 (O) ⊂ C(1) are called infinitely near
points in the second infinitesimal neighborhood of (C,O). Now, let us take the strong
desingularization map of (C,O) :

(Σ(N+1), E(N+1))
ΠN+1−−−→ (ΣN , EN)

ΠN−−→ . . .
Π1−→ Σ0 = (C2, O)

where Πi+1 denoting the blow-up of Σi with finite set of infinitely near singularities
{Oj|j ∈ J(i)} ⊂ E(i) where J(i) is set of indices depending on i.

Let O ∈ Σ(k) be an infinitely near singularity. We consider the map

Πk+1 : Σ(k+1) −→ Σ(k)

If O1 ∈ Π−1
k+1(O), we say that O is the direct predecessor of O1 and we write

pD(O1) = O. We denote the set of infinitely near singularities on Σ(i) by P (i).

Definition 3.0.1 The set
⋃N
i=0 P

(i) is called the constellation of desingularization.
So, the constellation consists of centers of the blowing-up process of (C,O).

Let Oi ∈ P (j) ⊂ Σj. The point Oi is called satellite point if Oi ∈ E
(j)
k1
∩ E(j)

k2
for

k1 6= k2. When pD(Oi) = O
(j−1)
k1

, then we set pI(Oi) = O
(j−r)
k2

where r ≤ j and pI(Oi)
is called indirect predecessor of Oi. If Oi is not a satellite point (this means if Oi

is smooth point of E(j), Oi is called a free point. The set of proximity points of Oi

denoted by P (Oi) defined as

P (Oi) = PD(Oi) ∪ PI(Oi)

where PD(Oi) = {Ol|pD(Ol) = Oi} PI(Oi) = {Ol|pI(Ol) = Oi}. So, these two sets
contain direct and indirect predecessors of Oi.

Here is an exemple of the blowing-up process of (C,O) :
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Figure 3.1: The constellation is P = {O,O1, O2, O3, O4, O5} of (C,O).

Let (C,O) be a curve singularity and let P be its constellation. The Enriques tree
ε(C) of (C,O) is defined as follows:

1. The vertices corresponds to the points Oi of the constellation,

2. There is an edge between two vertices Oi and Oj if one of them is direct predecessor
of the other one. Let us say pD(Oj) = Oi,

3. If Oj is a satellite point, the edge between them is a curvilinear line, if Oj is a free
point then the edge between them is a segment,

4. The union of two consecutive segments is a straight line if the two starting points Oi

and pD(Oi) have the same indirect predecessor, if indirect predessors of Oi and pD(Oi)
differ, the union of two segments is broken line.

The Enriques tree of the constellation above is:
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O

O1

O2 O3

O4 O5

C1 C2

Figure 3.2: Enriques tree of (C,O) in Figure 3.1.

Corallary 3.0.2 (Castellini, 2015) Let C1 and C2 be curve singularities. The following
statements are equivalent:

(i) C1, C2 have same topological type;

(ii) C1, C2 have isomorphic Enriques trees;

(iii) C1, C2 have isomorphic dual graphs.

3.1 Elementary Modifications

We saw that there are two kinds of point on an exceptional fibre of the blowing-up map
to continue to desingularization process: Free point and satellite point. Here we will
explain the effects of a blow-up of each these points: Let (C,O) be a curve singularity
in (C2, O) and let

X = Σ(k) Πk−→ . . .
Π2−→ Σ(1) Π1−→ Σ0 = (C2, O)

be a strong desingularization of (C,O). Let us define Π1 ◦Π2 ◦ · · · ◦Πj := Φj : Σj → Σ0.
Let us consider the exceptional fibre Φ−1

j (O). Suppose that Φj is not giving the strong
resolution. Then, we need a few blow-ups to get strong resolution. Consider the blow-
up Πj+1 : Σj+1 → Σj of Σj at some point of exceptional fibre Φ−1

j (O). The type of that
point gives us two elementary modification on dual graphs. Let us denote Γ the dual
graph corresponding to Φ−1

j (O) and Γ′ the dual graph corresponding to Φ−1
j+1(O).

(a) Let x ∈ |Γ| and Ex corresponding exceptional divisor. If the point we blow-up is
a free point y ∈ Ex we get elementary modification of the first kind denoted by
ε(y, x) which turns Γ into Γ′ obtained by adding a new vertex y to Γ such that:

(1) {y} = {x, y} in Γ′,

(2) wΓ′(y) = 1

wΓ′(x) = wΓ(x) + 1

wΓ′(z) = wΓ(z) for z 6= x, y.

We can describe this effect like this:
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Figure 3.3. Effects of blow-up a free point on weights

(b) Let x, y ∈ Γ be two adjacent vertices with corresponding exceptional divisor Ex
and Ey. This adjaceny says Ex ∩ Ey 6= ∅. If the point we blow-up is a satellite point
y ∈ Ex ∩Ey we get elementary modification of the second kind, ε(z, x, y) which
turns Γ into Γ′ obtained by adding a new vertex z between x and y such that:

(1) {z} = {x, y, z} in Γ′,

(2) wΓ′(z) = 1

wΓ′(x) = wΓ(x) + 1

wΓ′(y) = wΓ(y) + 1

wΓ′(t) = wΓ(t) for t 6= x, y.z

For the case of satellite points, we can describe like this:

Figure 3.4. Effects of blow-up a satellite point on weights

(c) For Γ = ∅, we have elementary modification of first kind ε(x) which is

∅ −→ •1
x
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Figure 3.5. An elementary modification of first kind

Figure 3.6. An elementary modification of second kind

Definition 3.1.1 An elementary sequence is a sequence of elementary modifica-
tions. Let Γ, Γ′ be two weighted graphs. We say that Γ′ dominates Γ, denoted by Γ < Γ′,
if Γ′ can be obtained from Γ by an elementary sequence.



13

4. SAILS AND KITES

Definition 4.0.1 A half sail is a triangle with three edges named as the basis of
triangle, simple edge and invisible edge. The corner point appearing as the intersection
of the basis and invisible edge will be called the fancy point of the half-sail. The other
two vertices will be called simple vertices; but they will differ as the basis vertex and
the terminal vertex.

Figure 4.1: A half sail

A half sail will be oriented by ordering its vertices: The basis vertex, the terminal
vertex and then the fancy point.

Definition 4.0.2 A simple sail is the gluing of two half-sails in such a way. It has
two simple edges, one base. All vertices of simple sail are simple vertices, one of them
is terminal vertex and the other two are basis vertices.

Figure 4.2: A simple sail
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By gluing half sails and simple sails we will obtain multiple sails. The gluing conditions
described as follows:

1. If we dont have a multiple sails already existed, we start with taking axis of the
elementary sail.

2. Suppose that we have a multiple sails already existed, let us denote this multiple
sails by V . We glue a half sail or a simple sail to V with respecting following conditions:

(i) Assume that we will attach a half sail S. The basis vertex of S will be attached to
a simple vertex of V .

Figure 4.3: Gluing of a half sail

(ii) Assume that we will attach a simple sail S to V . We glue the basis of S to the
simple edge l of multiple sails V by defining an (unique) affine isomorphisme which
identifies the second basis vertex of S to terminal vertex lying on l.

Figure 4.4: Gluing of a simple sail
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We can construct multiple sails by adding elementary sails one by one. Now, we will
build a relation between multiple sails and constellation. Briefly, we can say that half
sails corresponding to free points and simple sails corresponding to satellite points.
More precisely, let us consider the curve singularity (C,O) and its strong resolution

(Σ(N+1), E(N+1))
ΠN+1−−−→ (ΣN , EN)

ΠN−−→ . . .
Π1−→ Σ0 = (C2, O)

Let C be the associated constellation. Let Oi be the satellite point which lies on
the intersection of Ek1 and Ek2 where Ek1 , Ek2 ∈ E(k). Let Ei := Π−1

k+1(Oi) be the
divisor existed by blowing-up Oi. Then we will associate a simple sail. The vertices
will corresponds bijectively to the divisors Ek1 , Ek2 and Ei. The segment [Ek1 , Ek2 ] will
be the basis of simple sail and then Ek1 and Ek2 will be the basis vertices and Ei will
be the terminal vertex of simple sail. The middle point of the basis so the fancy point
corresponds to the infinitely near singularity Oi. Consequently, the invisible edge will
be between the fancy point Oi and the terminal vertex Ei which is the exceptional
divisor existed by blowing up Oi.

Now let us consider free point Oi lies on Ek1 ∈ E(k). Let Ei := Π−1
k+1(Oi) be the

exceptional divisor existed by Oi. We will associate a half sail as follows. The vertices
fancy vertex, basis vertex and terminal vertex corresponds bijectively (with respecting
the order) to infinitely near singularity Oi, exceptional divisor Ek1 and the exceptional
divisor Ei. The invisible edge will be between the infinitely near singularity Oi and the
exceptional divisor Ei which is the exceptional divisor existed by blowing up Oi.

We want to divide a multiple sails into smaller pieces. Let V be a multiple sails. If
we remove vertices of every sails in a multiple sails V , we can regard V as a union
of connexe components. Then, adherence of each of those components are callded
complete sails. All of the complete sails except axis has exactly one half-sail due to
the construction rules just described above.

We will now assign an orientation to the complete sails. Only half sail of complete
sails will be the key to assign an orientation on complete sails. More precisely, we will
assign an orientation on every complete sails by extending the orientation on the half
sail belongs to them. After assigning an orientation on every complete sails, we will
define new notion to distinguish two simple edges of a simple sail from each other.
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Thus, the simple edge of a simple sail coming after the base with respecting to the
orientation is called right simple edge and the other one is called left simple edge.

Gluing a simple sail to a multiple sails can be made on right simple edges or left simple
edges of closest sails. But, if closest sail is a half sail, attachement is always made on
right simple edges. Thus, consider the suite of simple sails (τ1, . . . , τn) being glued each
other with respecting the order. If we glue all of them on right (or left) simple edges,
we say that these simple sails turning in the same direction.

We will now associate kites K to a given multiple sails V : To do that, we will attach
some vertices on the multiple sails by two types of cords, free cord or satellite cord.
Each gluing of an elementary sail gives a cord of K. The type of cord is depending on
type of elementary sail we have been glued:

(a) If we glue a half-sail; we attach a free cord identfying its final point to fancy
vertex of the half-sail, its initial point to fancy vertex or fancy point of the closest sail.

Figure 4.5: Gluing of a half sail and existence of a free cord

(b) Assume that we glue a simple sail. Let us denote B terminal vertex and C basis
vertex of the closest sail such that BC is the simple edge on which we glue basis of
the simple sail and M is fancy vertex of the closest sail. we attach a satellite cord
identfying its final point to midpoint of BC and its initial point to M .

Figure 4.6: Gluing of a simple sail and existence of a satellite cord
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In Figure 4.7, we have a kite associated to multiple sail. We always represent free
cords by curved lines to distinguish them from satellite cords which are represented by
straight lines.

Figure 4.7: A multiple sails with associated kite

In the sequel of this section, we will interrelate sails with desingularization which is our
main topic. Briefly, we associate a multiple sails to the constellation of desingularization
of a curve singularity. Two kind of sails will corresponds to two elementary operation of
desingularization which are blow-up a free point or blow-up a satellite point. In Chapter
3, we explain these two elementary operation by charecterization of their effects on
dual graphs of desingularization. Now, we will present a new charecterization using
elementary sails. Let’s say C is a finite constellation and C ′ is another constellation
which contains C and C ′ has exactly one more infinitely near singularity Oi. We will
explain how to construct multiple sails V (C)′) associated to C ′ from V (C) de C:

(i) If C = ∅, V ({Oi}) is just axis we represent with dotted line where initial vertex of
axis noted by I(O) and the terminal vertex by T (O).
(ii) If C 6= ∅, we have two case to consider depending on the type of infinitely near
singularity Oi:

Case 1: If Oi is free point, pD(Oi) = Oj, we attach a half-sail υ(Oi) to V (C) identifying
its basis vertex with T (Oj). Fancy point of υ(Oi) is denoted by I(Oi) and its terminal
vertex is denoted by T (Oi).

Case 2: If Oi is satellite point with pD(Oi) = Oj and pI(Oi) = Ok, we attach a
simple sail v(Oi) to V (C) gluing its base to simple edge with simple vertices Oj, Ok of
V (C) identfying second basis vertex of v(Oi) with Oj. Fancy vertex of new simple sail
denoted by I(Oi) and terminal vertex by T (Oi).

Let us see how to construct the other configurations given one of the followings in
purely combinatorics way:
• A multiple sail,
• A constellation C
• An Enriques tree
• Dual Graph
• f(x, y) = 0 in C2
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From Enriques tree of (C,O) we can easily extract the configuration exceptional fibre.
So, we can write associated dual graphs without weights. Moreover, next two
proposition tells us about how we extract weights of vertices of dual graph from Enrique
tree. With respecting the notation in Definition 3.1, let

Πk : (Σ(k), E(k))→ (Σ(k−1), E(k−1))

be the blow-up of Σ(k−1) along the point P of the exceptional divisor D ⊂ E(k−1).

Proposition 4.0.3 Let D′ be the strict transform of D. Then, we have

(D′)2 = (D)2 − 1.

Proof. Let Π∗(D) be the full preimage of D in X ′. Then, Π∗(D) = D′ + E.

D2 = Π∗(D) Π∗(D)

= (D + E ′)(D + E ′)

= (D′)2 + 2D′E + E2

= (D′)2 + 2− 1 = (D′)2 + 1.
�

Corallary 4.0.4 Let E
(N)
i ⊂

∑(N) be an irreducible component. Then,

(E
(N)
i )2 = −1−#P (Oi).

Proof. When we blow-up an infinitely near point Oi, corresponding exceptional divisor
exists with self intersection (−1). By the proposition above, each time we blow-up a
point of Ei its self intersection drops by one. �

Exemple 4.0.1 In Figure 4.8, we give an example of cosntellation C. At first, we will
find its Enriques tree ε(C) and dual graph D(C) using usual way. See Figure 4.9 and
Figure 4.10.
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Figure 4.8 : A finite constellation C = {O,O1, O2, . . . , O11}.

Figure 4.9 : Enriques tree of the constellation C above.

Now, in order to find dual graph of constellation above, we will use Corallary 4.0.4
which says weight of a vertex ei with corresponding infinitely near singularity Oi is
equal to

w(ei) = −1−#P (Oi).
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Figure 4.10 : Dual graph associated to the constellation C above.

The following theorem tells us how to extract a dual graph and Enriques tree of a
constellation C from multiple sails V (C) and kites K(C) associated to C.

Following (Popescu-Pampu, 2009):

Theorem 4.0.5 Let C be a finite constellation starting from O.

(i) Enriques tree ε(C) is isomorphic to kites K(C) of constellation by an isomorphism
which sends infinitely near singularity Oi to the fancy vertex or fancy point of the sail
corresponding to Oi. Curvilinear lines of ε(C) corresponding to the free cords of K(C)
and segments of ε(C) corresponding to the satellite cords.

(ii) Dual graph D(C) of constellation is isomorphic to the graph obtained by union of
simple edges of multiple sails V (C) where the isomorphisme sends every infinitely near
singularity Oi of C to the terminal vertex (which represents the exceptional divisor
existed by blowing-up Oi) of the sail corresponding to Oi. Weight of an exceptional
divisor which corresponds to a simple vertex v of K(C) is equal to

(−1) × # {number of elementary sails has arrived at v}

where l’axis included.

Exemple 4.0.2 In Figure 4.11, we will associate multiple sail V (C) to the constellation
C in Figure 4.8. In Figure 4.12, we will extract kites K(C) from V (C).
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Figure 4.11: Multiple sails V (C) asssociated to the constellation C in Figure 4.8.
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Figure 4.12: Kites K(C) associated to multiple sails V (C).

It is easy to check the tree K(C) (in red) is isomorphic with the tree we have found in
Figure 4.9; the tree (in purple) is isomorphic to the dual graph in Figure 4.10 where
weight of a vertex Ei is equal to number of elementary sails arrived to the vertex Ei.

Remark 4.0.6 A kite is the best configuration corresponding to a plane curve
singularity in the sense that a kite collect many invariants of the singularity at once.
Note that given any of these information we can construct the kite.
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5. SINGULARITIES OF SURFACES

5.1 Desingularization Graph

In this section, we will be interested in desingularization process of a surface singularity.
We will define a special tree for a surface singularity giving the similar information as
Enrique tree in the case of the curve singularities.

Let S denotes a normal surface in Cn. As any normal surface has isolated singularities
(Laufer, 1973), we assume that 0 is the only singularity of the surface S. In 1935,
R. J. Walker proved the existence of desingularization of an analytic surface (S, 0)
and, in 1939 O. Zariski proved it for algebraic surfaces. Let π : (X,E) −→ (S, 0) be
a desingularization of (S, 0). By the Main Theorem of Zariski, the normality of the
surface S implies that the exceptional fibre E := π−1(0) is a connected curve. Hence
E is of dimension 1. The universal property of blow-up (Hartshorne, 1977) says that:

Theorem 5.1.1. With preceding notation, let m be the maximal ideal in the local ring
OS,0. If mOX is invertible in X then π can be factorized by the blow-up of 0 in S.

Furthermore, we can find many desingularization of S and a desingularization which
is convenient for our aim. For example, π is called a good desingularization if E is
normal crossing and, for all i, Ei is non-singular. Let us assume that π is a good
desingularization of (S, 0). We associate a matrix M(E) to E using the intersection
form of the curves Ei, called intersection matrix; the coefficients of M(E) are defined
by (eij)1≤i,j≤n with eii = −(Ei · Ei) and eij = is the number of intersection points of
Ei and Ej.

Theorem 5.1.2. (Mumford, 1961) The intersection matrix is negative definite.

Now let us associate a weighted graph Γ to π−1(0). The vertices of the graph Γ are
in one-to-one correspondence with the irreducible components of π−1(0). Two vertices
are connected by an edge if the corresponding irreducible components intersect. If xi is
a vertex with corresponding irreducible component Ei, we define the weight of vertex
xi as

wΓ(xi) = −E2
i

where E2
i is the self-intersection number of Ei. The weighted graph Γ is called desin-

gularization graph (or dual graph) of π.

Theorem 5.1.3. (Artin, 1966) A weighted graph is the dual graph of a surface
singularity if and only if the intersection matrix of the corresponding curve configuration
is negative definite.

A prime divisor on X is an irreducible subvariety of codimension 1 in X. A divisor
D =

∑
miEi on a desingularization X is a formal linear combination of prime divisors

Ei ⊂ X with coefficients mi ∈ Z. The group of divisors Div(X) is a free abelian group
generated by prime divisors.
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5.2 Minimal Trees

Let Γ be a weighted graph with vertices x1, . . . , xk such that:

(i) For each i 6= j, there exists a unique path between the vertex xi and the vertex xj,

(ii) There is no cycle in Γ.

These two conditions together are equivalent to say that Γ is a tree. Form now on,
Γ will represent a tree and |Γ| will represent the set of vertices of Γ, means we have
|Γ| = {x1, . . . , xk}. We say that the distance between the vertices xi and xj is 1 (or
they are adjacent) if they are attached to each other by an edge. We denote it as
distΓ(xi, xj) = 1. The number of all the vertices in Γ having distance 1 to a vertex x
is called the valency of x in Γ. We will denote it by νΓ(x).

Definiton 5.2.1. Let S be a normal complex surface and 0 a singular point of S. The
singular point 0 of S is called minimal singularity if
(i) mult0S = emdim0(S)− dim0(S) + 1
(ii)The tangent cone CS,0 of S at 0 is reduced.

Definiton 5.2.2. A weighted tree Γ is called minimal tree if w(x) ≥ νΓ(x) for all
x ∈ |Γ|.
Proposition 5.2.3. (Artin, 1966) If Γ is a minimal tree then the matrix M(Γ) is
negative definite.

It is clear that we have:

Proposition 5.2.4. (Artin, 1966) Any subtree of a minimal tree Γ is a minimal tree.

Remark 5.2.5. For a normal surface singularity being minimal can be charecterized
entirely by the dual graph. A normal surface singularity whose dual graph is a minimal
tree Γ, is a minimal singularity. A minimal tree Γ is dual graph of some minimal normal
surface singularity. In the next section, we will see that a normal minimal singularity
is a rational singularity with reduced fundemental cycle.

Remark 5.2.6. If 0 ∈ S is a minimal singularity then blow-up B0S has only minimal
singularities.

Remark 5.2.7. Let Γ be a minimal tree. So w(xi) ≥ v(xi) for all i ∈| Γ | and, this
implies (Z · xi) ≤ 0 for all i where Z =

∑k
i=1 xi is a divisor in X supported on E.

Theorem 5.2.8. Let (S, 0) be a minimal singularity and

π : (X,E)→ (S, 0)

its minimal desingularization. Let σ : S̄ → S the blow-up of 0 in S. Then there is a
map r : X ′ → S̄ such that π = σ ◦ r and a component xi of E = π−1(0) is contracted
to a point by r if and only if (Z · xi) = 0 where Z =

∑k
i=1 xi.

From now on, let us denote by M a minimal tree. Let E be the curve configuration
corresponding to M with the irreducible components Ei, . . . , Ek. We take a unique
irreducible component Ei0 . We want to compute the appearance level of Ei0 in the
sequence of blowing ups giving π. This level is called the depth of Ei (or xi in π,
denoted by depthπ(xi). By theorem , a vertex x ∈ |M| has depth one if w(x) > v(x),
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which means that these components of E appears after the first blow up of 0 in S. Let
ΓTC be the set of vertices x1, . . . , xl of depth one. We have:

M−{x1, . . . , xl} =
∐

Tj, j = 1, . . . , p

Each Tj is called a Tjurina subtree ofM. The depthπ(x) of a vertex x inM is defined
as:

depthπ(x) = dx := min(dist(x, xi))

among all xi ∈ ΓTC . This means that the component Ex of E corresponding to x
appears in the dx-th blow up of 0.

5.3 Royal Sails and Kites

Here we will try to find the sails and kites for a minimal normal surface singularity. In
the case of surfaces, the irreducible components of the exceptional fibre don’t appear
one by one after the blow ups process of the singularity. By theorem , the blow up of
the minimal singularity may produce many singularities of the blowed up surface and
many irreducible components of the exceptional divisor. Before we proceed we need to
add one more elementary modifications to three modifications given before in the case
of the singularity of a plane curve.

(d) Let E1, . . . , Em be the irreducible components which intersect all at one point p
which is singular for the blowed up surface S̄. We call that point non-normal crossing
point. Let us blow up p in S̄; such a blow up will be called an elementary modifica-
tion of the third kind, ε(x1, . . . , xm). We will get some new components separating
all of them. When m = 3, geometrically this can be seen as:

Figure 5.1: Elementary modification of third kind

Now let us consider the following minimal tree:
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The vertices ◦ (resp. ×, and 3) represents the weight 2 (reap. 3 and 4). It is easy to
compute the depth of each vertex from the discussion above. In this special case, the
depths are obtained as:

Definition 5.3.1. The tree above is called the depth graph of the minimal tree.

Remark 5.3.2. The depth graph of a surface singularity gives the same information
as the Enriques tree in the case of plane curve singularities. So, a depth graph can be
seen as the generaized Enriques tree of the minimal surface singularity.

Definition 5.3.3. (Construction of royal sails)
Now, we will attach royal sail to depth graph of a minimal normal surface singularity.

(i) First of all, we start to construct the royal sail by putting the singularity O at the
bottom, we can think the place of O like ground floor,

(ii) We put divisors with depth 1 to first floor of the royal sail, divisors with depth 2 to
the second floor of the royal sail and goes like this . . .

(iii) If a divisor Ei existed by blowing-up of a singularity lying above divisor Ej, there
is a line between Ei and Ej. If Ei and Ej are not neighborhood in desingularization
graph, the line between them is a dotted line.

(iv) We now give how to describe exceptional divisors and the singularities lying above
them. We have two situation to describe:

(a) The singularity O lying above exactly one exceptional divisor
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(b) The singularity O lying above more than one exceptional divisor

(v) If Oi is existed by blowing-up Oj, there is a dotted line between them.

Exemple 5.3.1. Let us consider the minimal graph of type An. The depth graph for
An changes according to n = 2k or n = 2k + 1 with k ∈ N≥0.

Figure 5.2: Depth graph of An when n = 2k, k ∈ N.

Figure 5.3: Depth graph of An when n = 2k + 1, k ∈ N.

We will now give royal sails associated to An. We again have two cases:

Figure 5.4: Royal sail associated to dual graph in Figure 5.2. ( n = 2k )
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Figure 5.5: Royal sail associated to dual graph in Figure 5.3. ( n = 2k + 1 )

Exemple 5.3.2. Let us consider another depth graph Γ1.

Figure 5.6: Depth graph Γ1
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We will now give blow-up process and royal sails associated to Γ1.

Figure 5.7: Blow-up process of Γ1

Figure 5.8: Royal sail associated to Γ1

Remark 5.3.4. The dual graph of a plane curve singularity can be obtained from
Enriques tree as we have seen in Proposition 4.5 but that process doesn’t work in the
case of depth graph.
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5.4 Rational Trees

In this section, we will generalize the concept of depth to the case of rational singu-
larities of surfaces given in (Lê & Tosun, 1999) Let Γ be a dual graph of a rational
singularity, called rational tree. If we consider a weighted tree Γ with vertices x1, . . . , xn
and weights wi we can say whether Γ is a rational tree as follows: Let D =

∑k
i=1 miEi

be a divisor supported on Γ with mi ≥ 1 for all i. Assume that (D · Ei) ≤ 0 for all
i. Such divisors form a semigroups of divisors which admits a smallest element, called
Artin divisor.

Definition 5.4.1. Let Z =
∑k

i=1 aiEi be the Artin divisor of Γ. If

Z · Z +
∑
ai(wi − 2)

2
+ 1 = 0

then Γ is a rational tree.

Proposition 5.4.2. (Artin, 1966) Any subtree of a rational tres Γ is a rational tree.

Let Γ be a rational tree. A vertex of Γ is called non-Tjurina component of Γ with
respect to D if (D · xi) < 0 (or equivalently (D · xi) < 0. Let us denote by y1, . . . , yk
the vertices of Γ such that (D · xi) < 0. As before, we have:

Γ− {y1, . . . , yk} =
∐

Tj, j = 1, . . . , k

where Tj is a rational tree. The subtrees Tj are called Tjurina subtrees of Γ with
respect to D.

Consider a rational tree Γ and its Artin divisor Z(Γ). Let us denote by T a Tjurina
component with respect to Z. Let F be a vertex of Γ which is contained in T . Put
T0 = T . Let Z(T0) be the Artin divisor of T0. If (Z(T0) · F ) < 0 then the depth of
F is said to be 0. If (Z(T0) · F ) = 0 let us denote by T1 the Tjurina component with
respect to Z(T0) containing F . A finite step in this way will give a finite sequence

Tm ⊂ Tm−1 ⊂ . . . T0 = T

where Ti is the Tjurina component of the Artin divisor Z(Ti−1). Note that each Ti
contains F as non-Tjurina component, which means we have (Z(Ti) · F ) = 0 for all i
and (Z(Tm) · F ) < 0.

Definition 5.4.3. The length m of the chain above is called the depth of F in Γ.

Exemple 5.4.1. Let us consider the rational tree E6. The depth graph for E6 and
blow-up process is as below:
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Figure 5.9: Blow-up process of E6

The corresponding royal sail is:

Figure 5.10: Royal sail of E6

Corallary 5.4.4. Let Γ be a rational tree and let (S, 0) be the corresponding singu-
larity. The number of blowing-ups leading to the minimal resolution is b := maxi∈|Γ|hi
where hi is the depth of the vertex Ei in |Γ|.
Proposition 5.4.5. In a minimal tree, the number b is given(bounded) by the largest
subtree of An.
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5.5 Sandwiched Singularites

Let O be a normal 2-dimensional complex-analytic local ring. We say that O has
a sandwiched singularity if there exists a non-singular algebraic surface X0 over C,
an ideal sheaf I on X0 and a point ξ in the blowing-up S of X0 along I such that
(OS,ξ)an ∼= O. A normal local ring O which is a localization of a finitely generated
C-algebra is said to have a sandwiched singulartiy if Oan has one. Let X0 be a regular

surface and η a point of X0, I be a complete ideal in OX0,η and let I =
r∏
i=1

p
α(i)
i be

its factorizationinto simple complete ideals. Let π0 : S → X0 be blowing-up of I and
π : X → S the minimal desingularization of S. Each pi is a valuation ideal for some
valuation ν of the function field K of X0. We define Ai as set of all the simple ν-ideals
p such that p ⊆ pi. Let

A :=
⋃

1≤i≤r

Ai.

M.Spivakovsky (1990) proved that the map

π0 ◦ π : X → X0

is blowing-up of the ideal
∏

p∈A p. This is an important result, because blowing-up maps
are birational dominant maps. Hence,

π0 ◦ π : X → S → X0

is a birational dominant map between two non-singular surfaces. Birational domi-
nant maps between non-singular surfaces can be decomposed into a sequence of point
blowing-ups. Hence π0 ◦ π is nothing but sequence of point blowing-ups.

Dual graph Γ associated to π−1(ξ) is the weighted subgraph of the dual graph Γ′

associated to (π0 ◦ π)−1(η). Since X is a minimal desingularization of ξ, Γ contains no
vertices of weight 1. It follows any connected subgraph of Γ′ containing no vertices of
weight 1 corresponding to some sandwiched singularity.

Definition 5.5.1. We will define two kinds of dual graph:

(1) Γ is called non-singular if Γ dominates the empty graph.

(2) Γ is sandwiched if there exists a non-singular graph Γ′ containing Γ as weighted
subgraph.

As expected, dual graph associated to the desingularization of some sandwiched sin-
gularity is a sandwiched graph. Next proposition will say the converse is also true.
This proposition is analagous to the theorem proved in (Artin, 1966) and it says for a
rational tree Γ, we can always find a desingularization of rational singularity with dual
desingularization graph Γ.

Following (Spivakovsky, 1990):

Proposition 5.5.2. The followings on Γ are equivalent:

(1) Any singularity having a desingularization with dual graph Γ is sandwiched.

(2) There exists a sanwiched singularity having a desingularization with dual graph Γ.



33

(3) Γ is sandwiched.

We will classify the sandwiched singularities using dual graphs. Note that if there is
a sandwiched graph Γ there is infinitely many non-singular graph Γ′ containing Γ as
weighted subgraph. It will be convenient to choose one type between them:

Proposition 5.5.3. (Spivakovsky, 1990) Let Γ be sandwiched graph. The among the
non-singular graphs containing Γ there exists a graph Γ∗ such that for any x ∈ |Γ∗|\|Γ|

distΓ∗(x,Γ) = wΓ∗(x) = 1.

Proof. Let Γ∗ be any non-singular graph containing Γ. By definition, there exists an
elementary sequence

∅ ε1−→Γ1
ε2−→· · · εn−→Γn

For 1 ≤ i ≤ n, let xi denote the unique vertex in |Γi| \ |Γi − 1|. We write

εi = ε(xi, yi) if εi is of the first kind,

εi = ε(xi, yi, zi) if εi is of the second kind,

where yi, zi ∈ |Γi − 1|. Now, replace the elementary sequence above with

∅
ε′1−→Γ′1

ε′2−→ . . .
ε′n−→Γ′n

where

εi = ε(xi, {yi, zi} ∩ |Γ|) if {yi, zi} ∩ |Γ| 6= ∅ and xi ∈ |Γ|,
= ε(xi) if Γ′i−1 = ∅ and xi ∈ |Γ|,

ε′i is an isomorphisme otherwise .

In the first two cases we identify the unique vertex of |Γi| \ |Γi − 1| with xi. Replacing
maps ε′i s are also elementary modifications. So Γ′n is non-singular as it is dominates
empty graph. For any vertex x ∈ |Γ|, we have x = xi for some i, 1 ≤ i ≤ n. Hence, x
appears as a vertex in Γ′n, actually x is created by ε′i. This costruction gives us some
important results. At first,

{ j | i < j ≤ n and x appears as an argument in εi}
≥ { j | i < j ≤ n and x appears as an argument in ε′i}.

Also by the construction of the ε′i s, the set of arcs of Γ′n is a subset of arcs of Γ. Hence,
Γ′n contains Γ as unweighted graph, with

wΓ(x) 6= wΓ′n(x)

for all x ∈ |Γ′n|. Take any x ∈ |Γ′n| \ |Γ|. Then x = xi for some 1 ≤ i ≤ n. Since x /∈ Γ,
by definition of the ε′j, x does not appear in any ε′j such that j > i. And by definition
of ε′j, there exists y ∈ |Γ| such that

distΓ′i
(x, y) = 1.
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Hence

distΓ′n(x,Γ) ≤distΓ′n(x, y) = distΓ′i
(x, y) = 1,

wΓ′n(x) = wΓ′i
(x) = 1,

as desired. Iterating the elementary modification ε(z, x), wΓ(x) − wΓ′n(x) times for
every x ∈ |Γ|, we obtain a weighted graph Γ∗ with desired properties.

�

Now, let’s concentrate on what proposition above actually says. Let Γ′ be the non-
singular graph with desired properties. The proposition says that all vertices x ∈
|Γ′| \ |Γ| has weight 1 at least. So, the sequence of elementary modifications which
transform Γ to Γ′ are just elementary modifications of the first kind. Let’s denote
those modifications by ε(x, y). And, the second equality distΓ∗(x,Γ) = 1 says that if
ε(x, y) is one of those modification, x is always an element of |Γ|. Well, this choice of Γ′

depending on those combinotorial properties leads us the following algebraic corollory:

Corallary 5.5.4. (Spivakovsky, 1990) Let O has sandwiched singularity. With
respecting notation in Section 5.5, let π0 : S → X0 blowing up of I and π : X → S the
minimal desingularization of S. Let η = cosupp(I). Then X0 and I can be chosen in
such a way that

(1) ξ is the only singularity of S.

(2) Every irreducible curve in (π0 ◦ π)−1(η) \ π−1(ξ) is an exceptional curve of the first
kind.

For sandwiched singularity, we shall always assume that I and X0 are chosen as above.



6. CONCLUSION

In this thesis, we wanted understand in detail Sails and Kites theory on curve
singularities given in (Popescu-Pampu, 2009). Then we tried to generalise it to some
singularities of complex surfaces, namely to rational singularities of surfaces. In first
two chapters, we studied the basic definitions and results on singularities and their
resolutions. In chapter 3 and 4, we started to understand our main reference (Popescu-
Pampu, 2009) and in chapter 4, we presented the sail and the kite associated to a curve
singularities based on Enriques tree of the singularity. In the last chapter, we defined
the notion of depth for a vertex in a minimal tree and in rational tree, which is equal
to the minimum number of blow-ups to make appear the corresponding exceptional
divisor in the resolution process of the singularity. We claim that the depth graph
(the resolution graph with the depth assigned on each if its vertices) is the generalised
Enriques tree for surface singularities with rational singularities. Following (Popescu-
Pampu, 2009), we define one more elementary modification to construct a sail for a
rational singularity. The corresponding sail is called royal sail to distinguish the cases
of curve and surface singularities. Since we can’t control the number of the irreducible
components and their self-intersection as in the case of plane curve singularities, the
kite is not a perfect configuration where we can read as many information as we did in
the curve case. We just discovered two articles in the literature which can help us to
develop our works.
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