GALATASARAY UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

SCREEN POSITIONING ALGORITHM FOR
AUGMENTED REALITY APPLICATION ON
ANDROID DEVICES

Doga ERISIK

Jan 2016

SCREEN POSITIONING ALGORITHM FOR AUGMENTED REALITY
APPLICATION ON ANDROID DEVICES

(ANDROID ARTTIRILMIS GERCEKLIK UYGULAMALARI iCIN EKRAN
KONUMLANDIRMA ALGORITMASI)

by

Doga ERISIK, B.S.

Thesis

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE
in
COMPUTER ENGINEERING
in the
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
of

GALATASARAY UNIVERSITY

Feb 2016

This is to certify that the thesis entitled

SCREEN POSITIONING ALGORITHM FOR AUGMENTED REALITY
APPLICATION ON ANDROID DEVICES

prepared by Doga Engsik in partial fulfililment of the requirements for the degree of
Master in Computer Engineering at the Galatasaray University is approved by the

Examining Committee:

Yrd. Dog. Dr. Giilfem Isiklar ALPTEKIN (Supervisor)
Department of Computer Engineering
Galatasaray University e

Yrd. Dog. Dr. Teoman NASKALI
Department of Computer Engineering
Galatasaray University e

Yrd. Dog. Dr. Ayse TOSUN

Department of Computer Engineering
Istanbul Technical University e

Date: S

ACKNOWLEDGEMENT

I would like to thank to Ahmet Karaman for his contributions. | would also like to
thank my supervisor Giilfem Isiklar Alptekin, and Ozlem Durmaz Incel for giving me
the opportunity to work such an interesting subject and learning interesting approaches
that help me a lot. | am also grateful for their understanding of my time limitations and
encourage they have provided. | also would like to thank to Okan Burgak and Mustafa
Isbilen who are working for Yap1 Kredi Bank and all my colleagues for understanding
my dedication to the thesis. This work is supported within the scope of SAN-TEZ
program of the Turkish Ministry of Science, Industry and Technology under the grant
number 0307.STZ.2013-2.

Jan 2016
Doga ERISIK

TABLE OF CONTENTS

ACKNOWLEDGEMENT ...ttt i
LIST OF FIGURESot viil
LIST OF TABLESottt ettt nee Xi
ABST R A CT ettt st e bbb he e b et nae e ebeenree s Xii
RESUME .. e Xiii
OZET ... XV
1. INTRODUCTION ..ot 1

1.1. AUGMENTED REALITY ON ANDROIDcccoooiiiiiiiiiiec e 1

1.2. SENSOR-BASED AUGMENTED REALITY APPLICATION SOFTWARE

G J OO 2
1.3. CHALLENGES IN AUGMENTED REALITY APPLICATIONS 3
1.4, THESIS OBJECTIVES......co ettt 4

2. FUNCTIONAL ANALYSIS OF SARAS......oo et 5)
2.1, ACTORS ...ttt ettt ettt e b nnee s 5)
2.2. USE CASE DIAGRAMS: SARAS USAGEccoiiiiie e 6
2.3. ACTIVITY DIAGRAMS. ... 7
2.3.1. Activity 1. System Classifies the USerc.ccccevviviiiieie i 7
2.3.2. Activity 2: Showing POI’s Detailscccoceiiiiiiiiiiiiccee 8
2.3.3. Activity 3: Case: NO GPS CONNECLION.........ccceeviiiiiieiie e 9

3. SIMILAR APPLICATIONS. ... 11

3L LAY AR 11

3.2, GOOGLE GOGGLES.......cci i 11

3.1, WIKITUDE ...ttt sttt 11
3.2, TUSCANYH (APPLE) ... ieeveieeeeeeeeseseeeeeeeseesseesseesesssessseeseseseeeseasessseessessenees 12
SCREENS AND MENUS ... s 13
4.1, MAIN SCREEN.....cooi e e 13
4.2, MENU ... 15
4.3. TYPEFILTER SCREEN......ccoiiiii e 16
4.4. DISTANCE FILTER SCREENcoiiiiiee e 16
4.5, LOGIN SCREEN ... e 17
4.6. QR CODE SCREEN.......ooiiiiieii e 18
4.7, MAP SCREEN.... ..o e 19
4.8. REFRESH SCREENcooiiiiiiiii s 19
4.9, ADD A NEW POl ...ttt 20
4.10. EXIT SCREEN.....oii i 21
4.11. POIDETAIL SCREENoiiiiiiiie e 21
4.12. CALIBRATION SCREEN........coiiiiieii e 22
APPLICATION COMPONENTS ...t 23
5.1, CAMERA .ottt 24
5.2, LOCATION .ttt ettt b e be e re e 24
5.2.1. G0O0QIE Play SEIVICESccveieiitieieiieecie ettt 25
5.2.2. Android Location LiDraryccccceeeevieiiciicic s 31
5.2.3. GPS MOUES ..ottt sttt sttt 31
5.3, SENSORS ... n e 32
5.3. 1. IMOUION SENSOIS ...ttt 32
5.3.2. POSITION SENSOIS.......eitiiiitiiiieiieii ettt 35
5.3.3. ROLAION MALIIX....eiiiiiiiiiieiieiiseee e 37

5.3.4. Remap Coordinate SYSEM........ccciieiieriiiiiierieeeee e 38

5.3.5. SENSOI FUSION ..ottt 38
54. DATA STORAGE ON ANDROIDcooiiiiiiiieiieeieeee e 39
5.4.1. For keeping POI’s information:cceoviiiiieniniiiiciice e 39
5.4.2. For keeping filters ChoSen DY USETccocviiiiiiiiiicieie e, 41
9.5, ERROR REPORTS ... 44
5.6. COMPASS AND CALIBRATIONooiiiiiiieiie e 45
5.7. LANGUAGE SUPPORT ..ottt 46
5.8. OTHER COMPONENTS ... 48
0,81, SEIVEI oot 48
5.8.2. WED SEIVICES ..ottt 49
5.8.3. QR COUE SCIEEN.....cutiieiuieitieiesteesieeeesree e eesree e aseessee e eeesreesreenseaneesreas 50
SCREEN POSITIONING ALGORITHM ...cooiiiiiiiiiiiee e 51
6.1. AUGMENTED REALITY SDKooiiiiiiiiieiie e 51
6.2. WORLDPLUS ...ttt 52
8.3, ARE A et e 54

T 2) YOO OO 56
6.4.1. Finding POI’s DIr€Ction.........ccccueiiiiiiiiiiiiiiiicsisc s 56
6.4.2. Calculating the point on device’s X axis:ccocvvviriiiiiiiiiniiniieiieiesee s 62
6.4.3. Calculating the point on device's Y aXiS:.......c.ccevveveiieeieeresiieie e e 64
6.4.4. Handling Intersections on the SCreenccccceveeveiie v 65

7.1. Comparison with Other Similar Applications..........cccccevereiiiniiniienieee 68
7010, ENBIGY e 69
702, CPU USAQE... oottt sttt bbbt 70

7.1.3. Screen Positioning COMPAriSONSccceieririreeieieenreniesre e
8. CONCLUSION ...ttt ettt e e e sbeeenne e e
9. THREATSTO VALIDITY AND FUTURE WORK ...t
REFERENGQGES. ... oottt

BIOGRAPHICAL SKETCHooiiiiie s

vii

LIST OF FIGURES

FIgure 1.1 SCre€Nn PrOJECTIONcuiitiiiiieiiisieeiiee ettt 2
Figure 2.1 Use Case Diagram of SARAS ..o 6
Figure 2.2 User Classification Activity Diagramccccccevveviieieiiiese e 7
Figure 2.3 POI Details Activity DIiagramcccccevieieeieiie e 8
Figure 2.4 N0 GPS ACLIVILY DIAGIaMccoiiiiiiiiiieiiesiesieeiesi e 9
FIQUIE 3.1 WIKITUAEoveieiiiiice e 12
FIQUIE 3.2 TUSCANY F .oiciieiieeie ettt ettt ettt e e e st e steenaesteenteenaesneenreennennes 12
Figure 4.1 SARAS OVErall SCIEENccceiiiiiieiie ettt 13
Figure 4.2 Button Colors fOr POI TYPES.......ccciiiiiiiiiiiesieeieie e 14
FIQUIre 4.3 SHAr MENUooiiiiiiie e 15
FIQUIE 4.4 TYPE FIIEIS ...ttt 16
Figure 4.5 DiStance FIltercoooveiiie e 16
FIQUIE 4.6 LOGIN SCIEEN ..ottt bbbt 17
Figure 4.7 QR CO0E SCIEEMoiuiieiiieiteitieieeieee ettt bbbt 18
Figure 4.8 G0OQIE MaP SCIEEMNecivieiiciecete ettt 19
Figure 4.9 RefreSh SCIEEN........ocviiie e 20
Figure 4.10 Add @ NEeW POl SCIeEN.......cciiiiiiiiieee e 20
Figure 4.11 Exit Confirmation SCrEENccueiiiiiiiiiie e 21
Figure 4.12 POl Detail SCrEENccuveiiiieee ettt 21
Figure 4.13 Calibration SCrEENccvcviiieie et 22
Figure 5.1 Download Google Play SErviCes..........ocoiiiiiiiiiinieeieiese e, 25
FIgure 5.2 Create SHA KBY ... 26
FIQUIE 5.3 APL CONSOIE......cciiiiieciee sttt 27
FIQUIE 5.4 AP KBY ..ttt ettt e e et eete e e nes 27
Figure 5.5 Adding API t0 Manifest FIle ..., 27

Figure 5.6 Google Play Services Library ..., 28

Figure 5.7 Map PErmMISSIONScc.ooiiuiiiiiiieieiee sttt 28

FIQUIe 5.8 POIS ON MaP......oiiiiiii e 30
Figure 5.9 Accesses t0 ACCEIETOMELENccvcveiieieeie e 33
FIQUIE 5.10 AXIS...ueeiueeiiiieite et seese ettt e et te et et este et esseesteenaesraesteeneesneenraenneanes 34
FIgure 5.11 ACCESS 10 GYFOSCOPEc.veveriirieaiieiiesieieste sttt et b bt 35
Figure 5.12 Access to GeomagnetiC Field ..., 35
Figure 5.13 Azimuth Roll and PitChcccoiiiiiec e 37
FIQUIE 5.14 SENSOT FUSIONc.veiiieiiieiecie sttt ettt e e sre e nns 38
Figure 5.15 Error Report Mail ... 44
FIQUIE 5.16 COMPASSveiiieiieiieieite ittt bbbttt bbb nb et 45
Figure 5.17 Calibration INfOcccooiiiiiiice e 46
Figure 5.18 TUrKiSh VEISIONccuveiiiiiiiesie ettt ra s 47
Figure 5.19 ENgliSh VEISIONcooiiiiiiiiiiie e 48
Figure 5.20 SARAS Data MO ..o 49
Figure 5.21 Reading QR COUE.........coiiiiiieice et 50
Figure 6.1 Calculating Horizontal Projectionccccoovviieieiie e 52
Figure 6.2 Calculating Vertical ProJeCtionccccooeviiiiiniinieeiecse e 53
Figure 6.3 Hlustration for Visible POIS ..., 54
Figure 6.4 Representation of Calculated bearing..........cccccooveveiiiicce e 55
Figure 6.5 Finding POT’S DIT€CHIONcveveiiriiieiiiiisieieesie e 58
Figure 6.6 Directions RepreSentationccooeoerereriiinieieieeese e 59
Figure 6.7 Calculating POI’s Location Point............cccooviiiiiinieieiiienc s 61
Figure 6.8 Calculating POI’s point on X axis 0f DeViICecccevvreririiiineniiiic e 63
Figure 6.9 INterseCtions 0N SCIEENc.cciiiiiiieiie sttt re e 65
Figure 6.10 Handling INtErseCtionccoveiiiieiii i 66
Figure 7.1 Map RePreSENatioNccoviiiiiieieieiesie et 72
Figure 7.2 Screenshot using our proposed LLSP algorithm - East............ccccooovvvenennee. 73
Figure 7.3 Screenshot using the given algorithm - Eastcccccoovvivi i, 73

Figure 7.4 Screenshot using our proposed LLSP algorithm - Passage from East to
N0 1 T T USSR 74
Figure 7.5 Screenshot using the given algorithm - Passage from East to North-East ... 74

Figure 7.6 Screenshot using our proposed LLSP algorithm North-East 75

iX

Figure 7.7 Screenshot using the given algorithm - North-East.............c.ccocoviiiiiennn,
Figure 7.8 Screenshots using our proposed LLSP algorithm while driving...................

Figure 7.9 Screenshots using the given algorithm while driving..........c.ccccceovvvevvenenne.

LIST OF TABLES

Table 5.1 SARAS_MEMBER_SHOP Table ..o
Table 5.2 SARAS_MEMBER_CATEGORIES Tableccccooviiiiiiiiecncncce

Table 7.1 Resource Utilizations

ABSTRACT

The ‘Augmented Reality’ technology is a combination of four different peripherals.
These peripherals consist of camera, computer infrastructure, markers and the real
world. Augmented reality can be summarized as these four units being positioned in the
real world with three dimensions. The ultimate goal of augmented reality is to create a
convenient and natural immersion. Development of mobile technologies has
contributed significantly to the improvement of this domain. Using it, humans can

interact with objects which surround them via their mobile devices.

In this thesis, we've developed an augmented reality application which runs on mobile
devices with Android operating system. This application is developed with the
corporation of Yapi1 Kredi Bank with the financial support of Ministry of Industry and
Sciences. The purpose of this application is to correctly place bank merchants (will be
referred as point of interests (POI)) and offices on device’s screen by calculating their

positions relatively to user’s current position.

A new screen positioning algorithm that optimizes application’s performance and
minimizes its energy consumption is proposed for this application. Furthermore,
additional features and services (user choice filters, map support, QR Code screen) that
use different sensors have been developed in the most energy efficient way. To
accomplish energy efficiency we added different GPS fetching modes and libraries.
These modes are particular to our application. Also we compare our algorithm to
another algorithm and we saw that our application has a better accuracy on screen

positioning and direction finding.

RESUME

La technologie « Réalité Augmentée » est une combinaison de quatre périphériques
différents. Ces périphériques sont compos¢ de; premiérement caméra, deuxiémement
I'infrastructure informatique, troisiemement les marqueurs et enfin du monde réel.
Donc réalité augmentée peut étre résumée comme quatre unités étant positionnés dans

le monde réel a trois dimensions.

Le but ultime de la réalité augmentée est de créer une pratique et naturelle immersion.
Développement des technologies mobiles a contribué de maniére significative a
I'amélioration de ce domaine. Par conséquent les humains peuvent interagir avec les

objets qui les entourent utilisant leurs appareils mobiles.

Dans notre projet, nous avons créé une application de réalité augmentée qui marchera
sur les appareils dont le syst¢éme d'exploitation est Android. Cette application est
développée pour Yapi Kredi Bankasi avec le soutien du Ministére Turc de Science,
Industrie et Technologie. Le but de cette application est de placer correctement les
marchands et les bureaux de Yapi Kredi sur 1'écran de l'appareil, en calculant leurs

positions relatives a la position de l'utilisateur.

Pour cette application, nous avons étudié, principalement, l'algorithme de
positionnement a I'écran de I’application, l'optimisation de la performance et la
minimisation de la consommation d'énergie. Des fonctions supplémentaires Sont été
ajoutées telles que les filtres de choix de l'utilisateur, I'écran de carte du monde ou on
peut voir tous les points d’intéréts, 1'écran pour lire des code QR et I'écran de
connexion. Pour diminuer la consommation d’énergie, on a implémenté trois

différentes modes, et deux différentes bibliothéques pour acquisition de GPS. On a

ainsi comparé notre application avec un autre et on a prouvé que le notre a des

résultats mieux pour positionner les marchandises et choisir leurs directions.

OZET

Artirilmis gergeklik teknolojisi dort farklt ¢evre biriminin birlesimidir. Bu c¢evre
birimleri kamera, bilgisayar alt yapisi, isaretleyici ve gercek diinyadan olusmaktadir.
Artirillmis gerceklik bu farkli dort birimin ii¢ boyutlu olarak gercek diinyada

konumlandirilmasi olarak tanimlanabilir.

Artirllmis gercekligin hedefi, gercek bir yere ya da nesneye bilgi ve anlam katmaktir.
Mobil cihaz kullanimi giiniimiizde ¢ok artmis ve bu artis ile birlikte artirilmis gergeklik
uygulamalar1 daha da 6nemli bir hale gelmistir. Insanlarin iizerlerinde tasidiklar1 bu

cihazlar ile etraflarinda gordiikleri cisimler ile etkilesime gegebilir hale gelmislerdir.

Tez i¢in gelistirilen uygulama ve algoritma Bilim ve Sanayi Bakanligi’nin finansal
destegi ve Yap1 Kredi Bankasi’nin teknik ve veri destegi ile birlikte Android isletim
sistemli mobil cihazlar tiizerinde c¢alisacak sekilde gelistirilmistir. Tasarlanan
uygulamanin amaci, Yap: Kredi Bankasi’na ait iiye i yerleri ve banka subelerini mobil
cihazin ekraninda, kullaniciya goére konumlarini hesaplayarak dogru bir sekilde

yerlestirmektir.

Bu tezde, uygulamanin temelini olusturan ekrana yerlestirme algoritmasi iizerine
odaklanilmistir. Algoritmanin akademik yazinda onerilen diger algoritmalara kiyasla
daha basit, daha az pil harcayan ve daha hizli calisan bir algoritma olmasi
hedeflenmistir. Bunun disinda filtre segenekleri, harita destegi, QR Kod okuma ekrani
gibi diger ozellik ve servislerin de, mobil cihazin pil dmrii ve performansini en
arttiracak sekilde calismasi saglanmistir. Bu enerji kazancini {i¢ farkli GPS edinme yolu
kullanarak ve iki farkli kiitiiphane kullanilarak saglanmistir. Ayni zamanda Onerilen

algoritma akademik yazinda bulunan farkli bir algoritma ile karsilagtirilmis ve

sonuglarin ¢ogu durumda daha iyi oldugu gosterilmistir. Onerilen algoritma ara yonleri

tayin etme ve ekrana konumlandirmada dogruya daha yakin sonuglar vermistir.

1. INTRODUCTION

In this thesis, an augmented reality application for Android-based mobile devices is
developed in cooperation with Yapi Kredi Bank. The application lists real merchants of
the bank. Using the GPS coordinates, they are positioned on device’s screen. We
create a perspective projection to figure out where the objects should appear on the
device’s screen, so we can augment them. In particular, the focus of this thesis is to
develop an efficient screen positioning algorithm. In this chapter, an introduction to
developing augmented reality applications on Android will be made. Then our mobile
application and the challenges we met and the contributions we made in this thesis will

be explained.

1.1.AUGMENTED REALITY ON ANDROID

Augmented reality refers to a wide spectrum of technologies that project computer
generated materials, such as text, images and video, onto users' perceptions of the real
world (Yuen et al.,, 2011). It is related to a more general concept called mediated
reality, in which a view of reality is modified (possibly even diminished rather than
augmented), by a computer (Wikipedia, 2015). As a result, the technology functions by
enhancing one’s current perception of reality. The development of mobile technologies
has contributed significantly to the improvement of this domain. Objects can be seen
from different angles or a similar product can be used to make observations on the

subject.

We can benefit from the following features of a mobile device:

e Location-based mobile data services
e GPS

e Compass

e (Gyroscope

e Thermometer

e Accelerometer

e GeoMegnetic Field

e Camera

1.2. SENSOR-BASED AUGMENTED REALITY APPLICATION SOFTWARE
(SARAS)

In our research, given points of interest (POIs) are aimed to be positioned on device’s
screen. These POls refer to bank merchants and they are listed as a screen projection of

actual objects. Figure 1.1 illustrates a representation of this screen projection.

Point of Interest

Device coordinates 4

Orthogonal coordinate
system

// Calculating intersection
p point with screen

Figure 1.1 Screen Projection

Doing so, the following steps are followed:

To find the direction of the mobile device.
To calculate the POls that should be visible on screen.

To calculate their coordinates on screen.

A e

To create their projection on screen as buttons.

Therefore, as the user changes his/her phone’s direction, these listed POIs will be

recalculated and relocated on screen, in a most quick way.

There are additional features such as:

e Distance and POI’s type filters

e Google map (POls are listed on this map)
e GPS modes

e Choice for GPS fetching libraries

e Customer login

e QR Code reading

In this document, all these features and their implementations will be explained,

together with the AR implementation on Android devices will be told.

1.3.CHALLENGES IN AUGMENTED REALITY APPLICATIONS

The most frequently encountered problems when developing an AR application on

mobile devices can be listed as follows:

e Challenges of real-time calculation of the reference frame,
¢ Difficulty to estimate the noise coming from the sensor,
¢ Difficulty of place the POI to the exact location on the screen,

e Difficulty to predict and satisfy users’ demands,

¢ Difficulty to create real-time graphics, and

o Difficulty to overcome the problems of the poor quality camera.

In this thesis, our objectives are to overcome these problems and additionally to
optimize the application in terms of energy consumption. In this document, the
emphasize is on screen positioning algorithm. For more detailed explanations on

energy optimizations, you can refer to (Karaman, 2015).

1.4 THESIS OBJECTIVES

In this thesis, a new approach to screen positioning algorithm in AR applications is

introduced. The main aim is to improve our knowledge in following areas:

1. Developing an AR application.

2. Creating models and designing architectural infrastructure of a large-scale
application.

3. Introducing a new approach to screen positioning on AR applications.

4. Comparison to other applications for evaluating the performance of the

proposed tagging/positioning algorithm.

Optimizing energy consumption (Karaman, 2015).

Comparing different libraries (Karaman, 2015).

Comparing different modes of usage (Karaman, 2015).

© N o o

Comparison of our algorithm with other algorithms in terms of computation
time (Karaman, 2015).

The tests and comparison of the proposed algorithm to other similar applications show
that the introduced application with the proposed algorithm meets our expectation. As a
result, an application which produces reliable outputs in the most energy efficient way

possible has been created

2. FUNCTIONAL ANALYSIS OF SARAS

In this chapter, the software model of our thesis is told. Representation of actors of our
application, explanation of architecture and usage of our application using UML

diagrams such as activity and use case diagrams can be found in this section.

2.1. ACTORS

Actors of the system are as follows:

e SARAS
It is the main user of our system. It is an augmented reality application for mobile

devices which aims to show information on screen.

e YKB Customer
Yap1 Kredi Bank's customers who uses SARAS application. They identify themselves
to system using their Turkish Citizenship number. They can change application's filters,

and they can access to POI’s campaign information.

e Potential Customer
This actor represents the users who are not Yap1 Kredi customers yet, but who uses

SARAS. They can access to general campaign information.

e Database
This database is located in Galatasaray University and it keeps customers T.C. numbers,

campaign and POTI’s location information. The data is received from bank servers.

2.2.USE CASE DIAGRAMS: SARAS USAGE

SARAS

gtzndss iy wony weiernd
k) L5
R Start
I Application T
- = -~ T
YKB Cisto

- ol T—

.// \\

— o~
P "
.

“\\\ — -l
‘_\\ _— Customer o Costomer
\\:\\\ - Login /"/// Databaze
/ﬁ‘n /
" Nanags -
Filters

-
sl 5 v
-

1+ \ .

N
N
N

) Exit Agplicstion

— .//
el
.//
-~
™~
T
‘-"‘-\
e
. e

Q L

ain
-
. aine

!

Potential

Customer —

Figure 2.1 Use Case Diagram of SARAS

In Figure 2.1, following scenario occurs:

1. User wants to launch the application.

2. If the camera is working, if the device has internet connection, and if the
battery is enough for the application, the application initialized.

3. T.C. ID number information screen is shown on screen. User can skip this
or identify himself/herself to system. So she/he can access to the program as
a bank customer or a general user.

4. User can filter POIs by their types or their distance.

5. POls are listed on screen.

6. If the GPS connection does not exist or it is limited, user can choose to use
the QR Code of the POI for accessing campaign information.

7. User exits from the program.

2.3. ACTIVITY DIAGRAMS

2.3.1. Activity 1: System Classifies the User

Start Application

Enter T.C. ID

W

Gusmmer exists in dalabas@

[YES [NO]

G‘etﬂ:h customer specific da[D

Fetch general data

Position merchants and necessary
information on screen

Figure 2.2 User Classification Activity Diagram

In Figure 2.2 user launches the application. At the first time, the application asks for
T.C. ID number of the user. If user prefers to give his/her T.C. ID number, the system
controls if it belongs to the bank’s customer database. If it is the case, bank’s customer
specific campaigns will be fetched from the remote database. Otherwise, general

campaign information are fetched and shown to the user.

2.3.2. Activity 2: Showing POI’s Details

Q'l:'ustcmer choses a type ﬁlte-r)

W1

(Clicks a merchant icon)

_,.-"'f; -x.___‘x..‘
[Merchant] [Bank Office]
. T
~ “‘“m
.F"- -.H-\-
il - H
(F:tch and show campaign data) Fateh and show number of persons
- Li waiting i
IME'“—H—\ -
T ’--_______,
et
~— ___.-'"f--'
-\‘E'ﬁ-. -~ -
T ..-__,.-*“";
\
®

Figure 2.3 POI Details Activity Diagram

In Figure 2.3, fistful the application is initiated, user defines his/her preferred POI type
via filters. Only the selected types of POls are placed on the screen. Customer can
press on a specific POI icon on screen in order to see additional details. If the chosen
POl is the bank branch, SARAS shows how many people waits on the queue.
Otherwise, if it is a common bank merchant, campaign information is shown to the user,

if exists.

2.3.3. Activity 3: Case: No GPS Connection

Start Application

Enter T.C. ID

nT?'J/"’/<
Guslumer exists in d:u'h“eD

/i T
VES \ NOoj

G‘elch customer specific datD

Fetch general data

(Is GPS available 7)

T
[YEST ~mol
~ T~

" Read QR ode on G‘oilnnn merrlllnts and necessary)
display window nformation on screen

~_
.

Figure 2.4 No GPS Activity Diagram

Figure 2.4 shows what will happen if the application is used in an environment without
GPS connection. User initiates the application. The same controls as in the previous
activity are executed. Then, the GPS connection is controlled. If there is not any

10

connection or the connection is limited, user should use QR Code screen for accessing

campaign information.

User can read QR Code stickers placed on bank merchants’ stores and offices. Related
campaign information is fetched from the remote database using merchant id hidden on

this sticker.

11

3. SIMILAR APPLICATIONS

There are already a few mobile commercial applications developed with the same

objective. In this section, we give short information of such applications.

3.1.LAYAR

Layar (Layar, 2009) uses a mobile phone's built-in camera, compass, and GPS to
display content about the outside world as the user navigates through it. Someone who
has downloaded the application on their phone can walk through a city and see which
buildings have apartments that are for rent, learn interesting facts about specific

neighborhoods, and read reviews of the restaurants they pass.

3.2.GOOGLE GOGGLES

Google Goggles (Google Goggles, 2014) is an image recognition mobile application
developed by Google. It is used for searches based on pictures taken by handheld
devices. For example, taking a picture of a famous landmark searches for information

about it, or taking a picture of a product's barcode searches for product's information.

3.1.WIKITUDE

Wikitude (Wikitude, 2008) is mobile augmented reality software, which is developed by

the Austrian company Wikitude GmbH. It displays information about the users'

surroundings in a mobile camera view, including image recognition and 3D modeling.

12

For location-based AR, the position of objects on the screen of the mobile device is
calculated using the user's position (by GPS or Wifi), the direction in which the user is
facing (by using the compass) and accelerometer. Figure 3.1 illustrates Wikitude

application's screenplay.

Figure 3.1 Wikitude (Wikitude Image,2008)

3.2.TUSCANY+ (APPLE)

Tuscany+ (Tuscany+, 2010) is the first AR application created specifically for the
tourism sector. It is based on innovative technology that, when pointed at any real
space through the phone’s camera, overlays a range of information, be it multimedia,
virtual elements, geo-localized data, or information from websites. It is created with the
idea of offering travelers in Tuscany an interactive, real-time guide in order to enhance
the trip, already rich in culture and traditions, with virtual and multimedia technology.

Figure 3.2 shows main screen of Tuscany+.

Figure 3.2 Tuscany + (Tuscany+ Image, 2010)

https://en.wikipedia.org/wiki/Wifi

13

4. SCREENS AND MENUS

In this section, screens, menus of SARAS and their utilizations are explained.

4.1. MAIN SCREEN

th

Normal Mod

Siiris Modu

Google Play Service Agik

Konum Kapali

Figure 4.1 SARAS Overall Screen

14

1. This is the compass. Its pointy edge points the North. When it is clicked, the
calibration information page is accessed. This page shows how to calibrate the
mobile device. The device should be calibrated if this compass is not correctly

pointing North.

2. This is how the POI is shown on the screen. There are three categories and
depending on these categories, button’s background color is changed. Red is for
associate work places, green is for ATM and blue is for bank office. In Figure

4.2 you can see these different colors of buttons.

Sdrig Moda

oogle Play Service Agik Kobim Kapalh

Figure 4.2 Button Colors for POI Types

3. These are GPS modes. User can change the frequency of GPS updates using

this radio group. This is explained in section called ‘GPS Modes’.

4. This is the button of the access menu. It enables controlling filters, to login, to
view the map, etc... Device’s ‘settings’ button may also be used to access this

menu, if the device has one.

15

5. These are the information used on the development for SARAS. The sensor

values, device’s direction and GPS values are shown.
6. In our thesis Google Play Service's GPS library and also Android GPS library

are used. Using this layout we can switch between these two methods for

obtaining device's GPS coordinates.

4.2.MENU

Distance

QRCode Scanner
Show on Map

Refresh

Exit Program

Figure 4.3 Slider Menu

Using the menu on Figure 4.3, the type filter, the distance filter, the login screen, the
QR code reader screen, and the map screens are accessible. The local database can be
refreshed, and current GPS coordinates can be added as a new POI to the local database

or the application may be turned off. It is developed using Slider Menu.

16

4.3.TYPE FILTER SCREEN

Choose All ~
Cok Kath Magazalar ~
Beyaz ve Elektronik Esya [~
Mobilya

Zlccaciye

Sigorta (|
icki/Sigara/Tekel Urtinleri
Supermarketler/ -

Hipermarketler

Diger Hizmetler

Bilgisayar 1

Exit Save

Figure 4.4 Type Filters
Using the type filter screen in Figure 4.4, user can prefer POI types to be listed on

screen. This filter is also applied to the map. There is also the ’choose all’ option.

User can save (Kaydet) or discard (Ctkis) the changes.

4.4. DISTANCE FILTER SCREEN

Figure 4.5 Distance Filter

17

Using this distance filter screen in Figure 4.5, user can filter POIs to be listed on screen
depending on their distance. This filter is not applied on map. It has a maximum of

5000 meters value. User can save (Kaydet) or discard (Cikzs) the changes.

4.5. LOGIN SCREEN

Enter your id

Figure 4.6 Login Screen

Using login screen in Figure 4.6, user can try to login to application. It asks for T.C. id
number and controls if this number is registered to the bank database. This login screen
can be skipped as it is not necessary to be a bank customer for using SARAS. However,
the bank customers and non-customers may be offered different campaigns. If it is the

first time that SARAS is launched, it is initiated with this login screen.

18

4.6. QR CODE SCREEN

Bulunan URL : http://pethub.me/RAD3X6514

Uye s yeri adi :BURO KURAL MOBILYA
SAN

yuzdeb

World Karta %5 indirim!

Yeniden Tara Geri Don

Figure 4.7 QR Code Screen

This screen in Figure 4.7 is used for reading QR codes. Because of the poor quality of
GPS, SARAS does not list POIs on screen, if user is at an indoor environment like a
mall or parking garage. Therefore, he/she can be informed about the campaigns by

reading the QR code.

19

4.7.MAP SCREEN

" Gilbag Selim Sirn Tarcan o
- Handan Ziya Onis Ikogretim Okolu
Tlkogretim Okulu %
%,
o % ‘A‘:;
Kumkoy g % %
5.5 %,
Rumelifeneri e - ,,(:_)‘
' ' Mecidiyekoy Lisesi =
Zekeriyakoy
%
&,
1P TOWERS AVM g,

Belgrad Ormaniar) 4
indirim! L

Kemerburgaz !
@ 3 »

TRAUMP TOWERS AVM
1, 8clge Istanbol o
= N:"PPzé_aS; - = Sigli flge - Midirliga
W as , ic'tanbu'('(;q_m Yolom

oz Cds

Merkel

“Mezarligi & Fulya Mahallesi o
Muhtarlg — Ali Sami Yen Stadyumu &

Google

Figure 4.8 Google Map Screen

If the device supports Google Play Services, all the POIs may be seen on the map as in
Figure 4.8. Type filter is implemented, but the distance filter is ignored. Markers are in

green for merchants who have a campaign, otherwise they are red.

4.8. REFRESH SCREEN

Using refresh button, user can refresh POI values allocated on device's local database.
This cleaning and refilling process takes approximately 5 seconds; during which user

see an animated wait screen. In Figure 4.9 this waiting screen is displayed.

20

Update in progress, member

shops are listing please be
patient...

Figure 4.9 Refresh Screen

4.9. ADD A NEW POI

Using add button in Figure 4.10, the current GPS values may be added as a new POI
into the local database. It is not sent to database in the server, but only a local change is

made. It is used for test purposes, so this option will not be integrated to SARAS.

Yeni yer ekle

Girig Yap

Surius Moda

¥onum Kapali|

Figure 4.10 Add a New POI Screen

21

4.10. EXIT SCREEN

Are you sure, you want to exit
application?

No Yes

Figure 4.11 Exit Confirmation Screen

If user wants to quit the program, a confirmation message is shown. User can either
accept or decline to quit. Figure 4.11 represents this confirmation screen.

4.11. POI DETAIL SCREEN

Uye isyeri Kodu: 1001385929
Uye igsyeri Adi: TRUMP TOWERS
AVM

Kategori: Sube/ATM

Latitude: 41 067854

Longitude: 28 992194
Uzakhk: 349 metre

World Karta %10 indinnm*iks
taksit

Figure 4.12 POI Detail Screen

22

Pressing POI buttons visible on screen you can access to detailed information. You can
see campaign information, latitude, longitude merchant name etc. This screen can be

seen in Figure 4.12.

4.12. CALIBRATION SCREEN
This screen in Figure 4.13 can be accessed using the compass image on main screen. It

shows how to calibrate the device’s sensor. This screen can be used when sensor values

are wrong, and the compass is not correctly pointing the North.

alibration

Calibrate your device by moving it
as shown in the 3 steps below and
then close the window. If the
compass points to the wrong
direction, you either did the
calibration wrong or there is a
problem with your device sensors
that technically cant be solved by
this application.

Figure 4.13 Calibration Screen

23

5. APPLICATION COMPONENTS

A typical AR (Conder et al., 2011) implementation contains two main parts: the “live”

data we're augmenting and the “meta” data used for the augmentation.

The augmentation data source can be anything, but often it’s a preloaded database or a
web service that can filter to nearby points of interest. The rest of the AR
implementation consists of using device camera APIs, graphics APIs, and sensor APIs
to overlay the augmentation data over the live data and create a pleasant augmented

experience.

For instance, in our application the locations of bank offices and merchants are wanted
to be seen in the view finder, the AR “service” must have augmentation data for each
merchant, including its latitude, longitude and also altitude. Using this information, and
the direction in which the device/camera is pointing, we can approximate the location of
each bank office as an overlay on the view finder window and display a little icon in

form of a button on or above its location.

In this section, different components of mobile device used in this thesis for achieving
this screen positioning are explained. The usage of the mobile device’s camera, motion
and position sensors, local storage support, location services will be told and also
additional services that our application offers such as: location service choice, compass,

error reporting, language support and QR code reading will be represented.

24

5.1.CAMERA

Displaying the live feed from the Android camera is the reality in AR. The camera
(Android Camera, 2015) data is available by using the APIs available within the

android.hardware.Camera package.

Our application does not need to analyze frame data, so | started a preview in the
normal way by using a SurfaceHolder object with the setPreviewDisplay() method.
With this method, it becomes possible to display what the camera is recording on the

screen for use.

For this AR application, | created a camera application following these steps:

1. Identify and reach the camera: Applications should check that the device has a
camera and must try to reach the camera if necessary.
2. Create a preview: | created a preview, which includes the surface hold interface
extended from surface view.

3. Establish the preview layer: | managed the class through a layer of this preview.

4. Releasing the camera: | release camera after using it for other applications.

For accessing the camera we added following permission to our application:
<uses-permissionandroid:name="android.permission. CAMERA"/>

And also to be able to access camera features we added following feature:

<uses-featureandroid:name="android.hardware.camera"/>

5.2. LOCATION

We need to determine the location of the device (and therefore its user). This way, this

application can listen to location events and use those to determine where live items of

interest are located in relation to the device.

25

GPS is in any unobstructed line of sight in the world, four or more satellite locations in
all weather conditions and space-based satellite navigation system that provides the time
information. For accessing GPS values following permission are added to manifest file:
<uses-permissionandroid:name="android.permission.ACCESS_FINE_LOCATION"/>
In our application two different methods to find the GPS position are implemented.

5.2.1. Google Play Services

We can detect device’s GPS coordinate using Google Play Services library.

e Adding Google Play Services

As this application needs Google Play Services (Ravi, 2013), we need to setup the play

services first.

1. Asin Figure 5.1 open Android SDK Manager and install or update the play
services under Extras section.

Android SDK manager installing play serwvices

Packages Tools
SO Path
Packages
W MNarme APt R
- SD Plaeforrm 3 a
13 Google APz 3

£3 Gooale USE Drover

Shor) Updates Pew [~ Installed Obsolete Sechbect Mo or Updats Install 1 packsge

Sort by @ AP leel Repoutony Desstecs Delete T package

L -
Done loading package:

Figure 5.1 Download Google Play Services

2. You should import Google Play Services into your workspace as a library.

26

3. You should add this library into your project.
4. Create Google Maps API key

Google Maps API key is created as follows:

4.1. You should create Google Maps API fingerprint by writing following
statement in Terminal. In figure 5.2 you can see SHA key created after writing

following command:

keytool -list -v -keystore "%USERPROFILE%\.android\debug.keystore' -alias

androiddebugkey -storepass android -keypass android

C:“Program Files>Java~jdkl.?7.@8_8%2~bin>
C:~Program Files“Java“jdkl.?.8_82~hin>keytool —list —v —-keysztore ""xUSERFROFI
.quruid\dehug.keysture" —alias androiddebugkey —storepass android —keypass
o i
Alias name: androiddebugkey
Creation date: 31 _0ca.Z@14
Entry type: PrivateKeuyEntry
Certificate chain length: 1
Certificatell1:
Ovner: CH=Android Debug,. O=Android. C=US
Issuer: CHN=Android Debug. O=Android. C=US
Serial number: Z24eadB8%h
Ualid from: Fri Jan 31 14:85:5%1 EET 2814 until: Sun Jan 24 14:8A5:51 EET 2844
Certificate fingerprints:
HMD5: A2B-PF-AT-31: sP2:D5-AC-DE:-GC:B84:-D5:-FE:42:2F
SHAl: A?2:-3D:-BD:?A:FE: t64:2C-61:-13:-ED:EA-AC-A1:2F:4@8:-48-FE6:5D:-3B
SHAZ256: G6E-BF:=?D:91:22:-F5:5A:12:03:54:73:AB:-33:BA:C5:M4:C6:85:38:AKH
B? -G8 :-9B:-15:CA:YD:EA:=25:A6:7F:
Sdignature algorithm name: SHAZS56withRSA
Uersion:

Extenzions =

ﬂi:_OhjectId: 2:5:29-14 Criticality=Ffalse

F4 15 AB YC 11 6F 31 BC Ubm<...%

Figure 5.2 Create SHA Key

4.2 Then connect to Google API console by following address
https://code.google.com/apis/console/?noredirect#project:731857127600:access

You should allow usage of Google Maps for our project as in Figure 5.3

27

K" Google Maps Android APl v2 @ @:I

Figure 5.3 API Console

4.3. Open API access tab and create a new Android key using SHA1 fingerprint.
4.4. Finally, we get an API key as you can see in Figure 5.4.

Key for Android apps (with certificates)

APl key: AIzaSyCom&SpBKPOJK4xc-3V5mEZ] 91 RnLEKgnEU

Android apps: 09:30:BD:9A:FE:3E:64:2C:61:13:ED:ER:AC:AL:2F:40:48:E6:5D: 3B; com. exanple. tez
Activated on: Qct 6, 2014 5:52 AM

Activated by: doa0137 @gmail.com — you

Create new Server key... | Create new Browser key... | Create new Android key... | Create newi0S key...

Figure 5.4 API Key

5. Change Android-Manifest.xml file as in Figure 5.5:

"_-'CIL'_J.'.-'J.'__:,I 4
¢!-- GODDGLE PLACES -->
<meta-data
android:name="com. google. android. maps.v2. APT_KEY™
android:value="AlzasSyBomenhMd MgCcm2vr WpweB&FKUPFo TV" />
<meta-data
android:name="com. google. android. gms. version”
android:value="@integer/google_play services_wversion” /»

=1 moA LT

Figure 5.5 Adding API to Manifest File

Add Google Play Services as a library into your project as Figure 5.6 shows.

28

[type filter text Android - - =
- Resource
Android [] Andreid 3.0 Android Open Scurce Pro... 3.0 1 -~
Android Lint Preferences Android 2.1 Android Open Source Pro.. 3.1 12
Builders [] Google APIs Google Inc. 3.1 1z
Java Build Path [] Android 4.2.2 Android Open Source Pro... 4.2.2 17
» Java Code Style [Google APIs Google Inc. 4.2.2 17

v

Java Compiler
Java Editor
Javadoc Location

v

Project References Librany
Run/Debug Settings s Library
|+ Task Repository
Task Tags ,aeceince Project Add...
\+ Validation - le-play . google-play ices_...
7 -~ Remave
Up
Down
-
@ oK | | Cancel

Figure 5.6 Google Play Services Library

Add permissions in Figure 5.7 into your manifest file.

{permission
android:name="info.androidhive.googlemapsv2.permission.MAPS RECEIVE"
android:protectionlLevel="signature" />

{uses-permission android:name="info.androidhive.googlemapsv2.permission.MAPS.

<uses-sdk
android:minSdkVersion="12"
android:targetSdkVersion="17" />

{uses-permission
{uses-permission
{uses-permission
{uses-permission

android:name="android.permission.ACCESS NETWORK _STATE" />
android:name="android.permission.INTERNET" />
android:name="com.google.android.providers.gsf.permission.RI
android:name="android.permission.WRITE EXTERNAL STORAGE" />

< |
{uses-permission
{uses-permission

-- Required to show current location -->
android:name="android.permission.ACCESS_COARSE_LOCATION" /[>
android:name="android.permission.ACCESS_FINE_LOCATION" />

Figure 5.7 Map Permissions

e Google Play Service Usage

A class called GooglePlayServices.java is created.

Following code snippet can be used to find out if the device support or not Google Play
Services:

29

GooglePlayServicesUtil.isGooglePlayServicesAvailable(context);

In our main activity, this code block is used and the application gives the possibility to

choose whether to use Google Play Services library or Android Location Library.

In our scenario, our application needs location updates periodically. If the user is static,
if he is not changing location, it should not be updated. In order to control this, this

following code block is added:

Google Play Services:

mLocationRequest.setSmallestDisplacement(1);

Android Location Library:

Im.requestl ocationUpdates(LocationManager.GPS_PROVIDER, 20000, 1,

locationListenerGps);

This means ‘do not take updates if the user has not displaced more than 1 meter’.

If Google Play Services is supported user can also use Google Map and can see all the

POls on the map.

e Google Map

We have created a class called MapViewActivity.java for implementing Google Maps

Screen. This class extends from fragmentActivity to support the Google Maps feature.

The user's location is shown with a blue dot on the map. Using markers, POls are
placed on the map. Their GPS (latitude and longitude) data is used to place them
correctly on the map. As the user press on this marker, a snippet is shown with this

POI’s name, GPS location and campaign information on it.

30

The marker is placed on the map as follows:

Marker marker = googlemap.addmark (new markeroptions (). Position (11));

Type filters are also implemented in here.

So, only the POIs for chosen types are
located on map. However, distance filter has been ignored; user can see all the POIs
available in our server’s database.

Only POls on the visible part of the map are emplaced, and as the user scrolls on the

map markers for other POls are added respectively. This makes our application faster.

Related screenshots are as follows (Figure 5.8). As is visible in Figure 5.8, merchant
with campaign is green and others are all red.

Y) 4
@ Zekeriyakoy :
Talatpasa Cd
Bahgekoy Anac
g Merkez Mh. Kav
Galata Dersg, =
Co J’so Kemerburgaz
o PN A= W\
9 .)
5 2
v Az, Fe o
A o g
TRUMP TOWERS AVM TRUMP TOWERS AVM
World Karta %10 indirim!lki taksit
S 7 %,
5 - e
3 (

o

World Karta %10 indirim!iki taksit

Vakifbank =

5 - AMPASA
5 Ali Sami Yen Stadyumu \)
o S e

> FATIH

' istanbul

I
Google

KADIKC

Figure 5.8 POIls on Map

31

5.2.2. Android Location Library

If the device does not support Google Play Services, we use Android Location Library.

In this mode, user can’t access map.

For locating user, we use GPS PROVIDER and if it cannot be detected we use
NETWORK_PROVIDER.

5.2.3. GPS Modes

In our application, we take location updates as the user has displaced minimum of 1
meter. But for performance testing purposes this is omitted. These updates are based
on time. Three different GPS modes are added on our application for both Google Play

Service version and Android Location Library version. These modes are:

e Normal Mode

This mode is the default mode. Application starts in this mode. We force the
application to take updates every 20 seconds. This should consume less energy. This

can be used when the user is walking.

e Drive Mode

We force the application to request updates every 1 second. This should consume more
energy. This can be used when the user is driving or displacing quickly. All devices
are not able to take location updates every 1 second, so this mode’s update range
changes between devices. For example HTC XLARGE minimum update range is every
10 seconds and on SAMSUNG S4 MINI it is 15 seconds.

32

e No Updates Mode

Application does not request location updates. This should consume less energy. This
can be used when the user is stable. It assumes that user is at the same place and makes

its operations based on the last GPS taken.

You can see test results on (Karaman, 2015). As mentioned before, these modes are
only created for test purposes. Best way to achieve our goal is to take location updates
as the user has displaced minimum of 1 meter. So we will deliver our application to the

bank using this method.

5.3.SENSORS

Sensor data is often important for AR implementations. For example, knowing the
orientation of the phone is usually very useful when trying to keep data synchronized

with the camera feed.

To determine the orientation of an Android device, we need to leverage the APIs

available in the android.hardware.SensorManager package.

The use of sensors to allow the user to move the device around and see changes on the

screen in relation to it, really pulls the user into applications in an immersive fashion.

When the camera feed is shown, this is critical.

For this purpose | used following sensors:

5.3.1. Motion Sensors

Motion sensors (Android Motion Sensors, 2015) are useful for monitoring device

movement, such as tilt, shake, rotation, or swing. The movement is usually a reflection

of direct user input (for example, a user steering a car in a game or a user controlling a

33

ball in a game), but it can also be a reflection of the physical environment in which the
device is located (for example, moving with you while you drive your car). In the first
case, you are monitoring motion relative to the device's frame of reference or your
application’s frame of reference; in the second case you are monitoring motion relative

to the world's frame of reference.

All of the motion sensors return multi-dimensional arrays of sensor values for each

SensorEvent.

1. Accelerometer

An acceleration sensor measures the acceleration applied to the device, including the
force of gravity. The code in Figure 5.9 shows you how to get an instance of the default

acceleration sensor:

private SensocrManager mSensorManager;
private Sensor mSensor;

msensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
mSensor = mSensorManager.getDefaultSensor(Sensor. TYPE_ACCELEROMETER) ;

Figure 5.9 Accesses to Accelerometer

Accelerometers use the standard sensor coordinate system. In practice, this means that
the following conditions apply when a device is lying flat on a table in its natural

orientation:

e If you push the device on the left side (so it moves to the right), the x
acceleration value is positive.
e If you push the device on the bottom (so it moves away from you), the y

acceleration value is positive.

34

e If you push the device toward the sky with an acceleration of A m/s? the z
acceleration value is equal to A + 9.81, which corresponds to the acceleration of
the device (+A m/s?) minus the force of gravity (-9.81 m/s).

e The stationary device will have an acceleration value of +9.81, which
corresponds to the acceleration of the device (0 m/s?> minus the force of gravity,
which is -9.81 m/s).

e In general, the accelerometer is a good sensor to use if you are monitoring
device motion. Almost every Android-powered handset and tablet has an
accelerometer, and it uses about 10 times less power than the other motion
sensors. One drawback is that you might have to implement low-pass and high-

pass filters to eliminate gravitational forces and reduce noise.

Figure 5.10 represents X, y and z axis.

: X
» X
Z /

N

Figure 5.10 Axis

2. Gyroscope

The gyroscope measures the rate or rotation in rad/s around a device's X, y, and z axis.

The code in Figure 5.11 shows you how to get an instance of the default gyroscope:

35

private SensorManager mSenscrManager;
private Sensor mSensor;

msensorManager = (SensocrManager) getSystemService(Context.SENSOR_SERVICE);
msensor = mSensorManager.getDefaultSensor(Sensor. TYPE_GYROSCOPE) ;

Figure 5.11 Access to Gyroscope

The sensor's coordinate system is the same as the one used for the acceleration sensor.
Rotation is positive in the counter-clockwise direction; that is, an observer looking from
some positive location on the x, y or z axis at a device positioned on the origin would
report positive rotation if the device appeared to be rotating counter clockwise. This is
the standard mathematical definition of positive rotation and is not the same as the

definition for roll that is used by the orientation sensor.
5.3.2. Position Sensors

Motion sensors by themselves are not typically used to monitor device position, but
they can be used with other sensors, such as the geomagnetic field sensor, to determine
a device's position relative to the world's frame of reference. Position sensors (Android
Position Sensors,) are useful for determining a device's physical position in the world's

frame of reference.
1. GeoMagnetic_Field

The geomagnetic field sensor lets you monitor changes in the earth's magnetic field.

Figure 5.12 shows you how to get an instance of the default geomagnetic field sensor:

private SensorManager mSensorManager;
private Sensor mSensor;

msensorManager = (SensocrManager) getSystemService(Context.SENSOR_SERVICE);
msensor = msensorManager.getDefaultSensor(Sensor. TYPE_MAGNETIC_FIELD);

Figure 5.12 Access to Geomagnetic Field

36

This sensor provides raw field strength data (in xT) for each of the three coordinate
axes. Usually, you do not need to use this sensor directly. Instead, you can use the
rotation vector sensor to determine raw rotational movement or you can use the
accelerometer and geomagnetic field sensor in conjunction with the getRotationMatrix()

method to obtain the rotation matrix and the inclination matrix.

2. Orientation Vector

The orientation sensor derives its data by using a device's geomagnetic field sensor in
combination with a device's accelerometer. Using these two hardware sensors, an

orientation sensor provides data for the following three dimensions:

Azimuth (degrees of rotation around the z axis in Figure 5.13): This is the angle
between magnetic north and the device's y axis. For example, if the device's y axis is
aligned with magnetic north this value is 0, and if the device's y axis is pointing south
this value is 180. Likewise, when y axis points east this value is 90 and when it points

west this value is 270.

Pitch (degrees of rotation around the x axis in Figure 5.13): This value is positive
when the positive z axis rotates toward the positive y axis, and it is negative when the
positive z axis rotates toward the negative y axis. The range of values is 180 degrees to
-180 degrees.

Roll (degrees of rotation around the y axis in Figure 5.13): This value is positive
when the positive z axis rotates toward the positive x axis, and it is negative when the
positive z axis rotates toward the negative x axis. The range of values is 90 degrees to -
90 degrees.

37

/

N"\muth

\/ Pitch
Figure 5.13 Azimuth Roll and Pitch (Azimuth Pitch Roll Image)

In order to define if the user is directed towards the north | calculated this azimuth
value. And also I used pitch value to determine if the device is looking down on the

ground or up in the sky. And I used these result on my screen positioning algorithm.

The orientation sensor derives its data by processing the raw sensor data from the
accelerometer and the geomagnetic field sensor. We manage that using
getRotationMatrix() method to compute orientation values. And also we should use the
remapCoordinateSystem() method to translate the orientation values to your

application’s frame of reference.
5.3.3. Rotation Matrix

getRotationMAtrix() method Computes the inclination matrix | as well as the rotation
matrix R transforming a vector from the device coordinate system to the world's

coordinate system which is defined as a direct orthonormal basis, where:

e X is defined as the vector product Y.Z (It is tangential to the ground at the
device's current location and roughly points East).

e Y is tangential to the ground at the device's current location and points towards
the magnetic North Pole.

e Z points towards the sky and is perpendicular to the ground.

38

Using this matrice we can get azimuth, pitch and roll as follows:

SensorManager.getOrientation(matrixR, matrixValues);
double azimuth = Math.toDegrees(matrixValues[0]);
double pitch = Math.toDegrees(matrixValues[1]);
double roll = Math.toDegrees(matrixValues[2]);

5.3.4. Remap Coordinate System

RemapCoordinateSystem() (Android Sensor Manager) method rotates the supplied
rotation matrix so it is expressed in a different coordinate system. This is typically used
when an application needs to compute the three orientation angles of the device in a

different coordinate system.

5.3.5. Sensor Fusion

During my research I have found an open source project called SensorFusion (Lawitzki,
2014) which uses accelerometer + geomagnetic field sensors. In addition to that, it uses
gyroscope sensor to calculate these azimuth, pitch and roll values. Figure 5.14

represents sensors used in sensor fusion project.

accel |

accMagOrientation — %

accMagOrientation

magnet

_T
"?" z —l'"l gyroOrientation }—pM

ime interval

Figure 5.14 Sensor Fusion

39

As it uses combination of three sensors, its results are more efficient and reliable. It
also calculates rotationMatrix and range for azimuth, pitch and roll are as follows:

azimuth: [-180, 180]. -180/180 points South, 0 points North, 90 East and -90 for West
pitch: [-90, 90].
roll: [-180, 180].

5.4.DATA STORAGE ON ANDROID

In our application we need to store data for two reasons:

1. For keeping POI’s information.
2. For keeping filters chosen by user.

5.4.1. For keeping POI’s information:

POI information will be fetched using web services at the beginning of the program.
However, accessing a web service requires so much energy and time. So keeping
certain amount of POls in device’s local storage makes the program faster and saves
energy. So for this storage we need to save a larger amount of data and also it should be

private to our program.

Therefore, we fetch POls inside a diameter of 5 kilometers via web service, and then
keep them in device’s local storage. As the user change location, if he gets out of the
circle, we reconnect and get data from web service, clean our local database and refill it
with the new POIs’ information. SQL.ite database is used for this objective. SQLite is
an open source SQL database that stores data to a text file on a device. Android comes

in with built in SQL.ite database implementation.

A database called saras.db is created using SQLite and also created following tables:

40

e SARAS_MEMBER_SHOP TABLE

This table is used to store all the POIs inside a diameter of 10 kilometers. This table is
filled using MerchantServices web service. It gets POIls of all types from our server.
Type filter is not added in here because as the use change his choices of type filter we
should not be obliged to go to web service. So, when he changes filter for type we

connect to our local database and fetch new data quickly.

If it is the first time the application is being used, if the user press refresh button on
menu, or if user has changed location and got away 5 km from his first location we
refresh this table. The older values are dropped, we reconnect to our server using web
service and we refill SARAS_MEMBER_SHOP table with new POIs which are located

inside 10 km of diameters. Table 5.1 shows us the table model.

SARAS_MEMBER_SHOP

MEMBER_SHOP_ID NUMBER |Y PK | Refersto POl id
MEMBER_SHOP_NAME TEXT Y Refers to POI’s name
MEMBER_SHOP_LATITUDE DOUBLE |Y Refers to latitude of POI
MEMBER_SHOP_LONGITUDE |DOUBLE |Y Refers to longitude of POI
MEMBER_SHOP_CATEGORY |TEXT Y Refers to category of POI
MEMBER_SHOP_TYPE_ID NUMBER |Y Refers to type of POI
COSLAT DOUBLE |Y Used for calculating distance
SINLAT DOUBLE |Y Used for calculating distance
COSLNG DOUBLE |Y Used for calculating distance
SINLNG DOUBLE |Y Used for calculating distance

Table 5.1 SARAS_MEMBER_SHOP Table

41

e SARAS_MEMBER_CATEGORIES TABLE

This table is used for feeding category filter on the user menu. As the program is being
opened first time, we connect to server using getMerchants web service (Chapter
5.8.2.). We get all the possible distinct type available and we fill our table with these

values. So we can fill our menu option for type filter using this table.

Table 5.2 is the representation of table model.

SARAS_MEMBER_CATEGORIES

CATEGORY_ID NUMBER Y| PK | Refers to category id

Refers to category
CATEGORY_NAME TEXT Y name
Refers to category
CATEGORY_PRIORITY NUMBER Y priority

Table 5.2 SARAS_MEMBER_CATEGORIES Table

5.4.2. For keeping filters chosen by user

User can change distance and type filter, and the program should remember these
selections and gather data using these filters. So for this storage we need to save a

smaller amount of data and also it should be private to our program.

e Shared Preferences

Shared Preferences is used to save a relatively small collection of key-values. A Shared

Preferences object points to a file containing key-value pairs and provides simple

42

methods to read and write them. Each Shared Preferences file is managed by the
framework and can be private or shared. In our case we used the private one.
We created following variables with Shared Preferences:

1. User’s first entry to application control: SARAS_FIRST_ENTRY
This control is used to bring in front the login screen. If it is the first entry, meaning if
this value is null, we show alert dialog for login. This screen asks for Turkish

citizenship identity number.

As the user enters his identity number we check if the user is a bank customer or not.

The campaign information is different for bank customers.

- If user is a bank customer:

SARAS CUST _LOGIN parameter will be saved using SharedPrefs with parameter value
=1

SARAS CUST_GROUP_ID parameter will be saved using SharedPrefs with parameter

value = customer’s group information.

= 1f user is not a bank customer:

SARAS _CUST_LOGIN parameter will be saved using SharedPrefs with parameter value
=0.

SARAS_CUST_GROUP_ID parameter will be saved with parameter value = 0.

2. Distance Filter

Distance chosen by user is also saved using Shared Preferences. Parameter’s key value

is DISTANCE_VALUE. Thus we don’t lose user’s choices even if the program is

43

terminated. We can get this parameter’s value inside different java classes. During the

program this parameter’s value is used in web services and distance filter alert dialog.

3. Type Filters

Categories chosen by users are also kept using Shared Preferences. For functionality of
the program, all distinct categories are fetched at the initialization. They are loaded in

our SQL.ite local database.

Afterwards we feed our type filters with these values kept in our local database. But
also we should keep in mind type filters chosen by user. We should not lose them even

if the program is terminated.

For this reason we use Shared Preferences. We save all the categories with keys with

following format:

TYPE_VALUE_CATEGORY_NAME (for ATM itis TYPE_VALUE_ATM)

If it is chosen its value is 1 and if it is unchecked it’s value is 0. | implemented these
parameters using this generic structure. Therefore, we support the new categories added

in program and also we don’t lose older values.

4. Location Information

We should update our local database as the user changes his location. Therefore at the
time that we fetch data from web service we should save device’s GPS values. Using
MYFIRSTGPS_LONGITUDE and MYFIRSTGPS_LATITUDE parameter keys, we save
latitude and longitude values. Continuously, we calculate the difference between these
first values and our current GPS values. If this distance s bigger
(UPDATE_MIN_VALUE = 10000 meters), then we recall our web service, clean our
table keeping POI information and refill this table with new values. Using Shared

44

Preferences, we write our new GPS (MYFIRSTGPS_LONGITUDE,
MYFIRSTGPS_LATITUDE) values over old values.

5.5.ERROR REPORTS

This application can contain different errors on different devices. An error report screen
is added to our application in order to test it on several devices. If user encounters an
error, application can crush down. Therefore, user is led to the mail screen, and
application asks him to send us an error report.

JF o = L = all =0 12:26 | F o O LI = Lall = 12:24
% E-Posta Yaz = ™% E-Posta Yaz =
AL ATMUTOITU. AapPpP.ACLVILY TTITeau.
doa0137@gmail.com accessS$S600(Activity Thread.
java:139)

at android.app.
ActivityThreadS$SH.
handleMessage(Activity Thread.
java:1261)

at android.os.Handler.
dispatchMessage(Handler.
java:99)

at android.os.Looper.
loop(Looper.java:154)

at android.app.Activity Thread.
main(ActivityThread.java:4945)

at java.lang.reflect. Method.
invokeNative(Native Method)

at java.lang.reflect. Method.
invoke(Method.java:511)

at com.android.internal.os.
ZygotelnitSMethodAndArgsCalle
r.orun(Zygotelnit.java:784)

at com.android.internal.os.

doga_erisik@atos.net

Ahmet. Karaman@aktifba...

Error Description

Sorry for your inconvenience .
We assure you that we will solve
this problem as soon possible.

Thanks for using app.Error
Report collected on : Tue Mar 31
12:23:07 EEST 2015

Informations :

Figure 5.15 Error Report Mail

This error report can be seen in Figure 5.15. It contains error description, cause, and
trace. It also contains device's model. The receiver information is filled with mine and
Ahmet's e-mail addresses automatically. So, the user can send us this e-mail adding on
which operation he/she encountered this error. It will help us to improve and overcome

our application and its errors.

For realizing this screen following code block is added to our main thread on

MainActivity.java file.

45

Thread.setDefaultUncaughtExceptionHandler(new ExceptionHandler(this));

ExceptionHandler class extends from java.lang.Thread.UncaughtExceptionHandler
class. It contains a method called uncaughtException which originally belongs to
UncaughtExceptionHandler class. This method is overwritten in order to assemble
device's information and error details. After finding these information user is lead to e-

mail screen, filling necessary mail components with these values.

5.6.COMPASS AND CALIBRATION

During the tests, we realized that device's sensors can sometimes calculate false values.
For example, it was always showing north even if the device's screen is turned to
opposite way. That it is caused because the device has lost its calibration, and it has to
be recalibrated. An image from a GooglePlayStore application called Compass
(Compass Application, 2014) is implemented to inform the user for recalibrating its
device. But, user can not know if sensors calculate false values so a little compass is
added in screen as it can be seen in Figure 5.16. It points to North. If it shows false
values (for example Is it does not change position) user can understand that the device

needs to be recalibrated.

Figure 5.16 Compass

46

As you can see direction is South (GUNEY) and the compass's pointy end shows the
opposite way as North.

This calibration screen in Figure 5.17 pops out when our application starts, and user can

access this information screen by pressing on the compass.

Calibrate your device by moving it
as shown in the 3 steps below and
then close the window. If the
compass points to the wrong
direction, you either did the
calibration wrong or there is a
problem with your device sensors
that technically cant be solved by
this application.

Figure 5.17 Calibration Info

5.7.LANGUAGE SUPPORT

Android makes easy to support different languages in screen components with a
resources directory in each Android project. Therefore, in our application we support
English and Turkish. So if the device’s language setting is set to Turkish, all the
warnings and menus are listed in Turkish. Subdirectories and string resource files are

created in this purpose. They are located in:

MyProject/ res/ values/ (It is for the English version) strings.xml

MyProject/ res/ values-tr/ (It is for the Turkish version) strings.xml

47

For example screen warning for no GPS connection is defined:

Strings-tr.xml
<string name="gpskapali">

GPS konum servisini aginiz, uygulama kapanacaktir.</string>

Strings.xml:

<string name="gpskapali">GPS is disabled, application will be closed.</string>

Figure 5.18 represents the case where device’s setting is set to Turkish.,

H o _llees = PM G200

@ Konum (@)

Son konum istekleri

f

h
=

Konum servisler]

Konum kaynaklarn

Yerlerim

GPS kenum servisini aginiz, uwygulama
kapanacaktir,

Figure 5.18 Turkish Version

Figure 5.19 represents the case where device’s setting is set to English (or any other
language different than Turkish).

48

@ Location

Recent location requests

Location Sources

My places

GPS is disabled, application will be closed.

Figure 5.19 English Version

5.8.0THER COMPONENTS

In this part other components will be explained developed by Ahmet Karaman, which
are used in our application. They will be explained shortly and for further information

you can look into (Karaman, 2015).

5.8.1. Server

For keeping POI’s and customer’s values a server and a database were needed. This
server has 194.27.192.112 IP value and it is provided by Galatasaray University.
Necessary permissions are given to port 80 for accessing via web services. A remote

user can access to this server. It has five predefined and password secured user.

The main database system we used is MySQL. A schema called SARAS is created on
database. Data model for this schema can be seen in Figure 5.20.

49

MERCHANT_GPS_INFO
MERCHANT Prf2 | e v
FrEKZ | id migrchant_id P |-
BT [height barcode
type_id =g
categony_id | [
F Y
r k4

MMERCHANT_CAMPAMGHN

PEFELFEZ | id

merchant_jd
ykb_campaign_code

customar_group_id

CUSTOMER

PEFEL | id

ykb_customer_no
customer_growp_id name
te_kimlik_mo

Figure 5.20 SARAS Data Model

5.8.2. Web Services

| already explained that we access to a remote database for POI's and customer's
information. After fetching necessary values we keep them in our local database or in

our local storage.

This web services are created using a framework called XAMPP. Restful services are
chosen because they are faster and more flexible. These restful web services are:

http://194.27.192.112/Services/getTypes.php: Service used to get POI types
http://194.27.192.112/Services/getCategories.php: Service used to get POI categories.
These 2 services are unified on Java codes (client side).
http://194.27.192.112/Services/getMerchants.php: Service to get the entire POl on a
specified range of distance.

50

http://194.27.192.112/Services/getCampaigns.php: Service to get campaign
information.
http://194.27.192.112/Services/customerLogin.php: Service to control if user is a

bank customer or not.

5.8.3. QR Code Screen

Our application should also offer QR Code sticker analyze option to show merchant's
campaign information. For this purpose, we used ZXing library. ZXingis an open-
source, multi-format 1D/2D barcode image processing library implemented in Java.

QRCode Screen can be seen in Figure 5.21.

Uye is yeri adi :BURO KURAL MOBILYA
SAN

yuzde5

World Karta %5 indirim!

I Yeniden Tara Geri Don

Figure 5.21 Reading QR Code

If user is in a closed environment with no GPS connection, he can use this feature for

obtaining campaign information.

51

6. SCREEN POSITIONING ALGORITHM

The main purpose of this thesis is to develop an algorithm for positioning POIs at the
right point on mobile device’s screen. This algorithm should be responsive to user’s

motions, efficient, and it should be as accurate as it could be.

In this chapter different algorithms and tools that have been encountered during our
research is represented. Basically, two different approaches have been used: One from

the related literature, the other one is the proposed approach.

6.1.AUGMENTED REALITY SDK

There are several tools which offer us a platform for developing AR applications on
Android. Some tools are quite simple and does not require special programming skills
and they allow to define POIs (Wikitude and Layar). When these POls are detected, the
user can select them and get more information about them or even perform actions on
them. Several other tools, such as ARLab SDK, Mixare require some programming

skills and have been developed for more serious AR developers.

Using these SDKs you can add and display POI into your application. These
frameworks take care of all the complex functionalities of the AR browser. All the
optimizations for energy consumptions has been tested and maintained. You can use
these SDKs for developing a location-based AR application. They will do all work such
as spotting predefined POls and reducing battery consumptions and you can focus on
designing your application. In our research it was essential to create a new algorithm for

tagging POIs with optimum battery consumption, so we did not use one of these SDKs

52

6.2.WORLDPLUS

This algorithm that is found during our literature search (WorldPlus:An Augmented
Reality Application with Georeferenced content for smartphones -the Android example
by Sérgio Graga, Jodo Fradinho Oliveira and Valentim Realinho) (Graca et al.,2012). It
is developed for an Android AR application called WorldPlus. It has an objective

similar to ours, to place POIs on mobile device's screen.

In this project, the projection is divided in two different calculations: the horizontal
projection, X axis, and the vertical projection, Y screen coordinate.

The horizontal projection is based on two similar but different values: the azimuth that
Is provided by the magnetic sensor, and the bearing that is the angle formed between the
true North and a given point on Earth that the device is facing. The bearing is
calculated in the same way as azimuth but it requires an additional point. In the
projection if the azimuth and bearing to a point is the same or very close it means that
the device is facing in the direction of that point. In Figure 6.1 these values are
represented.

Azimuth = 80°

Panta 1

Figure 6.1 Calculating Horizontal Projection (Gragca et al.,2012)

In the case that the bearing to a point is greater than the azimuth then the point is in the
right half of the screen, or else, if the bearing is less than the azimuth the point is in the
left half of the screen. With this they could calculate a horizontal screen coordinate.

After calculating this horizontal screen coordinate for the point, they calculate the

53

vertical coordinate for it, the vertical projection, which consists in calculating the Y
coordinate that the point will have on the device's display. Like in the horizontal

projection, the vertical angle of view is defined with an angle of 45 degrees.

Figure 6.2 Calculating Vertical Projection (Graga et al.,2012)

In Figure 6.2 the position of a point is defined by a line d that also represent the angle
formed between the position of the user and the position of the point of interest. This is
the angle to determine if the point of interest is in the field of view or not, if it will be

drawn in the device's display or not.

As it can be seen in the Figure 6.2 they have the distance between the two points (a) (for
our case between the POI and the user’s device), they also have the height of the point
in relation to the height of the user position (b) (for our case it will be difference of
altitudes between POI and user), also the angle formed between a and b is a 90 degree
angle. So using the Law of Cosines they can calculate the angle formed between the

user position and the point of interest position.

Finally, and similar to the horizontal projection, they compare these angles, the angle y
(explained above) and the angle that restricts the vertical field of view represented as c,
if the angle y is lesser than the boundary angle it means that the point is in the angle of
view, if it is greater it means that the point is outside the angle of view and it will not be

drawn in the device's display.

In this way they determine if the point is inside the field of view and calculate the exact

screen coordinate.

54

6.3.AREA

AREA (Geiger et al.,2013) platform has also a similar objective to ours. The overall
purpose of this work is to outline the engineering process of a sophisticated mobile
service running on a smartphone. More precisely, we show how to develop the core of
a location-based augmented reality engine for the iPhone 4S based on the operating

system i0S 5.1 (or higher. he augmented reality engine

AREA shall basically show points of interest (POIs) inside the camera view relative to
the current position of the user and the POIs. On the screen, the POls shall be only
displayed if they are inside a visible view of the user, particularly inside the field of

view of the device’s built-in camera. This is represented on Figure 6.3.

Field of view__

E_OI displayed

@]
-
Radius ---~

POI ‘r;c').t.:displayed

Figure 6.3 llustration for Visible POIs (Geiger et al.,2013)
On developing their algorithm on screen positioning they used basically the same path
to WorldPlus. But they carried forward some calculations such as angle of view and the
distance between the device and POI. Their algorithm consists of four steps:

1. Calculating the Distance

First, the distance between user and POI location is calculated.

55

2. Calculating the Bearing

Only POls being inside the visible field of view shall be displayed on the camera view.
Hence, just like WorldPlus, the bearing between user and POI’s positions relative to the

North Pole is calculated.

(a) A POI located to the user’s east (b) A POI located to the user’s west

Figure 6.4 Representation of Calculated bearing (Geiger et al.,2013)

They did not used android’s bearingTo function but a different formula for calculating
the bearing. As it is represented on Figure 6.4 Using this result, it becomes possible, in
combination with the smart phone's compass, to determine whether a POI is inside the

horizontal field of view and where it must be drawn on the screen

3. Calculating the Elevation Angle

The visible field of view of the smartphone’s is not only limited in its width, but also in
its height. Therefore, the altitude difference between the user and POI is calculated to
determine whether or not a particular POI is inside the vertical field of view. Thus, they
used pitch value of the smartphone to determine what area shall be visible on the

display.

4. Calculating the Field of View

In WorldPlus, for the angle of view, they defined an angle of 45 degrees without any

calculations. But in AREA they calculate this angle of view using the image size, more

56

precisely to the size of the image sensor, and the focal length of the camera lens of the
device. As a consequence of their calculations iPhone has a horizontal field of view of

56 degrees and a vertical field of view of 44 degrees when used in landscape mode.

Now as the size of the field of view of the iPhone camera is known, by additionally
using other results it becomes possible to determine whether a POI is inside the vertical

and horizontal field of view, and in what distance a POl is located to the user

So as these two examples use bearing, first fully we tried to implement this algorithm
into our project using Android's Location library’s bearingTo function. But as the
outputs were complex to interpret and as we have to develop a new algorithm we

decided to develop another which will be easier and more comprehensible.

6.4. LATITUDES AND LONGITUDES SCREEN POSITIONING ALGORITHM
(LLSP)

This is our own algorithm that we developed for our thesis. This algorithm is developed
using latitudes and longitudes difference between user’s device and the point of interest
to be positioned on screen. Similar to the algorithm explained above we calculate
horizontal and vertical projection. This algorithm is developed for the countries in
north hemisphere. For other countries we should add additional conditions.

6.4.1. Finding POI’s Direction

LLSP algorithm for finding and interpreting POI’s direction is as follows: The LLSP
algorithm uses all the possible directions (North, South, East, West, Northeast,
Northwest, Southeast, and Southwest). It considers that there is 360 points that the
device can point at, because a circle has 360 degrees. As there are eight different
directions, 360 are divided to 8 and the device is said to have a vision range of 45
points. Then, the algorithm tries to figure out if the POI is in the given interval of 45

57

points or not. If it is in the interval, then this POI needs to be positioned on screen.
Otherwise, this POI should not be listed on screen.

The steps of the algorithm can be summarized as follows:

1. Image buttons are created on screen for each POI in chosen type and distance.

2. All of the POls are made invisible. (All of them are created, because it is faster

than recreating them on every move of the device.)

3. The difference between POI’s and device’s latitude is calculated as diffLatitude
and the difference between POI’s and device’s longitude is calculated as
diffLongitude.

4. These differences are compared and it is defined if the POI stays in North or
South (if diffLatitude > diffLongitude) or it is in East or West (diffLatitude <=
diffLongitude).

5. i.If (diffLatitude > diffLongitude), then we should calculate if it is in North or in
South using the rule: If (POI’s latitude > device’s latitude), then POI should be
in North, because we are in the North hemisphere and the latitude increase as we
go through North; otherwise it should be in South.

ii. If (diffLongitude >= diffLatitude), then we should calculate if it is in East or
West using the rule: If (POI’s longitude > device’s longitude), then POI should
be in East, because the longitude increase as we go through East; otherwise it
should be in West. Therefore, the direction of the POI can be calculated.

This process is schematized on Figure 6.5.

58

calculats d]ﬁ anu;dn and d]ﬁ gng':mdn
diffLatimds > 2 * diffLongitude difflongituds = 2 * diffLatimds
= POl stays m East or West = POlstzys m East or West
POT's Lat =Deavica'sLat POI's Lat. < Davica'sLat POI's Long. =Davice's Long. POI's Long <Device'sLong.
- POI s m NORTH = POI s m SO0UTH —POI is m EAST 2P0l is m WEST

Figure 6.5 Finding POI’s Direction

6. The POI’s location is also calculated.
The world is divided into 360 points. Using the azimuth range for directions,
these 360 points are divided into the following cardinal and inter cardinal

directions:

North: Interval is 157.5 — 202.5

Northeast: Interval is 202.5 247.5
Northwest: Interval is 112.5- 157.5

South: Intervals are 337.5 - 360 and 0 - 22.5
Southeast: Interval is 292.5 337.5
Southwest: Interval is 22.5 67.5

East: Interval is 247.5- 292.5

West: Interval is 67.5 - 112.5

Figure 6.6 represents these values in a circular way and the user is located at the center.

59

NORTHWEST NORTHEAST
112.5- 1575 20252475

SOUTHWEST '
22,5675 SOUTHEAST

20253375

Figure 6.6 Directions Representation

i. If POl is in North: Interval is 157.5 — 202.5

1. The middle of North is 180 ((157.5 +202.5) /2). Looking to the North
direction, if the POI is in East (POI’s longitude > device’s longitude),
then the POI should be on the right side of screen. So, this point should
be between 180 and 202.5. Otherwise, if it is in West, it should be
between 157.5 and 180.

2. So, it has a range of 22.5. 22.5 is divided to the diffLatitude, and it is
multiplied with diffLongitude.

3. If the POl is in East, 180 is added to the result (or if it is in West, 180 is
subtracted from the result) of step 2. Finally, the POI’s point is

generated.
ii. If the POl is in South: Intervals are 337.5 - 360 and 22.5 — 0.
1. The middle of South is 0 or 360, as it has two intervals. Looking in the

South direction, if the POI is in East (POI’s longitude > device’s
longitude), then the POI should be on the left side of the screen. Thus,

60

this point should be between 337.5 and 360. Otherwise, it should be
between 22.5 and 0.

2. It has a range of 22.5. Therefore, 22.5 are divided to the diffLatitude,
and the result is multiplied with the diffLongitude.

3. If the POl is in East, the result of step 2 is subtracted from 360 (or if it is
in West, the result of step 2 is added to 0). Finally, the POI’s point is

generated.

iii. If the POl is in East: Interval is 247.5- 292.5.

1. The middle of East is 270. Looking in East direction, if the POI is in
North (POI’s latitude > device’s latitude), then the POI should be on the
left side of the screen. So, this point should be between 247.5 and 270.
Otherwise, it should be between 247.5 and 270.

2. Thus, it has a range of 22.5. Therefore, 22.5 is divided to diffLongitude,
and this is multiplied with diffLatitude.

3. If the POl is in North, the result of step 2 is subtracted from 270 (or if it
IS in South, the result of step 2 is added to 270). Finally, the POI’s point

is generated.

iv. If the POl is in West: Interval is 67.5 - 112.5.

1. The middle of West is 90. Looking in West direction, if the POI stays in
North (POI’s latitude > device’s latitude), then the POI should be on the
right side of the screen. Thus, this point should be between 90 and
112.5. Otherwise, it should be between 67.5 and 90.

2. It has a range of 22.5. Therefore, 22.5 is divided to the diffLongitude,
and the result is multiplied with diffLatitude.

3. If the POI is in North, the result of step 2 is added to 90 (or if it is in
South, the result is subtracted from 90). Finally, the POI’s point is
generated.

61

The inter cardinal directions such as Northeast, Northwest, Southeast and Southwest are
also considered in the algorithm. If the diffLatitude is two times bigger than
diffLongitude or vice versa, the POI is assumed to be in North, West, East or South.

Otherwise, it is assumed to be in Northeast, Northwest, Southeast or Southwest.

7. Screen range is also calculated using the mobile device’s azimuth value. This
value is assumed to be the middle of the screen, 22.5 is subtracted from this
value for finding the beginning point of screen. Next, 22.5 is added to this value
for calculating the last point of screen. Therefore, the screen has a range of
[azimuth-22.5 — azimuth+ 22.5].

8. If the device is pointed to the POI’s direction, the calculated interval at step 7 is

compared with the point calculated at step 6. If the POI’s point is inside this
interval this point becomes visible.

This flow is schematized on Figure 6.7.

POliz INVISIELE

calonlated direction = NORTH
Tmterval: [137.5 — 202.5] Middle is: 180 ((157.5 +202.3) 2).

POTsLong. =Device's Long. POT'sLong. = Device's Long.

= POlis m right side of soreen ; [180 and 202.3] = POl s in left side of screen - [137.5 and 180]
POIS's pomt is caleulatad: POIS's pomt is caleulatad:

=180+ (22.5 /diffl atitude) * diffl ongitude =180 - (22,3 /diffl atinde) * diffl ongitnde

POT's point is between [Device's azimuth -22.5 and Devices azimuth +22.5

—POI becomes VISIELE

Figure 6.7 Calculating POI’s Location Point

62

As the next step, the POI’s point needs to be calculated on mobile device’s X axis.

6.4.2. Calculating the point on device’s X axis:

9. Device’s azimuth value is interpreted as the middle of the screen (same as the
step 7).

10. We calculate the azimuth value of the first/last point of the screen (it can be
calculated with the following formula: device’s calculated azimuth value - +
22.5, since each interval has 45 points) (same as the step 7).

11. The first value calculated in the step 10 is subtracted from the POI’s point that is
calculated at the step 6.

12. The width of the screen is determined using Android’s getWidth() function.
Then, it is divided to 45 (the screen range). Therefore, the portion per point is
calculated. So as the screen is considered having 45 points, every point should
have a range of this calculated portion.

Portion * 45 = device’s screen width.

13. The value that is calculated on the step 11 is multiplied with the one that is

calculated on the step 12.

14. The button’s size/2 is subtracted from the value that is calculated at the step 13.

Finally, the POI’s point on X axis is found.

These steps are schematized in Figure 6.8.

63

Screen Ranpe:
[Azmuth - 22.3 and Azimuth + 22.3]

Starting Pomt of screen:
Azmuth - 22.5

Distance between POI and startmg point of device:
POT's pomt - Startmg Pomt

Size of a point on screen:

getWidth0 /43

Size of 2 pomt * Distance of POI to the sterting pomt

Centering the POI
Substract POT's size /2

Figure 6.8 Calculating POI’s point on X axis of Device

For example:

e Device’s azimuth value is 120. And Xmerchant is 135 and sizeMerchant is 20.
(In this example steps are related to algorithm steps previously explained in

“Calculating the point on devices X axis”)

Step 9: 120 is interpreted as the middle of the screen.
Step 10: 120 - 22. 5=97.5. This is the first point that is visible on the screen.
Step 10: 120 + 22.5 = 142.5. This is the last point that is visible on the screen.

The merchant’s location on screen is calculated as following:

64

Step 6: let’s say that the merchant’s point on real world is calculated as 135.

Step 8: 135 is between 97.5 and 142.5 so it is on range of the screen. So this button
should be visible.

Step 11: Subtract merchant’s point from the first point calculated on step 10: 135 - 97.5
=375

Step 12: getWidth() is 480. (480/45 = 10.6)

Step 13: 10.6 * 37.5 = 400.

Step 14:20/2 =10. 400 - 10 = 390.

Thus, the merchant is at the point 390. Note that the screen range value is between 0 —

480, and this value may be generated using the function getWidth().

6.4.3. Calculating the point on device's Y axis:

For calculating POI’s position on Y axis I use the pitch value. If the device is directed

up or down to the floor, nothing is listed on the screen.

Otherwise;

Screen is considered having 90 points from up to down.

Screen's height is divided to 90 and we obtain value of a portion per point.

We divide screen's height to 2 for obtaining the value of the middle of the screen.
We multiply pitch value with the value calculated on step 2.

We subtract step 3's value from step 4.

© o &~ w e

We subtract button's size divided by 2 from step 5's value.

We did ignore the altitude differences between the user's device and POI as we did not
have the altitude values of merchants of Yap1 Kredi. The vertical projection calculation

of Worldplus (Graga et al, 2012) would be added into our application.

65

6.4.4. Handling Intersections on the Screen

If multiple POls are placed at the same point of the screen, they should be repositioned
in order to remove these visual intersections. POIls, which intersect are listed as follows

on screen as in Figure 6.9.

~.~Normal Mod

Surus Modu

Konum Kapall

Figure 6.9 Intersections on Screen

As it can be seen buttons intersects with each other, so the one which stays under cannot

be seen. So, I had to handle these intersections using following algorithm:

1. All the available intervals are collected into a hash map.
2. Asuitable interval is found for the given POI.
3. After placing a POI, this interval is changed by omitting this POI’s occupied

place. If it is in the middle of an interval, we obtain two intervals.

For Example:

At the beginning we have [XStartinterval and XEndlInterval] and the merchant is
placed in Xmerchant with the size of SizeMerchant.

66

o If (XStartinterval < Xmerchant) and (Xmerchant + SizeMerchant <
XEndInterval), the new interval becomes:
[XStartInterval — Xmerchant] — [Xmerchant + SizeMerchant — XendInterval]

e If (XStartinterval > Xmerchant) and (Xmerchant + SizeMerchant >
XStartlnterval), the new interval becomes:
[(Xmerchant + SizeMerchant) — XendInterval]

e If (Xmerchant < XEndiInterval) and (Xmerchant + SizeMerchant >
XEndInterval), the new interval becomes:
[XStartinterval - Xmerchant]
The same rules are applied to axis Y.

4. This interval (calculated on step 2) is removed from the hash map. New
intervals that are calculated in step 3 are added to the hash map.

5. If the merchant’s calculated position is occupied, the nearest interval is chosen.

Therefore, the merchants can be listed on the screen as in Figure 6.10.

6

6250
azimut
245mt, 331mt,

rollValucdes NG| PRAMAKKAPT GALATASARA
g 5 SB. PLUS-1 Y $B, PLUS-4

> =}

243mt, 223mt, 244mt,
PARMAKKAPL GALATASARA PARMAKKAPT

|
SB,PLUS-2 | YSB,PLUS-5 | “Y.§B, PLUS-3 '
1 -

SUBESE Y guBESE SB.PLUS-2 | Y§B,PLUS-1
|
A .
Y o)
- ‘ i
” ; 334mt, 329mt, 335mt,
GALATASARA GALATASARA GALATASARA
' \‘ ¥ .

\‘ - \v4 b\J‘ “Nofmal Mad

o .. ‘
Sugus Modu

) ‘ um)ﬁ]

Figure 6.10 Handling Intersection

67

Another Example:

Devices’s: Screen width = 480 and Screen height = 800
POI1’s calculated X= 40 and Y= 50 and Size= 20
At the begining our intervals for empty places are:
xStart(0) = 0 xEnd(0) = 480, yStart(0) =0 yEnd(0) = 800 -> Interval: [0-480] [0-800]

We place POI1 on screen and we reform our intervals in hashmap. Finally we obtain

these 4 new available intervals.

xStart(0) = 0 xEnd(0) = 40, yStart(0) = 0 yEnd(0) = 800> Interval: [0-40] [0-800]
xStart(1) = 60 xEnd(1) = 480, yStart(1) = 0 yEnd(1) = 800-> Interval: [60-480] [0-800]
xStart(2) = 40 xEnd(2) = 60, yStart(2) = 0 yEnd(2) = 50 - Interval: [40-60] [0-50]
xStart(3) = 40 xEnd(3) = 60, yStart(3) = 70 yEnd(3) = 800> Interval: [40-60] [70-800]

68

7. THE ANALYSIS OF THE PROPOSED ALGORITHM PERFORMANCE

7.1. Comparison with Other Similar Applications

In this part, 1 will compare our application with other applications that I mentioned in
Chapter 3: Similar Applications, in terms of several performance metrics. The chosen
applications are a few of the most frequently used augmented reality applications
developed by big software companies. Our primary aim is to keep up their performance
level, and then go beyond it. We focused on creating our own application, having

different features our own algorithm for screen positioning.

In general, our thesis has following advantages versus these other applications:

e Chapter 5.2. GPS libraries: None of these applications mentioned in Chapter 3
offers user to choose a library for fetching GPS information. This is important
for energy consumption.

e Chapter 5.2.1. Map Support: Generally this kind of applications offer either
map support or screen positioning support, but our application has both of them.

e Chapter 5.2.3. GPS Modes: None of these applications offers user to choose his
own mode for getting GPS information. This reduces energy consumption.

e Chapter 5.6. Sensor Calibration: Sensors can produce faulty data from time to
time, so we added a feature for calibrating sensors. This is specific to our
application.

e Chapter 5.6. Compass: A compass is added on the main screen.

69

e Chapter 5.7. Language Support: None of these applications offers user the
Turkish language selection. Our application can be used both in Turkish and in

English.

Now, the proposed LLSP algorithm will be compared with another screen positioning
algorithm that we found during our literature search (Graga et al.,2012). This
application implemented on Pro Android Augmented Reality (Raghav, 2012) is an
augmented reality world browser that shows data from Wikipedia and Twitter all

around.

Normally, the given application has following features:

- It has a live camera preview.

- Twitter posts and topics of Wikipedia articles that are located nearby are
displayed over this preview.

- There is a small radar visible that allows the user to see whether any other
overlays are available outside their field of view.

- Overlays are moved in and out of the view as the user moves and rotates.

- The user can set the radius of data collection from Om to 100.000 m (100 km).

With these properties, this is a similar application to ours. Therefore, in order to test the
performance of our algorithm, we implemented the given algorithm (Raghav, 2012) into

our application.

7.1.1. Energy

First, we focus on the energy efficiency of the algorithms. The results show that our
proposed LLSP algorithm spends less energy than the given algorithm (Karaman,
2015). On Table 7.1 our test results with different modes of GPS and with different
libraries are shown. As the first step, | compare the results of the best methods on GPS

calculation and internet connection. Best results are obtained in normal mode with

70

Google Play Services library for GPS calculation and using WIFI for internet

connection.

SARAS with Google Play Services library using WIFI consumes (Karaman, 2015):

e 978 mw of energy
e %13 of battery
e 896 j of LCD (this depends on how many POI is displayed on screen)

on 20 minutes of uninterrupted running.

Pro Android Augmented Reality using WIFI consumes (Karaman, 2015):

e 978 mw of energy
e %14 of battery
e 892 of LCD (this depends on how many POl is displayed on screen)

on 20 minutes of uninterrupted running.

The results reveal that our proposed LLSP algorithm is more energy efficient than the

given algorithm (Karaman, 2015). It consumes %1 less battery in 20 minutes.

7.1.2. CPU Usage

Secondly, I will compare CPU usage of these two algorithms.

SARAS with Google Play Services library using WIFI consumes (Karaman, 2015):

e 267 Jof CPU

on 20 minutes of uninterrupted running.

Pro Android Augmented Reality using WIFI consumes (Karaman, 2015):

e 265J)0f CPU

on 20 minutes of uninterrupted running.

71

The test results reveal that our proposed LLSP algorithm uses almost the same amount

of CPU power than the given algorithm.

We can summarize differences on source consumptions as follows:

SARAS | Pro Android Augmented Reality
Energy 978 mw 978 mw
Battery %13 %14
LCD* 896 J 892 J
PU 267 J 265 J

* this depends on how many POI is displayed on screen

Table 7.1 Resource Utilizations

7.1.3. Screen Positioning Comparisons

e Standing Still

As the third step, we test the consistency of the screen positioning. For test purposes,

we set the maximum distance for map and for distance filter to 10 km.

For the tests, device stand still and the device's screen is turned for looking around.

Figure 7.1 shows the situation of the device and the POI's during the test. There are 11

POls on the range. Device is in the center of the circle on the intersection of direction

divisions. They are depicted in East and North-East, when the mobile device is thought

in the middle.

72

A Cedeci @

NORTH | v
o /"‘—/\oi,rc.‘fcpc o
Nltty'.o,'
NORTHEAST
/fﬁiﬁ’rmsr
0-3
S~
Istanby
- Sirkes
.’t,
SOUTHEAST
- SOUTH
Figure 7.1 Map Representation
POIs which stay in East are: POIs which stay in North-East are:
- KasimPasa Subesi - Atilim Subesi
- Kasimpasa $b Plus-1 - Rahmi Kog¢ Miizesi
- Kasimpasa Sb Plus-2 - Okmeydan1 Bedas
- Persembepazar1 Subesi - Okmeydani $b Plus-1
- Persembepazar1 Sb Plus - Okmeydani $b Plus-2

- OkMeydani Subesi

73

e East

Using LLSP algorithm POls in East are listed as in Figure 7.2. Using referenced book's
algorithm (Raghav, 2012) they are listed as in Figure 7.3.

Suriig Modu
gle Play Service Acik Konum Kapal:
Figure 7.2 Screenshot using our proposed Figure 7.3 Screenshot using the given
LLSP algorithm - East algorithm - East (Raghav, 2012)

As it can be see from the Figure 7.2, all of the five POls in East are placed correctly on
the screen.

But the algorithm of our referenced book (Raghav, 2012) listed all the POIs in East,
even though several of them were in North-East.

74

e Passage from right (East) to left (North-East)

Using LLSP algorithm POls are listed as in Figure 7.4. Using (Raghav, 2012)
algorithm they are listed as in Figure 7.5.

SUI‘US MOdul

.) i
Konum Kapall

Surig Modu
Konum Kapal!

Boogle Play Service Kapal

Figure 7.4 Screenshot using our proposed Figure 7.5 Screenshot using the given
LLSP algorithm - Passage from East to algorithm (Raghav, 2012) - Passage from
North-East East to North-East

Using LLSP algorithm all of the POlIs are listed on screen because it is like an
intersection for all of them. Moreover the POIs who are in East stays in the right side of
the screen and the POIs who stay in North-East are placed in the left side on the
screen(As it is a passage from right (East) to left (North-East)).

Given (Raghav, 2012) algorithm showed the same list as in East. It listed all of the
POls.

75

e North-East

Using LLSP algorithm POls are listed as in Figure 7.6. And using (Raghav, 2012)
algorithm they are listed as in Figure 7.7.

" ﬁﬂnal Mod
VSiirtis Modu

Konum Kapali

oogle Play Service Agik X o Google Play Service Kapali

Figure 7.6 Screenshot using our proposed Figure 7.7 Screenshot using the given
LLSP algorithm North-East algorithm (Raghav, 2012) - North-East

Using LLSP algorithm all the 6 POIs in North-East are also listed properly. (Raghav,
2012) listed only one of the POIs which are on North-East. It missed four others.
Finally we can conclude that our proposed LLSP algorithm produces more reliable

results and more accurate screen positions compared to (Raghav, 2012).

e Walking

The same tests are generated for the walking case. The outputs are analyzed while
walking. The outputs were reliable and fast. The application was reacting quickly and
the outputs were as same as the test in standing still.

76

e Driving

These two algorithms are also compared while driving. The point of interest to show on

screen is Caglayan Adalet Saray1. LLSP algorithm's outputs can be seen on Figure 7.8.

e

T."}*-‘_

- <o [L B8
:

B e B I

57740 59240 »
azimuthValue: 36.56766227360651 azimuthValue: 35.545202990077165

rollValue: -4.895463410871714 rollValue: -5.953987003910614
pitchValue0.19009896334465656 pitchValue2.4730931085160037

DIRECTION KUZEYDOGU durus DIRECTION KUZEYDOGU durus

41.067726 41.067726

28.978186 28.978186

Figure 7.8 Screenshots using our proposed LLSP algorithm while driving

77

The same building using the proposed algorithm is shown in Figure 7.9.

TARS W
LY

RIIE
i =)

=1]
gRE

=
‘1
p

Figure 7.9 Screenshots using the given algorithm while driving (Raghav, 2012)

Comparing these outputs we can conclude that both of these algorithms have similar
outputs. Both of them placed Caglayan Adalet Saray at the correct position.

78

8. CONCLUSION

The aim of this research is to develop an algorithm for tagging POIs on mobile device’s
screen. An AR mobile application (called SARAS) is built. SARAS is compatible with
Android OS. One of the biggest banks in Turkey (Yap1 Kredi Bank-YKB) and Ministry
of Industry and Sciences have supported this research. The POlIs are chosen as the
merchants, offices and the ATMs of the bank. Using this application, users can find the
nearest bank and ATMs, along with their way towards them. Besides, bank may use this

application as a new channel to inform their potential users on related campaigns.

Since only the benchmarking algorithm (Raghav, 2012) has an open source algorithm,
the performance comparisons are done using it. Both algorithms spend almost the same
amount of energy. The biggest sources of energy consumption of AR applications are
the GPS and camera usage. LCD usage depends on the number of POls that are
displayed on the screen, therefore it can be concluded that both algorithms spend almost
the same amount. The CPU usage of these two algorithms is at similar ranges, but the

proposed algorithm consumes less battery.

The proposed algorithm places accurate tags while standing still and walking. When
driving, it places the tags at accurate locations on the screen in each time, however its

response time to position changes need to be improved.

The most significant contribution of this algorithm is its simplicity. It is developed for
the countries in North hemisphere, but it is easy to convert it for the South hemisphere.
Going further, the performance of the algorithm will be improved to more rapidly react

to position changes while driving.

79

9. THREATS TO VALIDITY AND FUTURE WORK

Going further, the screen positioning algorithm should be improved. During our
performance tests, | figured out that it does not give satisfying result, while user is
moving rapidly. Therefore, LLSP algorithm should produce better, reliable and faster
outputs. Moreover, the direction recognition in sensor fusion algorithm was slow. So,
the outputs were coming with latency. This results delay in the screen positioning. We
should work on this algorithm for faster information and faster and reliable tagging. We
have some shaking, tilting problems on POI projections caused by sensor sensitivity.

Therefore, we should implement a better low pass filter to our algorithm.

In our algorithm we did not take into consideration device’s and POI’s altitude value
and device’s height limitations. We should also enrich our algorithm by calculating the
field of view based on device’s height. As an additional feature, a radar could be used to

indicate the direction in which invisible POls are located.

Some screen warnings, such as closing the application if device has not enough battery,
are inserted to the application. We also added different modes for fetching GPS values
and the possibility to use two different libraries for GPS. However, we had also to
search for reducing the battery consumption of the camera and internet connection. But
we did not make enough progress in it. We only avoided this consumption by closing
the application and by warning user. Therefore, we should make more searches on

reducing this energy consumption caused by the camera and internet.

80

We should unify queue-matic system on bank offices and our application. By using this
feature, customers can get a queue number without actually going to bank office. As
the bank security policies did not authorize this, we could not integrate our application

into the bank’s system.

REFERENCES

Android Camera (2015).

URL :http://www.tutorialspoint.com/android/android_camera.htm.Google Googles

Android Motion Sensors (2014).
URL.:http://developer.android.com/guide/topics/sensors/sensors_motion.html.

Android Position Sensors (2014). Android Developers.
URL.:http://developer.android.com/guide/topics/sensors/sensors_position.html.

Azimuth Pitch Roll Image.
URL.:http://www.mathworks.com/matlabcentral/mlc-downloads/downloads/
submissions/40876/versions/8/screenshot.jpg.

Android Sensor Manager (2014). Android Developers.
URL.:http://developer.android.com/reference/android/hardware/SensorManager.
html.

Compass Application (2014).

URL :https://play.google.com/store/apps/details?id=com.gn.android.compass.

Geiger, P., Pryss, R., Schickler, M., and Reichert, M. (2013). Engineering an advanced
location-based augmented reality engine for smart mobile de- vices. Technical
Report UIB-2013-09, University of Ulm, Germany.

Google Goggles (2014).
URL.:https://play.google.com/store/apps/details?id=com.google.android.apps.
unveil&hl=tr.

Graga, S., Oliveira, J.F., Realinho, V. (2012) “WorldPlus: An Augmented Reality
Application with Georeferenced Content for Smartphones - the Android Example”,
Proc:. 20th WSCG International Confrence on Computer Graphics and Computer
Vision.

Karaman, Ahmet (2015). Analysis Of Energy Efficiency of GPS-Based Augmented
Reality Application.Galatasaray University

Lawitzki, Paul (2014). Android Sensor Fusion Tutorial.
URL :http://www.codeproject.com/Articles/729759/Android-Sensor-Fusion-
Tutorial.

Layar (2009). Layar HomePage.
URL: http://www.layar.com/.

Shane Conder, Lauren Darcey (2011). Augmented Reality: Getting Started on Android.
URL.: http://code.tutsplus.com/tutorials/augmented-reality-getting-started-
onandroid -- mobile-4457.

Sood, Raghav (2012). Pro Android Augmented Reality.

Tamada, Ravi (2013). Android working with Google Maps V2.
URL.:http://www.androidhive.info/2013/08/android-working-with-google-maps- /.

Tuscany+ (2010). Tuscany+ Home Page.

URL: http://www.turismo.intoscana.it.

Tuscany+ Image (2010). Tuscany+ Home Page..
URL.:http://www.turismo.intoscana.it/allthingstuscany/aroundtuscany/files/
2010/05/30644_1123958354547 1694785481 213647 _377230_n.jpg.

Wikipedia (2015). Augmented Reality.

URL.: https://en.wikipedia.org/wiki/Augmented_reality.

Wikitude (2008). Wikitude Home Page.

URL.: https://www.wikitude.com/.

Wikitude Image (2008). Wikimedia.

URL :https://commons.wikimedia.org/wiki/File: Wikitude_World_Browser_ @
Salzburg_OIld_ Town_2.jpg.

Yuen, S., YaoYuneyong, G., Johnson, E. (2011). An overview and Five Directions for
AR in Education. Journal of Educational Technology and Development and
Exchange, 4(1), 119-140

BIOGRAPHICAL SKETCH

The author of this thesis was born in 1986 in Erzincan, Turkey. She has studied in
Galatasaray High School between 1998 and 2005, and started her undergraduate
education in the Computer Science and Engineering Department of Galatasaray
University in 2005-2010 terms. Consequent to the graduation from the undergraduate
degree, in 2010 she has enrolled to the Computer Engineering Master’s Degree in
Université Paul Sabatier (Toulouse) University Institute of Sciences. After that she has
continued at the Galatasaray University for finishing her master. Since 2011 she has

worked at research, banking and telecom domains in several workplaces.

PUBLICATIONS

e Paper titled "Design Of Sensor-Based Augmented Reality Software
(SARAS)" of this thesis has been presented in23rd IEEE Signal

Processing and Communications Applications (SIU 2015).

