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ABSTRACT

In this thesis, we construct the jet schemes of some non-isolated hypersurface singular-
ities in C? and some isolated surface singularities in C* which appear as the normali-
sation of our non-isolated singularity. We want to determine the jet scheme structure
in these.

The singularities we consider are called rational triple singularities. They are of 9 types.
In this work, we focus on the jet scheme structure of three of them, called Egq, E7g and
Ey7. We construct their jet graphs and toric embedded resolution.

The study differs from the existing results in the literature as it is about the case of
non-isolated hypersurfaces and surface which is not monomial neither determinantal
variety.



OZET

Biz bu tezde, C*’de yasayan izole olmayan baz1 hiperyiizey tekilliklerinin ve onlarin nor-
mallesmesi halinde gériinen C*’de yasayan baz izole yiizey tekilliklerinin jet semalarim
insa ettik.

Dikkate aldigimiz tekillikler, rasyonel iiglii tekillikler olarak adlandirilir. Onlar dokuz
tiirliidiir. Biz bu ¢calismada Ego, Fr7g ve Ey7 olarak adlandirilan, onlarin ii¢ tanesinin jet
semas1 yapisina odaklandik. Onlarin jet grafiklerini ve torik gomiilii ¢oziimlerini inga
ettik.

(aligma izole olmayan hiperyiizeylerle ve ne tek terimli ne de determinantal varyete
olmayan yiizeylerle ilgili oldugu igin, literatiirde varolan sonuglardan farklhidir.



1. INTRODUCTION

Let k be an algebraically closed field of characteristic 0. Let X be an affine variety over
k. The m'™ jet scheme of X, J,,,(X), is the set of all m-jets on X. We have Jo(X) := X
and Ji(X) := TX where TX is total tangent space of X. If X is a smooth variety
over k with dimension n, then J,,(X) is £™"-bundle. When X is singular, one may
study on X by considering different types of singularity in X. For example, when X
is of type A,, D,, Egs, E7 or Eg, the jet scheme structure of X is given in (Mourtada,
2013); also when X is defined by a monomial ideal and when X has a determinental
singularity, the jet scheme structure of X is given in (Yuen, 2006).

In this thesis, we construct the jet schemes of some non-isolated hypersurface singular-
ities in C? and some isolated surface singularities in C* which appear as the normali-
sation of our non-isolated singularity. We want to determine the jet scheme structure
in these.

The singularities we consider here are called rational triple singularities. They are of 9
types. In this work, we focus on the jet scheme structure of three of them, called Ej,
FEo9 and Ey;. We construct their jet graphs and toric embedded resolution.

We first recall some basic definitions and properties in algebraic geometry to use in the
following sections.

In Chapter 3, we define the regular subdivision of a cone and more generally of a set
of cones, called a fan.

In Chapter 4, we recall the ADE singularities of hypersurfaces and we introduce jet
scheme structure of these singularities. Following (Mourtada, 2013), we construct
explicitly the jet schemes of the singularity of type F-.

In Chapter 5, we consider some hypersurfaces having one dimensional singular locus,
which are called non-isolated forms of the rational triple singularities in C*. We present
an explicit construction of non-isolated forms of types Egq, F7g and Eyy.

In Chapter 6, we construct the jet schemes of surface defined by one of the equations
given in (Tyurina, 1968). We call these the isolated forms of rational triple points.
Then we compare the results of this chapter with the results obtained in Chapter 5.



2. PRELIMINARIES

Let k be a field. The ring of polynomials in one variable x over k is the set of elements
in the form
f(2) = cpz™ 4 cho12™ P 4L+ co

where ¢; € k for all i, 0 <4 < n and n > 0. Such a ring is denoted by k[z]. Similarly,
the ring of polynomials in several variables x1,...x, over k is the set of elements in

the form
o) = 3 car

where a = (a1, ...a,) and x* = 27" ... 2% ; it is denoted by k[x1, ..., x,].
1 n y

When we permit to have infinite sum as
flx)=co+cx+...+cpz" +...

the set of such elements is called the ring of formal power series and denoted it by
k[[z]]. Hence, we have k[z,...,x,] C k[[z1, ..., 2,]].

2.1 Ideals in k[zy,...,x,]

Let k = C and R = C|xy,...2,). Anideal I in R is a nonempty subset of R which is
closed under addition in /I and multiplication by the elements of R.

The ideal I = {0} and I = R are called the trivial ideals in R. Any ideal I in R is
generated by a finite set of elements in R and denoted by

<f17"‘f7">:{glf1+”‘+g7"f7" | gZGRJ 1§Z§T}

Here f1,..., f, are called generators of I.

Exemple 2.1.1. Consider the ideals I} =< z,2%y,y > and I, =< z,y >. Note that
I; and I, are the same subsets in R, so I; = I,. Hence, an ideal can be defined by
different set of generators.

Theorem 2.1.2. (Hilbert Basis Theorem) Fvery polynomial ideal in R is finitely gen-
erated.

Let I and J be two ideals in R. The sum of [ =< fi,... f, > and J =< g1,...¢9s > is
defined as
I+J={f+g | fel,geJ}

In fact, we have I + J =< f1,... fr, 91, ...9s >. The intersection I N J is defined as

INJ={h | hel and he J}



The product I - J is defined as
LI={> figi | i=1....r j=1...s}

Exemple 2.1.3. Let [ = J =< x,y > in C[z,y|. The sum of idealsis [ +J =< z,y >,
the intersection is I N J =< x,y > and the product is I.J =< 22, 2y, y? >.

Definition 2.1.4. If each generator of an ideal I in R is monomial, it is called
monomial ideal.

Definition 2.1.5. Let I be an ideal in R. The radical of I, VI, is the set
{reR|2"el n>0}
If I = \/7, then I is called a radical ideal.

Remark 2.1.6. Fvery prime ideal is a radical ideal.

Definition 2.1.7. An ideal I of a ring R is a primary ideal if for any x,y € R, xy € 1
and x ¢ I imply that y € /1.

Definition 2.1.8. A primary decomposition of an ideal I in R is defined as follows:

I= ﬂpi
i=1

where every p; is primary.

2

Exemple 2.1.9. Consider an ideal I =< zy, 23 — 22, 2%y — 2y >. A primary decom-

positionof Iis <x>N<z—1,y>N<a2?y>.

Exemple 2.1.10. Consider I =< z? zy >.It can be written as finite intersection of
primary ideals:
I=<z>nN<z*y>

or
I=<z>n<axyy* >

Remark 2.1.11. The primary decomposition of an ideal is not unique.

2.2 Affine Varieties

Consider the map
V:Clzy,...,z,] — C"

which is associated to the zero set in C" of each polynomial in Clxy,...z,]. That is
we have

fr—=V(f)
where V(f) = {(a1,...,a,) € C* | f(ay,...,a,) =0}.
More generally, V' sends each ideal I in R to the zero set of each of its elements, means
for I =< f1,..., fr >;

V<]):{(a17"‘7an>€(c | fi(ah-u;an)zo 1§Z§T‘}



Definition 2.2.1. The set V(I) is called an affine variety in C".

Theorem 2.2.2. An affine variety V(I) = X is irreducible if and only if its defining
ideal 1(X) is a prime ideal.

Let I =< fi,... f, > be an ideal in R. Consider two elements f and g in R. We say
that f is equivalent to g modulo I if f — g € I. This is written as f = g mod(I).
This relation is symmetric, reflexive and transitive, so it is an equivalence relation on

R.

Definition 2.2.3. The set of equivalence classes modulo I is called the quotient ring,
which is denoted by R/I.

An element g € R which is equivalent to f; modulo I takes the same values on V'(I).

Assume that [ is a radical ideal in R. The quotient ring R/I is called the coordinate
ring of Y := V/(I) and denoted by C[Y]. Theorem 2.10 implies that C[Y] is an integral
domain.

The dimension of an affine variety equals the dimension of its coordinate ring which is
the Krull dimension defined as the maximum d € N such that there exist a chain of

prime ideals
PBCPC...CP

of length d in R. We denote it by d = dimY for Y = V(I).

The number n — d is called the codimension of the affine algebraic variety Y in C".
Note that an hypersurface in C™ is of codimension 1.

2.3 Singularities of Varieties

We are dealing here with the surface in C". A surface is a 2 dimensional affine variety
in C™.
Let f € C[xy,...,x,]. Let S be a hypersurface in C" defined by f; it means

S:=V(f)={(a1,...,a,) €C" f(ay,...,a,) =0}

Definition 2.3.1. A point p = (ay,...,a,) € S is said to be singular or (singularity
of ) if f(p) =0 and
of

8362-

(p)=0 Vi,i=1,...,n

Exemple 2.3.2. Consider the hypersurface defined by f(z,y,2) = 22 + y> + y2* in
C3. £(0,0,0) = 0 and

of

) -
g z=0
of 2, 3
— =3 =0
By Yy +z
of o o _
aZ—Byz =0

Hence the point (0,0,0) is singularity of f.
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More generally, let I C Clxy,...,z,] be an ideal and S be a surface in C" defined by
I, means

S:=V({)={(a,...,a,) € C" f(a1,...,a,) =0 Vfel}

Definition 2.3.3. A point p € S is said to be singular if the rank of the Jacobien
matrixz of I equals n — 2, means

dfi
ax]-

rk(5=)(p) =n —2

wherei=1,....m, j=1,.... nand I =< f1,..., fin >.
If p is not a singular point of S then it is called a non-singular or a smooth point of S.

Exemple 2.3.4. Let us consider the ideal I =< f1, fo, f3 > where
f1<x7y7sz> = 22 —yw +y3 =0

f2(x7yvz7w> = W —ZC2’y =0

f3($7y727w) — w2 r y2w - (1322 =0

The ideal I defines a surface S := V/(I) in C*. The surface S has an isolated singularity
since the singular locus is only the origin. We want to examine the singular point of
S; so the Jacobien matrix

o Oh Ofh Of

é% ad]y 632 gw 0 —w + 3y2 2z —Y
JaeD) = | 3¢ 5 92 G| =2 20w ooz
ofs Ofs Oofs s -2z  2yw  —x? 2w —y?

ox oy 0z w

has rank 2 at a smooth point of S and has rank 3 at singular point.

Exemple 2.3.5. Consider the hypersurface defined by
fla,y,2) =2 +y° +y2°

in C3. It has a singular point at the origin.

Definition 2.3.6. Let S be a surface in C". A singular point p € S is called an
isolated singularity if S\{p} is smooth; in other words, p has a neighborhood U in S
such that U\{p} = C2.

Exemple 2.3.7. In the example 2.3.5. has an isolated singularity at the origin.
Exemple 2.3.8. Consider the hypersurface defined by

flz,y,2) =2+ 2+ 2%y

in C3. Tt has singularity along (x,0,0). Such a singularity is called non-isolated singu-
larity .



2.4 Newton Polygon

Let f € Clxy,...,x,] with f(xq,...,2,) = CoX® where x® = 2 ... 2% and a =
1

n

(v, ..., ) € R". The support of f is the se?
supp(f) = {o € R"[cq # 0}
Exemple 2.4.1. Consider the example 2.3.2. The support of f(x,y, z) is
supp(f) ={(2,0,0),(0,3,0),(0,1,3)}
Definition 2.4.2. The closure in R™ of the convex hull of the set

U (@+RZy)

acSupp(f)

is called the Newton polygon of f. We will denoted it by NP(f).
Exemple 2.4.3. Consider the example 2.3.2. The NP(f) is

.
 (0,1,3)
I I =1
! (0,3,0)
(2,0,0)

Figure 2.1: NP(f)



Exemple 2.4.4. Let us consider f(x,y,2) = 2%+ y32 + 22y? in C?. The NP(f) is

Figure 2.2: NP(f)

Definition 2.4.5. The closure in R™ of the convex hull of the set
{veR" <v,w>>0 Ywe NP(f)}

is called dual Newton polygon of f. We will denoted it by DNP(f).

Exemple 2.4.6. Consider hypersurface defined by f(x,y,2) = 2% + 3> + y2* in C3.
The support set is

Supp(f) = {(27 07 0)7 <07 37 0)? (07 L 3)}
The DNP(f) is

e €1
2 ™

€3

Figure 2.3: DNP(f)

where e; = (1,0,0), e = (0,1,0), e3 = (0,0,1), v; = (1,2,0) and W = (9,6,4).



3. RESOLUTION OF HYPERSURFACES

A cone o in R3 is
n
cone(vy, ..., u,) = {Z a;v; | v; € R? a; € Ryg}
i=1

The vectors vy, ..., v, are called the generators of . A cone o is called regular if
det(vy,...,v;) = 1 such that det(vy,...,vx) := ged(det(My), ..., det(M;)) where M; is
the minor of the matrix (vy, ..., vg).

Definition 3.0.1 For every compact faces F; of NP(f) in C", if the system

OF;,
(?xj r

0, where0<j3<n

has no solution in C*, then f is a non-degenerate singularity.
Any cone can become regular by a suitable subdivision.

Theorem 3.0.2. A non-degenerate singularity can be resolved by using Newton poly-
gon.

3.1. Regular Subdivision (of Newton Polygon)

A vector v in R? is called integral vector if each component v; of v is a positive integer
where v = (v1,v9,v3). Let o be a cone in R? generated by two integral vectors u =
(u, us,uz) and v = (vy,ve,v3). If det(o) = 1 then o is regular.

If det(o) = d and d > 2, we check whether there exists d; € N* such that the quotient
1 v+ diu
v o=
d

is an integral vector. If such d; exists it is not unique. Take the smallest value of
di. If d, = 1, then the cone 0 = o7 U 0y becomes regular where o =< u,v! > and
oy =< vt v >.

Definition 3.1.1. A fan Y in R3 is a finite collection of convex cones o; such that
(1) Each face of any o; is also a cone in Y .
(17) Any intersection of two o; in Y is a face of each cone.

Note that, after subdivision o becomes a fan in R? and each o; is regular cone.
If the smallest d; # 1 then we check whether there exists do € N* such that the quotient

s U+ dyvt
vt = —
dy

is an integral vector. If do = 1, the regular subdivision of o
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is given by 0 = 0, U 09 U 03 where 01 =< u,v! >, 09 =< v, 0% > and 03 =< 0%, v >.
Note that, o is a fan in which each o; is a regular cone.

If dy # 1, then we return to check the appropriate quotient. We continue until we find
a regular subdivision of o;.

The regular subdivision of a fan consists of doing regular subdivision of each cone in
the fan.

Remark 3.1.2. In the sequel, we will draw the DN P(f) by considering its intersection

with the plane x +y + z = 1 to make easier the drawing.

3.2. Isolated Hypersurface Singularity and Regular Subdivision

In this section, we will consider an hypersurface in C* which has an isolated singularity
at the origin and its corresponding Newton polygon. We will find the dual of the
Newton polygon, which is a fan, and its regular subdivision. Such a subdivision will
lead us to obtain the minimal resolution graph of the singularity at hand.

Exemple 3.2.1. In the example 2.13 (case E; singularity), the dual Newton polygon
of f(z,y,z) in C? has 3 cones as follows:

01 =< U, U2, U3, Ug >

09 =< V1, Ug,V3 >
03 =< Wy, Wz, W3 >

where es = u; = (0,1,0), ug = vy = wy = (9,6,4), ug = v = (1,2,0), e3 = uy = w3 =
(0,0,1) and e; = v3 = wy = (1,0,0).

When we consider the intersection of the subdivided DN P(f) and the plane x+y+2z =
1, we obtain the subdivided DN P(f) as follows:

Figure 3.1: Fra

We compute the regular subdivision of 0;; =< u;,u; >, 7;; =< v;,v; > and 0;; =<
w;, w; > for all 7, j. Let us check os:

d = det(o9) = (8 (13 2) = gcd(9,4) = 1, hence o019 is regular. Let us check oy3:
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d = det(o13) = ((1) ; 8) = gcd(1) = 1, hence o013 is regular. Let us check oy4:

d = det(oyy) = (8 (1) (1)> = ged(1) = 1, hence 014 is regular. Let us subdivide g3

into regular cones:

d = det(o93) = (51) g é) = gcd(12,4,8) = 4. Consider the sequence of quotients:

1 U2 +d1.’d3 (9,6,4) +3(1,2,0)

= = = 1
v y ; (3,3.1)
1
2 Uo + doy.v _ (9,6,4) +2.(3,3,1) _(5.4.9)
dy 3
ds.v? 9,6,4 1.(5,4,2
U3::u2+d3v :(7 7)+2 (7 7)2(775’?))
2

Now let us subdivide 094 into regular cones:

d = det(o9y) = (3 g le) = gcd(9,6) = 3. Consider the sequence of quotients:

4 U2 +d1.’LL4 (9,6,4) +2(0,0,1)

= = =(3,2,2
! d 3 (3:2,2)
ol 4 1.(3,2,2
U5 — U2 +dd2 v _ (9767 )+2 (37 ) ) — (6,4, 3)
1

For the regular subdivision of 7,; =< v;, v; >, we already checked 715. Let us subdivide

713 into regular cones:
1 20

d = det(m3) = <1 0 0) = gcd(2) = 2. Consider the quotient:
6 1)1—|—d1.?)2 (1,2,0)—|—1(1,0,0)
v’ = =

d 2
Let us subdivide 7,3 into regular cones:

= (1,1,0)

d = det(m3) = (Sl) g 3) = gcd(6,4) = 2. Consider the quotient:
dy. 4)+1.(1
N +d”’3 _ 06 >+2 1.0.0) _ 5 5 9)

To compute the regular subdivision of ¢;; we need to check 012, 013 and d23. We already
check 015 and d,3 cases. Let us check d;3:

d = det(013) = (1 00y _ gcd(1) = 1, hence ;3 is regular.

0 01

We will denote uy, = W. The additional vectors obtained above are denoted in Figure
FE-b and it becomes:
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Figure 3.2: E;b

This subdivision gives us the following graph which is the minimal resolution graph of
singularity Fr:

Figure 3.3: Eom

We should check whether all possible two dimensional cones in Figure E-b is regular.
For this, we should compute the regular subdivision of the cones < w;, v/ >, < u;,v; >,
< uywj >, < v, v > < v wy > and < w;,v?! > for all i, 5. Let us check: < 0% uy >:

d = det( (g le g)) = gcd(6,3) = 3. Consider the sequence of quotients:

S Vs +d1.U1 (6,4,3) +2(0,1,0)

(% 3 (, s )
+d.8 4 +1.(2,2,1
Ug: 'U5 2,0 (67 73) 2 ( » < ) (17372)

Let us check < v, v3 >:

d = det( (i’ g g)) = gcd(2,2) = 2. Consider the quotient:

’UlO L V4 + dl.?)g . (3,2, 2) —+ 1(1,0,0)
o d B 2

=(2,1,1)

Let us check < v%,v7 >:

d = det( (é :1)) g)) = gcd(2,2,2) = 2. Consider the quotient:

dy .07 1,1 1. 2
’Ull:_/UG—i_dl/U :(7 70)+2 (5737 ):(3’2,1)
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Let us check < v®, uy >:
2 21

d = det( (O 0 1)) = gcd(2,2) = 2. Consider the quotient:
e vstdiu _ (2,2,1) +1.(0,0,1)

= =(1,1,1
d 2 (1,1,1)

Hence the dual Newton polygon in Figure E;b becomes as the following with all the
obtained vectors. We will called this regularised dual Newton polygon.

Figure 3.4: E;c

Hence in our case we obtain the vectors which are W = uy = vy = wy = (9,6,4), uz =
vy = (1,2,0), v! = (3,3,1), v* = (5,4,2), v* = (7,5,3), v* = (3,2,2), v° = (6,4, 3),
8 = (1,1,0), " = (5,3,2), v® = (2,2,1), v* = (4,3,2), v!° = (2,1,1), ! = (3,2,1)

and v'? = (1,1,1).

Remark 3.2.2. We will compare all the vectors marked in Figure Erc with the vectors
in the jet graph Figure 4.1.

3.3. Non-Isolated Hypersurface Singularity and Regular Subdivision

In this section, we will consider an hypersurface in C3 which has a non-isolated singu-
larity at the origin and its corresponding Newton polygon. We will find the dual of the
Newton polygon and its regular subdivision to obtain the minimal resolution graph of
the singularity at hand. For this we will follow (Altintag & Cevik & Tosun, 2016).

Exemple 3.3.1. Consider Ejgy singularity given by the equation:
flz,y,2) =2+ v’z +2%* =0
in C3. The DNP(f) has three cones as follows:
o1 =< Uy, U, Us, Uy >

09 =< V1, Vg,V3, Vg4 >
03 =< Wy, Wz, W3 >

where e; = u; = wy; = (1,0,0), ea = uy = (0,1,0), u3 = vy = (0,3,2), uy = v3 = wy =
(5,4,6), e3 = v3 = (0,0,1) and vy = w3 = (1,0, 2).
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€3

Figure 3.5: FEga

We compute the regular subdivision of 0;; =< w;,u; >, 7; =< v;,v; > and 6;; =<
w;, w; > for all 7, j. Let us check oys:

d = det(o12) = ((1) (1) 8) = ged(1) = 1, hence 045 is regular. Let us check o13:

d = det(o13) = ((1) ; g) = gcd(3,2) = 1, hence o013 is regular. Let us check oy4:
1 00 A .
d = det(o14) = 54 6) " gcd(4,6) = 2. Consider the quotient:

’Ul Al Uy —|—d1.U4 . (1,0,0) + 1(5,4,6)
4 2

=(3,2,3)

Let us check o93:
010

d = det(oa3) = (0 3 2) = gcd(2) = 2. Consider the quotient:
9 . U2 + dl.U3 . (0, 1,0) + 1(0,3, 2)

: = 2.1
v d 2 (0,2,1)

Let us check oa4:

d = det(o9y) = (g 411 g) = gcd(5,6) = 1, hence oy is regular. Let us check o3y:
d = det(os4) = (g i 2) = ged(15,10,10) = 5. Consider the sequence of quotients:
d;. 0,3,2) +3.(5,4,6
U3:IU3+ 1U4:(,,>+ (77):<3’374>
d 5
3 2 1. 4
jomtd’ _(032)16.30
dy 3
For the regular subdivision of 7;; =< v;, v; >, we already checked 7. Let us check 7y3:

d = det(m3) = <8 :)l (13) = gcd(5,4) = 1. Hence 73 is regular. Let us check 74:

d = det(m4) = (i) 3 g) = gcd(4,4,8) = 4. Consider the sequence of quotients:

5 (%] +d1.’U4 (5,4,6) +3(1,0,2)
v = =

= = (2,1
d 4 (2,1,3)
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o i+ dyv®  (5,4,6) +2.(2,1,3)

v dl 3 (37 Y )
ds.v° 4 1.(3,2,4

U7 — (%1 +d 3.V _ (57 76) +2 (37 9 ) — (47375)
2

Let us check 793:

d = det(me3) = <8 g ?) = gcd(3) = 3. Consider the quotient:

g . U2 —|—d1.03 i (0,3,2) + 1(0,0, 1)

: =(0,1,1

! d 3 (0.1,1)

Let us check 794:

d = det(Tyq) = <(1) g ;) = gcd(3,2,6) = 1, hence 7oy is regular. Let us check 734:
001 .

d = det(1o4) = Lo 2]~ ged(1) = 1, hence T34 is regular.

For the regular subdivision of d;;, we already check 6,2 and dq3 cases. Let us check d3:

d = det(013) = (1 8 (2)) = gcd(2) = 2. Consider the quotient:
U9 L wy + dl.wg . (1, O, 0) = 1(1, 0, 2)

d B 2
When we consider the intersection of subdivided DN P(f) and the plane z +y+2z =1,

we obtain the subdivided DN P(f). We will denote ugs = W. The additional vectors
obtained above are denoted in Figure Fg,b and it becomes:

=(1,0,1)

Figure 3.6: Egb

This subdivision gives us the following graph which is the minimal resolution graph of
the singularity Fgp:

Figure 3.7: Egom
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We should whether all possible two dimensional cones in the Figure Egyb is regular.
For this, we should compute the regular subdivision of the cones < u;, v/ >, < u;,v; >,
< U wj >, < v, 0! >, < v, wy > and < w;,v! > for all 4, 5. Let us check < ug,v® >

d = det( <1 0 0)) = gcd(2,4) = 2. Consider the quotient:

3 2 4
8 1 1.(3,2,4
010::u1+d1'0 :<7070)+ (37 ) ):(2’1’2)
d 2
Let us check < up,v* >
1 00 : :
d = det( L 2 9 ) = ged(2,2) = 2. Consider the quotient:
L w +dd1,v4 _ (10,0 +21.(1,2,2) _aLy

Let us check < vg,v® >:

d = det( (0 0 1)) = gcd(3,3) = 3. Consider the sequence of quotients:

3 3 4
dy.v3 0,0,1 2.(3,3,4
012::US+ 1.0 :(7 ) )_'_ (7 ) ):(272’3)
d 3
U13 v U3+d2.1}12 _ (0,0,1) + 1(2,2,3) - (1’1’2>

dy 2

Hence the dual Newton polygon in Figure Fgob becomes the regularised dual Newton
polygon of Egy as the following with all the obtained vectors.

Figure 3.8: Fgyc

Hence in our case, we have the vectors uz = vg (0,3,2), W =uy =v; = wy = (5,4,6),
= (0,0,1), vg = (1,0,2), = (3,2,3), v* = (0,2,1), v* = (3,3,4), v* = (1,2,2),
— (2,1,3), 0 = (3,2,4), o7 = (4,3,5), 15 = (0,1, 1), v* = (1,0,1), v'® = (2,1,2),
= (1,1,1), v'2 = (2,2,3) and v'3 = (1,1 2)

Remark 3.3.2. We will compare all the vectors marked in Figure Egyc with the vectors
in the jet graph Figure 5.1.
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Exemple 3.3.3. Consider E7y singularity given by the equation:
floy,z)=2"+ayz+y' =0
in C3. The DNP(f) has three cones as follows:

01 =< U1, Uy, U3, Uy >

09 =< V1, U2,V3 >

03 =< W1, W, W3, Wq >

(1,0,0), € = Uy = (0,1,0), Uz = Vg = (0,2,1), Uy = V1 = Wo =
1,3) and e3 = wy = (0,0,1).

where e; = u; = wy

(57678)7 Vg = W3 — (07 )

Figure 3.9: Era

We will denote uy = W. When we consider the intersection of subdivided DN P(f)
and the plane z + y + z = 1, we obtain the subdivided DN P(f) as follows:

Figure 3.10: E;yb

where v! = (3,3,4), v* = (1,2,2), v¥ = (3,4,5), v* = (1,2,4), v° = (2,3,5), v® =
(3,4,6) and v* = (4,5,7).

This subdivision gives us the following graph which is the minimal resolution graph of
the singularity FErq:



Figure 3.11: E;ym

In the subdivided DNP given in Figure E7ob, the only cones which still need to be
subdivided are < uy,v? >, < ug,v® >, < wy, v > which give the vectors v® = (1,1, 1),
v) = (2,3,4), v!° = (2,2,3) and v = (1,1,2). Hence the regularized DN P(f) in this

case 1is:

7 W=
(5,6,8), ws = v3 = (0,1,3), v! = (3,3,4), v* = (1,2,2), v* = (3,4
v® = (2,3,5), v% = (3,4,6), v" = (4,5,7), v® = (1,1 (2,3
and v'! = (1,1,2).

Remark 3.3.4. We will compare all the vectors marked in Figure Froc with the vectors
i the jet graph Figure 5.4.

—
~—
<

Nel
I

Exemple 3.3.5. Consider Ey; singularity given by the equation:
f(a"aya’z) = 23+y5+x2y2 =0
in C3. The DNP(f) has three cones as follows:

01 =< Uy, Uz, U3, Us >
09 =< U1, Vg,V3 >
03 =< Wi, W2, W3 >

where e; = u; = wy = (1,0,0), ea = us = (0,1,0), ug = vo = (0,3,2), ug = v, = wy =
(9,6,10) and e3 = v3 = w3 = (0,0, 1).
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Figure 3.13: Eyra

When we consider the intersection of subdivided DN P(f) and the plane z+y+2z =1,
we obtain the subdivided DN P(f). We will denote uy = W.

€32

Figure 3.14 Ey;b

where v! = (5,3,5), v = (3,2,4), v¥ = (6,4,7), v* = (1,2,2), v° = (3,3,4), v® =
(5,4,6), v7 = (7,5,8), v® = (2,1,2) and v = (3,2,3),. This subivision gives us the
following graph which is the miniml resolution graph of the singularity Ey;:

Figure 3.15: Eyym

In the subdivided DN P(f) given in Figure Ey;b, the only cones which still need to
be subdivided are < wuy,v® >, < ug,v' >, < v4,v° > and < v'*, v3 > which give the
vectors v'% = (1,1,1), oM = (2,2,3), v'? = (1,1,2), v'3 = (0,2,1), v'* = (0,1,1) and
v'® = (4,3,5). Hence the regularized DN P(f) in this case is:



Figure 3.16: Ejy;c

Hence in our case we obtain the vectors uz = vy = (0,3,2), uy = v = we = (9,6, 10),
vt = (5,3,5), v? = (3,2,4), = (6,4,7), v* = (1,2,2), v° = (3,3,4), v5 = (5,4,6),
o= (7,5,8), 0" = (2,1,2), ' = (3,2,3), 0" = (1,1, 1), 0" = (2,2,3), v = (1,1,2),
v =1(0,2,1), v!* = (0,1,1) and v = (4,3,5) .

Remark 3.3.6. We will compare all the vectors marked in Figure FEorc with the vectors
in the jet graph Figure 5.7.
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4. JET SCHEMES OF ADE SINGULARITIES

In this chapter, we will consider the jet scheme structure of an hypersurface. We will
find the jet schemes of an hypersurface with isolated singularity at the origin which is
one of the hypersurface of ADE-singularities.

4.1 Hypersurfaces with Isolated Singularity

Let X be an hypersurface in C" defined by f(z1,...,z,). Let C[[t]] be the ring of
formal power series in t. Consider the morphism

¢ Clay,...,z,)/ < f>— C[[t]
defined by
QO(I'Z) = xi,O + xi,lt + xz‘72t2 + Ii,3t3 + .

with
f(xl(t),flfg(t)), . . ,xn(t)) = FO —|—tF1 —|—t2F2 +...=0

The Spec of each of rings gives:
v : SpecCl[t]] — X

This morphism defines a parametrized curve ~(t) on X.
Definition 4.1.1. The parametrized curve v(t) on X is called an arc.

The space of arcs on X, denoted by J.(X), is the set of all arcs on X and is given by

C[ZL‘L(),[L'Ll, e ,:L‘n,g,QTn,l, .. ]
< F[),Fl,...,Fm >

Jo(X) = Spec

Now let us consider the morphism
Om : Clzy, ..., 2,/ < f>— C[[t]]/ < t™ >
defined by
Om(2;) = 0 + i1t + xi72t2 + T t™ mod(t™ )

so we have:
Ym : Spec(C[[t]]/ < ™ >) — X
An m™ jet on X is an arc given by the morphism ~,,.

Remark 4.1.2. The set of all m jets on X, denoted by J,,(X), forms a scheme
structure.
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An m' jet scheme of X is

C[xl,m sy 05, 1,1y - - - 1y - - 7wn,m]
< Fy, Fy,..., F, >

I (X) = Spec

The ideal I,, =< Fy, Fi, ..., F,, > is said to be the defining ideal of J,,(X).

Remark 4.1.3. The m'" jet scheme of X, J,,(X) is irreducible if its defining ideal
L, =< Fy, Fy, ..., F, > s prime.

Exemple 4.1.4. Consider an hypersurface X in C? defined by f(z,y) = zy.

For m=0, we have
f(xo,9y0) = Toyo = Fo
The 0% jet scheme of X is given by

C[%, yo]

X pu—
Jo(X) = Spec — >

For m=1, we have
f(xo+ z1t, 90 + nit) = zoyo + t(woy1 + 2190) = Fo + Fit
The 1% jet scheme of X is given by

C[IEO, 1, Yo, ?Jl]

Ji(X) =5
W X) = Spec= o R >

For m, we have

fleo+ ... +xut™ yo+ ... +ymt™) = Fo+tF + ... +t"F,
= ZoYo + Uzoy1 + T1Y0) + - .. + " (ToYm + - - . + TmYo)
The m' jet scheme of X is given by

(C[an"')xmvyOw"ym]
< Fy,Fi,..., F, >

I (X) = Spec

Remark 4.1.5. (i) The 0" jet scheme of X, Jo(X) is equal to X.
(ii) The 1™ jet scheme of X, J1(X) is equal to total tangent space of X.

Let us assume X = C" be a smooth variety. Consider the morphism
Om : Clwy, ... 2, — C[[t]]) < t™ >
The m' jet scheme of X is given by

In(X) = SpecClx11, .o, T1m, X215 - T2ms - - - s Trm)



22

Hence we obtain J,,(X) = C™. Consider the projection map

a1t T (CY) — 1 (T

m

This map is surjective and it is induced by the inclusion
Cloia, - Tims oo Tty oo Tm) > ClX1a, ooy Timets ooy Tnly e o s Tomet)
Let us denote Sing(X) for the singular locus of X. We define easly the projection map
Tm - I (X) — Jo(X) =X

In the case of X has singularity, the projection map 7, composes of 7.} (Sing(X)) and
7, Y(Reg(X)) where Reg(X) is the set of smooth points of X. We will interest in the
irreducible components of 7} (Sing(X)). In order to find defining ideal of .J,,,(X), we
need to look all of F};, 0 < i < m. Since every step contains the previous one we will
write F,, for J,,(X) and we will take into consideration all £} where 0 < j < m.

4.2 ADE Singularities

The hypersurfaces defined in C3 by one of the following equations are called ADE-
hypersurfaces (n € N) :
A, ray— 2" =0

Dpn>4:22—z(y? +2"%) =0
Ee: 2 +y°+2'=0
B 2 +y*+yz* =0
Eg: 22 +y*+2°=0
These hypersurfaces have an isolated singularity at the origin in C3, they are called

ADE-singularities.

4.3 Jet Schemes of an Hypersurface of type F;

Let X be an hypersurface of type E; in C3. We know that X is defined by
fla,y,2) =2 +y° +y2°
in Clz,y, z]. We write
f(motazitt. . ATmt™ yot. . A ymt™, 2o+ . A zmt™) = Fo+tFy+...  mod (™) (4)

For m=0, we have

Fo(0, 90, 20) = x5 + yo(ys + %)
e This says that xy = yo = 0. Hence the ideal is Iy =< x¢,yo >. This corresponds to
the vector v) = (1, 1,0) with codimension 2 in C3. Jy(E;) is given by

Clzo, yo, 20

Jo(E-) =S
o(Br) = Spec < Fy >
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For m=1, (4) gives;
F1<£L'0, .. ,Zl) = Tox1 + y123 + yO(yOyl + 2321)

e Over the ideal Iy, we obtain two possible ideals I;; =< xg,y0,20 > and [ =<
To,%Y0,y1 >. These correspond to the vectors v; = (1,1,1) and vi = (1,2,0) respec-
tively. Each of which of codimension is 3. J;(E7) is given by

(C[‘:E07 Yo, 20, L1, Y1, Zl]
< Fy, Fy >

Ji(Ey) = Spec

For m=2, (4) gives;
Fy(zo,. .., 2) = zoxs + CC? + yo(Yoy2 + 2/% =+ 2(2)22 + ZOZ%) + 2(2)(3/121 + y220)

e Over the ideal I}; we obtain the ideal Iy; =< ¢, Yo, 20, x1,>. The corresponding
vector v? = (2,1, 1) is of codimension 4.

e Over the ideal 115 we obtain two possible ideal I5y =< xo, yo, Y1, T1, 20 > and Is3 =<
To, Yo, Y1, T1, Yo > with corresponding vector v3 = (2,2, 1) and v3 = (2, 3, 0) respectively.
Each of which of codimension is 5. Jy(E7) is given by

C[l’o, ce. 72’2]

Jo(Er) =S
2( 7) pec< Fy, F1, Fy >

For m=3, (4) gives;
F3(xo, ..., 23) :330.7:3—1—:61.7:2—1—...+y:f+...+y323

e Over the ideals I5; and Iss we obtain the ideal I3; =< z¢,¥o, 20, 21,y1 >. The
corresponding vector vi = (2,2, 1) is of codimension 5.
e Over the ideals I3, we obtain two possible ideals I3 =< g, Yo, Y1, L1, Y2, 2o > and
I33 =< %0, Yo, Y1, T1, Y2, y3 > with corresponding vector v3 = (2, 3,1) and vi = (2,4,0).
Each of which of codimension is 6. J3(E7) is given by

C[Io, ce 723]
< by, Fy, Fy, F3 >

J3(E;) = Spec

Remark 4.3.1. The m'" jet scheme of E; is given by

(C[:L‘O7 Yo, 20, - - - 7Zm}

J. (B =S
(E7) P B R, F, >

for all m.
For m=4, (4) gives;
Fy(xo, ..., 24) :x0x4+x1w3—|—...—|—y%y2—|—...+y4zg’

e Over the ideal I35, we obtain the ideal I, =< xg, Yo, 20, Z1, Y1, T2 >. The correspond-
ing vector v{ = (3,2,1) is of codimension 6.

e Over the ideal ]32, we obtain the ideal Iy5 =< ¢, yo, Y1, *1, Y2, 20, 2 >. The corre-
sponding vector vy = (3,3,1) is of codimension 7.

e Over the ideal I35, we obtain two possible ideals I43 =< xg, Yo, Y1, T1, Y2, Y3, T2, 2o >
and Iy =< o, Yo, Y1, T1, Yo, Y3, T2, Ya > with corresponding vectors vi = (3,4,1) and
vj = (3,5,0) respectively. Each of which of codimension is 8.
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Remark 4.3.2. The vectors (a,b,c) in R® corresponding to an ideal defining J,,(X)
which is trreducible is called weight vector. It is obtained by the number of appearances
of x, y and z in the ideal independently their subscript.

For m=5, (4) gives;
F5(xo, ..., 25) :x0x5+w1x4—|—...—|—y1y§—|—...—|—y5zg’

e Over the ideal I;;, we obtain two possible ideals I5; =< wo,yo,zg,ml,yl,xg,zl >
and Isy =< g, Yo, 20, T1, Y1, T2,y > with corresponding vectors v? = (3,2,2) and
v3 = (3,3,1) respectively. Each of which of codimension is 7.

e Over the ideal I,5, we obtain the ideal I55. Over the ideal I3, we obtain the ideal
Is3 =< Z0, Y0, Y1, T1, Y2, Y3, Ta, 20 >. The corresponding vector v = (3,4,1) is of codi-
mension 8.

e Over the ideal 14, we obtain two possible ideals I54 =< xq, Yo, Y1, T1, Y2, Y3, T2, Y4, 20 >
and Iss =< o, Yo, Y1, T1, Y2, Y3, T2, Y, Y5 > with corresponding vectors v] = (3,5, 1) and
v? = (3,6,0) respectively. Each of which of codimension is 9.

For m=6, (4) gives;
F6($0,...,26) :x0x6+x1x5+...—O—yg—i—...—l—yﬁz’g

e Over the ideal I5;, we obtain the ideal I5; =< x¢, Yo, 20, 1, Y1, T2, 21, T3, Y2 >. The

corresponding vector v§ = (4, 3,2) is of codimension 9.

e Over the ideal I5,, we obtain two possible ideals I, and Igo =< ¢, Yo, 20, T1, Y1, T2, Y2,

x3,y3 >. The corresponding vector of Igy is v§ = (4,4, 1) with codimension 9.

e Over the ideal I53, we obtain the ideal Ig5.

e Over the ideal I54, we obtain the ideal Ig3 =< g, Yo, Y1, 1, Y2, Y3, T2, Y4, 20, 3 >. The

corresponding vector v§ = (4,5, 1) is of codimension 10.

e Over the ideal I55, we obtain two possible ideals gy =< %0, Yo, Y1, 1, Y2, Y3, T2, Y4, Y5,

x3,z0 > and Igs =< x9, Yo, Y1, L1, Y2, Y3, T2, Y4, Y5, T3, Y >. Lhe corresponding vectors
= (4,6,1) and v$ = (4,7,0) are of codimension 11.

For m=7, (4) gives;
Fr(xo,. .., 27) = ToT7 + T16 + ..+ Y3ys + ..+ Yr2p

e Over the ideal Ig;, we obtain the ideal I7; =< g, yo, 20, 1, Y1, T2, 21, T3, Y2 >. The
corresponding vector v] = (4, 3,2) is of codimension 9.

e Over the ideal 45, we obtain the ideal 179 =< xq, Yo, 20, 1, Y1, T2, Y2, T3, Y3, 21 >. The
corresponding vector vy = (4, 4,2) is of codimension 10.

e Over the ideal I3, we obtain the ideal I73 =< xg, Yo, Y1, 1, Y2, Y3, T2, Ya, 20, T3 >. The
corresponding vector vi = (4,5, 1) is of codimension 10.

eOver the ideal Ig, we obtain the ideal I74 =< xq, Y0, Y1, T1, Y2, Y3, T2, Y4, Y5, T3, 20 >
The corresponding vector v] = (4,6, 1) is of codimension 11.

For m=8, (4) gives;

Fg(xo,...,zg):x0x8+x1$7+...+y2y§—l—...—i—ygzg’
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e Over the ideal I7;, we obtain the ideal Iy; =< xq, Y0, 20, €1, Y1, T2, 21, T3, Y2, 4 >. The
corresponding vector v§ = (5, 3,2) is of codimension 10.

eOver the ideal I75, we obtain the ideal Iyy =< x¢, Yo, 20, T1, Y1, T2, Y2, T3, Y3, 21, Tg >.
The corresponding vector v§ = (5,4,2) is of codimension 11.

e Over the ideal I73, we obtain two possible ideals g3 =< xq, Yo, Y1, €1, Y2, Y3, T2, Y4, 20,
T3, T4, 21 > and Igy =< xo,yo,y1,$1,y2,y3,$2,y4,zo,xg,x4,y5 > with corresponding
vectors v§ = (5,5,2) and v§ = (5,6,1). Each of which of codimension is 12.

e Over the ideal I4, we obtain the ideal Ig,.

For m=9, (4) gives;
Fy(zo, ..., 29) :moxg+...+:1:49:5+y8y9—|—...+y§’+yozgzg+...+ygzg

e Over the ideal Ig; and Igy , we obtain the ideal Iy, =< xg, Yo, 20, 1, Y1, T2, Y2, T3, Y3, 21,
x4 >. The corresponding vector v = (5,4,2) is of codimension 11.

eOver the ideal Ig3, we obtain the ideal Igo =< xq, Yo, Y1, T1, Y2, Y3, T2, Y4, 20, L3, T4, 21 >
The corresponding vector v§ = (5,5,2) is of codimension 12.

e Over the ideal Ig4, we obtain two possible ideals o3 =< xq, Yo, Y1, €1, Y2, Y3, T2, Y4, 20,
T3, T4, 21,Ys > and lgy =< :L'(),yo,yl, 1, Y2, Y3, T2, Ya, 20, T3, T4, Y5, Y > With correspond-
ing vectors v = (5,6,2) and v] = (5,7,1). Each of which of codimension is 13.

In the same way;

For m=10, (4) gives;
F10<I'0, F oo 7Z10> — ToT10 + T1X9g 4+ ...+ y(2]y10 4+ ...+ y§y4 + yozgzlo 4+ ...+ ywzg’

e Over the ideal Iy, we obtain two possible ideals [15; and 9o with corresponding
vectors vi® = (6,4, 3) and vi® = (6, 5,2). Each of which of codimension is 13.

e Over the ideal Igs, we obtain the ideal I;qs.

e Over the ideal Iy3, we obtain the ideal I;p3. The corresponding vector vi® = (6,6, 2)
is of codimension 14.

For m=11, (4) gives;
Fii(xo,...,211) = Tox11 + 21010 + ... + ygyn + ...+ ygyi + yozgzn + ...+ yuzg

e Over the ideal I1p;, we obtain the ideal I1;;. The corresponding vector vi! = (6,4, 3)
is of codimension 13.

e Over the ideal [;p2 we obtain two possible ideals I;1, and I;;3 with corresponding
vectors va! = (6,5, 3) and vil = (6,6,2). Each of which of codimension is 14.

e Over the ideal [;93, we obtain the ideal I1;3.

For m=12, (4) gives;
Fis(zo, ..., 212) = ToT1a + 21211 + ... + 98912 +... .+ Z/i + 9023212 +... .+ yuZS’

e Over the ideal I;1; and I;15, we obtain the ideal I15;. The corresponding vector
= (7,5, 3) is of codimension 15.
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e Over the ideal I;3;, we obtain two possible ideals I190 and 153 with corresponding
vectors vy = (7,6,3) and vi? = (7,7,2). Each of which of codimension is 16.

For m=13, (4) gives;
F13(£L'(), . ,2’13) = ToT13 + T1T12 + e + ygylg + e —I— yiy5 + yozgzlg —I— e —f- ylgzg’

e Over the ideal I15;, we obtain the ideal I;3;. The corresponding vector vi® = (7,5, 3)
is of codimension 15.
e Over the ideal I}55, we obtain the ideal I;35. The corresponding vector vi? = (7,6, 3)
is of codimension 16.

For m=14, (4) gives;
Fiy(zo, ..., 214) = ToZT14 + 21213 + ... + 93914 +...+ y4y§ + yozém +...+ y1423

e Over the ideal I;3;, we obtain two possible ideals I14; and 140 with corresponding
vectors vt = (8,5,4) and vi* = (8,6,3). Each of which of codimension is 17.
e Over the ideal I35, we obtain ideal I149.

For m=15, (4) gives;
Fis(zo, ..., 215) = ToT15 + T1T14 + ... + y(z)ym . - y§ 2 y023215 +...+ ylszS’

e Over the ideal I 41, we obtain the ideal I;5;. The corresponding vector vi® = (8,6,4)
is of codimension 18.

e Over the ideal I14, we obtain two possible ideals I;5 and I53. The corresponding
vector of I153 is va® = (8,7,3) with codimension 18.

For m=16, (4) gives;
F16<£L'0, Ce 7216) = Zo9T16 + T1X15 4+ ...+ y(2]y16 + ...+ y?)yﬁ + yozgzlﬁ 4+ ...+ 3/162'3

e Over the ideal I;5;, we obtain the ideal I15;. The corresponding vector vi% = (8,6,4)
is of codimension 18.

For m=17, (4) gives;
Fi7(zo, ..., 217) = ToZTi7 + 21216 + - .. + ySyn +...+ y5y§ + on§z17 +...F y1723

e Over the ideal I;4;, we obtain the ideal I;7;. The corresponding vector vi’ = (9,6,4)
is of codimension 19.
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Note that vt = v5, v2 = v

E7C.

Definiion 4.3.3. This graph is called the jet graph of the singularity.
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Remark 4.3.4. We stop the process when we obtain the weight vector W.

Remark 4.3.5. Here and below the vectors represented with red correspond to the
vectors given in E7b, the vectors represented in pink also correspond to the wvectors
gwen in E.c and the rest are obtained as the supplemented vectors.

Remark 4.3.6. The minimal resolution graph of singularity E; is as follow

5 10 17 12 8 4
vy (th vy eh v (b
I Il Il I I I

4: " b -
v v’ W 3 v? vl
@ & & &  J
o7
I
Uy

Figure 4.2: Minimal resolution graph of E-

Remark 4.3.7. So the Figure FE;c becomes

Figure 4.3: F;d

6 0 8 9 6 10 1

where uz = vs, 18 =09, 18 =03, ) =08, V10 =0} v =0} and v!? = o]

Theorem 4.3.8. (Mourtada, 2013) Let X be an hypersurface in C3 of type E;. For
m > 17, the number of irreducible components of J,,(F7) equals the number of excep-
tional curves in the minimal resolution of the singularity.

Theorem 4.3.9. (Mourtada & Plenat, 2015) The set of weight vectors corresponding
to m'" jets of B give a canonical toric minimal embedded resolution of the singularity.
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5. JET SCHEMES OF NON-ISOLATED HYPERSURFACE SINGULAR-
ITIES

In this chapter, we will consider some hypersurfaces having one dimensional singular
locus, which are called non-isolated forms of the rational triple singularities of surfaces
in C*.

5.1 Hypersurfaces with Non-Isolated Singularity

Let X be an hypersurface in C*. Assume that X is defined by one of the following
equations:
A1 p—1m—1, K, 0,m > 1.

e k>/(>m,
Pt — @+ +y +y"z+ P =0,

o k=/0<m,
B (x—yh)2 — (o + oy +y™f 2+ =0,

Bk’—l,ma k Z 2, m Z 3

o m =2/l
Baa? — (g 1y )y — eyt =0,

o m=20—1,

284 (z — yéil)zQ P gyl — )

Ck—l,f-l—la k Z 17 é Z 27

B a2 — ety — (2 4+ )y = 0.

Dk:—17 k> 17
B (o v+ 2ayF — )Yk + 2%y = 0.

E6,07

2y 42y =0,
E0,77

224y’ 4+ 2%y? =0,
E7,07

24 rPyz +yt=0.
Fr1, k> 1,

2 (v y?) 2+ 2oy + (2 + P = 0.
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Hy,n =1,
e n=3k—1;
2+ 2?y(r+ ") =0,
o n = 3k;
2B+ ayfz+ 23y =0,
o n=23k+1;

2B oyt 4 a%y? = 0.

Definition 5.1.1. These singularities are called rational triple singularities, studied
in (Tyurina, 1968).

Such an hypersurface X has its singular locus along the z-axis; so they have non-isolated
singularities. In this chapter, we are interested in understanding the jet schemes of these
hyprsurfaces X. For this let us consider:

flzotrait+. . +zpnt™ yot. . AYmt™, 20+ . A 2pt™) = Fo+tFi+...  mod (t") (5)

Our aim is to describe the jet graph and the toric embedded resolution of an hypersur-
face of one of these types. The construction process is similar to ADE-cases. In order
to determine whether an m' jet scheme is irreducible, we will determine the defining
ideal of each jet J,,(X).

5.2 Jet Schemes of an Hypersurface of type Fjy

Let X be an hypersurface of type Egy in C®. We know that X is defined by
f(z,y,2) = 2° + Pz + 2%y?

in C[z,y, z]. Hence (x,0,0) is the singular locus of X. Let us apply the equality (5):

For m=0, we have

Fo(zo, Yo, 20) = 25 + ¥ (Yoz0 + x7)

e This says that zg = yg = 0 or zp = x¢g = 0. Hence the ideals are Iy; =< g, 20 > and
T2 =< xg,y0 >. These correspond to the vectors v) = (0,1,1) and vJ = (1,0, 1). Each
of which of codimension is 2. Hence Jy(Ego) is given by

Clzo, yo, 20|

Jo(Egy) = S
0( 60) pec < Fp>

For m=1, (5) gives;

Fi(zg,...,21) = 2(2)21 + Yo (Yoy1 20 + 9(2)2’1 + Tox1Yo + ZoYh)

e Over the ideal Iy;, we obtain the ideal I;; =< g, 29 >. The corresponding vector
vi = (0,1,1) is of codimension 2.

e Over the ideal Iy, we obtain two possible ideal 15 =< xg, 2o, 21 > which is over the
generic point and I3 =< g, Yo, 2o > which is over the singular point. We have the
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ideal I1o with corresponding vector vy = (1,0,2). It is of codimension 3. Hence J;(Fgp)
is given by

C[l’o Yo, - - - Zl]
J1(Ego) = Spec AR
1( 60) p < F(), Fl >
For m=2, (5) gives;
Fy(zo,. .., 20) = 2520 + 2027 + Yozo + Yorn 21 + - .. + 2oyt + T3y + ToT2yp

e Over the ideal I;;, we obtain two possible ideals Is; =< yo,y1,20 > and [y =<
To, Yo, Z0 >. The corresponding vectors v? = (0,2,1) and v5 = (1,1, 1) are of codimen-
sion 3.

e Over the ideal I3, we obtain the jets which project on the regular axis included in
the variety. Hence this branch continuous with the vector (1,0,2). Hence Ja(Egp) is
given by

Clxo, Yo, - - -, 22]

Jo(Eeop) = S
2(Eoo) S N e

Remark 5.2.1. In the same way, the m' jet scheme of Eg is given by

for all m.
For m=3, (5) gives;

F3(xo,...z23) = 2323 + 202129 + zf + ygzg 4+ ..+ y:fzo + :Ugyoyg 4+ ...+ xlxgyg

e Over the ideal I, we obtain the ideal I3; =< yo,y1, 20, 21 >. The corresponding
vector v3 = (0,2,2) is of codimension 4.
e Over the ideal I55, we obtain the ideal I35 =< xg, o, 20,21 >. The corresponding
vector v = (1,1,2) is of codimension 4.

For m=4, (5) gives;
Fy(wo,...24) = 2524+ ...+ 2320 + Yoza + . . . YTY220 + Toyoys + - - - + T3Y0

e Over the ideal I3;, we obtain two possible ideals 141 =< o, y1, 20, 21, Y2 > and [;5 =<
Y0, Y1, 20, 21, Lo >. The corresponding vectors v{ = (0,3,2) and vy = (1,2,2) are of
codimension 5.

e Over the ideal I35, we obtain two possible ideals I45 and I3 =< %, Yo, 20, 21, T1 >.
The corresponding vector of I3, v = (2,1,2) is of codimension 5.

For m=5, (5) gives;
2 2, .3 2 2 2
Fs(xo,...25) = 2525 + ... + 2125 + Yo 25 + - .. Y1Ys20 + ToYols + - - - + TaT3Yp

e Over the ideal I4;, we obtain the ideal I5; =< o, y1, 20, 21, Y2 >. The corresponding
vector v} = (0, 3,2) is of codimension 5.
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e Over the ideal 145, we obtain the ideal 55 =< o, y1, 20, 21, o >. The corresponding
vector v5 = (1,2,2) is of codimension 5.

e Over the ideal 143, we obtain the ideal I53 =< xg, yo, 20, 21, €1, 22 >. The correspond-
ing vector v3 = (2,1,3) are of codimension 6.

In the same way;
For m=6, (5) gives;

Fs(wo,...26) = 2526 + ...+ 25 + Yoz + ... Yszo + Toyoys + - . . + T3Y5

e Over the ideal I5;, we obtain two possible ideals Is; =< yo,y1, 20, 21,%2 >. The
corresponding vector v¢ = (0, 3,2) is of codimension 5.

e Over the ideal 5, we obtain the ideal Isy. The corresponding vector v§ = (1,2,2) is
of codimension 5.

e Over the ideal I53, we obtain two possible ideals Ig3 and Igs. The corresponding
vectors v§ = (2,2,3) and v§ = (3,1,4) are of codimension 7 and 8 respectively. The
equation of Ig4 is toric so its jets are irreducible and it is continue with the vector
(3,1,4).

For m=7, (5) gives;
. 2 2 3 2 2 2
F7(ac0, . 27) = 2027+ ...+ 2523 + Yg2r + ... YaY32o + ToYoy7 + . . . + T3T4Y

e Over the ideal I, we obtain two possible ideals I7; and I75. The corresponding

vectors v! = (0,4,3) and vs = (1,3,3) is of codimension 7.

e Over the ideal Igy, we obtain the ideals I75 and I73. The corresponding vector of I3,
= (2,2,3) is of codimension 7.

e Over the ideal Ig3, we obtain the ideal I73.

For m=8, (5) gives;
Fy(wo,...28) = 2828 + ...+ 2022 + Yoz + ... yoyszo + Toyoys + . .. + T3Y2

e Over the ideal I7;, we obtain two possible ideals Ig; and Ig;. The corresponding
vectors v§ = (0,5,3) and v§ = (1,4, 3) are of codimension 8.

e Over the ideal I75, we obtain two possible ideals Igy and Ig3. The corresponding
vector of Ig3, v§ = (2,3, 3) is of codimension 8.

e Over the ideal I73, we obtain two possible ideals Ig3 and Ig4. The corresponding
vector of Igy, v§ = (3,2, 3) is of codimension 8.

For m=9, (5) gives;

Fo(zo,...20) = 2820+ ... + 25 + ydzo + ... yszo + T2yoyo + . . . + T4T5Y7

e Over the ideal Ig;, we obtain the ideal Iy;. The corresponding vector v{ = (0,5,4) is
of codimension 9.

e Over the ideals Igy, we obtain the ideal Ig. The corresponding vector v§ = (1,4,4)
is of codimension 9.

e Over the ideal Ig3, we obtain the ideal Ig3. The corresponding vector U3 (2,3,4) is
of codimension 9.



33

e Over the ideal Ig;, we obtain the ideal Ioy. The corresponding vector v] = (3,2, 4) is
of codimension 9 and at the same time the vector (3,2,3) continue since it is smooth
so it is irreducible.

For m=10, (5) gives;
Fio(wo, ... 210) = 25210 + - .. + 2524 + Yoz10 + - . . Y3YaZo + Toyoyro + - . . + TEYS

e Over the ideal Iy, we obtain two possible ideals I1g; and I1go. The corresponding
vectors v1? = (0,6,4) and v3° = (1,5,4) are of codimension 10.

e Over the ideal Iy, we obtain two possible ideals 192 and I193. The corresponding
vector of I1g3, vi® = (2,4, 4) is of codimension 10.

e Over the ideal [y3, we obtain two possible ideals I1g3 and I194 The corresponding
vector of I1gy, v = (3,3,4) is of codimension 10.

e Over the ideal Ioy, we obtain the ideal Iy and at the same time the vector (3,2,4)
continue since it is smooth so it is irreducible.

For m=11, (5) gives;
F 2 2 3 2 2 2
1 (zo, .. 211) = 2521 + .-+ 2320 F Yoz + - Ysyizo + 2gYoyn + -+ TsTeY;

e Over the ideal I1p;, we obtain the ideal I;;;. The corresponding vector vi! = (0, 6,4)
is of codimension 10.
e Over the ideal I}y, we obtain the ideal I1;5. The corresponding vector vi! = (1,5,4)
is of codimension 10.
e Over the ideal I}g3, we obtain the ideal I1;3. The corresponding vector vi! = (2,4, 4)
is of codimension 10.
eOver the ideal I104, we obtain the ideal I;14. The corresponding vector vi' = (3,3,4)
is of codimension 10.

For m=12, (5) gives;
Fio(xg,...212) = 2(2)212 4+ ...+ zi’ + yg’zlg + .. .yizo + J:gyoylg + ...+ x%y%

e Over the ideal 111, we obtain the ideal I15;. The corresponding vectors U%2 = (0,6,4)
is of codimension 10.
e Over the ideal I}15, we obtain the ideal I155. The corresponding vector vi? = (1,5,4)
is of codimension 10.
e Over the ideal I};3, we obtain the ideal I153. The corresponding vector vi? = (2,2, 4)
is of codimension 10.
e Over the ideal I14, we obtain the ideal I194. The corresponding vector Uf = (3,3,4)
is of codimension 10.

For m=13, (5) gives;
_ 2 2 3 2 2 2
F13([L'0, c. 2’13) = 20<13 + ...+ 245 + Yo~<13 + ... Y, Y520 + ToYolY13 + ...+ TeL7Yq

e Over the ideal 151, we obtain two possible ideals I13; and I;33. The corresponding
vectors v1® = (0,7,5) and v3® = (1,6,5) are of codimension 12.
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e Over the ideal 199, we obtain two possible ideals I130 and I133. The corresponding
vector of I35, vi3 = (2,5,5) is of codimension 12.

e Over the ideal I3, we obtain two possible ideals I;33 and I134. The corresponding
vector vj? = (3,4,5) is of codimension 12.

e Over the ideal I194, we obtain two possible ideals I134 and I135. The corresponding
vector vi3 = (4,3,5) is of codimension 12.

For m=14, (5) gives;
F14([)30, . 214) = 28214 + ...+ Z4Z§ + y8’214 + ... y4y§zo + l‘gyoym + ...+ x$y§

e Over the ideal I3, we obtain two possible ideals I4; and [145. The corresponding
vectors vi* = (0,7,5) and vi* = (1,7,5) are of codimension 12 and 13 respectively.

e Over the ideal I35, we obtain two possible ideals I149 and I43. The corresponding
vector of I3, v3* = (2,6,5) is of codimension 13.

e Over the ideal [133, we obtain two possible ideals I143 and [144. The corresponding
vector of I 4, vi* = (3,5,5) is of codimension 13.

e Over the ideal I35, we obtain two possible ideals I144 and I145. The corresponding
vector of 145, v} = (4,4,5) is of codimension 13.

e Over the ideal I35, we obtain the ideal I 45 and at the same time the vector (4, 3, 5)
continue since it is smooth so it is irreducible.

For m=15, (5) gives;
F15(1'0, . Zl5> — 23215 + ...+ Zg) + y82’15 EF o g .ngO + x%yoylg, + ...+ ;C7338y(2)

e Over the ideal I14;, we obtain the ideal I;5;. The corresponding vector vi% = (0,8, 6)
is of codimension 14.
e Over the ideal I145, we obtain the ideal I155. The corresponding vector v3® = (1,7,6)
is of codimension 14.
e Over the ideal I143, we obtain the ideal I;53. The corresponding vector vi® = (2,6, 6)
is of codimension 14.
e Over the ideal 144, we obtain the ideal [;54. The corresponding vector vf’ =(3,5,6)
is of codimension 14.
e Over the ideal I45, we obtain the ideal I;55. The corresponding vector vi® = (4,4, 6)
is of codimension 14.

For m=186, (5) gives;
Fig(xo,...215) = zgzlg 4+ .+ z§z6 + yg’zlﬁ + .. .ygygzo + x%yoylﬁ + ...+ x§y§

e Over the ideal I 51, we obtain two possible ideals I;5; and I162. The corresponding
vectors v1® = (0,9,6) and v3® = (1,8,6) are of codimension 15.

e Over the ideal I 50, we obtain two possible ideals I14o and I143. The corresponding
vector of Iig3, v3® = (2,7,6) is of codimension 15.

e Over the ideal I,53, we obtain two possible ideals I3 and I164. The corresponding
vector of I1g4, V4% = (3,6, 6) is of codimension 15.

e Over the ideal I 54, we obtain two possible ideals I;g4 and I45. The corresponding
vector of I1g5, vi = (4,5,6) is of codimension 15.

e Over the ideal [155, we obtain two possible ideals I1g5 and [166. The corresponding
vector of g6, vi¢ = (5,4, 6) is of codimension 15.
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Remark 5.2.2. Here and below the vectors represented with red correspond to the
vectors given in Fgob, the vectors represented in pink also correspond to the vectors
given in Egoc and the rest are obtained as the supplemented vectors.

Remark 5.2.3. The minimal resolution graph of singularity Egq is as follow

4 10 16 5
(2 vy Vg v3 vfl’ vég
I ll Il I Il l
|4
v? v? w v’ v® v’
. = = = °
ol
Il
U4

Figure 5.2: Minimal resolution graph of Fg

Remark 5.2.4. The minimal toric embedded resolution graph of Fgy is as follow

Figure 5.3: Egod

where v? = v, v =0, v =0, V10 = vl VM =03, V2 =08, V1B =, vy = vl and
us = ’Uil.

Proposition 5.2.5. Let X be an hypersurface in C* of type Egy. For m > 16, the
number of irreducible components of J,(FEeo) equals the number of exceptional curves
on the minimal resolution of the singularity.

Proposition 5.2.6. The set of weight vectors corresponding to m'™ jets of Egy give a
canonical toric minimal embedded resolution of the singularity.

5.3 Jet Schemes of an Hypersurface of type Fr
Let X be an hypersurface of type Ero in C*. We know that X is defined by
fla,y,2) = 2° + 2?yz +

in Clz,y, z]. Hence (z,0,0) is the singular locus of X.
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Remark 5.3.1. The m'* jet scheme of Eqq is given by

for all m.
Let us apply the equality (5):

For m=0, we have
Fo(o, 40, 20) = 20 + yo(23z0 + 47)

e This says that yyg = zp = 0. Hence the ideal is Iy =< yg, 2o >. The corresponding
vector v = (0,1, 1) is of codimension 2.

For m=1, (5) gives;
Fl(.iljo, ey 2’1> = 20(2021 + x%yl) —+ yo(l’ol'lZo + iL’ng -+ ygy1)

e Over the ideal [y, we obtain the ideal Iy =< ¥y, 29 >. The corresponding vector
v = (0,1,1) is of codimension 2.

For m=2, (5) gives;
2 2 2 3 2 2
Fy(xo,...,22) = 2522 + 2021 + ToZ2YoZo + - - . + T5y121 + Yo¥2 + ViV

e Over the ideal I;, we obtain three possible ideals Iy, =< o, 20, Y1, >, loo =<
Yo, 20, 21, > and I3 =< yo, 20, T9 >. The corresponding vectors v = (0,2,1), v3 =
(0,1,2) and v3 = (1,1, 1) are of codimension 3.

For m=3, (5) gives;
) 3 3 2 3
F3(zo,...,23) = 2523 + 202122 + 27 + ... + Yoys + Yoy1y2 + Yoys

e Over the ideal I, we obtain the ideal I3; =< yo,y1, 20,21 >. The corresponding
vector v3 = (0,2,2) is of codimension 4.

e Over the ideal I53, we obtain three possible ideals I31, I3 =< o, 20, 21, 22 > and
I33 =< 9o, 20, 21, Tg >. The corresponding vector v3 = (0,1,3) and v = (1,1,2) are of
codimension 4.

e Over the ideal 53, we obtain the ideal I33 with the corresponding vector vi = (1, 1,2).

For m=4, (5) gives;
Fy(zo,...,23) = 2021+ ... + 2122 + ToTaloZo + - .. TgYo2a + Yoya + - .- + U

e Over the ideal I3;, we obtain three possible ideals 141 =< yo, 20, Y1, 21, Y2 >, Lo =<
Yo, 20, Y1, 21, 22 > and I3 =< %o, 20,1, 21,To >. The corresponding vectors v{ =
(0,3,2), v3 = (0,2,3) and vi = (1,2,2) are of codimension 5.

e Over the ideal I35, we continue the vector (0,1, 3).

e Over the ideal I33, we obtain the ideal I,3.
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For m=5, (5) gives;
2 2 2 3 3
Fs(xo,...,25) = 2525 + ... + 2125 + ToTsYozo + - - - TYo2s + YoUs + - - - + Y1 Yo

e Over the ideal I;;, we obtain three possible ideals I5; =< o, 20, Y1, 21, Y2, Y3 >,
I, =< yo,zo,yl,zl yg, 2o > and Is3 =< o, 20, Y1, 21, Y2, Lo >. The corresponding
vectors v? = (0,4,2), v5 = (0,3,3) and v = (1, 3,2) are of codimension 6.

e Over the ideal 1,5, we obtain three possible ideals I5o, 154 =< Yo, 20, Y1, 21, 22, 23 > and
Iss =< Yo, 20, Y1, 21, 22, Tg >. The corresponding vectors v = (0,2,4) and v2 = (1,2, 3)
are of codimension 6.

e Over the ideal I3, we obtain the ideal I54 =< o, 20, Y1, 21, £o > The corresponding
vector v = (1,2,2) is of codimension 5.

For m=6, (5) gives;
2 3 2 3 2,2
Fo(xo,...,26) = 2526 + ... + 25 + ToTeYo20 + - - - TgYo26 + YoYs + - - - + Y13

e Over the ideal ]53, we obtain the ideal Ig; =< o, 20, Y1, 21, Y2, To, 22 >. The corre-
sponding vector v® = (1,3, 3) is of codimension 7.

e Over the ideal I55, we obtain the ideal Iso =< o, 20, Y1, 21, 22, To >. The correspond-
ing vector v§ = (1,2, 3) is of codimension 6.

e Over the ideal I55, we obtain the ideal Ig; wit the corresponding vector v§ = (1,2, 3).

For m=7, (5) gives;
Fr(xo,...,27) = 2327 4+ ...+ zgzg + Tox7YoZo + - - .:L’(Z)yoz7 + yg’y7 + ...+ y%y2y3

e Over the ideal 161, we obtain the ideal I7; =< yo, 20, Y1, 21, Y2, To, 22 >. The corre-

sponding vector v] = (1,3,3) is of codimension 7.

e Over the ideal I, we obtain three possible ideals I71, I79 =< yo, 20, yl, 21, X, 22, 23 >

and I3 =< o, 20, Y1, 21, To, 22,21 >. The corresponding vectors vy = (1,2,4) and
= (2,2,3) are of codimension 7.

In the same way;
For m=8, (5) gives;
Fy(zo,...,28) = 2528 + ... + 2225 + ToTsYoZo + - - - ToYozs + Yoys + - - - + U3

e Over the ideal I7;, We obtain three possible ideals Ig;, Igo and Ig3. The corresponding
vectors v = (1,4,3), v5 = (1,3,4) and v§ = (2,3, 3) are of codimension 8.

e Over the ideal 5, we obtain the ideal Ig, with the corresponding vector v§ = (1, 3,4).
e Over the ideal I73, we obtain the ideal Ig3 with the corresponding vector v§ = (2, 3, 3).

For m=9, (5) gives;
2 3 2 3 3
Fy(xo,...,29) = 2529 + ... + 25 + ToZgYo20 + - - - TgYoZ9 + YoYo + - - - + Y53

e Over the ideal Ig;, we obtain the ideal Ig;. The corresponding vector v] = (1,4,4) is
of codimension 9.
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e Over the ideal I3y, we obtain three possible ideals Iy;, Igo and Ig3. The corresponding
vectors vy = (1,3,5) and v = (2,3,4) are of codimension 9.

e Over the ideal Ig3, we obtain the ideal I3 with the corresponding vector v = (2,3, 4)
is of codimension 9.

For m=10, (5) gives;
2 2 2 3 2,2
Fio(zo, ..., 210) = 25210 + - - - + 2324 + ToT10Yo20 + - - - TiYoz10 + YoY10 + - - - + Y2 V3

e Over the ideal Iy, we obtain three possible ideals I191, [102 and Ijp3. The corre-
sponding vectors v’ = (1,5,4), vi® = (1,4,5) and vi® = (2,4,4) are of codimension
10.

e Over the ideal Igy, we obtain three possible ideals 192, 194 and I;05. The correspond-
ing vectors v;° = (1,3,6) and v = (2,3,5) are of codimension 10.

e Over the ideal Iy3, we obtain the ideal I1p5. The corresponding vector v’ = (2,3,4)
is of codimension 9.

For m=11, (5) gives;
FH(I(), . ,ZH> = 23211 + ...+ ZgZZ + Xox11Yo20 + - - - 17%3/0211 + ygyll 4+ ...+ y2y§

e Over the ideal I1g3, we obtain the ideal I1;;. The corresponding vector vil = (2,4, 4)
is of codimension 10.

e Over the ideal I1p5, we obtain the ideal I1;5. The corresponding vector vy! = (2,3, 5)
is of codimension 10.

e Over the ideal [0, we obtain three possible ideals I111, 112 and I;1;3. The corre-
sponding vector vi' = (3,3, 4)is of codimension 10.

For m=12, (5) gives;
Fia(xo, ..., 212) = 23212 + ...+ Zi + ToZ12Yo20 + - - - x3y0z12 + yS’ym +...+ y§

e Over the ideal 11, we obtain the ideal I15;. The corresponding vector vi? = (2,4,5)
is of codimension 11.

e Over the ideal [15, we obtain the ideal I;5; with the corresponding vector U%l =
(2,4,5).

e Over the ideal 13, we obtain the ideal I155. The corresponding vector v3? = (3,4, 5)
is of codimension 12.

For m=13, (5) gives;
Fis(xo, ..., 2z13) = 232’13 +...+ 222’5 + ZoZ13Yo2o + - - ~95(2)90213 + ?JS?JB +...F y§y4

e Over the ideal I;5;, we obtain three possible ideals I131, I130 and Ii33. The corre-
sponding vectors vi® = (2,5,6), vi® = (2,4,6) and vi®> = (3,4,5) are of codimension
12.

e Over the ideal I159, we obtain the ideal I;33 with the corresponding vector vi3 =
(3,4,5).
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For m=14, (5) gives;
Fiy(zo, ..., 214) = 2(2)214 +...+ Z4Z§ + ZoZ14Y020 + - - -x(Q)?JOZM + 98914 + ...+ ygyi

e Over the ideal I;3;, we obtain the ideal I14;. The corresponding vector vt = (2,5, 6)
is of codimension 13.

e Over the ideal [;35, we obtain three possible ideals I141, 142 and I143. The corre-
sponding vectors va? = (2,4,7) and vi* = (3,4,6) are of codimension 13.

e Over the ideal I35, we obtain the ideal I144. The corresponding vector vt = (3,4,5)
is of codimension 12.

For m=15, (5) gives;
_ .2 3 2 3 3
F15(I0, e 7215) = 20215 —f- e —|— Z5 —f- ToT15Yo<0 —|— e I0y0215 —f- y0y15 + ... —|— y3y4

e Over the ideal 143, we obtain the ideal I;5;. The corresponding vector vi® = (3,4, 6)
is of codimension 13.
e Over the ideal I,44, we obtain the ideal I5; with the corresponding vector vi® =

(3,4,6).
For m=16, (5) gives;
Fig(2o, - .., 216) = 25216 + - . . + 2526 + ToT16Y0%0 + - - - TaYo216 + Yoyi6 + - - - + Ui

e Over the ideal I15;, we obtain the ideal I15;. The corresponding vector vi® = (3,5, 6)
is of codimension 14.

For m=17, (5) gives;
F17(I0, . ,Zl7> = 23217 4+ ...+ Z5Zg + ToT17YoR0 + ... $gy0217 + ygyn + ...+ yi’y5

e Over the ideal I, we obtain three possible ideals I171, 172 and I;73. The corre-
sponding vectors vi’ = (3,6,6), vi” = (3,5,7) and vi” = (4,5,6) are of codimension
15.

For m=18, (5) gives;
2 3 2 3 2,2
Flg({['(), ey 218) = 2’0218 + e + 2’6 —f- ToT18Yo<0 —I— e Il'oyozlg + y0y18 —I— e —f- y4y5

e Over the ideal I;7;, we obtain the ideal I1g;. The corresponding vector vi® = (3,6,7)
is of codimension 16.

e Over the ideal I;79, we obtain three possible ideals Ig1, 182 and I;33. The corre-
sponding vectors v3® = (3,5,8) and vi® = (4,5,7) are of codimension 16.

e Over the ideal I;73, we obtain the ideal I;g3 with the corresponding vector vi® =
(4,5,7).

For m=19, (5) gives;

Fig(zo, ..., 219) = 23219 +.. .+ 2’3,27 + ToZ19Yo20 + - - ~5’3§3/0219 + ygle + ...+ y4y§’

e Over the ideal I;g3, we obtain the ideal I19;. The corresponding vector vi® = (4,5,7)
is of codimension 16.
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For m=20, (5) gives;
Fgo(xo, .. ,220) = 23220 + ...+ 2623 + ToX20Yo20 + - .- Jigyozgo + y3y20 + ...+ yg

e Over the ideal 191, we obtain the ideal I5y;. The corresponding vector v’ = (4,6,7)
is of codimension 17.

For m=21, (5) gives;
12 2 3 2 3 3
21(To, .- 221) = 25221 + ..+ 25 + ToTaYoZo + - - TYozar + Yolo1 + - -+ Yi¥s

e Over the ideal I5;, we obtain the ideal I5;;. The corresponding vector vi! = (4,6, 8)
is of codimension 18.

For m=22, (5) gives;
Foo(xg, ..., 290) = z§z22 T z?zg + ToTa2YoZo + - - .x%yozgg + y3y22 + ...+ ygyG

e Over the ideal I5;1, we obtain three possible ideals 55, Is99 and Is93. The corre-
sponding vectors vi? = (4,7,8), vi® = (4,6,9) and vi® = (5,6,8) are of codimension
19.
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Figure 5.4: Jet graph of Er
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Ui4 - (3’ 47 5) (37 47 6) U%6 - (37 57 6) U%7 - <3a 67 6) (37 5 7)
(4a 57 6) Ul (37 67 7) U? - (37 i) 8) U?l)g = (4a 57 7) Ul - (4 5 7)
20 = (47 67 7) U1 (47 67 8) Ul (47 7a 8) ng = (47 67 9) (57 67 9)

Remark 5.3.2. Here and below the vectors represented with red correspond to the
vectors gien in FErgb, the vectors represented in pink also correspond to the vectors
gwen in Eqoc and the rest are obtained as the supplemented vectors.

Remark 5.3.3. The minimal resolution graph of singularity E-q is as follow

4 12 22 18 14 10 7
I Il I I I H Il
6 |4
v? v3 W v’ v v” vt
l ol
I
11
Ug

Figure 5.5: Minimal resolution graph of Frg

Remark 5.3.4. So the Figure Fzoc becomes

€2

Figure 5.6: E7yd

where uz = v, v3 = V3, Vg = V3 Vg = VY, V19 = vg and vy = v3.

Proposition 5.3.5. Let X be an hypersurface in C* of type Evy. For m > 22, the
number of irreducible components of J,(Er) equals the number of exceptional curves
on the minimal resolution of the singularity.

Proposition 5.3.6. The set of weight vectors corresponding to m'" jets of Eqo give a
canonical toric minimal embedded resolution of the singularity.

5.4 Jet Schemes of an Hypersurface of type Fy;

Let X be an hypersurface of type Ey; in C?. We know that X is defined by

flay.z) =2"+y" + a7y
in Clz,y, z]. Hence (z,0,0) is the singular locus of X.
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Remark 5.4.1. The m'* jet scheme of Eyr is given by

C[Io, Yo, z05 - - -, ZWZ]

Jm(Eg7) = S
(Eor) pee < Fy,..., Fp >

for all m.
Let us apply the equality (5):

For m=0, we have
Fo(o, Y0, 20) = 25 + Y (Yo + )

e This says that yy = 2y = 0. Hence the ideal Iy =< vg,29 >. The corresponding
vector v = (0,1, 1) is of codimension 2.

For m=1, (5) gives;
Fi(0,. ., 21) = 2521 + Yo(Yoyr + ToT1yo + T5y1)

e Over the ideal [y, we obtain the ideal Iy =< ¥y, 29 >. The corresponding vector
v = (0,1,1) is of codimension 2.

For m=2, (5) gives;
Fy(wo, ..., 22) = z0(2022+27) + Yo Yoyt + Yy + ToTayo + T Yo + 2oy2) + y1 (Tgy1 + ToT1yo)

Over the ideal I3, we obtain two possible ideals o1 = (yo, 41, 20) and Iy = (g, Yo, 20)-
The corresponding vectors v? = (0,2,1) and v3 = (1,1, 1) are of codimension 3.

For m=3, (5) gives;
F3(xo, ..., 23) :zgz3+...+zf’+yé‘y3+...+y§yi’+xoaz3y8+...+$gyoy3

e Over the ideal I, we obtain the ideal I3; =< yo,y1, 20,21 >. The corresponding
vector v3 = (0,2,2) is of codimension 4.
e Over the ideal I3, we obtain the ideal I35 =< x¢, Yo, 20,21 >. The corresponding

vector v = (1,1,2) is of codimension 4.

For m=4, (5) gives;
2 2 4 4 2 2
Fy(zo,...,24) = 2524+ ...+ 220 + Ygls + - - - + Yoy + Toxayy + - - - + TGYoYs

e Over the ideal I3, we obtain two possible ideals 141 =< o, y1, 20, 21, y2 > and [;5 =<
Y0, Y1, 20, 21, Tg >. The corresponding vectors v{ = (0,3,2) and vy = (1,2,2) are of
codimension 5.

e Over the ideal I35, we obtain two possible ideals I45 and I3 =< %, Yo, 20, 21, T1 >.
The corresponding vector of I;3, v = (2,1,2) is of codimension 5.

For m=25, (5) gives;

F5(x0,...,z5):z§z5—|—...—i—zlzg—|—yé‘y5—i—...—i—yf—i—xoxsyg—|—...—|—x3yoy5
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e Over the ideal I4;, we obtain the ideal I5; =< yo, y1, 20, 21, y2 >. The corresponding
vector v} = (0, 3,2) is of codimension 5.

e Over the ideal 145, we obtain the ideal I55 =< o, y1, 20, 21, o >. The corresponding
vector v5 = (1,2,2) is of codimension 5.

e Over the ideal I3, we continue with the vector (2,1,2).

For m=6, (5) gives;
_ .2 3 4 4 2 2
Fﬁ(xo,...,zﬁ) =292+ ...+ 25 +Yo¥Ys + ... +Y1Ys + ToTeYg + - .. + TpYoYs

e Over the ideal I5;, we obtain the ideal Is; =< yo, y1, 20, 21, ¥2 >. The corresponding
vector v§ = (0, 3,2) is of codimension 5.
e Over the ideal I5,, we obtain the ideal Igo =< yo, y1, 20, 21, To >. The corresponding
vector v5 = (1,2,2) is of codimension 6.

In the same way;
For m="7, (5) gives;

Fr(xo,...,27) = z(2)27 + . 4 2323 +y§y7 + ... —|—yfy§ +x0x7y§ + ... —i—x%ygw

e Over the ideal I, we obtain two possible ideals I7; and I75. The corresponding
vector v] = (0,4,3) and v] = (1,3,3) are of codimension 7.

e Over the ideal Iy, we obtain two possible ideals I75 and I73. The corresponding
vector of Ir3, v = (2,2,3) is of codimension 7.

For m=8, (5) gives;
Fs(zo,...,28) = z§z8 4+ ...+ 22233 + yéyg + ...+ y%yg’ + :ongyg +... 4+ xgyoyg

e Over the ideal I7;, we obtain two possible ideals Ig; and Ig;. The corresponding
vectors v§ = (0,5, 3) and v§ = (0,5, 3) are of codimensoin 8.

e Over the ideal I;5, we obtain two possible ideals Ig; and Ig3. The corresponding
vector of Ig3, v§ = (2,3,3) is of codimensoin 8.

e Over the ideal [73, we obtain two possible ideals Ig3 and Ig4. The corresponding
vector of gy, v§ = (3,2, 3) is of codimensoin 8.

For m=9, (5) gives;
_ .2 3 4 4 2 2
Fg(:lro,...,zg) =242+ ...+ 23+ YgYo + ... + Y1Ys + ToTolYg + - .. + TpYoYo

e Over the ideal Ig;, we obtain the ideal Iy;. The corresponding vector v{ = (0,5,4) is
of codimensoin 9.
e Over the ideal I3y, we obtain the ideal Igy. The corresponding vector v§ = (1,4,4) is
of codimensoin 9.
e Over the ideal Ig3, we obtain the ideal Igz. The corresponding vector v§ = (2, 3,4) is
of codimensoin 9.
e Over the ideal Iy, we obtain the ideal Ioy. The corresponding vector v] = (3,2,4) is
of codimensoin 9.
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For m=10, (5) gives;
F .2 2 4 5 2 2
10(I0, RN 210) = Zp*10 + ...+ 2324 + YoY10 + ...+ Yo + ToT10Yg + ...+ ToYoY1o

e Over the ideal Iy, we obtain two possible ideals I1g; and I1g2. The corresponding
vectors v1? = (0,6,4) and v3° = (1,5,4) are of codimensoin 10.

e Over the ideal Iy, we obtain two possible ideals 192 and I93. The corresponding
vector of Ijg3 v3° = (2,4,4) is of codimensoin 10.

e Over the ideal Iy3, we obtain two possible ideals I 193 and I1g4. The corresponding
vector of I1gy v}’ = (3,3,4) is of codimensoin 10.

e Over the ideal Iy, we obtain the ideal I1o,.

For m=11, (5) gives;
) 2 4 4 2 2
Fii(zo, ..., 211) = 25211 + .+ 2325 + Yoy + - .- + Yoys + Toxuyg + - -+ ToYoyn

e Over the ideal I}4;, we obtain the ideal I;;;. The corresponding vector vi! = (0,6,4)
is of codimensoin 10.
e Over the ideal I1p2, we obtain the ideal I115. The corresponding vector vy! = (1,5,4)
is of codimensoin 10.
e Over the ideal I}g3, we obtain the ideal I;13. The corresponding vector vil = (2,4, 4)
is of codimensoin 10.
e Over the ideal 1oy, we obtain the ideal I1;4. The corresponding vector v}l = (3,3, 4)
is of codimensoin 10.

For m=12, (5) gives;
Fiao(xg, ..., 2z12) = zgzu + ...+ sz + yé‘ylz + ..+ yg’yg + a:oxuyg +... .+ x%yoylg

e Over the ideal I11;, we obtain two possible ideals I19; and I155. The corresponding
vectors v12 = (0,7,5) and vi? = (1,6,5) is of codimensoin 12.

e Over the ideal I115, we obtain two possible ideals I199 and I123. The corresponding
vector of a3, v3% = (2,5,5) is of codimensoin 12.

e Over the ideal I113, we obtain two possible ideals I153 and I194. The corresponding
vector of I1ay, vi2 = (3,4,5) is of codimensoin 12.

e Over the ideal I114, we obtain two possible ideals I194 and I155. The corresponding
vector of I1o5, vi% = (4,3,5) is of codimensoin 12.

For m=13, (5) gives;
F ) 2 4 2.3 2 2
13(z0, ..., 213) = 25213 + -+ 208 T Yotz + - F Y5Ys + Toxizyp + - - -+ ToYoYis

e Over the ideal 195, we obtain the ideal I;3;. The corresponding vector 0%3 = (1,6,5)
is of codimensoin 12.
e Over the ideal I}53, we obtain the ideal I135. The corresponding vector vi? = (2,5,5)
is of codimensoin 12.
e Over the ideal I}y, we obtain the ideal I133. The corresponding vector vi? = (3,4, 5)
is of codimensoin 12.
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e Over the ideal I}55, we obtain the ideal I;34. The corresponding vector v}? = (4,3,5)
is of codimensoin 12.

For m=14, (5) gives;
) 2 4 4 2 2
Fia(zo, ..., 214) = 2521 + ... + 2025 + YgWra + - - + YoUs + Tox1ayy + - - + T5YoY1a

e Over the ideal I 31, we obtain two possible ideals I14; and I145. The corresponding
vectors vi* = (1,7,5) and vi? = (2,6,5) are of codimensoin 13.

e Over the ideal I35, we obtain two possible ideals I14o and I143. The corresponding
vector of I3, vi* = (3,5,5) is of codimensoin 13.

e Over the ideal I133, we obtain two possible ideals I143 and I144. The corresponding
vector of T4, vi* = (4,4,5) is of codimensoin 13.

e Over the ideal I 134, we obtain two possible ideals I44 and I145. The corresponding
vector of I1y5, vi* = (5,3,5) is of codimensoin 13.

For m=15, (5) gives;
.2 3 4 5 2 2
F15<£C0, S . 7215) = 2’0215 4+ ...+ Z5 —+ y0y15 + ...+ y3 + Z'0£C115y0 4+ ...+ x0y0y15

e Over the ideal I45, we obtain the ideal I;5;. The corresponding vector vi® = (2,6, 6)
is of codimensoin 14.
e Over the ideal I143, we obtain the ideal I155. The corresponding vector vy® = (3,5, 6)
is of codimensoin 14.
e Over the ideal I;44, we obtain the ideal I;53. The corresponding vector vi® = (4,4, 6)
is of codimensoin 14.
e Over the ideal I145, we obtain the ideal I;54. The corresponding vector v}® = (5,4, 6)
is of codimensoin 15.

For m=186, (5) gives;
2 2 4 4 2 2
Fig(wo, ..., 216) = 25216 + - .- + 2526 + Yg¥re + - - - + Y3ya + ToZ16Ys + - - - + T5YoYe

e Over the ideal I 51, we obtain two possible ideals I;5; and I145. The corresponding
vectors v1% = (2,7,6) and v3® = (3,6, 6) are of codimensoin 15.

e Over the ideal [155, we obtain two possible ideals I1go and [163. The corresponding
vectors vi® = (4,5, 6) is of codimensoin 15.

e Over the ideal I153, we obtain two possible ideals I3 and I164. The corresponding
vectors v;® = (5,4, 6) is of codimensoin 15.

e Over the ideal I154, we obtain the ideal I144.

For m=17, (5) gives;
2 2 4 3 2 2 2
Fir(xo, ..., 217) = 25217 + ... + 2525 + Yot + -+ Y3y + ToTiryy + - .-+ 2gYotn7

e Over the ideal 152, we obtain the ideal I17;. The corresponding vector vi’ = (3,6, 6)
is of codimensoin 15.
e Over the ideal 143, we obtain the ideal I175. The corresponding vector vi7 = (4,5, 6)
is of codimensoin 15.
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e Over the ideal I164, we obtain the ideal I173. The corresponding vector vi” = (5,4, 6)
is of codimensoin 15.

For m=18, (5) gives;
Fig(xo,...,218) = 2(2)218 +...+ Zg’ + yéfUlS +...+ yiyi + $0$18y§ +...+ xﬁyoym

e Over the ideal I171, we obtain two possible ideals I;g; and I1g5. The corresponding
vectors v1® = (3,7,7) and vi® = (4,6,7) are of codimensoin 17.

e Over the ideal I75, we obtain two possible ideals I1go and I133. The corresponding
vector vi® = (5,5,7) si of codimensoin 17.

e Over the ideal I,73, we obtain two possible ideals I;g3 and I1z4. The corresponding
vector vi® = (6,4, 7) si of codimensoin 17.

For m=19, (5) gives;
F19<LUO, C. 7219> = 2(2]219 4+ ...+ Z§Z7 =+ yéylg 4+ ...+ ygyi + wo.ilflgyg 4+ ...+ :cgyoylg

e Over the ideal I1gy, we obtain the ideal I19;. The corresponding vector vi? = (4,6,7)
is of codimensoin 17.
e Over the ideal I;g3, we obtain the ideal I1g5. The corresponding vector vi? = (5,5,7)
is of codimensoin 17.
e Over the ideal I1g4, we obtain the ideal I193. The corresponding vector vi? = (6,4,7)
is of codimensoin 17.

For m=20, (5) gives;
Fgo(Io, ey 220) = ZgZQO + ...+ ZGZ’? + yéygo + ...+ ’yi + ZL‘QIQOy% + ...+ ZL‘gyOyQO

e Over the ideal I19;, we obtain two possible ideals I5y; and I5p5. The corresponding
vectors vi¥ = (4,7,7) and v3° = (5,6,7) are of codimensoin 18.

e Over the ideal I199, we obtain two possible ideals I5p and I593. The corresponding
vector of Iz v3° = (6,5,7) is of codimensoin 18.

e Over the ideal 193, we obtain the ideal I5g3.

For m=21, (5) gives;
) 3 4 4 2 2
Fo(xo, ... 201) = 2520 + ... + 20 + YgYor + - .. + YsUs + ToZa1yy + - .. + TYoYar

e Over the ideal I5y,, we obtain the ideal I5;;. The corresponding vector vi! = (5,6, 8)
is of codimensoin 19.
e Over the ideal I3, we obtain the ideal I5;5. The corresponding vector v3! = (6,5, 8)
is of codimensoin 19.

For m=22, (5) gives;
) 2 4 3.2 2 2
Foo(xo, ..., 290) = 25200 + ... + 2528 + YglYa2 + - - - + YyUs + ToTaoyy + - -« + TYoYo

e Over the ideal 511, we obtain two possible ideals Is5; and I599. The corresponding
vectors v¥% = (5,7,8) and v3? = (6,6, 8) are of codimensoin 20.
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e Over the ideal 515, we obtain two possible ideals Iz and I593. The corresponding
vectors v?3 = (7,5, 8) is of codimensoin 20.

For m=23, (5) gives;
2 2 4 2 3 2 2
Fos(xo, ..., 203) = 25203 + ... + 2725 + YoYo3 + - .. + ViV + ToTasyy + - - - + T3YoY2s

e Over the ideal Iy, we obtain the ideal I53;. The corresponding vector v = (6,6, 8)
is of codimensoin 20.
e Over the ideal 593, we obtain the ideal I535. The corresponding vector v§3 = (7,5,8)
is of codimensoin 20.

For m=24, (5) gives;
Fos(xo, ..., 20) = 23224 + ...+ zé” + y§y24 +...+ y4y§ + $09€24y§ +...+ 95(2)90?/24

e Over the ideal 531, we obtain two possible ideals Is4; and Io45. The corresponding
vectors vt = (6,7,9) and v3? = (7,6,9) are of codimensoin 22.

e Over the ideal I35, we obtain two possible ideals Is4o and Io43. The corresponding
vector of Ioy, v3* = (8,5,9) is of codimensoin 22.

For m=25, (5) gives;
F25(l‘0, ey 225) = 2’3225 + ...+ Zng —+ yéygg, 4. .+ ’yg + $0$25y(2) + ...+ {23'(2)’3/on5

e Over the ideal Iy, we obtain the ideal I55;. The corresponding vector v¥® = (7,6,9)
is of codimensoin 22.
e Over the ideal 543, we obtain the ideal I5s5. The corresponding vector v3® = (8,6,9)
is of codimensoin 23.

For m=26, (5) gives;
E 2 2 4 4 2 2
26(X0, - - ., 226) = 20226 + - ..+ 2825 + YgY26 + - - - + YsYs + ToTasly + - - - + TYoY2e

e Over the ideal Iy5;, we obtain the ideal Is;. The corresponding vector v® = (7,7,9)
is of codimensoin 23.
e Over the ideal 555, we obtain the ideal Iys. The corresponding vector v3% = (8,6,9)
is of codimensoin 23.

For m=27, (5) gives;
F27(ZL‘Q, c. ,227) = 28227 + ...+ Zg’ + y§y27 + ...+ yg’yg + $01‘27y§ 4+ ...+ x%yoyw

e Over the ideal I5g5, we obtain the ideal Io7;. The corresponding vector v’ = (8,6, 10)
is of codimensoin 24.

For m=28, (5) gives
) 2 4 2 3 2 2
Fos(wo, ..., 208) = 25208 + ... + 25210 + Yolos + - - - + Y5V + ToTasly + - - - + T(YoYos

e Over the ideal 571, we obtain two possible ideals Isg; and Iogo. The corresponding
vectors vi’ = (8,7,10) and v3" = (9,6, 10) are of codimensoin 23.
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Figure 5.7: Jet graph of Ey;
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B =657 o =(:68) o =658 =578 P =(668)
(7,58 v =(6,68) o =(758) of'=(679 u'=(7609)
vl =(8,59) 0P =(7,6,9) 1°=(869) 0=(.7.9) 03°=(869)

0¥ = (8,6,10) ¥ =(8,7,10) 0P =

—~

9,6,10)

Remark 5.4.2. Here and below the vectors represented with red correspond to the
vectors given in FEgzb, the vectors represented in pink also correspond to the wvectors
giwen in Egrc and the rest are obtained as the supplemented vectors.

Remark 5.4.3. The minimal resolution graph of singularity Eqr is as follow

6 10 15 22 28 18 9

Il [l Il [l [l [l I

vt WP Wt T W W3 el

° ° ° ° I — o
!

vl

Figure 5.8: Minimal resolution graph of Fy;

Remark 5.4.4. So the Figure Ey;c becomes

Figure 5.9: Ey;d

where ug = v, v® = v, V¥ = 0§, V10 =03 VM =0l V12 =03, V13 =vF VM =100 and
vl =2,

Proposition 5.4.5. Let X be an hypersurface in C* of type Eqo;. For m > 28, the
number of irreducible components of J,(Eo7) equals the number of exceptional curves
on the minimal resolution of the singularity.

Proposition 5.4.6. The set of weight vectors corresponding to m'" jets of Eyr give a
canonical toric minimal embedded resolution of the singularity.
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6. JET SCHEMES OF ISOLATED SURFACE SINGULARITIES

The rational triple singularities are of the singularities of surfaces in C*. They are
defined by 3 equations in (Tyurina, 1968) and are the normalisation of the hypersufaces
given in the beginning of Chapter 5 above. As before, we consider here only the cases
Eﬁo, E70 and E07.

The surface of type Fgg is defined by:
filz,y,z,w) = 2* —yw +y° =0
fo(z,y, z,w) = 2w — 22y =0
f3(z,y, z,w) = w? — y*w — 2°2 =0
The surface of type Erq is defined by:
filz,y, z,w) = 2* —yw + 2°y =0

folz,y, z,w) = zw —y*=0

f3(xay727w) = w2 i wa - y2w =0

The surface of type Fy; is defined by:
fl(xayazaw) = ’22 —Yyw = 0

f2(x7yvzaw>:zw_x2y_y4:0
sy, zw) =w? — 22z — P2 =0
fa(@,y, 2,w) Y

See (Tyurina, 1968) for the rest of RTP-singularities.

6.1 Some Surfaces in C*

It is defined in a similar way to the case of hypersurfaces. We here assume that X is
defined by the ideal I =< f1,..., fr >. And, consider the morphism

Om : Clzy, ..., 2]/ < I >— C[[t]]) <t™ >
defined by
Om () = Tig + Tiat + Tiot® + ..+ 2 t™  mod(t™t)
with

filwio+ziat+ ...+ z1mt™, o Tno+ Tpat+ ... F Tpt™) =0 mod(tm+1) (6)
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for all 1 < i < k. We can see (6) in the form

F+F't+.. .+ F™™

where ’
FZJ = fi(xl,j, Ig’j, e ,ZEnJ')
in SpecClw10, .-+, T1m, -+ Tn0s - - > Tnm). Then the m™ jet scheme of X is defined by
C[l’l, c. l’n]
In(X) =S8 ’
(X) = Spec o pr g0 Fr S

Note that Jo(X) = X.

6.2 Jet Scheme of a Surface of type FEg

Let us consider the ideal I =< fi, fo, f3 > in C[z,y, 2z, w| such that X is the surface
Egy in C*. The singular locus is the unique point which is the origin. The map ¢,
above is defined as

T — To + Tt + 2ot? + .+ 2t

Y Yo + yit +yot® + ..+ Ymt™
2 —> 20+ 21t + 29t + ... + 2, t™
W — wo + wit + wot? + ... 4 wt™

such that

filvo+zit+ . .+ xnt™ yo+ .+ ymt™ 20+ ..+ 2t wo + .. F wpt™) =0 (7)

For m=0, (7) gives;

FY (0, Yo, 20, wo) = 25 — YoWo + Y = 25 — yo(wo + yg) = 0

0 2, _
Fz (xo,yo, 20, wo) = 20Wo — TglYo = 0

0 2 2 2 o 2 2 _
F3 (on»ym 20, wo) = Wy — YpWo — Tpzo = wo(wo - yo) — 2520 =0

e This says that we have yy = 2y = wg = 0 which is over the generic point. Hence the
ideal Iy =< o, 20, wo >. The corresponding vector v? = (0,1,1,1) is of codimension 3.
JO(EﬁO) is giVGIl by

Clzo, Yo, 20, wol

< FY F) F) >

JD(EﬁO) = Spec

For m=1, (7) gives;
Fll(ﬂﬁoa Yo, - - - 21, w1) = 2021 — YoW1 — Yo1Wo + y§y1 =0

1 2 _
F, (9507y07 ce 72177111) = zow; + W — ToT1Yo — Toy1 = 0
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1 2 2
F5 (0,90, - - -, 21, W1) = Wowy — YolhWo + YWy — Tox129 — 521 = 0

e This gives two possible ideals but the only ideal over the generic point is [; =
(Yo, 20, Wo, Y1, 21). The corresponding vector v{ = (0,2,2,1) is of codimension 5.
J1(Eg) is given by

C[:Um Yoy« -y 21, wl]

Ji(Eg) = S
1( 60) peC<F10,F207F30,F11,F21aF31>

For m=2, (7) gives;

F12(x07y07"‘7z27w2) = 20224—2% —--.+y§y2+yoyf =0
F;(fﬁoyyo, ey 22, W) = ZoWa + 21W1 + . .. + ToTaYo ‘l‘ﬁyo =0
F3 (%0, Yo, - - - » 22, Wa) = wows + W} + ... + T720 + ToTazo = 0

e Over the ideal [}, we obtain two possible ideals Is1 = (yo, 20, Wo, Y1, 21, W1, Tg) and
Lo = (o, 20, Wo, Y1, 21, W1, Yo, 22). The corresponding vector of Iy, vi = (1,2,2,2) is of
codimension 7. The corresponding vector of Iy, v3 = (0,3,3,2) is of codimension 8.
J2(E60) is giVGH by

Clzo, Yo, - - - , 22, Wo]

Jo(Ego) = S
2(Eiw) PeC o B0 R >

For m=3, (7) gives;
Flg(l‘o,yo, . ,23,w3) = Zp%3 + 2129+ ...+ YoY1Y2 —+ yi’ =0

3 2
F5(z0, Y0, - - -, 23, w3) = 2ows + 21wz + ... + ToT1Y2 + 15y3 = 0
3 2
F3 (xo, Yoy - - -5 23, w3) = wows3 + wiws + ... + TeT122 + 523 =0

e Over the ideal I5; we obtain ideal I3; = (yo, 20, Wo, Y1, 21, W1, Zo). The corresponding
vector v} = (1,2,2,2) is of codimension 7.

e Over the ideal 155 we obtain two possible ideals I35 = (yo, 20, Wo, Y1, 21, W1, Y2, 22, Tq)
and I33 = (yo, 20, Wo, Y1, 21, W1, Yo, 22, Y3, 23). The corresponding vector of I3, v3 =
(1,3,3,2) is of codimension 9. The corresponding vector of Is3, v3 = (0,4,4,2) is of
codimension 10. J3(FEg) is given by

<C[37‘07 Yo, - - -, %3, w3]
< FYFY, ... F3 F3 >

Jg(EE;()) = Spec

Remark 6.2.1. In the same way, the m'" jet scheme of Eg is given by

C[x(b Yo, -5 Zm, wm]

Jon(Eeo) = S
(i) PO R, Fyp >

for all m.
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For m=4, (7) gives;
Ff(xo, Yoy -+ -5 24, Wy) = 2024 + 2123 + - . + YoU1Yo + y%yg =0

F24(51307y0, ey 24, W) = ZoWy + 2 W3 + ...+ ToT1Yys + $8y4 =0

4 2
F3 (o, Yo, - - -, 210, Wq) = Wowyg + wiw3 + ... + ToT123 + 524 = 0

e Over the ideal I3;, we obtain two possible ideals I4; = (yo, 20, Wo, Y1, 21, W1, To, T1, 22,
wy) and Iy = (yo, 20, Wo, Y1, 21, W1, To, Y2, 22, W2). The corresponding vector of Iy,
vi = (2,2,3,3) is of codimension 10 and the corresponding vector of I s, v5 = (1,3, 3, 3)
is of codimension 10.

e Over the ideal I35, we obtain the ideal ;5.

e Over the ideal I33, we obtain two possible ideals I43 = (v, 20, Wo, Y1, 21, W1, Y2, 22, Y3,
23, x0) and Iy = (Yo, 20, Wo, Y1, 21, W1, Y2, 22, Y3, 23, Y4, 24, W ). The corresponding vector
of I3, vi = (1,4,4,3) is of codimension 12 and the corresponding vector of Iy, vj =
(0,5,5,3) is of codimension 13.

For m=5, (7) gives;

F2(20,Yo0, - - -, 25, Ws) = 2025 + 2124 + - . . 4 Yoyays + y1y5 = 0
Fzg)(moayo, ey 25, Ws) = ZoWs + 21Wy + . .. + ToT1Ys + 3333/5 =0

5 _ 2. _
F3 (o, Yo, - - -, 25, Ws) = Wows + wiwy + ... + Tox124 + 2525 = 0

e Over the ideal I;, we obtain two possible ideals I5; = (yo, 20, Wo, Y1, 21, W1, To, T1, 22,
way, w3) and Ise = (Yo, 20, Wo, Y1, 21, W1, Lo, L1, 22, W2, Y2, w3). The corresponding vectors
vi=(2,2,3,4) and v3 = (2,3, 3, 3) are of codimension 11.

e Over the ideal I3, we obtain two possible ideals I55 and I53 = (yo, 20, Wo, Y1, 21, W1, Tg
Yo, 22, W, Y3, w3). The corresponding vector of I53, v = (1,4,3,4) is of codimension
12.

e Over the ideal I3, we obtain the ideal I53.

For m=6, (7) gives;

FP (20, Yo, - - -, 26, W) = 2026 + 2125 + - - + Yoy +y5 =0
F9(20, Yo, - - - » 26, We) = 2oWe + 21Ws + - .. + ToT1Ys + Tgys = 0
F(x0, 90, - . ., 26, We) = Wowg + Wiws + . .. + 2oT125 + xa26 = 0
e Over the ideal I5; and I55, we obtain the ideal I5; = (yo, 20, Wo, Y1, 21, W1, To, T1, 22, Wa,
w3, Y2, z3). The corresponding vector v¢ = (2,3,4,4) is of codimension 13.
e Over the ideal I53, we obtain two possible ideals g2 = (yo, 20, Wo, Y1, 21, W1, To, Y2, 22,
Wy, Y3, W3, L1, Z3> and [63 = (3/07 Z0, Wo, Y1, 21, W1, Lo, Y2, 22, W2, Y3, W3, Ya, 23, Z4>' The cor-

responding vectors are v§ = (2,4, 4,4) with codimension 14 and v$ = (1,5,5,4) with
codimension 15.

For m=7, (7) gives;
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F{ (20, Yo, -, 27,w7) = 2027 + 2126 + - - . + Y193 + y3y3 = 0
F3 (20, Yo, - - -, 27, W7) = Zowr + 21We + . . . + ToT1Ye + Tyr = 0
Fl(xo, 90, ..., 27, W7) = Wowy + wiwe + . .. + TeT126 + xa27 = 0
e Over the ideal I41, we obtain two possible ideals I7; = (v, 20, Wo, Y1, 21, W1, To, T1, 22, Wa,
W3, Y2, 23, T2, UJ4) and I72 = (907 20, Wo, Y1, 21, W1, Lo, L1, 22, W2, W3, Y2, 23, y3) The corre-
sponding vector of I71, v] = (3,3,4,5) is of codimension 15 and the corresponding

vector of Iy, v = (2,4,4,4) is of codimension 14.
e Over the ideal Igy, we obtain the ideal I75.

In the same way;
For m=8, (7) gives;
Fls(xo,yo, ., 28,W8) = ZoZs + 2127+ ...+ y2y§ + y2y§ =0
F28($0,y0, e 738>w8) = ZoWsg + 21wt + ...+ Tol1Y7 + SE%QS =0

8 2
F3 (20, Y0, - - -, 28, Wg) = wows + wiwy + ... + Tox127 + 2528 = 0

eWe obtain three possible ideals Ig;, Iso and Ig3. The corresponding vectors v} =

(3,3,5,6), v5 = (3,4,5,5) and v§ = (2,5,5,5) are of codimension 17.

For m=9, (7) gives;

FP (0, Yo, - - -, 20, W) = 2029 + 2128 + - .. + Yoysya + y3 = 0
F3 (20, Yo, - - -, 29, W9) = zowg + z1ws + . .. + ToT1Ys + Ty = 0
FJ (20, Yo, - - - , 29, Wy) = Wowg + Wiwg + . .. + TeT128 + Toz9 = 0
e We obtain two possible ideals Iy; and Igpy. The corresponding vectors v = (3,4,5,6)
and v§ = (3,5,5,5) are of codimension 18.
For m=10, (7) gives;
F°(2o, Yo, - - -, 210, Wi0) = 20210 + 2129 + .. + Y3ys + Y3ya = 0
Fy°(20, Yo, - - - » 210, Wi0) = Z0Wig + 21Wg + . . . + ToT1Yo + Tgy10 = 0
F310<:L’0, Yo, - - -5 210, wlo) = WoW10 + W1 Wog + ...+ L1129 —+ 173210 = 0
e We obtain two possible ideals I19; and I;p2. The corresponding vector of Iiq1, v%o =

(3,5,6,6) is of codimension 20 and the corresponding vector of I1go, v3° = (4,4,6,7) is
of codimension 21.

For m=11, (7) gives;

Fln(xm Yoy - - -5 211, W11) = 20212 + 21210 + - - . + y§y5 + ysyi =0

11 2
Fy (xo,90,- -, 211, w11) = Zow11 + 21wW10 + - .. + ToZ1Y10 + 25411 = 0
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11 2
Fg (.CIZ‘[), Yoy -+ -5 211, ’LUH) = WowWi1 +wWiWig + ...+ ToT1210 + ToR11 = 0

e We obtain two possible ideals I;;; and Ijj5. The corresponding vectors v =
(4,5,6,7) and vi° = (4,4,6,8) are of codiemnsion 22.

For m=12, (7) gives;

12 3
Fi# (20,90, - - - 212, Wi2) = 20212 + 21211 + ... + Ysyays +y3 = 0
12 2
F2 (me Yo, - - -5 212, w12) = ZoWi2 + 21W11 + ... + ToT1Y11 + ToY12 = 0
12 2
F3=(xo,yo, - - -, 212, Wi2) = Wowia + wiwiy + ... + ToZ1211 + 5212 = 0

e We obtain the ideal I;5;. The corresponding vector vi? = (4,5, 7,8) is of codimension
24.

mo= 12
m=11

mo= 10

mo=19

=28
=6

=5

=4

m=1

m=10

Figure 6.1: Jet graph of isolated Fg

Remark 6.2.2. The weight vectors (0,1,1), (1,2,2), (2,2,3) and (3,3,4) appeared
in 15¢, 20 4™ and T jet schemes respectively as a projection of v = (0,1,1,1)
vi=(1,2,2,2), v} = (2,2,3,3) and v] = (3,3,4,5).
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6.3 Jet Scheme of a Surface of type FEr

Let us consider the ideal I =< fi, fo, f3 > in Clx,y, z, w] with Ery singularity. The
affine variety V(I) defines a surface X of type Fr in C* and (0,0,0,0) is the only
singular point of X. According to the map ¢,, above;

For m=0, (7) gives;

F10($0; Yo, 207w0) = Z(Q) — YoWo + ‘/L‘(Q]yo = Zg - yO(wO - :E(2]> =0
Fy (0, Yo, 20, wo) = zowp — Y = 0

0 2 2 2 2 2
Fg (9€o,yo, 20, wo) = Wy — TuWo — YgWo = wo(wo — Ty — ?/o) =0

e This says that yg = 2y = wq is over the generic point. Hence the ideal [y =<
Yo, 20, W >. The corresponding vector v = (0,1,1,1) is of codimesnion 3. Jy(Er) is
given by

Clxo, yo, 20, wo

Jo(Ex) = S

For m=1, (7) gives;

1 2
Fi(zo, Yo, ..., 21,W1) = 2021 — YW1 — Y1Wo + ToZ1Yo + T5y1 = 0
1 2
Fg (900, Yo, - - - 21, wl) = Zow1 + Z1Wo — Ypl1 = 0
1 2 2
F3 (ivo, Yo, - - -, 21, wl) = WoW1 — Wi — TpT1Wo — YW1 — YoY1Wo = 0

e Over the ideal I, we have two possible ideals but the only ideal over the generic
point which is I} = (yo, 20, wo, ¥1, w1 ). The corresponding vector, vi = (0,2, 1,2) is of
codimension 5. Ji(Erg) is given by

C[$Oa Yo, - - - 21, 'lU1]
<F)F),...F}, Fi>

Jl (E70) == Spec

For m=2, (7) gives;

FX(20,v0, - - -, 22, Wa) = 2022 + 25 + ... + ToT1y1 + Toy2 = 0
F3 (20, Yo, - - -, 22, W2) = 20Wa + 21w1 + ... + Yoy + Yoy =0

F (30, Y0, - - -, 22, W2) = wowy + Wi + ... + yoyrwr + ygwe =0

e Over the ideal I;, we have two possible ideals Io; = (o, 20, Wo, Y1, W1, 21, o) and
Io = (Yo, 20, Wo, Y1, W1, 21, Y2, W2). The corresponding vector of Iy, v = (1,2,2,2) is
of codimension 7 and the corresponding vector of Iy, v3 = (0, 3,2, 3) is of codimension
8. Jo(Er) is given by

C[$Oa Yo, - - - 22, w?]

Jo(En) = S
2(Ero) = Spee_ FO.FY, . FZF? >
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For m=3, (7) gives;

Ff($07 Yoy -+ 23, W3) = 2023 + 2122 + ... + ToT1y2 + I(Z)ys =0
Fg(iﬂo,?/o, ce >Z3,w3) = W3 + Z1Wa + ...+ YoY1Y2 + 9393 =0

Fy?(ﬂﬁo,?/o; .., 23, W3) = Wows + wiwa + ... + Yoy1 w2 + ygw:a =0

e Over the ideal I5; we obtain the ideal I3; = (v, 20, Wo, Y1, w1, 21, o). The correspond-
ing vector v? = (1,2,2,2) is of codimension 7.

e Over the ideal Iy, we obtain two possible ideals I33 = (yo, 20, Wo, Y1, W1, 21, Y2, W2, To)
and I3z = (yo, 20, Wo, Y1, W1, 21, Y2, W2, Y3, w3). The corresponding vector of I3, v3 =
(1,3,2,3) is of codimension 9 and the corresponding vector of Is3, v = (0,4,2,4) is of
codimension 10. J5(FErg) is given

(C[xoayo,--l?),w:s]
< FYFY .. F3,F3 >

J3<E70) = Sp@C

Remark 6.3.1. In the same way, the m' jet scheme of Erq is given by

Clxo, Yo, - - - Zm, Wi

J(Erg) = S
(Ero) = Spec g5 g0y >

for all m.

For m=4, (7) gives;

Ff(xo, Yoy - - -5 24, Wq) = 2024 + 2123 + ... + ToT1Y3 + x%y4 =0
Fﬁl(l"o,yo, e 24, W) = ZWa + 2 Ws + .. F yoyi + ?ng4 =0

F;(%?Z/o, ey 24, We) = WoWy + W1W3 + . .. + Yoyrws + y§w4 =0

e Over the ideal I3; we obtain two possible ideals I4y; = (yo, 20, Wo, Y1, W1, 21, To, T1, 22,
wy) and Iyp = (Yo, 20, Wo, Y1, W1, 21, T, Yo, 22, W2). The corresponding vectors v{ =
(2,2,3,3) and v = (1,3,3,3) are of codmension 10.

e Over the ideal I35 we obtain the ideal I 5.

eOver the ideal I33 we obtain two possible ideals 143 = (yo, 20, Wo, Y1, W1, 21, Y2, W2, Y3, W3,
%0, Y3, 22) and Iy = (Yo, 20, Wo, Y1, W1, 21, Y2, Wa, Y3, W3, Ya, 22, W4 ). The corresponding
vector of I3, v§ = (1,4, 3,4) is of codimension 12 and the corresponding vector of Iy,

v = (0,5,3,5) is of codimension 13.

In the same way;

For m=35, (7) gives;
F{r)(ll?oa Yos - - -+ %5, Ws) = 2025 + 2124 + . .. + ToT1Ya + 33(2)y5 =0
FJ (20, Yo, - - - » 25, W5) = 20Ws5 + 21Wa + - .. + YoYays + Yoys = 0

F35(55071/07 ey 25, W5) = WoWs + WiW4 + . .. + Yoyr1 Wy + ZJ(Z)U% =0
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e Over the ideal I;;, we obtain two possible ideals I5; and I5,. The corresponding
vectors v) = (2,2,3,4) and v = (2,3,3,3) are of codimension 1.

e Over the ideal I,5, we obtain two possible ideals I5, and I53. The corresponding
vector of I3 is v5 = (1,4, 3,4) is of codimension 12.

e Over the ideal I3, we obtain the ideal I53.

e Over the ideal I44 we obtain two possible ideals 54 and Is;. The corresponding
vector of I54, v] = (1,5,3,5) is of codimension 14 and the corresponding vector of Iss,
v2 = (0,6,3,6) is of codimension 15.

For m=6, (7) gives

F¥(z0,Y0, - - -, 26, W6) = 2026 + 2125 + - - . + ToT1Ys + Toys = 0
FS (20, Yo, - - -, 26, W6) = 20We + 21Ws + . .. + Yoy3 + Yoys = 0

FS(20, Yo, - - - , 26, Wg) = WoWe + Wiws + . . . + Yoy1ws + Yows = 0

e Over the ideals I5; and Iy, we obtain ideal Ig;. The corresponding vector v¢ =

(2,3,4,4) is of codimension 13.

e Over the ideal I53, we obtain two possible ideals Igy and Ig3. The corresponding
vector of Iy, v§ = (2,4,4,4) is of codimension 14 and the corresponding vector of Igs,
v§ = (1,5,4,5) is of codimension 15.

e Over the ideal I55, we obtain two possible ideals Is; and Ig5. The corresponding
vectors of Igy, v$ = (1,6,4,6) is of codimension 17 and the corresponding vectors of
Igs, v&€ = (0,7,4,7) is of codimension 18.

For m=7, (7) gives;

Fl (20,90, - .., 27, w7) = 2027 + 2126 + - .. + ToT1Ys + Toy7 = 0
F3 (20,0, - - -, 27,Ww7) = 20w + 21We + . . . + Yoysys + Yoyr = 0
F3 (0, Yo, - - -, 27, W7) = Wowr + wiwg + . .. + Yoy1we + ygwr = 0

e Over the ideal I3, we obtain two possible ideals I7; and I75. The corresponding
vector of Ir1, v] = (3,3,4,5) is of codimension 15 and the corresponding vector of I,
vd = (2,4,4,4) is of codimension 14.
e Over the ideal Ig; we obtain the ideal I75.
e Over the ideal I43, we obtain two possible ideals I73 and I74. The corresponding

vector of Ir3, v = (2,5,4,5) is of codimension 16 and the corresponding vector of Iy,
v] = (1,6,4,6) is of codimension 17.

For m=8, (7) gives;
FIS(xO, Yo, - - -5 28, W) = 2028 + 2127 + . .. + ToT1Y7 + x%yg =0

S (20, Yo, - - -, 28, Ws) = 20Ws + 21wy + ... + Yoy + Yoys = 0

FS (20, Yo, - - -, 28, Wg) = WoWs + wiwy + . .. + Yoyr1wr + yows = 0

e Over the ideal I7;, we obtain the ideals I3; and Ig;. The corresponding vectors
v =(3,3,5,6) and v§ = (3,4,5,5) are of codimension 17.
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e Over the ideal I75, we obtain two possible ideals Igo and Ig3. The corresponding
vector of Ig3, v§ = (2,5,5,5) is of codimension 17.

e Over the ideal I3, we obtain the ideal Igs.

e Over the ideal I74, we obtain the ideal g4 and Igs. The corresponding vector of Igq,
v§ = (2,6,5,6) is of codimension 19 and the corresponding vector of Igs, v§ = (1,7,5,7)

is of codimension 20.

For m=9, (7) gives;

F19(1‘07 Yo, - - - 5 29, Wy) = 2029 + 2128 + ... + ToT1Ys + 95(2)?J9 =0
F29($0,y0a ey 20, W) = ZoWg + 21Ws + . . . + YoYaYs + ySyg =0
F (20, Yo, - - - , 29, Wy) = Wowy + WwiWs + . . . + Yoy1wWs + Yowg = 0

e In the same, we obtain three possible ideals Iy1, I9o and Iy3. The corresponding vectors
v = (3,4,5,6) and vJ = (3,5,5,5) are of codimension 18 and the corresponding vector
v = (2,6,5,6) is of codimension 19.

For m=10, (7) gives;

F%z0, Y0, - - -, 210, W10) = 20210 + 2129 + - . . + ToT1Yo + wgym =0
Fglo(lﬂo, Yo, - - - 210, W10) = ZoW1ig + 21We + ... + yoy?, + yg?/lo =0
Fgw(xm Yo, - - - 5 210, W1p) = WoW1g + WiWg + . .. + YoY1We + ySwlo =0

eWe obtain four possible ideals I1g1, I102, 103 and Ijp4. The corresponding vectors

vi% = (4,4,6,7) and vi° = (3,6,6,6) are of codimension 21. The corresponding vector

va? = (3,5,6,6) is of codimension 20 and the corresponding vector vi® = (2,7,6,7) is

of codimension 22.

For m=11, (7) gives;

F' (20, Yo, - - -, 211, Wi1) = 20211 + 21210 + - - . + ToT1yio + xﬁyn =0
EyN (0, Yo, - -+, 211, Wi1) = ZoW11 + 21Wi0 + - - - + YoYsYs + Ygy11 = 0
Fgu(ﬂUo» Yo, - - 211, W11) = Wowiy + Wiwio + - .. + Yoy1wio + ySwH =0
e We obtain three possible ideals I111, 112 and I;;3. The corresponding vector v%l =

(4,5,6,8) is of codimension 23. The corresponding vector vi' = (4,5,6,7) is of codi-
mension 22 and the corresponding vector v3! = (3,6, 6,6) is of codimension 21.

For m=12, (7) gives;

F112($07 Yo - - - 212, W12) = 20212 + 21211 + ... + Ty + x%yu =0
Fgm(ifo, Yo, - - - 212, Wi2) = ZoW1i2 + 21W11 + ... + yoyé + y?)ylz =0

12 2
Fg (3707 Yo, - - -5 212, w12) = woWwiz +wiwir + ... + Yoyrwn + Yowiz =0



62
e We obtain three possible ideals I151, I192 and I153. The corresponding vectors vi? =
(4,5,7,8), vd% = (4,6,7,7) and vi? = (3,7,7,7)are of codimension 24.

For m=13, (7) gives;

F113(330, Yo, - - - 213, wls) = ZpZ13 + 21212 + ... + X112 + $8yl3 =0
FY* (20, Yo, - - -, 213, W13) = 2oW13 + 21Wia + - - - + YoYey7 + Ygy13 = 0
F?,B(Io, Yos - - - 213, W13) = Wowrs + wiwiz + ... + Yoyrwiz + y§w13 =0
e We obtain three possible ideals I31, I132 and I;33. The corresponding vector 0%3 =
(5,5,7,9) is of codimension 26. The corresponding vectors v3? = (4,6,7,8) and vi3 =

(4,7,7,7) are of codimension 25.
For m=14, (7) gives;

F114($0, Yoy - -+ 214, Wia) = 20214 + 21213 + ... + ToT1Y13 + w%ym =0
FyM (0, Yo, - - -, 214, W14) = 2oW1a + 21W13 + - . + Yoys + Yoy13 =0
Fg,m(xo, Yos - - - 214, Wia) = WoWra + wrwig + . .. + Yoyrwis + y§w14 =0

e We obtain three possible ideals 141, I142 and I143. The corresponding vectors vi? =
(4,7,8,8) and vi* = (5,6,7,9) are of codimension 27. The corresponding vector vi! =
(5,5,8,10) is of codimension 28.

o= 14
= 13
e = 12
me= 11
e = 10
m=19
=8
=T
=6
m =35
e =4
=3
o= 2

mo=1

— 0
) 0 v}

Figure 6.2: Jet graph of isolated Fr
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Remark 6.3.2. The weigth vectors (1,2,2), (2,2,3), (2,3,4), (3,3,4) and (3,4,5)
appeared in 2, 4th 6t 7 and 9™ jet schemes respectively as a projection of v =
(1,2,2,2), v} = (2,2,3,3), 00 = (2,3,4,4) o7 = (3,3,4,5) and v? = (3,4,5,6).

6.4 Jet Scheme of a Surface of type Ey;

Let us consider the ideal I =< fi, fo, f3 > in Clx,y, z, w] with Ey; singularity. The
affine variety V(I) defines a surface X in C* and (0,0,0,0) is the only singular point
of X.

Remark 6.4.1. The m'* jet scheme of Eyr is given by

(C[l'()? Yo, - - - Zm, wm]
< FYFY, ... F Fm >

J(Eo7) = Spec

for all m.

According to the map ¢,, above;

For m=0, (7) gives;

F?(z0, Yo, 20, wo) = 25 — Yowo = 0
FQO(l’o,yo, 20, Wo) = ZoWo — :véyo - yé =0
F?E)(iUo, Yo, 20, Wo) = wg - 33320 - ySzO =0
e This says that yg = 2y = wy is over the generic point. Hence the ideal [, =<

Y0, 20, Wo >. The corresponding vector v = (0,1, 1,1) is of codimension 3.

For m=1, (7) gives;

1
Fi(zo,y0,...,21,w1) = 2021 — Yow1 — Yrwy = 0
Fl _ 2 3 _ O
2 ($07 Yo, .- -, 21, w1) = ZoWy + 21Wo — TpY1 — ToT1Yo — Yo¥1 =
1 2 3 2
F3 (x07 Yo, - - -5 21, wl) = WoW1 — TgR1 — ToT120 — YgR1 — YpgY120 = 0

e Over the ideal I, we obtain two possible ideals that one of them is over singularity.
The other one I} =< vy, 29, Wo, Y1, 21 > is over the generic point. The corresponding
vector v} = (0,2,2,1) is of codimension 5.

For m=2, (7) gives;

F12($0; Yo, - - -5 22, wz) = Zp%2 + Zf — Yowz — Y1wi — Yowy = 0
Ff(xo, Yo, - - -, 22, W) = ZoWs + z1wW1 + 20w + . .. + yﬁy% + ygyg =0
F32<'r07 Yo, - - - 5 22, Wa) = Wows + W} — 37322 +.. .+ y§y1z1 + y822 =0

e Over the ideal I;, we obtain two possible ideals Iy; = (yo, 20, Wo, Y1, 21, W1, Tg) and
Ino = (Yo, 20, Wo, Y1, 21, W1, 21, Y2, 22). The corresponding vector of Iy, v = (1,2,2,2)
is of codimension 7. The corresponding vector of Iy, v3 = (0,3, 3,2)
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is of codimension 8.

For m=3, (7) gives;

Flg(l’g,yo, .. .,23,103) = Z0%3 + 2129 + ... —i—y2w1 + Y1Wo = 0
FJ (20, Yo, - - -, 23, W3) = Zows + 21wa + ... + 1/3913/2 + yS’ys =0

Fg(x()’ym o ,Z3,’LU3> = Wows + w1wW2 + ... +y8y122 + ygz3 =0

e Over the ideal I5;, we obtain the ideal I3; = (yo, 20, wo, Y1, 21, W1, To). The corre-
sponding vector v} = (1,2,2,2) is of codimension 7.

e Over the ideal 155, we obtain two possible ideal I3y = (yo, 20, Wo, Y1, 21, W1, 21, Y2, 22, To)
and I33 = (Yo, 20, Wo, Y1, 21, W1, Y2, 22, Y3, 23, W2). The corresponding vector of I3, v3 =
(1,3,3,2) is of codimension 9. The corresponding vector of I33, v3 = (0,4,4,3) is of
codimension 11.

For m=4, (7) gives;

F14(1’073/07 .24, Wy) = 2024 + 2123+ .. F Yrws + yowe =0
Fﬁl(l‘o’yo, ooy 24, W) = ZoWs + w3+ ...+ Z/gylys + 1983/4 =0

Ff(ﬂio,yo, ey 24, Wy) = Wowy + wiw3 + ...+ 1/(2)3/123 + 3/82’4 =0

e Over the ideal I3; we obtain two possible ideals Iy; = (yo, 20, Wo, Y1, 21, W1, To, T1, 22, 23)
and Iys = (yo, 20, Wo, Y1, 21, W1, Tg, Y2, Z2, Wa ). The corresponding vectors vi = (2,2, 3, 3)
and vy = (1,3,3,3) are of codimension 10.

e Over the ideal I35 we obtain the ideal Is.

e Over the ideal I33 we obtain two possible ideals I43 = (yo, 20, Wo, Y1, 21, W1, Y2, 22, Y3, 23,
wo, xo) and Iy = (Yo, 20, Wo, Y1, 21, W1, Y2,

29, Y3, 23, Wa, Ya, 24). The corresponding vector of I3, vs = (1,4,4,3) is of codimension
12 and the corresponding vector of Iy, v = (0,5,5,3) is of codimension 13.

In the same way;

For m=5, (7) gives;

FP (20, Yo, - - -, 25, Ws) = 2025 + 2124 + - . . + YowWs + Yzwq = 0
F25($0,90, ey 25, Ws) = ZoWs + W + .. +ygyly4 —|—y(2)y5 =0

F35(a:0,y0, ey 25, Ws) = WoWs + WiwWy + ... + y8y1z4 + ygz5 =0

e Over the ideal I4; we obtain two possible ideals I5; and I5;. The corresponding
vectors v? = (2,2,3,4) and v5 = (2,3,3,3) are of codimension 11.

e Over the ideal 1,5 we obtain two possible ideals I55 and I53. The corresponding vector
of I3, v3 = (1,4,4,3) is of codimension 12.

e Over the ideal I3 we obtain the ideal I53.

eOver the ideal I44 we obtain two possible ideals I54 and I55. The corresponding
vector of I54, v] = (1,5,5,3) is of codimension 14 and the corresponding vector of Iss,
v2 = (0,6,6,3) is of codimension 15.
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For m=6, (7) gives;

Ff(xo,yo, ey 26,w6) = 20%6 + Z1%5 + ...+ Yo Wy + YsWs = 0
F3 (%0, Yo, - - - » 26, W) = 20We + 21Ws + . .. + Ygy1ys + Ygye = 0
F3 (0, Yo, - - - » 26, W) = Wowe + wiws + ... + Yoy125 + Yoze = 0
e We obtain six possible ideals g1, Ig2, g3, Ies, Ig5 and Igs. The corresponding vectors

vl_(3245) 08 = (2,3,4,4), v = (2,4,4,4), v% = (1,5,5,4), v¢ = (1,6,6,4) and
= (0,7,7,4) are of codimension 14, 13, 14, 15, 17 and 18 respectively.

For m=7, (7) gives;

F17(9170:?/0,---,Z7,w7) = 2027 + 2126 + ... + Yaws + yzwy = 0

F27(330, Yo, - - - 27, Wr) = 20W7 + 21 W6 + ... + ygylyG + 9397 =0
Fg(ﬂfo,yo, Cy 27, Wr) = WoWr + Wiwe +- . .. y§y1z6 + y327 =0
e We obtain five possible ideals I71, I7o, I3, I74 and I75. The corresponding vectors

vl =(3,2,4,6), v5 = (3,3,4,5), vi = (2,4,4,4), v] = (2,5,5,4) and v{ = (1,6,6,4) are
of codimension 15, 15, 14, 16 and 17 respectively.

For m=8, (7) gives

Fls(xo,yo,...,z&wg) :,2028+z127+...+y5w3+yi =0
FS (20, Yo, - - -, 28, Ws) = 20Ws + 21W7 + . .. + Yay1y7 + Yoys = 0

F§($O>yoa oo, 28, W) = Wows + Wiwy + ... + y(Z)ZUlZ? + yS’ws =0

e We obtain five possible ideals Iy, Iso, Is3, Iss and Igs. The corresponding vectors v =
(3,3,5,6), v§8 = (3,4,5,5), v§ = (2,5,5,5) are of codimension 17. The correspondlng
vector vg (2,6,6, 5) is of codimension 19 and the corresponding vector v§ = (1,7,7,5)

is of codimension 20.

For m=9, (7) gives;

Flg(xmyo, ey 29, W) = 2029 + 2128 + .. + Yswy + Yagws =0
Y (20,90, - - -, 29, Wg) = 2oWg + 21Ws + . .. + Yay1Ys + Yoyo = 0

Fg(l‘o,yo, . ,29,w9) = WoWg + WLWsg 4+ ...+ ygylzg + ygwg =0

e We obtain four possible ideals Igy, Igz, Ig3 and Ilys. The corresponding vectors v] =

(4,3,5,7) and v] = (2,6,6,5) are of codimension 19. The corresponding vectors vy =

(3,4,5,6) and v = (3,5,5,5) are of codimension 18.
For m=10, (7) gives;

F{%(x0, Yo, - - -, 210, W10) = 20210 + 2120 + - - . + Yews + Ysws = 0
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leo(fl?o»ym ey 210, Wi0) = ZoWio + 21wy + ...+ ygyl?JQ + ySym =0

F3%(20, Yo, - - - » 210, Wi0) = WoWip + W1Wg + ... + Yoy129 + Ygz10 = 0
e We obtain five possible ideals 111, I102, 1103, [104 andlyp5. The corresponding vectors
v = (4,3,6,8), vi¥ = (4,4,6,7) and vj° = (3,6,6,6) are of codimension 21. The

corresponding vector v’ = (3,5,6,6) is of codimension 20 and vi® = (2,7,7,6) is of
codimension 22.

For m=11, (7) gives;

Fln(il?o, Yoy - - -5 211, W11) = 20211 + 21210 + - - - + YeWs + Yswe = 0

lel(l"ov?/o, Co 21, W) = Zowin + 2w+ ygylylo + ygyll =0

11 2 3
Fy ' (0,90, - - -, 211, W11) = Wowry + wiwig + - .. + YgY1210 + Ypz11 = 0

e We obtain four possible ideals I111, I112, [113 and I113. The corresponding vectors
val = (4,4,6,8) and vi! = (4,5,6,7) are of codimension 22. The corresponding vectors
vl = (5,3,6,9) and vi' = (3,6,6,6) are of codimension 23 and 21 respectively.

For m=12, (7) gives;

Fllz(lﬁo, Yoy - - -5 212, W12) = 20212 + 21211 + - - . + Y7ws + Ysws = 0
F212($07 Yo, - - - 212, W12) = ZoWi2 + 21W13 + ... + ygylylz + ?/8913 =0
F?,lz(m()v Yo, - - - 5 212, Wi2) = W1z + Wiwiz + ... + y§y1Z11 + yS’zlz =0
e We obtain four possible ideals I191, [199, [123 and I153. The corresponding vectors

v3? = (4,5,7,8), v3> = (4,6,7,7) and v;> = (3,7,7,7) are of codimension 24. The
corresponding vector vi? = (5,4,7,9) is of codimension 25.

For m=13, (7) gives;

F113(£E0, Yo, - - - 72’1371013) = 2p213 + #1212 + - - . + Yrwg + Yew7s =0
(20, Yo, - - -, 213, Wi3) = 2oW13 + 21Wi2 + - . . + Yoyiyi2 + Yoz = 0
F?,lg(x()ayOa 213, W13) = Wows + Wiwi + ...+ y§y1212 + y‘ézlg =0
e We obtain four possible ideals I31, I132, 133 and I133. The corresponding vectors

v = (5,4,7,10) and vi3 = (5,5,7,9) are of codimension 26. The corresponding vectors
v3® = (4,6,7,8) and v}® = (4,7,7,7) are of codimension 25.

For m=14, (7) gives;

F114($07 Y0y - - -5 214, W14) = 20214 + 21213 + - - . + YsWe + yrwy = 0

F214(x07 Yo, - - -5 214, W14) = ZoW14 + 21W13 + ... + y§y1y13 + yS’y13 =0
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14 2 3
Fy* (0,90, - - -, 214, W14) = Wow14 + wiwWis + ... + Yg¥y1213 + Yp214 = 0

e We obtain four possible ideals I141, I149, [143 and I143. The corresponding vectors
vat = (5,5,8,10) and vi* = (5,6,8,9) are of codimension 28. The corresponding vectors
vt = (4,7,8,8) is of codimension 27 and v{* = (6,4,8,11) is of codimension 29.

For m=15, (7) gives;

F®(20, Yo, - - -+ 215, Wi5) = 20215 + 21214 + - - . + Yswr + Ygwy = 0
F215(:C07 Yo, - - -5 215, Wi5) = ZoW1i5 + 21W14 + ... + y§y1y14 + y3y15 =0
Fgls(ﬂ’?o»yo, C. 215, Wip) = WoWrs + Wi + ...+ y§y1z14 + 93215 =0

e We obtain four possible ideals I151, I152, [153 and I153. The corresponding vectors
v% = (6,4,8,12) and v3® = (6,5,8,11) are of codimension 30. The corresponding
vectors vi® = (5,6,8,10) and v}® = (5,7,8,9) are of codimension 29.

For m=16, (7) gives;

F116(3707 Yoy - - - 5 216, W16) = 20216 + 21215 + - - - + Yowy + ysws = 0
F216($07 Yo, - - - » 216, Wig) = ZoWie + 21W15 + ... + y§y1y15 + ?nglﬁ =0

16 2 3
F3°(x0,y0, - - -, 216, Wi6) = WoWie + Wiwis + ... + Y5y1215 + Y216 = 0

e We obtain three possible ideals I161, I162 and I163. The corresponding vectors v1°

(6,5,9,12), v3% = (6,6,9,11) are of codimension 32. The corresponding vector vi® =

(5,7,9,10) is of codimension 31.

For m=17, (7) gives;

F (20, Yo, - - - » 217, Wi7) = 20217 + 21216 + - - - + Yows + Yswg = 0
Fg”(%m Yo, - - -5 217, Wir) = ZWi7 + 21W16 + ... + ySylym + ygyn =0
F317(950> Yos - - - 217, Wi) = WoWr7 + WiWis + ... + ySylzw + 93217 =0

e We obtain three possible ideals Iy71, 172 and Iy73. The corresponding vectors 057 =

(6,6,9,12) and vi" = (6,7,9,11) are of codimension 33. The corresponding vector
vi" = (7,5,9,13) is of codimension 34.

For m=18, (7) gives;

F®(20, Yo, - - - » 218, Wig) = 20218 + 21217 + - . . + Y10Ws + Yowg = 0
F218(9607 Yo, - - - 218, Wis) = ZoWig + z1wWr7 + ... + ygylyn + yS’y18 =0
Fy%(x0, Yo, - - -, 218, Wis) = WoWw1s + Wiwi7 + ... + Yoy1217 + Yozis = 0

e We obtain three possible ideals Ig1, 182 and I1g3. The corresponding vectors v%g =

(7,5,10,14) and vi® = (7,6, 10, 13) are of codimension 36. The corresponding vector
va® = (6,7,10,12) is of codimension 35.
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For m=19, (7) gives;

Fllg(iC(J; Yoy - - - 219, W19) = 20219 + 21218 + - - . + Y10Wy + Yowig = 0
leg(ivm Yo, - - -5 219, W1g) = ZoW1g + 21W1s + ... + y(Z)yl?As + yS’ylg =0
Fglg(xm Yo, - - - » 219, W1g) = WoWig + Wiwis + ... + y§y1218 + yS’Zm =0

e We obtain three possible ideals I1g91, 192 and I193. The corresponding vectors v%g =

(7,5,10,15), vd? = (7,6,10, 14) and v3? = (7,7, 10, 13) are of codimension 37.
For m=20, (7) gives;

F120(930>y0, c oy 290, Wap) = 2220 + 21219 + - - . + Y11Wy + Y1owip = 0
Fgo(iﬁo» Yo, - - -5 220, Wap) = ZoWa0 + 21W19 + ... + y§y1y19 + yS‘yzo =0
F3%(20, Yo, - - - » 220, Wa0) = Wolzg + WiW1g + - - . + Ygy1219 + Ygza0 = 0

e We obtain three possible ideals Iy, I and Ipy3. The corresponding vectors v2° =

(7,7,11,15) and v3° = (8,6,11,15) are of codimension 40. The corresponding vector
v = (7,7,11,14) is of codimension 39.

o= 20
mo= 19

m o= 18
m =17
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mo= 15
m o= 14
m =13
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m= 11
e = 10
m =19
m=8
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m = 6
m==5 _5
m = 4
o= 3
mo=2

mo=1

m =10

Figure 6.3: Jet graph of isolated Fy;

Remark 6.4.2. The weigth vectors (0,1,1), (1,2,2), (2,2,3), (3,2,4), (3,3,4) and
(4,3,5) appeared in 0, 2th /5th 6th 7th and 9™ jet schemes respectively as a projection
of V9 = (0,1,1,1) v? = (1,2,2,2), v} = (2,2,3,4), v4 = (3,2,4,5), vl = (3,3,4,5) and
vy = (4,3,5,7).



7. CONCLUSION

In the literature, the jet schemes of a variety with rational double singularities, a variety
with determinantal singularities or a variety defined by a monomial ideal are studied.
We are here interested in the case where the variety has a rational triple singularities.
This case permits us to study on the jet schemes of non-isolated singularities and also
on the singularities which are not complete intersection. All construction in this thesis
are new. For next step, we will study on all 9 cases of rational triple singularity.

In this work, we focused on 3 types non-isolated hypersurface singularities in C* and
their isolated surface singularities in C* which appear as the normalise of the non-
isolated singularities. When we applied the jet scheme construction to these types of
singularities, we investigated a relation between jet graphs of them and their canonical
toric minimal embedded resolution graphs.
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