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ABSTRACT

In this thesis, we construct the jet schemes of some non-isolated hypersurface singular-
ities in C3 and some isolated surface singularities in C4 which appear as the normali-
sation of our non-isolated singularity. We want to determine the jet scheme structure
in these.

The singularities we consider are called rational triple singularities. They are of 9 types.
In this work, we focus on the jet scheme structure of three of them, called E60, E70 and
E07. We construct their jet graphs and toric embedded resolution.

The study differs from the existing results in the literature as it is about the case of
non-isolated hypersurfaces and surface which is not monomial neither determinantal
variety.



ÖZET

Biz bu tezde, C3’de yaşayan izole olmayan bazı hiperyüzey tekilliklerinin ve onların nor-
malleşmesi halinde görünen C4’de yaşayan bazı izole yüzey tekilliklerinin jet şemalarını
inşa ettik.

Dikkate aldığımız tekillikler, rasyonel üçlü tekillikler olarak adlandırılır. Onlar dokuz
türlüdür. Biz bu çalışmada E60, E70 ve E07 olarak adlandırılan, onların üç tanesinin jet
şeması yapısına odaklandık. Onların jet grafiklerini ve torik gömülü çözümlerini inşa
ettik.

Çalışma izole olmayan hiperyüzeylerle ve ne tek terimli ne de determinantal varyete
olmayan yüzeylerle ilgili olduğu için, literatürde varolan sonuçlardan farklıdır.
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1. INTRODUCTION

Let k be an algebraically closed field of characteristic 0. Let X be an affine variety over
k. The mth jet scheme of X, Jm(X), is the set of all m-jets on X. We have J0(X) := X
and J1(X) := TX where TX is total tangent space of X. If X is a smooth variety
over k with dimension n, then Jm(X) is kmn-bundle. When X is singular, one may
study on X by considering different types of singularity in X. For example, when X
is of type An, Dn, E6, E7 or E8, the jet scheme structure of X is given in (Mourtada,
2013); also when X is defined by a monomial ideal and when X has a determinental
singularity, the jet scheme structure of X is given in (Yuen, 2006).

In this thesis, we construct the jet schemes of some non-isolated hypersurface singular-
ities in C3 and some isolated surface singularities in C4 which appear as the normali-
sation of our non-isolated singularity. We want to determine the jet scheme structure
in these.

The singularities we consider here are called rational triple singularities. They are of 9
types. In this work, we focus on the jet scheme structure of three of them, called E60,
E70 and E07. We construct their jet graphs and toric embedded resolution.

We first recall some basic definitions and properties in algebraic geometry to use in the
following sections.

In Chapter 3, we define the regular subdivision of a cone and more generally of a set
of cones, called a fan.

In Chapter 4, we recall the ADE singularities of hypersurfaces and we introduce jet
scheme structure of these singularities. Following (Mourtada, 2013), we construct
explicitly the jet schemes of the singularity of type E7.

In Chapter 5, we consider some hypersurfaces having one dimensional singular locus,
which are called non-isolated forms of the rational triple singularities in C3. We present
an explicit construction of non-isolated forms of types E60, E70 and E07.

In Chapter 6, we construct the jet schemes of surface defined by one of the equations
given in (Tyurina, 1968). We call these the isolated forms of rational triple points.
Then we compare the results of this chapter with the results obtained in Chapter 5.
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2. PRELIMINARIES

Let k be a field. The ring of polynomials in one variable x over k is the set of elements
in the form

f(x) = cnx
n + cn−1x

n−1 + . . .+ c0

where ci ∈ k for all i, 0 ≤ i ≤ n and n ≥ 0. Such a ring is denoted by k[x]. Similarly,
the ring of polynomials in several variables x1, . . . xn over k is the set of elements in
the form

f(x) =
∑
α

cαx
α

where α = (α1, . . . αn) and xα = xα1
1 . . . xαn

n ; it is denoted by k[x1, . . . , xn].

When we permit to have infinite sum as

f(x) = c0 + c1x+ . . .+ cnx
n + . . .

the set of such elements is called the ring of formal power series and denoted it by
k[[x]]. Hence, we have k[x1, . . . , xn] ⊂ k[[x1, . . . , xn]].

2.1 Ideals in k[x1, . . . , xn]

Let k = C and R = C[x1, . . . xn]. An ideal I in R is a nonempty subset of R which is
closed under addition in I and multiplication by the elements of R.

The ideal I = {0} and I = R are called the trivial ideals in R. Any ideal I in R is
generated by a finite set of elements in R and denoted by

< f1, . . . fr >= {g1f1 + . . .+ grfr | gi ∈ R, 1 ≤ i ≤ r}

Here f1, . . . , fr are called generators of I.

Exemple 2.1.1. Consider the ideals I1 =< x, x2y, y > and I2 =< x, y >. Note that
I1 and I2 are the same subsets in R, so I1 = I2. Hence, an ideal can be defined by
different set of generators.

Theorem 2.1.2. (Hilbert Basis Theorem)Every polynomial ideal in R is finitely gen-
erated.

Let I and J be two ideals in R. The sum of I =< f1, . . . fr > and J =< g1, . . . gs > is
defined as

I + J = {f + g | f ∈ I, g ∈ J}

In fact, we have I + J =< f1, . . . fr, g1, . . . gs >. The intersection I ∩ J is defined as

I ∩ J = {h | h ∈ I and h ∈ J}
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The product I · J is defined as

I.J = {
∑

figj | i = 1, . . . , r j = 1, . . . , s}

Exemple 2.1.3. Let I = J =< x, y > in C[x, y]. The sum of ideals is I+J =< x, y >,
the intersection is I ∩ J =< x, y > and the product is I.J =< x2, xy, y2 >.

Definition 2.1.4. If each generator of an ideal I in R is monomial, it is called
monomial ideal.

Definition 2.1.5. Let I be an ideal in R. The radical of I,
√
I, is the set

{x ∈ R | xn ∈ I n > 0}

If I =
√
I, then I is called a radical ideal.

Remark 2.1.6. Every prime ideal is a radical ideal.

Definition 2.1.7. An ideal I of a ring R is a primary ideal if for any x, y ∈ R, xy ∈ I
and x /∈ I imply that y ∈

√
I.

Definition 2.1.8. A primary decomposition of an ideal I in R is defined as follows:

I =
n⋂
i=1

pi

where every pi is primary.

Exemple 2.1.9. Consider an ideal I =< xy, x3 − x2, x2y − xy >. A primary decom-
position of I is < x > ∩ < x− 1, y > ∩ < x2, y >.

Exemple 2.1.10. Consider I =< x2, xy >.It can be written as finite intersection of
primary ideals:

I =< x > ∩ < x2, y >

or
I =< x > ∩ < x2, xy, y2 >

Remark 2.1.11. The primary decomposition of an ideal is not unique.

2.2 Affine Varieties

Consider the map
V : C[x1, . . . , xn] −→ Cn

which is associated to the zero set in Cn of each polynomial in C[x1, . . . xn]. That is
we have

f 7−→ V (f)

where V (f) = {(a1, . . . , an) ∈ Cn | f(a1, . . . , an) = 0}.
More generally, V sends each ideal I in R to the zero set of each of its elements, means
for I =< f1, . . . , fr >;

V (I) = {(a1, . . . , an) ∈ C | fi(a1, . . . , an) = 0 1 ≤ i ≤ r}
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Definition 2.2.1. The set V (I) is called an affine variety in Cn.

Theorem 2.2.2. An affine variety V (I) = X is irreducible if and only if its defining
ideal I(X) is a prime ideal.

Let I =< f1, . . . fr > be an ideal in R. Consider two elements f and g in R. We say
that f is equivalent to g modulo I if f − g ∈ I. This is written as f ≡ g mod(I).

This relation is symmetric, reflexive and transitive, so it is an equivalence relation on
R.

Definition 2.2.3. The set of equivalence classes modulo I is called the quotient ring,
which is denoted by R/I.
An element g ∈ R which is equivalent to fi modulo I takes the same values on V (I).

Assume that I is a radical ideal in R. The quotient ring R/I is called the coordinate
ring of Y := V (I) and denoted by C[Y ]. Theorem 2.10 implies that C[Y ] is an integral
domain.

The dimension of an affine variety equals the dimension of its coordinate ring which is
the Krull dimension defined as the maximum d ∈ N such that there exist a chain of
prime ideals

P0 ( P1 ( . . . ( Pd

of length d in R. We denote it by d = dimY for Y = V (I).

The number n − d is called the codimension of the affine algebraic variety Y in Cn.
Note that an hypersurface in Cn is of codimension 1.

2.3 Singularities of Varieties

We are dealing here with the surface in Cn. A surface is a 2 dimensional affine variety
in Cn.

Let f ∈ C[x1, . . . , xn]. Let S be a hypersurface in Cn defined by f ; it means

S := V (f) = {(a1, . . . , an) ∈ Cn| f(a1, . . . , an) = 0}

Definition 2.3.1. A point p = (a1, . . . , an) ∈ S is said to be singular or (singularity
of S) if f(p) = 0 and

∂f

∂xi
(p) = 0 ∀i, i = 1, . . . , n

Exemple 2.3.2. Consider the hypersurface defined by f(x, y, z) = x2 + y3 + yz3 in
C3. f(0, 0, 0) = 0 and

∂f

∂x
= 2x = 0

∂f

∂y
= 3y2 + z3 = 0

∂f

∂z
= 3yz2 = 0

Hence the point (0, 0, 0) is singularity of f .
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More generally, let I ⊂ C[x1, . . . , xn] be an ideal and S be a surface in Cn defined by
I, means

S := V (I) = {(a1, . . . , an) ∈ Cn| f(a1, . . . , an) = 0 ∀f ∈ I}

Definition 2.3.3. A point p ∈ S is said to be singular if the rank of the Jacobien
matrix of I equals n− 2, means

rk(
∂fi
∂xj

)(p) = n− 2

where i = 1, . . . ,m, j = 1, . . . , n and I =< f1, . . . , fm >.

If p is not a singular point of S then it is called a non-singular or a smooth point of S.

Exemple 2.3.4. Let us consider the ideal I =< f1, f2, f3 > where

f1(x, y, z, w) = z2 − yw + y3 = 0

f2(x, y, z, w) = zw − x2y = 0

f3(x, y, z, w) = w2 − y2w − x2z = 0

The ideal I defines a surface S := V (I) in C4. The surface S has an isolated singularity
since the singular locus is only the origin. We want to examine the singular point of
S; so the Jacobien matrix

Jac(I) =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂w

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂w

∂f3
∂x

∂f3
∂y

∂f3
∂z

∂f3
∂w

 =

 0 −w + 3y2 2z −y
−2xy −x2 w z
−2xz −2yw −x2 2w − y2


has rank 2 at a smooth point of S and has rank 3 at singular point.

Exemple 2.3.5. Consider the hypersurface defined by

f(x, y, z) = x2 + y3 + yz3

in C3. It has a singular point at the origin.

Definition 2.3.6. Let S be a surface in Cn. A singular point p ∈ S is called an
isolated singularity if S\{p} is smooth; in other words, p has a neighborhood U in S
such that U\{p} ∼= C2.

Exemple 2.3.7. In the example 2.3.5. has an isolated singularity at the origin.

Exemple 2.3.8. Consider the hypersurface defined by

f(x, y, z) = z3 + y3z + x2y2

in C3. It has singularity along (x, 0, 0). Such a singularity is called non-isolated singu-
larity .



6

2.4 Newton Polygon

Let f ∈ C[x1, . . . , xn] with f(x1, . . . , xn) =
∑
α

cαx
α where xα = xα1

1 . . . xαn
n and α =

(α1, . . . , αn) ∈ Rn. The support of f is the set

supp(f) := {α ∈ Rn|cα 6= 0}

Exemple 2.4.1. Consider the example 2.3.2. The support of f(x, y, z) is

supp(f) = {(2, 0, 0), (0, 3, 0), (0, 1, 3)}

Definition 2.4.2. The closure in Rn of the convex hull of the set⋃
α∈Supp(f)

(α + Rn
≥0)

is called the Newton polygon of f . We will denoted it by NP (f).

Exemple 2.4.3. Consider the example 2.3.2. The NP (f) is

Figure 2.1: NP (f)
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Exemple 2.4.4. Let us consider f(x, y, z) = z3 + y3z + x2y2 in C3. The NP (f) is

Figure 2.2: NP (f)

Definition 2.4.5. The closure in Rn of the convex hull of the set

{v ∈ Rn| < v,w >≥ 0 ∀w ∈ NP (f)}

is called dual Newton polygon of f . We will denoted it by DNP(f).

Exemple 2.4.6. Consider hypersurface defined by f(x, y, z) = x2 + y3 + yz3 in C3.
The support set is

supp(f) = {(2, 0, 0), (0, 3, 0), (0, 1, 3)}

The DNP(f) is

Figure 2.3: DNP (f)

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), v1 = (1, 2, 0) and W = (9, 6, 4).
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3. RESOLUTİON OF HYPERSURFACES

A cone σ in R3 is

cone(v1, . . . , vn) = {
n∑
i=1

aivi | vi ∈ R3, ai ∈ R≥0}

The vectors v1, . . . , vk are called the generators of σ. A cone σ is called regular if
det(v1, . . . , vk) = 1 such that det(v1, . . . , vk) := gcd(det(M1), . . . , det(Ml)) where Mi is
the minor of the matrix (v1, . . . , vk).

Definition 3.0.1 For every compact faces Fi of NP (f) in Cn, if the system

∂Fi
∂xj

= 0, where 0 ≤ j ≤ n

has no solution in C∗, then f is a non-degenerate singularity.
Any cone can become regular by a suitable subdivision.

Theorem 3.0.2. A non-degenerate singularity can be resolved by using Newton poly-
gon.

3.1. Regular Subdivision (of Newton Polygon)

A vector v in R3 is called integral vector if each component vi of v is a positive integer
where v = (v1, v2, v3). Let σ be a cone in R3 generated by two integral vectors u =
(u1, u2, u3) and v = (v1, v2, v3). If det(σ) = 1 then σ is regular.

If det(σ) = d and d > 2, we check whether there exists d1 ∈ N∗ such that the quotient

v1 :=
v + d1u

d

is an integral vector. If such d1 exists it is not unique. Take the smallest value of
d1. If d1 = 1, then the cone σ = σ1 ∪ σ2 becomes regular where σ1 =< u, v1 > and
σ2 =< v1, v >.

Definition 3.1.1. A fan
∑

in R3 is a finite collection of convex cones σi such that
(i) Each face of any σi is also a cone in

∑
.

(ii) Any intersection of two σi in
∑

is a face of each cone.

Note that, after subdivision σ becomes a fan in R3 and each σi is regular cone.
If the smallest d1 6= 1 then we check whether there exists d2 ∈ N∗ such that the quotient

v2 :=
v + d2v

1

d1

is an integral vector. If d2 = 1, the regular subdivision of σ
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is given by σ = σ1 ∪ σ2 ∪ σ3 where σ1 =< u, v1 >, σ2 =< v1, v2 > and σ3 =< v2, v >.
Note that, σ is a fan in which each σi is a regular cone.

If d2 6= 1, then we return to check the appropriate quotient. We continue until we find
a regular subdivision of σi.
The regular subdivision of a fan consists of doing regular subdivision of each cone in
the fan.

Remark 3.1.2. In the sequel, we will draw the DNP (f) by considering its intersection
with the plane x+ y + z = 1 to make easier the drawing.

3.2. Isolated Hypersurface Singularity and Regular Subdivision

In this section, we will consider an hypersurface in C3 which has an isolated singularity
at the origin and its corresponding Newton polygon. We will find the dual of the
Newton polygon, which is a fan, and its regular subdivision. Such a subdivision will
lead us to obtain the minimal resolution graph of the singularity at hand.

Exemple 3.2.1. In the example 2.13 (case E7 singularity), the dual Newton polygon
of f(x, y, z) in C3 has 3 cones as follows:

σ1 =< u1, u2, u3, u4 >

σ2 =< v1, v2, v3 >

σ3 =< w1, w2, w3 >

where e2 = u1 = (0, 1, 0), u2 = v2 = w2 = (9, 6, 4), u3 = v1 = (1, 2, 0), e3 = u4 = w3 =
(0, 0, 1) and e1 = v3 = w1 = (1, 0, 0).

When we consider the intersection of the subdivided DNP (f) and the plane x+y+z =
1, we obtain the subdivided DNP (f) as follows:

Figure 3.1: E7a

We compute the regular subdivision of σij =< ui, uj >, τij =< vi, vj > and δij =<
wi, wj > for all i, j. Let us check σ12:

d = det(σ12) =

(
0 1 0
9 6 4

)
= gcd(9, 4) = 1, hence σ12 is regular. Let us check σ13:
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d = det(σ13) =

(
0 1 0
1 2 0

)
= gcd(1) = 1, hence σ13 is regular. Let us check σ14:

d = det(σ14) =

(
0 1 0
0 0 1

)
= gcd(1) = 1, hence σ14 is regular. Let us subdivide σ23

into regular cones:

d = det(σ23) =

(
9 6 4
1 2 0

)
= gcd(12, 4, 8) = 4. Consider the sequence of quotients:

v1 :=
u2 + d1.u3

d
=

(9, 6, 4) + 3.(1, 2, 0)

4
= (3, 3, 1)

v2 :=
u2 + d2.v

1

d1
=

(9, 6, 4) + 2.(3, 3, 1)

3
= (5, 4, 2)

v3 :=
u2 + d3.v

2

d2
=

(9, 6, 4) + 1.(5, 4, 2)

2
= (7, 5, 3)

Now let us subdivide σ24 into regular cones:

d = det(σ24) =

(
9 6 4
0 0 1

)
= gcd(9, 6) = 3. Consider the sequence of quotients:

v4 :=
u2 + d1.u4

d
=

(9, 6, 4) + 2.(0, 0, 1)

3
= (3, 2, 2)

v5 :=
u2 + d2.v

4

d1
=

(9, 6, 4) + 1.(3, 2, 2)

2
= (6, 4, 3)

For the regular subdivision of τij =< vi, vj >, we already checked τ12. Let us subdivide
τ13 into regular cones:

d = det(τ13) =

(
1 2 0
1 0 0

)
= gcd(2) = 2. Consider the quotient:

v6 :=
v1 + d1.v2

d
=

(1, 2, 0) + 1.(1, 0, 0)

2
= (1, 1, 0)

Let us subdivide τ23 into regular cones:

d = det(τ23) =

(
9 6 4
1 0 0

)
= gcd(6, 4) = 2. Consider the quotient:

v7 :=
v2 + d1.v3

d
=

(9, 6, 4) + 1.(1, 0, 0)

2
= (5, 3, 2)

To compute the regular subdivision of δij we need to check δ12, δ13 and δ23. We already
check δ12 and δ23 cases. Let us check δ13:

d = det(δ13) =

(
1 0 0
0 0 1

)
= gcd(1) = 1, hence δ13 is regular.

We will denote u2 = W . The additional vectors obtained above are denoted in Figure
E7b and it becomes:
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Figure 3.2: E7b

This subdivision gives us the following graph which is the minimal resolution graph of
singularity E7:

Figure 3.3: E7m

We should check whether all possible two dimensional cones in Figure E7b is regular.
For this, we should compute the regular subdivision of the cones < ui, v

j >, < ui, vj >,
< ui, wj >, < vi, v

j >, < vi, wj > and < wi, v
j > for all i, j. Let us check: < v5, u1 >:

d = det(

(
6 4 3
0 1 0

)
) = gcd(6, 3) = 3. Consider the sequence of quotients:

v8 :=
v5 + d1.u1

d
=

(6, 4, 3) + 2.(0, 1, 0)

3
= (2, 2, 1)

v9 :=
v5 + d2.v

8

d
=

(6, 4, 3) + 1.(2, 2, 1)

2
= (4, 3, 2)

Let us check < v4, v3 >:

d = det(

(
3 3 3
1 0 0

)
) = gcd(2, 2) = 2. Consider the quotient:

v10 :=
v4 + d1.v3

d
=

(3, 2, 2) + 1.(1, 0, 0)

2
= (2, 1, 1)

Let us check < v6, v7 >:

d = det(

(
1 1 0
5 3 2

)
) = gcd(2, 2, 2) = 2. Consider the quotient:

v11 :=
v6 + d1.v

7

d
=

(1, 1, 0) + 1.(5, 3, 2)

2
= (3, 2, 1)
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Let us check < v8, u4 >:

d = det(

(
2 2 1
0 0 1

)
) = gcd(2, 2) = 2. Consider the quotient:

v12 :=
v8 + d1.u4

d
=

(2, 2, 1) + 1.(0, 0, 1)

2
= (1, 1, 1)

Hence the dual Newton polygon in Figure E7b becomes as the following with all the
obtained vectors. We will called this regularised dual Newton polygon.

Figure 3.4: E7c

Hence in our case we obtain the vectors which are W = u2 = v2 = w2 = (9, 6, 4), u3 =
v1 = (1, 2, 0), v1 = (3, 3, 1), v2 = (5, 4, 2), v3 = (7, 5, 3), v4 = (3, 2, 2), v5 = (6, 4, 3),
v6 = (1, 1, 0), v7 = (5, 3, 2), v8 = (2, 2, 1), v9 = (4, 3, 2), v10 = (2, 1, 1), v11 = (3, 2, 1)
and v12 = (1, 1, 1).

Remark 3.2.2. We will compare all the vectors marked in Figure E7c with the vectors
in the jet graph Figure 4.1.

3.3. Non-Isolated Hypersurface Singularity and Regular Subdivision

In this section, we will consider an hypersurface in C3 which has a non-isolated singu-
larity at the origin and its corresponding Newton polygon. We will find the dual of the
Newton polygon and its regular subdivision to obtain the minimal resolution graph of
the singularity at hand. For this we will follow (Altıntaş & Çevik & Tosun, 2016).

Exemple 3.3.1. Consider E60 singularity given by the equation:

f(x, y, z) = z3 + y3z + x2y2 = 0

in C3. The DNP(f) has three cones as follows:

σ1 =< u1, u2, u3, u4 >

σ2 =< v1, v2, v3, v4 >

σ3 =< w1, w2, w3 >

where e1 = u1 = w1 = (1, 0, 0), e2 = u2 = (0, 1, 0), u3 = v2 = (0, 3, 2), u4 = v1 = w2 =
(5, 4, 6), e3 = v3 = (0, 0, 1) and v4 = w3 = (1, 0, 2).
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Figure 3.5: E60a

We compute the regular subdivision of σij =< ui, uj >, τij =< vi, vj > and δij =<
wi, wj > for all i, j. Let us check σ12:

d = det(σ12) =

(
1 0 0
0 1 0

)
= gcd(1) = 1, hence σ12 is regular. Let us check σ13:

d = det(σ13) =

(
1 1 0
0 3 2

)
= gcd(3, 2) = 1, hence σ13 is regular. Let us check σ14:

d = det(σ14) =

(
1 0 0
5 4 6

)
= gcd(4, 6) = 2. Consider the quotient:

v1 :=
u1 + d1.u4

d
=

(1, 0, 0) + 1.(5, 4, 6)

2
= (3, 2, 3)

Let us check σ23:

d = det(σ23) =

(
0 1 0
0 3 2

)
= gcd(2) = 2. Consider the quotient:

v2 :=
u2 + d1.u3

d
=

(0, 1, 0) + 1.(0, 3, 2)

2
= (0, 2, 1)

Let us check σ24:

d = det(σ24) =

(
0 1 0
5 4 6

)
= gcd(5, 6) = 1, hence σ24 is regular. Let us check σ34:

d = det(σ34) =

(
0 3 2
5 4 6

)
= gcd(15, 10, 10) = 5. Consider the sequence of quotients:

v3 :=
u3 + d1.u4

d
=

(0, 3, 2) + 3.(5, 4, 6)

5
= (3, 3, 4)

v4 :=
u3 + d2.v

3

d1
=

(0, 3, 2) + 1.(3, 3, 4)

3
= (1, 2, 2)

For the regular subdivision of τij =< vi, vj >, we already checked τ12. Let us check τ13:

d = det(τ13) =

(
5 4 6
0 0 1

)
= gcd(5, 4) = 1. Hence τ13 is regular. Let us check τ14:

d = det(τ14) =

(
5 4 6
1 0 2

)
= gcd(4, 4, 8) = 4. Consider the sequence of quotients:

v5 :=
v1 + d1.v4

d
=

(5, 4, 6) + 3.(1, 0, 2)

4
= (2, 1, 3)
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v6 :=
v1 + d2.v

5

d1
=

(5, 4, 6) + 2.(2, 1, 3)

3
= (3, 2, 4)

v7 :=
v1 + d3.v

6

d2
=

(5, 4, 6) + 1.(3, 2, 4)

2
= (4, 3, 5)

Let us check τ23:

d = det(τ23) =

(
0 3 2
0 0 1

)
= gcd(3) = 3. Consider the quotient:

v8 :=
v2 + d1.v3

d
=

(0, 3, 2) + 1.(0, 0, 1)

3
= (0, 1, 1)

Let us check τ24:

d = det(τ24) =

(
0 3 2
1 0 2

)
= gcd(3, 2, 6) = 1, hence τ24 is regular. Let us check τ34:

d = det(τ24) =

(
0 0 1
1 0 2

)
= gcd(1) = 1, hence τ34 is regular.

For the regular subdivision of δij, we already check δ12 and δ23 cases. Let us check δ13:

d = det(δ13) =

(
1 0 0
1 0 2

)
= gcd(2) = 2. Consider the quotient:

v9 :=
w1 + d1.w3

d
=

(1, 0, 0) + 1.(1, 0, 2)

2
= (1, 0, 1)

When we consider the intersection of subdivided DNP (f) and the plane x+y+ z = 1,
we obtain the subdivided DNP (f). We will denote u4 = W . The additional vectors
obtained above are denoted in Figure E60b and it becomes:

Figure 3.6: E60b

This subdivision gives us the following graph which is the minimal resolution graph of
the singularity E60:

Figure 3.7: E60m
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We should whether all possible two dimensional cones in the Figure E60b is regular.
For this, we should compute the regular subdivision of the cones < ui, v

j >, < ui, vj >,
< ui, wj >, < vi, v

j >, < vi, wj > and < wi, v
j > for all i, j. Let us check < u1, v

6 >

d = det(

(
1 0 0
3 2 4

)
) = gcd(2, 4) = 2. Consider the quotient:

v10 :=
u1 + d1.v

6

d
=

(1, 0, 0) + 1.(3, 2, 4)

2
= (2, 1, 2)

Let us check < u1, v
4 >

d = det(

(
1 0 0
1 2 2

)
) = gcd(2, 2) = 2. Consider the quotient:

v11 :=
u1 + d1.v

4

d
=

(1, 0, 0) + 1.(1, 2, 2)

2
= (1, 1, 1)

Let us check < v3, v
3 >:

d = det(

(
0 0 1
3 3 4

)
) = gcd(3, 3) = 3. Consider the sequence of quotients:

v12 :=
v3 + d1.v

3

d
=

(0, 0, 1) + 2.(3, 3, 4)

3
= (2, 2, 3)

v13 :=
v3 + d2.v

12

d1
=

(0, 0, 1) + 1.(2, 2, 3)

2
= (1, 1, 2)

Hence the dual Newton polygon in Figure E60b becomes the regularised dual Newton
polygon of E60 as the following with all the obtained vectors.

Figure 3.8: E60c

Hence in our case, we have the vectors u3 = v2 = (0, 3, 2), W = u4 = v1 = w2 = (5, 4, 6),
v3 = (0, 0, 1), v4 = (1, 0, 2), v1 = (3, 2, 3), v2 = (0, 2, 1), v3 = (3, 3, 4), v4 = (1, 2, 2),
v5 = (2, 1, 3), v6 = (3, 2, 4), v7 = (4, 3, 5), v8 = (0, 1, 1), v9 = (1, 0, 1), v10 = (2, 1, 2),
v11 = (1, 1, 1), v12 = (2, 2, 3) and v13 = (1, 1, 2).

Remark 3.3.2. We will compare all the vectors marked in Figure E60c with the vectors
in the jet graph Figure 5.1.
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Exemple 3.3.3. Consider E70 singularity given by the equation:

f(x, y, z) = z3 + x2yz + y4 = 0

in C3. The DNP(f) has three cones as follows:

σ1 =< u1, u2, u3, u4 >

σ2 =< v1, v2, v3 >

σ3 =< w1, w2, w3, w4 >

where e1 = u1 = w1 = (1, 0, 0), e2 = u2 = (0, 1, 0), u3 = v2 = (0, 2, 1), u4 = v1 = w2 =
(5, 6, 8), v3 = w3 = (0, 1, 3) and e3 = w4 = (0, 0, 1).

Figure 3.9: E70a

We will denote u4 = W . When we consider the intersection of subdivided DNP (f)
and the plane x+ y + z = 1, we obtain the subdivided DNP (f) as follows:

Figure 3.10: E70b

where v1 = (3, 3, 4), v2 = (1, 2, 2), v3 = (3, 4, 5), v4 = (1, 2, 4), v5 = (2, 3, 5), v6 =
(3, 4, 6) and v7 = (4, 5, 7).
This subdivision gives us the following graph which is the minimal resolution graph of
the singularity E70:
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Figure 3.11: E70m

In the subdivided DNP given in Figure E70b, the only cones which still need to be
subdivided are < u1, v

2 >, < u2, v
6 >, < w4, v

1 > which give the vectors v8 = (1, 1, 1),
v9 = (2, 3, 4), v10 = (2, 2, 3) and v11 = (1, 1, 2). Hence the regularized DNP (f) in this
case is:

Figure 3.12: E70c

Hence in our case we obtain the vectors u3 = v2 = (0, 2, 1), W = u4 = v1 = w2 =
(5, 6, 8), w3 = v3 = (0, 1, 3), v1 = (3, 3, 4), v2 = (1, 2, 2), v3 = (3, 4, 5), v4 = (1, 2, 4),
v5 = (2, 3, 5), v6 = (3, 4, 6), v7 = (4, 5, 7), v8 = (1, 1, 1), v9 = (2, 3, 4), v10 = (2, 2, 3)
and v11 = (1, 1, 2).

Remark 3.3.4. We will compare all the vectors marked in Figure E70c with the vectors
in the jet graph Figure 5.4.

Exemple 3.3.5. Consider E07 singularity given by the equation:

f(x, y, z) = z3 + y5 + x2y2 = 0

in C3. The DNP(f) has three cones as follows:

σ1 =< u1, u2, u3, u4 >

σ2 =< v1, v2, v3 >

σ3 =< w1, w2, w3 >

where e1 = u1 = w1 = (1, 0, 0), e2 = u2 = (0, 1, 0), u3 = v2 = (0, 3, 2), u4 = v1 = w2 =
(9, 6, 10) and e3 = v3 = w3 = (0, 0, 1).
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Figure 3.13: E07a

When we consider the intersection of subdivided DNP (f) and the plane x+y+ z = 1,
we obtain the subdivided DNP (f). We will denote u4 = W .

Figure 3.14 E07b

where v1 = (5, 3, 5), v2 = (3, 2, 4), v3 = (6, 4, 7), v4 = (1, 2, 2), v5 = (3, 3, 4), v6 =
(5, 4, 6), v7 = (7, 5, 8), v8 = (2, 1, 2) and v9 = (3, 2, 3),. This subivision gives us the
following graph which is the miniml resolution graph of the singularity E07:

Figure 3.15: E07m

In the subdivided DNP (f) given in Figure E07b, the only cones which still need to
be subdivided are < u1, v

3 >, < u2, v
1 >, < v4, v

5 > and < v14, v3 > which give the
vectors v10 = (1, 1, 1), v11 = (2, 2, 3), v12 = (1, 1, 2), v13 = (0, 2, 1), v14 = (0, 1, 1) and
v15 = (4, 3, 5). Hence the regularized DNP (f) in this case is:
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Figure 3.16: E07c

Hence in our case we obtain the vectors u3 = v2 = (0, 3, 2), u4 = v1 = w2 = (9, 6, 10),
v1 = (5, 3, 5), v2 = (3, 2, 4), v3 = (6, 4, 7), v4 = (1, 2, 2), v5 = (3, 3, 4), v6 = (5, 4, 6),
v7 = (7, 5, 8), v8 = (2, 1, 2), v9 = (3, 2, 3), v10 = (1, 1, 1), v11 = (2, 2, 3), v12 = (1, 1, 2),
v13 = (0, 2, 1), v14 = (0, 1, 1) and v15 = (4, 3, 5) .

Remark 3.3.6. We will compare all the vectors marked in Figure E07c with the vectors
in the jet graph Figure 5.7.
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4. JET SCHEMES OF ADE SINGULARITIES

In this chapter, we will consider the jet scheme structure of an hypersurface. We will
find the jet schemes of an hypersurface with isolated singularity at the origin which is
one of the hypersurface of ADE-singularities.

4.1 Hypersurfaces with Isolated Singularity

Let X be an hypersurface in Cn defined by f(x1, . . . , xn). Let C[[t]] be the ring of
formal power series in t. Consider the morphism

ϕ : C[x1, . . . , xn]/ < f >−→ C[[t]]

defined by
ϕ(xi) = xi,0 + xi,1t+ xi,2t

2 + xi,3t
3 + . . .

with
f(x1(t), x2(t)), . . . , xn(t)) = F0 + tF1 + t2F2 + . . . = 0

The Spec of each of rings gives:

γ : SpecC[[t]] −→ X

This morphism defines a parametrized curve γ(t) on X.

Definition 4.1.1. The parametrized curve γ(t) on X is called an arc.
The space of arcs on X, denoted by J∞(X), is the set of all arcs on X and is given by

J∞(X) = Spec
C[x1,0, x1,1, . . . , xn,0, xn,1, . . .]

< F0, F1, . . . , Fm >

Now let us consider the morphism

ϕm : C[x1, . . . , xn]/ < f >−→ C[[t]]/ < tm+1 >

defined by

ϕm(xi) = xi,0 + xi,1t+ xi,2t
2 + . . .+ xi,mt

m mod(tm+1)

so we have:
γm : Spec(C[[t]]/ < tm+1 >) −→ X

An mth jet on X is an arc given by the morphism γm.

Remark 4.1.2. The set of all m jets on X, denoted by Jm(X), forms a scheme
structure.
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An mth jet scheme of X is

Jm(X) = Spec
C[x1,0, . . . , xn,0, x1,1, . . . xn,1, . . . , xn,m]

< F0, F1, . . . , Fm >

The ideal Im =< F0, F1, . . . , Fm > is said to be the defining ideal of Jm(X).

Remark 4.1.3. The mth jet scheme of X, Jm(X) is irreducible if its defining ideal
Im =< F0, F1, . . . , Fm > is prime.

Exemple 4.1.4. Consider an hypersurface X in C2 defined by f(x, y) = xy.

For m=0, we have
f(x0, y0) = x0y0 = F0

The 0th jet scheme of X is given by

J0(X) = Spec
C[x0, y0]

< F0 >

For m=1, we have

f(x0 + x1t, y0 + y1t) = x0y0 + t(x0y1 + x1y0) = F0 + F1t

The 1th jet scheme of X is given by

J1(X) = Spec
C[x0, x1, y0, y1]

< F0, F1 >

...

For m, we have

f(x0 + . . .+ xmt
m, y0 + . . .+ ymt

m) = F0 + tF1 + . . .+ tmFm

= x0y0 + t(x0y1 + x1y0) + . . .+ tm(x0ym + . . .+ xmy0)

The mth jet scheme of X is given by

Jm(X) = Spec
C[x0, . . . , xm, y0, . . . ym]

< F0, F1, . . . , Fm >

Remark 4.1.5. (i) The 0th jet scheme of X, J0(X) is equal to X.
(ii) The 1th jet scheme of X, J1(X) is equal to total tangent space of X.

Let us assume X = Cn be a smooth variety. Consider the morphism

ϕm : C[x1, . . . , xn] −→ C[[t]]/ < tm+1 >

The mth jet scheme of X is given by

Jm(X) = SpecC[x1,1, . . . , x1,m, x2,1, . . . x2,m, . . . , xn,m]
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Hence we obtain Jm(X) = Cnm. Consider the projection map

πm−1m : Jm(Cn) −→ Jm−1(Cn)

This map is surjective and it is induced by the inclusion

C[x1,1, . . . , x1,m, . . . , xn,1, . . . , xn,m] ↪→ C[x1,1, . . . , x1,m−1, . . . , xn,1, . . . , xn,m−1]

Let us denote Sing(X) for the singular locus of X. We define easly the projection map

πm : Jm(X) −→ J0(X) = X

In the case of X has singularity, the projection map πm composes of π−1m (Sing(X)) and
π−1m (Reg(X)) where Reg(X) is the set of smooth points of X. We will interest in the
irreducible components of π−1m (Sing(X)). In order to find defining ideal of Jm(X), we
need to look all of Fi, 0 ≤ i ≤ m. Since every step contains the previous one we will
write Fm for Jm(X) and we will take into consideration all Fj where 0 ≤ j ≤ m.

4.2 ADE Singularities

The hypersurfaces defined in C3 by one of the following equations are called ADE-
hypersurfaces (n ∈ N) :

An : xy − zn+1 = 0

Dn, n ≥ 4 : z2 − x(y2 + xn−2) = 0

E6 : z2 + y3 + x4 = 0

E7 : x2 + y3 + yz3 = 0

E8 : z2 + y3 + x5 = 0

These hypersurfaces have an isolated singularity at the origin in C3, they are called
ADE-singularities.

4.3 Jet Schemes of an Hypersurface of type E7

Let X be an hypersurface of type E7 in C3. We know that X is defined by

f(x, y, z) = x2 + y3 + yz3

in C[x, y, z]. We write

f(x0+x1t+. . .+xmt
m, y0+. . .+ymt

m, z0+. . .+zmt
m) = F0+tF1+. . . mod (tm+1) (4)

For m=0, we have
F0(x0, y0, z0) = x20 + y0(y

2
0 + z30)

• This says that x0 = y0 = 0. Hence the ideal is I0 =< x0, y0 >. This corresponds to
the vector v01 = (1, 1, 0) with codimension 2 in C3. J0(E7) is given by

J0(E7) = Spec
C[x0, y0, z0]

< F0 >
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For m=1, (4) gives;

F1(x0, . . . , z1) = x0x1 + y1z
3
0 + y0(y0y1 + z20z1)

• Over the ideal I0, we obtain two possible ideals I11 =< x0, y0, z0 > and I12 =<
x0, y0, y1 >. These correspond to the vectors v11 = (1, 1, 1) and v12 = (1, 2, 0) respec-
tively. Each of which of codimension is 3. J1(E7) is given by

J1(E7) = Spec
C[x0, y0, z0, x1, y1, z1]

< F0, F1 >

For m=2, (4) gives;

F2(x0, . . . , z2) = x0x2 + x21 + y0(y0y2 + y21 + z20z2 + z0z
2
1) + z20(y1z1 + y2z0)

• Over the ideal I11 we obtain the ideal I21 =< x0, y0, z0, x1, >. The corresponding
vector v21 = (2, 1, 1) is of codimension 4.
• Over the ideal I12 we obtain two possible ideal I22 =< x0, y0, y1, x1, z0 > and I23 =<
x0, y0, y1, x1, y2 > with corresponding vector v22 = (2, 2, 1) and v23 = (2, 3, 0) respectively.
Each of which of codimension is 5. J2(E7) is given by

J2(E7) = Spec
C[x0, . . . , z2]

< F0, F1, F2 >

For m=3, (4) gives;

F3(x0, . . . , z3) = x0x3 + x1x2 + . . .+ y31 + . . .+ y3z
3
0

• Over the ideals I21 and I22 we obtain the ideal I31 =< x0, y0, z0, x1, y1 >. The
corresponding vector v31 = (2, 2, 1) is of codimension 5.
• Over the ideals I23, we obtain two possible ideals I32 =< x0, y0, y1, x1, y2, z0 > and
I33 =< x0, y0, y1, x1, y2, y3 > with corresponding vector v32 = (2, 3, 1) and v33 = (2, 4, 0).
Each of which of codimension is 6. J3(E7) is given by

J3(E7) = Spec
C[x0, . . . , z3]

< F0, F1, F2, F3 >

Remark 4.3.1. The mth jet scheme of E7 is given by

Jm(E7) = Spec
C[x0, y0, z0, . . . , zm]

< F0, F1, . . . , Fm >

for all m.

For m=4, (4) gives;

F4(x0, . . . , z4) = x0x4 + x1x3 + . . .+ y21y2 + . . .+ y4z
3
0

• Over the ideal I31, we obtain the ideal I41 =< x0, y0, z0, x1, y1, x2 >. The correspond-
ing vector v41 = (3, 2, 1) is of codimension 6.
• Over the ideal I32, we obtain the ideal I42 =< x0, y0, y1, x1, y2, z0, x2 >. The corre-
sponding vector v42 = (3, 3, 1) is of codimension 7.
• Over the ideal I33, we obtain two possible ideals I43 =< x0, y0, y1, x1, y2, y3, x2, z0 >
and I44 =< x0, y0, y1, x1, y2, y3, x2, y4 > with corresponding vectors v43 = (3, 4, 1) and
v44 = (3, 5, 0) respectively. Each of which of codimension is 8.
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Remark 4.3.2. The vectors (a, b, c) in R3 corresponding to an ideal defining Jm(X)
which is irreducible is called weight vector. It is obtained by the number of appearances
of x, y and z in the ideal independently their subscript.

For m=5, (4) gives;

F5(x0, . . . , z5) = x0x5 + x1x4 + . . .+ y1y
2
2 + . . .+ y5z

3
0

• Over the ideal I41, we obtain two possible ideals I51 =< x0, y0, z0, x1, y1, x2, z1 >
and I52 =< x0, y0, z0, x1, y1, x2, y2 > with corresponding vectors v51 = (3, 2, 2) and
v52 = (3, 3, 1) respectively. Each of which of codimension is 7.
• Over the ideal I42, we obtain the ideal I52. Over the ideal I43, we obtain the ideal
I53 =< x0, y0, y1, x1, y2, y3, x2, z0 >. The corresponding vector v53 = (3, 4, 1) is of codi-
mension 8.
• Over the ideal I44, we obtain two possible ideals I54 =< x0, y0, y1, x1, y2, y3, x2, y4, z0 >
and I55 =< x0, y0, y1, x1, y2, y3, x2, y4, y5 > with corresponding vectors v54 = (3, 5, 1) and
v55 = (3, 6, 0) respectively. Each of which of codimension is 9.

For m=6, (4) gives;

F6(x0, . . . , z6) = x0x6 + x1x5 + . . .+ y32 + . . .+ y6z
3
0

• Over the ideal I51, we obtain the ideal I61 =< x0, y0, z0, x1, y1, x2, z1, x3, y2 >. The
corresponding vector v61 = (4, 3, 2) is of codimension 9.
• Over the ideal I52, we obtain two possible ideals I61 and I62 =< x0, y0, z0, x1, y1, x2, y2,
x3, y3 >. The corresponding vector of I62 is v62 = (4, 4, 1) with codimension 9.
• Over the ideal I53, we obtain the ideal I62.
• Over the ideal I54, we obtain the ideal I63 =< x0, y0, y1, x1, y2, y3, x2, y4, z0, x3 >. The
corresponding vector v63 = (4, 5, 1) is of codimension 10.
• Over the ideal I55, we obtain two possible ideals I64 =< x0, y0, y1, x1, y2, y3, x2, y4, y5,
x3, z0 > and I65 =< x0, y0, y1, x1, y2, y3, x2, y4, y5, x3, y6 >. The corresponding vectors
v64 = (4, 6, 1) and v65 = (4, 7, 0) are of codimension 11.

For m=7, (4) gives;

F7(x0, . . . , z7) = x0x7 + x1x6 + . . .+ y22y3 + . . .+ y7z
3
0

• Over the ideal I61, we obtain the ideal I71 =< x0, y0, z0, x1, y1, x2, z1, x3, y2 >. The
corresponding vector v71 = (4, 3, 2) is of codimension 9.
• Over the ideal I62, we obtain the ideal I72 =< x0, y0, z0, x1, y1, x2, y2, x3, y3, z1 >. The
corresponding vector v72 = (4, 4, 2) is of codimension 10.
• Over the ideal I63, we obtain the ideal I73 =< x0, y0, y1, x1, y2, y3, x2, y4, z0, x3 >. The
corresponding vector v73 = (4, 5, 1) is of codimension 10.
•Over the ideal I64, we obtain the ideal I74 =< x0, y0, y1, x1, y2, y3, x2, y4, y5, x3, z0 >.
The corresponding vector v74 = (4, 6, 1) is of codimension 11.

For m=8, (4) gives;

F8(x0, . . . , z8) = x0x8 + x1x7 + . . .+ y2y
2
3 + . . .+ y8z

3
0
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• Over the ideal I71, we obtain the ideal I81 =< x0, y0, z0, x1, y1, x2, z1, x3, y2, x4 >. The
corresponding vector v81 = (5, 3, 2) is of codimension 10.
•Over the ideal I72, we obtain the ideal I82 =< x0, y0, z0, x1, y1, x2, y2, x3, y3, z1, x4 >.
The corresponding vector v82 = (5, 4, 2) is of codimension 11.
• Over the ideal I73, we obtain two possible ideals I83 =< x0, y0, y1, x1, y2, y3, x2, y4, z0,
x3, x4, z1 > and I84 =< x0, y0, y1, x1, y2, y3, x2, y4, z0, x3, x4, y5 > with corresponding
vectors v83 = (5, 5, 2) and v84 = (5, 6, 1). Each of which of codimension is 12.
• Over the ideal I74, we obtain the ideal I84.

For m=9, (4) gives;

F9(x0, . . . , z9) = x0x9 + . . .+ x4x5 + y20y9 + . . .+ y33 + y0z
2
0z9 + . . .+ y9z

3
0

• Over the ideal I81 and I82 , we obtain the ideal I91 =< x0, y0, z0, x1, y1, x2, y2, x3, y3, z1,
x4 >. The corresponding vector v91 = (5, 4, 2) is of codimension 11.
•Over the ideal I83, we obtain the ideal I92 =< x0, y0, y1, x1, y2, y3, x2, y4, z0, x3, x4, z1 >.
The corresponding vector v92 = (5, 5, 2) is of codimension 12.
• Over the ideal I84, we obtain two possible ideals I93 =< x0, y0, y1, x1, y2, y3, x2, y4, z0,
x3, x4, z1, y5 > and I94 =< x0, y0, y1, x1, y2, y3, x2, y4, z0, x3, x4, y5, y6 > with correspond-
ing vectors v93 = (5, 6, 2) and v94 = (5, 7, 1). Each of which of codimension is 13.

In the same way;

For m=10, (4) gives;

F10(x0, . . . , z10) = x0x10 + x1x9 + . . .+ y20y10 + . . .+ y23y4 + y0z
2
0z10 + . . .+ y10z

3
0

• Over the ideal I91, we obtain two possible ideals I101 and I102 with corresponding
vectors v101 = (6, 4, 3) and v102 = (6, 5, 2). Each of which of codimension is 13.
• Over the ideal I92, we obtain the ideal I102.
• Over the ideal I93, we obtain the ideal I103. The corresponding vector v103 = (6, 6, 2)
is of codimension 14.

For m=11, (4) gives;

F11(x0, . . . , z11) = x0x11 + x1x10 + . . .+ y20y11 + . . .+ y3y
2
4 + y0z

2
0z11 + . . .+ y11z

3
0

• Over the ideal I101, we obtain the ideal I111. The corresponding vector v111 = (6, 4, 3)
is of codimension 13.
• Over the ideal I102 we obtain two possible ideals I112 and I113 with corresponding
vectors v112 = (6, 5, 3) and v113 = (6, 6, 2). Each of which of codimension is 14.
• Over the ideal I103, we obtain the ideal I113.

For m=12, (4) gives;

F12(x0, . . . , z12) = x0x12 + x1x11 + . . .+ y20y12 + . . .+ y34 + y0z
2
0z12 + . . .+ y12z

3
0

• Over the ideal I111 and I112, we obtain the ideal I121. The corresponding vector
v121 = (7, 5, 3) is of codimension 15.
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• Over the ideal I131, we obtain two possible ideals I122 and I123 with corresponding
vectors v122 = (7, 6, 3) and v123 = (7, 7, 2). Each of which of codimension is 16.

For m=13, (4) gives;

F13(x0, . . . , z13) = x0x13 + x1x12 + . . .+ y20y13 + . . .+ y24y5 + y0z
2
0z13 + . . .+ y13z

3
0

• Over the ideal I121, we obtain the ideal I131. The corresponding vector v131 = (7, 5, 3)
is of codimension 15.
• Over the ideal I122, we obtain the ideal I132. The corresponding vector v132 = (7, 6, 3)
is of codimension 16.

For m=14, (4) gives;

F14(x0, . . . , z14) = x0x14 + x1x13 + . . .+ y20y14 + . . .+ y4y
2
5 + y0z

2
0z14 + . . .+ y14z

3
0

• Over the ideal I131, we obtain two possible ideals I141 and I142 with corresponding
vectors v141 = (8, 5, 4) and v142 = (8, 6, 3). Each of which of codimension is 17.
• Over the ideal I132, we obtain ideal I142.

For m=15, (4) gives;

F15(x0, . . . , z15) = x0x15 + x1x14 + . . .+ y20y15 + . . .+ y35 + y0z
2
0z15 + . . .+ y15z

3
0

• Over the ideal I141, we obtain the ideal I151. The corresponding vector v151 = (8, 6, 4)
is of codimension 18.
• Over the ideal I142, we obtain two possible ideals I152 and I153. The corresponding
vector of I153 is v152 = (8, 7, 3) with codimension 18.

For m=16, (4) gives;

F16(x0, . . . , z16) = x0x16 + x1x15 + . . .+ y20y16 + . . .+ y25y6 + y0z
2
0z16 + . . .+ y16z

3
0

• Over the ideal I151, we obtain the ideal I161. The corresponding vector v161 = (8, 6, 4)
is of codimension 18.

For m=17, (4) gives;

F17(x0, . . . , z17) = x0x17 + x1x16 + . . .+ y20y17 + . . .+ y5y
2
6 + y0z

2
0z17 + . . .+ y17z

3
0

• Over the ideal I161, we obtain the ideal I171. The corresponding vector v171 = (9, 6, 4)
is of codimension 19.
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Figure 4.1: Jet graph of E7

v01 = (1, 1, 0) v11 = (1, 1, 1) v12 = (1, 2, 0) v21 = (2, 1, 1) v22 = (2, 2, 1)
v23 = (2, 3, 0) v31 = (2, 2, 1) v32 = (2, 3, 1) v33 = (2, 4, 0) v41 = (3, 2, 1)
v42 = (3, 3, 1) v43 = (3, 4, 1) v44 = (3, 5, 0) v51 = (3, 2, 2) v52 = (3, 3, 1)
v53 = (3, 4, 1) v54 = (3, 5, 1) v55 = (3, 6, 0) v61 = (4, 3, 2) v62 = (4, 4, 1)
v63 = (4, 5, 1) v64 = (4, 6, 1) v65 = (4, 7, 0) v71 = (4, 3, 2) v72 = (4, 4, 2)
v73 = (4, 5, 1) v74 = (4, 6, 1) v81 = (5, 3, 2) v82 = (5, 4, 2) v83 = (5, 5, 2)
v84 = (5, 6, 1) v91 = (5, 4, 2) v92 = (5, 5, 2) v93 = (5, 6, 2) v94 = (5, 7, 1)
v101 = (6, 4, 3) v102 = (6, 5, 2) v103 = (6, 6, 2) v111 = (6, 4, 3) v112 = (6, 5, 3)
v113 = (6, 6, 2) v121 = (7, 5, 3) v122 = (7, 6, 3) v123 = (7, 7, 2) v131 = (7, 5, 3)
v112 = (7, 6, 3) v141 = (8, 5, 4) v142 = (8, 6, 3) v151 = (8, 6, 4) v152 = (8, 7, 3)
v161 = (8, 6, 4) v171 = (9, 6, 4)

Note that v1 = v42, v2 = v82, v3 = v121 , v4 = v51, v5 = v101 , v7 = v81 and W = v171 in Figure
E7c.

Definiion 4.3.3. This graph is called the jet graph of the singularity.
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Remark 4.3.4. We stop the process when we obtain the weight vector W .

Remark 4.3.5. Here and below the vectors represented with red correspond to the
vectors given in E7b, the vectors represented in pink also correspond to the vectors
given in E7c and the rest are obtained as the supplemented vectors.

Remark 4.3.6. The minimal resolution graph of singularity E7 is as follow

Figure 4.2: Minimal resolution graph of E7

Remark 4.3.7. So the Figure E7c becomes

Figure 4.3: E7d

where u3 = v12, v6 = v01, v8 = v22, v9 = v61, v10 = v21, v11 = v41 and v12 = v11.

Theorem 4.3.8. (Mourtada, 2013) Let X be an hypersurface in C3 of type E7. For
m ≥ 17, the number of irreducible components of Jm(E7) equals the number of excep-
tional curves in the minimal resolution of the singularity.

Theorem 4.3.9. (Mourtada & Plenat, 2015) The set of weight vectors corresponding
to mth jets of E7 give a canonical toric minimal embedded resolution of the singularity.
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5. JET SCHEMES OF NON-ISOLATED HYPERSURFACE SINGULAR-
ITIES

In this chapter, we will consider some hypersurfaces having one dimensional singular
locus, which are called non-isolated forms of the rational triple singularities of surfaces
in C4.

5.1 Hypersurfaces with Non-Isolated Singularity

Let X be an hypersurface in C3. Assume that X is defined by one of the following
equations:
Ak−1,`−1,m−1, k, `,m ≥ 1.

• k ≥ ` ≥ m,
z3 + xz2 − (x+ yk + y` + ym)ykz + y2k+` = 0,

• k = ` < m,
z3 + (x− yk)z2 − (x+ yk + ym)ykz + y2k+m = 0.

Bk−1,m, k ≥ 2, m ≥ 3.

• m = 2`,
z3 + xz2 − (yk+1 + y`)ykz − xy2k+1 = 0,

• m = 2`− 1,
z3 + (x− y`−1)z2 − y2k+1z − xy2k+1 = 0.

Ck−1,`+1, k ≥ 1, ` ≥ 2,

z3 + xz2 − `x`−1y2kz − (x` + y2)y2k = 0.

Dk−1, k ≥ 1,
z3 + (x+ y2k)z2 + (2xyk − y2)ykz + x2y2k = 0.

E6,0,
z3 + y3z + x2y2 = 0,

E0,7,
z3 + y5 + x2y2 = 0,

E7,0,
z3 + x2yz + y4 = 0.

Fk−1, k ≥ 1,
z3 + (x+ y2k)z2 + 2xy2kz + (x2 + y3)y2k = 0.
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Hn, n ≥ 1,

• n = 3k − 1;
z3 + x2y(x+ yk−1) = 0,

• n = 3k;
z3 + xykz + x3y = 0,

• n = 3k + 1;
z3 + xyk+1z + x3y2 = 0.

Definition 5.1.1. These singularities are called rational triple singularities, studied
in (Tyurina, 1968).
Such an hypersurfaceX has its singular locus along the x-axis; so they have non-isolated
singularities. In this chapter, we are interested in understanding the jet schemes of these
hyprsurfaces X. For this let us consider:

f(x0+x1t+. . .+xmt
m, y0+. . .+ymt

m, z0+. . .+zmt
m) = F0+tF1+. . . mod (tm+1) (5)

Our aim is to describe the jet graph and the toric embedded resolution of an hypersur-
face of one of these types. The construction process is similar to ADE-cases. In order
to determine whether an mth jet scheme is irreducible, we will determine the defining
ideal of each jet Jm(X).

5.2 Jet Schemes of an Hypersurface of type E60

Let X be an hypersurface of type E60 in C3. We know that X is defined by

f(x, y, z) = z3 + y3z + x2y2

in C[x, y, z]. Hence (x, 0, 0) is the singular locus of X. Let us apply the equality (5):

For m=0, we have
F0(x0, y0, z0) = z30 + y20(y0z0 + x20)

• This says that z0 = y0 = 0 or z0 = x0 = 0. Hence the ideals are I01 =< y0, z0 > and
I02 =< x0, y0 >. These correspond to the vectors v01 = (0, 1, 1) and v02 = (1, 0, 1). Each
of which of codimension is 2. Hence J0(E60) is given by

J0(E60) = Spec
C[x0, y0, z0]

< F0 >

For m=1, (5) gives;

F1(x0, . . . , z1) = z20z1 + y0(y0y1z0 + y20z1 + x0x1y0 + x0y1)

• Over the ideal I01, we obtain the ideal I11 =< y0, z0 >. The corresponding vector
v11 = (0, 1, 1) is of codimension 2.
• Over the ideal I02, we obtain two possible ideal I12 =< x0, z0, z1 > which is over the
generic point and I13 =< x0, y0, z0 > which is over the singular point. We have the
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ideal I12 with corresponding vector v12 = (1, 0, 2). It is of codimension 3. Hence J1(E60)
is given by

J1(E60) = Spec
C[x0, y0, . . . , z1]

< F0, F1 >

For m=2, (5) gives;

F2(x0, . . . , z2) = z20z2 + z0z
2
1 + y30z2 + y20y1z1 + . . .+ x20y

2
1 + x21y

2
0 + x0x2y

2
0

• Over the ideal I11, we obtain two possible ideals I21 =< y0, y1, z0 > and I22 =<
x0, y0, z0 >. The corresponding vectors v21 = (0, 2, 1) and v22 = (1, 1, 1) are of codimen-
sion 3.
• Over the ideal I12, we obtain the jets which project on the regular axis included in
the variety. Hence this branch continuous with the vector (1, 0, 2). Hence J2(E60) is
given by

J2(E60) = Spec
C[x0, y0, . . . , z2]

< F0, F1, F2 >

Remark 5.2.1. In the same way, the mth jet scheme of E60 is given by

Jm(E60) = Spec
C[x0, y0, z0, . . . , zm]

< F0, F1, . . . , Fm >

for all m.
For m=3, (5) gives;

F3(x0, . . . z3) = z20z3 + z0z1z2 + z31 + y30z3 + . . .+ y31z0 + x20y0y3 + . . .+ x1x2y
2
0

• Over the ideal I21, we obtain the ideal I31 =< y0, y1, z0, z1 >. The corresponding
vector v31 = (0, 2, 2) is of codimension 4.
• Over the ideal I22, we obtain the ideal I32 =< x0, y0, z0, z1 >. The corresponding
vector v32 = (1, 1, 2) is of codimension 4.

For m=4, (5) gives;

F4(x0, . . . z4) = z20z4 + . . .+ z21z2 + y30z4 + . . . y21y2z0 + x20y0y4 + . . .+ x22y
2
0

• Over the ideal I31, we obtain two possible ideals I41 =< y0, y1, z0, z1, y2 > and I42 =<
y0, y1, z0, z1, x0 >. The corresponding vectors v41 = (0, 3, 2) and v42 = (1, 2, 2) are of
codimension 5.
• Over the ideal I32, we obtain two possible ideals I42 and I43 =< x0, y0, z0, z1, x1 >.
The corresponding vector of I43, v

4
3 = (2, 1, 2) is of codimension 5.

For m=5, (5) gives;

F5(x0, . . . z5) = z20z5 + . . .+ z1z
2
2 + y30z5 + . . . y1y

2
2z0 + x20y0y5 + . . .+ x2x3y

2
0

• Over the ideal I41, we obtain the ideal I51 =< y0, y1, z0, z1, y2 >. The corresponding
vector v51 = (0, 3, 2) is of codimension 5.
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• Over the ideal I42, we obtain the ideal I52 =< y0, y1, z0, z1, x0 >. The corresponding
vector v52 = (1, 2, 2) is of codimension 5.
• Over the ideal I43, we obtain the ideal I53 =< x0, y0, z0, z1, x1, z2 >. The correspond-
ing vector v53 = (2, 1, 3) are of codimension 6.

In the same way;

For m=6, (5) gives;

F6(x0, . . . z6) = z20z6 + . . .+ z32 + y30z6 + . . . y32z0 + x20y0y6 + . . .+ x23y
2
0

• Over the ideal I51, we obtain two possible ideals I61 =< y0, y1, z0, z1, y2 >. The
corresponding vector v61 = (0, 3, 2) is of codimension 5.
• Over the ideal I52, we obtain the ideal I62. The corresponding vector v62 = (1, 2, 2) is
of codimension 5.
• Over the ideal I53, we obtain two possible ideals I63 and I64. The corresponding
vectors v63 = (2, 2, 3) and v64 = (3, 1, 4) are of codimension 7 and 8 respectively. The
equation of I64 is toric so its jets are irreducible and it is continue with the vector
(3, 1, 4).

For m=7, (5) gives;

F7(x0, . . . z7) = z20z7 + . . .+ z22z3 + y30z7 + . . . y22y3z0 + x20y0y7 + . . .+ x3x4y
2
0

• Over the ideal I61, we obtain two possible ideals I71 and I72. The corresponding
vectors v71 = (0, 4, 3) and v72 = (1, 3, 3) is of codimension 7.
• Over the ideal I62, we obtain the ideals I72 and I73. The corresponding vector of I73,
v73 = (2, 2, 3) is of codimension 7.
• Over the ideal I63, we obtain the ideal I73.

For m=8, (5) gives;

F8(x0, . . . z8) = z20z8 + . . .+ z2z
2
3 + y30z8 + . . . y2y

2
3z0 + x20y0y8 + . . .+ x24y

2
0

• Over the ideal I71, we obtain two possible ideals I81 and I82. The corresponding
vectors v81 = (0, 5, 3) and v82 = (1, 4, 3) are of codimension 8.
• Over the ideal I72, we obtain two possible ideals I82 and I83. The corresponding
vector of I83, v

8
3 = (2, 3, 3) is of codimension 8.

• Over the ideal I73, we obtain two possible ideals I83 and I84. The corresponding
vector of I84, v

8
4 = (3, 2, 3) is of codimension 8.

For m=9, (5) gives;

F9(x0, . . . z9) = z20z9 + . . .+ z33 + y30z9 + . . . y33z0 + x20y0y9 + . . .+ x4x5y
2
0

• Over the ideal I81, we obtain the ideal I91. The corresponding vector v91 = (0, 5, 4) is
of codimension 9.
• Over the ideals I82, we obtain the ideal I92. The corresponding vector v92 = (1, 4, 4)
is of codimension 9.
• Over the ideal I83, we obtain the ideal I93. The corresponding vector v93 = (2, 3, 4) is
of codimension 9.
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• Over the ideal I84, we obtain the ideal I94. The corresponding vector v94 = (3, 2, 4) is
of codimension 9 and at the same time the vector (3, 2, 3) continue since it is smooth
so it is irreducible.

For m=10, (5) gives;

F10(x0, . . . z10) = z20z10 + . . .+ z23z4 + y30z10 + . . . y23y4z0 + x20y0y10 + . . .+ x25y
2
0

• Over the ideal I91, we obtain two possible ideals I101 and I102. The corresponding
vectors v101 = (0, 6, 4) and v102 = (1, 5, 4) are of codimension 10.
• Over the ideal I92, we obtain two possible ideals I102 and I103. The corresponding
vector of I103, v

10
3 = (2, 4, 4) is of codimension 10.

• Over the ideal I93, we obtain two possible ideals I103 and I104 The corresponding
vector of I104, v

10
4 = (3, 3, 4) is of codimension 10.

• Over the ideal I94, we obtain the ideal I104 and at the same time the vector (3, 2, 4)
continue since it is smooth so it is irreducible.

For m=11, (5) gives;

F11(x0, . . . z11) = z20z11 + . . .+ z3z
2
4 + y30z11 + . . . y3y

2
4z0 + x20y0y11 + . . .+ x5x6y

2
0

• Over the ideal I101, we obtain the ideal I111. The corresponding vector v111 = (0, 6, 4)
is of codimension 10.
• Over the ideal I102, we obtain the ideal I112. The corresponding vector v112 = (1, 5, 4)
is of codimension 10.
• Over the ideal I103, we obtain the ideal I113. The corresponding vector v113 = (2, 4, 4)
is of codimension 10.
•Over the ideal I104, we obtain the ideal I114. The corresponding vector v114 = (3, 3, 4)
is of codimension 10.

For m=12, (5) gives;

F12(x0, . . . z12) = z20z12 + . . .+ z34 + y30z12 + . . . y34z0 + x20y0y12 + . . .+ x26y
2
0

• Over the ideal I111, we obtain the ideal I121. The corresponding vectors v121 = (0, 6, 4)
is of codimension 10.
• Over the ideal I112, we obtain the ideal I122. The corresponding vector v122 = (1, 5, 4)
is of codimension 10.
• Over the ideal I113, we obtain the ideal I123. The corresponding vector v123 = (2, 2, 4)
is of codimension 10.
• Over the ideal I114, we obtain the ideal I124. The corresponding vector v124 = (3, 3, 4)
is of codimension 10.

For m=13, (5) gives;

F13(x0, . . . z13) = z20z13 + . . .+ z24z5 + y30z13 + . . . y24y5z0 + x20y0y13 + . . .+ x6x7y
2
0

• Over the ideal I121, we obtain two possible ideals I131 and I132. The corresponding
vectors v131 = (0, 7, 5) and v132 = (1, 6, 5) are of codimension 12.
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• Over the ideal I122, we obtain two possible ideals I132 and I133. The corresponding
vector of I133, v

13
3 = (2, 5, 5) is of codimension 12.

• Over the ideal I123, we obtain two possible ideals I133 and I134. The corresponding
vector v134 = (3, 4, 5) is of codimension 12.
• Over the ideal I124, we obtain two possible ideals I134 and I135. The corresponding
vector v135 = (4, 3, 5) is of codimension 12.

For m=14, (5) gives;

F14(x0, . . . z14) = z20z14 + . . .+ z4z
2
5 + y30z14 + . . . y4y

2
5z0 + x20y0y14 + . . .+ x27y

2
0

• Over the ideal I131, we obtain two possible ideals I141 and I142. The corresponding
vectors v141 = (0, 7, 5) and v142 = (1, 7, 5) are of codimension 12 and 13 respectively.
• Over the ideal I132, we obtain two possible ideals I142 and I143. The corresponding
vector of I143, v

14
3 = (2, 6, 5) is of codimension 13.

• Over the ideal I133, we obtain two possible ideals I143 and I144. The corresponding
vector of I144, v

14
4 = (3, 5, 5) is of codimension 13.

• Over the ideal I134, we obtain two possible ideals I144 and I145. The corresponding
vector of I145, v

14
5 = (4, 4, 5) is of codimension 13.

• Over the ideal I135, we obtain the ideal I145 and at the same time the vector (4, 3, 5)
continue since it is smooth so it is irreducible.

For m=15, (5) gives;

F15(x0, . . . z15) = z20z15 + . . .+ z35 + y30z15 + . . . y35z0 + x20y0y15 + . . .+ x7x8y
2
0

• Over the ideal I141, we obtain the ideal I151. The corresponding vector v151 = (0, 8, 6)
is of codimension 14.
• Over the ideal I142, we obtain the ideal I152. The corresponding vector v152 = (1, 7, 6)
is of codimension 14.
• Over the ideal I143, we obtain the ideal I153. The corresponding vector v153 = (2, 6, 6)
is of codimension 14.
• Over the ideal I144, we obtain the ideal I154. The corresponding vector v154 = (3, 5, 6)
is of codimension 14.
• Over the ideal I145, we obtain the ideal I155. The corresponding vector v155 = (4, 4, 6)
is of codimension 14.

For m=16, (5) gives;

F16(x0, . . . z15) = z20z16 + . . .+ z25z6 + y30z16 + . . . y25y6z0 + x20y0y16 + . . .+ x28y
2
0

• Over the ideal I151, we obtain two possible ideals I161 and I162. The corresponding
vectors v161 = (0, 9, 6) and v162 = (1, 8, 6) are of codimension 15.
• Over the ideal I152, we obtain two possible ideals I162 and I163. The corresponding
vector of I163, v

16
3 = (2, 7, 6) is of codimension 15.

• Over the ideal I153, we obtain two possible ideals I163 and I164. The corresponding
vector of I164, v

16
4 = (3, 6, 6) is of codimension 15.

• Over the ideal I154, we obtain two possible ideals I164 and I165. The corresponding
vector of I165, v

16
5 = (4, 5, 6) is of codimension 15.

• Over the ideal I155, we obtain two possible ideals I165 and I166. The corresponding
vector of I166, v

16
6 = (5, 4, 6) is of codimension 15.
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Figure 5.1: Jet graph of E60

v01 = (0, 1, 1) v02 = (1, 0, 1) v11 = (0, 1, 1) v12 = (1, 0, 2) v21 = (0, 2, 1)
v22 = (1, 1, 1) v31 = (0, 2, 2) v32 = (1, 1, 2) v41 = (0, 3, 2) v42 = (1, 2, 2)
v43 = (2, 1, 2) v51 = (0, 3, 2) v52 = (1, 1, 2) v53 = (2, 1, 3) v61 = (0, 3, 2)
v62 = (1, 2, 2) v63 = (2, 2, 3) v64 = (3, 1, 4) v71 = (0, 4, 3) v72 = (1, 3, 3)
v73 = (2, 2, 3) v81 = (0, 5, 3) v82 = (1, 4, 3) v83 = (2, 3, 3) v84 = (3, 2, 3)
v91 = (0, 5, 4) v92 = (1, 4, 4) v93 = (2, 3, 4) v94 = (3, 2, 4) v95 = (3, 2, 3)
v101 = (0, 6, 4) v102 = (1, 5, 4) v103 = (2, 4, 4) v104 = (3, 3, 4) v105 = (3, 2, 4)
v111 = (0, 6, 4) v112 = (1, 5, 4) v113 = (2, 4, 4) v114 = (3, 3, 4) v121 = (0, 6, 4)
v122 = (1, 5, 4) v123 = (2, 4, 4) v124 = (3, 3, 4) v131 = (0, 7, 5) v132 = (1, 6, 5)
v133 = (2, 5, 5) v134 = (3, 4, 5) v125 = (4, 3, 5) v141 = (0, 8, 5) v142 = (1, 7, 5)
v143 = (2, 6, 5) v144 = (3, 5, 5) v145 = (4, 4, 5) v146 = (4, 3, 5) v151 = (0, 8, 6)
v152 = (1, 7, 6) v153 = (2, 6, 6) v154 = (3, 5, 6) v155 = (4, 4, 6) v161 = (0, 9, 6)
v162 = (1, 8, 6) v163 = (2, 7, 6) v164 = (3, 6, 6) v165 = (4, 5, 6) v166 = (5, 4, 6)
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Remark 5.2.2. Here and below the vectors represented with red correspond to the
vectors given in E60b, the vectors represented in pink also correspond to the vectors
given in E60c and the rest are obtained as the supplemented vectors.

Remark 5.2.3. The minimal resolution graph of singularity E60 is as follow

Figure 5.2: Minimal resolution graph of E60

Remark 5.2.4. The minimal toric embedded resolution graph of E60 is as follow

Figure 5.3: E60d

where v2 = v21, v8 = v01, v9 = v02, v10 = v43, v11 = v22, v12 = v63, v13 = v32, v4 = v12 and
u3 = v41.

Proposition 5.2.5. Let X be an hypersurface in C3 of type E60. For m ≥ 16, the
number of irreducible components of Jm(E60) equals the number of exceptional curves
on the minimal resolution of the singularity.

Proposition 5.2.6. The set of weight vectors corresponding to mth jets of E60 give a
canonical toric minimal embedded resolution of the singularity.

5.3 Jet Schemes of an Hypersurface of type E70

Let X be an hypersurface of type E70 in C3. We know that X is defined by

f(x, y, x) = z3 + x2yz + y4

in C[x, y, z]. Hence (x, 0, 0) is the singular locus of X.
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Remark 5.3.1. The mth jet scheme of E70 is given by

Jm(E70) = Spec
C[x0, y0, z0, . . . , zm]

< F0, F1, . . . , Fm >

for all m.

Let us apply the equality (5):

For m=0, we have
F0(x0, y0, z0) = z30 + y0(x

2
0z0 + y30)

• This says that y0 = z0 = 0. Hence the ideal is I0 =< y0, z0 >. The corresponding
vector v01 = (0, 1, 1) is of codimension 2.

For m=1, (5) gives;

F1(x0, . . . , z1) = z0(z0z1 + x20y1) + y0(x0x1z0 + x20z1 + y20y1)

• Over the ideal I0, we obtain the ideal I1 =< y0, z0 >. The corresponding vector
v11 = (0, 1, 1) is of codimension 2.

For m=2, (5) gives;

F2(x0, . . . , z2) = z20z2 + z0z
2
1 + x0x2y0z0 + . . .+ x20y1z1 + y30y2 + y21y

2
0

• Over the ideal I1, we obtain three possible ideals I21 =< y0, z0, y1, >, I22 =<
y0, z0, z1, > and I23 =< y0, z0, x0 >. The corresponding vectors v21 = (0, 2, 1), v22 =
(0, 1, 2) and v23 = (1, 1, 1) are of codimension 3.

For m=3, (5) gives;

F3(x0, . . . , z3) = z20z3 + z0z1z2 + z31 + . . .+ y30y3 + y20y1y2 + y0y
3
1

• Over the ideal I21, we obtain the ideal I31 =< y0, y1, z0, z1 >. The corresponding
vector v31 = (0, 2, 2) is of codimension 4.
• Over the ideal I22, we obtain three possible ideals I31, I32 =< y0, z0, z1, z2 > and
I33 =< y0, z0, z1, x0 >. The corresponding vector v32 = (0, 1, 3) and v33 = (1, 1, 2) are of
codimension 4.
• Over the ideal I23, we obtain the ideal I33 with the corresponding vector v33 = (1, 1, 2).
For m=4, (5) gives;

F4(x0, . . . , z3) = z20z4 + . . .+ z21z2 + x0x4y0z0 + . . . x20y0z4 + y30y4 + . . .+ y41

• Over the ideal I31, we obtain three possible ideals I41 =< y0, z0, y1, z1, y2 >, I42 =<
y0, z0, y1, z1, z2 > and I43 =< y0, z0, y1, z1, x0 >. The corresponding vectors v41 =
(0, 3, 2), v42 = (0, 2, 3) and v43 = (1, 2, 2) are of codimension 5.
• Over the ideal I32, we continue the vector (0, 1, 3).
• Over the ideal I33, we obtain the ideal I43.
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For m=5, (5) gives;

F5(x0, . . . , z5) = z20z5 + . . .+ z1z
2
2 + x0x5y0z0 + . . . x20y0z5 + y30y5 + . . .+ y31y2

• Over the ideal I41, we obtain three possible ideals I51 =< y0, z0, y1, z1, y2, y3 >,
I52 =< y0, z0, y1, z1, y2, z2 > and I53 =< y0, z0, y1, z1, y2, x0 >. The corresponding
vectors v51 = (0, 4, 2), v52 = (0, 3, 3) and v53 = (1, 3, 2) are of codimension 6.
• Over the ideal I42, we obtain three possible ideals I52, I54 =< y0, z0, y1, z1, z2, z3 > and
I55 =< y0, z0, y1, z1, z2, x0 >. The corresponding vectors v54 = (0, 2, 4) and v55 = (1, 2, 3)
are of codimension 6.
• Over the ideal I43, we obtain the ideal I56 =< y0, z0, y1, z1, x0 > The corresponding
vector v54 = (1, 2, 2) is of codimension 5.

For m=6, (5) gives;

F6(x0, . . . , z6) = z20z6 + . . .+ z32 + x0x6y0z0 + . . . x20y0z6 + y30y6 + . . .+ y21y
2
2

• Over the ideal I53, we obtain the ideal I61 =< y0, z0, y1, z1, y2, x0, z2 >. The corre-
sponding vector v61 = (1, 3, 3) is of codimension 7.
• Over the ideal I55, we obtain the ideal I62 =< y0, z0, y1, z1, z2, x0 >. The correspond-
ing vector v62 = (1, 2, 3) is of codimension 6.
• Over the ideal I56, we obtain the ideal I62 wit the corresponding vector v62 = (1, 2, 3).

For m=7, (5) gives;

F7(x0, . . . , z7) = z20z7 + . . .+ z22z3 + x0x7y0z0 + . . . x20y0z7 + y30y7 + . . .+ y21y2y3

• Over the ideal I61, we obtain the ideal I71 =< y0, z0, y1, z1, y2, x0, z2 >. The corre-
sponding vector v71 = (1, 3, 3) is of codimension 7.
• Over the ideal I62, we obtain three possible ideals I71, I72 =< y0, z0, y1, z1, x0, z2, z3 >
and I73 =< y0, z0, y1, z1, x0, z2, x1 >. The corresponding vectors v72 = (1, 2, 4) and
v73 = (2, 2, 3) are of codimension 7.

In the same way;

For m=8, (5) gives;

F8(x0, . . . , z8) = z20z8 + . . .+ z2z
2
3 + x0x8y0z0 + . . . x20y0z8 + y30y8 + . . .+ y42

• Over the ideal I71, we obtain three possible ideals I81, I82 and I83. The corresponding
vectors v81 = (1, 4, 3), v82 = (1, 3, 4) and v83 = (2, 3, 3) are of codimension 8.
• Over the ideal I72, we obtain the ideal I82 with the corresponding vector v82 = (1, 3, 4).
• Over the ideal I73, we obtain the ideal I83 with the corresponding vector v83 = (2, 3, 3).

For m=9, (5) gives;

F9(x0, . . . , z9) = z20z9 + . . .+ z33 + x0x9y0z0 + . . . x20y0z9 + y30y9 + . . .+ y32y3

• Over the ideal I81, we obtain the ideal I91. The corresponding vector v91 = (1, 4, 4) is
of codimension 9.
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• Over the ideal I82, we obtain three possible ideals I91, I92 and I93. The corresponding
vectors v92 = (1, 3, 5) and v93 = (2, 3, 4) are of codimension 9.
• Over the ideal I83, we obtain the ideal I93 with the corresponding vector v93 = (2, 3, 4)
is of codimension 9.

For m=10, (5) gives;

F10(x0, . . . , z10) = z20z10 + . . .+ z23z4 + x0x10y0z0 + . . . x20y0z10 + y30y10 + . . .+ y22y
2
3

• Over the ideal I91, we obtain three possible ideals I101, I102 and I103. The corre-
sponding vectors v101 = (1, 5, 4), v102 = (1, 4, 5) and v103 = (2, 4, 4) are of codimension
10.
• Over the ideal I92, we obtain three possible ideals I102, I104 and I105. The correspond-
ing vectors v104 = (1, 3, 6) and v105 = (2, 3, 5) are of codimension 10.
• Over the ideal I93, we obtain the ideal I106. The corresponding vector v106 = (2, 3, 4)
is of codimension 9.

For m=11, (5) gives;

F11(x0, . . . , z11) = z20z11 + . . .+ z3z
2
4 + x0x11y0z0 + . . . x20y0z11 + y30y11 + . . .+ y2y

3
3

• Over the ideal I103, we obtain the ideal I111. The corresponding vector v111 = (2, 4, 4)
is of codimension 10.
• Over the ideal I105, we obtain the ideal I112. The corresponding vector v112 = (2, 3, 5)
is of codimension 10.
• Over the ideal I106, we obtain three possible ideals I111, I112 and I113. The corre-
sponding vector v113 = (3, 3, 4)is of codimension 10.

For m=12, (5) gives;

F12(x0, . . . , z12) = z20z12 + . . .+ z34 + x0x12y0z0 + . . . x20y0z12 + y30y12 + . . .+ y43

• Over the ideal I111, we obtain the ideal I121. The corresponding vector v121 = (2, 4, 5)
is of codimension 11.
• Over the ideal I112, we obtain the ideal I121 with the corresponding vector v112 =
(2, 4, 5).
• Over the ideal I113, we obtain the ideal I122. The corresponding vector v122 = (3, 4, 5)
is of codimension 12.

For m=13, (5) gives;

F13(x0, . . . , z13) = z20z13 + . . .+ z24z5 + x0x13y0z0 + . . . x20y0z13 + y30y13 + . . .+ y33y4

• Over the ideal I121, we obtain three possible ideals I131, I132 and I133. The corre-
sponding vectors v131 = (2, 5, 6), v132 = (2, 4, 6) and v133 = (3, 4, 5) are of codimension
12.
• Over the ideal I122, we obtain the ideal I133 with the corresponding vector v133 =
(3, 4, 5).
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For m=14, (5) gives;

F14(x0, . . . , z14) = z20z14 + . . .+ z4z
2
5 + x0x14y0z0 + . . . x20y0z14 + y30y14 + . . .+ y23y

2
4

• Over the ideal I131, we obtain the ideal I141. The corresponding vector v141 = (2, 5, 6)
is of codimension 13.
• Over the ideal I132, we obtain three possible ideals I141, I142 and I143. The corre-
sponding vectors v142 = (2, 4, 7) and v143 = (3, 4, 6) are of codimension 13.
• Over the ideal I133, we obtain the ideal I144. The corresponding vector v144 = (3, 4, 5)
is of codimension 12.

For m=15, (5) gives;

F15(x0, . . . , z15) = z20z15 + . . .+ z35 + x0x15y0z0 + . . . x20y0z15 + y30y15 + . . .+ y3y
3
4

• Over the ideal I143, we obtain the ideal I151. The corresponding vector v151 = (3, 4, 6)
is of codimension 13.
• Over the ideal I144, we obtain the ideal I151 with the corresponding vector v151 =
(3, 4, 6).

For m=16, (5) gives;

F16(x0, . . . , z16) = z20z16 + . . .+ z25z6 + x0x16y0z0 + . . . x20y0z16 + y30y16 + . . .+ y44

• Over the ideal I151, we obtain the ideal I161. The corresponding vector v161 = (3, 5, 6)
is of codimension 14.

For m=17, (5) gives;

F17(x0, . . . , z17) = z20z17 + . . .+ z5z
2
6 + x0x17y0z0 + . . . x20y0z17 + y30y17 + . . .+ y34y5

• Over the ideal I161, we obtain three possible ideals I171, I172 and I173. The corre-
sponding vectors v171 = (3, 6, 6), v172 = (3, 5, 7) and v173 = (4, 5, 6) are of codimension
15.

For m=18, (5) gives;

F18(x0, . . . , z18) = z20z18 + . . .+ z36 + x0x18y0z0 + . . . x20y0z18 + y30y18 + . . .+ y24y
2
5

• Over the ideal I171, we obtain the ideal I181. The corresponding vector v181 = (3, 6, 7)
is of codimension 16.
• Over the ideal I172, we obtain three possible ideals I181, I182 and I183. The corre-
sponding vectors v182 = (3, 5, 8) and v183 = (4, 5, 7) are of codimension 16.
• Over the ideal I173, we obtain the ideal I183 with the corresponding vector v181 =
(4, 5, 7).
For m=19, (5) gives;

F19(x0, . . . , z19) = z20z19 + . . .+ z26z7 + x0x19y0z0 + . . . x20y0z19 + y30y19 + . . .+ y4y
3
5

• Over the ideal I183, we obtain the ideal I191. The corresponding vector v191 = (4, 5, 7)
is of codimension 16.
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For m=20, (5) gives;

F20(x0, . . . , z20) = z20z20 + . . .+ z6z
2
7 + x0x20y0z0 + . . . x20y0z20 + y30y20 + . . .+ y45

• Over the ideal I191, we obtain the ideal I201. The corresponding vector v201 = (4, 6, 7)
is of codimension 17.

For m=21, (5) gives;

F21(x0, . . . , z21) = z20z21 + . . .+ z37 + x0x21y0z0 + . . . x20y0z21 + y30y21 + . . .+ y35y6

• Over the ideal I201, we obtain the ideal I211. The corresponding vector v211 = (4, 6, 8)
is of codimension 18.

For m=22, (5) gives;

F22(x0, . . . , z22) = z20z22 + . . .+ z27z8 + x0x22y0z0 + . . . x20y0z22 + y30y22 + . . .+ y35y6

• Over the ideal I211, we obtain three possible ideals I221, I222 and I223. The corre-
sponding vectors v221 = (4, 7, 8), v182 = (4, 6, 9) and v183 = (5, 6, 8) are of codimension
19.
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Figure 5.4: Jet graph of E70

v01 = (0, 1, 1) v11 = (0, 1, 1) v21 = (0, 2, 1) v22 = (0, 1, 2) v23 = (1, 1, 1)
v31 = (0, 2, 2) v32 = (0, 1, 3) v33 = (1, 1, 2) v41 = (0, 3, 2) v42 = (0, 2, 3)
v43 = (1, 2, 2) v51 = (0, 4, 2) v52 = (0, 3, 3) v53 = (1, 3, 2) v54 = (0, 2, 4)
v55 = (1, 2, 3) v56 = (1, 2, 2) v61 = (1, 3, 3) v62 = (1, 2, 3) v71 = (1, 3, 3)
v72 = (1, 2, 4) v73 = (2, 2, 3) v81 = (1, 4, 3) v82 = (1, 3, 4) v83 = (2, 3, 3)
v91 = (1, 4, 4) v92 = (1, 3, 5) v93 = (2, 3, 4) v101 = (1, 5, 4) v102 = (1, 4, 5)
v103 = (2, 4, 4) v104 = (1, 3, 6) v105 = (2, 3, 5) v106 = (2, 3, 4) v111 = (2, 4, 4)
v112 = (2, 3, 5) v113 = (3, 3, 4) v121 = (2, 4, 5) v122 = (3, 4, 5) v131 = (2, 5, 6)
v132 = (2, 4, 6) v133 = (3, 4, 5) v141 = (2, 5, 6) v142 = (2, 4, 7) v143 = (3, 4, 6)
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v144 = (3, 4, 5) v151 = (3, 4, 6) v161 = (3, 5, 6) v171 = (3, 6, 6) v172 = (3, 5, 7)
v173 = (4, 5, 6) v181 = (3, 6, 7) v182 = (3, 5, 8) v183 = (4, 5, 7) v191 = (4, 5, 7)
v201 = (4, 6, 7) v211 = (4, 6, 8) v221 = (4, 7, 8) v222 = (4, 6, 9) v223 = (5, 6, 9)

Remark 5.3.2. Here and below the vectors represented with red correspond to the
vectors given in E70b, the vectors represented in pink also correspond to the vectors
given in E70c and the rest are obtained as the supplemented vectors.

Remark 5.3.3. The minimal resolution graph of singularity E70 is as follow

Figure 5.5: Minimal resolution graph of E70

Remark 5.3.4. So the Figure E70c becomes

Figure 5.6: E70d

where u3 = v21, v3 = v32, v8 = v23 v9 = v93, v10 = v73 and v11 = v33.

Proposition 5.3.5. Let X be an hypersurface in C3 of type E70. For m ≥ 22, the
number of irreducible components of Jm(E70) equals the number of exceptional curves
on the minimal resolution of the singularity.

Proposition 5.3.6. The set of weight vectors corresponding to mth jets of E70 give a
canonical toric minimal embedded resolution of the singularity.

5.4 Jet Schemes of an Hypersurface of type E07

Let X be an hypersurface of type E07 in C3. We know that X is defined by

f(x, y, x) = z3 + y5 + x2y2

in C[x, y, z]. Hence (x, 0, 0) is the singular locus of X.
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Remark 5.4.1. The mth jet scheme of E07 is given by

Jm(E07) = Spec
C[x0, y0, z0, . . . , zm]

< F0, . . . , Fm >

for all m.
Let us apply the equality (5):

For m=0, we have
F0(x0, y0, z0) = z30 + y20(y30 + x20)

• This says that y0 = z0 = 0. Hence the ideal I0 =< y0, z0 >. The corresponding
vector v01 = (0, 1, 1) is of codimension 2.

For m=1, (5) gives;

F1(x0, . . . , z1) = z20z1 + y0(y
3
0y1 + x0x1y0 + x20y1)

• Over the ideal I0, we obtain the ideal I1 =< y0, z0 >. The corresponding vector
v11 = (0, 1, 1) is of codimension 2.

For m=2, (5) gives;

F2(x0, . . . , z2) = z0(z0z2+z21)+y0(y
2
0y

2
1 +y30y2+x0x2y0+x21y0+x20y2)+y1(x

2
0y1+x0x1y0)

Over the ideal I1, we obtain two possible ideals I21 = (y0, y1, z0) and I22 = (x0, y0, z0).
The corresponding vectors v21 = (0, 2, 1) and v22 = (1, 1, 1) are of codimension 3.

For m=3, (5) gives;

F3(x0, . . . , z3) = z20z3 + . . .+ z31 + y40y3 + . . .+ y20y
3
1 + x0x3y

2
0 + . . .+ x20y0y3

• Over the ideal I21, we obtain the ideal I31 =< y0, y1, z0, z1 >. The corresponding
vector v31 = (0, 2, 2) is of codimension 4.
• Over the ideal I22, we obtain the ideal I32 =< x0, y0, z0, z1 >. The corresponding
vector v32 = (1, 1, 2) is of codimension 4.

For m=4, (5) gives;

F4(x0, . . . , z4) = z20z4 + . . .+ z21z2 + y40y4 + . . .+ y0y
4
1 + x0x4y

2
0 + . . .+ x20y0y4

• Over the ideal I31, we obtain two possible ideals I41 =< y0, y1, z0, z1, y2 > and I42 =<
y0, y1, z0, z1, x0 >. The corresponding vectors v41 = (0, 3, 2) and v42 = (1, 2, 2) are of
codimension 5.
• Over the ideal I32, we obtain two possible ideals I42 and I43 =< x0, y0, z0, z1, x1 >.
The corresponding vector of I43, v

4
3 = (2, 1, 2) is of codimension 5.

For m=5, (5) gives;

F5(x0, . . . , z5) = z20z5 + . . .+ z1z
2
2 + y40y5 + . . .+ y51 + x0x5y

2
0 + . . .+ x20y0y5
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• Over the ideal I41, we obtain the ideal I51 =< y0, y1, z0, z1, y2 >. The corresponding
vector v51 = (0, 3, 2) is of codimension 5.
• Over the ideal I42, we obtain the ideal I52 =< y0, y1, z0, z1, x0 >. The corresponding
vector v52 = (1, 2, 2) is of codimension 5.
• Over the ideal I43, we continue with the vector (2, 1, 2).

For m=6, (5) gives;

F6(x0, . . . , z6) = z20z6 + . . .+ z32 + y40y6 + . . .+ y41y4 + x0x6y
2
0 + . . .+ x20y0y6

• Over the ideal I51, we obtain the ideal I61 =< y0, y1, z0, z1, y2 >. The corresponding
vector v61 = (0, 3, 2) is of codimension 5.
• Over the ideal I52, we obtain the ideal I62 =< y0, y1, z0, z1, x0 >. The corresponding
vector v62 = (1, 2, 2) is of codimension 6.

In the same way;

For m=7, (5) gives;

F7(x0, . . . , z7) = z20z7 + . . .+ z22z3 + y40y7 + . . .+ y31y
2
2 + x0x7y

2
0 + . . .+ x20y0y7

• Over the ideal I61, we obtain two possible ideals I71 and I72. The corresponding
vector v71 = (0, 4, 3) and v72 = (1, 3, 3) are of codimension 7.
• Over the ideal I62, we obtain two possible ideals I72 and I73. The corresponding
vector of I73, v

7
3 = (2, 2, 3) is of codimension 7.

For m=8, (5) gives;

F8(x0, . . . , z8) = z20z8 + . . .+ z2z
2
3 + y40y8 + . . .+ y21y

3
2 + x0x8y

2
0 + . . .+ x20y0y8

• Over the ideal I71, we obtain two possible ideals I81 and I82. The corresponding
vectors v81 = (0, 5, 3) and v82 = (0, 5, 3) are of codimensoin 8.
• Over the ideal I72, we obtain two possible ideals I82 and I83. The corresponding
vector of I83, v

8
3 = (2, 3, 3) is of codimensoin 8.

• Over the ideal I73, we obtain two possible ideals I83 and I84. The corresponding
vector of I84, v

8
4 = (3, 2, 3) is of codimensoin 8.

For m=9, (5) gives;

F9(x0, . . . , z9) = z20z9 + . . .+ z33 + y40y9 + . . .+ y1y
4
2 + x0x9y

2
0 + . . .+ x20y0y9

• Over the ideal I81, we obtain the ideal I91. The corresponding vector v91 = (0, 5, 4) is
of codimensoin 9.
• Over the ideal I82, we obtain the ideal I92. The corresponding vector v92 = (1, 4, 4) is
of codimensoin 9.
• Over the ideal I83, we obtain the ideal I93. The corresponding vector v93 = (2, 3, 4) is
of codimensoin 9.
• Over the ideal I84, we obtain the ideal I94. The corresponding vector v94 = (3, 2, 4) is
of codimensoin 9.



46

For m=10, (5) gives;

F10(x0, . . . , z10) = z20z10 + . . .+ z23z4 + y40y10 + . . .+ y52 + x0x10y
2
0 + . . .+ x20y0y10

• Over the ideal I91, we obtain two possible ideals I101 and I102. The corresponding
vectors v101 = (0, 6, 4) and v102 = (1, 5, 4) are of codimensoin 10.
• Over the ideal I92, we obtain two possible ideals I102 and I103. The corresponding
vector of I103 v

10
3 = (2, 4, 4) is of codimensoin 10.

• Over the ideal I93, we obtain two possible ideals I103 and I104. The corresponding
vector of I104 v

10
4 = (3, 3, 4) is of codimensoin 10.

• Over the ideal I94, we obtain the ideal I104.

For m=11, (5) gives;

F11(x0, . . . , z11) = z20z11 + . . .+ z3z
2
4 + y40y11 + . . .+ y42y3 + x0x11y

2
0 + . . .+ x20y0y11

• Over the ideal I101, we obtain the ideal I111. The corresponding vector v111 = (0, 6, 4)
is of codimensoin 10.
• Over the ideal I102, we obtain the ideal I112. The corresponding vector v112 = (1, 5, 4)
is of codimensoin 10.
• Over the ideal I103, we obtain the ideal I113. The corresponding vector v113 = (2, 4, 4)
is of codimensoin 10.
• Over the ideal I104, we obtain the ideal I114. The corresponding vector v114 = (3, 3, 4)
is of codimensoin 10.

For m=12, (5) gives;

F12(x0, . . . , z12) = z20z12 + . . .+ z34 + y40y12 + . . .+ y32y
2
3 + x0x12y

2
0 + . . .+ x20y0y12

• Over the ideal I111, we obtain two possible ideals I121 and I122. The corresponding
vectors v121 = (0, 7, 5) and v122 = (1, 6, 5) is of codimensoin 12.
• Over the ideal I112, we obtain two possible ideals I122 and I123. The corresponding
vector of I123, v

12
3 = (2, 5, 5) is of codimensoin 12.

• Over the ideal I113, we obtain two possible ideals I123 and I124. The corresponding
vector of I124, v

12
4 = (3, 4, 5) is of codimensoin 12.

• Over the ideal I114, we obtain two possible ideals I124 and I125. The corresponding
vector of I125, v

12
5 = (4, 3, 5) is of codimensoin 12.

For m=13, (5) gives;

F13(x0, . . . , z13) = z20z13 + . . .+ z24z5 + y40y13 + . . .+ y22y
3
3 + x0x13y

2
0 + . . .+ x20y0y13

• Over the ideal I122, we obtain the ideal I131. The corresponding vector v131 = (1, 6, 5)
is of codimensoin 12.
• Over the ideal I123, we obtain the ideal I132. The corresponding vector v132 = (2, 5, 5)
is of codimensoin 12.
• Over the ideal I124, we obtain the ideal I133. The corresponding vector v133 = (3, 4, 5)
is of codimensoin 12.
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• Over the ideal I125, we obtain the ideal I134. The corresponding vector v134 = (4, 3, 5)
is of codimensoin 12.

For m=14, (5) gives;

F14(x0, . . . , z14) = z20z14 + . . .+ z4z
2
5 + y40y14 + . . .+ y2y

4
3 + x0x14y

2
0 + . . .+ x20y0y14

• Over the ideal I131, we obtain two possible ideals I141 and I142. The corresponding
vectors v141 = (1, 7, 5) and v142 = (2, 6, 5) are of codimensoin 13.
• Over the ideal I132, we obtain two possible ideals I142 and I143. The corresponding
vector of I143, v

14
3 = (3, 5, 5) is of codimensoin 13.

• Over the ideal I133, we obtain two possible ideals I143 and I144. The corresponding
vector of I144, v

14
4 = (4, 4, 5) is of codimensoin 13.

• Over the ideal I134, we obtain two possible ideals I144 and I145. The corresponding
vector of I145, v

14
5 = (5, 3, 5) is of codimensoin 13.

For m=15, (5) gives;

F15(x0, . . . , z15) = z20z15 + . . .+ z35 + y40y15 + . . .+ y53 + x0x115y
2
0 + . . .+ x20y0y15

• Over the ideal I142, we obtain the ideal I151. The corresponding vector v151 = (2, 6, 6)
is of codimensoin 14.
• Over the ideal I143, we obtain the ideal I152. The corresponding vector v152 = (3, 5, 6)
is of codimensoin 14.
• Over the ideal I144, we obtain the ideal I153. The corresponding vector v153 = (4, 4, 6)
is of codimensoin 14.
• Over the ideal I145, we obtain the ideal I154. The corresponding vector v154 = (5, 4, 6)
is of codimensoin 15.

For m=16, (5) gives;

F16(x0, . . . , z16) = z20z16 + . . .+ z25z6 + y40y16 + . . .+ y43y4 + x0x16y
2
0 + . . .+ x20y0y16

• Over the ideal I151, we obtain two possible ideals I161 and I162. The corresponding
vectors v161 = (2, 7, 6) and v162 = (3, 6, 6) are of codimensoin 15.
• Over the ideal I152, we obtain two possible ideals I162 and I163. The corresponding
vectors v163 = (4, 5, 6) is of codimensoin 15.
• Over the ideal I153, we obtain two possible ideals I163 and I164. The corresponding
vectors v164 = (5, 4, 6) is of codimensoin 15.
• Over the ideal I154, we obtain the ideal I164.

For m=17, (5) gives;

F17(x0, . . . , z17) = z20z17 + . . .+ z5z
2
6 + y40y17 + . . .+ y33y

2
4 + x0x17y

2
0 + . . .+ x20y0y17

• Over the ideal I162, we obtain the ideal I171. The corresponding vector v171 = (3, 6, 6)
is of codimensoin 15.
• Over the ideal I163, we obtain the ideal I172. The corresponding vector v172 = (4, 5, 6)
is of codimensoin 15.
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• Over the ideal I164, we obtain the ideal I173. The corresponding vector v173 = (5, 4, 6)
is of codimensoin 15.

For m=18, (5) gives;

F18(x0, . . . , z18) = z20z18 + . . .+ z36 + y40y18 + . . .+ y23y
3
4 + x0x18y

2
0 + . . .+ x20y0y18

• Over the ideal I171, we obtain two possible ideals I181 and I182. The corresponding
vectors v181 = (3, 7, 7) and v182 = (4, 6, 7) are of codimensoin 17.
• Over the ideal I172, we obtain two possible ideals I182 and I183. The corresponding
vector v183 = (5, 5, 7) si of codimensoin 17.
• Over the ideal I173, we obtain two possible ideals I183 and I184. The corresponding
vector v184 = (6, 4, 7) si of codimensoin 17.

For m=19, (5) gives;

F19(x0, . . . , z19) = z20z19 + . . .+ z26z7 + y40y19 + . . .+ y3y
4
4 + x0x19y

2
0 + . . .+ x20y0y19

• Over the ideal I182, we obtain the ideal I191. The corresponding vector v191 = (4, 6, 7)
is of codimensoin 17.
• Over the ideal I183, we obtain the ideal I192. The corresponding vector v192 = (5, 5, 7)
is of codimensoin 17.
• Over the ideal I184, we obtain the ideal I193. The corresponding vector v193 = (6, 4, 7)
is of codimensoin 17.

For m=20, (5) gives;

F20(x0, . . . , z20) = z20z20 + . . .+ z6z
2
7 + y40y20 + . . .+ y54 + x0x20y

2
0 + . . .+ x20y0y20

• Over the ideal I191, we obtain two possible ideals I201 and I202. The corresponding
vectors v201 = (4, 7, 7) and v202 = (5, 6, 7) are of codimensoin 18.
• Over the ideal I192, we obtain two possible ideals I202 and I203. The corresponding
vector of I203 v

20
3 = (6, 5, 7) is of codimensoin 18.

• Over the ideal I193, we obtain the ideal I203.

For m=21, (5) gives;

F21(x0, . . . , z21) = z20z21 + . . .+ z37 + y40y21 + . . .+ y44y5 + x0x21y
2
0 + . . .+ x20y0y21

• Over the ideal I202, we obtain the ideal I211. The corresponding vector v211 = (5, 6, 8)
is of codimensoin 19.
• Over the ideal I203, we obtain the ideal I212. The corresponding vector v212 = (6, 5, 8)
is of codimensoin 19.

For m=22, (5) gives;

F22(x0, . . . , z22) = z20z22 + . . .+ z27z8 + y40y22 + . . .+ y34y
2
5 + x0x22y

2
0 + . . .+ x20y0y22

• Over the ideal I211, we obtain two possible ideals I221 and I222. The corresponding
vectors v221 = (5, 7, 8) and v222 = (6, 6, 8) are of codimensoin 20.
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• Over the ideal I212, we obtain two possible ideals I222 and I223. The corresponding
vectors v231 = (7, 5, 8) is of codimensoin 20.

For m=23, (5) gives;

F23(x0, . . . , z23) = z20z23 + . . .+ z7z
2
8 + y40y23 + . . .+ y24y

3
5 + x0x23y

2
0 + . . .+ x20y0y23

• Over the ideal I222, we obtain the ideal I231. The corresponding vector v231 = (6, 6, 8)
is of codimensoin 20.
• Over the ideal I223, we obtain the ideal I232. The corresponding vector v232 = (7, 5, 8)
is of codimensoin 20.

For m=24, (5) gives;

F24(x0, . . . , z24) = z20z24 + . . .+ z38 + y40y24 + . . .+ y4y
4
5 + x0x24y

2
0 + . . .+ x20y0y24

• Over the ideal I231, we obtain two possible ideals I241 and I242. The corresponding
vectors v241 = (6, 7, 9) and v242 = (7, 6, 9) are of codimensoin 22.
• Over the ideal I232, we obtain two possible ideals I242 and I243. The corresponding
vector of I243, v

24
3 = (8, 5, 9) is of codimensoin 22.

For m=25, (5) gives;

F25(x0, . . . , z25) = z20z25 + . . .+ z28z9 + y40y25 + . . .+ y55 + x0x25y
2
0 + . . .+ x20y0y25

• Over the ideal I242, we obtain the ideal I251. The corresponding vector v251 = (7, 6, 9)
is of codimensoin 22.
• Over the ideal I243, we obtain the ideal I252. The corresponding vector v252 = (8, 6, 9)
is of codimensoin 23.

For m=26, (5) gives;

F26(x0, . . . , z26) = z20z26 + . . .+ z8z
2
9 + y40y26 + . . .+ y45y6 + x0x26y

2
0 + . . .+ x20y0y26

• Over the ideal I251, we obtain the ideal I261. The corresponding vector v261 = (7, 7, 9)
is of codimensoin 23.
• Over the ideal I252, we obtain the ideal I262. The corresponding vector v262 = (8, 6, 9)
is of codimensoin 23.

For m=27, (5) gives;

F27(x0, . . . , z27) = z20z27 + . . .+ z39 + y40y27 + . . .+ y35y
2
6 + x0x27y

2
0 + . . .+ x20y0y27

• Over the ideal I262, we obtain the ideal I271. The corresponding vector v271 = (8, 6, 10)
is of codimensoin 24.

For m=28, (5) gives

F28(x0, . . . , z28) = z20z28 + . . .+ z29z10 + y40y28 + . . .+ y25y
3
6 + x0x28y

2
0 + . . .+ x20y0y28

• Over the ideal I271, we obtain two possible ideals I281 and I282. The corresponding
vectors v271 = (8, 7, 10) and v272 = (9, 6, 10) are of codimensoin 23.
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Figure 5.7: Jet graph of E07

v01 = (0, 1, 1) v11 = (0, 1, 1) v21 = (0, 2, 1) v22 = (1, 1, 1) v31 = (0, 2, 2)
v32 = (1, 1, 2) v41 = (0, 3, 2) v42 = (1, 2, 2) v43 = (2, 1, 2) v51 = (0, 3, 2)
v52 = (1, 2, 2) v61 = (0, 3, 2) v62 = (1, 2, 2) v71 = (0, 4, 3) v72 = (1, 3, 3)
v73 = (2, 2, 3) v81 = (0, 5, 3) v82 = (1, 4, 3) v83 = (2, 3, 3) v84 = (3, 2, 3)
v91 = (0, 5, 4) v92 = (1, 4, 4) v93 = (2, 3, 4) v94 = (3, 2, 4) v101 = (0, 6, 4)
v102 = (1, 5, 4) v103 = (2, 4, 4) v104 = (3, 3, 4) v111 = (0, 6, 4) v112 = (1, 5, 4)
v113 = (2, 4, 4) v114 = (3, 3, 4) v113 = (2, 4, 4) v114 = (3, 3, 4) v121 = (0, 7, 5)
v122 = (1, 6, 5) v123 = (2, 5, 5) v124 = (3, 4, 5) v125 = (4, 3, 5) v131 = (1, 6, 5)
v132 = (2, 5, 5) v133 = (3, 4, 5) v134 = (4, 3, 5) v141 = (1, 7, 5) v142 = (2, 6, 5)
v143 = (3, 5, 5) v144 = (4, 4, 5) v145 = (5, 3, 5) v151 = (2, 6, 6) v152 = (3, 5, 6)
v153 = (4, 4, 6) v154 = (5, 4, 6) v161 = (2, 7, 6) v162 = (3, 6, 6) v163 = (4, 5, 6)
v164 = (5, 4, 6) v171 = (3, 6, 6) v172 = (4, 5, 6) v173 = (5, 4, 6) v181 = (3, 7, 7)
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v182 = (4, 6, 7) v183 = (5, 5, 7) v184 = (6, 4, 7) v191 = (4, 6, 7) v192 = (5, 5, 7)
v203 = (6, 5, 7) v211 = (5, 6, 8) v212 = (6, 5, 8) v221 = (5, 7, 8) v222 = (6, 6, 8)
v223 = (7, 5, 8) v231 = (6, 6, 8) v232 = (7, 5, 8) v241 = (6, 7, 9) v242 = (7, 6, 9)
v243 = (8, 5, 9) v251 = (7, 6, 9) v252 = (8, 6, 9) v261 = (7, 7, 9) v262 = (8, 6, 9)
v271 = (8, 6, 10) v281 = (8, 7, 10) v282 = (9, 6, 10)

Remark 5.4.2. Here and below the vectors represented with red correspond to the
vectors given in E07b, the vectors represented in pink also correspond to the vectors
given in E07c and the rest are obtained as the supplemented vectors.

Remark 5.4.3. The minimal resolution graph of singularity E07 is as follow

Figure 5.8: Minimal resolution graph of E07

Remark 5.4.4. So the Figure E07c becomes

Figure 5.9: E07d

where u3 = v41, v8 = v43, v9 = v84, v10 = v22, v11 = v73, v12 = v32, v13 = v21, v14 = v01 and
v15 = v125 .

Proposition 5.4.5. Let X be an hypersurface in C3 of type E07. For m ≥ 28, the
number of irreducible components of Jm(E07) equals the number of exceptional curves
on the minimal resolution of the singularity.

Proposition 5.4.6. The set of weight vectors corresponding to mth jets of E07 give a
canonical toric minimal embedded resolution of the singularity.
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6. JET SCHEMES OF ISOLATED SURFACE SINGULARITIES

The rational triple singularities are of the singularities of surfaces in C4. They are
defined by 3 equations in (Tyurina, 1968) and are the normalisation of the hypersufaces
given in the beginning of Chapter 5 above. As before, we consider here only the cases
E60, E70 and E07.

The surface of type E60 is defined by:

f1(x, y, z, w) = z2 − yw + y3 = 0

f2(x, y, z, w) = zw − x2y = 0

f3(x, y, z, w) = w2 − y2w − x2z = 0

The surface of type E70 is defined by:

f1(x, y, z, w) = z2 − yw + x2y = 0

f2(x, y, z, w) = zw − y3 = 0

f3(x, y, z, w) = w2 − x2w − y2w = 0

The surface of type E07 is defined by:

f1(x, y, z, w) = z2 − yw = 0

f2(x, y, z, w) = zw − x2y − y4 = 0

f3(x, y, z, w) = w2 − x2z − y3z = 0

See (Tyurina, 1968) for the rest of RTP-singularities.

6.1 Some Surfaces in C4

It is defined in a similar way to the case of hypersurfaces. We here assume that X is
defined by the ideal I =< f1, . . . , fk >. And, consider the morphism

ϕm : C[x1, . . . , xn]/ < I >−→ C[[t]]/ < tm+1 >

defined by

ϕm(xi) = xi,0 + xi,1t+ xi,2t
2 + . . .+ xi,mt

m mod(tm+1)

with

fi(x1,0 + x1,1t+ . . .+ x1,mt
m, . . . , xn,0 + xn,1t+ . . .+ xn,mt

m) = 0 mod(tm+1) (6)
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for all 1 ≤ i ≤ k. We can see (6) in the form

F 0
i + F 1

i t+ . . .+ Fm
i t

m

where
F j
i = fi(x1,j, x2,j, . . . , xn,j)

in SpecC[x1,0, . . . , x1,m, . . . , xn,0, . . . , xn,m]. Then the mth jet scheme of X is defined by

Jm(X) = Spec
C[x1, . . . , xn]

< F 0
1 , F

1
1 , . . . , F

m
1 , F

0
2 , . . . , F

0
n , . . . , , F

m
n >

Note that J0(X) = X.

6.2 Jet Scheme of a Surface of type E60

Let us consider the ideal I =< f1, f2, f3 > in C[x, y, z, w] such that X is the surface
E60 in C4. The singular locus is the unique point which is the origin. The map ϕm
above is defined as

x 7−→ x0 + x1t+ x2t
2 + . . .+ xmt

m

y 7−→ y0 + y1t+ y2t
2 + . . .+ ymt

m

z 7−→ z0 + z1t+ z2t
2 + . . .+ zmt

m

w 7−→ w0 + w1t+ w2t
2 + . . .+ wmt

m

such that

fi(x0 + x1t+ . . .+ xmt
m, y0 + . . .+ ymt

m, z0 + . . .+ zmt
m, w0 + . . .+wmt

m) = 0 (7)

For m=0, (7) gives;

F 0
1 (x0, y0, z0, w0) = z20 − y0w0 + y30 = z20 − y0(w0 + y20) = 0

F 0
2 (x0, y0, z0, w0) = z0w0 − x20y0 = 0

F 0
3 (x0, y0, z0, w0) = w2

0 − y20w0 − x20z0 = w0(w0 − y20)− x20z0 = 0

• This says that we have y0 = z0 = w0 = 0 which is over the generic point. Hence the
ideal I0 =< y0, z0, w0 >. The corresponding vector v01 = (0, 1, 1, 1) is of codimension 3.
J0(E60) is given by

J0(E60) = Spec
C[x0, y0, z0, w0]

< F 0
1 , F

0
2 , F

0
3 >

For m=1, (7) gives;

F 1
1 (x0, y0, . . . , z1, w1) = z0z1 − y0w1 − y01w0 + y20y1 = 0

F 1
2 (x0, y0, . . . , z1, w1) = z0w1 + z1w0 − x0x1y0 − x20y1 = 0
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F 1
3 (x0, y0, . . . , z1, w1) = w0w1 − y0y1w0 + y20w1 − x0x1z0 − x20z1 = 0

• This gives two possible ideals but the only ideal over the generic point is I1 =
(y0, z0, w0, y1, z1). The corresponding vector v11 = (0, 2, 2, 1) is of codimension 5.
J1(E60) is given by

J1(E60) = Spec
C[x0, y0, . . . , z1, w1]

< F 0
1 , F

0
2 , F

0
3 , F

1
1 , F

1
2 , F

1
3 >

For m=2, (7) gives;

F 2
1 (x0, y0, . . . , z2, w2) = z0z2 + z21 − . . .+ y20y2 + y0y

2
1 = 0

F 2
2 (x0, y0, . . . , z2, w2) = z0w2 + z1w1 + . . .+ x0x2y0 + x21y0 = 0

F 2
3 (x0, y0, . . . , z2, w2) = w0w2 + w2

1 + . . .+ x21z0 + x0x2z0 = 0

• Over the ideal I1, we obtain two possible ideals I21 = (y0, z0, w0, y1, z1, w1, x0) and
I22 = (y0, z0, w0, y1, z1, w1, y2, z2). The corresponding vector of I21, v

2
1 = (1, 2, 2, 2) is of

codimension 7. The corresponding vector of I22, v
2
2 = (0, 3, 3, 2) is of codimension 8.

J2(E60) is given by

J2(E60) = Spec
C[x0, y0, . . . , z2, w2]

< F 0
1 , F

0
2 , . . . , F

3
2 , F

3
3 >

For m=3, (7) gives;

F 3
1 (x0, y0, . . . , z3, w3) = z0z3 + z1z2 + . . .+ y0y1y2 + y31 = 0

F 3
2 (x0, y0, . . . , z3, w3) = z0w3 + z1w2 + . . .+ x0x1y2 + x20y3 = 0

F 3
3 (x0, y0, . . . , z3, w3) = w0w3 + w1w2 + . . .+ x0x1z2 + x20z3 = 0

• Over the ideal I21 we obtain ideal I31 = (y0, z0, w0, y1, z1, w1, x0). The corresponding
vector v31 = (1, 2, 2, 2) is of codimension 7.
• Over the ideal I22 we obtain two possible ideals I32 = (y0, z0, w0, y1, z1, w1, y2, z2, x0)
and I33 = (y0, z0, w0, y1, z1, w1, y2, z2, y3, z3). The corresponding vector of I32, v

3
2 =

(1, 3, 3, 2) is of codimension 9. The corresponding vector of I33, v
3
3 = (0, 4, 4, 2) is of

codimension 10. J3(E60) is given by

J3(E60) = Spec
C[x0, y0, . . . , z3, w3]

< F 0
1 , F

0
2 , . . . , F

3
2 , F

3
3 >

Remark 6.2.1. In the same way, the mth jet scheme of E60 is given by

Jm(E60) = Spec
C[x0, y0, . . . , zm, wm]

< F 0
1 , F

0
2 , . . . , F

m
2 , F

m
3 >

for all m.
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For m=4, (7) gives;

F 4
1 (x0, y0, . . . , z4, w4) = z0z4 + z1z3 + . . .+ y0y1y2 + y21y2 = 0

F 4
2 (x0, y0, . . . , z4, w4) = z0w4 + z1w3 + . . .+ x0x1y3 + x20y4 = 0

F 4
3 (x0, y0, . . . , z4, w4) = w0w4 + w1w3 + . . .+ x0x1z3 + x20z4 = 0

• Over the ideal I31, we obtain two possible ideals I41 = (y0, z0, w0, y1, z1, w1, x0, x1, z2,
w2) and I42 = (y0, z0, w0, y1, z1, w1, x0, y2, z2, w2). The corresponding vector of I41,
v41 = (2, 2, 3, 3) is of codimension 10 and the corresponding vector of I42, v

4
2 = (1, 3, 3, 3)

is of codimension 10.
• Over the ideal I32, we obtain the ideal I42.
• Over the ideal I33, we obtain two possible ideals I43 = (y0, z0, w0, y1, z1, w1, y2, z2, y3,
z3, x0) and I44 = (y0, z0, w0, y1, z1, w1, y2, z2, y3, z3, y4, z4, w2). The corresponding vector
of I43, v

4
3 = (1, 4, 4, 3) is of codimension 12 and the corresponding vector of I44, v

4
4 =

(0, 5, 5, 3) is of codimension 13.

For m=5, (7) gives;

F 5
1 (x0, y0, . . . , z5, w5) = z0z5 + z1z4 + . . .+ y0y2y3 + y1y

2
2 = 0

F 5
2 (x0, y0, . . . , z5, w5) = z0w5 + z1w4 + . . .+ x0x1y4 + x20y5 = 0

F 5
3 (x0, y0, . . . , z5, w5) = w0w5 + w1w4 + . . .+ x0x1z4 + x20z5 = 0

• Over the ideal I41, we obtain two possible ideals I51 = (y0, z0, w0, y1, z1, w1, x0, x1, z2,
w2, w3) and I52 = (y0, z0, w0, y1, z1, w1, x0, x1, z2, w2, y2, w3). The corresponding vectors
v21 = (2, 2, 3, 4) and v52 = (2, 3, 3, 3) are of codimension 11.
• Over the ideal I42, we obtain two possible ideals I52 and I53 = (y0, z0, w0, y1, z1, w1, x0
y2, z2, w2, y3, w3). The corresponding vector of I53, v

5
3 = (1, 4, 3, 4) is of codimension

12.
• Over the ideal I43, we obtain the ideal I53.
For m=6, (7) gives;

F 6
1 (x0, y0, . . . , z6, w6) = z0z6 + z1z5 + . . .+ y0y

2
3 + y32 = 0

F 6
2 (x0, y0, . . . , z6, w6) = z0w6 + z1w5 + . . .+ x0x1y5 + x20y6 = 0

F 6
3 (x0, y0, . . . , z6, w6) = w0w6 + w1w5 + . . .+ x0x1z5 + x20z6 = 0

• Over the ideal I51 and I52, we obtain the ideal I61 = (y0, z0, w0, y1, z1, w1, x0, x1, z2, w2,
w3, y2, z3). The corresponding vector v61 = (2, 3, 4, 4) is of codimension 13.
• Over the ideal I53, we obtain two possible ideals I62 = (y0, z0, w0, y1, z1, w1, x0, y2, z2,
w2, y3, w3, x1, z3) and I63 = (y0, z0, w0, y1, z1, w1, x0, y2, z2, w2, y3, w3, y4, z3, z4). The cor-
responding vectors are v62 = (2, 4, 4, 4) with codimension 14 and v63 = (1, 5, 5, 4) with
codimension 15.

For m=7, (7) gives;
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F 7
1 (x0, y0, . . . , z7, w7) = z0z7 + z1z6 + . . .+ y1y

2
3 + y22y3 = 0

F 7
2 (x0, y0, . . . , z7, w7) = z0w7 + z1w6 + . . .+ x0x1y6 + x20y7 = 0

F 7
3 (x0, y0, . . . , z7, w7) = w0w7 + w1w6 + . . .+ x0x1z6 + x20z7 = 0

•Over the ideal I61, we obtain two possible ideals I71 = (y0, z0, w0, y1, z1, w1, x0, x1, z2, w2,
w3, y2, z3, x2, w4) and I72 = (y0, z0, w0, y1, z1, w1, x0, x1, z2, w2, w3, y2, z3, y3). The corre-
sponding vector of I71, v

7
1 = (3, 3, 4, 5) is of codimension 15 and the corresponding

vector of I72, v
7
2 = (2, 4, 4, 4) is of codimension 14.

• Over the ideal I62, we obtain the ideal I72.

In the same way;
For m=8, (7) gives;

F 8
1 (x0, y0, . . . , z8, w8) = z0z8 + z1z7 + . . .+ y2y

2
3 + y2y

2
3 = 0

F 8
2 (x0, y0, . . . , z8, w8) = z0w8 + z1w7 + . . .+ x0x1y7 + x20y8 = 0

F 8
3 (x0, y0, . . . , z8, w8) = w0w8 + w1w7 + . . .+ x0x1z7 + x20z8 = 0

•We obtain three possible ideals I81, I82 and I83. The corresponding vectors v81 =
(3, 3, 5, 6), v82 = (3, 4, 5, 5) and v83 = (2, 5, 5, 5) are of codimension 17.

For m=9, (7) gives;

F 9
1 (x0, y0, . . . , z9, w9) = z0z9 + z1z8 + . . .+ y2y3y4 + y33 = 0

F 9
2 (x0, y0, . . . , z9, w9) = z0w9 + z1w8 + . . .+ x0x1y8 + x20y9 = 0

F 9
3 (x0, y0, . . . , z9, w9) = w0w9 + w1w8 + . . .+ x0x1z8 + x20z9 = 0

• We obtain two possible ideals I91 and I92. The corresponding vectors v91 = (3, 4, 5, 6)
and v92 = (3, 5, 5, 5) are of codimension 18.
For m=10, (7) gives;

F 10
1 (x0, y0, . . . , z10, w10) = z0z10 + z1z9 + . . .+ y23y4 + y23y4 = 0

F 10
2 (x0, y0, . . . , z10, w10) = z0w10 + z1w9 + . . .+ x0x1y9 + x20y10 = 0

F 10
3 (x0, y0, . . . , z10, w10) = w0w10 + w1w9 + . . .+ x0x1z9 + x20z10 = 0

• We obtain two possible ideals I101 and I102. The corresponding vector of I101, v
10
1 =

(3, 5, 6, 6) is of codimension 20 and the corresponding vector of I102, v
10
2 = (4, 4, 6, 7) is

of codimension 21.

For m=11, (7) gives;

F 11
1 (x0, y0, . . . , z11, w11) = z0z12 + z1z10 + . . .+ y23y5 + y3y

2
4 = 0

F 11
2 (x0, y0, . . . , z11, w11) = z0w11 + z1w10 + . . .+ x0x1y10 + x20y11 = 0
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F 11
3 (x0, y0, . . . , z11, w11) = w0w11 + w1w10 + . . .+ x0x1z10 + x20z11 = 0

• We obtain two possible ideals I111 and I112. The corresponding vectors v101 =
(4, 5, 6, 7) and v102 = (4, 4, 6, 8) are of codiemnsion 22.

For m=12, (7) gives;

F 12
1 (x0, y0, . . . , z12, w12) = z0z12 + z1z11 + . . .+ y3y4y5 + y34 = 0

F 12
2 (x0, y0, . . . , z12, w12) = z0w12 + z1w11 + . . .+ x0x1y11 + x20y12 = 0

F 12
3 (x0, y0, . . . , z12, w12) = w0w12 + w1w11 + . . .+ x0x1z11 + x20z12 = 0

•We obtain the ideal I121. The corresponding vector v121 = (4, 5, 7, 8) is of codimension
24.

Figure 6.1: Jet graph of isolated E60

Remark 6.2.2. The weight vectors (0, 1, 1), (1, 2, 2), (2, 2, 3) and (3, 3, 4) appeared
in 1st, 2th, 4th and 7th jet schemes respectively as a projection of v01 = (0, 1, 1, 1)
v21 = (1, 2, 2, 2), v41 = (2, 2, 3, 3) and v71 = (3, 3, 4, 5).
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6.3 Jet Scheme of a Surface of type E70

Let us consider the ideal I =< f1, f2, f3 > in C[x, y, z, w] with E70 singularity. The
affine variety V (I) defines a surface X of type E70 in C4 and (0, 0, 0, 0) is the only
singular point of X. According to the map ϕm above;

For m=0, (7) gives;

F 0
1 (x0, y0, z0, w0) = z20 − y0w0 + x20y0 = z20 − y0(w0 − x20) = 0

F 0
2 (x0, y0, z0, w0) = z0w0 − y30 = 0

F 0
3 (x0, y0, z0, w0) = w2

0 − x20w0 − y20w0 = w0(w0 − x20 − y20) = 0

• This says that y0 = z0 = w0 is over the generic point. Hence the ideal I0 =<
y0, z0, w0 >. The corresponding vector v01 = (0, 1, 1, 1) is of codimesnion 3. J0(E70) is
given by

J0(E70) = Spec
C[x0, y0, z0, w0]

< F 0
1 , F

0
2 , F

0
3 >

For m=1, (7) gives;

F 1
1 (x0, y0, . . . , z1, w1) = z0z1 − y0w1 − y1w0 + x0x1y0 + x20y1 = 0

F 1
2 (x0, y0, . . . , z1, w1) = z0w1 + z1w0 − y20y1 = 0

F 1
3 (x0, y0, . . . , z1, w1) = w0w1 − x20w1 − x0x1w0 − y20w1 − y0y1w0 = 0

• Over the ideal I0, we have two possible ideals but the only ideal over the generic
point which is I1 = (y0, z0, w0, y1, w1). The corresponding vector, v11 = (0, 2, 1, 2) is of
codimension 5. J1(E70) is given by

J1(E70) = Spec
C[x0, y0, . . . z1, w1]

< F 0
1 , F

0
2 , . . . F

1
2 , F

1
3 >

For m=2, (7) gives;

F 2
1 (x0, y0, . . . , z2, w2) = z0z2 + z21 + . . .+ x0x1y1 + x20y2 = 0

F 2
2 (x0, y0, . . . , z2, w2) = z0w2 + z1w1 + . . .+ y0y

2
1 + y20y2 = 0

F 2
3 (x0, y0, . . . , z2, w2) = w0w2 + w2

1 + . . .+ y0y1w1 + y20w2 = 0

• Over the ideal I1, we have two possible ideals I21 = (y0, z0, w0, y1, w1, z1, x0) and
I22 = (y0, z0, w0, y1, w1, z1, y2, w2). The corresponding vector of I21, v

2
1 = (1, 2, 2, 2) is

of codimension 7 and the corresponding vector of I22, v
2
2 = (0, 3, 2, 3) is of codimension

8. J2(E70) is given by

J2(E70) = Spec
C[x0, y0, . . . z2, w2]

< F 0
1 , F

0
2 , . . . F

2
2 , F

2
3 >
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For m=3, (7) gives;

F 3
1 (x0, y0, . . . , z3, w3) = z0z3 + z1z2 + . . .+ x0x1y2 + x20y3 = 0

F 3
2 (x0, y0, . . . , z3, w3) = z0w3 + z1w2 + . . .+ y0y1y2 + y20y3 = 0

F 3
3 (x0, y0, . . . , z3, w3) = w0w3 + w1w2 + . . .+ y0y1w2 + y20w3 = 0

• Over the ideal I21 we obtain the ideal I31 = (y0, z0, w0, y1, w1, z1, x0). The correspond-
ing vector v31 = (1, 2, 2, 2) is of codimension 7.
• Over the ideal I22 we obtain two possible ideals I32 = (y0, z0, w0, y1, w1, z1, y2, w2, x0)
and I33 = (y0, z0, w0, y1, w1, z1, y2, w2, y3, w3). The corresponding vector of I32, v

3
2 =

(1, 3, 2, 3) is of codimension 9 and the corresponding vector of I33, v
3
3 = (0, 4, 2, 4) is of

codimension 10. J3(E70) is given

J3(E70) = Spec
C[x0, y0, . . . z3, w3]

< F 0
1 , F

0
2 , . . . F

3
2 , F

3
3 >

Remark 6.3.1. In the same way, the mth jet scheme of E70 is given by

Jm(E70) = Spec
C[x0, y0, . . . zm, wm]

< F 0
1 , F

0
2 , . . . F

m
2 , F

m
3 >

for all m.

For m=4, (7) gives;

F 4
1 (x0, y0, . . . , z4, w4) = z0z4 + z1z3 + . . .+ x0x1y3 + x20y4 = 0

F 4
2 (x0, y0, . . . , z4, w4) = z0w4 + z1w3 + . . .+ y0y

2
2 + y20y4 = 0

F 4
3 (x0, y0, . . . , z4, w4) = w0w4 + w1w3 + . . .+ y0y1w3 + y20w4 = 0

• Over the ideal I31 we obtain two possible ideals I41 = (y0, z0, w0, y1, w1, z1, x0, x1, z2,
w2) and I42 = (y0, z0, w0, y1, w1, z1, x0, y2, z2, w2). The corresponding vectors v41 =
(2, 2, 3, 3) and v42 = (1, 3, 3, 3) are of codmension 10.
• Over the ideal I32 we obtain the ideal I42.
•Over the ideal I33 we obtain two possible ideals I43 = (y0, z0, w0, y1, w1, z1, y2, w2, y3, w3,
x0, y3, z2) and I44 = (y0, z0, w0, y1, w1, z1, y2, w2, y3, w3, y4, z2, w4). The corresponding
vector of I43, v

4
3 = (1, 4, 3, 4) is of codimension 12 and the corresponding vector of I44,

v44 = (0, 5, 3, 5) is of codimension 13.

In the same way;

For m=5, (7) gives;

F 5
1 (x0, y0, . . . , z5, w5) = z0z5 + z1z4 + . . .+ x0x1y4 + x20y5 = 0

F 5
2 (x0, y0, . . . , z5, w5) = z0w5 + z1w4 + . . .+ y0y2y3 + y20y5 = 0

F 5
3 (x0, y0, . . . , z5, w5) = w0w5 + w1w4 + . . .+ y0y1w4 + y20w5 = 0
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• Over the ideal I41, we obtain two possible ideals I51 and I52. The corresponding
vectors v51 = (2, 2, 3, 4) and v52 = (2, 3, 3, 3) are of codimension 1.
• Over the ideal I42, we obtain two possible ideals I52 and I53. The corresponding
vector of I53 is v53 = (1, 4, 3, 4) is of codimension 12.
• Over the ideal I43, we obtain the ideal I53.
• Over the ideal I44 we obtain two possible ideals I54 and I55. The corresponding
vector of I54, v

5
4 = (1, 5, 3, 5) is of codimension 14 and the corresponding vector of I55,

v55 = (0, 6, 3, 6) is of codimension 15.

For m=6, (7) gives

F 6
1 (x0, y0, . . . , z6, w6) = z0z6 + z1z5 + . . .+ x0x1y5 + x20y6 = 0

F 6
2 (x0, y0, . . . , z6, w6) = z0w6 + z1w5 + . . .+ y0y

2
3 + y20y6 = 0

F 6
3 (x0, y0, . . . , z6, w6) = w0w6 + w1w5 + . . .+ y0y1w5 + y20w6 = 0

• Over the ideals I51 and I52, we obtain ideal I61. The corresponding vector v61 =
(2, 3, 4, 4) is of codimension 13.
• Over the ideal I53, we obtain two possible ideals I62 and I63. The corresponding
vector of I62, v

6
2 = (2, 4, 4, 4) is of codimension 14 and the corresponding vector of I63,

v63 = (1, 5, 4, 5) is of codimension 15.
• Over the ideal I55, we obtain two possible ideals I64 and I65. The corresponding
vectors of I64, v

6
4 = (1, 6, 4, 6) is of codimension 17 and the corresponding vectors of

I65, v
6
5 = (0, 7, 4, 7) is of codimension 18.

For m=7, (7) gives;

F 7
1 (x0, y0, . . . , z7, w7) = z0z7 + z1z6 + . . .+ x0x1y6 + x20y7 = 0

F 7
2 (x0, y0, . . . , z7, w7) = z0w7 + z1w6 + . . .+ y0y3y4 + y20y7 = 0

F 7
3 (x0, y0, . . . , z7, w7) = w0w7 + w1w6 + . . .+ y0y1w6 + y20w7 = 0

• Over the ideal I61, we obtain two possible ideals I71 and I72. The corresponding
vector of I71, v

7
1 = (3, 3, 4, 5) is of codimension 15 and the corresponding vector of I72,

v72 = (2, 4, 4, 4) is of codimension 14.
• Over the ideal I62 we obtain the ideal I72.
• Over the ideal I63, we obtain two possible ideals I73 and I74. The corresponding
vector of I73, v

7
3 = (2, 5, 4, 5) is of codimension 16 and the corresponding vector of I74,

v74 = (1, 6, 4, 6) is of codimension 17.

For m=8, (7) gives;

F 8
1 (x0, y0, . . . , z8, w8) = z0z8 + z1z7 + . . .+ x0x1y7 + x20y8 = 0

F 8
2 (x0, y0, . . . , z8, w8) = z0w8 + z1w7 + . . .+ y0y

4
4 + y20y8 = 0

F 8
3 (x0, y0, . . . , z8, w8) = w0w8 + w1w7 + . . .+ y0y1w7 + y20w8 = 0

• Over the ideal I71, we obtain the ideals I81 and I82. The corresponding vectors
v81 = (3, 3, 5, 6) and v82 = (3, 4, 5, 5) are of codimension 17.
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• Over the ideal I72, we obtain two possible ideals I82 and I83. The corresponding
vector of I83, v

8
3 = (2, 5, 5, 5) is of codimension 17.

• Over the ideal I73, we obtain the ideal I83.
• Over the ideal I74, we obtain the ideal I84 and I85. The corresponding vector of I84,
v84 = (2, 6, 5, 6) is of codimension 19 and the corresponding vector of I85, v

8
5 = (1, 7, 5, 7)

is of codimension 20.

For m=9, (7) gives;

F 9
1 (x0, y0, . . . , z9, w9) = z0z9 + z1z8 + . . .+ x0x1y8 + x20y9 = 0

F 9
2 (x0, y0, . . . , z9, w9) = z0w9 + z1w8 + . . .+ y0y4y5 + y20y9 = 0

F 9
3 (x0, y0, . . . , z9, w9) = w0w9 + w1w8 + . . .+ y0y1w8 + y20w9 = 0

• In the same, we obtain three possible ideals I91, I92 and I93. The corresponding vectors
v91 = (3, 4, 5, 6) and v92 = (3, 5, 5, 5) are of codimension 18 and the corresponding vector
v93 = (2, 6, 5, 6) is of codimension 19.

For m=10, (7) gives;

F 10
1 (x0, y0, . . . , z10, w10) = z0z10 + z1z9 + . . .+ x0x1y9 + x20y10 = 0

F 10
2 (x0, y0, . . . , z10, w10) = z0w10 + z1w9 + . . .+ y0y

2
5 + y20y10 = 0

F 10
3 (x0, y0, . . . , z10, w10) = w0w10 + w1w9 + . . .+ y0y1w9 + y20w10 = 0

•We obtain four possible ideals I101, I102, I103 and I104. The corresponding vectors
v101 = (4, 4, 6, 7) and v103 = (3, 6, 6, 6) are of codimension 21. The corresponding vector
v102 = (3, 5, 6, 6) is of codimension 20 and the corresponding vector v104 = (2, 7, 6, 7) is
of codimension 22.

For m=11, (7) gives;

F 11
1 (x0, y0, . . . , z11, w11) = z0z11 + z1z10 + . . .+ x0x1y10 + x20y11 = 0

F 11
2 (x0, y0, . . . , z11, w11) = z0w11 + z1w10 + . . .+ y0y5y6 + y20y11 = 0

F 11
3 (x0, y0, . . . , z11, w11) = w0w11 + w1w10 + . . .+ y0y1w10 + y20w11 = 0

• We obtain three possible ideals I111, I112 and I113. The corresponding vector v111 =
(4, 5, 6, 8) is of codimension 23. The corresponding vector v112 = (4, 5, 6, 7) is of codi-
mension 22 and the corresponding vector v113 = (3, 6, 6, 6) is of codimension 21.

For m=12, (7) gives;

F 12
1 (x0, y0, . . . , z12, w12) = z0z12 + z1z11 + . . .+ x0x1y11 + x20y12 = 0

F 12
2 (x0, y0, . . . , z12, w12) = z0w12 + z1w11 + . . .+ y0y

2
6 + y20y12 = 0

F 12
3 (x0, y0, . . . , z12, w12) = w0w12 + w1w11 + . . .+ y0y1w11 + y20w12 = 0
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• We obtain three possible ideals I121, I122 and I123. The corresponding vectors v121 =
(4, 5, 7, 8), v122 = (4, 6, 7, 7) and v123 = (3, 7, 7, 7)are of codimension 24.

For m=13, (7) gives;

F 13
1 (x0, y0, . . . , z13, w13) = z0z13 + z1z12 + . . .+ x0x1y12 + x20y13 = 0

F 13
2 (x0, y0, . . . , z13, w13) = z0w13 + z1w12 + . . .+ y0y6y7 + y20y13 = 0

F 13
3 (x0, y0, . . . , z13, w13) = w0w13 + w1w12 + . . .+ y0y1w12 + y20w13 = 0

• We obtain three possible ideals I131, I132 and I133. The corresponding vector v131 =
(5, 5, 7, 9) is of codimension 26. The corresponding vectors v132 = (4, 6, 7, 8) and v133 =
(4, 7, 7, 7) are of codimension 25.
For m=14, (7) gives;

F 14
1 (x0, y0, . . . , z14, w14) = z0z14 + z1z13 + . . .+ x0x1y13 + x20y14 = 0

F 14
2 (x0, y0, . . . , z14, w14) = z0w14 + z1w13 + . . .+ y0y

2
7 + y20y13 = 0

F 14
3 (x0, y0, . . . , z14, w14) = w0w14 + w1w13 + . . .+ y0y1w13 + y20w14 = 0

• We obtain three possible ideals I141, I142 and I143. The corresponding vectors v141 =
(4, 7, 8, 8) and v142 = (5, 6, 7, 9) are of codimension 27. The corresponding vector v143 =
(5, 5, 8, 10) is of codimension 28.

Figure 6.2: Jet graph of isolated E70
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Remark 6.3.2. The weigth vectors (1, 2, 2), (2, 2, 3), (2, 3, 4), (3, 3, 4) and (3, 4, 5)
appeared in 2th, 4th, 6th 7th and 9th jet schemes respectively as a projection of v21 =
(1, 2, 2, 2), v41 = (2, 2, 3, 3), v61 = (2, 3, 4, 4) v71 = (3, 3, 4, 5) and v91 = (3, 4, 5, 6).

6.4 Jet Scheme of a Surface of type E07

Let us consider the ideal I =< f1, f2, f3 > in C[x, y, z, w] with E07 singularity. The
affine variety V (I) defines a surface X in C4 and (0, 0, 0, 0) is the only singular point
of X.

Remark 6.4.1. The mth jet scheme of E07 is given by

Jm(E07) = Spec
C[x0, y0, . . . zm, wm]

< F 0
1 , F

0
2 , . . . F

m
2 , F

m
3 >

for all m.

According to the map ϕm above;

For m=0, (7) gives;

F 0
1 (x0, y0, z0, w0) = z20 − y0w0 = 0

F 0
2 (x0, y0, z0, w0) = z0w0 − x20y0 − y40 = 0

F 0
3 (x0, y0, z0, w0) = w2

0 − x20z0 − y30z0 = 0

• This says that y0 = z0 = w0 is over the generic point. Hence the ideal I0 =<
y0, z0, w0 >. The corresponding vector v01 = (0, 1, 1, 1) is of codimension 3.

For m=1, (7) gives;

F 1
1 (x0, y0, . . . , z1, w1) = z0z1 − y0w1 − y1w0 = 0

F 1
2 (x0, y0, . . . , z1, w1) = z0w1 + z1w0 − x20y1 − x0x1y0 − y30y1 = 0

F 1
3 (x0, y0, . . . , z1, w1) = w0w1 − x20z1 − x0x1z0 − y30z1 − y20y1z0 = 0

• Over the ideal I0, we obtain two possible ideals that one of them is over singularity.
The other one I1 =< y0, z0, w0, y1, z1 > is over the generic point. The corresponding
vector v11 = (0, 2, 2, 1) is of codimension 5.

For m=2, (7) gives;

F 2
1 (x0, y0, . . . , z2, w2) = z0z2 + z21 − y0w2 − y1w1 − y2w0 = 0

F 2
2 (x0, y0, . . . , z2, w2) = z0w2 + z1w1 + z2w0 + . . .+ y20y

2
1 + y30y2 = 0

F 2
3 (x0, y0, . . . , z2, w2) = w0w2 + w2

1 − x20z2 + . . .+ y20y1z1 + y30z2 = 0

• Over the ideal I1, we obtain two possible ideals I21 = (y0, z0, w0, y1, z1, w1, x0) and
I22 = (y0, z0, w0, y1, z1, w1, z1, y2, z2). The corresponding vector of I21, v

2
1 = (1, 2, 2, 2)

is of codimension 7. The corresponding vector of I22, v
2
2 = (0, 3, 3, 2)
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is of codimension 8.

For m=3, (7) gives;

F 3
1 (x0, y0, . . . , z3, w3) = z0z3 + z1z2 + . . .+ y2w1 + y1w2 = 0

F 3
2 (x0, y0, . . . , z3, w3) = z0w3 + z1w2 + . . .+ y20y1y2 + y30y3 = 0

F 3
3 (x0, y0, . . . , z3, w3) = w0w3 + w1w2 + . . .+ y20y1z2 + y30z3 = 0

• Over the ideal I21, we obtain the ideal I31 = (y0, z0, w0, y1, z1, w1, x0). The corre-
sponding vector v31 = (1, 2, 2, 2) is of codimension 7.
•Over the ideal I22, we obtain two possible ideal I32 = (y0, z0, w0, y1, z1, w1, z1, y2, z2, x0)
and I33 = (y0, z0, w0, y1, z1, w1, y2, z2, y3, z3, w2). The corresponding vector of I32, v

3
2 =

(1, 3, 3, 2) is of codimension 9. The corresponding vector of I33, v
3
3 = (0, 4, 4, 3) is of

codimension 11.
For m=4, (7) gives;

F 4
1 (x0, y0, . . . , z4, w4) = z0z4 + z1z3 + . . .+ y1w3 + y2w2 = 0

F 4
2 (x0, y0, . . . , z4, w4) = z0w4 + z1w3 + . . .+ y20y1y3 + y30y4 = 0

F 4
3 (x0, y0, . . . , z4, w4) = w0w4 + w1w3 + . . .+ y20y1z3 + y30z4 = 0

•Over the ideal I31 we obtain two possible ideals I41 = (y0, z0, w0, y1, z1, w1, x0, x1, z2, z3)
and I42 = (y0, z0, w0, y1, z1, w1, x0, y2, z2, w2). The corresponding vectors v41 = (2, 2, 3, 3)
and v42 = (1, 3, 3, 3) are of codimension 10.
• Over the ideal I32 we obtain the ideal I42.
•Over the ideal I33 we obtain two possible ideals I43 = (y0, z0, w0, y1, z1, w1, y2, z2, y3, z3,
w2, x0) and I44 = (y0, z0, w0, y1, z1, w1, y2,
z2, y3, z3, w2, y4, z4). The corresponding vector of I43, v

4
3 = (1, 4, 4, 3) is of codimension

12 and the corresponding vector of I44, v
4
4 = (0, 5, 5, 3) is of codimension 13.

In the same way;

For m=5, (7) gives;

F 5
1 (x0, y0, . . . , z5, w5) = z0z5 + z1z4 + . . .+ y2w3 + y3w2 = 0

F 5
2 (x0, y0, . . . , z5, w5) = z0w5 + z1w4 + . . .+ y20y1y4 + y20y5 = 0

F 5
3 (x0, y0, . . . , z5, w5) = w0w5 + w1w4 + . . .+ y20y1z4 + y30z5 = 0

• Over the ideal I41 we obtain two possible ideals I51 and I52. The corresponding
vectors v51 = (2, 2, 3, 4) and v52 = (2, 3, 3, 3) are of codimension 11.
• Over the ideal I42 we obtain two possible ideals I52 and I53. The corresponding vector
of I53, v

5
3 = (1, 4, 4, 3) is of codimension 12.

• Over the ideal I43 we obtain the ideal I53.
•Over the ideal I44 we obtain two possible ideals I54 and I55. The corresponding
vector of I54, v

5
4 = (1, 5, 5, 3) is of codimension 14 and the corresponding vector of I55,

v55 = (0, 6, 6, 3) is of codimension 15.
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For m=6, (7) gives;

F 6
1 (x0, y0, . . . , z6, w6) = z0z6 + z1z5 + . . .+ y2w4 + y3w3 = 0

F 6
2 (x0, y0, . . . , z6, w6) = z0w6 + z1w5 + . . .+ y20y1y5 + y20y6 = 0

F 6
3 (x0, y0, . . . , z6, w6) = w0w6 + w1w5 + . . .+ y20y1z5 + y30z6 = 0

•We obtain six possible ideals I61, I62, I63, I64, I65 and I66. The corresponding vectors
v61 = (3, 2, 4, 5), v62 = (2, 3, 4, 4), v63 = (2, 4, 4, 4), v64 = (1, 5, 5, 4), v65 = (1, 6, 6, 4) and
v66 = (0, 7, 7, 4) are of codimension 14, 13, 14, 15, 17 and 18 respectively.

For m=7, (7) gives;

F 7
1 (x0, y0, . . . , z7, w7) = z0z7 + z1z6 + . . .+ y4w3 + y3w4 = 0

F 7
2 (x0, y0, . . . , z7, w7) = z0w7 + z1w6 + . . .+ y20y1y6 + y30y7 = 0

F 7
3 (x0, y0, . . . , z7, w7) = w0w7 + w1w6 + . . .+ y20y1z6 + y30z7 = 0

• We obtain five possible ideals I71, I72, I73, I74 and I75. The corresponding vectors
v71 = (3, 2, 4, 6), v72 = (3, 3, 4, 5), v73 = (2, 4, 4, 4), v74 = (2, 5, 5, 4) and v75 = (1, 6, 6, 4) are
of codimension 15, 15, 14, 16 and 17 respectively.

For m=8, (7) gives

F 8
1 (x0, y0, . . . , z8, w8) = z0z8 + z1z7 + . . .+ y5w3 + y24 = 0

F 8
2 (x0, y0, . . . , z8, w8) = z0w8 + z1w7 + . . .+ y20y1y7 + y30y8 = 0

F 8
3 (x0, y0, . . . , z8, w8) = w0w8 + w1w7 + . . .+ y20y1z7 + y30w8 = 0

•We obtain five possible ideals I81, I82, I83, I84 and I85. The corresponding vectors v81 =
(3, 3, 5, 6), v82 = (3, 4, 5, 5), v83 = (2, 5, 5, 5) are of codimension 17. The corresponding
vector v84 = (2, 6, 6, 5) is of codimension 19 and the corresponding vector v85 = (1, 7, 7, 5)
is of codimension 20.

For m=9, (7) gives;

F 9
1 (x0, y0, . . . , z9, w9) = z0z9 + z1z8 + . . .+ y5w4 + y4w5 = 0

F 9
2 (x0, y0, . . . , z9, w9) = z0w9 + z1w8 + . . .+ y20y1y8 + y30y9 = 0

F 9
3 (x0, y0, . . . , z9, w9) = w0w9 + w1w8 + . . .+ y20y1z8 + y30w9 = 0

• We obtain four possible ideals I91, I92, I93 and I94. The corresponding vectors v91 =
(4, 3, 5, 7) and v94 = (2, 6, 6, 5) are of codimension 19. The corresponding vectors v92 =
(3, 4, 5, 6) and v93 = (3, 5, 5, 5) are of codimension 18.

For m=10, (7) gives;

F 10
1 (x0, y0, . . . , z10, w10) = z0z10 + z1z9 + . . .+ y6w4 + y5w5 = 0
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F 10
2 (x0, y0, . . . , z10, w10) = z0w10 + z1w9 + . . .+ y20y1y9 + y30y10 = 0

F 10
3 (x0, y0, . . . , z10, w10) = w0w10 + w1w9 + . . .+ y20y1z9 + y30z10 = 0

•We obtain five possible ideals I101, I102, I103, I104 andI105. The corresponding vectors
v101 = (4, 3, 6, 8), v102 = (4, 4, 6, 7) and v104 = (3, 6, 6, 6) are of codimension 21. The
corresponding vector v103 = (3, 5, 6, 6) is of codimension 20 and v105 = (2, 7, 7, 6) is of
codimension 22.

For m=11, (7) gives;

F 11
1 (x0, y0, . . . , z11, w11) = z0z11 + z1z10 + . . .+ y6w5 + y5w6 = 0

F 11
2 (x0, y0, . . . , z11, w11) = z0w11 + z1w10 + . . .+ y20y1y10 + y30y11 = 0

F 11
3 (x0, y0, . . . , z11, w11) = w0w11 + w1w10 + . . .+ y20y1z10 + y30z11 = 0

• We obtain four possible ideals I111, I112, I113 and I113. The corresponding vectors
v112 = (4, 4, 6, 8) and v113 = (4, 5, 6, 7) are of codimension 22. The corresponding vectors
v111 = (5, 3, 6, 9) and v114 = (3, 6, 6, 6) are of codimension 23 and 21 respectively.

For m=12, (7) gives;

F 12
1 (x0, y0, . . . , z12, w12) = z0z12 + z1z11 + . . .+ y7w5 + y6w6 = 0

F 12
2 (x0, y0, . . . , z12, w12) = z0w12 + z1w13 + . . .+ y20y1y12 + y30y13 = 0

F 12
3 (x0, y0, . . . , z12, w12) = w0w13 + w1w12 + . . .+ y20y1z11 + y30z12 = 0

• We obtain four possible ideals I121, I122, I123 and I123. The corresponding vectors
v122 = (4, 5, 7, 8), v123 = (4, 6, 7, 7) and v124 = (3, 7, 7, 7) are of codimension 24. The
corresponding vector v121 = (5, 4, 7, 9) is of codimension 25.

For m=13, (7) gives;

F 13
1 (x0, y0, . . . , z13, w13) = z0z13 + z1z12 + . . .+ y7w6 + y6w7 = 0

F 13
2 (x0, y0, . . . , z13, w13) = z0w13 + z1w12 + . . .+ y20y1y12 + y30y13 = 0

F 13
3 (x0, y0, . . . , z13, w13) = w0w13 + w1w12 + . . .+ y20y1z12 + y30z13 = 0

• We obtain four possible ideals I131, I132, I133 and I133. The corresponding vectors
v131 = (5, 4, 7, 10) and v132 = (5, 5, 7, 9) are of codimension 26. The corresponding vectors
v133 = (4, 6, 7, 8) and v134 = (4, 7, 7, 7) are of codimension 25.

For m=14, (7) gives;

F 14
1 (x0, y0, . . . , z14, w14) = z0z14 + z1z13 + . . .+ y8w6 + y7w7 = 0

F 14
2 (x0, y0, . . . , z14, w14) = z0w14 + z1w13 + . . .+ y20y1y13 + y30y13 = 0
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F 14
3 (x0, y0, . . . , z14, w14) = w0w14 + w1w13 + . . .+ y20y1z13 + y30z14 = 0

• We obtain four possible ideals I141, I142, I143 and I143. The corresponding vectors
v142 = (5, 5, 8, 10) and v143 = (5, 6, 8, 9) are of codimension 28. The corresponding vectors
v144 = (4, 7, 8, 8) is of codimension 27 and v141 = (6, 4, 8, 11) is of codimension 29.

For m=15, (7) gives;

F 15
1 (x0, y0, . . . , z15, w15) = z0z15 + z1z14 + . . .+ y8w7 + y8w7 = 0

F 15
2 (x0, y0, . . . , z15, w15) = z0w15 + z1w14 + . . .+ y20y1y14 + y30y15 = 0

F 15
3 (x0, y0, . . . , z15, w15) = w0w15 + w1w14 + . . .+ y20y1z14 + y30z15 = 0

• We obtain four possible ideals I151, I152, I153 and I153. The corresponding vectors
v151 = (6, 4, 8, 12) and v152 = (6, 5, 8, 11) are of codimension 30. The corresponding
vectors v153 = (5, 6, 8, 10) and v154 = (5, 7, 8, 9) are of codimension 29.

For m=16, (7) gives;

F 16
1 (x0, y0, . . . , z16, w16) = z0z16 + z1z15 + . . .+ y9w7 + y8w8 = 0

F 16
2 (x0, y0, . . . , z16, w16) = z0w16 + z1w15 + . . .+ y20y1y15 + y30y16 = 0

F 16
3 (x0, y0, . . . , z16, w16) = w0w16 + w1w15 + . . .+ y20y1z15 + y30z16 = 0

• We obtain three possible ideals I161, I162 and I163. The corresponding vectors v161 =
(6, 5, 9, 12), v162 = (6, 6, 9, 11) are of codimension 32. The corresponding vector v163 =
(5, 7, 9, 10) is of codimension 31.

For m=17, (7) gives;

F 17
1 (x0, y0, . . . , z17, w17) = z0z17 + z1z16 + . . .+ y9w8 + y8w9 = 0

F 17
2 (x0, y0, . . . , z17, w17) = z0w17 + z1w16 + . . .+ y20y1y16 + y30y17 = 0

F 17
3 (x0, y0, . . . , z17, w17) = w0w17 + w1w16 + . . .+ y20y1z16 + y30z17 = 0

• We obtain three possible ideals I171, I172 and I173. The corresponding vectors v172 =
(6, 6, 9, 12) and v173 = (6, 7, 9, 11) are of codimension 33. The corresponding vector
v171 = (7, 5, 9, 13) is of codimension 34.

For m=18, (7) gives;

F 18
1 (x0, y0, . . . , z18, w18) = z0z18 + z1z17 + . . .+ y10w8 + y9w9 = 0

F 18
2 (x0, y0, . . . , z18, w18) = z0w18 + z1w17 + . . .+ y20y1y17 + y30y18 = 0

F 18
3 (x0, y0, . . . , z18, w18) = w0w18 + w1w17 + . . .+ y20y1z17 + y30z18 = 0

• We obtain three possible ideals I181, I182 and I183. The corresponding vectors v181 =
(7, 5, 10, 14) and v182 = (7, 6, 10, 13) are of codimension 36. The corresponding vector
v183 = (6, 7, 10, 12) is of codimension 35.
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For m=19, (7) gives;

F 19
1 (x0, y0, . . . , z19, w19) = z0z19 + z1z18 + . . .+ y10w9 + y9w10 = 0

F 19
2 (x0, y0, . . . , z19, w19) = z0w19 + z1w18 + . . .+ y20y1y18 + y30y19 = 0

F 19
3 (x0, y0, . . . , z19, w19) = w0w19 + w1w18 + . . .+ y20y1z18 + y30z19 = 0

• We obtain three possible ideals I191, I192 and I193. The corresponding vectors v191 =
(7, 5, 10, 15), v192 = (7, 6, 10, 14) and v193 = (7, 7, 10, 13) are of codimension 37.
For m=20, (7) gives;

F 20
1 (x0, y0, . . . , z20, w20) = z0z20 + z1z19 + . . .+ y11w9 + y10w10 = 0

F 20
2 (x0, y0, . . . , z20, w20) = z0w20 + z1w19 + . . .+ y20y1y19 + y30y20 = 0

F 20
3 (x0, y0, . . . , z20, w20) = w0w20 + w1w19 + . . .+ y20y1z19 + y30z20 = 0

• We obtain three possible ideals I201, I202 and I203. The corresponding vectors v201 =
(7, 7, 11, 15) and v202 = (8, 6, 11, 15) are of codimension 40. The corresponding vector
v203 = (7, 7, 11, 14) is of codimension 39.

Figure 6.3: Jet graph of isolated E07

Remark 6.4.2. The weigth vectors (0, 1, 1), (1, 2, 2), (2, 2, 3), (3, 2, 4), (3, 3, 4) and
(4, 3, 5) appeared in 0th, 2th, 5th, 6th, 7th and 9th jet schemes respectively as a projection
of v01 = (0, 1, 1, 1) v21 = (1, 2, 2, 2), v51 = (2, 2, 3, 4), v61 = (3, 2, 4, 5), v71 = (3, 3, 4, 5) and
v91 = (4, 3, 5, 7).



7. CONCLUSION

In the literature, the jet schemes of a variety with rational double singularities, a variety
with determinantal singularities or a variety defined by a monomial ideal are studied.
We are here interested in the case where the variety has a rational triple singularities.
This case permits us to study on the jet schemes of non-isolated singularities and also
on the singularities which are not complete intersection. All construction in this thesis
are new. For next step, we will study on all 9 cases of rational triple singularity.

In this work, we focused on 3 types non-isolated hypersurface singularities in C3 and
their isolated surface singularities in C4 which appear as the normalise of the non-
isolated singularities. When we applied the jet scheme construction to these types of
singularities, we investigated a relation between jet graphs of them and their canonical
toric minimal embedded resolution graphs.
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