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ABSTRACT

This thesis focuses on some results regarding the interaction between algebraic ge-

ometry and model theory. It concerns the characterization of definable fields in an

algebraically closed field which is provided by Bruno Poizat. In this work, we present

the basic model theoretic notions with strong theorems, the background about groups

of finite Morley rank and linear algebraic groups. Such a presentation is not only es-

sential to understand this characterization (Poizat, 2001) but also enlightening to see

the aforementioned interaction. Then to conclude that an infinite field K which is de-

finable in an algebraically closed field F is definably isomorphic to F , we will introduce

the Poizat’s idea which provides two different methods depending on characteristic of

F .

Keywords : MODEL THEORY OF ALGEBRAICALLY CLOSED FIELDS, GROUPS

OF FINITE MORLEY RANK



ÖZET

Bu tez cebirsel geometri ve model teorenin etkileşimlerini göz önüne alan bazı sonuçlara

odaklanmıştır. Uğraşı, cebirsel kapalı cisimlerde tanımlanabilir cisimlerin Bruno Poizat

tarafından verilen karakterizasyonudur. Bu çalışmada, modeller teorisinin temel kav-

ramlarını güçlü teoremlerle birlikte sunarken Morley rankı sonlu gruplar ve doğrusal

cebirsel gruplardan hakkında gerekli altyapıyı vermekteyiz. Böyle bir sunum yalnızca

bahsedilen karakterizasyonun (Poizat, 2001) anlaşılması için değil, aynı zamada da

bahsi geçen etkileşimin de aydınlatılması için önemlidir. Ardından cebirsel kapalı bir F

cisminde tanımlanabilir olan her sonsuz K cisminin F ’e tanımlabilir şekilde izomorfik

olduğu sonucuna varmak için Poizat’ın F ’in karakteristiğine bağlı olarak iki yöntem

ortaya koyduğu fikrini tanıtacağız.

Anahtar Kelimeler : CEBİRSEL KAPALI CİSİMLERİN MODELLER KURAMI,

MORLEY RANKI SONLU OLAN GRUPLAR



1 INTRODUCTION

One of the main interests of model theory is to specify the definable sets, that are given

by a formula, in a given structure. In this aspect, the theory of algebraically closed fields

ACF is quite rich. It is well-known that, by quantifier elimination, definable sets in

algebraically closed fields are exactly the constructible sets in algebraic geometric sense.

This is not the only interaction between model theory and algebraic geometry. At that

point, I would like to share the following sentences of Wilfrid Hodges, ” According

to Zil’ber’s programme, if the history of mathematics had been crazily di↵erent and

we had discovered model theory before algebraic geometry, the natural development

of model theory would have forced us to invent algebraic geometry as a canonical

example.” (Rabinovich, 1993)

In this work, we focus on some results regarding the aforementioned interaction. We

present that the definable groups in an algebraically closed fields are algebraic groups.

Furthermore, we give the Bruno Poizat’s proof of the fact that an infinite field K which

is definable in an algebraically closed field F is definably isomorphic to F .

The outline of this work can be given as follows.

In Chapter 2, we give a summarized version of our literature survey.

In Chapter 3, the fundamental model theoretic background is given such as Com-

pactness Theorem and the notions of completeness and model-completeness. Also we

state the fact that ACF eliminates imaginary elements which allows us to identify any

quotient of a model of ACF by a definable equivalance relation with an image of a
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definable function.

In Chapter 4, we introduce two rank notions, namely abstract rank and Morley rank

and see how their equivalance in our setting is beneficial. In addition, we give proofs

of basic properties of those ranks.

In Chapter 5, the groups of finite Morley rank will be our main interest. We deve-

lop some tools to explore the subgroups of finite index of a group of finite Morley

rank G regarding the generic types over G. Moreover, we see that one has the notion

of connectedness of G which is analogous to the connectedness concept in algebraic

geometry.

In Chapter 6, we define new concepts which will be crucial to conclude the characteri-

zation of definable fields in an algebraically closed field and bring the necessary facts

as well.

In Appendix A, B, C, we bring some essential information from the various disciplines

of mathematics such as algebra, linear algebra and linear algebraic groups.

This work is an attempt to explore and clarify the relevant parts of (Poizat, 2001). One

could have difficulties while studying on (Poizat, 2001), so our work may be useful to

comprehend the details.



2 LITERATURE REVIEW

A group of finite Morley Rank is a group G endowed with a rank function that assignes

an integer to a definable subset of G with nice properties. Morley rank was introduced

by Michael Morley in 1965. Alexandre Borovik discovered the concept of ranked groups

(Borovik and Nesin, 1994) and Bruno Poizat showed that a group is ranked if and only

if it is a group of finite Morley rank (Poizat, 2001).

Angus Macintyre showed that a group of finite Morley has DCC on its definable sub-

groups (Macintyre, 1971a). This result yields to the fact that the connected component

of a group of finite Morley rank is a definable subgroup of finite index (Borovik and

Nesin, 1994). Also he proved that an infinite field K is algebraically closed if and if K

is a field of finite Morley rank (Macintyre, 1971b).

Bruno Poizat gives a proof of the fact that every group which is definable in an alge-

braically closed field is definably isomorphic to an algebraic group (Poizat, 2001) and

attributes to Ehud Hrushovski. This proof is inspried by a result of André Weil (Weil,

1948), (Weil, 1955) and then Bruno Poizat named this theorem as Weil - Hrushovski.

Bruno Poizat proves that G/Z(G) is definably isomorphic to a linear group for any

connected, definable group G in an algebraically closed field K with center Z(G) by

extending a result of Maxwell Rosenlicht which can be found (Rosenlicht, 1956). More-

over, he proves that an infinite field K which is definable in a pure algebraically closed

field F is definably isomorphic to F in 1987 (Poizat, 2001).



3 PRELIMINARIES

This chapter encloses basic but required model theoretic concepts with relevant theo-

rems. In the first section, there is a brief introduction to fundamental concepts with

some examples.

3.1 Basic Concepts

Definition 3.1. A theory T has quantifier elimination if for every formula ', there

is a quantifier-free formula  such that

T |= '$  .

That is equivalent to say that '$  is satisfied in every model of T .

Theorem 3.2. ACF admits quantifier elimination.

Definition 3.3. A theory T is called strongly minimal if for any model M of T,

every definable subset of M is either finite or cofinite where M is the universe of M.

Example 3.4. ACF is a strongly minimal theory. Indeed, it is a consequence of

quantifier elimination on ACF . Let K be an algebraically closed field with a definable

subset X of Kn. Then, by quantifier elimination, X is a finite Boolean combination

of Zariski closed sets. It follows from the fact that Zariski closed sets are given by the

zeros of the polynomials and polynomials have finitely many roots.

Theorem 3.5. (Compactness Theorem) A theory T is satisfiable if and only if

every finite subset of T is satisfiable.
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Definition 3.6. Let M and N be two L-structures where M and N are their universes

respectively. An injection j : M ! N is called an L-embedding from M to N , if the

interpretation of all of the symbols of L is preserved under j.

Definition 3.7. Suppose that M and N be two L-structures. An L-embedding

j : M ! N is called elementary if

M |= '(a
1

, . . . , an) , N |= '(j(a
1

), . . . , j(an))

for all L-formulas and each a
1

, . . . , an 2 M.

If there is an elementary inclusion map from M to N , then M is said to be elemen-

tary substructure of N and it is denoted by M � N .

Definition 3.8. Let M be an L-structure and LM be the language where each element

of M is added to L as a constant symbol. The elementary diagram of M is defined

as

{'(m
1

, . . . ,mn) : M |= '(m
1

, . . . ,mn),'(x̄) is an L� formula and n 2 N}.

We will denote it by Diagel(M).

Proposition 3.9. If N |= Diagel(M), then there is an elementary embedding of M
into N . In other words N is an elementary extension of M

Definition 3.10. Let M = (M ; . . .) be an L-structure for fixed language L with

A ✓ M .

An element a 2 M is called definable over A, if there is an element b̄ 2 A and a L-

formula '(u, b̄) such that the set of x in M that satisfies '(x, b̄) is {a}. The definable

closure of A is then defined as

dcl(A) = {x 2 M : x is definable over A}

An element a 2 M is called algebraic over A, if there is an element b̄ 2 A and a

L-formula '(u, b̄) such that the set of x in M that satisfies '(u, b̄) is finite and '(a, b̄)

holds. Then algebraic closure of A is defined as

acl(A) = {x 2 M : x is algebraic over A}.

Definition 3.11. A theory T is model-complete if every embedding of any model of

T is elementary.
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Definition 3.12. A theory T is said to be complete, for any sentence ' from its

language, if either T |= ' or T |= ¬'.

Example 3.13. Let M be an L-structure. Then the full theory

Th(M) = {� : M |= � where � is an L-sentence}

is complete.

Example 3.14. The following examples show that there is no implication between the

notions of model-complete and complete. In other words, model-complete theories do

not have to be complete or vice versa.

• ACF is a model-complete but not a complete theory. Model-completeness is a

consequence of quantifier elimination. To see that ACF is not complete, consider

the characteristic of an arbitrary algebraically closed field. Since neither of the

sentence that states the characteristic of this field nor its negation needs to be a

logical consequence of ACF , there is at least one sentence ' in the language of

rings such that neither T |= ' nor T |= ¬'.

• Consider the theory of dense linear orders with maximal and minimal elements,

call this theory T . One can see that T is complete by using a back and forth

argument. Let ([0, 1];<), ([0, 2];<) be two models of T . When the latter model

satisfies the formula that states "there exists x, x > 1", the first one does not. So

the inclusion map is not elemantary. Thus T is not model-complete.

Definition 3.15. Let T be a theory with models of size  where  is an infinite cardinal.

Then T is said to be -categorical if any two models of T of cardinality of  are

isomorphic.

Example 3.16. (Marker, 2000) Let  be an uncountable cardinal. Then the theory

of algebraically closed fields of characteristic p where p is zero or a prime number is

-categorical.

Theorem 3.17. (Categoricity Theorem) If T is -categorical for some uncountable

cardinal , then T is �-categorical for every uncountable cardinal �.

Theorem 3.18. (Łoś -Vaught Test) Let T be a satisfiable, -categorical, for some

infinite cardinal  > |L|, L-theory with no finite models. Then T is complete.

Theorem 3.19. ACFp is complete, where p is either zero or a prime number.
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Proof Let F and K be two algebraically closed fields of the characteristic p. Then F
and K satisfy ACFp where F = (F ;Lring) and K = (K;Lring). Let ' be a formula

from Lring. Since ACF has quantifier elimination, we can find a quantifier free formula

 that is equivalent to '. By using the fact that F and K are extensions of either Q
or Fp, we have

F |=  , Q |=  , K |=  

or

F |=  , Fp |=  , K |=  

depending on the characteristic. Thus,

F |= ', F |=  , K |=  , K |= '.

That means F and K are elemantarily equivalent. Since ACFp is -categorical for all

uncountable cardinals  and any algebraically closed field has infinitely many elements,

by using Łoś -Vaught Test we can conclude that ACFp is complete.

⇤

Definition 3.20. Let M be an L-structure with universe M . Let A ✓ M . An n-type

p(x̄) = p of M over A is a set of LA-formulae in n free variables such that for each

finite subset of p
0

(x̄) of p(x̄), there is a tuple (c
1

, . . . , cn) 2 Mn with M |= p
0

(c
1

, . . . , cn).

An n-type p over A is called complete if for any LA-formula � either � 2 p or ¬� 2 p

holds. The set of complete n-types over A is denoted by SM
n (A).

A complete n-type can be defined by using a tuple from M . Let ā = (a
1

, . . . , an) and

A ✓ M , then the complete type of ā̄āa over AAA , tp(ā/A) = { (x̄) 2 LA : M |=  (ā)}.

Let � be an LA-formula in n-free variables. One can construct a set by collecting the

complete types from Sn(A) that contains �, define

[�] = {p 2 Sn(A) : � 2 p}.

One can see that there is a topology on Sn(A) which is generated by the sets [�] as

principal open sets. This topology is called Stone Topology.

A type p 2 Sn(A) is called isolated, if the singleton {p} is an open subset of Sn(A).
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Proposition 3.21. (Marker, 2000) Let p 2 Sn(A). Then the following are equivalent.

1. p is isolated.

2. {p} = [�] for some LA-formula �.

3. There is an LA-formula � 2 p such that , for all LA-formulas  ,  2 p if and

only if

ThA(M) |= �!  .

Example 3.22. Consider the set of complex numbers C in the field structure

C = (C; 0, 1,+, ·). Since
p
2 is algebraic over Q with minimal polynomial x2 � 2 over

Q and ⇡ is transcendental over Q, we have the following types ;

tp(
p
2/;) = {� : C |= 8x, (x2 � 2 = 0 ! �(x))}.

tp(⇡/;) = {p(x) 6= 0 : p(x) 2 Z[X] \ {0}} [ {logical consequences}.

Hence, any transcendental element of C over Q has the same type over ;. We will

generalize this idea to any algebraically closed field in the next chapters.

Definition 3.23. A type p 2 Sn(A) is called definable over B if for any L-formula

 (x̄, ȳ), there exists an LB-formula d p (ȳ) such that

 (x̄, ā) 2 p , d p (ā) holds

for each ā 2 A.

As a final notion of this section, we will define a saturated model.

Definition 3.24. Let  be an infinite cardinal. A structure M is called -saturated,

if for any A ✓ M with |A| < , for each type p 2 Sn(A), there is c̄ 2 Mn such that

M |= �(c̄) for all � 2 p.

Example 3.25. (Marker, 2000) ACFp has a countable saturated model which is the

algebraically closed field of characteristic p of transcendence degree @
0

.
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3.2 Elimination of Imaginaries

Fix a complete theory T which is constructed by L-sentences where L is a countable

language. We will work with the monster model of T . Roughly speaking, monster model

of T is a saturated model of T with very big cardinality, say . The existence of such

a cardinality is guaranteed by ZFC and it yields to a model theoretic fact that states

there is a saturated model of size  (Marker, 2000). Let M be a monster model of T .

Meq as an Leq-structure is defined as follows ; for each ;�definable equivalance relation

E(x
1

, . . . , xn, y1, . . . , yn)

on Mn, there will be a new sort Mn/E that is added to M and a new function symbol

⇡E that is added to L such that

⇡E : Mn ! Mn/E

is the projection map. The elements which belong to those new sortes are called ima-

ginary elements. Since every model M of T can be embedded into M elementarily

, we can define Meq by considering an elementary substructure of Meq. The set of all

definable subsets of M eq with parameters will be denoted by Def(Meq).

Our main interest is about eliminating those new elements. A theory admits elimi-

nation of imaginaries if for every model M of the theory with universe M , for

any A-definable equivalence relation E on Mn, where A ✓ M , for some l, there is an

A-definable function f : Mn ! M l such that

x̄Eȳ if and only if f(x̄) = f(ȳ)

This allows us to identify any quotient Mn/E with an image of a definable (with

parameters) function where E is a definable (with parameters) equivalance relation on

Mn.

Theorem 3.26. ACF admits elimination of imaginaries

Elimination of imaginaries on algebraically closed fields allows us to play with equiva-

lance relations without disturbing definability. We will use this facility a lot.

Recall that a field K is called perfect if char(K) = 0 or if char(K) = p and the

Frobenius map x 7! xp is an automorphism of K. A perfect closure of a field K is the
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smallest perfect field containing K. In char p, define

Kins = {x 2 (K)alg : xpn 2 k for some n}.

Since the Frobenius map x 7! xp is an injective endomorphism of K, Kins is the perfect

closure of K.

Theorem 3.27. (Bouscaren, 1998) Suppose F is an algebraically closed field. Let k be

a subfield generated by A where A ✓ F . For a 2 F ,

a 2 dcl(A) if and only if a 2 kins.

Proof

Let a 2 dcl(A) be arbitrary. Then a 2 dcl(kins) because A ✓ k ✓ kins. Let P (X)

be the minimal polynomial of a over kins. Then tp(a/kins) is isolated by the formula

P (X) = 0 since any polynomial from kins[X] that vanishes at a is a multiple of P (X).

If degP > 1, then there must be more than one root of P (X) because of the fact that

kins is perfect. On the other hand a 2 dcl(kins) implies that there could be only one

root of P (X). So we have degP = 1, hence a 2 kins.

Suppose a 2 kins. Then ap
n 2 k for some n. In other words apn = b for some b 2 k. Let

'(x) be a formula with parameter b that states

xpn = b.

Since Frobenius is an injective map, the set of realizations of '(x) is {a}. Then

a 2 dcl(k), equivalently a 2 dcl(A).

⇤

Theorem 3.28. Assume that F is an algebraically closed field with a subfield k. Let

X ✓ F n be k-definable and f : X ! F be a k-definable function. Then X can be

written as X
1

[X
2

[ . . . [Xm, for some m, where Xi’s are k-definable sets such that

for each i, there is some non-negative j(i) such that f � Xi = (Fr�j(i) � fi) � Xi for

some rational fi.

Proof Consider the set of sentences
X

(v
1

, . . . , vn) = {f(x̄) 6= (Fr�t�g)(x̄) : g(x̄) 2 k(x̄), t 2 N\{0}}[{v̄ 2 X}[Diagel(F ).
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We aim to show that
P

is not a satisfiable theory. To obtain a contradiction, suppose

that there exists a model K of
P

. In other words, K |= Diagel(F ) with b
1

, . . . , bn such

that K |=
P

(b̄). K |= Diagel(F ) implies that K is an elementary extension of F by

Proposition 3.9. Thus we are allowed to extend f to

fK : XK �! K.

As mentioned above, each element of (k(b̄))ins is in the form of g(b̄)1/p
n for some

g(x̄) 2 k(x̄) and for some n 2 N. So K |=
P

(b̄) implies that f(b̄) /2 (k(b̄))ins. By above

theorem we have f(b̄) /2 dcl(k(b̄)). This contradicts the fact that f is k-definable. So
P

is not satisfiable. Thus, by Compactness Theorem 3.5, there exist f
1

, . . . , fn 2 k(x̄)

and j(1), . . . , j(m) such that for all x̄ 2 X

f(x̄) = Fr�j(i) � fi

for some i 2 N. Let

Xi = {x̄ : f(x̄) = Fr�j(i) � fi}.

Then Xi is definable for each i.

⇤



4 TWO RANK NOTIONS

In this chapter, we will introduce two ways of measuring in model theoretic sense.

Throughout this section definable means definable with parameters.

Definition 4.1. A function rk : Def(Meq) ! N is called rank on M eq if the following

axiom are satisfied for all A,B 2 Def(Meq).

1. (Monotonicity of rank) rk(A) � n + 1 if and only if there are infinitely many

pairwise disjoint, non-empty, definable subsets of A each of rank at least n.

2. (Definability of rank) If f : A ! B is a definable function, then the set

{b 2 B : rk(f�1(b) = n} is definable for each n.

3. (Additivity of rank) If f : A ! B is a definable surjection and if for all b 2 B,

rk(f�1(b)) = n, then rk(A) = rk(B) + n.

4. (Elimination of infinite quantifiers) For any definable function f : A ! B, there

is an integer m such that for any b 2 B, the pre-image of b under f is infinite

when it contains at least m elements.

Proposition 4.2. For any sets A and B from M eq, we have the following properties

of rank function.

1. A is finite if and only if rk(A) = 0.

2. A ✓ B implies that rk(A)  rk(B).

3. rk(A [B) = max{rk(A), rk(B)}.
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4. rk(An) = n.rk(A) for any n.

5. If there is a definable injection f between A and B, then rk(A)  rk(B). In

particular, rk(A) = rk(B) if f is a definable bijection.

Proof

1. Suppose that A is finite and rk(A) � 1. By the axiom of monotonicity there are

infinitely many pairwise disjoint, non-empty, definable subsets of A each of rank

at least 0, hence A contains infinitely many elements. Since A is finite, this is not

possible.

Conversely assume that rk(A) = 0 and A is infinite. Consider the definable family

of subsets of A which consists of the singletons {ai}, where ai 2 A. By above

paragraph, we have rk({ai}) = 0, hence there is an infinite family of pairwise

disjoint, non-empty, definable subsets of A each of rank at least 0. Thus rk(A) � 1

and it contradicts the fact that rk(A) = 0.

2. Suppose rk(A) = n+1, then by the axiom of monotonicity, A has infinitely many

disjoint definable subsets Ai of rank at least n. Since A ✓ B, for each i, Ai ✓ B.

By applying the same axiom, one can conclude that rk(B) � n+1. If rk(A) = 0,

rk(A)  rk(B) holds trivially.

3. Let C = A [ B. By previous part, we know that rk(C) � max{rk(A), rk(B)}.
Assume rk(C) = n+ 1. Let Ci be an infinite family of disjoint definable subsets

of C each of rank n. Now consider the infinite families A \ Ci and B \ Ci. For

each i, at least one of the following rk(A\Ci) = n, rk(B \Ci) = n holds, hence

rk(A) � n+ 1, rk(B) � n+ 1 or both. Thus max{rk(A), rk(B)} � rk(C).

4. We will see that the equation holds by proceeding induction on n. n = 0 is the

trivial case since A0 = {;}. Suppose rk(An) = n.rk(A) for some n. Consider the

definable surjection pr
1

: An+1 ! A. Then for each a 2 A, pr�1

1

(a) = An, hence

rk(pr�1

1

(a)) = n.rk(A). Then, rk(An+1) = rk(A) + n.rk(A) = (n + 1).rk(A) by

axiom of additivity.

5. If A is a finite set, then the equality follows. If A is infinite, we will proceed

by induction on rk(A). Suppose that rk(A) = n implies that rk(A)  rk(B) for

some n. Now assume that rk(A) = n+1. Let (Ai)i be an infinite family of pairwise

disjoint definable subsets of A of rank n. Then f(Ai)i gives an infinite family of

pairwise disjoint definable subsets of B, since f is an injection. By induction
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hypotesis, each of element of this family is of rank n. Then, by monotonicity of

rank, rk(B) � n+ 1 = rk(A).

⇤

Remark 4.3. One can ease the conditions that we introduced in the Axiom of Mo-

notonicity of Rank. To say that rk(A) � n + 1 it is enough to have infinitely many

definable subsets Ai of A such that rk(Ai) = n and rk(Ai\Aj) < n for any Ai 6= Aj. It

can be seen that by considering infinitely many pairwise disjoint, definable subsets Bi

of A, Bi := Ai \ ((Ai \A
0

) [ . . . [ (Ai \Ai�1

) with B
0

= A
0

. Then, by Proposition 4.2

n = rk(Ai) = max{rk(Bi), rk((Ai\A
0

)[ . . .[ (Ai\Ai�1

))}. It follows that rk(Bi) = n

since rk(Ai \ Aj) < n for all j < i.

Definition 4.4. Assume that M is an L-structure and � is an LM-formula.The rela-

tion RMM(�) � ↵, for some ordinal ↵, is defined inductively as follows

1. RMM(�) � 0 if and only if �(M) is non-empty.

2. RMM(�) � ↵ + 1 if and only if there are LM-formulae  i such that  
1

(M),

 
2

(M), . . . is an infinite family of pairwise disjoint subsets of �(M) and

RMM( i) � ↵

for all i.

3. RMM(�) � ↵ if and only RMM(�) � �, for all � < ↵, where ↵ is a limit

ordinal.

Then we let RMM(�) = ↵ if RMM(�) � ↵ but RMM(�) ↵ ↵ + 1. By the convention

if �(M) = ;, then RMM(�) = �1.

One can check that RMM(�) = RMN (�) where M and N are @
0

-saturated so that

M � N by induction on RMM(�).

We want to define Morley rank of an LM-formula � which is independent from the

model M. Following this, we let Morley rank of �, RM(�) = RMN (�) where N
is an @

0

-saturated elementary extension of M. Consequently Morley rank is preserved

under elementary extension. By the convention if �(M) = ;, then RM(�) = �1.

The Morley rank of a set X which is defined by a LM-formula �, RM(X) = RM(�).
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Let p be a complete type over A ✓ M . Then the Morley rank of p is defined as

RM(p) = min{RM(�) : � 2 p}.

Our main interest will be groups which are definable in an algebraically closed field. To

this end, we will introduce some facts about Morley rank in algebraically closed fields.

Example 4.5. The Morley rank of an algebraically closed field F is 1. Since F is

infinite, RM(F ) � 1. In Example 3.4 we stated that ACF is strongly minimal, hence

for any definable subset X of F is either finite or cofinite. So it is not possible to find

two infinite definable subsets of F which are disjoint. That means RM(F ) = 1.

Theorem 4.6. Let F be an algebraically closed field. For any set X which is definable

in F , RM(X) is equal to Krull dimension of Zariski closure of X.



5 GROUPS OF FINITE MORLEY RANK

Theorem 5.1. Let G be a group of finite Morley rank. Morley rank is the only rank

that satisfies the conditions in Definition 4.1.

Bruno Poizat proved the above theorem in (Poizat, 2001). Hence we are allowed to

replace rk(A) with RM(A) for any definable A in a group G of finite Morley rank.

Theorem 5.2. (Marker, 2000) Types over a group of finite Morley rank are definable.

Proposition 5.3. [Lascar’s equality] Let G be a group of finite Morley rank with a

definable subgroup H  G. Then RM(G) = RM(G/H) +RM(H).

Proof The left coset space G/H = {ḡ = g.H : g 2 G} is definable, since the map

 g(h) := g.h is definable for all g 2 G. On the other hand  g(h) is a bijection, hence

RM(gH) = RM(H) by Proposition 4.2. Consider the canonical surjective homomor-

phism

' : G �! G/H

g 7! ḡ = gH

For arbitrary ḡ 2 G/H, '�1(ḡ) = gH. Then RM('�1(ḡ)) = RM(gH) = RM(H).

Hence, by additivity of rank, RM(G) = RM(G/H) +RM(H).

⇤
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Lemma 5.4. Let G be a group of finite Morley rank and H and K be definable sub-

groups of G with K  H. Then

1. [H : K] = 1 if and only if RM(K) < RM(H).

2. [H : K] < 1 if and only if RM(K) = RM(H).

(Borovik and Nesin, 1994)

Proof Let n be the Morley rank of K. For any h 2 H, consider the definable bijection

'h : K �! hK

k 7! hk

Recall that every left coset of K in H has rank n.

If [H : K] = 1, then there are infinitely many, disjoint, definable subsets of H each

of rank n, namely the left cosets. By the axiom of monotonicity, RM(H) � n+ 1, i.e.

RM(K) < RM(H).

If [H : K] < 1, H can be written as a disjoint union of left cosets of K in H. Then

by Proposition 4.2 RM(H) = max{RM(hK) : h 2 H} = n.

Now assume RM(K) = RM(H). If [H : K] = 1 holds, then {hK : h 2 K} is

an infinite family of disjoint, definable subsets of H each of rank n. This implies

RM(H) � n + 1 which is impossible by the assumption RM(K) = RM(H). Hence

[H : K] < 1. Since K  H, the sufficient condition of the first statement has been

proven also. ⇤

It is said that a group G satisfies descending chain condition for definable sub-

groups if any descending chain of definable subgroups Hi of G,

H
0

> H
1

> . . . > Hn > . . .

becomes stationary at a finite step, that is, there is an n 2 N such that Hm = Hn for

all n  m. We abrreviate descending chain condition as DCC.

Theorem 5.5. [Macintyre] A group of finite Morley rank G satisfies the descending

chain condition for its definable subgroups.

Proof Let (Hi)i be a descending chain of definable subgroups of G. Then (RM(Hi))i

is a decreasing sequence by Proposition 4.2. This sequence needs to stabilize after
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finite terms. i.e. there is an n such that, for all m � n, RM(Hn) = RM(Hm), say

RM(Hn) = k.

Now suppose that (Hi)i does not become stationary. Then we have Hn = tr
j=1

hj.Hn+1

for non-identity hj 2 Hn since RM(Hn) = RM(Hn+1

) implies that [Hn : Hn+1

] < 1
by Lemma 5.4. By a similar argument, for any m � n, Hm = tt

j=1

h̃j.Hm+1

for some

non-identity h̃j 2 Hm.

Since the left cosets of Hm+1

compose an infinite family of disjoint definable subsets in

Him for any m � n, we have

Hn = tn.Hn+1

t tn+1

.Hn+2

t . . . t tn+s.Hn+s+1

t . . .

for some tn+s 2 Hn+s and RM(tn+s.Hn+s+1

) = k.

Then by the axiom of monotonicity RM(Hn) = k + 1. This contradicts the fact that

RM(Hn) = k. Hence, (Hi)i becomes stationary at a finite step.

⇤

5.1 Connected Groups

Definition 5.6. A group G is connected if it has no definable proper subgroup of

finite index.

Assume that G is a group of finite Morley rank. The connected component of G is

defined as the intersection of all definable subgroups of finite index of G and denoted

by Go.

Go =
\

[G:H]<1

H

where H’s are definable subgroups of G.

Since G has DCC on its definable subgroups, Go becomes the intersection of finitely

many definable subgroups of finite index of G.

Go =
n\

i=1

Hi

where each Hi is a definable subgroup of G with [G : Hi] < 1.
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Hence Go is the smallest definable subgroup of G that has finite index in G. Note that

Go is normal subgroup in G.

Remark 5.7. According to Definition 5.6, a group G of finite Morley rank is called

connected if and only if Go = G.

It can be seen that a finite group G is connected if and only if G is trivial.

Proposition 5.8. Let H be a definable, normal subgroup of a group G of finite Morley

rank. Assume that H and G/H are connected. Then G is connected. (Borovik and

Nesin, 1994, Exercise)

Proof Let G be a group of finite Morley rank with a definable, normal subgroup H

such that H and G/H are connected groups. Recall that G/H is a group of finite

Morley rank by Proposition 5.3. Since a group of finite Morley rank satisfies the DCC

on its definable subgroups, one can find A
1

, . . . , Am such that

(G/H)o =
m\

i=1

Ai

where each Ai is a definable subgroup of G/H with [G/H : Ai] < 1.

Note that each Ai is in the form of Bi/H for some definable subgroup Bi of G with

H ✓ Bi. Thus

(G/H)o =
m\

i=1

Bi/H.

Consider the canonical homomorphism ' : G ! G/H with '�1(Bi/H) = Bi. Since

[G/H : Ai] = [G/H : Bi/H] is finite, [G : Bi] is finite. Thus Go ✓ Bi for all i. So

Go ✓ '�1(Bi/H) for all i.

Apply ' to both sides to get

'(Go) ✓ Bi/H

for all i. Then we have

'(Go) ✓
m\

i=1

Bi/H = (G/H)o

Since '(Go) = GoH/H, we have GoH/H ✓ (G/H)o. This yields to GoH/H = (G/H)o

by using the fact that image of a definable subgroup of finite index of G is a definable

subgroup of finite index of G/H under '.
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G/H is connected means that (G/H)o = G/H and then we get GoH/H = G/H

by above observations. On the other hand Ho ✓ Go implies that H ✓ Go by the

connectedness of H. Then we have

G/H = GoH/H = Go/H.

Hence Go = G, in other words G is connected.

⇤

Corollary 5.9. A semidirect product of two connected groups is a connected group.

Example 5.10. The group of linear transformations from a field K of finite Morley

rank to itself, namely A↵(K) is connected. We will prove that the additive and multipli-

cative subgroups of K are connected in 6.1. Note that A↵(K) is isomorphic to semidirect

product of K+ by K⇤. Then by Corollary 6.3, A↵(K) is connected.

5.2 Generic Types

We introduced the notion of type in Chapter 3. Now we will examine a special kind of

types, namely generic types, with more details. Throughout this section, we will work

with G = (G; ·, 1, . . .) where G is a group of finite Morley rank and G is a monster model

with G � G. One should be careful about an abuse of notation, both of the universe

and structure of the monster model of G will be denoted by G. It is not required that

G is a pure group structure, that is, there may be extra symbols.

Definition 5.11. Let p 2 S
1

(G). Then

• The complete type p is called generic if RM(p) = RM(G)

• An element a of G is called generic over G if RM(tp(a/G)) = RM(G).

Proposition 5.12. Let G be a group of finite Morley rank. For any definable subset

X of G, there are generic types over X.

Proof Suppose that X be a definable subset of G. Let �(x) be the formula that defines

X and n be the Morley rank of �(x) , i.e. RM(�) = RM(X) = n. When n = 0, type

of an each element of X is generic, hence assume n 6= 0. We may assume that � is

irreducible, that is, there is no partition of � by finitely many formula of Morley rank
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n. ( If � =  
1

^ . . . ^  m such that RM( i) = n where m is the biggest number for

such a partition, we are dealing with one of  i’s ) Now we will find a complete type

p 2 S
1

(G) such that � 2 p and RM(p) = RM(�) = n.

Let p = { : RM(¬ ^ �) < n}. Obviously � 2 p. We will see that p is a complete

type.

Let  
1

, . . . , m 2 p. To show that  
1

^ . . . ^  m is satisfiable, we will obtain that

RM( 
1

^ . . . ^  m) 6= 0. By Proposition 4.2, we have the following equation.

RM(�) = max{RM(� ^ ( 
1

^ . . . ^  m)), RM(� ^ ¬( 
1

^ . . . ^  m))}.

By considering RM(� ^ ¬( 
1

^ . . . ^  m)) = RM(� ^ (¬ 
1

_ . . . _ ¬ m)), we get

RM(�) = max{RM(� ^ ( 
1

^ . . . ^  m)), RM((� ^ ¬ 
1

) _ . . . _ (� ^ ¬ m))}.

Recall that  i 2 p, hence RM(� ^ ¬ m) < n for each i. Since

RM((� ^ ¬ 
1

) _ . . . _ (� ^ ¬ m)) = max{RM((� ^ ¬ 
1

), . . . , RM(� ^ ¬ m))},

we have RM((�^¬ 
1

)_. . ._(�^¬ m)) < n. It follows that RM(�^( 
1

^. . .^ m)) = n,

since RM(�) = n

Let  be  
1

^ . . . ^  m. In order to show that  is consistent, consider the following

equation

RM(�) = max{RM(� ^  ), RM(� ^ ¬ )}

Since  2 p, RM(� ^ ¬ ) < n. Hence RM( ) � RM(� ^  ) = RM(�) = n. Then  

is satisfiable.

Let ✓ be a formula. Assume that ✓ /2 p. We will show that ¬✓ 2 p. Since ✓ /2 p,

RM(� ^ ¬✓) � n. Then RM(� ^ ¬✓) = n. So RM(� ^ ✓) < n by irreducibility of �.

Hence ¬✓ 2 p.

⇤

Proposition 5.13. There are only finitely many generic types over G.

Proof Let RM(G) = n and � define G. Suppose there are infinitely many generic

types pi’s over G. For each i, there is an irreducible formula  i such that pi 2 [ i] and

RM( i) = n. We will see that  i’s are distinct. Let pi, pj be two distinct generic types.
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To get a contradiction, assume that [ i] = [ j]. Then there is a formula �ij where

�ij 2 pi \ pj. Since pj is a complete type, ¬�ij 2 pj. Then we have RM( i ^ �ij) = n,

RM( i ^¬�ij) = n because  i ^ �ij 2 pi and  i ^¬�ij 2 pj. This contradicts with the

fact that  i is irreducible.

Now consider ( i ^  j)(G) 2  i(G). Since  i is irreducible, RM( i ^  j) < n for any

i 6= j.

We get an infinite family of subsets  
1

(G),  
2

(G), . . . of �(G) such that RM( i^ j) < n

and RM( i) = n for all i. By Remark 4.3, we have RM(G) > n. This contradicts with

the fact that RM(G) = n, hence there are only finitely many generics.

⇤

Definition 5.14. Suppose a, b 2 G. Let Gb be an elementary extension of G that

contains b with universe Gb. We say that a is independent from b over G if

RM(tp(a/G)) = RM(tp(a/Gb)).

There are lots of nice properties of this independence notion. We will introduce the one

that we will use. For a detailed explanation, one can check (Marker, 2000).

Theorem 5.15. (Marker, 2000) Independence has a symmetry property, that is, a is

independent from b over G implies that b is independent from a over G.

Proposition 5.16. Let p be a generic type over G. There are two independent reali-

zations of p over G.

Proof Let a 2 G be a realization of p. Then we have the following identities

RM(tp(a/G)) = RM(p) = RM(G).

Let � 2 p be such that RM(p) = RM(�). Suppose that  is an irreducible LGa-formula

such that  (G) ✓ �(G) of Morley rank n.

Let q be the set of LGa-formulae so that, for any ✓ 2 q, RM(✓ ^  ) = n. For any

LGa-formula ', one has

RM( ) = max{RM( ^ '), RM( ^ ¬')}.

If ' /2 q, then RM( ^ ') < n. Hence RM( ^ ¬') = n by above equality.
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Let '
1

,'
2

2 q. Then RM('
1

^ ) = RM('
2

^ ) = n. Since  is irreducible of Morley

rank n, RM('
1

^  ) = RM('
2

^  ) = n implies that RM( ^ ¬'i) < n for i = 1, 2.

Note that

RM( ^ ¬(�
1

^ �
2

)) = RM( ^ (¬�
1

_ ¬�
2

)) = RM(( ^ ¬'
1

) _ ( ^ ¬'
2

))

Since RM( ^ ¬'i) < n for i = 1, 2, then

RM(( ^ ¬'
1

) _ ( ^ ¬'
2

)) = max{RM( ^ ¬'
1

), RM( ^ ¬'
2

)} < n.

But then RM( ) = max{RM( ^ (�
1

^ �
2

), RM( ^ ¬(�
1

^ �
2

))} implies that

RM( ^ (�
1

^ �
2

) = n.

In other words q is finitely realizable.

We have seen that q is a type of rank n and p ✓ q. Now let b be a realization of q.

Then RM(tp(b/Ga)) = RM(q) = n. Also b is a realization of p because p ✓ q. Hence,

RM(tp(b/G)) = RM(p) = n. It follows that

RM(tp(b/Ga)) = RM(tp(b/G)).

That means b independent from a over G. Since indepence over G is symmetric by

Theorem 5.15 , we also know that a independent from b over G. Hence a and b are

independent realizations of p.

⇤

Proposition 5.17. Let tp(b/G) be a generic type and a 2 G. Then tp(ab/G) and

tp(b�1/G) are generic types.

Proof Consider the definable bijections f : G ! G where f(x) = ax and

f 0 : G ! G where f 0(x) = x�1. Then f(b) = ab and f(b) = b�1. Hence, by Pro-

position 4.2, RM(tp(ab/G)) = RM(tp(b/G)) and RM(tp(b�1/G)) = RM(tp(b/G)).

Thus tp(ab/G) and tp(b�1/G) are generic. ⇤
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Proposition 5.18. Any element of G is a product of two generics.

Proof Pick g 2 G. Let a 2 G be generic. Consider the definable bijection f 0 : G ! G
where f(x) = gx�1. Then, by Proposition 4.2, f(a) = ga�1 is generic over G. By letting

f(a) = b, we have g = a.b.

⇤

5.2.1 The action on one types

We will see that G acts on its complete one types S
1

(G). Define

� : G⇥ S
1

(G) �! S
1

(G)

(g, p) 7! gp

where gp = {'(x) : '(gx) 2 p}.

Consider (g.h)p = {'(x) : '(g.h.x) 2 p}. We have

'(x) 2 (g.h)p , '(gx) 2 hp , '(x) 2 g(hp)

Hence (g.h)p = g(hp). Also 1p = {'(x) : '(1.x) 2 p}, hence 1p = p. So � defines a left

action of G on its complete 1-types S
1

(G).

Since we have an action �, we may consider the stabilizer of a complete 1-type under

this action. Let

stabp := {g 2 G : gp = p}.

Theorem 5.19. stabp is a definable subgroup of G for any p 2 S
1

(G).

Proof Let p 2 S
1

(G). Define

stab'p = {g 2 G : '(hx) 2 p , '(hgx) 2 p for all h 2 G}

where ' 2 p.
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Let ' 2 p. Now we will observe that stab'p is a definable subgroup of G. Let  (y, x) be

the formula '(yx). Since types over a group of finite Morley rank are definable, there

is a formula d p (y) with parameters from G such that

 (g, x) 2 p , G |= d p (g)

.Then stab'p = {g 2 G : d p (h) $ d p (hg)} is a definable set in G.

Let g, g0 be two elements from stab'p . Then

'(hx) 2 p , '(g0hx) 2 p , '(g0.g�1hx) 2 p

for all h 2 G, hence g0.g�1 2 stab'p . In other words, stab'p is a subgroup of G.

Now we will show that

stabp =
\

'2p
stab'p .

Let g 2 stabp. Then gp = p, that is,

'(x) 2 p , '(gx) 2 p

for any ' 2 p. Let h 2 G. By replacing x by hx, we have

'(hx) 2 p , '(ghx) 2 p

for each ' 2 p. Thus g 2 stab'p .

Let g 2
T
'2p stab

'
p . Then g 2 stab'p for all ' 2 p. In other words, for each ' 2 p

'(hx) 2 p , '(hgx) 2 p.

By letting h = 1G, we get

'(x) 2 p , '(gx) 2 p

for all ' 2 p. Thus g 2 stabp.

Thus, stabp is an intersection of definable subgroups of G. By Theorem 5.5, there are

finitely many formulas 'i in p such that stabp =
Tn

i=1

'i. Therefore stabp is a definable

subgroups of G. ⇤
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Proposition 5.20. Let p 2 S
1

(G). Then stabp is a subgroup of Go.

Proof We stated that Go is a definable subgroup of G. So it is enough to show that

Go contains stabp as a set. Let  (x) be the formula that defines Go. Let G0 be an

elementary extension of G containing a realization a of p. Then a 2 h.(G0)o for some

h, hence h�1.a 2 (G0)o. So  (h�1.a) holds, in other words,  (h�1.x) 2 p.

Let g 2 stabp. Then  (h�1.gx) 2 p. Consider an elementary extension G00 of G that

contains a realization b of p. Since  (x) defines Go and G00 is an elemantary extension of

G, we have h�1.g.b 2 (G00)o and h�1.b 2 (G00)o. So (h�1.b)�1.h�1.g.b = b�1.g.b 2 (G00)o.

Since (G00)o is normal, we have g 2 (G00)o. Then G00 |=  (g) holds implies that G |=  (g),

hence g 2 Go

⇤

Those results hold for all complete 1-types over G but we will be interested in generic

types which are enriched by strong properties.

Remark 5.21. Let a 2 G. Recall that Ga is an elementary extension of G containing

a with universe Ga. We noted that the Morley rank of a formula is preserved under an

elementary extension. Since the formula "v = v" defines the universe, for any a 2 G,

RM(G) = RM(Ga).

Suppose that G is a connected group. Then so is Ga. Otherwise there would be a sub-

group H of Ga of finite index. One can find a formula that states there are only finitely

many elements in Ga such that Ga can be written as a disjoint union of the translations

of H by those elements but there are no such elements in G because G is connected.

Since Ga is an elementary extension of G, this gives a contradiction.

Proposition 5.22. Let p be a generic type over G. Then stabp = Go.

Proof Let p be a generic type over G. Then RM(p) = RM(G). Consider the set

A = {ap : a 2 G}.

By Proposition 5.17, hence A consists of generic types over G. Recall that there are

only finitely many generic types. Thus, A is finite. Let A = {a
1

p, . . . , amp} for some

m. Let b 2 G be arbitrary. Then bp = aip for some 1  i  m. This implies that

a�1

i .bp = p. Thus a�1

i .b 2 stabp. So we have b 2 ai.stabp. Hence, [G : stabp]  m,
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namely stabp is a definable subgroup of G of finite index. Then Go  stabp. By 5.20,

stabp  Go. Hence, stabp = Go.

⇤

Proposition 5.23. G is connected if and only if it has a unique generic type.

Proof Suppose that G has a unique generic type, say p. To get a contradiction, assume

G 6= Go. Then there exists g 2 G such that Go\gGo = ;. Let  
1

and  
2

be two formulas

that define Go and gGo respectively. Let p
1

2 [ 
1

] and p
2

2 [ 
2

] be generic types. Since

Go \ gGo = ;, [ 
1

] 6= [ 
2

]. Therefore p
1

6= p
2

.

Now assume that G is connected. Let p and q be two generic types over G and let a

and b be two independent realizations of p and q over G. Then

RM(tp(b/Ga)) = RM(tp(b/G)) = RM(q)

by independence of a and b and RM(q) = RM(G) because q is generic over G. So

RM(tp(b/Ga) = RM(G). By Remark 5.21, we have RM(G) = RM(Ga), hence b is

generic over Ga.

On the other hand Ga is connected by Remark 5.21. So we can use Proposition 5.22

to say that stabtp(b/Ga) is Ga. Hence,

a.tp(b/Ga) = tp(a.b/Ga) = tp(b/Ga).

In particular, tp(ab/G) = tp(b/G) = q.

Similarly a�1 is generic over Gb by 5.4 and stabtp(a�1
)/Gb

. Then

b�1.tp(a�1/Gb) = tp(b�1.a�1/Gb) = tp(a�1/Gb).

In particular, tp(b�1.a�1/G) = tp(a�1/G). Hence, tp(ab/G) = tp(a/G) = p. So we

reached the result p = tp(a.b/G) = q.
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As a summary, we would like to present the following relations that we observed ;

tp(b/Ga) = tp(a.b/Ga)

+
tp(b/G) = tp(a.b/G) = tp(a.b/G) = tp(a/G)

*
tp(a/Gb) = tp(a.b/Gb)

Hence p = tp(a.b/G) = q

⇤



6 FIELDS IN FIELDS

6.1 Fields of Finite Morley Rank

Theorem 6.1. [Macintyre] An infinite field K of finite Morley rank is algebraically

closed.

Proof Let K be an infinite field of finite Morley rank. We will show that its additive

and multiplicative subgroups are connected. Let a be a non-zero element from K, then

multiplication by a gives an automorphism of K+. Since (K+)o is a subgroup of K+,

(K+)o is an ideal of K. Then either we have (K+)o = {0} or (K+)o = K. Recall that

(K+)o has finite index in K+. This yields to (K+)o = K since K is infinite. In other

words, K+ is connected. By Proposition 5.23, K+ has a unique generic type. Note

that SF
1

(K⇤) ✓ SF
1

(K+) by considering K⇤ = K+ \ {0}. Then for any generic type p

over K⇤, p is also a generic type over K+ since RM(p) = RM(K+) = RM(K⇤). Then

p is unique, hence K⇤ is connected by Proposition 5.23.

Now consider, for a fixed n, the group homomorphism ' : K⇤ ! K⇤ with �(x) = xn.

Notice that ker' is defined by the formula xn�1 = 0, hence it is finite. Then by Lascar’s

equality we have RM(K⇤) = RM(ker') +RM('(K⇤)), i.e. RM(K⇤) = RM('(K⇤)).

By Lemma 5.4, '(K⇤) has finite index in K⇤. We know that K⇤ is connected, in

other words K⇤ has no proper definable subgroup of finite index, hence '(K⇤) = K⇤.

Therefore every element of K = K⇤[{0} has nth root in K. In particular, K is perfect.
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If charK = p > 0, then  : K+ ! K+ that is defined as  (x) = xp�x is a group homo-

morphism. By Lascar’s equality, we get RM(K+) = RM(ker ) + RM( (K+)). Note

that ker is defined by the formula xp�x = 0. Thus ker is finite, i.e. RM(ker ) = 0.

So we have RM(K+) = RM( (K+)). In a similar fashion, (K+) =  (K+) as a conse-

quence of connectedness of K+.

We argue with two claims to conclude that K has no proper Galois extension.

Claim 1 : Let K is a field of finite Morley rank containing all mth roots of unity where

m  n for some n. Then K has no proper Galois extension of degree n.

Suppose that n is the smallest number such that there is a field of Morley rank K that

contains all mth roots of unity where m  n and K has a proper Galois extension L of

degree n with corresponding Galois group G = Gal(L/K). Let q be a prime number

that divides n = |G|. Then G has an element of order q, say �. By the Fundamental

Theorem of Galois Theory, there is an intermediate field F such that the extension

L/F is Galois and Gal(L/F ) is the subgroup of G generated by �. Thus the degree of

the extension L/F is q. By considering F as a vector space over K, one can see that

dim(F/K) = n/q, i.e. rk(F ) = (n/q).rk(K). Hence F is a field of finite Morley rank

that contains all mth roots of unity where m  n. Then by the minimality of n = q

and F = K. So |G| = q, i.e. G is cyclic.

If charK is different than q, by Theorem APPENDIX A.10 there is an ↵ 2 K such

that L = K(↵) and p(↵) = 0 where p(x) = xq � a for some a 2 K. Note that p(x) is

the minimal polynomial of ↵ over K since deg(p(x)) = deg(L/K). Since K contains

the qth root of a, p(x) is reducible.

If charK = q , by Artin-Schreier’s theorem there is an ↵ 2 K such that L = K(↵) and

p(↵) = 0 where p(x) = xq�x�a for some a 2 K. Then p(x) is the minimal polynomial

of ↵ over K. Since  is surjective, there is a � such that �q � � = a, whence p(x) is

reducible.

As a result, there is no proper Galois extension of K of degree n, since we observed

contradictions in both cases.

Claim 2 : A field K of finite Morley rank contains all roots of unity.

Let n be the smallest number such that K does not contain all nth roots of unity. Let
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⇣ be the primitive nth root of unity. Consider the extension K(⇣) over K. Since it is a

splitting field of xn�1, (K(⇣)/K) is Galois of degree at most n�1, say k. Since k < n,

by the minimality of n, K contains all mth roots of unity where m  k. Then by Claim

1, K has no proper Galois extension of degree k. But we have stated that (K(⇣)/K)

is Galois of degree k. Since this gives a contradiction, such a number n does not exist.

That means K contains all roots of unity.

It follows that, by Claim 1, K has no proper Galois extension. Therefore the separable

closure of K is itself by Theorem APPENDIX A.6.(Ksep = K) We proved that K is

perfect, by Theorem APPENDIX A.5 the separable closure of K is algebraic closure

of K (Kalg = Ksep), whence K is algebraically closed.

⇤

Lemma 6.2. A field of finite Morley rank has no infinite definable proper subring.

Proof Let K be a field of finite Morley rank and k be an infinite definable proper

subring of K. Then k is an integral domain. Since K is a field of finite Morley rank

and k is definable in K, k is a ring of finite Morley rank. By Theorem 5.5, there is a

minimal definable non-zero ideal of k. (Consider the non-zero definable ideals of k as

additive subgroups.) Fix such a minimal ideal I. For any non-zero a 2 I, I = (a) by

the minimality of I. Then by a similar argument, for arbitrary non-zero x 2 k, one can

have (a) = (ax). So there is a y such that a = axy. Since k is an integral domain and

a is non-zero, we can conclude that xy = 1 and following this, k is a field.

We know that k is of finite Morley rank, hence it is algebraically closed. Consider the

field extension of k by K. It needs to have an infinite degree since an algebraically

closed field has no non-trivial algebraic extension. For each n, K contains n-many copy

of k as a vector space over k. Then RM(kn) = n.RM(k) holds for all n, this forces

RM(K) to be infinite. This yields to a contradiction. ⇤

Corollary 6.3. Let K be a field of characteristic zero and of finite Morley rank. Then

1. K has no non-trivial definable additive subgroup.

2. Every definable additive map from Kn to Km is K-linear for any n and m.

3. Any (additive) subgroup of Kn⇥n is a K-vector subspace for any n.
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Proof

1. Let A be a definable additive subgroup of K. Let R be the following set

{a 2 K : aA ✓ A}.

Since R contains 0,1 and is closed under addition and multiplication, R is a

subring of K. Moreover R is a definable subring of K since multiplication is

definable in K . Also R is infinite. Otherwise, the cardinality of R gives a positive

characteristic to K. Then we have R = K by above lemma. That means kA ✓ A

for all k 2 K, hence A is an ideal of K. Since K is a field, A is either 0 or K.

2. Let � be an additive homomorphism from Kn to Km. Consider R0 ✓ K defined

as

R0 = {a 2 K : �(ax) = a�(x)}.

By a similar argument, R0 is a subring of K. Then R0 = K. So �(ax) = a�(x) for

all a 2 K, hence � is K-linear.

3. Let A be a subgroup of Kn⇥n. Let R00 be defined as

R0 = {a 2 K : aA ✓ A}.

One sees that R00 is a subring of K as described above. Hence, R00 = K. Since A

is closed under addition, R00 = K implies that A is a K-vector subspace.

⇤

Remark 6.4. We know that K⇤ acts K-linearly on K+. Consider the action defined

as

' : K⇤ �! End(K+)

a 7! 'a : K+ ! K+

x 7! a.x

Suppose that there is a field F so that K+ = F+. Then charF = 0. One can see that

K⇤ acts on F+ by replacing K+ with F+. Since every definable additive endomorphism

of F is F -linear by , K⇤ acts F -linearly on F+. Consequently, K⇤ acts F -linearly on

K+.

Let � be the multiplication on K to distinguish from the operation F . Then the multi-

plication on K ;
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�� : K ⇥K �! K

(x, y) 7! x� y

Let a 2 F . Then ��(ax, y) = (ax) � y = 'y(ax) for non-zero x and y. (Otherwise

the following are trivial) Since the action of K⇤ is F -linear on K+, then we have

'y(ax) = a.'y(x) = a.(x�y) = a(��(x, y)). Similarly, ��(x, ay) = a(��(x, y)). Hence,

the multiplication on K is F -bilinear.

We want to see that K⇤ acts F -linearly on K+ where charK = p > 0 and K = F .

Since we do not have the Corollary 6.3 a priori in characteristic p, we need to produce

a new method.

Let K be a pure field of positive characteristic p. Bruno Poizat introduces the fact that

the definable endomorphisms of K+ are in the form of a�nx
p�n

+ . . .+a
0

x+ . . .+anx
pn

and consequently the definable automorphisms of K+ are in the form of anxpn where

n 2 Z \ {0} in (Poizat, 2001, page 46). One can see this fact follows from a result of

Lou van den Dries (van den Dries, 1990, page 136, theorem 3). To see this implication,

it is enough to clarify the statement of the aforementioned theorem. In our setting,

the constructible sets are definable and the definable endomorphisms are morphisms

of perfect groups which are polynomial maps, possibly composed with a power of the

inverse of the Frobenius.

Let G be a group of definable automorphisms of K+. To describe the elements of G

more precisely, we will see the set of degrees of elements of G is bounded. To obtain a

contradiction, assume that there is no such a bound. In other words, there is a model

F of
P

(v) where

X
(v) = {8b 8an 9v fb(v) 6= anv

pn : n 2 N} [Diagel(K).

Then F is an elementary extension of K by Proposition 3.9. So we are allowed to

extend fb(x) to a definable automorphism of F+. Since F |= Diagel(K), F is a field of

characteristic p. Hence, the definable automorphisms of F+ are in the form of anxpn. It

follows that
P

is not satisfiable. By Compactness Theorem 3.5, there are fb1 , . . . , fbm

such that, for all x 2 K+, fbi(x) = anix
pni for each i. Hence there is a bound of degrees

of elements of G.

Notice that G consists of the maps which are in the form of ax. Otherwise G would
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contain a map axn, for some n > 1, then there would be no bound of the degrees of

the elements of the subgroup of G which is generated by axn. Hence G is definably

isomorphic to a subgroup of K⇤.

Definition 6.5. An infinite group G is minimal if all its proper definable subgroups

are finite.

Example 6.6. Let K be a field of characteristic zero and of finite Morley rank. Then

K+ is minimal since its only proper subgroup is 0 by Corollary 6.3.

Proposition 6.7. A connected group of Morley rank 1 is minimal. (Borovik and Nesin,

1994, Exercise)

Proof Let G be a connected group of Morley rank 1. Suppose that G has a proper

infinite definable subgroup, say H. Since G is connected, H cannot have finite index

in G. Then H has an infinite index in G and by Lemma 5.4, RM(H) < RM(G). Then

rk(G) = 1 implies that rk(H) = 0. This contradicts with the fact that H is infinite.

Hence all proper definable subgroups of G are finite.

⇤

6.2 Algebraic Groups

Definition 6.8. Let K be a sufficiently large algebraically closed field. By an affine

variety, we mean a Zariski closed subset of Kn for some n. A morphism between

affine varities V ✓ Kn and W ✓ Km can be described as a map f : V ! W

where f = (f
1

, . . . , fm) such that fi belongs to K[V ] = K[X
1

, . . . , Xn]/I(V ) for each i.

The notion of affine variety can be generalized as an abstract variety. Then one can

define a morphism between two abstract varities.

A variety V is a set that is covered by finitely many subsets V = V
1

[ V
2

[ . . . [ Vn

such that, for each 1  i  n, there is an affine variety Ui ✓ Kni with a corresponding

bijection fi : Vi ! Ui that satisfies

1. Ui,j = fi(Vi \ Vj) is open in Ui (with respect to Zariski topology of Ui).

2. fi,j = fi � f�1

j which is a bijective rational map between Uji and Uij
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One can define the Zariski topology of a variety (V, Vi, fi) as follows ; A subset A of V

is open if fi(A \ Vi) is open in Ui for all i.

A morphism h between two varities (V, Vi, fi) and (W,Wj, gj) is a map where h is

continuous and gj � h is a morphism on h�1(Wj)\ Vi into gj(Wj) for any pair i, j. By

a continuous map h, we mean the pre-image of an (Zariski) open set under h is an

(Zariski) open set.

Definition 6.9. A group G is called an algebraic group over an algebraically closed

field K where G is a variety and the group operation and inversion (with respect to the

group operation) as maps are morphisms.

Example 6.10. Let K be an algebraically closed field. Then the general linear group

GLn(K) of invertible n⇥n matrices over K is an algebraic group. To see that GLn(K) is

a variety, by using the fact that invertible matrices have non-zero determinant, identify

GLn(K) with the following set

{(↵, X) 2 K ⇥Kn⇥n = Kn2
+1 : ↵.det(X) = 1}

Since determinant is a polynomial map, this set is Zariski closed. Recall that the matrix

multiplication and the corresponding inversion can be given by polynomials, hence they

are morphisms. It follows that GLn(K) is an algebraic group over K.

Theorem 6.11. (Poizat, 2001) [Weil - Hrushovski] Every group which is definable

in an algebraically closed field is definably isomorphic to an algebraic group.

Definition 6.12. A linear group is a definable subgroup of GLn(K) for some n.

Theorem 6.13. (Poizat, 2001) [Rosenlicht] Let K be an algebraically closed field.

If G is a connected, definable group in K with center Z(G), then G/Z(G) is definably

isomorphic to a linear group.

Proof Let G ✓ Km be a connected group, which is definable in K, with identity

element e for some m. Then by Theorem 6.11, G is algebraic. Note that G is a group

of finite Morley rank since it is definable in K and RM(K) = 1.

Let U be an open neighborhood of e. We will deal with rational functions defined on

U . Let A be a ring of germs of rational functions which is defined as the set of

f : Uf ! K
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where Uf is a Zariski open subset of U containing e and the couple (f, Uf ) satisfies the

condition (E) where a couple (g,⌦) satisfies (E) if and only if there are polynomials

p(x̄) and q(x̄) such that

1. 8x̄ 2 ⌦, q(f�1

i (x̄)) 6= 0 and

2. 8x̄ 2 ⌦, g(x̄) = p(f�1

i (x̄))/q(f�1

i (x̄)) and

3. There is no bigger Zariski open set ⌦0 ) ⌦ for which the condition of (1) are

satisfied.

We will see the elements of A as pi(x̄)
qi(x̄)

’s. One should notice that each coordinate map on

U belongs to A. Note that the ideal generated by pi(x̄)
qi(x̄)

’s is exactly the ideal generated by

pi(x̄)’s since qi(x̄)’s are invertible. Thus K[x̄] is Noetherian implies that A is Noetherian.

Moreover, any f(x̄) 2 A which is non-zero at e, there is an open neighborhood of e

given by the relation f(x̄) 6= 0. Thus it is possible to define 1/f(x̄) in this neighborhood

of e, hence 1/f(x̄) 2 A. Now consider f(x̄) 2 A such that f(e) = 0. Let

M = {f(x̄) 2 A : f(e) = 0}

Clearly M is an ideal of A and also it consists of all non-unit elements of A. Hence,

A is a local ring with maximal ideal M by Theorem APPENDIX A.3. As in every

Noetherian local ring, we have \nM
n = {0̄}.

Now we are interested in the elements of A/Mn. For arbitrary p(x̄)
q(x̄)

2 A, we know that

q(e) 6= 0 implies q(x̄) is invertible in an open neighborhood of e. Let q(e) = c. Then

there is a non-invertible q0(x̄) such that q(x̄) = c � q0(x̄). By replacing q(x̄) with q(x̄)
c

and q0(x̄) with q0(x̄)
c

, one has q(x̄) = 1 � q0(x̄). Following this, by replacing p(x̄) with
p(x̄)
c

, we get

p(x̄).
1� (q0(x̄))n

1� q0(x̄)
= p(x̄).(1 + q0(x̄) + . . .+ (q0(x̄))n�1)

since 1� (q0(x̄))n = (1� q0(x̄))(1 + q0(x̄) + . . .+ (q0(x̄))n�1). It follows that

p(x̄)

1� q0(x̄)
=

p(x̄)

1� q0(x̄)
.(q0(x̄))n + p(x̄).(1 + q0(x̄) + . . .+ (q0(x̄))n�1)
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Since q0(x̄) 2 M , p(x̄)
q(x̄)

= p(x̄)
1�q0(x̄) is congruent to the polynomial

p(x̄).(1 + q0(x̄) + . . .+ (q0(x̄))n�1)

modulo Mn locally.

We want to conclude that any element of A/Mn can be represented by a polynomial of

degree less than n. To see that, one can identify e with 0̄ 2 Km or equivalently change

the variables of the polynomials with (x
1

� e
1

, . . . , xm � em). Then A/Mn is a finite

dimensional vector space over K. We will denote the elements of A/Mn by [f(x̄)].

The group of inner automorphisms of G, namely Inn(G), consists of

Inng : G �! G

x̄ 7! g.x̄.g�1

for each g 2 G. As a notational remark, one should be careful about the fact that

both of g and x̄ are tuples. Since we use x̄ to denote an element of G and the tuple of

variables at the same time, we prefer this notation.

Let f(x̄) 2 A. Then f g(x̄) := f(Inng(x̄)) 2 A, since Inng(e) = e. Consequently,

f(Inng(x̄)) 2 Mn for each f(x̄) 2 Mn. Those observations lead us to define an action

of G on A/Mn.

'n : G⇥ A/Mn �! A/Mn

(g, [f(x̄)]) 7! [f g(x̄)]

Now we will see that 'n is definable. Recall that G is an algebraic group. Hence G

is a variety and the group operation on G is compatible with chart maps. We will be

interested in generic elements of G. The motivation of this interest depends on the

fact that, which is given in the Proposition 5.18, any element of G is a product of two

generics. Hence if we manage to see that 'n is definable on a generic element of G, we

can generalize it to the all elements of G.

There is generic V ✓ U . Since G is connected, by Proposition 5.23, V contains all

generic elements of G. Let x 2 V . Since the multiplication and corresponding inversion

on G are morphisms, for each g 2 G, there is a rational function that corresponds to

Inng(x̄). Following this, we have [f g(x̄)] is a composition of two rational functions on
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U , since f(x̄) 2 A. Therefore one can get rid of the denominator of [f g(x̄)] in A/Mn

by following the steps described above. Thus we have a polynomial representation of

'n(g, [f(x̄)]) in A/Mn for each g 2 G. Hence 'n is definable.

Moreover, 'n is K-linear. Let [f
1

(x̄)], [f
2

(x̄)] 2 A/Mn.

'n(g, [(f1 + f
2

)(x̄)]) = [(f
1

+ f
2

)g(x̄)]

= [(f
1

+ f
2

)(Inng(x̄))])

= [(f
1

)(Inng(x̄)] + [(f
2

)(Inng(x̄))]

= [(f
1

)g(x̄)] + [(f
2

)g(x̄)]

= 'n(g, [f1(x̄)]) + 'n(g, [f2(x̄)])

For any ↵ 2 K, 'n(g,↵[f(x̄)]) = [(↵f)g(x̄)] = ↵[f g(x̄)] = ↵'n(g, [f(x̄)]) as well. That

means we have a definable homomorphism �n corresponding to the action 'n.

�n : G �! GL(A/Mn)

g 7! �n,g : A/Mn ! A/Mn

[f(x̄)] 7! [f g(x̄)]

If the definable action �n is faithful on G/Z(G), that is, �n is injective, then G/Z(G)

is isomorphic to a subgroup GL(A/Mn) and this finishes the proof. Now we will see

why �n is faithful on G/Z(G).

Let Gn = ker�n. Then Gn is definable since �n is definable. Recall that

Gn = {g 2 G : �n(g, [f(x̄)]) = [f(x̄)] for all [f(x̄)] 2 A/Mn}.

So, for any g 2 Gn+1

, one has f g(x̄) � f(x̄) 2 Mn+1. On the other hand, for each n,

Mn+1 ✓ Mn. Then, f g(x̄) � f(x̄) 2 Mn, hence Gn’s constitute a decreasing sequence

of definable subgroups of G.

We know that a group of finite Morley rank has DCC on its definable subgroups,

thus the aforementioned sequence stabilizes at a finite step, say l. Let g 2 \l
i=1

Gi, then
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g 2 Gn for all n. In other words, for all f(x̄) 2 A and for all n, f g(x̄)�f(x̄) 2 Mn. Since

\nM
n = {0̄}, we have f g(x̄) = f(x̄), for all f(x̄) 2 A. In particular, for any coordinate

map fi on U , we have f g
i (x̄) = fi(x̄). Hence, for any generic x̄, Inng(x̄) = x. In other

words, any g 2 \l
i=1

Gi, g commutes with generic elements. Since every element of G is

a product of two generics by Proposition 5.18, then g belongs to Z(G). So we get that,

for sufficiently large n (in our setting, n � l), we can identify Gn with Z(G). Hence, by

taking quotient of G with Z(G), we make definable �n is injective on G/Z(G). Thus

G/Z(G) is definably isomorphic to a subgroup GL(A/Mn).

⇤

6.3 The Main Theorem

Theorem 6.14. (Poizat, 2001) Every infinite field K which is definable in the pure

algebraically closed field F is definably isomorphic to it.

Proof Let K be an infinite field which is definable in the pure algebraically closed field

F . Then K is a field of finite Morley rank, since RM(F ) = 1. We have seen that K+

and K⇤ are connected in Theorem 6.1 and we noted that then Aff(K) = K+ n K⇤

is connected in Example 5.10. There is no ax + b that commutes with cx + d for all

c 2 K⇤, d 2 K+ other than the identity map, hence the center of A↵(K) is trivial.

The group structure A↵(K) can be written as a (K+⇥K⇤; ·', (0, 1)) where the operation

·' depending on the action of K⇤ on K+ which is defined as follows ;

(b
1

, a
1

) ·' (b
2

, a
2

) = (b
1

+ a
1

b
2

, a
1

a
2

).

Since K is definable in F as a field, addition and multiplication on K are definable

in F . Note that the operation ·' consists of addition and multiplication on K. Hence

A↵(K) is definable in F . By Theorem 6.13, A↵(K) is linear in F .

One sees that Aff(K) is a definable extension of K+ and K⇤ by considering

K+ = K+ ⇥ {1} and K⇤ = {0} ⇥ K⇤ in F . Then the linearity of A↵(K)) implies

that K+ and K⇤ are linear in F . Thus K+ is a definable subset of GLn(F ) for some n.

Since K+ is abelian, K+ has a triangularizing basis by Theorem APPENDIX B.6.
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homomorphism 'i : K+ ! F ⇤ defined by

2

666666664

a
11

a
12

. . . a
1n

a
22

. . . a
2n

. . . ...

0 . . . ...

ann

3

777777775

7�! aii

where a 2 K+ is represented by above upper triangular matrix.

To figure out the image of K+ under 'i, we will examine the cases charK = 0 and

charK = p > 0.

Suppose charK = 0. As we noted in Corollary 6.3, K+ has no non-trivial subgroup. So

ker'i is either 0 or is K+ for all i. If ker'i = {0}, 'i is injective. Note that 'i could

not be surjective. Otherwise K+ and F ⇤ would be isomorphic. It is not possible since

the former one is torsion-free but the latter one has torsion elements. Then 'i(K+)

is a proper, definable subgroup of F ⇤. Recall that F ⇤ is minimal by Proposition 6.7.

Hence, 'i(K+) is finite. Since 'i is injective and K+ is infinite, 'i(K+) needs to be

infinite. Thus it is not possible to have ker'i = {0}. Hence ker'i = K+, consequently

'i(K+) = {1} for all i.

Now assume charK = p > 0. Then K+ is a group of exponent p, because x+ . . .+ x| {z }
p-times

=

0 for any x 2 K+. Then 'i(K+) has a finite exponent by Proposition APPEN-

DIX A.2, hence it is finite. On the other hand, the connectedness is preserved under

group homomorphism, hence 'i(K+) is a connected and finite group. By Remark 5.7,

'i(K+) = {1}.

In both cases, each element of K+ has an upper triangular representation that consists

of 1 in the diagonal. Thus all eigenvalues of the corresponding matrix to a 2 K+ are 1

for all a 2 K+, hence K+ is unipotent.

We will deal with F by considering its characteristic in order to explore a relation

between K+ and F+. Since K+ ✓ GLn(F ), we work with a multiplicative group. Now

we will introduce a way to identify K+ with an additive group and then we will observe
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K+ = F+. Then we will produce various arguments regarding characteristic of F to

observe the desired isomorphism.

Suppose charF = 0. Recall that a square matrix X is nilpotent if Xm = 0 for some

m, and unipotent if it is in the form of 1 +X where X is nilpotent. We will obtain a

one-to-one correspondence between the multiplicative group of unipotent matrices and

the additive group of nilpotent matrices over F of the same size via the logarithm.

U �! N N �! U

1 +X 7! log(1 +X) X 7! exp(X)

where U and N are the group of unipotent and nilpotent matrices respectively.

Consider the power series representations of exp and log,

log(1 +X) =
1X

n=1

(�1)n+1

Xn

n
exp(X) =

1X

n=1

Xn

n!

For any X 2 N, Xm = 0 for some m, then log(1+X) and exp(X) are finite sums, namely

polynomials. Hence, they are definable in F . Following this, a formal substitution shows

that exp and log are inverses to each other and log constitutes a bijection between U

and N. Moreover if one have commutativity on N, then exp(X).exp(Y ) = exp(X + Y )

with exp(0) = 1. Since K+ ✓ GLn(F ) is a commutative unipotent group, K+ is

definably isomorphic to a subgroup of (F+)m⇥m via log. By Proposition 6.3, K+ is

definably isomorphic to an F -vector subspace. Since K+ is minimal by Example 6.6,

the dimension of K+ over F is 1. Thus, K+ = F+.

By Remark 6.4 K⇤ acts F -linearly on K+. Now we will produce a field isomorphism

between K and F by using this observation.

Let � be the multiplication on K with the identity element 1. Consider K as an

F -vector space. Then by F -bilinearity of � on K+ which is stated in 6.4, we have

x1� y1 = xy(1� 1) = xy1

where x, y 2 F . Then

� : F �! K

x 7! x1
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is an isomorphism.

We obtained a definable field isomorphim between K and F where the characteristic

of F is 0.

Now suppose charF = p. Recall that the Proposition APPENDIX B.4, that is, any

matrix A is unipotent if and only if the order of A is a power of p. In particular,

the matrix representation of the identity element of K+ has order a power of p. Then

charK = p.

Recall that K⇤ is linear in F . Also the definability of K⇤ in F implies that K⇤ is

definably isomorphic to an algebraic group by Theorem 6.11. Since charK = p, none of

the elements of K⇤ has order p. Hence, K⇤ has no unipotent element by the Proposition

APPENDIX B.4. Then K⇤ is a connected, abelian, algebraic group containing no

unipotent elements. By Theorem APPENDIX C.2, K⇤ is torus, that is, isomorphic

to (F ⇤)m for some m. By considering torsion elements of K⇤ and (F ⇤)m, m needs to be

1. Thus K⇤ = F ⇤. Then RM(K⇤) = RM(F ⇤). Since F is an algebraically closed field,

RM(F ⇤) = 1 by Example 3.4. Hence, K+ is a connected group of Morley rank 1.

Recall that, in an algebraically closed field, the Morley Rank corresponds to the Krull

dimension by Theorem 4.6. On the other hand, K+ is definably isomorphic to an alge-

braic group by Theorem 6.11 as above. Thus we know that K+ is definably isomorphic

to a connected, one-dimensional, unipotent algebraic group. Hence, K+ = F+ by Theo-

rem APPENDIX C.3. Then one can define � between K and F like in characteristic

0 case, since we know that K⇤ acts F -linearly on K+ by the characteristic p part of

the Remark 6.4.

⇤



7 CONCLUSION

David Marker and Anand Pillay proved that in a reduct M of an algebraically closed

field F = (F ; +, ·), which is non-locally modular and expanding the additive structure,

an infinite field K = (K;�,�) is interpretable and then the multiplication on F is

definable in the reduct M (Marker and Pillay, 1990). In their work, they use the

result of Bruno Poizat from (Poizat, 2001) which is presented in this thesis. Our

interest about the aforementioned article of Marker and Pillay is the main motivation

of this work. Moreover, the proof of the Poizat’s result reveals the interaction between

model theory and algebraic geometry. Henceforth, it is quite stimulating for young

mathematicians. This work is an attempt to explore and clarify the relevant parts of

(Poizat, 2001) by being precise about implications and giving the omitted details in

(Poizat, 2001). One could have di�culties while studying on (Poizat, 2001), so our

work may be useful to comprehend the details.

While studying the proof, we noted that Poizat introduces two very distinct proofs

depending on whether the characteristic is 0 or a prime p. It is a well-known model

theoretic consequence of the compactness theorem that any first order statement in

the language of rings which is true in all models of ACFp for large p needs also to be

true for all models of ACF
0

. By considering this fact, we are interested in an open

problem that asks whether having such a result for char p case is enough. If we could

make the statements which we used to prove char p case first order, then there is no

need to separate proof in two cases.
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A APPENDIX A

A.1 Group Theory

Definition APPENDIX A.1. The exponent of a group G is defined as the least

common multiple of the orders of elements of G.

Proposition APPENDIX A.2. Let G,H be two groups where G has finite exponent.

Suppose there is a group homomorphism � from G into H. Then �(G) has finite

exponent.

A.2 Ring Theory

Theorem APPENDIX A.3. A ring R is local if and only if non-unit elements of R

form an ideal.

A.3 Field and Galois Theory

Theorem APPENDIX A.4. An algebraically closed field K has no non-trivial alge-

braic extension. Hence, K has no non-trivial finite extension.

Theorem APPENDIX A.5. K is a perfect field if and only if the separable closure

of K is the algebraic closure of K.

Theorem APPENDIX A.6. A separable closure of a field K is a Galois extension

of K.



47

Theorem APPENDIX A.7. [Fundamental Theorem of Galois Theory - Rel-

evant Part] Suppose that L/K is a finite Galois extension with the corresponding

Galois group Gal(L/K). Let H be a subgroup of G and F be an intermediate field

between L and K. We will denote the subfield of L which is fixed by H by LH and the

set of automorphisms of L fixing F by Aut(L/F )

1. There is an inclusion reversing one-to-one correspondence � between the sub-

fields of L containing K and the subgroups of G given by �(F ) = Aut(L/F ) and

��1(H) = LH

2. The extension L/F is normal, hence Galois.

3. [F : K] = [G : H] and [L : F ] = |H|.

A.4 Cyclic Extensions

Definition APPENDIX A.8. Let K be a Galois extension of k. For an element ↵

of K, its norm and trace is defined as follows;

NK
k (↵) =

Y

�

�(↵), T rKk (↵) =
X

�

�(↵).

where � 2 Gal(K/k).

Theorem APPENDIX A.9. (Lang, 2002) [Hilbert’s Theorem 90] Let K be a

cyclic extension of k of degree n. Let G = Gal(K/k) with G =< � >. For � 2 K,

NK
k (�) = 1 if and only if there is a non-zero element ↵ in K such that �.�(↵) = ↵.
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Theorem APPENDIX A.10. (Lang, 2002) Let K/k be a cyclic extension of degree

n, where n is a positive integer that is coprime to the characteristic of k. Suppose that

there is a primitive nth root of unity in k. Then there exists ↵ 2 K such that K = k(↵),

and ↵ is a root of xn � a for some a 2 k.

Proof Let ⇣ be a primitive nth root of unity in k. Let G = Gal(K/k) with G =< � >.

Since ⇣ 2 k, every element of G fixes ⇣�1. Then NK
k (⇣�1) = ⇣�1

n = 1. By Hilbert’s

Theorem 90, there exists ↵ 2 K such that �(↵) = ⇣.↵. Since ⇣ 2 k, we have

�2(↵) = �(⇣.↵) = ⇣.�(↵) = ⇣2.↵.

This equation implies �i(↵) = ⇣ i.↵ for all 1  i  n inductively. Thus ⇣ i.↵ are n

distinct conjugates of ↵ over k. Following this, [k(↵) : k] is at least n. Then [K : k] = n

implies that K = k(↵). Moreover,

�(↵n) = �(↵)n = (⇣.↵)n = ⇣n.↵n = ↵n

.

i.e. ↵n is fixed under G, since G =< � >. Accordingly, ↵n is an element of k. Since ↵

is a root of xn � ↵n, we get the desired result.

⇤

Theorem APPENDIX A.11. (Lang, 2002) [Hilbert’s Theorem 90, Additive

Form] Let K be a cyclic extension of k of degree n. Let G = Gal(K/k) with G =< � >.

For � 2 K, TrKk (�) = 0 if and only if there is an element ↵ in K such that � = ↵��(↵).
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Theorem APPENDIX A.12. (Lang, 2002) [Artin - Schreier] Let k be a field of

characteristic p > 0. Let K/k be an extension of degree p. Then there exists ↵ 2 K

such that K = k(↵) and ↵ is a root of xp � x� a for some a 2 k.

Proof Let K/k be an extension of degree p, hence K/k is cyclic. Let G = Gal(K/k)

with generator �. Observe that TrKk (�1) = p.(�1) = 0, since �1 is fixed under G. By

the additive form of Hilbert’s Theorem 90, there exists ↵ in K such that 1 = �(↵)�↵,

or equivalently �(↵) = 1 + ↵. Then

�2(↵) = �(1 + ↵) = 1 + �(↵) = 2 + ↵.

By proceeding inductively, one can get that �i(↵) = i + ↵ for all 1  i  n and

�i(↵) are p distinct conjugates of ↵, whence [k(↵) : k] � p. It follows that K = k(↵),

since[K : k] = p. Furthermore,

�(↵p � ↵) = �(↵)p � �(↵) = (1 + ↵)p � (1 + ↵) = ↵p � ↵.

Since G =< � >, ↵p � ↵ is fixed under G. Thence ↵p � ↵ 2 k. Since ↵p � ↵ is a root

of xp � x� ↵p � ↵, the proof has been completed.

⇤



B APPENDIX B

Theorem APPENDIX B.1. [Cayley - Hamilton] A square matrix A satisfies its

characteristic polynomial which is det(A� Id.x).

Definition APPENDIX B.2. Let K be an algebraically closed field. A square matrix

X over K is called

• nilpotent if Xn = 0 for some n

• unipotent if (X � 1) is nilpotent where 1 is identity matrix Id.

Remark APPENDIX B.3. Let A be a unipotent matrix. Then A = X + Id for

some X such that Xm = 0 for some m. To obtain an eigenvalue of X, one needs to

consider the equation Xv = �v for all v. Then Xm = 0 implies that � = 0. It implies

that, Av = 1v = v for all v, whence all eigenvalues of A is 1. Converse can be obtained

by saying that a matrix is nilpotent if all of its eigenvalues are zero. But this is a

consequence of Cayley - Hamilton.

Proposition APPENDIX B.4. Let K be an algebraically closed field of character-

istic p > 0. Let G be a definable subgroup of GLn(K) for some n. Then A 2 G is

unipotent if and only if the order of A in G is a power of p.

Proof Let A 2 G be a unipotent matrix where A = 1+X where Xm = 0 for some m.

Let d be given such that pd > m. Then

0 = Xpd = (A� 1)p
d
= Apd � 1.
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So Apd = 1. Hence the order of A in G divides pd. Since p is a prime, the order of A

is a power of p.

Let A 2 G be any matrix of order pr for some r. Then Apr = 1 implies (A� 1)p
r
= 0.

So A is unipotent.

⇤

Definition APPENDIX B.5. A flag is a sequence of subspaces of a finite dimen-

sional vector space V so that the corresponding sequence that consists of the dimensions

of those subspaces is increasing. Let V be an n-dimensional vector space, then the flag

on V ;

0 = V
0

< V
1

< . . . < Vn�1

< Vn = V

such that 0 = d
0

< d
1

< . . . < dn = n where di = dim(Vi).

A flag is called complete if di = i for any i.

Theorem APPENDIX B.6. Let V be an n dimensional vector space over an alge-

braically closed field K for some n. Let M be a commutative subset of End(V ). Then

there exists a basis of V such that, for any f 2 M , the matrix representation of f with

respect to this basis is upper triangular.

Proof It is enough to show that there is a complete flag

0 = V
0

< V
1

< . . . < Vn�1

< Vn = V

preserved by M . Consider a basis {v
1

, . . . , vn} of V where {v
1

, . . . , vi} is the basis of Vi.

For any f 2 M , f(vi) 2 Vi, since the flag is preserved under M .

Then f(vi) = �
1i.v1 + �

2i.v2 + . . . + �ii.vi for some �ji 2 K. Then the correspond-

ing matrix to f ;
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First of all, let us have an observation about M . If M consists of maps that give

scalar multiplication, then for any basis {v
1

, . . . , vn} of V , we have the complete flag

0 = V
0

< V
1

< . . . < Vn�1

< Vn = V where {v
1

, . . . , vi} is the basis of Vi. And one sees

that f(Vi) ✓ Vi. So we may assume that M has non-scalar elements.

Now we will show that such a flag exists by induction on n. If n = 1, consider

{0} = V
0

< V
1

= V and for any f 2 M ,f(V ) ✓ V trivially holds. Suppose that the

statement holds for all m < n. Pick a non-scalar f 2 M . Then there is an a 2 K such

that the kernel of the map '(x) := f(x)�a.x is neither {0} nor V . (The existence of a

such that ker' 6= {0} is a consequence of Cayley - Hamilton Theorem since f 2 End(V )

is not nilpotent and f is non-scalar implies that ker' 6= V.) Then ker' has a positive

dimension which is smaller than V as a K-vector space. Let M 0 = {g �ker': g 2 M}.

Note that for any g 2 M and v 2 ker', f(v) = a.v implies that

f(g(v)) = g(f(v)) = g.(a.v) = a.g(v).

That means g(v) 2 ker', hence g(ker') ✓ ker' for any g 2 M . Then M 0 is a

commutative subset of End(ker').By induction hypothesis, there is a complete flag on

ker' preserved by M 0, hence by M .
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Let {0} = W
0

< W
1

< . . . < Wm = ker('(x)) be the complete flag preserved by M

where {w
1

, . . . , wi} be a basis of Wi. Then for all f 2 M , f(w
1

) 2 (w
1

), where (w
1

) is

a subspace generated by w
1

. Therefore w
1

is an eigenvector of all elements of M .

Consider the quotient space V = V/(w
1

). Let

M = {f̄ : V ! V : f̄(x̄) = f(x) where f 2 M}.

To observe that any f̄ 2 M is well-defined, consider the following identities

f̄(v̄
1

) � f̄(v̄
2

) = f(v
1

) � f(v
2

) = f(v
1

)� f(v
2

) = f(v
1

� v
2

) where v̄
1

= v̄
2

. Since

v̄
1

= v̄
2

, v
1

�v
2

= ↵.w
1

for some ↵ 2 K. So f(v
1

� v
2

) = f(↵.w
1

) = ↵.f(w
1

) = ↵.(�.w
1

)

for some � 2 K since w
1

is an eigenvector of f . Hence, f̄(v̄
1

) � f̄(v̄
2

) = 0̄. Then

M ✓ End(V ). Since dim(Ṽ ) = n�1, by induction hypothesis, there is a complete flag

on V , say 0 = V
0

< V
1

< . . . < V n�1

= V preserved by M̃ . Let {v̄
1

, . . . , v̄i} be a basis

of V i. Pick representatives vi from v̄i, then dim(Vi) = i by letting Vi = (w
1

, v
2

, . . . , vi).

Therefore

0 = V
0

< V
1

= (w
1

) < V
1

= (w
1

, v
2

) < . . . < Vn = (w
1

, v
2

, . . . , vn�1

) = V

is a complete flag on V .

Now we will see that this flag is preserved under M . Let f 2 M . Then f(w
1

) ✓ (w
1

),

since (w
1

) 2 ker'. We have f̄(v̄i) 2 V i for any vi, then f(vi) 2 V i. Hence, f(vi) 2 Vi.

Therefore f(Vi) ✓ Vi.

⇤



C APPENDIX C

Throughout this chapter, K is an algebraically closed field.

Definition APPENDIX C.1. An abstract torus T is an algebraic group over K

that is isomorphic to the direct product of m-many copies of K⇤ for some m.

Theorem APPENDIX C.2. (Digne and Michel, 1991) A connected, solvable, alge-

braic group containing no unipotent elements is a torus.

Theorem APPENDIX C.3. (Springer, 2009) Let G be a connected one-dimensional

unipotent algebraic group over K. Then G is isomorphic to the additive subgroup of

K.
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