

VEHICLE TRACKING BY FUSING MONOCULAR CAMERA

AND VEHICLE TO VEHICLE COMUNICATION ON A REAL TIME BASIS

(KAMERA VE ARAÇ-ARAÇ HABERLEŞMESİ BİRLEŞİMLİ

GERÇEK ZAMANLI ARAÇ TAKİBİ)

by

M u s t a f a T E K E L İ , B . S .

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

Feb 2017

This is to certify that the thesis entitled

VEHICLE TRACKING BY FUSING MONOCULAR CAMERA

AND VEHICLE TO VEHICLE COMMUNICATION ON A REAL-TIME BASIS

prepared by Mustafa TEKELİ in partial fulfillment of the requirements for the degree

of Master of Science in Computer Engineering at the Galatasaray University is

approved by the

Committee:

Prof. Dr. Tankut ACARMAN (Supervisor)

Department of Computer Engineering

Galatasaray University -------------------------

Assist. Prof. Dr. Murat AKIN

Department of Computer Engineering

Galatasaray University -------------------------

Prof. Dr. Mehmet Turan SÖYLEMEZ

Control and Automation Engineering Department

Istanbul Technical University -------------------------

Date: -------------------------

 iii	

ACKNOWLEDGEMENTS

Firstly, I would like to thank my thesis advisor Prof. Dr. Tankut ACARMAN for the

continuous guidance and endless effort throughout my research as well as my whole

master program. He consistently allowed this thesis to be my own work, but steered me

in the right direction whenever he thought I needed it.

I also thank Mr. Muhammed ALYÜRÜK, who is the general manager of my company

(İSBAK A.Ş.) for making this work possible by providing support and giving importance

to academic researches.

Finally yet importantly, I would like to thank my family that has always been supporting

me during my whole education life and Deniz HACIHALİL for proofreading and advices.

February 2017

Mustafa TEKELİ

TABLE OF CONTENTS

LIST OF SYMBOLS .. v	

LIST OF FIGURES .. vii	

LIST OF TABLES ... viii	

1.	 INTRODUCTION .. 1	

2.	 LITERATURE REVIEW .. 3	

3.	 MATERIALS AND METHODS ... 8	

 3.1.	Vehicle Detection ... 10	

 3.2.	Distance and Relative Speed Estimation ... 14	

 3.3.	Tracking ... 17	

 3.4.	Sensor Fusion ... 19	

4.	 EXPERIMENTAL STUDY ... 23	

5.	 RESULTS & CONCLUSIONS .. 41	

	 REFERENCES .. 43

 BIOGRAPHICAL SKETCH ... 46

LIST OF SYMBOLS

V2V : Vehicle to Vehicle Communication

V2I : Vehicle to Infrastructure Communication

DSRC : Dedicated Short-Range Communication

UWB : Ultra Wide Band

IMU : Inertial Measurement Unit

LIDAR : Laser Imaging Detection and Ranging

ROI : Region of Interest

CPU : Central Processing Unit

GPU : Graphics Processing Unit

ms : Milliseconds

ITS : Intelligent Transportation Systems

PC : Personal Computer

Hz : Hertz (Unit of frequency)

SIFT : Scale-Invariant Feature Transform

PCA : Principle Component Analysis

NN : Neural Networks

SVM : Support Vector Machine

TP : True Positive

FP : False Positive

FN : False Negative

ER : Error

TPR : True Positive Rate (Recall)

PPV : Positive Predictive Value (Precision)

Kmph : Kilometer per Hour

UIUC : University of Illinois at Urbana-Champaign

GPS : Global Positioning System

vi

ECEF : Earth-centered Earth-fixed

LAN : Local Area Network

IEEE : The Institute of Electrical and Electronics Engineers

ISM : Industrial Scientific Medical Band

CAM : Cooperative Awareness Message

GHz : Giga Hertz

MHz : Mega Hertz

LIST OF FIGURES

Figure 2.1: Vehicle Validation ... 4

Figure 2.2: HV using wavelet features .. 7

Figure 3.1: Integral image method ... 11

Figure 3.2: Sample images from UIUC image database ... 13

Figure 3.3: Detected car on test image of UIUC image database 13

Figure 3.4: Detection time of cars in our trained system ... 14

Figure 3.5: Image analysis for the lane marker detection .. 15

Figure 3.6: Pixel based inter-vehicle distance estimation in 2D image plane 16

Figure 3.7: The Forward-Backward error .. 18

Figure 3.8: The Median Flow algorithm .. 19

Figure 3.9: Detection and tracking algorithm of our application 20

Figure 3.10: Particle filter algorithm. .. 22

Figure 4.1: Test system for data collecting .. 24

Figure 4.2: Data collection method .. 25

Figure 4.3: IMU unit orientation and vehicle drive direction .. 26

Figure 4.4: Sample from KITTI vision benchmark. .. 27

Figure 4.5: Birds-eye-view window. ... 29

Figure 4.6: Detected vehicles. .. 31

Figure 4.7: Detected vehicles and birds-eye-view projection. 32

Figure 4.8: Sensor fusion view. ... 33

Figure 4.9: Vision sensor detections. ... 34

Figure 4.10: Out-of-sight scenario. .. 35

Figure 4.11: Particle filter result. ... 35

Figure 4.12: Path of the road data used in experiment. ... 36

Figure 4.13: Hardware features of NVIDIA Jetson TK1 board. 37

Figure 4.14: Canny edge detection and Hough Transform performance on resized

(320x240) image (left) vs the original (3888x2592) size (right) 38

vii

Figure 4.15: Canny edge detection and Hough Transform performance on resized image

(320x240) .. 39

Figure 4.16: Canny edge detection and Hough Transform performance on original image

(3888x2592) .. 39

Figure 4.17: Output of CPU vs GPU line detection test on the highway image 40

LIST OF TABLES

Table 2.1: Execution time on highways ... 5	

Table 2.2: Average processing time of each algorithm ... 6	

Table 3.1: List of parameters in IEEE 802.11p .. 10

Table 3.2: Used Haar features .. 10	

Table 4.1: CAM samples received from the data sender in IEEE 802.11p 26	

Table 4.2: IMU samples ... 27	

Table 4.3: Comparison of TPR (or Recall), PPV (or Precision) of KITTI vision

benchmark and our road data from Istanbul ... 28	

Table 4.4: Distance and speed comparison of camera and V2V sensors for a detected

vehicle ... 28

Table 4.5: Summary of our collected data ... 36	

ABSTRACT

Nowadays autonomous cars have already started to be used in our daily lives. They are

the new generation vehicles, which are able to operate themselves under certain

conditions without the need of a driver’s response. They can follow the lane markers and

keep themselves inside the lane, track the vehicles around and decide and perform a break

or even change the present lane where necessary. Driver assistance systems are the

underlying technology of these vehicles. It enables them to analyze the road and traffic

conditions in order to take these kinds of necessary actions. This makes the task of

detection of objects at the road such as vehicles, lane markers, guardrails and even

pedestrians walking by highly important. For this reason, it is also very substantial to be

able to operate in real time conditions.

Current studies focused on this area are mostly based on vision sensor, LIDAR,

microwave sensors etc. However, they alone suffer from conditions such as high variety

of targets, lighting fluctuations, short range, requirement of high process power, cost etc.

In this work, we introduce a monocular camera based system, which is enhanced with the

IEEE 802.11p vehicle-to-vehicle communication standard. By the help of IEEE 802.11p

we aim to compensate the cons of the vision sensor systems which are mentioned above.

Due to importance of real time requirement, we also made tests on the GPU accelerated

NVIDIA Tegra Jetson TK1 development board and compare with the CPU results for

future development.

RÉSUMÉ

De nos jours, les voitures autonomes commencent déjà à être utilisées dans notre vie

quotidienne. Ce sont les véhicules de nouvelle génération qui sont capables de

fonctionner à certaines conditions sans avoir besoin d'une réaction du conducteur. Ils

peuvent suivre les marqueurs de la voie et se maintenir à l'intérieur de celle-ci, localiser

les véhicules autour et décider et effectuer un arrêt ou même changer la voie actuelle en

cas de nécessité. Les systèmes d'aide au conducteur représentent la technologie sous-

jacente de ces véhicules. Ils permettent aux véhicules d'analyser les conditions routières

et la circulation afin de prendre ce type d'actions nécessaires. Cela rend la tâche de la

détection des objets sur la route tels que les véhicules, les marqueurs de la voie, les

rambardes et même les piétons très importante. Pour cette raison, il est également très

important de pouvoir fonctionner en temps réel.

Les études actuelles portent principalement sur le capteur de vision, le LIDAR, les

capteurs micro-ondes, etc. Cependant, seuls, ils souffrent de problèmes tels que la grande

variété de cibles, les fluctuations d'éclairage, la courte portée, la nécessité d’une haute

puissance d’opération, les coûts etc. Dans cette étude, nous introduisons un système à

base de caméra monoculaire, qui est amélioré selon la norme IEEE 802.11p concernant

la communication de véhicule-à-véhicule. A l'aide de la norme IEEE 802.11p, nous

visons à compenser les inconvénients des systèmes de capteurs de vision qui sont

mentionnés ci-dessus. En raison de l'importance des exigences en temps réel, nous avons

également effectué des tests sur le GPU accéléré NVIDIA Tegra Jetson TK1 carte de

développement et comparé avec les résultats du CPU pour le futur développement.

ÖZET

Günümüzde otonom araçlar trafikte aktif olarak kullanılmaya başlanmış durumda. Bu

araçları sürücüden geri bildirim almaksızın belirli koşullarda kendini sürebilen taşıtlar

olarak tanımlayabiliriz. Otonom araçlar şeritleri algılayıp takip edebildiği gibi diğer

araçları da algılayarak gerekli durumlarda fren sistemini devreye sokabilmekte ve hatta

şerit değiştirebilmektedir. Bu teknolojinin alt yapısı ise sürücü destek sistemleri

tarafından oluşturulmaktadır. Bu sistem sayesinde araçlar yol ve trafik durumunu analiz

ederek gerekli eylemleri uygulayabilmektedirler. Bu işlemler yol üzerindeki diğer

araçların, şeritlerin, bariyerlerin ve hatta yayaların algılanması problemini önemli

kılmaktadır. Bu nedenle bu sistemlerin gerçek zamanlı olarak çalışma gereksinimi de

doğmaktadır.

Bu alanda yapılan çalışmalar çoğunlukla görüntü sensörü, LIDAR, mikrodalga sensör vb.

kullanımı ile gerçekleştirilmiştir. Ancak bu cihazlar hali hazırda nesnelerin çok

çeşitlenmesi, ışık değişimleri, kısa menzil, yüksek işlem gücü gereksinimi ve maliyet gibi

parametrelerden etkilenmektedir. Bu çalışmamızda IEEE 802.11p araç-araç

haberleşmesiyle desteklenmiş tekil görüntü sensörü tabanlı bir sistem önerilmektedir.

IEEE 802.11p araç-araç haberleşmesi sayesinde yukarıda belirtilen görüntü sensörünün

eksilerinin telafi edilmesi hedeflenmiştir. Ayrıca gerçek zamanlı çalışma

gereksiniminden dolayı NVIDIA Tegra Jetson TK1 geliştirme kartı kullanılarak

üzerindeki GPU üzerinde de performans testleri yapılmış ve CPU sonuçları ile de

karşılaştırılmıştır.

1	

1. INTRODUCTION

Driver assistance systems are the important part of autonomous cars of future. It is the

background technology of self-driving cars which are designed to replicate the human

behavior. Even today it is already possible to see these vehicles at the streets. The vehicle

can drive itself without the input of a driver, keep itself inside the lane, keep the necessary

distance from the front car and even change the present lane when the required conditions

met. In order to achieve these tasks, the detection of other objects such as lane markers,

vehicles, traffic signs in the environment is very essential. For instance, in case of pre-

crash detection, one has to detect the front vehicle and estimate the distance as well as the

speed of that vehicle to take necessary actions when it took a sudden break in order to

prevent any possible fatal accident. Such a system needs to be robust and real time to

take these necessary actions immediately. For this reason, accurate detection of other

objects around the vehicle is a highly important task.

Current studies at this area can be based on vision sensors, microwave sensors and

LIDAR. However, they each have limited performance and accuracy. For instance,

detection with standard vision sensors would be inaccurate at longer distances due to

reduced resolution, in scenes with bad weather conditions as well as the sudden changes

in lighting. Also, the variety of the targets is another problem at this task. Vehicles may

come with different shapes and sizes. Other than that, LIDARs are still very expensive

products and they need high computational power while boards deployed in vehicles are

tend to be small and cost effective. Microwave radars are much more cost effective than

LIDARs, however they suffer from reflections from concrete objects on the road. On the

other hand, our approach motivated by the vision sensor and IEEE 802.11p V2V

communication, targets these downsides for a better detection results without the need of

a high computational power.

2	

For the real time performance requirement, we also test the algorithms in a GPU

accelerated board as well as today’s regular CPU. We used NVIDIA Tegra Jetson TK1

GPU accelerated board which has the mobile processor to have the same advanced

features & architecture as a modern desktop GPU while still using the low power draw of

a mobile chip and therefore it’s very suitable for these kinds of applications.

Systems like these need to be tested very well on the real world conditions. Otherwise

its performance and importance might never be evaluated and cannot be used in such

critical scenarios. We also tested our system in real time conditions such as rural roads,

highways and we will be able to get live results to evaluate our system’s performance in

such conditions.

2. LITERATURE REVIEW

Object detection has been widely studied in many applications for years. For instance,

authors focused on vehicle detection based on radar and vision fusion to automatically

activate the car’s emergency braking system (Kim & Song, 2013). They asserted that the

radar cannot successfully recognize if the detected object is a real vehicle or not.

Although the radar’s performance in radial direction is high, they give its coarse

performance in azimuth direction. This problem causes false detection of a preceding

vehicle in the same lane, resulting in false activation of automatic emergency braking.

And to improve this false detection, they suggest a vehicle recognition method based on

the shape and motion in which the motion attribute is to determine whether the object is

either stationary or dynamic and the shape attribute is to identify whether the objective is

a real vehicle or not. Figure 2.1 shows the flowchart of this algorithm. They also

supported their algorithm with field test data.

Çayır and Acarman (2009) have built a low cost driver monitoring and warning system

to warn the driver when the car leaves the lane by the help of a single camera. Like so,

in a recent work of Huo et al. (2012), another lane departure warning system has been

studied to assist the driver when the car exits the lane. They used a radar which uses a

Doppler Effect to detect the frequency shift in reflected waves and vision-based camera

to recognize the patterns on the road such as lane-marking, front vehicle, road sign and

other obstacles. This is not a vehicle detection based application, however the authors

have targeted the real time lane detection and tracking which is another important task in

active driving assistance systems in ITS.

4	

Figure 2.1: Vehicle Validation (Kim & Song, 2013)

However, Alessandretti et al. (2007) introduced a vehicle detection system which was a

fusion of radar and vision data. Additionally, they included the guard rail detection and

also a method to handle the overlapping areas. They used radar data to locate the areas

of interest on the images to perform the detection task. Vehicles found in different image

regions were combined together and series of filters were applied to remove the false

detections. They found out that their systems performed good results in both rural and

highway environments. They didn’t detect all the vehicles in all images, however their

system was promising enough for driver assistance applications since the closest and most

dangerous vehicles are correctly and precisely detected. Table 2.1 shows their system’s

execution time performance. From the figures in Table 2.1 it is possible to say that the

more guard rails are detected, the more time is saved. Specifically, in sequence 12, many

guard rails were present and detected, and the time saved is about 36%. They also state

that a reduction of 4-5 ms in execution time is very significant in such real time

applications.

Another real time application was proposed by Betke et al. (2000) in order to develop an

intelligent, camera-assisted car which is able to interpret its surroundings in real time

basis. The system that has been developed at this work, analyzes color videos which are

5	

grabbed from a forward-looking video camera mounted in a car. They used a combination

of color, edge and motion information to detect the vehicles, road boundaries and lane

markings on the road. Additionally, they present a method for detecting cars that is a

temporal differencing and tracking motion parameters that are typical for cars. They

evaluated their system in American and German highways both during both the day and

night. They achieved reasonably good result even with a low-cost PC and an image

capture board. Table 2.2 shows the processing times of this work.

Table 2.1: Execution time on highways. VD stands for vehicle detection algorithm
only, GRD stands for guard rail and vehicle detections algorithms and OBM stands for

overlapping boxes management, guard rail and vehicle detection. The decrement of
OBM with respect to VD is shown in the reduction column (Alessandretti et al., 2007)

sequence VD [ms] GRD [ms] OBM [ms] reduction

11 22 19 17 22%

12 25 18 16 36%

13 30 28 26 13%

14 27 24 22 18%

15 29 27 26 10%

average 26,6 23,2 21,4 20%

Bertozi et al. (1998) studied the stereo vision based obstacle and lane detection on

moving vehicles in order to increase the road safety. They focused on detecting both

generic obstacles and the lane positions at a rate of 10 Hz. They needed to use a custom

massively parallel hardware for this work. By the help of this specific hardware

perspective effect from stereo images was removed. They used left vision sensor to detect

lane marking while remapped stereo images were used to detect the free space in front of

the vehicle. Rezaei et al. (2015) has studied another real time monocular camera based

application for vehicle detection and as well as inter-vehicle distance estimation. They

used Haar based features and pixel based distance estimation.

6	

Table 2.2: Average processing time of each algorithm (Betke et al., 2000).

Step Time Average time

Searching for potential cars 1-32 ms 14 ms

Feature search in window 2-22 ms 13 ms

Obtaining template 1-4 ms 2 ms

Template match 2-34 ms 7 ms

Lane detection 15-23 ms 18 ms

In a recent work of Yıldız and Acarman (2012) an extended SIFT feature description

method has been studied in order to achieve robust vehicle tracking. Sun et al. (2006)

focused on a pre-crash vehicle detection system as well and evaluated their work with

different feature extraction methods as well as classifiers. As a result, they achieved an

average detection rate of 10 Hz. The data was collected and processed in real time on a

moving car while cruising under different traffic conditions. Their algorithm consisted

of two parts: A hypothesis generation (HG) step in which the image location where the

vehicles might be present were extracted and the verification (HV) step which verifies

the hypothesis. They used PCA, Gabor and Wavelet feature extraction methods. They

found out that regardless of the feature extraction method each time Support Vector

Machine gave better results on vehicle detection in comparison to Neural Networks.

Figure 2.2 shows the result of the system when Wavelet features used with both SVM

and Neural Networks. 15, 20, 25, 30 and 35 are the hidden nodes used in neural network.

They found out that using SVM (referred as WS), the average error was 8.52%, the

average FP rate was 6.50% and the average FN rate was 2.02%. Next they evaluated the

performance of wavelet features using NN, referred to as WN in Figure 2.3. The lowest

error measured as 16.4% (FP 12.81% and FN 3.59% and was achieved by a NN with 30

hidden nodes. SVM performed better than NN using wavelet features).

7	

Figure 2.2: HV using wavelet features (Sun et al. 2006)

There have been other authors like Caraffi C. et al. (2012), Jazayeri A. et al. (2011),

Chen Y. et al. (2011) who aimed at similar tasks such as safety, auto-driving, driver

assistance systems for ITS which are based on visual sensors and as well as the

autonomous driving system which uses six LIDARs in order to detect pedestrian crossing,

speed-bump and obstacles on road by Choi J. et al. (2012).

3. MATERIALS AND METHODS

In this work we focused on robust and reliable vehicle and lane marker detection on a

moving vehicle at real time conditions as well as distance and relative and ground speed

estimation. We propose a system, which detects the vehicles simultaneously at real time

conditions by the help of a standard visual sensor. Also we support our monocular visual

sensor based system with a V2V (Vehicle-to-vehicle communication) on-board unit.

Direct communication between the vehicles allows information exchange without

requiring any fixed infrastructure or base stations. The location and velocity of vehicles

are constantly changing and the RF communication range is fairly short distance;

therefore, the set of vehicles that can directly communicate will constantly change over a

short period of time. This dictates that the physical layer and the network must be capable

of operating in an ad hoc, decentralized manner, although coordination and

synchronization through GPS time signals are possible. Any two nodes must be able to

communicate securely whenever they are within the communication range.

In a V2V network we can distinguish two modes of communication, usually designated

as:

• Single hop: Two vehicles are close enough to communicate directly with each

other (either broadcast or point to point) with low latency.

• Multi hop: Vehicles that cannot directly communicate may forward messages

through intermediate nodes.

9	

Multi hop communication has been the subject of much research (Korkmaz et al. 2006),

but no standard has emerged, and in fact the technical difficulties of establishing routing

and acknowledgment protocols along with potentially high latency may limit its use to

very specific applications such as medium range emergency notification or other sparse

broadcast communication applications.

Many early experiments in V2V communication were carried out with standard wireless

LAN, for example IEEE 802.11b, operating in the 2.4-GHz ISM band, and some success

was achieved at ranges up to several hundred meters. But the technical difficulties

inherent in vehicle and traffic situations, including the high relative velocities (Doppler

effects), a safety critical low latency requirement, operation in an urban environment

(multipath), and spectrum competition from other users in unlicensed frequency bands

renders this an unrealistic solution for commercial deployment. The IEEE

802.11p/WAVE standards have recently emerged as the current consensus for

implementation of V2V and local V2I communications.

Dedicated Short-Range Communication (DSRC) systems are short- to medium-range

communications systems intended to cover communication ranges of 10–1,000m. The

term DSRC has come to refer to automotive or mobile applications. A number of

technologies have been identified, but the current object of worldwide standardization

activities are variants of the 802.11p/WAVE standard operating in the 5.9-GHz range.

The United States has currently allocated 75 MHz of spectrum for DSRC applications,

and the EU has allocated 35 MHz of overlapping spectrum.

Other DSRC technologies include a 902–928-MHz band standard (ASTM E2158-01) that

has primarily been used in electronic toll collection and commercial vehicle operation

applications. It is incompatible with the 5.9-GHz DSRC standards.

A Japanese industrial consortium, including OKI Electronics Ltd., developed the

“Dedicated Omnipurpose Intervehicle Communications Linkage Protocol for Highway

Automation” (DOLPHIN) (Tokuda et al. 2000, Shiraki et al. 2001, Tsugawa el al. 2001)

system operating in the 5.8-GHz band which provided broadcast, point-to-point, and

10	

broadcast with packet forwarding capabilities. Bluetooth, various UWB, WiMAX, and

even Zigbee (IEEE 802.15.4) could also be considered for DSRC applications.

In order to comply with the European Profile Standard ITS-5G defined in ETSI EN 302

571, IEEE 802.11p physical and MAC layers are implemented. Cooperative Awareness

Messages (CAM) broadcast with a value of 19 dBm on the 10 Mhz channel at 5.9 GHz

with a data rate of 3 Mbit/s. List of parameters can be seen in Table 3.1.

Table 3.1: List of parameters in IEEE 802.11p

Parameter Value

Scenario Urban Canyon

Vehicle Velocity Max 20 m/s

Transmit Rate 3 Mbps

Transmit Power 19 dBm

Carrier Sensing Threshold -99 dBm

Transmit Range 550 m

CAM Rate 1 Hz

We used C++ as the programming language of our system and took advantage of OpenCV

image processing library. OpenCV provides us useful algorithms which can both run in

CPU and as well as in GPU with only few refinements. We also started to implement

important parts of our system both into the CPU and GPU architecture. We made several

tests and compared the CPU and GPU performances of individual algorithms.

3.1. Vehicle Detection

We used Haar feature-based cascade classifier for detection. This object detector has

been initially proposed by Viola P. and Jones M. (2001) and later its features and

efficiency improved by Lienhart R. et al. (2003). Haar classifier is trained with a few

11	

hundred samples of target object which are called positive examples and non-target

examples are called negatives. After the classifier is trained, it features several

classification stages which are applied to a ROI within the image. Table 3.1 shows the

features used in the algorithm. For weighting, pixel sum difference between black areas

and white areas calculated by using integral image (shown in equation 1 and Figure 3.1)

that is used for fast feature evaluation.

 𝑖𝑖 𝑥, 𝑦 = 	 𝑖(𝑥(, 𝑦()*+,	*,-(,- (1)

Figure 3.1: Integral image method. Sum of pixel values in D region can be calculated as
4+1-(2+3).

We then trained our own vehicle classifier as a starting point. We used UIUC Image

Database for Car Detection for training. This database provides 550 positive and 500

negative samples collected at the University of Illinois. The resolution of each positive

and negative training images are 100x40 pixels. Figure 3.2 shows sample images from

this database.

Training 550 positive and 500 negative samples took more than 3 hours. Training was

finished in a test pc running a 64 bit Linux Ubuntu operating system. Figure 3.3 shows

12	

the output of the trained system. It can be seen that the car in the test image has been

detected successfully and circled in white.

We also made real time tests at test area of my company. Figure 3.4 shows the

performance of the current system. Resolution of the live images which are retrieved

from the camera is 640x480 pixels.

Table 3.2: Used Haar features from Lienhart R. et al (2001). Black regions have
negative and white regions have positive weights.

Edge

features

Line

features

Center-

surround

features

We tested our system’s performance from image sequences data which are collected in

real time on our test car while cruising. We ran tests both on city traffic as well as

highways to understand the behavior of our system at different environments. We

prepared a simple interface showing real time camera frames and marked refined vehicle

positions. According to the Figure 3.4, it is possible to say that current system’s detection

rate is about 14-15 Hz even though we performed the detection algorithm at each retrieved

frame. During the tests camera was set to stream at a rate of 20 fps.

13	

Figure 3.2: Sample images from UIUC image database. First row shows negative,
second row shows positive and the third row shows the test images

Figure 3.3: Detected car on test image of UIUC image database

14	

After that we started to retrieve each frame collected from the road in order to analyze the

road for vehicle and lane marker detection. The lane marker detection is important for

evaluating our car’s position inside the lane. We first applied smoothing to each frame

to get rid of the noises and then used Canny edge detection algorithm to extract edges

which was introduced by Canny J. (1986). Afterwards, we applied Hough Line

Transform by Matas J. et al., (2000) for possible lines on the road. Figure 3.5 shows the

output of this stage.

Figure 3.4: Detection time of cars in our trained system

We use this information to estimate the lane borders and draw them on the screen so if

the car does not cruise at the center of the lane our system will inform the driver. After

that we applied the car detection task by using our generated trained HAAR classifier

before. We saw that our system is able to detect the front vehicles at close distances.

3.2. Distance and Relative Speed Estimation

We used pixel based inter-vehicle distance estimation (Rezaei et al. 2015) in order to

calculate the front cruising vehicle’s distance to the ego vehicle as in Figure 3.6. We also

estimated relative speed of the cruising vehicle in front from the distance data. We

changed the proposed algorithm of Razeai et al. The proposed algorithm requires the

15	

vision sensor to be mounted at a tilt angle so that the projection of lower bound of image

must exactly correspond to the distance the distance between the front of the car and

camera.

Figure 3.5: Image analysis for the lane marker detection

However, with this installation hood of the car is quite visible and taken into account in

algorithms like edge and feature detection. For this reason, we decreased the tilt angle so

that only road is visible at lower part of the image. As a result, our formula for distance

estimation changed as:

 𝑑2 = tan 𝜃4 ± 𝛽 ×𝐻 (2)

16	

 𝐷 = 𝑑2 − 𝑑1 (3)

Figure 3.6: Pixel based inter-vehicle distance estimation in 2D image plane (Rezaei et
al. 2015)

where 𝐻 stands for the camera height, 𝜃4 is the angle between the 𝑍4 and −𝑌4 axis, 𝑑1 is

the length from camera to the front of the vehicle, 𝑑1 is the distance between camera and

the front vehicle and 𝐷 is the distance between front vehicle and the ego vehicle. One

parameter in this calculation which is not explained clearly is the field of view (FOV) of

the camera. FOV of the camera depends on different parameters such as focal length of

the lens, sensor width and height. Using these parameters, one can calculate the FOV as:

 ∝	= 2	×	tan?@ A B
C

 (4)

 𝛽	 = 2	×	tan?@ D B
C

 (5)

17	

where 𝐻 stands for the sensor height in mm, 𝑊 is the sensor width in mm, 𝑓 as the focal

length in mm, ∝ is the vertical FOV and 𝛽 is the horizontal FOV. The sensor information

can be found in manufacturer’s datasheet.

After distance estimation is finished we calculated relative speed of the vehicle based on

the distance travelled as in (6).

 𝑉H = 3600	×	 ±∆M
@NNN A

 (6)

𝑉H stands for relative speed of the detected vehicle in kmph, ∆O is the distance in meters

that the vehicle travelled between two consecutive frames and 𝐻 is the frame rate of the

camera.

3.3. Tracking

We made tests with different trackers such as MIL, BOOSTING, TLD, KCF. However,

we saw that MEDIAN FLOW tracker introduced by Kalal et al. (2010) showed better

results in our scenario, specifically in vehicle tracking. The algorithm is based on failure

detection that is measured by the differences due to the occlusions between video frames.

Such an occlusion can be seen in Figure 3.7.

Given the pair of images and a bounding box (vehicle ROI in our case), it generates a set

of points inside box and applies Lucas-Kanade tracker which computes a sparse motion

flow between frames. According to the quality of the point predictions each point is

assigned an error, before filtering out the 50% of the worst errors as outliers. The

remaining points are used to estimate the displacement of the whole bounding box. As a

result, bounding box gets updated as the object moves in time. Figure 3.8 shows the

process of the algorithm.

18	

Each of the tracked boxes are either given an incremental unique id or current id is

maintained through the lifecycle of the vehicle. Algorithm of our detection and tracking

application can be seen in Figure 3.9. When the new image is received from the camera

we preprocess the image by converting it to grayscale and apply blurring. The image is

then given as an input to detection algorithm to generate vehicle hypotheses as well as

lane markers. Each hypothesis is then verified by whether its representing the line

information as the vehicle forms. We simply counted horizontal lines that can form a

vehicle to verify our candidates rapidly.

Figure 3.7: The Forward-Backward error (Kalal et al. (2010)). Point 2 is occluded in
the next frame and tracker matched a different point. Tracking back from this point to
the previous frame ends in a different location which ensures that the matched point is

inconsistent.

As the next step we gave each detection to our tracker as an input. However, our tracking

algorithm firstly checks whether the given vehicle whether is already in tracked state

before initializing the new window. If so, our tracker simply ignores or otherwise, it

assigns this new window a unique id, performs Forward-Backward error estimation and

updates its location at each frame until its invisible.

19	

3.4. Sensor Fusion

So far, we could only have a rough estimation of relative speed of other vehicles. For

ground speed estimation, we needed to know our speed as well. Thus, we could estimate

the speed of the target vehicle in reference to the ground. However, we also want to

enhance our camera measurement with another sensor that is IEEE 802.11p V2V

communication in our case. For this reason, our GPS communication software run in our

IEEE 802.11p unit. For our offline tests, we needed real road data so we can evaluate our

system’s performance and outputs. We covered this topic in the next chapter.

Figure 3.8: The Median Flow algorithm by Kalal et al. (2010)

After collecting real road measurements with our camera and IEEE 802.11p units we had

information of a particular vehicle’s position and speed from two different sensors. Using

our detection method, the camera gives us the pixel based position information in 2d

which is later used for estimating the local coordinates X and Y in meters as well as the

distance and relative speed in kmph. However, from our IEEE 802.11p communication

we have the geographic coordinate information that is latitude, longitude and altitude of

target and ego vehicle. In order to support our camera measurement, we needed the

20	

position information in the same units as we have both speed information in kmph. To

achieve this, firstly we converted each latitude, longitude and altitude information from

the detected vehicles as well as ego vehicle to the global earth-centered, earth-fixed

(ECEF) coordinates in meters. Next, the difference in ECEF coordinates between the

detected vehicle and ego vehicle are converted to east, north, up (ENU) local coordinates.

Since we converted the difference of ECEF coordinates, we had the difference ENU

coordinates which provide us east, north and up difference in meter between the detected

vehicle and ego vehicle. However, this result gives us the ENU coordinate difference in

Figure 3.9: Detection and tracking algorithm of our application

21	

reference to east, north and up axes. We need the X, Y and distance information towards

the detected vehicle with our current heading. Using the rotation matrix with our heading

information and local ENU position vector we obtained the local coordinates to the

detected vehicle (7). Here we assume that the road is flat and we ignore the up figure.

cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃
	×	

	𝑒	

	𝑛	
 (7)

After finding calculating the local coordinates of the detected vehicle we calculated its

Euclidean distance. In this calculation, we have taken into account the distances between

bumpers of the vehicles and the GPS receiver as explained in Figure 4.1.

We used the particle filter algorithm in order to fuse our sensor measurements. We used

200 particles, used 3 meters and 4 meters as measurement variance for our vision sensor

and V2V sensor, respectively. Particle filter is a numerical approximation to the Bayes

Filters. The sampling importance resampling (SIR) algorithm is one of the most widely

used sequential Monte Carlo methods, which allow the system state estimation to be

computed on-line while the state changes as it is the case for tracking algorithms. A SIR

filter usually manages a fixed number of possible system state hypotheses 𝑥VW, where

superscript i denotes the i-th individual particle. These individual particles approximately

generate the distribution of the system state, p(Xt). The SIR algorithm is computed at

each discrete time step. Algorithm of such system can be seen in Figure 3.10.

22	

Figure 3.10: Particle filter algorithm

4. EXPERIMENTAL STUDY

For our system’s evaluation, we also collected data at both highway and in-city roads of

Istanbul, Turkey. We used two cars to collect data. One of them has the camera sensor,

IMU, IEEE 802.11p unit and GPS receiver on it, which we will be calling CAR A. The

other car has IEEE 802.11p unit and the GPS receiver, which we will be calling CAR B.

An illustration of such system can be seen in Figure 4.1. We used a 1080p network

camera with 8 mm focal length in CAR A.

We prepared a data collector and a sender software for our system. The data collector

runs in a laptop in CAR A and stores the data received from IEEE 802.11p, GPS, IMU as

well as live frames from the camera. The data sender runs on IEEE 802.11p unit also in

CAR A and sends the received CAM through TCP communication to our data collector.

The schema of this communication can be seen in Figure 4.2. The example of the received

dataset can be seen in Table 4.1 and 4.2.

24	

Figure 4.1: Test system used for data collecting. da, db, dc, and dg refers to the distance
from GPS receiver to the front bumper in CAR A, distance from GPS receiver to the

rear bumper in CAR B, estimated distance between GPS receivers of the two cars and
actual distance between the cars, respectively.

25	

Figure 4.2: Data collection method.

In Table 4.1 the samples from CAM data are showed. Every message consists of two sets

of variables, which are latitude, longitude, altitude in meters, heading angle, speed in

km/h. The first set is gathered from the ego vehicle CAR A while the second set is from

the IEEE 802.11p unit in CAR B. Each of the data is associated to a frame number that

corresponds to the last frame retrieved from the camera. One important note here is that

our camera was set to operate at 20 fps during the data collection.

Table 4.2 shows the IMU samples received from our IMU unit. The first 3 figures are

the acceleration in X, Y and Z axes where the last 3 figures are the angular rates in X, Y

and Z axes. IMU measurements are also associated with the corresponding frame

number. Since our IMU device much faster than our camera sensor, we were able to store

1 measurement for each camera frame unlike in IEEE 802.11p communication. The

device orientation during the data collection can be seen in Figure 4.3.

26	

Table 4.1: CAM samples received from the data sender in IEEE 802.11p.

Frame

No

18350 18352 18353 18355 18358 18370 18374 18388 18418

Lat1 41.045

2701

41.045

3373

41.045

3373

41.045

3373

41.045

3373

41.045

4036

41.045

4036

41.045

4036

41.045

5236

Lon1 29.017

8846

29.018

0603

29.018

0603

29.018

0603

29.018

0603

29.018

2310

29.018

2310

29.018

3938

29.018

5480

Alt1 6.90 7.09 7.09 7.09 7.09 7.59 7.59 8.09 8.19

Heading1 63.0 63.2 63.2 63.2 63.2 63.0 63.0 63.5 63.2

Speed1 60.18 58.92 58.92 58.92 58.92 57.27 57.27 53.86 51.27

Lat2 41.045

5274

41.045

5869

41.045

5869

41.045

5869

41.045

5869

41.045

6373

41.045

6373

41.045

6831

41.045

7198

Lon2 29.018

5476

29.018

6916

29.018

6916

29.018

6916

29.018

6916

29.018

8261

29.018

8261

29.018

9478

29.019

0550

Alt2 11.69 12.30 12.30 12.30 12.30 12.50 12.50 12.50 12.59

Heading2 62.3 61.9 61.9 61.9 61.9 64.1 64.1 63.6 65.3

Speed2 50.80 50.80 49.16 49.16 49.16 49.16 44.45 44.45 34.01

Figure 4.3: IMU unit orientation and vehicle drive direction.

27	

Table 4.2: IMU samples.

Frame
No

AccX AccY AccZ RateX RateY RateZ

18350 -0.0595093 0.0430298 -1.06232 -0.480652 2.48016 0.0192261

18351 -0.0695801 0.0479126 -1.01013 -1.59576 0.596008 -0.115356

18352 -0.0457764 0.00274658 -1.02356 -0.211487 1.07666 0

18353 -0.0543213 0.0683594 -1.10443 -1.24969 0.480652 0.211487

18354 -0.0387573 0.0534058 -0.844421 0.499878 0.365295 0.115356

18355 -0.0283813 0.06073 -0.987549 1.3266 -1.90338 -0.0769043

18356 -0.0280762 0.100098 -0.974426 -0.0192261 -2.7301 -0.0576782

We used real traffic data collected in Istanbul, Turkey as explained. We ran our

algorithms with this collected data and analyzed the results. However, we also compared

hit rate of our classifier with well-known vision benchmark of KITTI from Geiger et al.

The samples from this data set can be seen in Figure 4.4 and the results of the comparison

can be seen in Table 4.3. One can see that we received better precision performance with

our road data. We believe that better quality of our vision sensor data caused this

difference.

Figure 4.4: Sample from KITTI vision benchmark.

28	

Table 4.3: Comparison of TPR (Recall), PPV (Precision) of KITTI vision benchmark
and our road data from Istanbul.

Dataset TP FP FN TPR PPV

KITTI 26 9 6 81.25% 74.28%

Our Road Data 30 2 8 78.94% 93.75%

We prepared a birds-eye-view window and placed each object in reference to their local

coordinates, assuming that our ego vehicle is located at position P(0,0). Such window

can be seen in Figure 4.5. This window is divided by line pairs every 3 meters in a range

of 60 meters that is resulting a grid-based map for our detected objects. In addition to

that, the FOV of our vision sensor is also projected to this window. The detected vehicles

from our vision sensor are placed within this area.

Table 4.4: Distance and speed comparison of camera and V2V sensors for a detected
vehicle. Here Frame No, Object Id, Distancec, Distancev, Speedc, Speedv, XAcc, Yacc

and Zacc corresponds to number of the current frame received from camera, unique id
assigned by our tracker, distance estimation from camera detection, distance estimation

from V2V, ego speed information from GPS receiver on IEEE 802.11p unit on ego
vehicle + relative speed from camera, speed information from V2V, acceleration rate in

X, Y and Z axis, respectively.

Frame

No

Object

Id

Distancec Distancev Speedc Speedv Xacc Yacc Zacc

10 2 13.50 13.68 59.27 –

0.37

55.70 0.003 0.126 -1.015

11 2 13.20 13.68 59.27 –

0.73

55.70

-0.019

0.105

-1.028

12 2 12.76 13.68 59.27 –

1.25

55.70
0.013

0.138
-1.017

13 2 12.49 13.68 59.27 –

1.58

55.70 -0.013 0.139
-1.024

14 2 12.49 13.68 59.27 –

1.58

55.70
0.020

0.119 -0.986

30 2 12.63 12.85 55.68 –

1.41

55.70
0.004

0.082 -1.047

29	

We compared the calculated distance (Distancev in Table 4.4 and dg in Figure 4.1) result

to other pixel based distance calculation. We found that distance values are quite similar

to the each other (see Table 4.4). Based on the position information we were able to

match the two sensor measurements. For instance, vehicle with id 2 is detected and

tracked starting from the tenth frame. We can see that our pixel based distance estimation

gave the result as 13.50 meters while relative speed is estimated as -0.73 kmph. After

sensor fusion, using vision sensor and V2V communication ego speed is received as 59.27

kmph and the speed of the detected vehicle 2 is received as 55.70. According to this data,

we can say that our vision sensor predicted the speed of the vehicle as 58.90 kmph while

V2V reported it as 55.70 kmph. The difference can be calculated roughly as %5 kmph at

this frame. However, at the thirtieth frame we can measure this difference as low as %2-

3 kmph. We can say that measurements of our vision sensor are reasonable and quite

comparable with V2V measurements. In addition to that, we can see that the speed of

this vehicle seems to have never been changed from the tenth to thirtieth frame. The time

interval can be estimated as 1 second from (30-10) / 20 fps. We can say that our vision

sensor is much more sensitive to the vehicle motion due to its high rate of sampling.

Figure 4.5: Birds-eye-view window.

30	

The detected vehicles are also shown on each live frame that is received from the vision

sensor. For instance, in Figure 4.6, one can see that three vehicles were detected and were

being tracked. Our tracker algorithm gave each of them a unique id. Starting from the

left side of the window, the ids of the vehicles are assigned as 3, 1, 2 and 0. These

numbers are in reserved and any other detected vehicle will assign next available id

number, that is 4 in this case. After a vehicle is lost in vision sensor our tracker keeps the

information for a certain amount of time in case the same vehicle reappears again. In our

experiments, we defined this number as 3 seconds. However, since our system is also

supported by the V2V communication, that vehicle is still going to be visible in our birds-

eye view.

If a particular vehicle is detected by our classifier, it either draws a box around it and

colors in either red or blue according to its detection score. If the score is below a certain

threshold, the detected window is shown in red, otherwise it is shown in blue. This

threshold value is chosen as 12 in our scenario. In Figure 4.6, we can see that cruising in

vehicle in front with id 2 is detected at the fiftieth frame, however its detection score is

as low as 6. It’s enough for our tracker to start to track if it is detected and verified as a

vehicle. One can see that vehicle with id 3 is not detected at this frame. However, it had

been tracked on the previous frame, thus the tracker had started to track and keeps the

tracking it even though it is not detected at the next frames.

Our tracker does not directly use the detection ROI, but instead it generates a smaller

portion of that image and starts the tracking from this smaller window which is shown in

blue. These windows can be seen at each tracked frame in Figure 4.6. We saw that if the

detection window is directly used, the tracker tends to shift more easily as the motion in

the surrounding area between the window borders and vehicle borders tend to change

more.

In order to generate a better ROI window for tracking we resized the actual detection

window by a certain ratio. In our case, we found that 25% of the actual window is to be

considered as out of the vehicle bounds. For this reason, we generated the area of the

31	

ROI as 75% of the detection window area. The method we used for tracking seems to

have enabled us to decrease the well-known tracking shift problem.

Figure 4.7 shows the birds-eye projection of detected vehicles. We can see that the yellow

car on the left and our test vehicle ahead detected and tracked successfully with object id

16 and 13, respectively. Their distance and relative speed estimation are also shown in

our birds-eye view. Since our test vehicle had the IEEE 802.11p communication we were

able to support its vision sensor based measurement with V2V communication.

Furthermore, our system fused the two different measurements from two sensors

successfully and did not generate new id for the V2V measurement, but instead it’s given

the same id as 13, as also can be seen in birds-eye view (white measurements from V2V,

green measurements are from vision sensor).

Figure 4.6: Detected vehicles.

32	

Figure 4.7: Detected vehicles and birds-eye-view projection.

33	

In sensor fusion window in Figure 4.8, vision sensor, V2V sensor, particles and filter

result shown in blue, black, violet and red, respectively. Particle filter is closer to the

vision sensor than it is to the V2V sensor since its variance smaller than the V2V. Vision

sensor detections can be seen in Figure 4.9. Here our test vehicle (CAR B) with id 3

cruising in front is detected from first frame until it went out of sight (field of view of the

camera) at roughly 400th frame. One can also see that there are no vehicles detected for

about 200 frames or 10 seconds (camera operating at 20 Hz). Here CAR B is still out of

sight and cruising behind the ego CAR A. CAR B re-enters the field of view but this time

with id 11, at roughly 900th frame. Figure 4.9 shows this scenario.

Figure 4.8: Sensor fusion view.

34	

Even though CAR B is out of sight of the vision sensor in Figure 4.9 (b), one can see that

our system still detects and tracks it with the IEEE V2V sensor as shown in Figure 4.10.

However, particle filter results are tend to close to the IEEE V2V sensor measurements

where we do not have the vision sensor detection. These scenarios are also shown in

charts in Figure 4.11. It is clear that particle filter outputs promising results where IEEE

V2V sensor measurements shifts dramatically.

Our full dataset is summarized in Table 4.5. We collected 12 different dataset in Istanbul

covering more than 45 km of road and 65 minutes of data. Used road data in our

experiments is from the 8th row in Table 4.5. Path of this data is also shown on Yandex

Maps in Figure 4.12.

 (a) (b)

(c)

Figure 4.9: Vision sensor detections. Numbers refer to the Id of the vehicles.

35	

Figure 4.10: Out-of-sight scenario. t=20S: CAR A is about to overtake CAR B. t=25s:
CAR B is behind the CAR A. t=45s: CAR B re-enters the field of view of the camera.

Figure 4.11: Particle filter result. Dcam, Dgps and Dpf refer to vision sensor
measurement, GPS measurement from V2V sensor and particle filter result,

respectively.

36	

Table 4.5: Summary of our collected road data.

Odometer

(km)

Lanes Traffic Road Type Avg. Speed

(km/h)

3.5 1-2 Free Urban 40

0.75 1-2 Free Urban 20

1.6 1-2 Free Urban 45

1.8 1-2 Congested-Free Urban 20

2.7 1-3 Congested-Free Urban 20

5.1 3 Congested-Free Highway 60

6.9 2-4 Free Highway 80

4.2 2-4 Free Highway 60

12.0 2-4 Free Highway 75

1.6 1-2 Congested-Free Urban 30

0.65 1 Congested Urban 5

6.4 1-2 Congested Urban 30

Figure 4.12: Path of the road data used in experiment (Table 4.5 8th row)

37	

For the real time capability of the system, we also test our system in the GPU accelerated

NVIDIA Tegra Jetson TK1 development board. This board is the simpler developer

version of the industrial GPU accelerated boards1. NVIDIA Tegra Jetson TK1 has the

NVIDIA Kepler “GK20a” GPU with 192 SM3. 2 CUDA cores (up to 326 GFLOPS),

NVIDIA “4-Plus-1” 2.32 GHz ARM quad-core Cortex-A15 CPU and 2GB DDR3L 933

MHz RAM. Figure 4.13 shows the diagram of such board.

Figure 4.13: Hardware features of NVIDIA Jetson TK1 board2.

We tested Canny edge detection and the Hough Lines Transform algorithm which are

used in our system on both CPU and GPU and compared their results. We saw that if

there is no iteration and the image to be processed is not big enough, uploading it to GPU

and processing it is more expensive than the CPU implementation. Figure 4.14-4.16

shows this result. We did not take the necessary time of initial upload of the image to the

GPU into account which took about additional 2 seconds, as also can be seen in Figure

4.14.

1 http://www.nvidia.com/object/jetson-tx1-module.html
2 http://elinux.org/Jetson_TK1

38	

Figure 4.14: Canny edge detection and Hough Transform performance on resized
(320x240) image (left) vs the original (3888x2592) size (right).

39	

Figure 4.15: Canny edge detection and Hough Transform performance on resized image
(320x240).

Figure 4.16: Canny edge detection and Hough Transform performance on original
image (3888x2592)

40	

When we have the iteration, it seems that the overall performance of GPU outperforms

the CPU with these algorithms. It can be seen that when the image size is about 10 MP

(Figure 4.14 right) the GPU implementation has speeded up the whole process by 2x.

One can also see that the number of the detected lines on the same image is approximately

27x more than the CPU implementation. However, when the image is resized to 320x240

pixels, we can see that the speed difference and the number of lines detected are dropped

to 1.3x and 7x, respectively. In addition to speed up, these results show that we also

obtained much more lines detected in comparison to CPU. This may be useful in future

tasks. The outputs of this comparison can be seen on Figure 4.17.

Figure 4.17: Output of CPU vs GPU line detection test on the highway image3

3 https://en.wikipedia.org/wiki/Ontario_Highway_407

5. RESULTS & CONCLUSIONS

As a conclusion, we focused on monocular based driver assistance system, which is a

core technology for autonomous vehicles. We enhanced our system with IEEE 802.11p

V2V communication system. We trained our classifier with 550 positive and 500

negative samples from UIUC image database. We tested the detection performance of

our system with our own dataset and compared with KITTI vision benchmark dataset.

We saw that we received 93.75% and 74.28% precision rate, 78.94% and 81.25% recall

rate with our dataset and KITTI dataset, respectively.

A modern tracker system has been adapted for tracking. A unique id was assigned for

each tracked vehicle. This method has enabled us to track the vehicles even though our

detector failed at some cases. We implemented the pixel based distance estimation.

Distance estimation from our vision was a key estimation for our fusion system. Here we

assumed that the road is flat or ego and the detected vehicle have the same pitch. Pixel

based distance estimation and Median Flow tracker together, gave us the ability for

relative speed estimation.

Then we verified the detection of our test vehicle with V2V communication to be fused

with the vision sensor. We matched measurements from different sensors based on the

Euclidean distances for a particular detected vehicle. Since both sensors have errors, we

used particle filter algorithm. For our tests, we chose 3 and 4 meters variance for vision

sensor and GPS measurement from V2V communication, respectively.

In order to evaluate our system’s performance in real road conditions, we collected real

road data from both urban roads and highways of Istanbul. Our dataset consist of 12

different segments, including over 47 kilometers and 60 minutes of drive data. We also

42

classified our road data based on lane count and traffic status as 1-4 lanes and Free-

Congested-Free, Congested, respectively.

After we test our system with our dataset, our system enabled us to sense the vehicles

even when they are out of sight or occluded by other objects. Specifically, we saw that

when the detected vehicle is out of the field of view of the vision sensor, V2V

communication still enabled us to detect and track it successfully. Particle filter algorithm

gave promising results even GPS measurements shifted dramatically and even vision

sensor information was not present due to out-of-sight vehicle, at our scenario. This way

our system had the capability of sensing the vehicles even when they are occluded or even

not present in vision sensor measurements.

Lastly, due to real time requirement of this kind of application we run some of the

algorithms we used (Canny edge detection and Hough transform) in GPU accelerated

NVIDIA Jetson TK1 board. We saw that we could speed up our system, especially at

higher resolutions.

For the future work, we intend to increase our detection rate by applying a better

hypothesis extraction and verification. In addition, we used two vehicles for our real road

tests, for better understanding of the outputs of our system, we need more real traffic data

from more vehicles. Moreover, our distance measurements had no truth reference. For

this reason, we also plan to equip or ego test vehicle with LIDAR sensor and get the

ground truth reference for our system outputs.

REFERENCES

Agarwal S, Awan A. Roth D. UIUC Image Database for Car Detection. URL:

https://cogcomp. cs. illinois. edu/Data/Car/

Alessandretti G, Broggi A, Cerri P. (2007). Vehicle and Guard Rail Detection Using

Radar and Vision Data Fusion, IEEE Transactions on Intelligent Transportation

Systems: Vol.8, No.1: 95-105

Bertozzi M, Broggi A. (1998). GOLD: A Parallel Real-Time Stereo Vision System for

Generic Obstacle and Lane Detection, IEEE Transactions on Image Processing: vol.7,

no.1: 1998, pp.62-81.

Betke M, Haritaoglu E, Davis L. S. (2000). Real-time multiple vehicle detection and

tracking from a moving vehicle, Machine Vision and Applications, New York:

Springer-Verlag, pp.69-83.

Canny J, (1986). A Computational Approach to Edge Detection, IEEE Trans. on Pattern

Analysis and Machine Intelligence: 8(6), pp.679-698.

Caraffi C, Vojir C, Trefny J, Sochman J, Matas J. (2012). A System for Realtime

Detection and Tracking of Vehicles from a Single Car-mounted Camera, 15th Int.

Conf. on Intelligent Transportation Systems, Hilton Anchorage, Alaska, USA,

pp.2019-2034.

Chen Y, Wu B, Huang H, Fan C. (2011). A Real-Time Vision System for Nighttime

Vehicle Detection and Traffic Surveillance, IEEE Transactions on Industrial

Electronics: vol.58, no.5: 2011, pp.2030-2044.

44	

Choi J, Lee J, Kim D, Soprani G, Cerri P. (2012). Environment-Detection and Mapping

Algorithm for Autonomous Driving in Rural or Off-Road Environment, IEEE

Transactions on Intelligent Transportation Systems: vol.13, no.2: 2012, pp.974-982.

Çayır B, Acarman T. (2009). Low Cost Driver Monitoring and Warning System

Development, Intelligent Vehicles Symposium, IEEE, Xi’an, China, pp.94-98.

ETSI EN 302 571 (V1.1.1) (2008). Intelligent Transport Systems (ITS);

Radiocommunications equipment operating in the 5 855 MHz to 5 925 MHz

frequency band; Harmonized EN covering the essential requirements of article 3.2 of

the R&TTE Directive. URL:

http://www.etsi.org/deliver/etsi_en/302500_302599/302571/01.01.01_60/en_30257

1v010101p.pdf

Geiger A, Lenz P, Stiller C, Urtasun R. (2013). Vision meets robotics: The KITTI

dataset, The International Journal of Robotics Research: vol.32, no.11: 2013,

pp.1231-1237.

Huo C, Yu Y, Sun T. (2012). Lane Departure Warning System based on Dynamic

Vanishing Point Adjustment, The 1st IEEE Global Conference on Consumer

Electronics, Makuhari Messe, Tokyo, Japan, pp.25-28.

Jazayeri A, Cai H, Zheng J, Tuceryan M. (2011). Vehicle Detection and Tracking in Car

Video Based on Motion Model, IEEE Transactions on Intelligent Transportation

Systems: vol.12, no.2: 2011, pp.583-595.

Kalal Z, Mikolajczyk K, Matas J. (2010). Forward-backward error: Automatic detection

of tracking failures, IEEE 20th International Conference on Pattern Recognition,

Istanbul, Turkey, pp.2756-2759.

Kim H, Song B. (2013). Vehicle Recognition Based on Radar and Vision Sensor Fusion

for Automatic Emergency Braking, 13th International Conference on Control,

Automation and Systems, Kimdaejung Convention Center, Gwangju, Korea,

pp.1342-1346.

Korkmaz G, Ekici E, Özgüner F. (2006). An Efficient Ad-Hoc Multi-Hop Broadcast

Protocol for Inter-Vehicle Communication Systems, IEEE International Conference

on Communications, Istanbul Congress & Exhibition Center, Istanbul, Turkey,

pp.423-428.

45	

Lienhart R, Kuranow A, Pisarevsky V. (2003). Empirical Analysis of Detection

Cascades of Boosted Classifiers for Rapid Object Detection, Pattern Recognition:

25th DAGM Symposium, Magdeburg, Germany, pp.297-304.

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints,

International Journal of Computer Vision, 60, 2, pp.91-110.

Matas J, Galambos C, Kittler J.V. (2000). Robust Detection of Lines Using the

Progressive Probabilistic Hough Transform, CVIU 78 1, pp.119-137.

Rezaei M, Terauchi M, Klette R. (2015). Robust Vehicle Detection and Distance

Estimation Under Challenging Lighting Conditions, IEEE Transactions on Intelligent

Transportation Systems: vol.16, no.5:2015, pp.2723-2743.

Shiraki Y, Ohyama T, Nakabayashi S, Tokuda K. (2001). Development of an Inter-

Vehicle Communications System, OKI Technical Review 187: vol.68,: 2001, pp.11-

13.

Sun Z, Bebis G, Miller R. (2006). Monocular Precrash Vehicle Detection: Features and

Classifiers, IEEE Transactions on Image Processing: vol.15, no.7: 2006, pp.2019-

2034.

Tokuda K, Masami A, Fujii H. (2000). DOLPHIN for Inter-Vehicle Communications

System, IEEE Intelligent Vehicles Symposium, Dearborn, Miami, USA, pp.504-509.

Tsugawa S, Kato S, Tokuda K, Matsui T, Fujii H. (2001). A Cooperative Driving System

with Automated Vehicles and Inter-Vehicle Communications in Demo 2000, IEEE

Intelligent Transportation Systems Conference, Oakland, California, USA, pp.918-

923.

Viola P, Jones M. (2001). Rapid Object Detection using a Boosted Cascade of Simple

Features, IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, Kauai, Hawaii, USA, pp.I-511-I-518.

Yıldız R, Acarman T. (2012). Image Feature Based Video Object Description and

Tracking, IEEE International Conference on Vehicular Electronics and Safety,

İstanbul, TURKEY, pp.405-410.

	

BIOGRAPHICAL SKETCH

Mustafa Tekeli was born on March 15, 1987 in Ankara. He received his high school

education in Istanbul Tarabya Yaşar Dedeman High School. Furthermore, he received

his Bachelor of Science in Computer Engineering from Beykent University in 2012.

