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ABSTRACT 

 

 

 

Nowadays autonomous cars have already started to be used in our daily lives.  They are 

the new generation vehicles, which are able to operate themselves under certain 

conditions without the need of a driver’s response.  They can follow the lane markers and 

keep themselves inside the lane, track the vehicles around and decide and perform a break 

or even change the present lane where necessary.  Driver assistance systems are the 

underlying technology of these vehicles.  It enables them to analyze the road and traffic 

conditions in order to take these kinds of necessary actions.  This makes the task of 

detection of objects at the road such as vehicles, lane markers, guardrails and even 

pedestrians walking by highly important.  For this reason, it is also very substantial to be 

able to operate in real time conditions.  

 

Current studies focused on this area are mostly based on vision sensor, LIDAR, 

microwave sensors etc.  However, they alone suffer from conditions such as high variety 

of targets, lighting fluctuations, short range, requirement of high process power, cost etc. 

In this work, we introduce a monocular camera based system, which is enhanced with the 

IEEE 802.11p vehicle-to-vehicle communication standard.  By the help of IEEE 802.11p 

we aim to compensate the cons of the vision sensor systems which are mentioned above.  

Due to importance of real time requirement, we also made tests on the GPU accelerated 

NVIDIA Tegra Jetson TK1 development board and compare with the CPU results for 

future development. 

 

 



 

 
 

RÉSUMÉ 

 

 

 

De nos jours, les voitures autonomes commencent déjà à être utilisées dans notre vie 

quotidienne.  Ce sont les véhicules de nouvelle génération qui sont capables de 

fonctionner à certaines conditions sans avoir besoin d'une réaction du conducteur.  Ils 

peuvent suivre les marqueurs de la voie et se maintenir à l'intérieur de celle-ci, localiser 

les véhicules autour et décider et effectuer un arrêt ou même changer la voie actuelle en 

cas de nécessité.  Les systèmes d'aide au conducteur représentent la technologie sous-

jacente de ces véhicules.  Ils permettent aux véhicules d'analyser les conditions routières 

et la circulation afin de prendre ce type d'actions nécessaires.  Cela rend la tâche de la 

détection des objets sur la route tels que les véhicules, les marqueurs de la voie, les 

rambardes et même les piétons très importante.  Pour cette raison, il est également très 

important de pouvoir fonctionner en temps réel. 

  

Les études actuelles portent principalement sur le capteur de vision, le LIDAR,  les 

capteurs micro-ondes, etc.  Cependant, seuls, ils souffrent de problèmes tels que la grande 

variété de cibles, les fluctuations d'éclairage, la courte portée, la nécessité d’une haute 

puissance d’opération, les coûts etc.  Dans cette étude, nous introduisons un système à 

base de caméra monoculaire, qui est amélioré selon la norme IEEE 802.11p concernant 

la communication de véhicule-à-véhicule.  A l'aide de la norme IEEE 802.11p, nous 

visons à compenser les inconvénients des systèmes de capteurs de vision qui sont 

mentionnés ci-dessus.  En raison de l'importance des exigences en temps réel, nous avons 

également effectué des tests sur le GPU accéléré NVIDIA Tegra Jetson TK1 carte de 

développement et comparé avec les résultats du CPU pour le futur développement. 



 

 
 

ÖZET 

 

 

 

Günümüzde otonom araçlar trafikte aktif olarak kullanılmaya başlanmış durumda.  Bu 

araçları sürücüden geri bildirim almaksızın belirli koşullarda kendini sürebilen taşıtlar 

olarak tanımlayabiliriz.  Otonom araçlar şeritleri algılayıp takip edebildiği gibi diğer 

araçları da algılayarak gerekli durumlarda fren sistemini devreye sokabilmekte ve hatta 

şerit değiştirebilmektedir.  Bu teknolojinin alt yapısı ise sürücü destek sistemleri 

tarafından oluşturulmaktadır.  Bu sistem sayesinde araçlar yol ve trafik durumunu analiz 

ederek gerekli eylemleri uygulayabilmektedirler.  Bu işlemler yol üzerindeki diğer 

araçların, şeritlerin, bariyerlerin ve hatta yayaların algılanması problemini önemli 

kılmaktadır.  Bu nedenle bu sistemlerin gerçek zamanlı olarak çalışma gereksinimi de 

doğmaktadır. 

 

Bu alanda yapılan çalışmalar çoğunlukla görüntü sensörü, LIDAR, mikrodalga sensör vb. 

kullanımı ile gerçekleştirilmiştir.  Ancak bu cihazlar hali hazırda nesnelerin çok 

çeşitlenmesi, ışık değişimleri, kısa menzil, yüksek işlem gücü gereksinimi ve maliyet gibi 

parametrelerden etkilenmektedir.  Bu çalışmamızda IEEE 802.11p araç-araç 

haberleşmesiyle desteklenmiş tekil görüntü sensörü tabanlı bir sistem önerilmektedir.  

IEEE 802.11p araç-araç haberleşmesi sayesinde yukarıda belirtilen görüntü sensörünün 

eksilerinin telafi edilmesi hedeflenmiştir.  Ayrıca gerçek zamanlı çalışma 

gereksiniminden dolayı NVIDIA Tegra Jetson TK1 geliştirme kartı kullanılarak 

üzerindeki GPU üzerinde de performans testleri yapılmış ve CPU sonuçları ile de 

karşılaştırılmıştır.
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1. INTRODUCTION 

 

 

 

Driver assistance systems are the important part of autonomous cars of future.  It is the 

background technology of self-driving cars which are designed to replicate the human 

behavior.  Even today it is already possible to see these vehicles at the streets.  The vehicle 

can drive itself without the input of a driver, keep itself inside the lane, keep the necessary 

distance from the front car and even change the present lane when the required conditions 

met.  In order to achieve these tasks, the detection of other objects such as lane markers, 

vehicles, traffic signs in the environment is very essential.  For instance, in case of pre-

crash detection, one has to detect the front vehicle and estimate the distance as well as the 

speed of that vehicle to take necessary actions when it took a sudden break in order to 

prevent any possible fatal accident.  Such a system needs to be robust and real time to 

take these necessary actions immediately.  For this reason, accurate detection of other 

objects around the vehicle is a highly important task. 

 

Current studies at this area can be based on vision sensors, microwave sensors and 

LIDAR.  However, they each have limited performance and accuracy.  For instance, 

detection with standard vision sensors would be inaccurate at longer distances due to 

reduced resolution, in scenes with bad weather conditions as well as the sudden changes 

in lighting.  Also, the variety of the targets is another problem at this task.  Vehicles may 

come with different shapes and sizes.  Other than that, LIDARs are still very expensive 

products and they need high computational power while boards deployed in vehicles are 

tend to be small and cost effective.  Microwave radars are much more cost effective than 

LIDARs, however they suffer from reflections from concrete objects on the road.  On the 

other hand, our approach motivated by the vision sensor and IEEE 802.11p V2V 

communication, targets these downsides for a better detection results without the need of 

a high computational power. 
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For the real time performance requirement, we also test the algorithms in a GPU 

accelerated board as well as today’s regular CPU.  We used NVIDIA Tegra Jetson TK1 

GPU accelerated board which has the mobile processor to have the same advanced 

features & architecture as a modern desktop GPU while still using the low power draw of 

a mobile chip and therefore it’s very suitable for these kinds of applications.   

 

Systems like these need to be tested very well on the real world conditions.  Otherwise 

its performance and importance might never be evaluated and cannot be used in such 

critical scenarios.  We also tested our system in real time conditions such as rural roads, 

highways and we will be able to get live results to evaluate our system’s performance in 

such conditions. 



 
 

 
  

2. LITERATURE REVIEW 

 

 

 

Object detection has been widely studied in many applications for years.  For instance, 

authors focused on vehicle detection based on radar and vision fusion to automatically 

activate the car’s emergency braking system (Kim & Song, 2013).  They asserted that the 

radar cannot successfully recognize if the detected object is a real vehicle or not.  

Although the radar’s performance in radial direction is high, they give its coarse 

performance in azimuth direction.  This problem causes false detection of a preceding 

vehicle in the same lane, resulting in false activation of automatic emergency braking.  

And to improve this false detection, they suggest a vehicle recognition method based on 

the shape and motion in which the motion attribute is to determine whether the object is 

either stationary or dynamic and the shape attribute is to identify whether the objective is 

a real vehicle or not.  Figure 2.1 shows the flowchart of this algorithm.  They also 

supported their algorithm with field test data.  

 

Çayır and Acarman (2009) have built a low cost driver monitoring and warning system 

to warn the driver when the car leaves the lane by the help of a single camera.  Like so, 

in a recent work of Huo et al.  (2012), another lane departure warning system has been 

studied to assist the driver when the car exits the lane.  They used a radar which uses a 

Doppler Effect to detect the frequency shift in reflected waves and vision-based camera 

to recognize the patterns on the road such as lane-marking, front vehicle, road sign and 

other obstacles.  This is not a vehicle detection based application, however the authors 

have targeted the real time lane detection and tracking which is another important task in 

active driving assistance systems in ITS.  
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Figure 2.1: Vehicle Validation (Kim & Song, 2013) 
 

 

However, Alessandretti et al.  (2007) introduced a vehicle detection system which was a 

fusion of radar and vision data.  Additionally, they included the guard rail detection and 

also a method to handle the overlapping areas.  They used radar data to locate the areas 

of interest on the images to perform the detection task.  Vehicles found in different image 

regions were combined together and series of filters were applied to remove the false 

detections.  They found out that their systems performed good results in both rural and 

highway environments.  They didn’t detect all the vehicles in all images, however their 

system was promising enough for driver assistance applications since the closest and most 

dangerous vehicles are correctly and precisely detected.  Table 2.1 shows their system’s 

execution time performance.  From the figures in Table 2.1 it is possible to say that the 

more guard rails are detected, the more time is saved.  Specifically, in sequence 12, many 

guard rails were present and detected, and the time saved is about 36%.  They also state 

that a reduction of 4-5 ms in execution time is very significant in such real time 

applications.   

 

Another real time application was proposed by Betke et al.  (2000) in order to develop an 

intelligent, camera-assisted car which is able to interpret its surroundings in real time 

basis.  The system that has been developed at this work, analyzes color videos which are 
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grabbed from a forward-looking video camera mounted in a car.  They used a combination 

of color, edge and motion information to detect the vehicles, road boundaries and lane 

markings on the road.  Additionally, they present a method for detecting cars that is a 

temporal differencing and tracking motion parameters that are typical for cars.  They 

evaluated their system in American and German highways both during both the day and 

night.  They achieved reasonably good result even with a low-cost PC and an image 

capture board.  Table 2.2 shows the processing times of this work.   

 

 

Table 2.1: Execution time on highways.  VD stands for vehicle detection algorithm 
only, GRD stands for guard rail and vehicle detections algorithms and OBM stands for 

overlapping boxes management, guard rail and vehicle detection.  The decrement of 
OBM with respect to VD is shown in the reduction column (Alessandretti et al., 2007) 

 
sequence VD [ms] GRD [ms] OBM [ms] reduction 

11 22 19 17 22% 

12 25 18 16 36% 

13 30 28 26 13% 

14 27 24 22 18% 

15 29 27 26 10% 

average 26,6 23,2 21,4 20% 

 

 

Bertozi et al.  (1998) studied the stereo vision based obstacle and lane detection on 

moving vehicles in order to increase the road safety.  They focused on detecting both 

generic obstacles and the lane positions at a rate of 10 Hz.  They needed to use a custom 

massively parallel hardware for this work.  By the help of this specific hardware 

perspective effect from stereo images was removed.  They used left vision sensor to detect 

lane marking while remapped stereo images were used to detect the free space in front of 

the vehicle.  Rezaei et al. (2015) has studied another real time monocular camera based 

application for vehicle detection and as well as inter-vehicle distance estimation.  They 

used Haar based features and pixel based distance estimation. 
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Table 2.2: Average processing time of each algorithm (Betke et al., 2000). 
 

Step Time Average time 

Searching for potential cars 1-32 ms 14 ms 

Feature search in window 2-22 ms 13 ms 

Obtaining template 1-4 ms 2 ms 

Template match 2-34 ms 7 ms 

Lane detection 15-23 ms 18 ms 

 

 

In a recent work of Yıldız and Acarman (2012) an extended SIFT feature description 

method has been studied in order to achieve robust vehicle tracking.  Sun et al.  (2006) 

focused on a pre-crash vehicle detection system as well and evaluated their work with 

different feature extraction methods as well as classifiers.  As a result, they achieved an 

average detection rate of 10 Hz.  The data was collected and processed in real time on a 

moving car while cruising under different traffic conditions.  Their algorithm consisted 

of two parts: A hypothesis generation (HG) step in which the image location where the 

vehicles might be present were extracted and the verification (HV) step which verifies 

the hypothesis.  They used PCA, Gabor and Wavelet feature extraction methods.  They 

found out that regardless of the feature extraction method each time Support Vector 

Machine gave better results on vehicle detection in comparison to Neural Networks. 

Figure 2.2 shows the result of the system when Wavelet features used with both SVM 

and Neural Networks.  15, 20, 25, 30 and 35 are the hidden nodes used in neural network. 

 

They found out that using SVM (referred as WS), the average error was 8.52%, the 

average FP rate was 6.50% and the average FN rate was 2.02%.  Next they evaluated the 

performance of wavelet features using NN, referred to as WN in Figure 2.3.  The lowest 

error measured as 16.4% (FP 12.81% and FN 3.59% and was achieved by a NN with 30 

hidden nodes.  SVM performed better than NN using wavelet features).   
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Figure 2.2: HV using wavelet features (Sun et al.  2006) 
 

 

There have been other authors like Caraffi C.  et al.  (2012),  Jazayeri A.  et al.  (2011), 

Chen Y.  et al.  (2011) who aimed at similar tasks such as safety, auto-driving, driver 

assistance systems for ITS which are based on visual sensors and as well as the 

autonomous driving system which uses six LIDARs in order to detect pedestrian crossing, 

speed-bump and obstacles on road by Choi J.  et al.  (2012).  



 
 

 
  

3. MATERIALS AND METHODS 

 

 

 

In this work we focused on robust and reliable vehicle and lane marker detection on a 

moving vehicle at real time conditions as well as distance and relative and ground speed 

estimation.  We propose a system, which detects the vehicles simultaneously at real time 

conditions by the help of a standard visual sensor.  Also we support our monocular visual 

sensor based system with a V2V (Vehicle-to-vehicle communication) on-board unit. 

 

Direct communication between the vehicles allows information exchange without 

requiring any fixed infrastructure or base stations.  The location and velocity of vehicles 

are constantly changing and the RF communication range is fairly short distance; 

therefore, the set of vehicles that can directly communicate will constantly change over a 

short period of time.  This dictates that the physical layer and the network must be capable 

of operating in an ad hoc, decentralized manner, although coordination and 

synchronization through GPS time signals are possible. Any two nodes must be able to 

communicate securely whenever they are within the communication range. 

 

In a V2V network we can distinguish two modes of communication, usually designated 

as: 

 

• Single hop: Two vehicles are close enough to communicate directly with each 

other (either broadcast or point to point) with low latency. 

 

• Multi hop: Vehicles that cannot directly communicate may forward messages 

through intermediate nodes. 
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Multi hop communication has been the subject of much research (Korkmaz et al. 2006), 

but no standard has emerged, and in fact the technical difficulties of establishing routing 

and acknowledgment protocols along with potentially high latency may limit its use to 

very specific applications such as medium range emergency notification or other sparse 

broadcast communication applications. 

 

Many early experiments in V2V communication were carried out with standard wireless 

LAN, for example IEEE 802.11b, operating in the 2.4-GHz ISM band, and some success 

was achieved at ranges up to several hundred meters.  But the technical difficulties 

inherent in vehicle and traffic situations, including the high relative velocities (Doppler 

effects), a safety critical low latency requirement, operation in an urban environment 

(multipath), and spectrum competition from other users in unlicensed frequency bands 

renders this an unrealistic solution for commercial deployment.  The IEEE 

802.11p/WAVE standards have recently emerged as the current consensus for 

implementation of V2V and local V2I communications. 

 

Dedicated Short-Range Communication (DSRC) systems are short- to medium-range 

communications systems intended to cover communication ranges of 10–1,000m.  The 

term DSRC has come to refer to automotive or mobile applications.  A number of 

technologies have been identified, but the current object of worldwide standardization 

activities are variants of the 802.11p/WAVE standard operating in the 5.9-GHz range. 

The United States has currently allocated 75 MHz of spectrum for DSRC applications, 

and the EU has allocated 35 MHz of overlapping spectrum.  

 

Other DSRC technologies include a 902–928-MHz band standard (ASTM E2158-01) that 

has primarily been used in electronic toll collection and commercial vehicle operation 

applications.  It is incompatible with the 5.9-GHz DSRC standards. 

 

A Japanese industrial consortium, including OKI Electronics Ltd., developed the 

“Dedicated Omnipurpose Intervehicle Communications Linkage Protocol for Highway 

Automation” (DOLPHIN) (Tokuda et al.  2000, Shiraki et al.  2001, Tsugawa el al.  2001) 

system operating in the 5.8-GHz band which provided broadcast, point-to-point, and 
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broadcast with packet forwarding capabilities.  Bluetooth, various UWB, WiMAX, and 

even Zigbee (IEEE 802.15.4) could also be considered for DSRC applications. 

 

In order to comply with the European Profile Standard ITS-5G defined in ETSI EN 302 

571, IEEE 802.11p physical and MAC layers are implemented.  Cooperative Awareness 

Messages (CAM) broadcast with a value of 19 dBm on the 10 Mhz channel at 5.9 GHz 

with a data rate of 3 Mbit/s.  List of parameters can be seen in Table 3.1. 

 

 

Table 3.1: List of parameters in IEEE 802.11p 
 

Parameter Value 

Scenario Urban Canyon 

Vehicle Velocity Max 20 m/s 

Transmit Rate 3 Mbps 

Transmit Power 19 dBm 

Carrier Sensing Threshold -99 dBm 

Transmit Range 550 m 

CAM Rate 1 Hz 

 

 

We used C++ as the programming language of our system and took advantage of OpenCV 

image processing library.  OpenCV provides us useful algorithms which can both run in 

CPU and as well as in GPU with only few refinements.  We also started to implement 

important parts of our system both into the CPU and GPU architecture.  We made several 

tests and compared the CPU and GPU performances of individual algorithms.   

 

3.1. Vehicle Detection 

 

We used Haar feature-based cascade classifier for detection.  This object detector has 

been initially proposed by Viola P. and Jones M. (2001) and later its features and 

efficiency improved by Lienhart R. et al. (2003).  Haar classifier is trained with a few 
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hundred samples of target object which are called positive examples and non-target 

examples are called negatives.  After the classifier is trained, it features several 

classification stages which are applied to a ROI within the image.  Table 3.1 shows the 

features used in the algorithm.  For weighting, pixel sum difference between black areas 

and white areas calculated by using integral image (shown in equation 1 and Figure 3.1) 

that is used for fast feature evaluation. 

 

 

    𝑖𝑖 𝑥, 𝑦 = 	 𝑖(𝑥(, 𝑦()*+,	*,-(,-    (1) 

 

 

 
 

Figure 3.1: Integral image method. Sum of pixel values in D region can be calculated as 
4+1-(2+3). 

 

 

We then trained our own vehicle classifier as a starting point.  We used UIUC Image 

Database for Car Detection for training.  This database provides 550 positive and 500 

negative samples collected at the University of Illinois.  The resolution of each positive 

and negative training images are 100x40 pixels.  Figure 3.2 shows sample images from 

this database.   

 

Training 550 positive and 500 negative samples took more than 3 hours.  Training was 

finished in a test pc running a 64 bit Linux Ubuntu operating system.  Figure 3.3 shows 
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the output of the trained system.  It can be seen that the car in the test image has been 

detected successfully and circled in white.   

 

We also made real time tests at test area of my company.  Figure 3.4 shows the 

performance of the current system.  Resolution of the live images which are retrieved 

from the camera is 640x480 pixels.   

 

 

Table 3.2: Used Haar features from Lienhart R. et al (2001). Black regions have 
negative and white regions have positive weights. 

 

Edge 

features     

    

Line 

features   
 

   
  

Center-

surround 

features 
  

      

 

 

We tested our system’s performance from image sequences data which are collected in 

real time on our test car while cruising.  We ran tests both on city traffic as well as 

highways to understand the behavior of our system at different environments.  We 

prepared a simple interface showing real time camera frames and marked refined vehicle 

positions.  According to the Figure 3.4, it is possible to say that current system’s detection 

rate is about 14-15 Hz even though we performed the detection algorithm at each retrieved 

frame.  During the tests camera was set to stream at a rate of 20 fps.   
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Figure 3.2: Sample images from UIUC image database.  First row shows negative, 
second row shows positive and the third row shows the test images 

 

 

 
 

Figure 3.3: Detected car on test image of UIUC image database  
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After that we started to retrieve each frame collected from the road in order to analyze the 

road for vehicle and lane marker detection.  The lane marker detection is important for 

evaluating our car’s position inside the lane.  We first applied smoothing to each frame 

to get rid of the noises and then used Canny edge detection algorithm to extract edges 

which was introduced by Canny J. (1986).  Afterwards, we applied Hough Line 

Transform by Matas J. et al., (2000) for possible lines on the road.  Figure 3.5 shows the 

output of this stage.   

 

 

 
 

Figure 3.4: Detection time of cars in our trained system 
 

 

We use this information to estimate the lane borders and draw them on the screen so if 

the car does not cruise at the center of the lane our system will inform the driver.  After 

that we applied the car detection task by using our generated trained HAAR classifier 

before.  We saw that our system is able to detect the front vehicles at close distances. 

 

3.2. Distance and Relative Speed Estimation 

  

We used pixel based inter-vehicle distance estimation (Rezaei et al.  2015) in order to 

calculate the front cruising vehicle’s distance to the ego vehicle as in Figure 3.6.  We also 

estimated relative speed of the cruising vehicle in front from the distance data.  We 

changed the proposed algorithm of Razeai et al.  The proposed algorithm requires the 



15	
 

 
  

vision sensor to be mounted at a tilt angle so that the projection of lower bound of image 

must exactly correspond to the distance the distance between the front of the car and 

camera. 

 

 

 
 

Figure 3.5: Image analysis for the lane marker detection  
 

 

However, with this installation hood of the car is quite visible and taken into account in 

algorithms like edge and feature detection.  For this reason, we decreased the tilt angle so 

that only road is visible at lower part of the image.  As a result, our formula for distance 

estimation changed as: 

 

 

    𝑑2 = tan 𝜃4 ± 𝛽 ×𝐻    (2) 
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    𝐷 = 𝑑2 − 𝑑1      (3) 

 
 

Figure 3.6: Pixel based inter-vehicle distance estimation in 2D image plane (Rezaei et 
al.  2015)  

 

 

where 𝐻 stands for the camera height, 𝜃4 is the angle between the 𝑍4 and −𝑌4 axis, 𝑑1 is 

the length from camera to the front of the vehicle, 𝑑1 is the distance between camera and 

the front vehicle and 𝐷 is the distance between front vehicle and the ego vehicle.  One 

parameter in this calculation which is not explained clearly is the field of view (FOV) of 

the camera.  FOV of the camera depends on different parameters such as focal length of 

the lens, sensor width and height. Using these parameters, one can calculate the FOV as: 

 

 

    ∝	= 2	×	tan?@ A B
C

     (4) 

 

    𝛽	 = 2	×	tan?@ D B
C

    (5) 
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where 𝐻 stands for the sensor height in mm, 𝑊 is the sensor width in mm, 𝑓 as the focal 

length in mm, ∝ is the vertical FOV and 𝛽 is the horizontal FOV.  The sensor information 

can be found in manufacturer’s datasheet.  

 

After distance estimation is finished we calculated relative speed of the vehicle based on 

the distance travelled as in (6). 

 

 

    𝑉H = 3600	×	 ±∆M
@NNN A

     (6) 

 

 

𝑉H stands for relative speed of the detected vehicle in kmph, ∆O is the distance in meters 

that the vehicle travelled between two consecutive frames and 𝐻 is the frame rate of the 

camera. 

 

3.3. Tracking 

 

We made tests with different trackers such as MIL, BOOSTING, TLD, KCF.  However, 

we saw that MEDIAN FLOW tracker introduced by Kalal et al. (2010) showed better 

results in our scenario, specifically in vehicle tracking.  The algorithm is based on failure 

detection that is measured by the differences due to the occlusions between video frames.  

Such an occlusion can be seen in Figure 3.7.   

 

Given the pair of images and a bounding box (vehicle ROI in our case), it generates a set 

of points inside box and applies Lucas-Kanade tracker which computes a sparse motion 

flow between frames.  According to the quality of the point predictions each point is 

assigned an error, before filtering out the 50% of the worst errors as outliers.  The 

remaining points are used to estimate the displacement of the whole bounding box.  As a 

result, bounding box gets updated as the object moves in time.  Figure 3.8 shows the 

process of the algorithm. 
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Each of the tracked boxes are either given an incremental unique id or current id is 

maintained through the lifecycle of the vehicle.  Algorithm of our detection and tracking 

application can be seen in Figure 3.9.  When the new image is received from the camera 

we preprocess the image by converting it to grayscale and apply blurring.  The image is 

then given as an input to detection algorithm to generate vehicle hypotheses as well as 

lane markers.  Each hypothesis is then verified by whether its representing the line 

information as the vehicle forms.  We simply counted horizontal lines that can form a 

vehicle to verify our candidates rapidly. 

 

 

 
 

Figure 3.7: The Forward-Backward error (Kalal et al. (2010)).  Point 2 is occluded in 
the next frame and tracker matched a different point.  Tracking back from this point to 
the previous frame ends in a different location which ensures that the matched point is 

inconsistent.  
 

 

As the next step we gave each detection to our tracker as an input.  However, our tracking 

algorithm firstly checks whether the given vehicle whether is already in tracked state 

before initializing the new window.  If so, our tracker simply ignores or otherwise, it 

assigns this new window a unique id, performs Forward-Backward error estimation and 

updates its location at each frame until its invisible.   
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3.4. Sensor Fusion 

 

So far, we could only have a rough estimation of relative speed of other vehicles.  For 

ground speed estimation, we needed to know our speed as well.  Thus, we could estimate 

the speed of the target vehicle in reference to the ground.  However, we also want to 

enhance our camera measurement with another sensor that is IEEE 802.11p V2V 

communication in our case.  For this reason, our GPS communication software run in our 

IEEE 802.11p unit.  For our offline tests, we needed real road data so we can evaluate our 

system’s performance and outputs.  We covered this topic in the next chapter. 

 

 

 
 

Figure 3.8: The Median Flow algorithm by Kalal et al. (2010) 
 

 

After collecting real road measurements with our camera and IEEE 802.11p units we had 

information of a particular vehicle’s position and speed from two different sensors.  Using 

our detection method, the camera gives us the pixel based position information in 2d 

which is later used for estimating the local coordinates X and Y in meters as well as the 

distance and relative speed in kmph.  However, from our IEEE 802.11p communication 

we have the geographic coordinate information that is latitude, longitude and altitude of 

target and ego vehicle.  In order to support our camera measurement, we needed the 



20	
 

 
  

position information in the same units as we have both speed information in kmph.  To 

achieve this, firstly we converted each latitude, longitude and altitude information from 

the detected vehicles as well as ego vehicle to the global earth-centered, earth-fixed 

(ECEF) coordinates in meters.  Next, the difference in ECEF coordinates between the 

detected vehicle and ego vehicle are converted to east, north, up (ENU)  local coordinates.  

Since we converted the difference of ECEF coordinates, we had the difference ENU 

coordinates which provide us east, north and up difference in meter between the detected 

vehicle and ego vehicle.  However, this result gives us the ENU coordinate difference in 

 
 

Figure 3.9: Detection and tracking algorithm of our application 
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reference to east, north and up axes.   We need the X, Y and distance information towards 

the detected vehicle with our current heading.  Using the rotation matrix with our heading 

information and local ENU position vector we obtained the local coordinates to the 

detected vehicle (7).  Here we assume that the road is flat and we ignore the up figure. 

 

 

    
cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃
	×	

	𝑒	

	𝑛	
                    (7) 

 

 

After finding calculating the local coordinates of the detected vehicle we calculated its 

Euclidean distance.  In this calculation, we have taken into account the distances between 

bumpers of the vehicles and the GPS receiver as explained in Figure 4.1.   

 

We used the particle filter algorithm in order to fuse our sensor measurements.  We used 

200 particles, used 3 meters and 4 meters as measurement variance for our vision sensor 

and V2V sensor, respectively.  Particle filter is a numerical approximation to the Bayes 

Filters.  The sampling importance resampling (SIR) algorithm is one of the most widely 

used sequential Monte Carlo methods, which allow the system state estimation to be 

computed on-line while the state changes as it is the case for tracking algorithms.   A SIR 

filter usually manages a fixed number of possible system state hypotheses 𝑥VW, where 

superscript i denotes the i-th individual particle.  These individual particles approximately 

generate the distribution of the system state, p(Xt).  The SIR algorithm is computed at 

each discrete time step.  Algorithm of such system can be seen in Figure 3.10. 

 

 



22	
 

 
  

 
 

Figure 3.10: Particle filter algorithm 



 

 
 

4. EXPERIMENTAL STUDY 

 

 

 

For our system’s evaluation, we also collected data at both highway and in-city roads of 

Istanbul, Turkey.  We used two cars to collect data.  One of them has the camera sensor, 

IMU, IEEE 802.11p unit and GPS receiver on it, which we will be calling CAR A.  The 

other car has IEEE 802.11p unit and the GPS receiver, which we will be calling CAR B.  

An illustration of such system can be seen in Figure 4.1.  We used a 1080p network 

camera with 8 mm focal length in CAR A. 

 

We prepared a data collector and a sender software for our system.  The data collector 

runs in a laptop in CAR A and stores the data received from IEEE 802.11p, GPS, IMU as 

well as live frames from the camera.  The data sender runs on IEEE 802.11p unit also in 

CAR A and sends the received CAM through TCP communication to our data collector.  

The schema of this communication can be seen in Figure 4.2.  The example of the received 

dataset can be seen in Table 4.1 and 4.2. 
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Figure 4.1: Test system used for data collecting. da, db, dc, and dg refers to the distance 
from GPS receiver to the front bumper in CAR A, distance from GPS receiver to the 

rear bumper in CAR B, estimated distance between GPS receivers of the two cars and 
actual distance between the cars, respectively.
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Figure 4.2: Data collection method. 
 

 

In Table 4.1 the samples from CAM data are showed.  Every message consists of two sets 

of variables, which are latitude, longitude, altitude in meters, heading angle, speed in 

km/h.  The first set is gathered from the ego vehicle CAR A while the second set is from 

the IEEE 802.11p unit in CAR B.  Each of the data is associated to a frame number that 

corresponds to the last frame retrieved from the camera.  One important note here is that 

our camera was set to operate at 20 fps during the data collection. 

 

Table 4.2 shows the IMU samples received from our IMU unit.  The first 3 figures are 

the acceleration in X, Y and Z axes where the last 3 figures are the angular rates in X, Y 

and Z axes.  IMU measurements are also associated with the corresponding frame 

number.  Since our IMU device much faster than our camera sensor, we were able to store 

1 measurement for each camera frame unlike in IEEE 802.11p communication.  The 

device orientation during the data collection can be seen in Figure 4.3. 

 

 

 

 

 
 
 



26	
 

 
  

Table 4.1: CAM samples received from the data sender in IEEE 802.11p. 
 

Frame 

No 

18350 18352 18353 18355 18358 18370 18374 18388 18418 

Lat1 41.045

2701 

41.045

3373 

41.045

3373 

41.045

3373 

41.045

3373 

41.045

4036 

41.045

4036 

41.045

4036 

41.045

5236 

Lon1 29.017

8846 

29.018

0603 

29.018

0603 

29.018

0603 

29.018

0603 

29.018

2310 

29.018

2310 

29.018

3938 

29.018

5480 

Alt1 6.90 7.09 7.09 7.09 7.09 7.59 7.59 8.09 8.19 

Heading1 63.0 63.2 63.2 63.2 63.2 63.0 63.0 63.5 63.2 

Speed1 60.18 58.92 58.92 58.92 58.92 57.27 57.27 53.86 51.27 

Lat2 41.045

5274 

41.045

5869 

41.045

5869 

41.045

5869 

41.045

5869 

41.045

6373 

41.045

6373 

41.045

6831 

41.045

7198 

Lon2 29.018

5476 

29.018

6916 

29.018

6916 

29.018

6916 

29.018

6916 

29.018

8261 

29.018

8261 

29.018

9478 

29.019

0550 

Alt2 11.69 12.30 12.30 12.30 12.30 12.50 12.50 12.50 12.59 

Heading2 62.3 61.9 61.9 61.9 61.9 64.1 64.1 63.6 65.3 

Speed2 50.80 50.80 49.16 49.16 49.16 49.16 44.45 44.45 34.01 

 

 

 

 
Figure 4.3: IMU unit orientation and vehicle drive direction. 
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Table 4.2: IMU samples. 
 

Frame 
No 

AccX AccY AccZ RateX RateY RateZ 

18350 -0.0595093 0.0430298 -1.06232 -0.480652 2.48016 0.0192261 

18351 -0.0695801 0.0479126 -1.01013 -1.59576 0.596008 -0.115356 

18352 -0.0457764 0.00274658 -1.02356 -0.211487 1.07666 0 

18353 -0.0543213 0.0683594 -1.10443 -1.24969 0.480652 0.211487 

18354 -0.0387573 0.0534058 -0.844421 0.499878 0.365295 0.115356 

18355 -0.0283813 0.06073 -0.987549 1.3266 -1.90338 -0.0769043 

18356 -0.0280762 0.100098 -0.974426 -0.0192261 -2.7301 -0.0576782 

 

 

We used real traffic data collected in Istanbul, Turkey as explained.  We ran our 

algorithms with this collected data and analyzed the results.  However, we also compared 

hit rate of our classifier with well-known vision benchmark of KITTI from Geiger et al.  

The samples from this data set can be seen in Figure 4.4 and the results of the comparison 

can be seen in Table 4.3.  One can see that we received better precision performance with 

our road data.  We believe that better quality of our vision sensor data caused this 

difference.  

 

 

 
 

Figure 4.4: Sample from KITTI vision benchmark. 
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Table 4.3: Comparison of TPR (Recall), PPV (Precision) of KITTI vision benchmark 
and our road data from Istanbul. 

 
Dataset TP FP FN TPR PPV 

KITTI 26 9 6 81.25% 74.28% 

Our Road Data 30 2 8 78.94% 93.75% 

 

 

We prepared a birds-eye-view window and placed each object in reference to their local 

coordinates, assuming that our ego vehicle is located at position P(0,0).  Such window 

can be seen in Figure 4.5.  This window is divided by line pairs every 3 meters in a range 

of 60 meters that is resulting a grid-based map for our detected objects.  In addition to 

that, the FOV of our vision sensor is also projected to this window.  The detected vehicles 

from our vision sensor are placed within this area. 

 

 
Table 4.4: Distance and speed comparison of camera and V2V sensors for a detected 
vehicle.  Here Frame No, Object Id, Distancec, Distancev, Speedc, Speedv, XAcc, Yacc 

and Zacc corresponds to number of the current frame received from camera, unique id 
assigned by our tracker, distance estimation from camera detection, distance estimation 

from V2V, ego speed information from GPS receiver on IEEE 802.11p unit on ego 
vehicle + relative speed from camera, speed information from V2V, acceleration rate in 

X, Y and Z axis, respectively. 
 

Frame 

No 

Object 

Id 

Distancec Distancev Speedc Speedv Xacc Yacc Zacc 

10 2 13.50 13.68 59.27 – 

0.37 

55.70 0.003 0.126 -1.015 

11 2 13.20 13.68 59.27 – 

0.73 

55.70   

-0.019 

0.105   

-1.028 

12 2 12.76 13.68 59.27 – 

1.25 

55.70  
0.013 

 

0.138  
-1.017 

 
13 2 12.49 13.68 59.27 – 

1.58 

55.70 -0.013 0.139  
-1.024 

 

 

14 2 12.49 13.68 59.27 – 

1.58 

55.70  
0.020 

 

0.119 -0.986 

30 2 12.63 12.85 55.68 – 

1.41 

55.70  
0.004 

 

0.082 -1.047 
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We compared the calculated distance (Distancev in Table 4.4 and dg in Figure 4.1) result 

to other pixel based distance calculation.  We found that distance values are quite similar 

to the each other (see Table 4.4).  Based on the position information we were able to 

match the two sensor measurements.  For instance, vehicle with id 2 is detected and 

tracked starting from the tenth frame.  We can see that our pixel based distance estimation 

gave the result as 13.50 meters while relative speed is estimated as -0.73 kmph.   After 

sensor fusion, using vision sensor and V2V communication ego speed is received as 59.27 

kmph and the speed of the detected vehicle 2 is received as 55.70.  According to this data, 

we can say that our vision sensor predicted the speed of the vehicle as 58.90 kmph while 

V2V reported it as 55.70 kmph.  The difference can be calculated roughly as %5 kmph at 

this frame.  However, at the thirtieth frame we can measure this difference as low as %2-

3 kmph.  We can say that measurements of our vision sensor are reasonable and quite 

comparable with V2V measurements.  In addition to that, we can see that the speed of 

this vehicle seems to have never been changed from the tenth to thirtieth frame.  The time 

interval can be estimated as 1 second from (30-10) / 20 fps.  We can say that our vision 

sensor is much more sensitive to the vehicle motion due to its high rate of sampling. 

 

 

 
 

Figure 4.5: Birds-eye-view window. 
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The detected vehicles are also shown on each live frame that is received from the vision 

sensor.  For instance, in Figure 4.6, one can see that three vehicles were detected and were 

being tracked.  Our tracker algorithm gave each of them a unique id.  Starting from the 

left side of the window, the ids of the vehicles are assigned as 3, 1, 2 and 0.  These 

numbers are in reserved and any other detected vehicle will assign next available id 

number, that is 4 in this case.  After a vehicle is lost in vision sensor our tracker keeps the 

information for a certain amount of time in case the same vehicle reappears again.  In our 

experiments, we defined this number as 3 seconds.  However, since our system is also 

supported by the V2V communication, that vehicle is still going to be visible in our birds-

eye view. 

 

If a particular vehicle is detected by our classifier, it either draws a box around it and 

colors in either red or blue according to its detection score.  If the score is below a certain 

threshold, the detected window is shown in red, otherwise it is shown in blue.  This 

threshold value is chosen as 12 in our scenario.  In Figure 4.6, we can see that cruising in 

vehicle in front with id 2 is detected at the fiftieth frame, however its detection score is 

as low as 6.  It’s enough for our tracker to start to track if it is detected and verified as a 

vehicle.  One can see that vehicle with id 3 is not detected at this frame.  However, it had 

been tracked on the previous frame, thus the tracker had started to track and keeps the 

tracking it even though it is not detected at the next frames. 

 

Our tracker does not directly use the detection ROI, but instead it generates a smaller 

portion of that image and starts the tracking from this smaller window which is shown in 

blue.  These windows can be seen at each tracked frame in Figure 4.6.  We saw that if the 

detection window is directly used, the tracker tends to shift more easily as the motion in 

the surrounding area between the window borders and vehicle borders tend to change 

more. 

 

In order to generate a better ROI window for tracking we resized the actual detection 

window by a certain ratio.  In our case, we found that 25% of the actual window is to be 

considered as out of the vehicle bounds.  For this reason, we generated the area of the 
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ROI as 75% of the detection window area.  The method we used for tracking seems to 

have enabled us to decrease the well-known tracking shift problem.   

 

Figure 4.7 shows the birds-eye projection of detected vehicles.  We can see that the yellow 

car on the left and our test vehicle ahead detected and tracked successfully with object id 

16 and 13, respectively.  Their distance and relative speed estimation are also shown in 

our birds-eye view.  Since our test vehicle had the IEEE 802.11p communication we were 

able to support its vision sensor based measurement with V2V communication.  

Furthermore, our system fused the two different measurements from two sensors 

successfully and did not generate new id for the V2V measurement, but instead it’s given 

the same id as 13, as also can be seen in birds-eye view (white measurements from V2V, 

green measurements are from vision sensor).  

 

 

 
 

Figure 4.6: Detected vehicles. 
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Figure 4.7: Detected vehicles and birds-eye-view projection. 
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In sensor fusion window in Figure 4.8, vision sensor, V2V sensor, particles and filter 

result shown in blue, black, violet and red, respectively.  Particle filter is closer to the 

vision sensor than it is to the V2V sensor since its variance smaller than the V2V.  Vision 

sensor detections can be seen in Figure 4.9.  Here our test vehicle (CAR B) with id 3 

cruising in front is detected from first frame until it went out of sight (field of view of the 

camera) at roughly 400th frame.  One can also see that there are no vehicles detected for 

about 200 frames or 10 seconds (camera operating at 20 Hz).  Here CAR B is still out of 

sight and cruising behind the ego CAR A. CAR B re-enters the field of view but this time 

with id 11, at roughly 900th frame.  Figure 4.9 shows this scenario. 

 

 

 
 

Figure 4.8: Sensor fusion view. 
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Even though CAR B is out of sight of the vision sensor in Figure 4.9 (b), one can see that 

our system still detects and tracks it with the IEEE V2V sensor as shown in Figure 4.10. 

However, particle filter results are tend to close to the IEEE V2V sensor measurements 

where we do not have the vision sensor detection.  These scenarios are also shown in 

charts in Figure 4.11.  It is clear that particle filter outputs promising results where IEEE 

V2V sensor measurements shifts dramatically. 

 

Our full dataset is summarized in Table 4.5.  We collected 12 different dataset in Istanbul 

covering more than 45 km of road and 65 minutes of data.  Used road data in our 

experiments is from the 8th row in Table 4.5.  Path of this data is also shown on Yandex 

Maps in Figure 4.12. 

 

 

    

                 (a)                (b) 

 

(c) 

 
Figure 4.9: Vision sensor detections. Numbers refer to the Id of the vehicles. 
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Figure 4.10: Out-of-sight scenario. t=20S: CAR A is about to overtake CAR B. t=25s: 
CAR B is behind the CAR A. t=45s: CAR B re-enters the field of view of the camera. 

 

 

 
 

Figure 4.11: Particle filter result. Dcam, Dgps and Dpf refer to vision sensor 
measurement, GPS measurement from V2V sensor and particle filter result, 

respectively. 
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Table 4.5: Summary of our collected road data. 
 

Odometer 

(km) 

Lanes Traffic Road Type Avg. Speed 

(km/h) 

3.5 1-2 Free Urban 40 

0.75 1-2 Free Urban 20 

1.6 1-2 Free Urban 45 

1.8 1-2 Congested-Free Urban 20 

2.7 1-3 Congested-Free Urban 20 

5.1 3 Congested-Free Highway 60 

6.9 2-4 Free Highway 80 

4.2 2-4 Free Highway 60 

12.0 2-4 Free Highway 75 

1.6 1-2 Congested-Free Urban 30 

0.65 1 Congested Urban 5 

6.4 1-2 Congested Urban 30 

 

 

 
 

Figure 4.12: Path of the road data used in experiment (Table 4.5 8th row) 
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For the real time capability of the system, we also test our system in the GPU accelerated 

NVIDIA Tegra Jetson TK1 development board.  This board is the simpler developer 

version of the industrial GPU accelerated boards1.  NVIDIA Tegra Jetson TK1 has the 

NVIDIA Kepler “GK20a” GPU with 192 SM3.  2 CUDA cores (up to 326 GFLOPS), 

NVIDIA “4-Plus-1” 2.32 GHz ARM quad-core Cortex-A15 CPU and 2GB DDR3L 933 

MHz RAM.  Figure 4.13 shows the diagram of such board. 

 

 

 
 

Figure 4.13: Hardware features of NVIDIA Jetson TK1 board2. 
 

 

We tested Canny edge detection and the Hough Lines Transform algorithm which are 

used in our system on both CPU and GPU and compared their results.  We saw that if 

there is no iteration and the image to be processed is not big enough, uploading it to GPU 

and processing it is more expensive than the CPU implementation.  Figure 4.14-4.16 

shows this result.  We did not take the necessary time of initial upload of the image to the 

GPU into account which took about additional 2 seconds, as also can be seen in Figure 

4.14.   

                                                
1 http://www.nvidia.com/object/jetson-tx1-module.html 
2 http://elinux.org/Jetson_TK1 
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Figure 4.14: Canny edge detection and Hough Transform performance on resized 
(320x240) image (left) vs the original (3888x2592) size (right). 
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Figure 4.15: Canny edge detection and Hough Transform performance on resized image 
(320x240). 

 

 

 
 

Figure 4.16: Canny edge detection and Hough Transform performance on original 
image (3888x2592) 
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When we have the iteration, it seems that the overall performance of GPU outperforms 

the CPU with these algorithms.  It can be seen that when the image size is about 10 MP 

(Figure 4.14 right) the GPU implementation has speeded up the whole process by 2x.  

One can also see that the number of the detected lines on the same image is approximately 

27x more than the CPU implementation.  However, when the image is resized to 320x240 

pixels, we can see that the speed difference and the number of lines detected are dropped 

to 1.3x and 7x, respectively.  In addition to speed up, these results show that we also 

obtained much more lines detected in comparison to CPU.  This may be useful in future 

tasks.  The outputs of this comparison can be seen on Figure 4.17. 

 

 

 
 

Figure 4.17: Output of CPU vs GPU line detection test on the highway image3 
 

                                                
3 https://en.wikipedia.org/wiki/Ontario_Highway_407 



 

 
 

5. RESULTS & CONCLUSIONS 

 

 

 

As a conclusion, we focused on monocular based driver assistance system, which is a 

core technology for autonomous vehicles.  We enhanced our system with IEEE 802.11p 

V2V communication system.  We trained our classifier with 550 positive and 500 

negative samples from UIUC image database.  We tested the detection performance of 

our system with our own dataset and compared with KITTI vision benchmark dataset.  

We saw that we received 93.75% and 74.28% precision rate, 78.94% and 81.25% recall 

rate with our dataset and KITTI dataset, respectively.   

 

A modern tracker system has been adapted for tracking.  A unique id was assigned for 

each tracked vehicle.  This method has enabled us to track the vehicles even though our 

detector failed at some cases.  We implemented the pixel based distance estimation.  

Distance estimation from our vision was a key estimation for our fusion system.  Here we 

assumed that the road is flat or ego and the detected vehicle have the same pitch.  Pixel 

based distance estimation and Median Flow tracker together, gave us the ability for 

relative speed estimation.   

 

Then we verified the detection of our test vehicle with V2V communication to be fused 

with the vision sensor.  We matched measurements from different sensors based on the 

Euclidean distances for a particular detected vehicle.  Since both sensors have errors, we 

used particle filter algorithm.  For our tests, we chose 3 and 4 meters variance for vision 

sensor and GPS measurement from V2V communication, respectively. 

 

In order to evaluate our system’s performance in real road conditions, we collected real 

road data from both urban roads and highways of Istanbul.  Our dataset consist of 12 

different segments, including over 47 kilometers and 60 minutes of drive data.  We also 
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classified our road data based on lane count and traffic status as 1-4 lanes and Free-

Congested-Free, Congested, respectively. 

 

After we test our system with our dataset, our system enabled us to sense the vehicles 

even when they are out of sight or occluded by other objects.  Specifically, we saw that 

when the detected vehicle is out of the field of view of the vision sensor, V2V 

communication still enabled us to detect and track it successfully.  Particle filter algorithm 

gave promising results even GPS measurements shifted dramatically and even vision 

sensor information was not present due to out-of-sight vehicle, at our scenario.  This way 

our system had the capability of sensing the vehicles even when they are occluded or even 

not present in vision sensor measurements. 

 

Lastly, due to real time requirement of this kind of application we run some of the 

algorithms we used (Canny edge detection and Hough transform) in GPU accelerated 

NVIDIA Jetson TK1 board.  We saw that we could speed up our system, especially at 

higher resolutions. 

 

For the future work, we intend to increase our detection rate by applying a better 

hypothesis extraction and verification.  In addition, we used two vehicles for our real road 

tests, for better understanding of the outputs of our system, we need more real traffic data 

from more vehicles.  Moreover, our distance measurements had no truth reference.  For 

this reason, we also plan to equip or ego test vehicle with LIDAR sensor and get the 

ground truth reference for our system outputs. 
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