

GALATASARAY UNIVERSITY

 GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

AWARD DETERMINATION FOR CROWDSOURCED

SOFTWARE DEVELOPMENT

A s l ı S A R I

July 2017

AWARD DETERMINATION FOR CROWDSOURCED SOFTWARE

DEVELOPMENT

(KİTLE KAYNAK ESASLI YAZILIM GELİŞTİRMEDE ÖDÜL BELİRLEME)

by

A s l ı S A R I , B . S .

Thesis

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

in the

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

of

GALATASARAY UNIVERSITY

July 2017

This is to certify that the thesis entitled

AWARD DETERMINATION FOR CROWDSOURCED SOFTWARE

DEVELOPMENT

prepared by Aslı SARI in partial fulfillment of the requirements for the degree of

Master of Science in Computer Engineering at the Galatasaray University is

approved by the

Examining Committee:

Assoc. Prof. Dr. Gülfem IŞIKLAR ALPTEKİN (Supervisor)

Department of Computer Engineering

Galatasaray University -------------------------

Assist. Prof. Dr. Ayşe TOSUN

Department of Computer Engineering

Istanbul Technical University -------------------------

Assist. Prof. Dr. Keziban ORMAN

Department of Computer Engineering

Galatasaray University -------------------------

Date: -------------------------

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Assoc. Prof .Dr. Gülfem IŞIKLAR ALPTEKİN and

Assist. Prof. Dr. Ayşe TOSUN for their guidance and help in the course of my research.

Also, I would like to thank to my family who continuously supported me, especially

while I was writing this thesis.

July 2017

Aslı SARI

TABLE OF CONTENTS

LIST OF SYMBOLS ... vi

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

ABSTRACT ... x

ÖZET .. xi

1. INTRODUCTION .. 1

1.1 Motivations and Challenges of Crowdsourcing ... 5

1.2 Thesis Objectives ... 6

2. BASIC DEFINITIONS AND USED APPROACHES ... 8

2.1 Software Cost/Effort Estimation Methodologies .. 8

2.2 The Putnam Model ... 10

2.3 Productivity .. 12

2.4 Function Point Analysis ... 14

3. LITERATURE REVIEW .. 17

3.1 Research Questions .. 17

3.2 Searching Keywords .. 18

3.3 Screening of Relevant Papers... 19

3.3.1. Inclusion and Exclusion Criteria ... 19

3.3.2. Study Selection and Data Extraction ... 19

3.3.3. Quality Assessment ... 20

3.3.4. Data Synthesis ... 20

3.4 Results .. 21

3.4.1. Business Models Used for CSE... 21

3.4.2. Technological Platforms Used for Management of CSE 23

3.4.3. Crowdsourced Software Development Processes Models 24

3.4.4. Crowdsourced Software Process Area(s) .. 24

3.4.5. Effort Estimation Approaches in Crowdsourced Software Development ... 25

3.4.6. Cost Drivers Used in Effort Estimation .. 26

3.4.7. Determination of Task Awards in CSE ... 27

v

3.4.8.Strategies for Crowd Selection or Formation in CSE 28

3.4.9. Micro-Tasking Process in CSE ... 29

3.4.10. Assisting Tools for CSE .. 30

3.5 Interpretations .. 31

4. PROPOSED AWARD DETERMINATION MODEL .. 34

4.1 Demonstrative Examples ... 37

4.1.1. Demonstrative Example 1: Development Challenge Project 39

4.1.2. Demonstrative Example 2: Data Science Challenge Project 41

4.1.3. Demonstrative Example 3: 2nd Development Challenge Project 42

4.2 Sensitivity Analysis .. 44

5. DISCUSSION AND THREATS TO VALIDITY .. 55

6. CONCLUSION ... 56

REFERENCES .. 58

BIOGRAPHICAL SKETCH ... 66

LIST OF SYMBOLS

AMK : Amazon’s Mechanical Turk

COCOMO : Constructive Cost Model

CSE : Crowdsourcing in Software Engineering

CSMs : Crowdsourcing Software Development Markets

DEA : Data Envelopment Analysis

DI : The Degree of Influence

FC : Function Count

FP : Fixed Price

FP : Function Point

FPA : Function Point Analysis

IPR : Intellectual Properties Right

LOC : Lines of Code

MY/YR : Manyear/Year

PC : Processing Complexity

PCA : Processing Complexity Adjustment

PM : Person-months

SLR : Systematic Literature Review

SLIM : Software Lifecycle Management

SLOC : Source Lines of Code

UFP : Unadjusted Function Point

3GL : Third-Generation Programming Language

LIST OF FIGURES

Figure 1.1: Problem Types in Crowdsourcing ... 2

Figure 1.2: Crowdsourcing Forms ... 3

Figure 4.1: Flow Chart of Award Determination Process ... 36

Figure 4.2.1: Function Point vs. Award ... 45

Figure 4.2.2: Size in LOC vs. Award .. 47

Figure 4.2.3: Productivity vs. Award ... 48

Figure 4.2.4: Time vs. Award .. 50

Figure 4.2.5: Scaling Factor vs. Award ... 51

Figure 4.2.6: The Effect of Size and Productivity on Award .. 53

Figure 4.2.7: The Effect of Time and Size on Award ... 54

LIST OF TABLES

Table 2.4.1: The Raw Function Point Worksheet .. 15

Table 3.2.1: Number of Studies Retrieved in Databases ... 19

Table 3.4.1.1: Taxonomy of Business Models .. 22

Table 3.4.2.1: Technological Platforms ... 24

Table 3.4.4.1: Crowdsourcing Process Areas .. 25

Table 3.4.6.1: Cost Drivers .. 27

Table 3.4.7.1: Task Awarding Mechanism .. 28

Table 3.4.8.1: Crowd Types ... 29

Table 3.4.9.1: Task Decomposition Methodologies .. 30

Table 3.4.10.1: Tools in Crowdsourced Software Development 31

Table 4.1.1: Challenge Types and Used Parameters with Their Selected Values 38

Table 4.1.1.1: The Raw Function Point Worksheet for Development Challenge Project

 .. 39

Table 4.1.1.2: Processing Complexity (PC) for Development Challenge Project 40

Table 4.1.2.1: The Raw Function Point Worksheet for Data Science Challenge Project

 .. 41

Table 4.1.2.2: Processing Complexity (PC) for Data Science Challenge Project 42

Table 4.1.3.1: The Raw Function Point Worksheet for Second Development Challenge

Project .. 43

Table 4.1.3.2: Processing Complexity (PC) for Second Development Challenge Project

 .. 43

Table 4.2.1: Size in Function Points and Other Parameters for Each Selected Challenge

 .. 45

Table 4.2.2: Size in LOC and Other Parameters for Selected Development and Data

Science Challenges... 46

Table 4.2.3: Productivity and Other Parameters for Selected Development Challenges

 .. 48

Table 4.2.4: Time and Other Parameters for Selected Development Challenge. 49

Table 4.2.5: Scaling Factor and Other Parameters for Selected Development Challenge

 .. 51

Table 4.2.6: Productivity and Other Parameters’ Values. ... 52

Table 4.2.7: Time and Other Parameters’ Values .. 53

ABSTRACT

Crowdsourcing is an emerging paradigm that outsources the software tasks to the large

group of people via open call format. The effect of crowdsourcing in software

engineering has increased dramatically in recent years. This thesis study first provides a

systematic survey on emerging issues of crowdsourcing in software engineering. It

involves a comprehensive survey on business models, technological platforms and

frameworks, practices in software engineering, software economics, task award

mechanisms, crowd selection, task decomposition strategies, and assisting tools. Then,

an award determination model is proposed to be useful in crowdsourced software

projects. The applicability of the model is shown on sample projects of TopCoder. The

introduced award determination model is a way to analyze and discuss features of

crowdsourcing in software economics aspects. In the thesis, the Putnam’s SLIM model,

which is proposed for effort estimation of software development, is applied to award

determination in competition-based crowdsourced software development.

Keywords: Crowdsourcing, crowdsourcing in software engineering, effort estimation,

award determination, software cost.

ÖZET

Kitle kaynak, dışarıdan temin edilen geniş bir insan grubuna, açık çağrı biçimiyle

yazılım işlerininin yaptırıldığı, yeni nesil bir yazılım geliştirme yaklaşımdır. Son

yıllarda, yazılım mühendisliğinde kitle kaynak yaklaşımının kullanımının çarpıcı

biçimde artması, akademik yazında ilgili çalışmaların sayısını da etkilemiştir. Bu tezde,

yazılım mühendisliğinde kitle kaynak yaklaşımının, seçilen araştırma soruları ışığında

bir sistematik akademik yazın araştırması yer almaktadır. Sistematik akademik yazın

araştırmasında, cevap aranan sorular aşağıda verilmiştir:

1. İş modelleri

2. Teknolojik platformlar ve sistemler

3. Kitle kaynak esaslı yazılım mühendisliği uygulamaları

4. Kitle kaynak esaslı yazılım ekonomisi

5. Görev-ödül mekanizmaları

6. İnsan topluluğu (kitle) seçimi

7. Görev parçalama stratejileri

8. Yardımcı araçlar

Akademik yazın araştırmaları sonucu elde edilen bilgiler ışığında, kitle kaynak esaslı

yazılım geliştirmede kullanılacak bir ödül tahmin modeli önerilmiştir. Bu amaç

doğrultusunda, bu tezde Putnam’ın SLIM efor tahmin modeli çalışılmıştır. Putnam’ın

SLIM efor tahmin modeli öncelikle bir projede çalışan insan sayısını, zamanın bir

fonksiyonu olarak tanımlar (Pillai & Nair, 1997). Önerilen model, TopCoder’daki

örnek projeler üzerinde uygulanmıştır. Sonuç olarak, önerilen modelin kitle kaynak

yaklaşımında ödül miktarını belirlerken kullanılabileceği hakkında sonuçlar elde

edilmiştir.

Anahtar Kelimeler: Kitle kaynak, yazılım mühendisliğinde kitle kaynak, efor tahmini,

ödül belirleme, yazılım maliyeti.

1

1. INTRODUCTION

Crowdsourcing is an emerging phenomenon based on outsourcing the work to

undefined large network of individuals by means of open call requesting for

participation. Howe (2006) used the crowdsourcing term firstly in a Wired magazine

article. He defined the crowdsourcing in his blog as “outsourcing the act of a company

or institution to an undefined generally large network of people in the form of open

call”. A crowdsourced work can be performed collaboratively or individually (Archak,

2010). According to Howe’s definition, the main motivations behind the crowdsourcing

are the open call format and the large network of potential laborers i.e. the crowd.

Several crowdsourcing approaches have introduced both in academy and in industry.

Therefore, crowdsourcing has various application domains: Recruiting participants for

opinion collection tasks, recruiting participants for a basic task, recruiting participants

for tasks that require expertise, recruiting participants for competitive tasks or recruiting

participants for collaborative donation tasks (Hosseini et al., 2015). In crowdsourcing,

participants may answer different opinion-based problems, such as online survey.

Hence, the correctness of an answer depends on the view of the participants. The basic

problems in crowdsourcing are defined as easy and simple ones that do not necessitate

special knowledge or expertise (e.g. counting the number of stones in different

pictures). On the other hand, complex problems are difficult and require expertise.

Competitive tasks can be easy or difficult depending on the presence of tangible awards,

and awards can be given to some competitors rather than all participants. In

collaborative donation tasks, also known as crowdfunding projects, everyone donate

and support participants via their non-compulsory money.

These problem types constitute the taxonomy of crowdsourcing (Figure 1.1).

2

Figure 1.1: Problem Types in Crowdsourcing (Hosseini et al., 2015)

Boudreau & Lakhani (2013) proposes another classification approach of crowdsourcing

according to the way of working with the crowd: contest, collaborative community,

complementor and labor market. In crowd contests, the organization proposes a specific

problem such as technical, analytical, scientific or design problems with tangible prizes.

It then broadcasts an invitation with deadline to submit solutions in order to assess a

good solution through many independent solutions. Crowd contest is a good

opportunity for complex or novel problems to assess high-value solutions among

multiple independent experimentation and diverse solutions. However, there are some

concerns about management in running contest crowdsourcing. That is to say, the

problem must be generalized to be easily understandable for people, be abstracted from

company specific details and be structured for the implementation. Collaborative

communities aim to accumulate ideas of multiple contributors in such as wikis, open-

collaboration projects or frequently asked questions and aggregate them into coherent

and value creating combination. Protection of intellectual property, controlling of the

crowd and cohesiveness among them are strengths of collaborative communities. The

third model is crowd complementors that are market for goods or services such as open

operational, product, or marketing data initiatives, content mashup, applications to be

built on your core product or technology, effectively transforming that product into a

platform that generates complementary innovations while provide solutions to many

different problems. For instance, Apple’s iTunes, which compromises of large number

of geographical distributed developers. On the other hand, protection of the functions

and information in the core product is a challenge for this model due to using

technological interfaces or hooks. The last model is the crowd labor market, which acts

as an intermediary between buyers and sellers to match workers to human computation

Problem Types
in

Crowdsourcing

Opinion-Based
Problems

Basic Problems
Complex
Problems

Competition
Type Problems

Collaborative
Fundraising

(Crowdfunding)

3

and repeated tasks such as third-party intermediaries such as Elenca, oDesk and Guru.

Identification of tasks for appropriate workers is the main difficulty of this model.

Figure 1.2 summarizes these models.

Figure 1.2: Crowdsourcing Forms (Boudreau & Lakhani, 2013)

A crowdsourcing system has three categories of components and their interactions

between them (Vukovic, 2009). Crowdsourcing requestor initiates crowdsourcing

process by submitting a task request, pays and awards the successful completion of the

task. Crowdsourcing requestor has several appointments in terms of describing and

management of crowdsourcing requests. Members of the crowd generate the

crowdsourced tasks by submitting their solutions. Via a crowdsourcing platform,

providers (crowd) complete tasks and requestors pay awards. Crowdsourcing platform

also authenticates information of providers and requestors, executes crowdsourcing

requests in different modes and forms in terms of advertising them on the marketplace,

bidding for them via requestor or competition. Moreover, there are six connections

among these components (Zhao & Zhu, 2014). Submitting a task and its related

request, validating as evaluation of the feedback and selecting the appropriate ones and

awarding for some crowdsourcing contests are three connections between the assigner

as requestor and the platform. In addition, there are three actions between the providers

as the crowd and the platform. Push and pull indicate functionalities such as

personalized recommendation and customization provided by the platform to attract,

intent and sustain the crowd. Participation considers people who join in some of the

projects and take some actions to respond to the tasks. Bidding for some types of

crowdsourcing systems is defined as a submission of produced outcomes of

participations to the competitions. Besides, there is a direct link between the requestor

and the crowd without the intermediary platform. These links consist of inquiry about

Crowdsourcing
Forms

Contests
Collaborative
Communities

Complementors Labor Markets

4

some details of the task to support their works, negotiation with the requestor for the

requirements and awards or request a reply for their concerns. All these interactions

between the requestor and the crowd are achieved by email, telephone or face-to-face

communications.

Crowdsourcing in software engineering (CSE) has emerged from this concept and

various software engineering tasks in terms of requirements extraction, design, coding

and testing is crowdsourced to the developers in the form of open call format (Mao et

al., 2015). There are several crowdsourcing models for software development in terms

of peer production, competitions and microtasking (Latoza, 2016). Peer production is

an example of open source in which large group of people contribute to software

projects such as Linux, Apache and Firefox without monetary award. The second

crowdsourcing model is the competitions, which have some similar aspects with

outsourcing. TopCoder.com, a software development portal, is the commercial pioneer

of this model. In competition-based crowdsourcing, client requests a work and pays for

its completion. Unlike outsourcing, workers are considered as contestants rather than

collaborators. The last crowdsourcing model is microtasking, in which complex tasks

are decomposed into several standalone microtasks to be completed within a short time.

This approach is pioneered by Amazon’s Mechanical Turk (AMK). The choice of the

type of crowdsourcing approach depends on companies’ business goals (Zhao & Zu,

2014 ; Naik, 2016). In insourced software development, a software project or task is

achieved by in-house expertise and resources rather than subcontracting to an external

provider. When comparing crowdsourcing and insourcing as software development

approaches, insourcing enables companies to keep complete control over the whole

software development process at a higher cost to meet requirements of dependable and

trustworthy software projects such as reliability, safety and security. A company

subcontracts all or part of a software project to external agents i.e. third-party service

provider in outsourced software development. Some people argue that crowdsourcing is

based on Web 2.0 form of outsourcing, and plays significant role on advancement of

Internet platform and its interactive technologies. However, there is a contract between

client and supplier in outsourcing to define needs and goods or services are provided

according to it in a cost-effective way. On the other hand, the client proposes tasks via

open call and individuals within the crowd participate voluntarily. In open sourced

5

software development, an existing software project is improved collaboratively by

allowing essential elements of a product, such as source code of software to public,

without financial award or ownership. However, crowdsourcing is more private than

open sourcing with respect to investment of organization for the solutions or ownership

or intellectual properties right (IPR) of feedbacks. In addition, contributors satisfy with

finding a better solution to the problem in open source whereas contributors in

crowdsourcing expect monetary awards. The last difference is dependability of

contribution among participants. In other words, members of the crowd contribute

independently, such as idea competition or design contest, or collaboratively, such as

Wikipedia or citizen science in crowdsourcing. On the other hand, participants work

together, and there are dependencies between their contributions in open source.

Current practice of crowdsourcing in software engineering involves developing an

online marketplace. Crowdsourcing software development markets (CSMs) concept is a

growing interest for companies rather than traditional software outsourcing markets.

CSM is based on outsourcing short-term projects that last only several days on a fixed

price (FP). The fixed price is a contracting method in which the project price is

recognized before work begins and is paid when predefined milestones are reached

(Gefen et al., 2016).

1.1 Motivations and Challenges of Crowdsourcing

Crowdsourcing has become popular by capturing considerable attention from the world.

It provides increased development speed by means of many contributions of workers,

which lead to generate alternative solutions for the same task. In addition,

crowdsourcing facilitates flexibility in the use of specialist freelancers as

democratization and liberating and learning new technologies (Latoza, 2016). Iterative

and collaborative software development are opportunities for rapid feedback from the

customer. Collaboratively defining the requirements and the scope of the software,

splitting up the software into components and services that need to be developed,

breaking down the work into smaller pieces or tasks and collective intelligence are other

benefits of CSE (Satzger et.al., 2014). Obtaining quality of software, reducing the time

to acquire the software product, cost reduction, diversity of solutions, many ideas

6

creation, recruitment as many contestants as possible, teaching contestants new

knowledge and skillsets by competitions, funding as sponsors for projects, raising the

publicity of organization among other participants as marketing are goals for CSE (Wu

et al., 2013).

On the other hand, crowdsourcing has challenges in terms of allocating people for

special tasks, collaboration for self-contained tasks and knowledge management

(Machado et al., 2014). In addition, Dwarakanath et al. (2015) state issues in

crowdsourced software development in terms of task management (decomposition a

high level problem into a number of atomic tasks), security, management of the

responses, provisioning of resources for the crowd, collaboration between individuals in

the crowd, crowd selection strategies, and program management for monitoring crowd

activities. In order to solve these challenges, software crowdsourcing models require

new workflows (Latoza, 2016). These workflows encounter quality issues, crowd

selection, coordination of contributions and share knowledge across the crowd. Naik

(2016) emphasizes that large number of the crowd leads to several difficulties in terms

of quality, liability, intellectual property rights, information security, privacy and

security. Furthermore, every type of software projects may not be appropriate for

crowdsourcing (Naik, 2016). It is said that less complex and standalone software

development tasks without interdependencies are more suitable for software

crowdsourcing. Therefore, types of tasks play significant role on success of CSE.

1.2 Thesis Objectives

This thesis provides provision of a detailed insight of emerging research areas of CSE.

The thesis involves a systematic literature review. Systematic literature review

examines emerging issues and literature in order to construct proposed model by means

of searching keywords in the databases or libraries and answering research questions. It

focuses on the following research areas: Analyzing the business models used for CSE,

investigating technical infrastructure on which crowdsourcing process is implemented,

identifying crowdsourced software development methodologies, identifying software

process area(s) that crowdsourcing is utilized, identifying effort estimation approaches

in crowdsourced software development, identifying the factors that affect effort

7

estimation, investigating task award strategies in CSE, analyzing strategies for crowd

selection or formation in software engineering, investigating micro-tasking process

performed in CSE, and identifying assisting tools for CSE. Comparison of the literature

review results with previous literature reviews enables determining the emerging and

abandoned research topics in CSE.

The findings of the literature review directed us to better examine the economic aspects

of CSE. An award determination model that is based on the Putnam’s SLIM model is

introduced and adapted for CSE. The aim of using the Putnam’s SLIM model in this

thesis is to estimate the award of software projects and accordingly the required effort.

This award determination approach will direct companies when deciding whether to

outsource tasks the large group of people via open call format or not (i.e. making the

decision of crowdsourcing or insourcing).

2. BASIC DEFINITIONS AND USED APPROACHES

2.1 Software Cost/Effort Estimation Methodologies

Predicting the required effort to develop software is an essential topic for researchers

and practitioners. In academic literature, various studies are conducted to propose

appropriate cost estimation methods for predicting the required effort. Software sizing

is an important step in the process of cost estimation, for which several methods for

software sizing are introduced (Boehm et.al., 2000 ; Leung & Fan, 2002; Aljahdali &

Sheta, 2010). A commonly used software sizing method is using the line of code, which

is the number of lines of the delivered source code of software (Leung & Fan, 2002).

Another method is the software science that consists of the code length of source code

and the volume of the amount of required storage space (Leung & Fan, 2002). The

function points is another approach for software sizing with respect to functionality of

the program (Leung & Fan, 2002). The feature points is an extension of function points

for measurement of highly algorithmic complex systems with few input or output

(Leung & Fan, 2002). The last commonly used method is the object point that is based

on the number and the complexity of the screens, reports and 3GL components (Leung

& Fan, 2002).

On the other hand, the software cost estimation models may be as algorithmic and non-

algorithmic approaches (Leung & Fan, 2002). In non-algorithmic methods, the analogy

costing requires one or completed projects, which are similar to the new project, and it

performs estimation through reasoning by analogy using the actual costs of previous

projects. One or more experts estimate, each with respect to their own methods and

experiences in expert judgment approach (e.g. Delphi technique). In Parkinson method,

the cost is determined by the available resources. The best price wins the project in

price-to-win method, which is based on customer’s budget rather than software

9

functionality. The cost of each component in the software system is estimated

individually and the results are summed up to produce an estimate for the overall

system in bottom-up approach; whereas the total cost is apportioned into the various

components of the software in top-down method.

Algorithmic approaches are based on mathematical models to estimate the cost as a

function of a number of variables (Leung & Fan, 2002). In algorithmic models, there

are cost factors besides the software size to distinguish among the existing algorithmic

methods by means of selection of cost factors (Leung & Fan, 2002). The taxonomy of

cost factors involves four types (Leung & Fan, 2002): Product factors, such as required

reliability, product complexity, computer factors e.g. execution time constraint, main

storage constraint, personnel factors in terms of analyst capability, application

experience, and project factors, such as use of software tool and required development

schedule. In the effort function of algorithmic models, 𝑥1, 𝑥2 , … , 𝑥𝑛 are the cost

factors, and it can be seen in Eq. (2.1.1).

 𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) (2.1.1)

We can also classify the algorithmic methods in respect to the form of the function of

𝑓 (Leung & Fan, 2002). In linear models, linear effort function can be seen as in Eq.

2.1.2. It includes 𝑎1 , … , 𝑎𝑛 coefficients, which are chosen in order to best fit the

completed project data (Leung & Fan, 2002):

𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖

𝑛

𝑖=1

(2.1.2)

In multiplicative models, the effort function also includes 𝑎1, … , 𝑎𝑛 which are chosen

as coefficients to best fit the completed project data. The effort function is given as:

10

𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑎0 ∏ 𝑎𝑖

𝑥𝑖

𝑛

𝑖=1

(2.1.3)

In power function models, effort is expressed as in Eq. (2.1.4), where S is the code size,

and a and b are functions of other cost factors.

 𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑎 . 𝑆𝑏 (2.1.4)

The common models of power function methodology are the Constructive Cost Model

(COCOMO) and Putnam’s model. Boehm (1981) has firstly proposed COCOMO. The

model enables the identification of the developed time, the effort and the maintenance

effort, as mathematical equations (Aljahdali & Sheta, 2010).

Another algorithmic model is based on linear regression. The ultimate goal of the

regression model is to find the function 𝑓(𝑥) which best models the training data

(Oliveira, 2006). To predict the total effort in man-months of future software projects,

linear regression finds the line that minimizes the sum of squares errors on the training

set (Oliveira, 2006). That is to say, linear regression method is another utilization

approach for cost estimation as model calibration (Leung & Fan, 2002). Discrete

models, such as Aron model and Boeing model, are other effort, duration, difficult and

other cost factor-related models (Leung& Fan, 2002). In other models, Price-S

computes project cost and schedule by estimating project size, type and difficulty.

SoftCost is related to size, effort and duration and this model uses Rayleigh probability

distribution to address risk (Leung & Fan, 2002).

2.2 The Putnam Model

The Putnam model plays significant role on predicting the costs and delivery schedules

of software projects. The Putnam model performs software life-cycle in terms of the

Rayleigh distribution of project personnel level versus time (Han et al., 2005). The

Putnam model has concerns about the number of people working on a project as a

function of time, which is characterized by Rayleigh distribution (Warburton, 1983).

11

That is to say, Rayleigh curve indicates the rate at which resources are consumed by

software engineering projects (Parr, 1980). Rayleigh equation indicates manpower

which is measured in people per unit time as a function of time usually expressed in

manyear/year (MY/YR) (Pillai & Nair, 1997). Approximately ± 25% of the expected

manpower value during the manpower buildup phase of the profile is showed as a

tolerance by Putnam (Pillai & Nair, 1997). Manpower as a function of time is

expressed as (Pillai & Nair, 1997):

 �̇� = 2 . 𝐾 . 𝑎 . 𝑡 . 𝑒−𝑎𝑡2
 (2.2.1)

According to Eq. (2.2.1), �̇� represents the manpower in MY/YR, 𝐾 represents the total

area under the curve and 𝑎 is a constant, i.e. 𝑎 = 1/(2𝑡𝑑
2) in which 𝑡𝑑 is the time for

manpower to peak. Cumulative number of people used by the system at any time t is

formulated as (Putnam, 1978):

 𝑦 = 𝐾(1 − 𝑒−𝑎𝑡2
) MY (2.2.2)

Putnam utilizes the Rayleigh curve together with a number of empirically derived

assumptions in order to obtain following equation (Kitchenham & Taylor, 1984):

 𝑆𝑆 = 𝐶𝐾 . 𝐾1/3 . 𝑡𝑑 (2.2.3)

In Eq. (2.2.3), 𝑆𝑆 indicates the number of source statements in the final product, 𝑡𝑑 is

the time at which the manpower curve reaches a maximum, and it is identified with the

development time, i.e. 𝑡𝑑 = 𝑡4/3 , and 𝐶𝐾 is the technology factor as a constant for

development environment (Kitchenham & Taylor, 1984). Therefore, Putnam model

assumes a relationship between product size, development time and total effort for a

particular project (Kitchenham & Taylor, 1984). Besides, Putnam model defines

productivity, as in Eq. (2.2.4) (Kitchenham & Taylor, 1984). Eq. (2.2.4) formulates

productivity considering the code of the end product, and the effort which is required to

12

produce it. According to the formula, total effort to produce the code includes overhead

and also test and validation effort (Kitchenham & Taylor, 1984).

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑜𝑡𝑎𝑙
𝑆𝑖𝑧𝑒 𝑜𝑓 𝐸𝑛𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝑜𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡 𝑡𝑜 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝑜𝑑𝑒

(2.2.4)

2.3 Productivity

Productivity achieves product with quality at low cost. Therefore, several

methodologies have been proposed to achieve high productivity in software projects.

Two major approaches have been used for estimating software productivity (Woodfield

et. al., 1983). The first approach is based on lines of code per programmer/ month, on

work unit and the second approach is based on the cost per line of code, on cost unit.

Woodfield et al. (1983) propose productivity model as function of problem size,

resources consumed in production and the quality of the end product. Moreover, Data

Envelopment Analysis (DEA) is a performance evolution method in which input

parameters are used as constraints. DEA maximizes efficiency, which is generally

measured as output per input, as a function of output parameters (Saikia et. al., 2016).

 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑦

𝑥

(2.3.1)

In Eq.(2.3.1), 𝑦 indicates the output, which is measured by source lines of code (SLOC),

function points (FP), or object points in software projects, and x is effort as the number

of person-months (PM), and productivity refers to the number of FP developed per PM

(Stensrud & Myrtveit, 2003). Stensrud & Myrtveit (2003) state that the more FP per

PM leads to higher productivity. Besides, Moser (1996) points out incremental

productivity in terms of incremental function developed per person-days of effort.

The authors state that there is strong relationship between software size and both

productivity and defect rate (Maccormack et al., 2003). In other words, larger projects

13

lead to high rate of productivity and lower levels of customer-reported defects per LOC.

Early prototyping implies lower defect rate, but higher productivity.

Anselmo & Ledgard (2003) discuss issues of productivity in terms of software

complexity, scalability and reusability in software development environments. When

considering measuring of end product, Anselmo & Ledgard (2003) state functionality as

determination of size and complexity of the function space specified for a software

product, complexity i.e. difficulty in developing a piece of software and quality such

that availability of its specified functions, time and cost to support that software to

maintain an acceptable level of availability, which must be determined by the users of

that software. Affecting factors of productivity such as independence,

understandability, flexibility, visibility and abstraction are also determined as affecting

for the man-hours, time to develop and support a software product (Anselmo &

Ledgard, 2003).

In addition, software and programming productivity can be determined as measure of

the time and/or cost required to deliver and maintain software systems (Duncan, 1988).

For software productivity, there are two major dimensions: The first one is the change

in the quantity of software produced during the development at a given cost. The

second dimension is the quality of the final software system. Duncan (1988)

emphasizes that engineering productivity metric enables determining the quantity of the

produced code at each development-month as an indicator of improvement of

programmer productivity. When considering software development life-cycle,

requirements analysis phase is suitable for productivity measurement (Moses et al.,

2006). In addition, language generation type, application domain, development type

e.g. enhancement, new development and system size influence on productivity, and

language type, development type and project team size affect to effort (Moses et al.,

2006). Furthermore, Briand et al. (1998) state a productivity model which is strongly

related to the cost overhead.

There are several project characteristics that are proposed for productivity, such as the

size and complexity of the project, project duration, newness of the project and team

size (Blackburn et al., 1996). For instance, productivity decreases with project duration,

14

and team size is inversely proportional with productivity. Basili et al. (1996) emphasize

the difficulty of measurement of size of the project due to object-oriented mechanisms,

such as inheritance and aggregation of classes in their proposed productivity

formulation. Therefore, there are some difficulties about measurement of size of the

software projects owing to using the programming language. In a research, the

identification of the organization perspectives for productivity measurement in software

projects achieves different evaluation of the inputs and outputs of a production process

(Júnior, 2009).

There are several productivity approaches that are pointed out the combination of size

and resources (Card, 2006). Physical productivity is the ratio between the amount of

product and the resources consumed as usually effort. Functional productivity is the

ratio of the amount of the functionality delivered to the resources consumed as usually

effort. Economic productivity is the ratio of the value of the produced product and the

cost of the resources used to produce it. Kitchenham & Mendes (2004b) propose size-

based effort estimation model to emphasize the relationship between different size

measures in different aspects of software product and effort for measuring the

productivity.

Another study is related to measurement of software productivity which is related to the

measurement of the output and input to the software development process (Yu et.al.,

1991). According to this study, productivity factors improve the quality of the software,

when accurately measuring software product attributes during the development process.

2.4 Function Point Analysis

In the award determination model, the size of the project is calculated using the

Function Point Analysis (FPA). Alberth (1979) introduced Function Point (FP)

methodology in order to measure functionality delivered by software. FPA counts the

used functions, which are meaningful to user in the software application. FP count for a

software product starts with classifying and counting the five user functions: External

Input Types, External Output Types, Logical Internal File Types, External Interface File

Types and External Inquiry Types (Low & Jeffery, 1990).

15

For each function type, the weights used for each function types in respect to their

complexities are shown Table (2.4.1).

Table 2.4.1: The Raw Function Point Worksheet (Low & Jeffery, 1990)

Function Type /

Complexity
Simple Complexity Average Complex

External Input x3 x4 x6

External Output x4 x5 x7

Logical Internal File x7 x10 x15

External Interface

File
x5 x7 x10

External Inquiry x3 x4 x6

The number of each function is multiplied by corresponding weight in the given table.

The total number of Function Count (FC) leads to Unadjusted Function Point (UFP)

(Albrecht & Gaffney, 1983). Eq. (2.4.1) defines FC known as UFP in which 𝑧𝑖𝑗 is the

count for component 𝑖 at level 𝑗 e.g. outputs at high complexity and 𝑤𝑖𝑗 is the fixed

weight assigned by the Albretch procedure, seen as Table 2.4.1 (Matson et al., 1994).

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 = ∑ ∑ 𝑤𝑖𝑗𝑧𝑖𝑗

3

𝑗=1

5

𝑖=1

(2.4.1)

The degree of influence (DI) is determined by answering 14 General System Features,

which take values between 0 and 5, to signify none to essential for adjustment of

application and environment complexity. In order to define Processing Complexity

(PC), 14 general system features are:

1. Data Communication

2. Distributed Functions

3. Performance

4. Heavily Used Configuration

5. Transaction Rate

6. Online Data Entry

7. End User Efficiency

16

8. Online Update

9. Complex Processing

10. Reusability

11. Installation Ease

12. Operational Ease

13. Multiple Sites

14. Facilitate Change

After this step, Processing Complexity Adjustment (PCA) is calculated by Eq. (2.4.2).

 𝑃𝐶𝐴 = 0.65 + (0.01 𝑥 𝑃𝐶) (2.4.2)

The Function Points (FPs) delivered by an application program is measured by Eq.

(2.4.3).

 𝐹𝑃 = 𝐹𝐶 𝑥 𝑃𝐶𝐴 (2.4.3)

Finally, we have calculated estimated LOC of the given software project by means of

FP and using the corresponding programming language coefficient, as seen in Eq.

(2.4.4) (Borandag et al., 2013).

 𝐿𝑂𝐶 = 𝐹𝑃 𝑥 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝐿𝑂𝐶 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (2.4.4)

In addition, we have interpreted results between project size in LOC and cost per LOC

of high level languages. For instance, the cost per LOC of high level language such as

Java is $6.25 (Jones, 2008). Moreover, the project cost per line is determined as $3.98

for JavaScript programming language
1
.

1
 http://www.yegor256.com/2014/04/11/cost-of-loc.html

3. LITERATURE REVIEW

Systematic literature review examines emerging issues and literature in order to

construct proposed model by means of searching keywords in the databases or libraries

and answering research questions. In this section, the guideline steps is used after

giving a brief introduction to the crowdsourcing concept (Kitchenham, 2004a).

The effect of crowdsourcing has increased dramatically both in academic research and

industry, recently. In our systematic literature survey study, at the end of the quality

assessment process, 46 primary studies are selected and analyzed. These primary

studies are grouped in respect to our research questions in order to extract useful

information. Our research questions can be grouped into four main classes as:

framework used for crowdsourcing, software economic aspects of crowdsourcing,

crowd building, and related tools.

3.1 Research Questions

This subchapter provides state of the art of crowdsourcing in software engineering

research area, together with the practitioner’s view. Kitchenham & Charters (2007)

have proposed a systematic literature review (SLR) procedure, which is also taken as a

guide for the SLR in this thesis. The research questions that are examined are:

 RQ1.1: What are the business models used for crowdsourcing in software

engineering (CSE)?

 RQ1.2: What are the technological platforms used for management of CSE?

 RQ2: How are crowdsourced software development processes modeled?

 RQ3: For which software process area(s) crowdsourcing is utilized?

 RQ4.1: What kind of effort estimation approaches are employed in

crowdsourced software development?

18

 RQ4.2: What are the cost drivers used in effort estimation?

 RQ5: How are task awards determined in CSE?

 RQ6: What kind of strategies exist for crowd selection or formation in software

engineering?

 RQ7: How tasks are decomposed into micro-tasking process performed in CSE?

 RQ8: Which tools are used to assist CSE?

3.2 Searching Keywords

In order to select the most relevant studies with respect to our research questions, we

have identified five keywords and formulated their combinations by means of logical

operators. The chosen keywords are:

 crowdsourcing OR crowdsourced OR crowd

 crowdsourcing OR crowdsourced OR crowd AND “software engineering”

 crowdsourcing OR crowdsourced OR crowd AND “software development”

 “competitive programming”

 “crowdsourced development”

As databases, we have chosen IEEEXplore, ACM Digital Library, Web of Science,

SCOPUS, SpringerLink and ScienceDirect. These libraries are popular and well-known

databases for searching computer science related issues. Therefore, we have conducted

our SLR by means of these content-richest libraries. The searching process is

conducted without any date limit and only academic publications are included. We

have retrieved a total of 5295 publications.

Table 3.2.1 gives detailed information about the number of retrieved papers in these

databases.

19

Table 3.2.1: Number of Studies Retrieved in Databases

Database

Number

of

publicatio

ns

First Filtering Second

Filtering

Exclu

ded

Duplicat

ed

Inclu

ded

Exclud

ed

Inclu

ded

IEEE

Xplore

291 234 16 34 1 12

ACM 190 151 10 27 0 14

Science

Direct

1827 1812 84 9 0 3

Web of

Science

51 45 8 2 1 2

Scopus 517 406 36 24 1 4

Springer

Link

2419 2383 110 24 1 11

TOTAL 5295 5031 264 124 120 46

3.3 Screening of Relevant Papers

The screening of relevant papers is the process in which the inclusion and exclusion

criteria and quality assessment process for further selection of primary studies are

determined. By means of these conducted steps, we have determined papers, which are

related to our research questions and constituted our final list of primary studies.

3.3.1 Inclusion and Exclusion Criteria

We have determined inclusion criteria as English written publications, crowdsourcing

and software engineering related publications, scientific publications published in

conferences, journals and chapters from books. On the other hand, we have excluded

non-scientific publications, presentations, newspaper and magazine articles, blog posts,

presentations, abstracts only and publications which are out of our research topics.

3.3.2 Study Selection and Data Extraction

First, the five search strings are searched in all the databases. As a result, 5295

metadata information of the paper are found. The second step is achieved by a first

pilot study, which is based on randomly selected 100 papers. Each selected papers’

20

abstract, keyword and title information have been reviewed by each pair of researchers

in order to distinguish relevant papers to our research questions. During this pilot study,

approximately 65 papers have been reviewed by each researcher. Disagreements among

the researchers are discussed and solved after this step. We have conducted first

filtering on 5295 papers’ abstract, title and keywords, such that we have removed

duplicate and irrelevant studies from the list. As the result of the first filtering, 124

papers are remained.

3.3.3 Quality Assessment

Second pilot study is conducted on 124 relevant papers. In second pilot study, we have

randomly selected 15 full texts of papers, which have been read by each individual

researcher. Each paper is analyzed with respect to research questions. They are

evaluated by giving a YES/NO answer. Before consensus, we have discussed our

disagreements, which are generally on the research questions related to business

models, technological platforms and assisting tools. We have resolved these

disagreements by reviewing papers together in our meetings.

In quality checklist step, 124 papers are evaluated with respect to quality assessment

checklist, which is based on YES/NO questions. In order to determine quality checklist

score, YES answers are counted for each paper. We have kept the papers with a score of

three or more YES. 46 studies have passed our quality assessment criteria as the

primary study of our SLR after this step. The list of primary studies are available
2
. 46

primary studies are read and evaluated by each researcher with their different

perspectives to extract answers for our research questions.

3.3.4 Data Synthesis

In order to synthesize the information from 46 primary studies, we have conducted

thematic analysis. Thematic analysis is a qualitative analytic method to identify,

analyze and report patterns or themes within data (Braun & Clarke, 2006). There are

two ways to identify patterns or themes within data: Inductive or deductive. In an

2
 http://tinyurl.com/kzp6spl

21

inductive approach, the themes are strongly related to the data themselves, while a

deductive approach provides a less rich description of the data overall, and more a

detailed analysis of some aspect of the data. In this SLR study, we have performed

inductive approach. That is to say, we have read primary studies to extract keywords

used in the primary studies and group them to define final themes, which are used as

information for our research questions.

3.4 Results

3.4.1 Business Models Used for CSE

Business models are related to participation of crowd workers, interaction among them,

submission activity and final selection for the best solution. The most popular model is

the competition-based, where participants compete with each other and the winning

solution is chosen by the client. In this model, the task is broadcasted via platform to

the crowd and there is no interaction among the crowd workers. TopCoder is a

commercial pioneer of this model. In addition, competition-based model compromises

of two models. The first one is based on game theory, where the crowd workers

participate and submit the solution with respect to other registered workers’ activities

(Wu et al., 2013; Wu et al., 2015). On the other hand, the crowd workers meet with

each other, discuss and provide feedback to each other in collaborative models

(Ramakrishnan, 2014).

The crowd workers determine their bid depending on their effort and cost for achieving

the task. The submission for the task is determined by the winning bid in auction-based

model (Satzger et. al., 2014). Furthermore, client can select crowd workers based on

their reputations, skills, qualification or trustworthiness measures and may invite them

to the task in invitation-based model. After invitation, workers who accept the

invitation can submit their solution.

In collaborative model, workers can see their solutions and revise their solutions to

provide a better solution for the task.

22

This business models are team-based as workers’ formation or the subtasks are assigned

to workers (Tung & Tseng, 2013; Vukovic & Das, 2013; Alvertis et al., 2016).

The last proposed model is performed by an intermediary, such as a broker, by which all

crowdsourcing activities can be achieved (Edgeman et al., 2013). According to these

types of business models, crowdsourcing activities and interactions among the crowd

effect the selection of business models in software engineering.

All these business models are summarized in Table 3.4.1.1

Table 3.4.1.1: Taxonomy of Business Models

Business Models Primary Studies

Competitive (Archak, 2010; Nag et al., 2012; Wu et al.,

2013; Tsai et al., 2014; Xu & Wang, 2014;

Yakushin & Lee, 2014; Dwarakanath et

al., 2015; Hasteer et al., 2015 ; Li et al.,

2015; Xie et al., 2015; Baba et al., 2016;

Dwarakanath et al., 2016; Weidema et al.,

2016)

 Game theory-based

 Collaborative

(Wu et al., 2013; Wu et al., 2015)

(Wu et al., 2013; Hu & Wu, 2014;

Ramakrishnan & Srinivasaraghavan, 2014)

Auction-based (Satzger et al., 2014)

Invitation-based (Vuković, 2009; Xiao & Paik, 2014; Zogaj

et al., 2014; Dwarakanath et al., 2015; Luz

et al., 2015; Dwarakanath et al., 2016)

Collaborative (Vukovic & Das, 2013; Wu et al., 2013;

Groen, 2015; Latoza et al., 2015; Li et al.,

2015; Zhao & Hoek, 2015; Aletdinova et

al., 2016; Hu & Jiau, 2016)

 Team-based

 Assignment of workers

to subtasks

(Alvertis et al., 2016)

(Tung & Tseng, 2013; Vukovic & Das,

2013)

Via a broker/intermediary (Edgeman et al., 2015)

23

3.4.2 Technological Platforms Used for Management of CSE

Technological platforms that are used for management of CSE perform the whole

process of crowdsourcing activities. The most popular examples of commercial

platforms are TopCoder as a competitive business model, and several collaborative

business models such as AppStori (Wu et al., 2013; Li et al., 2015).

Moreover, enterprise crowdsourcing utilizes also technological platforms. In this

technological platforms, design, testing and integration phase play significant role on

the evaluation, testing and integration into the existing applications of the crowd’s

solutions (Dwarakanath et al., 2015). In addition, hierarchical components of the task

such that implementation independently in predefined time, which are based on iterative

task decomposition process are achieved by the technical architects in the enterprises.

All related artifacts in terms of user interfaces, test cases and component description are

uploaded to the platform. Crowd workers’ solutions are automatically integrated with

the existing system after test cases generation by the platform. In addition, cloud-based

crowdsourcing platform is the other proposed technical platforms for crowdsourcing in

our primary studies (Xu et al., 2015; Wu et al., 2015). Table 3.4.2.1 illustrates these

technological platforms.

24

Table 3.4.2.1: Technological Platforms

Technological Platforms Primary Studies

Commercial platforms (Yan & Wang, 2013; Ramakrishnan

& Srinivasaraghavan, 2014; Zogaj et

al., 2014; Luz et al., 2015; Aletdinova

et al., 2016)

TopCoder (Mao et al., 2013; Wu et al., 2013;

Stol & Fitzgerald, 2014; Ågerfalk et

al., 2015; Hasteer et al., 2015; Li et

al., 2015; Yang et al., 2016)

AppStori (Wu et al., 2013; Li et al., 2015)

Enterprise crowdsourcing

mechanisms

(Vukovic & Das, 2013; Scupola &

Nicolajsen, 2014; Dwarakanath et al.,

2015; Edgeman et al., 2015;

Dwarakanath et al., 2016)

Cloud-based crowdsourcing (Vuković, 2009; Tsai et al., 2014; Wu

et al., 2015; Xu et al., 2015)

3.4.3 Crowdsourced Software Development Processes Models

Testing process is frequently discussed with the aspect of crowdsourcing (Machado et

al., 2014; Zogaj et al., 2014). In addition, TopCoder’s process model has been studied

in several primary studies (Mao et al., 2013; Dwarakanath et al., 2015; Hasteer et al.,

2015). According to these studies, TopCoder generates specification, implementation

and testing. In addition, parallel process development activities, such as design and

coding are proposed for crowdsourced software development (Dwarakanath et al.,

2015). Several existing software development methodologies (waterfall and Scrum)

have been proposed in several papers (Stol & Fitzgerald, 2014; Dwarakanath et al.,

2015).

3.4.4 Crowdsourced Software Process Area(s)

Coding is the most popular software development activity of implementation of

crowdsourcing. In addition, requirements engineering, design, development and testing

are another software development activities in which crowdsourcing approach is applied

25

(Wu et al., 2013; Vukovic & Das, 2013; Jiang & Matsubara, 2014; Latoza et al., 2014;

Satzger et al., 2014; Wu et.al., 2015) (Table 3.4.4.1).

Table 3.4.4.1: Crowdsourcing Process Areas

Process Area(s) Primary Studies

Requirements

Engineering

(Jiang & Matsubara, 2014; Satzger et al., 2014;

Groen, 2015; Wu et al., 2015; Alvertis et al.,

2016; Hu & Jiau, 2016)

Design (UI,

Architecture)

(Archak, 2010; Stol & Fitzgerald, 2014; Saremi

& Yang, 2015; Xu et al., 2015; Wu et al., 2015;

Zhao & Hoek, 2015; Weidema et al., 2016)

Coding/Development

(Archak, 2010; Nag et al., 2012; Mao et al.,

2013; Hu & Wu, 2014; Latoza et al., 2014;

Ramakrishnan & Srinivasaraghavan, 2014; Stol

& Fitzgerald, 2014; Yakushin & Lee, 2014;

Ågerfalk et al., 2015; Dwarakanath et al., 2015;

Hasteer et al., 2015; Mao et al., 2015; Saremi &

Yang, 2015; Wu et al., 2015; Xie et al., 2015; Xu

et al., 2015; Dwarakanath et al., 2016; Weidema

et al., 2016; Yang et al., 2016)

Testing (Mäntylä & Itkonen, 2013; Tung & Tseng, 2013;

Latoza et al., 2014; Machado et al., 2014; Yan et

al., 2014; Zogaj et al., 2014; Ågerfalk et al.,

2015; Guo et al., 2016)

 Usability

Testing

(Scheneider & Cheung, 2013; Bruun & Stage,

2015)

3.4.5 Effort Estimation Approaches in Crowdsourced Software Development

COCOMO and linear regression models with price drivers have been studied for effort

estimation in crowdsourced software development (Mao et al., 2013; Dwarakanath et

al., 2015). Dwarakanath et al. (2015) propose effort estimation methodology for the

special web application by means of COCOMO II estimation technique. Before they

build use-cases and design wireframes, functional requirements are gathered in the

analyse phase following by utilization of COCOMO II for effort estimation of this web

application. In this paper, the unadjusted function points are used as the sizing metric of

the software. The function points and their complexity levels in a software project are

great opportunities for quantification the amount of information processing

26

functionality. According to web application experiment, 50 unadjusted function points

lead to 3.5 person-months or 532 hours of effort. In addition, the required effort is

divided into different phases of the software development process. Their results show

that the overall effort and cost spent in building application including design is well

within COCOMO II.

Another effort estimation technique is achieved by price predictor models and a

multiple linear regression model with 16 price drivers on the TopCoder platform (Mao

et al., 2013). In their study, the result of a total of 12 different prediction models is

presented. In addition, Naïve, Random and COCOMO’81 approaches are used as

comparison models to emphasize that COCOMO’81 model, the Naïve model and the

Random method are outperformed by all 9 predictive models. Their results show that

between size and effort for crowdsourced projects on TopCoder, there is not an obvious

correlation. The best performing model is C4.5, and it is a motivation for them to value

in predictive modeling for crowdsourced software development and other well

performing models, as well.

3.4.6 Cost Drivers Used in Effort Estimation

In crowdsourcing aspect, cost drivers are categorized as monetary and/or non-monetary

awards. Expected duration, complexity and quality of input, effort and reputation

mechanisms have influence on determining the awards. Table 3.4.6.1 summarizes cost

driver-related primary studies.

27

Table 3.4.6.1: Cost Drivers

Cost Drivers Primary Studies

Expected duration (Stol & Fitzgerald, 2014; Ågerfalk et al., 2015;

Bruun & Stage, 2015)

Input complexity (Archak, 2010; Mao et al., 2013; Stol &

Fitzgerald, 2014; Ågerfalk et al., 2015)

Quality of input (Mao et al., 2013; Stol & Fitzgerald, 2014;

Zogaj et al., 2014)

Effort (Jiang & Matsubara, 2014; Weidema et al.,

2016)

Online reputation (Archak, 2010; Wu et al., 2013)

3.4.7 Determination of Task Awards in CSE

In order to determine task awards for crowdsourcing in TopCoder, cash prizes and long-

term incentives (e.g. online reputation awards) are offered in contests (Scupola &

Nicolajsen, 2014; Stol & Fitzgerald, 2014; Ågerfalk et al., 2015; Saremi & Yang, 2015).

Awards are determined in respect to TopCoder awarding mechanism, performance-

based, game theory-based, contest theory-based, deadline driven, and revenue-sharing

model (Table 3.4.7.1). In CSE, the award mechanisms are strongly related with pricing

mechanisms. Each of these task awarding mechanisms has special features. For

instance, TopCoder awarding mechanism provides cash prices to winners, whereas

performance-based offers a monthly fee, bonus rates or commission rates.

Consequently, Table 3.4.7.1 gives information about task awarding mechanisms in our

primary studies.

28

Table 3.4.7.1: Task Awarding Mechanism

Task-Awarding Mechanism Primary Studies

TopCoder awarding mechanism (Archak, 2010; Nag et al., 2012;

Scupola & Nicolajsen, 2014; Stol &

Fitzgerald, 2014; Ågerfalk et al.,

2015; Saremi & Yang, 2015)

Performance-based scheme (Scupola & Nicolajsen, 2014; Stol &

Fitzgerald, 2014; Zogaj et al., 2014;

Ågerfalk et al., 2015; Xu et al., 2015;

Weidema et al., 2016)

Game theory-based model (Wu et al., 2013; Hu & Wu, 2014;

Wu et al., 2015)

Contest theory-based model (Wu et al., 2015; Xu et al., 2015)

Deadline-driven reward

optimization

(Satzger et al., 2014)

Revenue sharing-based model (Jiang & Matsubara, 2014)

3.4.8 Strategies for Crowd Selection or Formation in CSE

Crowd selection is another emerging issue for crowdsourcing in software engineering.

Due to the fact that many workers with different perspectives, backgrounds and

experiences complete the same task and this leads to generate alternative solutions. By

selecting the best alternative solutions or requesting more work, which is combining

aspects of several alternatives, crowdsourcing can perform higher quality solutions

(Latoza & Hoek, 2016). Several studies use student groups as crowds (Nag et al., 2012;

Mäntylä & Itkonen, 2013; Ramakrishnan & Srinivasaraghavan, 2014; Brunn & Stage,

2015; Latoza et al., 2015). In addition, the members of the crowd may be trained or

untrained. Developer recommendation for crowdsourcing considers the research area

for matching the best workers to the tasks in the crowdsourcing activities (Satzger et al.,

2014; Xiao & Paik, 2014; Yan et al., 2014; Zogaj et al., 2014; Mao et al., 2015; Guo et

al., 2016; Weidema et al., 2016).

29

Table 3.4.8.1: Crowd Types

Crowd Type Primary Studies

Public-private partnership (Ramakrishnan &

Srinivasaraghavan, 2014)

Entrepreneurs (Scupola & Nicolajsen, 2014)

The people (Scheneider & Cheung, 2013; Yan

& Wang, 2013; Hu & Wu, 2014;

Yakushin & Lee, 2014; Zogaj et

al., 2014; Weidema et al., 2016)

Experts

(Mäntylä & Itkonen, 2013; Tung &

Tseng, 2013; Hu & Wu, 2014;

Satzger et al., 2014; Tsai et al.,

2014; Xiao & Paik, 2014;

Yakushin & Lee, 2014; Bruun &

Stage, 2015; Mao et al., 2015;

Latoza et al., 2015; Luz et al.,

2015; Dwarakanath et al., 2016;

Guo et al., 2016; Weidema et al.,

2016)

Group identified per interests or

work activities

(Nag et al., 2012; Tung & Tseng,

2013; Ramakrishnan &

Srinivasaraghavan, 2014; Satzger

et al., 2014; Scupola & Nicolajsen,

2014; Bruun & Stage, 2015; Latoza

et al., 2015)

Mixed group (Ramakrishnan &

Srinivasaraghavan, 2014; Edgeman

et al., 2015)

3.4.9 Micro-Tasking Process in CSE

The task decomposition approaches are performed with respect to dependability of

tasks, characteristics of tasks in terms of size, dimension and aspects features and

process types (i.e. dynamic, iterative, aggregated and sequential). They are shown in

Table 3.4.9.1.

30

Table 3.4.9.1: Task Decomposition Methodologies

Task

Decomposition

Methodology

Category Primary Studies

Dependability of

tasks

 Dependent

 Independent

(Jiang & Matsubara,

2014)

(Jiang & Matsubara,

2014; Dwarakanath et

al., 2015; Weidema et

al., 2016)

Characteristics of

tasks

 Size

 Dimension

 Aspects

(Machado et al., 2014)

(Mäntylä & Itkonen,

2013)

(Zogaj et al., 2014)

Process types

 Dynamic

 Iterative

 Aggregated

 Sequential

(Latoza et al., 2014;

Zhao & Hoek, 2015)

(Luz et al., 2015)

(Luz et al., 2015)

(Guo et al., 2016)

3.4.10 Assisting Tools for CSE

Assisting tools for testing activities in terms of software testing, collaborative testing

and usability testing processes achieved by crowdsourced testing have been increased

dramatically in recent years. Moreover, mobile and web-based environments are

notices as more appropriate environments for assisting tools for crowdsourced software

development, which are shown in Table 3.4.10.1.

31

Table 3.4.10.1: Tools in Crowdsourced Software Development

Tool Name Type Primary Studies

CrowdTest.me Testing service (Machado et al., 2014)

CrowdDesign Framework (Weidema et al., 2016)

UCFrame Web framework (Hu & Jiau, 2016)

iTest Framework (Yan et al., 2014)

CrowdCode Web application (Latoza et al., 2014)

Collaborative Testing

System

Web application (Tung & Tseng, 2013)

User Story Mapping Web-based tool (Satzger et al., 2014)

MyERP‟s SaaS-ERP

System

System (Groen, 2015)

The CloudTeams

Persona Builder

Application (Alvertis et al., 2016)

Office Robot Cloud–based

tool

(Tsai et al., 2014)

Code Hunt Web platform (Xie et al., 2015)

CrowdRex Framework (Mao et al., 2015)

Online Store Web site (Scheneider & Cheung,

2013)

3.5 Interpretations

Based on our findings, we conclude that various business models have been adapted to

CSE. The business model selection is dependent on the clients’ preferences in terms of

how the crowd is formed, which workers would be assigned to the task, and the

maturity of task description. In a competitive model, the task specifications should be

clearly defined and related artifacts need to be provided to the crowd. Any worker

would like to participate is welcome to join, but it is more difficult to assess the

suitability of tasks to workers and quality of the final solution with this model. In a

collaborative model, on the other hand, better solutions through continuous

collaboration between crowd actors could be achieved. If the clients would like to find

the right developers for their tasks, a collaborative model should be preferred over the

others. In all these business models, a technical platform to manage and coordinate all

the tasks is vital. Selection of these platforms is also important, because they

incorporate internally used systems of companies with the development environments,

testing tools and bug repositories that are used by the crowd workers. There are popular

platforms like TopCoder and AppStori that could be used to run the crowdsourcing

32

activity, while many studies also offered their own platforms like cloud-based, or

enterprise crowdsourcing as they fit to the domain, architecture and development

methodology. Studies sharing their experiences on these platforms should provide more

insights to the interested parties in the future. In terms of software development

methodology, it is clear that CSE requires a unique solution with new process areas that

are not available in traditional and agile development. More focus on project planning,

requirements engineering and testing processes are needed to manage crowd

recruitment, award and schedule estimation, task decomposition, and integration of

solutions to have a stable, working product. Companies who develop in an agile

fashion with continuous delivery and frequent relationship with the customer require

more structured policies and procedures to handle change requests and assess the overall

quality of their final product.

It is obvious that an effort estimation approach is mandatory for each project in CSE,

similar to typical software development projects. Before determining the offered

awards, even before making the decision of crowdsourcing, the client needs to know the

approximate cost of its project. There were not many studies reporting effort estimation

models in the literature. Those, which examined it concluded that the projects in CSE

may be relatively predictable with the existing effort estimation models. We believe

that the effort related models are among the research gaps in CSE. We believe strongly

that embedding the specific criteria of CSE into these models will increase prediction

rates. The complexity of the task and its expected duration are the most frequently

employed factors among cost drivers. The quality of the input both involves the

completeness of the task and achievement of several quality thresholds. The only

distinctive cost driver of CSE is the online reputation. Developers of typical software

projects usually does not motivate for getting prestige from their own designs or codes.

We believe that the behaviors of developers towards having online reputation may be an

independent topic for future research.

As TopCoder has been the commercial pioneer of CSE, and its award mechanism was

appeared in public, many studies made use of its awarding approach. CSE,

quintessentially, is highly convenient for competitive models, where game theory would

be the fundamental technique. In related literature, several game theory-based models

33

are proposed, however we believe that the number and the scope of them should be

extended. We need more case studies to demonstrate the applicability and success of

these kinds of economic models. However, it is nearly impossible to access real life

data in CSE. Formerly, several academic studies have used TopCoder data; but

nowadays we cannot have it. We consider that this is the main challenge behind the

evolution of the pricing mechanisms proposed for CSE. Additionally, the effect of task

decomposition and/or education level of the crowd may be examined in detail to further

integrate to proposed awarding mechanism.

The composition of the crowd is directly related to the quality level of its outputs.

Several studies worked with students, since they are the most attainable crowd. Besides

the crowd source, the second important factor is its level of training. The quality and

the cost of a task are directly influenced from the crowd's education level. Many studies

utilized already existing communities via AMK or TopCoder, whereas some studies are

conducted among a group of employees. The AMK community and the companies'

employees are usually considered among the expert crowds. We believed that the

education/training level of crowd should be considered as another cost driver. The

effect of the crowd's education level on the software project effort may be an

independent research area.

4. PROPOSED AWARD DETERMINATION MODEL

The main motivation behind this thesis study is to introduce an effort estimation

approach for crowdsourced projects for competition-based crowdsourced software

projects (e.g. Topcoder). Various factors affect effort estimation in competition-based

crowdsourcing. For instance, effort may depend on the productivity of the developer/

developer organization, which can be interpreted as the effectively spent time of each

contributor in competitions. However, measuring the productivity of each contributor is

a challenging task, since we do not know whether he/she spends his/her time effectively

in competitions. In other words, time spent by highly concentrated participators is not

the same as the less concentrated participators in the competition. In addition, time

spent is strongly based on participators’ background and qualification. Moreover, the

effort may consider the overhead of losing participants in the competitions. The

publicly available data is another emerging issue for effort estimation. In this thesis, the

research on effort estimation models have been limited, because we could not reach to

real life crowdsourcing data. Instead, we have studied another significant process in

competition-based crowdsourcing: Award determination. Doing so, we have adapted

Putnam model for award determination in contest-based crowdsourcing projects

(Liebowitz, 1999). Determining award used in crowdsourced software projects requires

analyzing appropriate factors and understanding the metrics related to the development

process. We believed that the award of an offered task should be inversely proportional

to the duration and platform’s productivity, but proportional to the project size and its

complexity. As a result, the main contribution of this thesis study is applying recently

studied effort estimation method i.e. the Putnam Model to the award determination

process for crowdsourcing from a new perspective. We chose the cost drivers used for

effort estimation among the ones obtained from the systematic literature review, as

shown in Table 3.4.6.1. The expected duration of a task refers to the time in days in our

proposed award determination model (Stol & Fitzgerald, 2014; Ågerfalk et al., 2015;

35

Bruun & Stage, 2015). The input complexity parameter among cost drivers is

represented as the scaling factor (B) in our proposed model (Archak, 2010; Mao et al.,

2013; Stol & Fitzgerald, 2014; Ågerfalk et al., 2015). In addition, online reputation can

be expressed as a productivity metric of members of the crowd for future award

determination studies (Archak, 2010; Wu et al., 2013). On the other hand, unmeasured

quantities of effort and quality of input, which are among the cost drivers in related

literature are not considered in our proposed model (Mao et al., 2013: Jiang &

Matsubara, 2014; Stol & Fitzgerald, 2014; Zogaj et al., 2014; Weidema et al., 2016).

Another contribution of this thesis study is the software size evaluation via Function

Point Analysis (FPA). The size in terms of SLOC is considered as the size parameter in

Putnam Model (Khuttan et al., 2014).

Putnam model is introduced for cost estimation, where Eq. (4.1) gives Putnam’s

equation for software estimation (Liebowitz, 1999):

𝐸𝑓𝑓𝑜𝑟𝑡 = [
𝑆𝑖𝑧𝑒 𝑥 𝐵

1
3

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
]

3

𝑥
1

𝑇𝑖𝑚𝑒4

(4.1)

According to this equation, effort is the total effort expanded to complete the project,

size is the finished size of the project in SLOC, B is a scaling factor in terms of project

size, that increases with the system size, productivity parameter represents the efficiency

of the overall development environment for the project and time is the length of the time

the project takes to complete. We have thought that award can also be estimated using

this approach, hence we adapted Eq. (4.1) for award determination to achieve our

ultimate goal.

𝐴𝑤𝑎𝑟𝑑 = [
𝑆𝑖𝑧𝑒

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑥 𝑇𝑖𝑚𝑒
4
3

]

3

𝑥 𝐵

(4.2)

36

We have studied award determination by means of Eq. (4.2). Size is the software

project size, and determined by Function Point Analysis in Line of Code (LOC),

productivity refers to the process productivity that is the ability of a particular software

organization to produce software of a given size at a particular defect rate. In

demonstrative examples, it is taken as a percentage value between 0 and 100. Time is

the total schedule of the project in days, B refers to scaling factor in terms of the project

size and award is the total award offered for the particular task/project.

Figure 4.1: Flow Chart of Award Determination Process

Project Proposal:

• Programming
Language

• Time

• Challenge Type

Define Complexity:

• Programming
Language Coefficient

• Time

• Project Functionality

Identify Project Size in
LOC by FPA:

• Numbers of Each
User Function

• UFPs and 14 General
System Features

• PCA and FP
Calculation

• Programming
Language LOC
Coefficient

Cost of LOC in $

Putnam Model

• Project Size in LOC

• Productivity

• Time

• Scaling Factor

Outcomes:

AWARD

37

According to Figure 4.1, the approach is initialized by defining the project

characteristics, which are the programming language, time and project challenge type in

order to calculate project complexity for each selected example projects in TopCoder

challenges. We have examined programming language coefficient, time and project

functionality for determination of project complexity. Then, as the next step, the

identification of the project size in LOC is generated by FPA methodology, which is

given in detail in Section 2.4. Following the size calculation, the cost of the sample

projects are calculated in $
3
 (Jones, 2008). In addition, we have studied Putnam model

with the project size in LOC, productivity, time and scaling factor for projects with

different complexities. Finally, we have deduced the relationships between the

parameters of the approach and the defined award.

4.1 Demonstrative Examples

We used recently offered software projects in TopCoder, as our numerical examples.

TopCoder has four main types of competitions: Design Challenges, Development

Challenges, Data Science Challenges and Competitive Programming. Competitive

programming is a special competition, where all contestants compete online and solve

the same problems with the same deadline. In addition, there is no programming

language used in design challenges, which is necessary for us to calculate project size in

LOC. Therefore, we have excluded design challenge in this thesis, and examined only

three project types in TopCoder for demonstration of the applicability of our proposed

model. Each project type has its own parameter values for each challenge. Table 4.1.1

summarizes the parameters, their selected ranges and values for future studies.

3
 http://www.yegor256.com/2014/04/11/cost-of-loc.html

38

Table 4.1.1: Challenge Types and Used Parameters with Their Selected Values

Competition

Type /

Parameters

1
st

Development

Challenge

2
nd

Development

Challenge

Data Science

Challenge

Size in LOC 3226.08 8371.35 1921.25

FPA 68.64 157.95 36.25

Productivity [0.4 - 1] [0.4 - 1] [0.4 - 1]

Time (days) [5-50] [5-50] [20-50]

B
1.054, 1.120

1.197

1.054, 1.120

1.197

1.054, 1.120

1.197

The first development challenge is a demo development application for understanding

effect of weather on sales for different business units and materials selected and the

second development challenge is the development of IoT devices management platform.

The data science challenge is the identification of propeller objects in Saturn’s rings.

We have studied our proposed award determination model on these three challenges. In

order to analyze applicability of the award determination approach and deduce several

outcomes, we have realized sensitivity analysis by incrementing each parameter in

respect to the others. The sizes in LOC are determined for two development challenges

as 3226.08 and 8371.35, respectively, and for data science challenge as 1921.25.

Function points measures are determined for data science project as 36.25, and as 68.64

and 157.95 for two development challenges. All those computations are explained in

details in following three subchapters. Productivity parameter is selected as a percentile

value, between 0 and 1. In addition, time is chosen in the range of 20 to 50 days, due to

short deadlines of proposed projects in TopCoder. The time parameter is increased one

by one between 20 and 30, and got the following values: 32, 35, 40, 42, 45, 50. B is

determined as 1.054, 1.120 1.197 (Jensen et al., 2006). All those parameters are

examined in respect to the purpose of analysis methodologies in our award

determination model; therefore, the selected parameters and their values are illustrated

in tables before analysis and implementation of the model for each selected project

challenges.

39

4.1.1. Demonstrative Example 1: Development Challenge Project

The first project that is examined in Topcoder is called as IBM Cognitive-Weather Sales

Performance Analytics-Service Proof of Concept. Developing a demo application for

understanding relationship between the effect of weather on sales for different business

units and materials via cognitive thinking and technology is the main motivation of this

challenge.

According to FPA calculation methodology in subchapter 2.4 and proposed project

details in TopCoder, the raw function point worksheet is illustrated as below, Table

4.1.1.1.

The Table 4.1.1.1 shows the raw function point for each user functions and their

complexities in order to calculate UFP.

Table 4.1.1.1: The Raw Function Point Worksheet for Development Challenge Project

(Low & Jeffery, 1990)

Function Type / Complexity Simple Average Complex Total

External Input 3x3 x4 x6 9

External Output x4 x5 1x7=7 7

Logical Internal File x7 x10 1x15=15 15

External Interface File 2x5=10 1x7=7 x10 17

External Inquiry x3 1x4=4 6 4

According to Table 4.1.1.1, UFP of this project is 52, and the PC value is determined by

values in Table 4.1.1.2.

40

Table 4.1.1.2: Processing Complexity (PC) for Development Challenge Project

(Albrecht & Gaffney, 1983)

General System Features Degree Of Influence (DI)

1. Data Communication 5

2. Distributed Functions 4

3. Performance 5

4. Heavily Used Configuration 5

5. Transaction Rate 5

6. Online Data Entry 5

7. End User Efficiency 5

8. Online Update 5

9. Complex Processing 5

10. Reuseability 5

11. Installation Ease 4

12. Operational Ease 4

13. Multiple Sites 5

14. Facilitate Change 5

The total DI is 67. Besides, PCA is found 1.32 and FPs are calculated as 68.64. In

order to define LOC of this project, the average value of JavaScript programming

language is selected (47) for using in Eq. 4.2.4 as programming language LOC

coefficient
4
. The overall LOC of this development project is found as 3226.08, which is

defined as average complex project for this challenge.

In addition, the proposed award for this challenged project is $1,200 for first place and

$600 for second place in TopCoder, respectively. However, the expected cost of

3226.08 LOC is found as $12839.79 by means of multiplication with pure coding cost

i.e. $3.98 cost per LOC for JavaScript
5
. Besides, TopCoder’s offered award per

JavaScript LOC i.e. unit cost per JavaScript LOC offered by TopCoder is determined as

0.371 such that $1,200 is divided by 3226.08 LOC.

4
 http://www.qsm.com/resources/function-point-languages-table

5
 http://www.yegor256.com/2014/04/11/cost-of-loc.html

41

4.1.2 Demonstrative Example 2: Data Science Challenge Project

The second FPA is examined for the project, which defines propeller objects in Saturn

as much as possible by images in NASAView program. Considering implementation of

this challenge in TopCoder, the raw function point worksheet is illustrated in Table

4.1.2.1.

Table 4.1.2.1: The Raw Function Point Worksheet for Data Science Challenge Project

(Low & Jeffery, 1990)

Function Type /

Complexity

Simple Average Complex Total

External Input x3 x4 x6

External Output x4 x5 1x7=7 7

Logical Internal File x7 x10 x15

External Interface File 2x5=10 x7 x10 10

External Inquiry x3 x4 2x6=12 12

According to Table 4.1.2.1, the UFP is 29. The PC value of this challenge is calculated

as 60 by means of total DI values in Table 4.1.2.2. Moreover, PCA value is 1.25, and

FPs is measured as 36.25. Java is using as programming language in this project, and

its average LOC coefficient value is 53
6
.

Lastly, the LOC of this challenge is assigned as 1921.25, which defines this challenge

as a project of simple complexity.

6
 http://www.qsm.com/resources/function-point-languages-table

42

Table 4.1.2.2: Processing Complexity (PC) for Data Science Challenge Project

(Albrecht & Gaffney, 1983)

General System Features Degree Of Influence (DI)

1. Data Communication 5

2. Distributed Functions 5

3. Performance 5

4. Heavily Used Configuration 5

5. Transaction Rate 5

6. Online Data Entry 0

7. End User Efficiency 5

8. Online Update 0

9. Complex Processing 5

10. Reusability 5

11. Installation Ease 5

12. Operational Ease 5

13. Multiple Sites 5

14. Facilitate Change 5

There was not a determined award for this challenge in TopCoder. On the other hand,

the expected cost of 1921.25 LOC is calculated as $12007.81 by means of

multiplication with pure coding cost i.e. $6.25 cost per LOC for Java. Therefore, it is

expected that TopCoder offers a lower value than this for award to participants to utilize

crowdsourcing methodology. If this project was achieved by JavaScript, the expected

award for 1921.25 LOC by multiplication with $3.98 would be $7646.57.

According to the values of expected award, programming language plays significant

role on the expected awards for crowdsourcing projects. In this example, we can

interpret that, the pure coding code cost for Java would be higher than the one of

JavaScript, hence the proposed award would be higher than 0.371 * 1921.25 $.

4.1.3 Demonstrative Example 3: 2nd Development Challenge Project

The last studied project in TopCoder is called: IoT Hub Consumer. The main purpose

of this challenge is the development of an IoT device management platform. The raw

function point worksheet is illustrated in Table 4.1.3.1.

43

Table 4.1.3.1: The Raw Function Point Worksheet for Second Development Challenge

Project (Low & Jeffery, 1990)

Function Type /

Complexity

Simple Average Complex Total

External Input x3 x4 3x6=18 18

External Output x4 x5 3x7=21 21

Logical Internal File x7 x10 2x15=30 30

External Interface File x5 x7 3x10=30 30

External Inquiry x3 x4 3x6=18 18

According to the values in Table 4.1.3.1, UFP of the 2nd development challenge project

is 117, and the PC value is defined by accumulating of each 14 general system features,

as illustrated in 4.1.3.2, which leads to the total degree of influences.

Table 4.1.3.2: Processing Complexity (PC) for Second Development Challenge Project

(Albrecht & Gaffney, 1983)

General System Features Degree Of Influence (DI)

1. Data Communication 5

2. Distributed Functions 5

3. Performance 5

4. Heavily Used Configuration 5

5. Transaction Rate 5

6. Online Data Entry 5

7. End User Efficiency 5

8. Online Update 5

9. Complex Processing 5

10. Reusability 5

11. Installation Ease 5

12. Operational Ease 5

13. Multiple Sites 5

14. Facilitate Change 5

The total DI is calculated as 70, and PCA is defined as 1.35. Moreover, FP is 157.95.

The project size in LOC is calculated by the average LOC value of Java programming

language (53), and it is 8371.35, which is defined as the most complex project among

these challenges.

44

The proposed award for this challenge is $1,000 for 1
st
 place and $500 for 2

nd
 place. On

the other hand, the cost of 8371.35 LOC is calculated as $52320.93 by means of

multiplication with pure coding cost i.e. $6.25 cost per LOC for Java. When comparing

the effect of programming language on award determination for crowdsourcing projects,

the expected award is $33317.97 by multiplication of 8371.35 LOC and JavaScript pure

coding cost i.e. $3.98
7
. Those award values state that the award is proposed higher for

projects developed by Java programming language than projects developed by

JavaScript. In addition, the Java unit award per LOC offered by TopCoder is 0.119

which is calculated by division of 1000 over 8371.35. On the other hand, Java unit

award per LOC offered by TopCoder is normally expected higher than the JavaScript

unit award offered by TopCoder. However, the popularity of the programming

language can affect this inference. Besides, the TopCoder’s unit award per Java LOC is

very small than pure coding cost of Java i.e. $6.25.

4.2 Sensitivity Analysis

In this subsection, we have examined how the variables vary with each other and the

effect of different project complexities on award determination in CSE by using

MATLAB functions to visualize these changes. All these outcomes are deduced by

using Eq. 4.2.

Table 4.2.1 illustrates selected values for size in respect to measured function point and

other selected values for parameters for each selected challenges according to project

descriptions on TopCoder. For illustration, there are 26 and 31 registrants for 1
st
 and 2

nd

development challenges in TopCoder, whereas 338 registrants for data science

challenge in which the high number of registrants is assumed to lead to high

productivity. Therefore, the productivity for data science challenge is chosen higher

than the productivity for development challenges. In addition, the number of registrants

and the size of the projects can determine the project complexity, therefore; the scaling

factor of 2
nd

 development challenges is defined as 1.197 (scaling factor of a complex

project), while the scaling factor for data science challenge is defined as 1.054 (scaling

factor of a simple project), and 1
st
 development challenge is defined as 1.120 (scaling

7
 http://www.yegor256.com/2014/04/11/cost-of-loc.html

45

factor of an average project). The deadlines for two development challenges are the

same (5 days), however there was not a predefined deadline for data science challenge

in TopCoder, and it is selected randomly as 30 days. In addition, measured function

points and size in LOC of all selected demonstrative examples are calculated using the

methodology given in previous chapter. Figure 4.2.1 shows relationship between FPs

and award in terms of selected values of each parameter according to Table 4.2.1.

Table 4.2.1: Size in Function Points and Other Parameters for Each Selected Challenge

 1
st
 Development

Challenge

 2
nd

 Development

Challenge

Data Science

Challenge

Measured

FPs
68.64 157.95 36.25

Time 5 5 30

Productivity 0.4 0.6 0.8

B 1.120 1. 197 1.0.54

Figure 4.2.1: Function Point vs. Award

46

Figure 4.2.1 illustrates the variations of award in respect to function points. When the

function point is increased, award is also increased. The selected values for each

parameter play significant role on award calculation. For instance, the award for data

science challenge is the lowest one due to the fact that it has the lowest measured

function points. We can observe that, even if the function point increases, time and

productivity values are inversely proportional to the award. According to Figure 4.2.1,

the highest award value of 1
st
 development challenge is 110335.92 and it is highest than

the award value which is calculated in subsection 4.1.1 as $12839.79 and proposed

award by TopCoder for this challenge. The highest value of 2
nd

 development challenge

is 34939.70, which is lower than our calculated award (i.e. $52320.93 in subsection

4.1.3), but is highest than TopCoder’s proposed award. Finally, the highest award value

for data science challenge (10.01) is also lower than our calculated award in subsection

4.1.2, which is $12007.81, and it is expected to be lower than the TopCoder’s offered

award.

According to the proposed award determination model, project size is directly

proportional to the award. The highest measured function point leads to the highest

award value irrespective of project properties such as productivity, time and scaling

factor. In other words, other parameters’ values in our award determination model can

increase the value of award regardless of complexities of crowdsourcing projects.

Table 4.2.2: Size in LOC and Other Parameters for Selected Development and Data

Science Challenges

1

st
 Development

Challenge

2
nd

Development

Challenge

Data Science

Challenge

Measured Size

in LOC 3226.08 8371.35 1921.25

Time 5 5 30

Productivity 0.4 0.6 0.8

B 1.120 1.197 1.054

47

Figure 4.2.2: Size in LOC vs. Award

Figure 4.2.2 shows the relationship between size in LOC and award according to the

selected values of each parameter, as seen in Table 4.2.2. For instance, the highest

award belongs to the 1
st
 development challenge with a project of 3226.08 LOC. In

addition, 1
st
 development challenge has the highest award in all project size in LOC that

shows the important effect of selected parameter values. Moreover, the Figure 4.2.2

shows that the highest values for each selected challenges which are 1.64x1010

5201718926 and 853740 for respectively 1
st
 development, 2

nd
 development and data

science challenge. All those proposed award values are higher than the TopCoder’s

offered awards for 1
st
 and 2

nd
 development challenges. The award values in Figure

4.2.2 are also higher than the calculated award i.e. $12839.79 for 1
st
 development

challenge, $52320.93 for 2
nd

 development challenge according to the pure coding cost

of programming languages in demonstrative example subchapters. Besides, the Figure

4.2.2 states that the highest award value for data science challenge is higher than the

estimated award by means of pure coding cost i.e. $12007.81 in data science

demonstrative example chapter.

48

Although the project is complex, selected parameter values in our proposed award

model can determine low award values, as in seen in Figure 4.2.2. That is to say, 1
st

development challenge has lower project complexity in terms of scaling factor and

productivity; but higher award value than 2
nd

 development challenge.

We have also studied the impact of productivity on award as seen in Table 4.2.3 and

Figure 4.2.3.

Table 4.2.3: Productivity and Other Parameters for Selected Development Challenges

1

st
 Development

Challenge

2
nd

Development

Challenge

Data Science

Challenge

Productivity
[0.4, 0.42, 0.44,

…., 0.98 1]

[0.4, 0.42, 0.44,

…., 0.98 1]

[0.4, 0.42,

0.44, …., 0.98

1]

Measured Size

in LOC
3226.08

8371.35 1921.25

Time 5 5 30

B 1.120 1.197 1.054

Figure 4.2.3: Productivity vs. Award

49

The 2
nd

 development challenge with the highest project size in LOC has the highest

award in our defined productivity range. In addition, 1
st
 development challenge and

data science challenge are observed to have almost the same award values as

productivity increases. According to Figure 4.2.3, when productivity is selected as 0.4,

the differences between award values are too large for 1
st
 development challenge and

2
nd

 development challenge. This large award gap can be the result of difference of

project sizes in LOC of selected projects. Figure 4.2.3 illustrates that the highest award

of the 1
st
 development challenge is 940120298.5, the award value of 2

nd
 development

challenge 1.75 x 1010 and 144187.38 for data science challenge. These maximum

award values for each challenge are higher than TopCoder’s proposed award values for

1
st
 and 2

nd
 development challenges and our estimated award in demonstrative examples

were $12839.79 for the 1
st
 development challenge, $52320.93 for the 2

nd
 development

challenge and $12007.81 for the data science challenge. Consequently, higher value for

productivity leads to lower award values in CSE. In other words, the award payment

can be gradually decreased, when the productivity value is increased steadily for

crowdsourcing projects irrespective of their size.

The time also plays significant role on award determination, as illustrated in Table 4.2.4

and Figure 4.2.4.

Table 4.2.4: Time and Other Parameters for Selected Development Challenge

 1
st
 Development

Challenge
2

nd
 Development

Challenge

Data Science

Challenge

Time
[20, 21, …., 49,

50]

[20, 21, …., 49,

50]

[20, 21, …., 49,

50]

Measured

Size in LOC
3226.08 8371.35 1921.25

Productivity 0.4 0.6 0.8

B 1.120 1.197 1.054

50

Figure 4.2.4: Time vs. Award

According to Figure 4.2.4, when the time increases, there is a dramatic decrease on the

award for 2
nd

 development challenge. Moreover, there is not much difference between

award values of 1
st
 development and data science challenges as time increases.

The data science challenge also has the lowest award values, (initial value of 20)

compared with 1
st
 and 2

nd
 development challenges. Figure 4.2.4 gives also information

about award value for 1
st
 development challenge as 3672344.91, for 2

nd
 development

challenge i.e. 20319214.55 and 91243.57 for data science challenge. All these values

are higher than our calculated values in demonstrative examples and TopCoder’s

proposed award values for 1
st
 and 2

nd
 development challenges.

Accordingly, selected higher time interval values for challenges play significant roles on

minimum award payment irrespective of complex projects.

The impact of the scaling factor (B) in terms of project size is illustrated Figure 4.2.5.

The corresponding parameters are represented in Table 4.2.5.

51

Table 4.2.5: Scaling Factor and Other Parameters for Selected Development Challenge

 1
st
 Development

Challenge

2
nd

 Development

Challenge

Data Science

Challenge

B
[1.054, 1.120,

1.197]

[1.054, 1.120,

1.197]

[1.054, 1.120,

1.197]

Measured

Size in LOC
3226.08 8371.35 1921.25

Productivity 0.4 0.6 0.8

Time 5 5 30

Figure 4.2.5: Scaling Factor vs. Award

There is a linear relationship between scaling factor and award. Figure 4.2.5

emphasizes that there is not significant increase on award values, even if scaling factor

increases. 2
nd

 development challenge has the highest award value, whereas data

science’s award is the lowest in all selected scaling factor values. According to Figure

4.2.5, the maximum award values are 1004753569 for 1
st
 development challenge,

5201718926 for 2
nd

 development challenge and 11720.45 for data science challenge.

52

However, 1
st
 and 2

nd
 development challenges’ award values are higher than the award

determined by TopCoder and our estimated award values for these challenges in

demonstrative examples were $12839.79 for 1
st
 development challenge and $52320.93

for 2
nd

 development challenge; however data science award value in Figure 4.2.5 is

lower than the estimated award value in demonstrative example which was $12007.81

for data science challenge.

As a result, both scaling factor and project complexity can be selected as minimum

according to the project properties in order to determine the award with the lowest value

for crowdsourcing projects.

We have also studied the relationship between projects size in LOC, productivity, and

award. Table 4.2.6 gives the selected parameter values, and Figure 4.2.6 illustrates the

variations.

Table 4.2.6: Productivity and Other Parameters’ Values

1

st
 Development

Challenge

2
nd

 Development

Challenge

Data Science

Challenge

Productivity
[0.4, 0.42,

0.44,…,0.98, 1]

[0.4, 0.42,

0.44,…,0.98, 1]

[0.4, 0.42,

0.44,…,0.98, 1]

Measured

Size in LOC
3226.08 8371.35 1921.25

Time 5 5 30

B 1.120 1.197 1.054

53

Figure 4.2.6: The Effect of Size and Productivity on Award

Figure 4.2.6 points out that there is the largest difference on award between 2
nd

development challenge, which has the highest project size in LOC and 1
st
 development

and data science challenges, when the productivity is fixed to 0.4. However, this largest

difference has decreased dramatically as the productivity value reaches 1. We have

finally examined the effect of time and size on award, as shown in Table 4.2.7 and

Figure 4.2.7, respectively.

Table 4.2.7: Time and Other Parameters’ Values

 1
st
 Development

Challenge

2
nd

 Development

Challenge

Data Science

Challenge

Time
[20, 21, …., 45,

50]

[20, 21, …., 45,

50]

[20, 21, …., 45,

50]

Measured

Size in LOC
3226.08 8371.35 1921.25

Productivity 0.4 0.6 0.8

B 1.120 1.197 1.054

54

Figure 4.2.7: The Effect of Time and Size on Award

Figure 4.2.7 compares awards of three projects with different sizes in LOC in respect to

time. We observe that project size in LOC does not have a significant effect on the

award; because of the fact that, the award of 1
st
, 2

nd
 development challenges and data

science challenge are 0.36, 2.03 and 0.09 award/LOC on 20 days, respectively.

According to these estimated award values, the award values of highest and lowest

project size are almost the same.

5. DISCUSSION AND THREATS TO VALIDITY

We have revealed that there is a linear relationship between measured function points

and award. That is to say, as function points are increased, the award payment need

also be increased. The effect of size on award shows a similar trend. When the project

size increases, the award payment need also be increased. The increase of the scaling

factor has a direct influence on the award. However, productivity is inversely

proportional with award payment. In addition, award payment is decreased when the

time is increased. Moreover, when productivity and size are increased, award is

decreased. On the other hand, when size in LOC and time are increased, award

payment is also increased. Therefore, we can conclude that the selected values for each

parameter play significant role on award determination.

We have encountered some drawbacks about Putnam’s SLIM model during our

research. Putnam model assumes the size of the software delivered is known or can be

estimated accurately (Khuttan et al., 2014). However, uncertainty of the software size

estimation leads to inaccurate effort/ award determination. Besides, Putnam’s SLIM

model is said to be useful for the projects that exceed 70.000 LOC (Keyes, 2002).

When considering award determination model, Putnam Model has various equations

with various variables, therefore, selecting the appropriate approach with respect to

research goals is the most important issue. In addition, there is not a commonly

accepted approach on the values of scaling factors. The performance of the proposed

award determination equation is strongly related to the selection of values of these

parameters. Moreover, determination of the project size using FPA can be considered

as subjective. Hence, approaches that are more objective may increase the accuracy of

the estimations and the efficiency of the determinations.

6. CONCLUSION

This study first provides comprehensive survey on crowdsourcing in software

engineering in terms of its business models, its technological platforms, its practices and

applications in software engineering, economic issues as effort estimation and cost

drivers, crowd selection strategies, task decomposition methods and assisting tools for

crowdsourcing in software engineering. This thesis study proposes a novel evaluation

framework to explore future researches of crowdsourcing that require further insights.

We suggest that future researches should explore ethical issues and crowd motivation.

In addition, the outcomes of our proposed award determination model emphasize that

future studies should be done to study efficient award mechanisms.

In addition, the thesis introduces an approach on award determination for competition-

based crowdsourced software projects. This approach utilizes the Putnam Model, which

is introduced in software engineering literature in order to determine effort of software

development. Using Putnam’s effort estimation model for crowdsourcing in our study,

we have deduced several outcomes. Selected parameters and their values play

significant role on task award determination of crowdsourcing projects. That is to say,

when the project size in terms of function point or LOC increases, the offered award for

this challenge can be low because of high value of productivity and time values. On the

other hand, the award values decrease dramatically, when the productivity and time

values increase. In addition, award is directly affected by project complexity, when

considering constant productivity and time factors for crowdsourcing projects. There is

a linear relationship between scaling factor and the award, which is deduced from

Putnam’s effort equation. In other words, the higher project size and scaling factor

values lead to higher offered award. These perspectives lead to the question of how to

determine award in a most appropriate way for crowdsourcing projects. We can

conclude that Putnam model is applicable to CSE as an award determination approach.

57

However, it is an introductive approach, which does not consider online reputation or

project size popularity. The proposed award model will be expanded to become a more

comprehensive pricing model for using in CSE.

REFERENCES

Ågerfalk, P. J., Fitzgerald, B., & Stol, K. J. (2015). Software sourcing in the age of

open: Leveraging the unknown workforce, Springer.

A lbrecht, A. J. (1979). Measuring application development productivity, IBM

Applications Development Symposium, pp. 83.

Albrecht, A. J., Gaffney, J. E. (1983). Software function, source lines of code, and

development effort prediction: a software science validation., IEEE Transactions on

Software Engineering : (6) : 639-648.

Aletdinova, A., Kravchenko, M., & Bakaev, M. (2016). Crowdsourcing and the

effectiveness of C2G interaction in Russia, In Proceedings of the International

Conference on Electronic Governance and Open Society: Challenges in Eurasia,

ACM, pp. 202-211.

Aljahdali, S., & Sheta, A. F. (2010). Software effort estimation by tuning COOCMO

model parameters using differential evolution, 2010 IEEE/ACS International

Conference on Computer Systems and Applications, AICCSA, IEEE, pp. 1-6.

Alvertis, I., Papaspyros, D., Koussouris, S., Mouzakitis, S., & Askounis, D. (2016).

Using crowdsourced and anonymized personas in the requirements elicitation and

software development phases of software engineering, 2016 11th International

Conference on Availability, Reliability and Security, ARES, IEEE, pp. 851-856.

Anselmo, D., & Ledgard, H. (2003). Measuring productivity in the software industry.,

Communications of the ACM : 46(11) : 121-125.

Archak, N. (2010). Money, glory and cheap talk: analyzing strategic behavior of

contestants in simultaneous crowdsourcing contests on TopCoder.com, In

Proceedings of the 19th International Conference on World Wide Web, WWW’10,

ACM, pp. 21-30.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). How reuse influences productivity in

object-oriented systems., Communications of the ACM : 39(10) : 104-116.

Blackburn, J. D., Scudder, G. D., & Van Wassenhove, L. N. (1996). Improving speed

and productivity of software development: a global survey of software developers.,

IEEE Transactions on Software Engineering : 22(12) : 875-885.

Boehm, .B. (1981). Software engineering economics, Englewood Cliffs, NJ, Prentice-

Hall.

Borandag, E., Yucalar, F., Sahinaslan, Ö. Yazılım projelerinde büyüklük tahmini,

Akdeniz Bilisim Konferansı, pp. 185-189

Boudreau, K. J., & Lakhani, K. R. (2013). Using the crowd as an innovation partner.,

Harvard Business Review : 91(4) : 60-69.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology., Qualitative

Research in Psychology : 3(2) : 77-101.

Briand, L. C., El Emam, K., & Bomarius, F. (1998). COBRA: a hybrid method for

software cost estimation, benchmarking, and risk assessment, Proceedings of the

1998 International Conference on Software Engineering, IEEE, pp. 390-399.

Bruun, A., & Stage, J. (2015). New approaches to usability evaluation in software

development: Barefoot and crowdsourcing., Journal of Systems and Software : 105:

40-53.

Card, D. N. (2006). The challenge of productivity measurement, In Pacific Northwest

Software Quality Conference, pp. 1-10.

Collofello, J. S., Woodfield, S. N., & Gibbs, N. E. (1983). Software productivity

measurement, In Proceedings of the National Computer Conference, ACM, pp. 757-

762.

de Aquino Júnior, G. S., & de Lemos Meira, S. R. (2009). Towards effective

productivity measurement in software projects, Fourth International Conference on

Software Engineering Advances, ICSEA'09 , IEEE, pp. 241-249.

Duncan, A. S. (1988). Software development productivity tools and metrics, In

Proceedings of the 10th International Conference on Software Engineering, IEEE

Computer Society Press, pp. 41-48.

Dwarakanath, A., Chintala, U., Virdi, G., Kass, A., Chandran, A., Sengupta, S., & Paul,

S. (2015). CrowdBuild: a methodology for enterprise software development using

crowdsourcing, In Proceedings of the Second International Workshop on

CrowdSourcing in Software Engineering, IEEE Press, pp. 8-14.

Dwarakanath, A., Shrikanth, N. C., Abhinav, K., & Kass, A. (2016). Trustworthiness in

enterprise crowdsourcing: a taxonomy & evidence from data, IEEE/ACM

International Conference on Software Engineering Companion, ICSE-C, pp. 41-50.

Edgeman, R., Engell, T., Jensen, N. G., Vrtik, M., Eskildsen, J., & Tambo, T. (2015).

Structured crowdsourcing: A B2B innovation roadmap, 10th European Conference

on Innovation and Entrepreneurship, ECIE, pp. 165-174.

Gefen, D., Gefen, G., & Carmel, E. (2016). How project description length and

expected duration affect bidding and project success in crowdsourcing software

development., Journal of Systems and Software : 116 : 75-84.

Groen, E. C. (2015, August). Crowd out the competition, 1st International Workshop on

Crowd-Based Requirements Engineering, CrowdRE, IEEE, pp. 13-18.

Guo, S., Chen, R., & Li, H. (2016). A real-time collaborative testing approach for web

application: Via multi-tasks matching, 2016 IEEE International Conference on

Software Quality, Reliability and Security Companion, QRS-C, IEEE, pp. 61-68.

Han, Y., Wu, X., & Yue, C. (2005). Optimizing financial budget for software

implementation based on the development effort and cost function., Advances in

Engineering Software : 36(10) : 699-706.

Hasteer, N., Bansal, A., & Murthy, B. K. (2015). Crowdsourced software development

process: Investigation and modeling through Markov decision theory., International

Journal of Software Engineering and Its Applications : 9(9) : 41-54.

Hosseini, M., Shahri, A., Phalp, K., & Ali, R. (2015). Recommendations on adapting

crowdsourcing to problem types, 9th International Conference on Research

Challenges in Information Science, RCIS’15, IEEE, pp. 423-433.

Howe, J. (2006). The rise of crowdsourcing., Wired Magazine : 14(6) : 1-4.

Hu, W. C., & Jiau, H. C. (2016). UCFrame: A use case framework for crowd-centric

requirement acquisition., ACM SIGSOFT Software Engineering Notes : 41(2) : 1-13.

Hu, Z., & Wu, W. (2014). A game theoretic model of software crowdsourcing, 8th

International Symposium on Service Oriented System Engineering, SOSE, IEEE, pp.

446-453.

Jiang, H., & Matsubara, S. (2014). Efficient task decomposition in crowdsourcing, In

International Conference on Principles and Practice of Multi-Agent Systems,

Springer, pp. 65-73.

Jones, C. (2008). A short history of lines of code (LOC) metrics., Capers Jones &

Associates LLC : Narragansett : 1-12.

Keele, S. (2007). Guidelines for performing systematic literature reviews in software

engineering., In Technical Report, Ver. 2.3, EBSE Technical Report.

Keyes, J. (2002). Software engineering handbook, CRC Press.

Khuttan, A., Kumar, A., Singh, A. (2014). A survey of effort estimation techniques for

the software development., International Journal Of Scientific & Technology

Research : 3(7).

Kitchenham, B., & Taylor, N. R. (1984). Software cost models., ICL Technical Journal

: 4(1) : 73-102.

Kitchenham, B. (2004a). Procedures for performing systematic reviews., Keele : UK :

Keele University : 33 : 1-26.

Kitchenham, B., & Mendes, E. (2004b). Software productivity measurement using

multiple size measures., IEEE Transactions on Software Engineering : 30(12) :

1023-1035.

LaToza, T. D., Towne, W. B., Adriano, C. M., & Van Der Hoek, A. (2014). Microtask

programming: Building software with a crowd, In Proceedings of the 27th annual

ACM symposium on User interface software and technology, ACM, pp. 43-54.

LaToza, T. D., Chen, M., Jiang, L., Zhao, M., & Van Der Hoek, A. (2015). Borrowing

from the crowd: A study of recombination in software design competitions, In

Proceedings of the 37th International Conference on Software Engineering, Volume

1, IEEE Press, pp. 551-562.

LaToza, T. D., & Hoek, A. van der (2016). Crowdsourcing in software engineering:

Models, motivations, and challenges., IEEE software : 33(1) : 74-80.

Leung, H., & Fan, Z. (2002). Software cost estimation., Handbook of Software

Engineering : Hong Kong Polytechnic University : 1-14.

Li, W., Tsai, W. T., & Wu, W. (2015). Crowdsourcing for large-scale software

development, In Crowdsourcing, Springer Berlin Heidelberg, pp. 3-23.

Liebowitz, J. (1999). Knowledge management handbook. CRC press.

Low, G. C., Jeffery, D. R. (1990). Function points in the estimation and evaluation of

the software process., IEEE Transactions on Software Engineering : 16(1) : 64-71.

Luz, N., Silva, N., & Novais, P. (2015). A survey of task-oriented crowdsourcing., The

Artificial Intelligence Review : 44(2) : 187.

MacCormack, A., Kemerer, C. F., Cusumano, M., & Crandall, B. (2003). Trade-offs

between productivity and quality in selecting software development practices., IEEE

Software : 20(5) : 78-85.

Machado, L., Pereira, G., Prikladnicki, R., Carmel, E., & de Souza, C. R. (2014).

Crowdsourcing in the Brazilian IT industry: what we know and what we don't know,

In Proceedings of the 1st International Workshop on Crowd-based Software

Development Methods and Technologies, ACM, pp. 7-12.

Mäntylä, M. V., & Itkonen, J. (2013). More testers–the effect of crowd size and time

restriction in software testing., Information and Software Technology : 55(6) : 986-

1003.

Mao, K., Yang, Y., Li, M., & Harman, M. (2013). Pricing crowdsourcing-based

software development tasks, In Proceedings of the 2013 International Conference on

Software Engineering, IEEE Press, pp. 1205-1208.

Mao, K., Yang, Y., Wang, Q., Jia, Y., & Harman, M. (2015). Developer

recommendation for crowdsourced software development tasks, Symposium on

Service-Oriented System Engineering, SOSE, IEEE, pp. 347-356.

Mao, K., Capra, L., Harman, M., & Jia, Y. (2017). A survey of the use of

crowdsourcing in software engineering., Journal of Systems and Software : 126 : 57-

84.

Matson, J. E., Barrett, B. E., & Mellichamp, J. M. (1994). Software development cost

estimation using function points., IEEE Transactions on Software Engineering :

20(4) : 275-287.

Model, F. O. (2006). Software estimating models: Three viewpoints.

Moser, S., & Nierstrasz, O. (1996). The effect of object-oriented frameworks on

developer productivity., Computer : 29(9) : 45-51.

Moses, J., Farrow, M., Parrington, N., & Smith, P. (2006). A productivity

benchmarking case study using Bayesian credible intervals., Software Quality

Journal : 14(1) : 37-52.

Nag, S., Heffan, I., Saenz-Otero, A., & Lydon, M. (2012). SPHERES zero robotics

software development: Lessons on crowdsourcing and collaborative competition, In

Aerospace Conference, IEEE, pp. 1-17.

Naik, N. (2016). Crowdsourcing, open-sourcing, outsourcing and insourcing software

development: A comparative analysis, 2016 IEEE Symposium on Service-Oriented

System Engineering, SOSE, IEEE, pp. 380-385.

Parr, F. N. (1980). An alternative to the Rayleigh curve model for software development

effort., IEEE Transactions on Software Engineering : (3) : 291-296.

Pillai, K., & Nair, V. S. (1997). A model for software development effort and cost

estimation., IEEE Transactions on Software Engineering : 23(8) : 485-497.

Raju, H. K., Krishnegowda, Y. T. (2013). Software sizing and productivity with

Function Points., Lecture Notes on Software Engineering : 1(2) : 204.

Ramakrishnan, S., & Srinivasaraghavan, V. (2014). Delivering software projects using

captive university crowd, In Proceedings of the 7th International Workshop on

Cooperative and Human Aspects of Software Engineering, ACM, pp. 115-118.

Saikia, G., Shivagunde, S., Saradhi, V. V., Kannao, R. D., & Guha, P. (2016). Multiple

kernel learning using data envelopment analysis and feature vector selection and

projection, 23rd International Conference on Pattern Recognition, ICPR , IEEE, pp.

520-524.

Saremi, R. L., & Yang, Y. (2015). Dynamic simulation of software workers and task

completion, In Proceedings of the Second International Workshop on

CrowdSourcing in Software Engineering, IEEE, pp. 17-23.

Satzger, B., Zabolotnyi, R., Dustdar, S., Wild, S., Gaedke, M., Göbel, S., & Nestler, T.

(2014). Toward collaborative software engineering leveraging the crowd,

Economics-Driven Software Architecture, Elsevier, pp. 159-182.

Schneider, C., & Cheung, T. (2013). The power of the crowd: Performing usability

testing using an on-demand workforce, In Information Systems Development,

Springer, pp. 551-560.

Scupola, A., & Nicolajsen, H. W. (2014). The impact of enterprise crowdsourcing on

company innovation culture: The case of an engineering consultancy, In

Scandinavian Conference on Information Systems, Springer International Publishing,

pp. 105-120.

Stensrud, E., & Myrtveit, I. (2003). Identifying high performance ERP projects., IEEE

Transactions on Software Engineering : 29(5) : 398-416.

Stol, K. J., & Fitzgerald, B. (2014). Two's company, three's a crowd: a case study of

crowdsourcing software development, In Proceedings of the 36th International

Conference on Software Engineering, ACM, pp. 187-198.

Tsai, W. T., Wu, W., & Huhns, M. N. (2014). Cloud-based software crowdsourcing.,

IEEE Internet Computing : 18(3) : 78-83.

Tung, Y. H., & Tseng, S. S. (2013). A novel approach to collaborative testing in a

crowdsourcing environment., Journal of Systems and Software : 86(8) : 2143-2153.

Vukovic, M. (2009). Crowdsourcing for enterprises, 2009 World Conference on

Services-I, IEEE, pp. 686-692.

Vukovic, M., & Das, R. (2013). Decision making in enterprise crowdsourcing services,

In International Conference on Service-Oriented Computing, Springer, pp. 624-638.

Warburton, R. D. H. (1983). Managing and predicting the costs of real-time software.,

IEEE Transactions on Software Engineering : (5) :562-569.

Weidema, E. R., López, C., Nayebaziz, S., Spanghero, F., & van der Hoek, A. (2016).

Toward microtask crowdsourcing software design work, IEEE/ACM 3rd

International Workshop on CrowdSourcing in Software Engineering, CSI-SE, IEEE,

pp. 41-44.

Wu, W., Tsai, W. T., & Li, W. (2013). An evaluation framework for software

crowdsourcing., Frontiers of Computer Science : 7(5) : 694-709.

Wu, W., Tsai, W. T., Hu, Z., & Wu, Y. (2015). Towards a game theoretical model for

software crowdsourcing processes, In Crowdsourcing, Springer Berlin Heidelberg,

pp. 143-161.

Xiao, L., & Paik, H. Y. (2014). Supporting complex work in crowdsourcing platforms:

A view from service-oriented computing, 23rd Australian Software Engineering

Conference, ASWEC, IEEE, pp. 11-14.

Xie, T., Bishop, J., Horspool, R. N., Tillmann, N., & de Halleux, J. (2015).

Crowdsourcing code and process via code hunt, IEEE/ACM 2nd International

Workshop on CrowdSourcing in Software Engineering, CSI-SE, pp. 15-16.

Xu, X. L., & Wang, Y. (2014). Crowdsourcing software development process study on

ultra-large-scale system, In Advanced Materials Research, Vol. 989 of Trans Tech

Publications, pp. 4441-4446.

Xu, X., Wu, W., Wang, Y., & Wu, Y. (2015). Software crowdsourcing for developing

Software-as-a-Service., Frontiers of Computer Science : 9(4) : 554-565.

Yakushin, D., & Lee, J. H. (2014). Cooperative robot software development through the

internet, 2014 IEEE/SICE International Symposium on System Integration, SICE,

IEEE, pp. 577-582.

Yan, J., & Wang, X. (2013). From open source to commercial software development-

the community based software development model.

Yan, M., Sun, H., & Liu, X. (2014). iTest: testing software with mobile crowdsourcing,

In Proceedings of the 1st International Workshop on Crowd-based Software

Development Methods and Technologies, ACM, pp. 19-24.

Yu, W. D., Smith, D. P., & Huang, S. T. (1991). Software productivity measurements,

Proceedings of the Fifteenth Annual International In Computer Software and

Applications Conference, COMPSAC'91, IEEE, pp. 558-564.

Zhao, M., & van der Hoek, A. (2015). A brief perspective on microtask crowdsourcing

workflows for interface design, In Proceedings of the Second International

Workshop on CrowdSourcing in Software Engineering, IEEE Press, pp. 45-46.

Zogaj, S., Bretschneider, U., & Leimeister, J. M. (2014). Managing crowdsourced

software testing: a case study based insight on the challenges of a crowdsourcing

intermediary.

BIOGRAPHICAL SKETCH

ASLI SARI

Istanbul, 1990.

GALATASARAY UNIVERSITY, Istanbul, Turkey

M.Sc., Computer Engineering, July 2017 (Expected). Advisor: Gülfem Işıklar Alptekin

BAHÇEŞEHİR UNIVERSITY, Istanbul, Turkey

B.Sc., (Summa Cum Laude) Computer Engineering, June 2014.

AWARDS

2014-Highest 2nd Ranked Student at Bahçeşehir University

2014-Highest Ranked Student Engineering Department at Bahçeşehir University

2014-Highest Ranked Student Computer Engineering Department at Bahçeşehir

University

PUBLICATIONS

• A. Sarı, A.Tosun and G. Işıklar Alptekin, 2017, “A Systematic Literature

Review on Crowdsourcing in Software Engineering”, ACM IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM 2017).

Submitted full text article.

• A. Sarı and G. Işıklar Alptekin, 2017, “A Survey on Crowdsourcing Approach”,

21st Conference of the International Federation of Operational Research Societies

(IFORS 2017). Accepted abstract.

• A. Sarı and G. Işıklar Alptekin, 2017, “An Overview of Crowdsourcing

Concepts in Software Engineering”, 8th International Conference on Applied

Informatics and Computing Theory (AICT’17). Accepted full text article.

